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The connection between orthogonal polynomials, Padé approximants and Gaussian
quadrature is well known and will be repeated in section 1. In the past, several gener-
alizations to the multivariate case have been suggested for all three concepts [4,6,9, . . .],
however without reestablishing a fundamental and clear link. In sections 2 and 3 we will
elaborate definitions for multivariate Padé and Padé-type approximation, multivariate polyno-
mial orthogonality and multivariate Gaussian integration in order to bridge the gap between
these concepts. We will show that the new m-point Gaussian cubature rules allow the exact
integration of homogeneous polynomials of degree 2m − 1, in any number of variables.
A numerical application of the new integration rules can be found in sections 4 and 5.
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1. Padé approximation, orthogonality conditions and numerical quadrature

The Padé approximation problem of a function f (z) consists in finding a rational
function Wn(z)/Vm(z) that matches the formal Taylor series development of f (z) as
well as can be. In detail, for f given and for Wn of degree n and Vm of degree m,
their coefficients are determined from

f (z) = c0 + c1z + c2z
2 + · · · ,

Wn(z) = a0 + · · ·+ anz
n,

(1)
Vm(z) = b0 + · · ·+ bmz

m,

(fVm −Wn)(z) =
∞∑
i=0

diz
i⇒ di = 0, i = 0, . . . ,n+m.

It can be proven [7] that all solutions Wn(z) and Vm(z) of the above problem reduce
to the same irreducible form which will be denoted by [n/m]f (z) and which is called
the Padé approximant of order (n,m) for f .
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Instead of constructing the Padé approximant, one can prefer in some circum-
stances, for instance when one wants to have full control over the poles of the rational
approximant, to compute a Padé-type approximant. Then one proceeds as follows.
With the sequence {ci}i∈N from (1) one associates a linear functional c defined on the
space of polynomials C[t] by

c
(
ti
)

= ci, i = 0, 1, . . . .

In this way

f (z) = c(1) + c(t)z + c
(
t2
)
z2 + · · · = c

(
1

1− tz

)
.

Let us now choose a polynomial Vm(z) of degree m and let us construct the associated
polynomial Wm−1(z) by

Wm−1(z) = c

(
Vm(t)− Vm(z)

t− z

)
.

It can be proven [2, p. 10] that Wm−1 is of degree m− 1 and, hence, we can define
the polynomials

W̃m−1(z) = zm−1Wm−1

(
1
z

)
,

Ṽm(z) = zmVm

(
1
z

)
,

which appear to satisfy [2, p. 11](
fṼm − W̃m−1

)
(z) =

∞∑
i=m

diz
i. (2)

The rational approximant W̃m−1/Ṽm clearly does not approximate the Taylor series
development of f up to the same degree as the Padé approximant does, but it will play
an important role in explaining the connection between Padé approximants, orthogonal
polynomials and Gaussian quadrature formulae. We denote it by (m− 1/m)f (z) and
call it a Padé-type approximant.

If the polynomial Vm(z) in the above construction is not chosen randomly, but if
it is computed from the orthogonality conditions

c
(
tiVm(t)

)
= 0, i = 0, . . . ,m− 1, (3)

with respect to the linear functional c, then (2) improves to(
fṼm − W̃m−1

)
(z) =

∞∑
i=2m

diz
i.

Hence, adding orthogonality conditions to the generating polynomial of the Padé-
type approximation delivers the Padé approximant [m − 1/m]f (z). This explains the
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well-known fact that denominators of Padé approximants are in a way orthogonal
polynomials.

With the sequence {ci}i∈N we can also define the Hankel determinants

H (0)
m =

∣∣∣∣∣∣∣∣∣
c0 . . . cm−1
...

. . . cm
...

cm−1 . . . c2m−2

∣∣∣∣∣∣∣∣∣ , H (0)
0 = 1.

The linear functional c is called definite if

H (0)
m 6= 0, m > 0.

For a definite functional c, the roots of the orthogonal polynomial Vm satisfying (3) all
differ from those of Wm−1 and those of Vm+1. Let us denote these m zeroes of Vm(z)
by z(m)

1 , . . . , z(m)
m and let us for now assume that these zeroes are distinct. Let us then

compute the interpolating polynomial p(z, t) of degree m−1 for the function 1/(1−tz)
through the interpolation points z(m)

1 , . . . , z(m)
m , where z is treated as a parameter and

t is the complex variable. Then we can consider yet another approximation to f (z),
namely,

f (z) = c

(
1

1− tz

)
≈ c
(
p(z, t)

)
= c

(
m∑
i=1

Vm(t)

(t− z(m)
i )V ′m(z(m)

i )

1

1− z(m)
i z

)
. (4)

With

A(m)
i =

Wm−1(z(m)
i )

V ′m(z(m)
i )

formula (4) can be written as

c

(
1

1− tz

)
≈

m∑
i=1

A(m)
i

(
1

1− z(m)
i z

)
.

If the values ci are moments,

ci =

∫ 1

−1
ti dt, i = 0, 1, . . . ,

then (4) becomes

f (z) =

∫ 1

−1

1
1− tz dt ≈

∫ 1

−1
p(z, t) dt =

m∑
i=1

A(m)
i

(
1

1− z(m)
i z

)
.
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It can be proven [2, p. 62] that the approximation 4, which is a Gaussian quadrature
rule for the integration of 1/(1 − tz), satisfies

m∑
i=1

A(m)
i

(
1

1− z(m)
i z

)
= [m− 1/m]f (z).

This establishes a clear link between Padé approximation and Gaussian integration,
namely, that a Gaussian quadrature formula can be considered as a Padé approximant
for the particular function c(1/(1 − tz)), where t is the complex variable and z is
treated as a parameter:

f (z) = c

(
1

1− tz

)
=

∫ 1

−1

1
1− tz dt

≈
∑m

i=1A
(m)
i

(
1

1−z(m)
i z

)
= c
(
p(z, t)

)
= [m− 1/m]f (z).

Let us now try to generalize all the above to higher dimensions. For the sake of
simplicity and without loss of generality, we will write down all formulas for the case
of two variables x and y. Because of the great similarity with the univariate case,
readers have been confused in the past when we used the usual multi-index notation.

2. Homogeneous Padé and Padé-type approximation

Assume we are given a formal series representation

f (x, y) =
∞∑
i,j=0

cijx
iyj ,

which we rewrite as

f (x, y) =
∞∑
k=0

Ck(x, y),

where

Ck(x, y) =
∑
i+j=k

cijx
iyj .

The homogeneous Padé approximation problem of f (x, y) consists in finding polyno-
mials Wn(x, y) and Vm(x, y) of the form

Wn(x, y) =
n∑
k=0

[ ∑
i+j=nm+k

aijx
iyj
]

=
n∑
k=0

Ak(x, y),

Vm(x, y) =
m∑
k=0

[ ∑
i+j=nm+k

bijx
iyj
]

=
m∑
k=0

Bk(x, y),
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such that

(fq − p)(x, y) =
∑

i+j>nm+n+m+1

dijx
iyj. (5)

Note the fact that the homogeneous degrees in Wn, Vm and (5) are shifted by nm,
the necessity of which is explained in [5, pp. 16–18]. It can again be proven that all
polynomials satisfying (5) reduce to the same irreducible rational function, which is
now denoted by [n/m]fH(x, y) and which is called the homogeneous Padé approximant
of order (n,m) to f .

Before continuing, we switch to a spherical coordinate system. We introduce the
directional vector λ and the homogeneous function ck(λ) by

(x, y) = (λ1z,λ2z), x, y, z ∈ C, λ = (λ1,λ2) ∈ C2 \
{

(0, 0)
}

and

ck(λ) =
k∑
j=0

ck−j,jλ
k−j
1 λj2.

Here the norm is one of the usual Minkowski-norms∥∥(λ1,λ2)
∥∥
k

=
(
λk1 + λk2

)1/k

and to avoid redundancy when selecting λ the condition ||λ|| = 1 can be added. In
this coordinate system our given function f reduces to

f (x, y) =
∞∑
k=0

Ck(x, y) =
∞∑
k=0

ck(λ)zk.

If we project f onto the one-dimensional subspace spanned by the vector λ = λ∗,

fλ∗(z) = f
(
λ∗1z,λ∗2z

)
and if we do the same with the homogeneous Padé approximant [n/m]fH, then one can
prove that [3]

[n/m]fH
(
λ∗1z,λ∗2z

)
= [n/m]fλ∗ (z).

We want to emphasize the fact that the form of the projected [n/m]fH is

[n/m]fH(λ1z,λ2z) =

∑n
k=0(

∑
i+j=nm+k aijλ

i
1λ
j
2)zk∑m

k=0(
∑

i+j=nm+k bijλ
i
1λ
j
2)zk

and that it belongs to C[λ1,λ2](z), the space of rational functions in the variable z
with coefficients being complex-valued bivariate polynomials in λ1 and λ2. For fixed
λ = λ∗, it coincides with the univariate Padé approximant for the projected func-
tion fλ∗ , and this for each λ∗, which is a very strong projection property. The shift
of nm in the homogeneous degrees of all the polynomial expressions involved has,
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of course, an effect on the definition of the so-called homogeneous Padé-type approx-
imants which we want to repeat now.

Let us introduce the functional Γ defined on the space C[t] by

Γ
(
ti
)

= ci(λ)

and let us choose a function Vm(x, y) of the form

Vm(x, y) = Vm(z) =
m∑
i=0

Bm2−i(λ)zi,

where Bm2−i(λ) is a homogeneous expression of degree m2− i in λ1 and λ2. For the
associated function Wm−1(x, y) defined by

Wm−1(x, y) =Wm−1(z) = Γ
(
Vm(t)−Vm(z)

t− z

)
one can show [1] that it is a polynomial of degree m − 1 in z, but not that it is a
polynomial in x and y. Instead it belongs to C[λ1,λ2][z] and has the form

Wm−1(x, y) =Wm−1(z) =
m−1∑
i=0

Am2−1−i(λ)zi.

For the polynomials Ṽm(x, y) and W̃m−1(x, y) defined by

Ṽm(x, y) = Ṽm(z) = zm
2Vm

(
z−1) =

m∑
k=0

B̃m(m−1)+k(λ)zm(m−1)+k

=
m∑
k=0

( ∑
i+j=m(m−1)+k

b̃ijx
iyj
)

,

W̃m−1(x, y) = W̃m−1(z) = zm
2−1Wm−1

(
z−1) =

m−1∑
k=0

Ãm(m−1)+k(λ)zm(m−1)+k

=
m−1∑
k=0

( ∑
i+j=m(m−1)+k

ãijx
iyj
)

and belonging to C[x, y], holds

(
fṼm − W̃m−1

)
(x, y) =

(
f Ṽm − W̃m−1

)
(z) =

∞∑
i=m2

di(λ)zi

=
∞∑

i=m2

(
i∑

j=0

di−j,jx
i−jyj

)
. (6)
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Since Ṽm and W̃m−1 are respectively of homogeneous degree (m − 1)m + m and
(m−1)m+m−1 and since the order of fṼm−W̃m−1 equals m2 = (m−1)m+m−1+1,
the rational function W̃m−1/Ṽm can be called a homogeneous Padé-type approximant
of order (m − 1,m) for f (x, y). We denote it by (m − 1/m)fH. For more detailed
information we refer to [1].

3. Multivariate orthogonality conditions and Gaussian cubature formulae

Instead of choosing the function Vm(x, y) freely, we can impose the λ-para-
meterized orthogonality conditions [1]

Γ
(
tiVm(t)

)
= 0, i = 0, . . . ,m− 1, (7)

and thus improve (6) to become

(
fṼm(x, y)− W̃m(x, y)

)
=
(
f Ṽm − W̃m

)
(z) =

∞∑
k=m(m−1)+2m

dk(λ)zk

=
∞∑

k=m(m−1)+2m

(
k∑
j=0

dk−j,jx
k−jyj

)
.

In this way we generalize the conclusion that denominators of Padé approximants (eval-
uated in z) are orthogonal polynomials (evaluated in 1/z) with respect to a linear func-
tional. Apparently it is also the case that, when adding orthogonality conditions to the
generating function Vm(x, y), the multivariate rational approximant (W̃m−1/Ṽm)(x, y)
becomes a homogeneous Padé approximant with zm

2Vm(1/z) in the denominator.
These multivariate orthogonal functions were discussed in detail in [1]. For the mo-
ment we want to focus on their use in integration.

With the homogeneous polynomial expressions ck(λ), we define the λ-para-
meterized Hankel determinants

H (0)
m (λ) =

∣∣∣∣∣∣∣∣∣
c0(λ) . . . cm−1(λ)

...
. . . cm(λ)

...
cm−1(λ) . . . c2m−2(λ)

∣∣∣∣∣∣∣∣∣ , H (0)
0 = 1.

We call the functional Γ definite if

H (0)
m (λ) 6≡ 0, m > 0.

Let us again fix λ = λ∗ and work with the projected functions fλ∗(z) and

Vm,λ∗(z) = Vm
(
λ∗1z,λ∗2z

)
.
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With Γ(tk) = ck(λ∗) as defined above, the function fλ∗(z) can be rewritten as

fλ∗(z) =
∞∑
k=0

ck
(
λ∗
)
zk =

∞∑
k=0

Γ
(
tk
)
zk = Γ

(
1

1− tz

)
.

We know that the orthogonal function Vm(x, y) = Vm(z) is only a polynomial of
degree m in z, not in x and y, and that it coincides, for fixed λ = λ∗, on the one-
dimensional subspace spanned by λ∗, with the univariate orthogonal polynomial with
respect to the functional cλ∗ associated with the sequence{

ck
(
λ∗
)}

k∈N.

Hence, this functional cλ∗ acting on the space C[t] is defined by

cλ∗
(
tk
)

= ck
(
λ∗
)

= Γ
(
tk
)∣∣
λ=λ∗ .

Let us denote the m zeroes of Vm(λ∗1z,λ∗2z) by z(m)
1 (λ∗), . . . , z(m)

m (λ∗) and let us
compute the Hermite interpolating polynomial pλ∗(z, t) of degree m−1 for the function
fλ∗(z) through these interpolation points, where again z is treated as a parameter.
Remember that λ is fixed. This interpolating polynomial can be written as

pλ∗(z, t) =
m∑
i=1

Vm(λ∗1t,λ
∗
2t)

(t− z(m)
i )V ′m(λ∗1z

(m)
i ,λ∗2z

(m)
i )

(
1

1− z(m)
i z

)

=
m∑
i=1

Vm,λ∗(t)− Vm,λ∗(z
(m)
i )

t− z(m)
i

1

V ′m,λ∗(z
(m)
i )

(
1

1− z(m)
i z

)
.

By applying the functional cλ∗ , which is Γ with λ fixed, to both sides of this last
equation, we obtain

Γ
(
pλ∗(z, t)

)
= cλ∗

(
pλ∗(z, t)

)
=

m∑
i=1

Wm−1,λ∗(z
(m)
i )

V ′m,λ∗(z
(m)
i )

(
1

1− z(m)
i z

)

=
1
z

Wm−1,λ∗(z−1)
Vm,λ∗(z−1)

=
W̃m−1,λ∗(z)

Ṽm,λ∗(z)
(8)

and, hence, we see that for each λ = λ∗

Γ
(
pλ∗(z, t)

)
= [m− 1/m]fλ∗ = [m− 1/m]fH

(
λ∗1z,λ∗2z

)
.

As in the univariate case, we introduce the notation

A(m)
i

(
λ∗
)

=
Wm−1,λ∗(z

(m)
i )

V ′m,λ∗(z
(m)
i )

.

Let us now consider the case that the ck(λ) are moments, for instance,

ci−j,j =

(
i

j

)∫∫
||(r,s)||61

ri−jsj dr ds (9)
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with as before

ci(λ) =
i∑

j=0

ci−j,jλ
i−j
1 λj2,

where the norm is one of the usual Minkowski-norms. Then for x = λ1z, y = λ2z
and t = λ1r + λ2s,∫∫

||(r,s)||61

1
1− xr − ys dr ds=

∫∫
||(r,s)||61

1
1− (λ1r + λ2s)z

dr ds

=
∞∑
k=0

ci(λ)zi = Γ
(

1
1− tz

)
,

from which we can conclude

fλ(z) = Γ
(

1
1− tz

)
=

∫∫
||(r,s)||61

1
1− (λ1r + λ2s)z

dr ds

≈
m∑
i=1

A(m)
i (λ)

(
1

1− z(m)
i (λ)z

)
= Γ

(
pλ(z, t)

)
= [m− 1/m]fH(λ1z,λ2z).

(10)

This establishes a link between homogeneous Padé approximation and Gaussian inte-
gration, in a very similar way as in the univariate situation.

Let us carry out some more computations in order to transform the above rela-
tionship into a useful Gaussian cubature formula. We assume from now on that the
functional Γ is positive definite, meaning that [1]

∀λ ∈ R2: H (0)
m (λ) > 0, m > 0.

In this case, for each λ, the zeroes z(m)
i of Vm(λ1z,λ2z) = Vm(z) are real and sim-

ple [2, pp. 58–59] because the functional cλ is positive definite. Then according to the
implicit function theorem [8], there exists for each z(m)

i a unique holomorphic function
φ(m)
i (λ1,λ2) such that in a neighbourhood of z(m)

i ,

Vm(z) = 0⇐⇒ z = φ(m)
i (λ1,λ2).

Since this is true for each λ because Γ is positive definite, this implies that for each
i = 1, . . . ,m the zeroes z(m)

i can be viewed as a holomorphic function of λ, namely,
z(m)
i = φ(m)

i (λ1,λ2). If we denote in (8)

A(m)
i (λ) =

Wm−1,λ(z(m)
i )

V ′m,λ(z(m)
i )

=
Wm−1(φ(m)

i (λ))

V ′m(φ(m)
i (λ))

, (11)
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then (8) and (10) can for t = λ1r + λ2s be written as∫∫
||(r,s)||61

1
1− (λ1r + λ2s)z

dr ds ≈
m∑
i=1

A(m)
i (λ)

(
1

1− φ(m)
i (λ1,λ2)z

)
and the Gaussian cubature formula∫∫

||(x,y)||61
g(λ1x+ λ2y) dx dy ≈

m∑
i=1

A(m)
i (λ)g

(
φ(m)
i (λ)

)
(12)

can be proposed. In order ro rightfully talk about a Gaussian cubature formula we
prove the property that the formula exactly integrates homogeneous polynomials of
degree 2m− 1.

Theorem 1. Let P(z) be a polynomial of degree 2m−1 belonging to C(λ1,λ2)[z], the
set of polynomials in the variable z with coefficients from the space of bivariate rational
functions in λ1 and λ2 with complex coefficients. Let the functions φ(m)

i (λ1,λ2) be
given as above and be such that

∀λ ∈ R2 \
{

(0, 0)
}

: j 6= i⇒ φ(m)
j (λ) 6= φ(m)

i (λ).

Then for z = λ1x+ λ2y holds∫∫
||(x,y)||61

P(λ1x+ λ2y) dx dy =
m∑
i=1

A(m)
i (λ)P

(
φ(m)
i (λ)

)
.

Proof. The polynomial P is of the form

P(z) =
2m−1∑
i=0

πi(λ1,λ2)zi

with πi(λ1,λ2) ∈ C(λ1,λ2). Let us consider for z = λ1x+ λ2y the functional

Γ(P) =

∫∫
||(x,y)||61

P(λ1x+ λ2y) dx dy.

Then

Γ(P) =
2m−1∑
i=0

π(λ1,λ2)ci(λ) = cλ
(
P(z)

)
and from hereon the proof is a λ-parameterized version of the univariate proof. Let
Vm(z) satisfy (7) with zeroes given by φ(m)

i (λ), i = 1, . . . ,m. Then

P(z) = Q(z)Vm(z) +R(z)

with Q(z) and R(z) belonging to C(λ1,λ2)[z] and of degree at most m− 1 in z. Also

Γ(P) = Γ(QVm) + Γ(R) = Γ(R).
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The polynomial R(z) equals its Lagrange interpolant of degree m − 1 through the
interpolation points φ(m)

i (λ), which is given by

R(z) =
m∑
i=1

Vm(z)

z − φ(m)
i (λ)

R(φ(m)
i (λ))

V ′m(φ(m)
i (λ))

.

When applying the functional Γ to both sides of this equation, one obtains

Γ(P) = Γ(R) =
m∑
i=1

Wm−1(φ(m)
i (λ))

V ′m(φ(m)
i (λ))

R
(
φ(m)
i (λ)

)
=

m∑
i=1

Wm−1(φ(m)
i (λ))

V ′m(φ(m)
i (λ))

P
(
φ(m)
i (λ)

)
=

m∑
i=1

A(m)
i (λ)P

(
φ(m)
i (λ)

)
,

which completes the proof. �

Let us illustrate theorem 1 with an example to render the achieved result more
understandable. Take

P(z) = P(λ1x+ λ2y) =
3∑
i=0

(
3
i

)(
λ1

λ2

)3−i
(λ1x+ λ2y)i

and consider the `2-norm∥∥(x, y)
∥∥ =

√
x2 + y2, (x, y) ∈ R2.

Then ∫∫
||(x,y)||61

P(λ1x+ λ2y) dx dy =
πλ1

4λ3
2

(
4λ2

1 + 3λ2
1λ

2
2 + 3λ4

2

)
. (13)

For the `2-norm the expressions ci(λ) given by (9) equal

c0(λ) = π,

c1(λ) = 0,

c2(λ) =
π

4

(
λ2

1 + λ2
2

)
,

c3(λ) = 0,
...

When we want to apply the exact integration rule proved in theorem 1, then we have
to choose m = 2. From the orthogonal function V2(x, y) = V2(z) the zeroes

φ(2)
1 (λ) =

1
2

√
λ2

1 + λ2
2,

φ(2)
2 (λ) =−1

2

√
λ2

1 + λ2
2
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and the weights

A(2)
1 (λ) = A(2)

2 (λ) =
π

2

are obtained. The integration rule

A(2)
1 P

(
φ(2)

1 (λ)
)

+A(2)
2 P

(
φ(2)

2 (λ)
)

then yields the same result as (13). For the `1- and `∞-norm similar computations can
be performed: after obtaining the ci(λ) for these norms, the orthogonal polynomial
V2(z) constructed from the ci(λ) delivers all necessary ingredients for the application
of the Gaussian cubature rule.

4. Interpolatory cubature rules

Another application of the above results can be found in the derivation of some
other new multidimensional integration rules, now of interpolatory type. Let us take

Vm(z) = γ0(λ)
m∏
i=1

(
z − γi(λ)

)
,

γi(λ) =αiλ1 + βiλ2, αi,βi ∈ R, i = 1, . . . ,m, (14)

γ0(λ) =

m(m−1)∑
j=0

δjλ
j
1λ
m(m−1)−j
2 , δj ∈ R.

Then the interpolatory cubature rule∫∫
||(x,y)||61

g(λ1x+ λ2y) dx dy ≈
m∑
i=1

A(m)
i (λ)g(αiλ1 + βiλ2) (15)

can be constructed. The difference with the Gaussian cubature rule being that Vm(z)
does not satisfy the orthogonality conditions (7), but is chosen freely. In other words,
Ṽm(z) is the denominator of a Padé-type approximant and not that of a Padé approx-
imant and hence its zeroes are fixed beforehand and must not be computed. In order
to rightfully call this a cubature formula of interpolatory type, we now prove that it
integrates polynomials of degree m exactly.

Theorem 2. Let P(z) be a polynomial of degree m belonging to C(λ1,λ2)[z]. Let
the functions φ(m)

i (λ1,λ2), i = 1, . . . ,m, for each λ give the m distinct zeroes of the
polynomial Vm(z). Then for z = λ1x+ λ2y holds∫∫

||(x,y)||61
P(λ1x+ λ2y) dx dy =

m∑
i=1

A(m)
i (λ)P

(
φ(m)
i (λ)

)
.
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Proof. We compute the interpolating polynomial R(z) of degree m for P(z) through
the interpolation points z(m)

i = φ(m)
i (λ1,λ2). Using the Lagrange formula, it is given

by

R(z) =
m∑
i=1

Vm(z)

z − φ(m)
i (λ)

P(φ(m)
i (λ))

V ′m(φ(m)
i (λ))

.

The theorem is then a consequence of the fact that, on the one hand,

Γ(R) =
m∑
i=1

A(m)
i (λ)P

(
φ(m)
i (λ)

)
and, on the other hand, P(z) = R(z). �

An example of such an integration rule is for instance (15) with φ(m)
i (λ) = γi(λ)

as given by (14) and A(m)
i (λ) still given by (11).

5. Numerical example

Let us apply the new cubature rules (12) and (15) to the integration of∫ 1

0

∫ 1

0

(
1 + e−λ1x−λ2y sin(4λ1x+ 4λ2y)

)
dx dy. (16)

Some simple computations reveal that

c0(λ) = 1,

c1(λ) =
1
2

(λ1 + λ2),

c2(λ) =
1
3
λ2

1 +
1
2
λ1λ2 +

1
3
λ2

2,

c3(λ) =
1
4
λ3

1 +
1
2
λ1λ2(λ1 + λ2) +

1
4
λ3

2,

...

and that for V2(z) orthogonal with respect to Γ

φ(2)
1 (λ) =

1
6

(
3λ1 + 3λ2 −

√
3
(
λ2

1 + λ2
2

))
,

φ(2)
2 (λ) =

1
6

(
3λ1 + 3λ2 +

√
3
(
λ2

1 + λ2
2

))
,

A(2)
1 (λ) =

c1(λ)− φ(2)
2 (λ)

φ(2)
1 (λ)− φ(2)

2 (λ)
,

A(2)
2 (λ) =

φ(2)
1 (λ)− c1(λ)

φ(2)
1 (λ)− φ(2)

2 (λ)
.
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Table 1

λ Formula (12) Exact value

(1, 0) 1.29985 1.30825
(1/10, 0) 1.184699 1.184705

(
√

2/2,
√

2/2) 1.1896 1.1645
(
√

2/20,
√

2/20) 1.25543 1.25544
(
√

3/2, 1/2) 1.209 1.189
(
√

3/20, 1/20) 1.24744 1.24745

The use of (12) for different choices of λ yields the results presented in table 1.
When applying (15) to the computation of (16) we choose a polynomial of de-

gree 4 in z in order to obtain a comparable accuracy. For

V4(z) =

(
z − 1

2
λ1

)(
z − λ1 −

1
2
λ2

)(
z − 1

2
λ1 − λ2

)(
z − 1

2
λ2

)
=

4∏
i=1

(
z − φ(4)

i (λ)
)

the associated polynomial W3(z) is given by

W3(z) = Γ
(
V4(z)− V4(t)

z − t

)
=

3∑
i=0

[
c3−i(λ) +

3−i−1∑
j=0

µ3−i−j(λ)cj (λ)

]
zi

with

µ1(λ) =−
4∑
i=1

φ(4)
i (λ),

µ2(λ) =
4∑

i,j=1
i<j

φ(4)
i (λ)φ(4)

j (λ),

µ3(λ) =−
4∑

i,j,k=1
i<j<k

φ(4)
i (λ)φ(4)

j (λ)φ(4)
k (λ),

µ4(λ) =
4∏
i=1

φ(4)
i (λ).

The use of (15) for different choices of λ then almost produces the same results
as above, when rounded to the same number of digits as above, the only exception
being that, for λ = (

√
3/2, 1/2), the approximation computed using formula (15)

equals 1.204.
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