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In univariate Padé approximation we learn from the Froissart phenomenon that Padé
approximants to perturbed Taylor series exhibit almost cancelling pole–zero combinations
that are unwanted. The location of these pole–zero doublets was recently characterized for
rational functions by the so-called Froissart polynomial. In this paper the occurrence of the
Froissart phenomenon is explored for the first time in a multivariate setting. Several obvious
questions arise. Which definition of Padé approximant is to be used? Which multivariate
rational functions should be investigated? When considering univariate projections of these
functions, our analysis confirms the univariate results obtained so far in [13], under the
condition that the noise is added after projection. At the same time, it is apparent from
section 4 that for the unprojected multivariate Froissart polynomial no conjecture can be
formulated yet.
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1. Introduction

The technique of Padé approximation is rather well understood when one is
dealing with univariate functions. A lot of information can, for instance, be found
in [1]. In the sequel we adopt the notation [n/m]f for the Padé approximant to the
function f (z) computed from the polynomials p(z) and q(z) which are respectively of
degree n and m and which satisfy

(fq − p)(z) =
∞∑

i=n+m+1

eiz
i.

Problems such as

• normality: conditions for a Padé approximant to be unique in the Padé table;
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• consistency: the exact reconstruction of rational functions by the Padé approxima-
tion technique;

• continuity: conditions for the Padé operator Pn,m : f → [n/m]f to be a continuous
operator of f ;

have all been studied in the past.
Related to these problems is the study of the effect of noise on the Padé ap-

proximation process. Properties such as non-normality and consistency are very noise-
sensitive. How the presence of noise in input affects the final output has always been
an important issue in numerical procedures. Already by Froissart [2,9,11,14] it was
pointed out that the Padé approximants [n/n]f (z) for the simple rational function
f (z) = 1/(1 − z), when computed in floating-point arithmetic, have a stable pole
near z = 1, a ghost zero way out and n − 1 pole–zero doublets that almost cancel.
Recently this phenomenon has been described in a more formal way by Gilewicz and
Pindor [12,13], first for the simple pole case f (z) = 1/(1 − z) and afterwards for
irreducible rational functions with a numerator degree smaller than the denominator
degree.

When looking into these problems for multivariate Padé approximants, several
questions arise.

• Which definition of multivariate Padé approximant should we consider?

• Can we expect a connection with Froissart’s result on some univariate cuts?

• Which multivariate function should we study first?

In order to be able to answer these questions, let us briefly recall the results obtained
in [12]. It is well known that in exact arithmetic the Padé approximants [n/m]f with
n > 0 and m > 1 for

f (z) =
1

1− z =
∞∑
i=0

zi (1)

all equal f and hence form an infinite block in the Padé table for f . When the
series (1) is perturbed by uniformly distributed noise εri, with ε� 1 and ri uniformly
distributed in (−1, 1), to

fε(z) =
∞∑
i=0

(1 + εri)z
i,

then the infinite block disappears and the Padé approximants inside the block do not
equal but rather resemble f in the following sense. The results are again exactly
computed results. The Padé approximants [n− 1/n]fε are given by

[n− 1/n]fε(z) =
Kn−1(z) + εP (1)

n−1(z) + ε2P (2)
n−1(z)

(1− z)Kn−1(z) + εQ(1)
n (z)

(2)
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with Kn−1(z) as specified below. In a similar way, Gilewicz and Pindor [13] showed
that for

g(z) =
1

1− z +
1

1− z/α , α 6= 1, (3)

the [n− 1/n]gε approximants to the disturbed series

gε(z) =
∞∑
i=0

(
1 +

1
αi

+ εri

)
zi

are given by

[n− 1/n]gε(z) =

(
2−

(
1 + 1

α

)
z
)
K(α)
n−2(z) + εP (1)

n−1(z) + ε2P (2)
n−1(z) + ε3P (3)

n−1(z)

(1− z)
(
1− z

α

)
K(α)
n−2(z) + εQ(1)

n (z) + ε2Q(2)
n (z)

.

(4)
In both cases P (i)

n−1 and Q(i)
n are polynomials of degrees n−1 and n, respectively. The

polynomials Kn−1(z) and K(α)
n−2(z) are called Froissart polynomials and, because of

the continuity of the roots of a polynomial with respect to the coefficients, they indicate
the location of the pole–zero doublets that result from the perturbation. Without going
into detail, we can write

Kn−1(z) =

∣∣∣∣∣∣∣∣∣
1 . . . zn−1

d2n−1 . . . dn
...

...
dn+1 . . . d2

∣∣∣∣∣∣∣∣∣ =
n−1∑
i=0

kiz
i, (5)

where di = ri − 2ri−1 + ri−2 and

K(α)
n−2(z) =

∣∣∣∣∣∣∣∣∣
1 . . . zn−2

ρ(1,α)
2n−1 . . . ρ(1,α)

n+1
...

...
ρ(1,α)
n+2 . . . ρ(1,α)

4

∣∣∣∣∣∣∣∣∣ =
n−2∑
i=0

k(α)
i zi, (6)

where

δ(1,α)
j = rj − rj−1 −

1
α

(rj−1 − rj−2),

ρ(1,α)
j = δ(1,α)

j − δ(1,α)
j−1 −

1
α

(
δ(1,α)
j−1 − δ

(1,α)
j−2

)
.

It is conjectured in [12] that for uniformly distributed ri

(z − 1)
Kn−1(z)
kn−1

≈ zn − 1
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or

1
kn−1

Kn−1(z) ≈
n−1∑
i=0

zi.

When moving the pole of (1) from z = 1 to z = β, then some β-dependence in (5)
can be observed but at the same time, in case the ri are uniformly distributed, many
pole–zero doublets stay in the neighbourhood of the unit circle. For K(α)

n−2(z) it was
suggested that with uniformly distributed noise

(z − 1)(z − α)
K(α)
n−2(z)

k(α)
n−2

≈ zn − 1. (7)

When studying multivariate Padé approximants, one of the first things that attracts
attention is that there is no single unique definition for the notion of multivariate Padé
approximant [5]. But among all the possible definitions that of the homogeneous Padé
approximant stands out because it is very close to the univariate definition (for other
reasons other definitions may of course be preferred). Among the properties shared
with the univariate Padé approximant are the consistency and continuity property of
the homogeneous Padé operator, similar conditions for normality of an approximant
and the square block structure of the homogeneous Padé table [6]. So it is natural that
we start off the study of the Froissart phenomenon in multivariate Padé approximation
by looking at the homogeneous Padé approximants.

With respect to the second question raised above, whether there is an immediate
connection between the multivariate phenomenon and the univariate one, the answer
is yes. The homogeneous Padé approximants satisfy a very strong projection prop-
erty, meaning that they reduce to univariate Padé approximants when projected onto
1-dimensional subspaces. We shall recall this property in section 2. Let us already
point out that the projection property should be applied with care when comparing the
multivariate results with the univariate ones, as is illustrated in section 4.

With respect to the question of which perturbed rational functions may exhibit a
similar behaviour, another property of the homogeneous multivariate Padé approximant
plays a role. When the rational function f (x1, . . . ,xt) is of the form

f (x1, . . . ,xt) = (g ◦ `)(x1, . . . ,xt)

with `(x1, . . . ,xt) a linear function of the variables x1, . . . ,xt and g a univariate ra-
tional function, then the homogeneous Padé approximants to f will turn out to be the
univariate Padé approximants [n/m]g(z) for z = `(x1, . . . ,xt). Hence functions f of
this type are not really interesting because the univariate conclusions apply immedi-
ately. This covers all functions f (x1, . . . ,xt) of the form

f (x1, . . . ,xt) = 1/(a+ b1x1 + · · ·+ btxt).
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We shall therefore start our discussion by looking at another type of rational function,
namely

f (x, y) =
1

α− x +
1

β − y . (8)

Only for reasons of notational simplicity do we deal with the bivariate case instead of
with the general multivariate case. All conclusions will remain valid for the function

f (x1, . . . ,xt) =
1

α1 − x1
+ · · · + 1

αt − xt
.

2. Homogeneous multivariate Padé approximants

A lot of information on homogeneous multivariate Padé approximants can be
found in [4,5]. We recall the determinant representation of numerator and denominator
because these are needed in the sequel.

Given a Taylor series expansion

f (x, y) =
∞∑

i+j=0

cijx
iyj , (9)

we introduce the homogeneous expressions

C`(x, y) =
∑
i+j=`

cijx
iyj , ` = 0, 1, 2, . . . .

For chosen ν and µ, we also define the homogeneous expressions

A`(x, y) =
∑

i+j=νµ+`

aijx
iyj , ` = 0, . . . , ν,

B`(x, y) =
∑

i+j=νµ+`

bijx
iyj , ` = 0, . . . ,µ,

and the bivariate polynomials

p(x, y) =
ν∑
`=0

A`(x, y),

q(x, y) =

µ∑
`=0

B`(x, y).

In the homogeneous multivariate Padé approximation problem the values ν and µ play
the role of the univariate degrees n and m, and the polynomials p(x, y) and q(x, y) are
determined from the conditions

(fq − p)(x, y) =
∑

i+j>νµ+ν+µ+1

eijx
iyj , (10)
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which can be rewritten as
C0(x, y)B0(x, y) = A0(x, y),
C1(x, y)B0(x, y) + C0(x, y)B1(x, y) = A1(x, y),

...
Cν(x, y)B0(x, y) + · · ·+ Cν−µ(x, y)Bµ(x, y) = Aν(x, y),

(11a)


Cν+1(x, y)B0(x, y) + · · ·+ Cν+1−µ(x, y)Bµ(x, y) ≡ 0,

...
Cν+µ(x, y)B0(x, y) + · · ·+ Cν(x, y)Bµ(x, y) ≡ 0,

(11b)

where C`(x, y) ≡ 0 if ` < 0. This is exactly the system of defining equations for
univariate Padé approximants if the term c`x

` in the univariate definition is substituted
by

C`(x, y) =
∑
i+j=`

cijx
iyj , ` = 0, 1, 2, . . . .

The homogeneous multivariate Padé approximant [ν/µ]fH for f (x, y) is defined as the
unique irreducible form of a solution p(x, y)/q(x, y) of (11). Several suitable normal-
izations are possible. This unicity of the irreducible form is a distinctive characteristic
of the homogeneous approach and is thoroughly discussed in [4,5]. From (11) it is
easy to obtain a determinant formula for p and q. We recall it for ν = n − 1 and
µ = n. The dimension of the determinants below is (n+ 1)× (n+ 1).

p(x, y) =
n2−1∑

i+j=(n−1)n

aijx
iyj

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1∑
i=0

Ci(x, y)
n−2∑
i=0

Ci(x, y) . . . C0(x, y) 0

Cn(x, y) Cn−1(x, y) . . . C1(x, y) C0(x, y)
...

...
...

...

C2n−1(x, y) C2n−2(x, y) . . . Cn(x, y) Cn−1(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (12)

q(x, y) =
n2∑

i+j=(n−1)n

bijx
iyj

=

∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1 1

Cn(x, y) Cn−1(x, y) . . . C1(x, y) C0(x, y)
...

...
...

...

C2n−1(x, y) C2n−2(x, y) . . . Cn(x, y) Cn−1(x, y)

∣∣∣∣∣∣∣∣∣∣
. (13)
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The homogeneous Padé approximants also satisfy the following projection property [3].

Theorem 1. Let (x, y) = (λ1z,λ2z) with λi ∈ C for i = 1, 2 and let fλ1,λ2(z) =
f (λ1z,λ2z). Then the irreducible form of the homogeneous multivariate Padé ap-
proximant [ν/µ]fH(λ1z,λ2z) restricted to the values (x, y) = (λ1z,λ2z) equals the
univariate Padé approximant [ν/µ]fλ1,λ2 (z) for the function fλ1,λ2(z).

The application of this property to the problem under investigation will be dis-
cussed in section 4.

In the sequel we focus on f (x, y) given by (8), which we perturb by adding
uniformly distributed noise, to obtain

fε(x, y) =
∞∑
i=0

xi

αi+1 +
∞∑
j=0

yj

βj+1 + ε
∞∑
i,j=0

rijx
iyj , rij ∈ (−1, 1). (14)

3. Calculating the multivariate Froissart polynomial

The main result of this section is not merely a numerical experiment in the style of
Froissart’s original investigation, to see whether the so-called Froissart phenomenon
does or does not occur for homogeneous Padé approximants. We actually want to
establish two things.

First, the occurrence of the Froissart phenomenon in homogeneous Padé approx-
imation is confirmed by computing explicit formulas for [n− 1/n]fεH , in a similar way
as was done in (2) and (4). The reader can see that a so-called bivariate Froissart
polynomial associated with [n− 1/n]fεH is obtained by transforming the determinant
representations (12) and (13). The transformations carried out on p(x, y) are very
similar to those carried out on q(x, y).

Second, the analogy between the univariate and multivariate situation, especially
with respect to the so-called univariate and multivariate Froissart polynomials contain-
ing the almost cancelling pole–zero combinations, once more confirms our intuition
about homogeneous Padé approximants. They are indeed very close to the classical
univariate Padé approximants, with the origin (or the point around which the series
development (9) is given) being an exceptional point. That (0, 0) plays a special role
was confirmed in a recent convergence theorem of type de Montessus de Ballore [8].
It is also obvious from the fact that the approximants [n− 1/n]fεH are singular for
(x, y) = (0, 0). In an earlier study Werner [17] already indicated that when evaluating
the homogeneous Padé approximant, one should avoid some critical directions while
approaching the origin.

In the future one could investigate whether the natural boundary, established by
the Froissart polynomial, may have any effect on the convergence of the homogeneous
multivariate Padé approximants [n− 1/n]fεH . This problem should also be seen in
the light of the recent convergence results in measure and capacity obtained in [7]. In
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section 4 we illustrate that the [n− 1/n]fεH possibly still converge beyond the boundary
of the Froissart polynomial. In the univariate case this behaviour was discussed by
Gammel [10].

Before proceeding, we introduce some notations.

3.1. Notations

With the noise rij that is being added to (8) as in (14) and that is uniformly
distributed in (−1, 1), we define

Rk(x, y) =
∑
i+j=k

rijx
iyj ,

∆Rk(x, y) =Rk(x, y)−Rk−1(x, y),

ΘRk(x, y) =Rk(x, y)−
(
x

α
+
y

β

)
Rk−1(x, y) +

x

α

y

β
Rk−2(x, y),

∇Rk(x, y) = ∆Rk(x, y)−
(
x

α
+
y

β

)
∆Rk−1(x, y) +

x

α

y

β
∆Rk−2(x, y),

ΦRk(x, y) =∇Rk(x, y)−
(
x

α
+
y

β

)
∇Rk−1(x, y) +

x

α

y

β
∇Rk−2(x, y).

At the same time we use the fact that for (8)

Ck(x, y) =
xk

αk+1 +
yk

βk+1 + εRk(x, y),

∆Ck(x, y) =Ck(x, y)− Ck−1(x, y)

=
xk−1

αk

(
x

α
− 1

)
+
yk−1

βk

(
y

β
− 1

)
+ ε∆Rk(x, y).

Since there is no doubt that all expressions with Rk and Ck are functions of x and y,
and to simplify notations, we will omit writing (x, y) in the sequel. The homogeneous
order, denoted by ω, and the homogeneous degree, denoted by ∂, of the functions
listed above are respectively given by

∂(∆Rk) = k, ω(∆Rk) = k − 1,

∂(ΘRk) = k, ω(ΘRk) = k,

∂(∇Rk) = k, ω(∇Rk) = k − 1,

∂(ΦRk) = k, ω(ΦRk) = k − 1.
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3.2. Rewriting the denominator of [n− 1/n]fεH

After subtracting column i + 1 from column i for i = 1, . . . ,n, the denomina-
tor (13) looks like

q(x, y) = (−1)n

∣∣∣∣∣∣∣
∆Cn ∆Cn−1 . . . ∆C1

...
...

...
∆C2n−1 ∆C2n−2 . . . ∆Cn

∣∣∣∣∣∣∣ .
Subtracting column i+ 1 multiplied by x/α+ y/β from column i and adding column
i+ 2 multiplied by (x/α)(y/β) to column i for i = 1, . . . ,n− 2, yields for q(x, y)

(−1)n

∣∣∣∣∣∣∣∣∣
ε∇Rn . . . ε∇R3 ∆C2 ∆C1

ε∇Rn+1 . . . ε∇R4 ∆C3 ∆C2
...

...
...

...
ε∇R2n−1 . . . ε∇Rn+2 ∆Cn+1 ∆Cn

∣∣∣∣∣∣∣∣∣
or, reformulated,

(−1)nεn−2

×

∣∣∣∣∣∣∣∣∣∣∣

∇Rn . . . ∇R3
x
α2

(
x
α − 1

)
+ y

β2

(
y
β − 1

)
1
α

(
x
α − 1

)
+ 1

β

(
y
β − 1

)
∇Rn+1 . . . ∇R4

x2

α3

(
x
α − 1

)
+ y2

β3

(
y
β − 1

)
x
α2

(
x
α − 1

)
+ y

β2

(
y
β − 1

)
...

...
...

...

∇R2n−1 . . . ∇Rn+2
xn

αn+1

(
x
α − 1

)
+ yn

βn+1

(
y
β − 1

)
xn−1

αn

(
x
α − 1

)
+ yn−1

βn

(
y
β − 1

)

∣∣∣∣∣∣∣∣∣∣∣
+ εn−1Q(1)

n + εnQ(2)
n .

Here Q(i)
n are polynomials of degree n2 and order (n−1)n. In the next transformations

we concentrate on the first determinant in this sum. After subtracting x/α times the
last column from the one but last column, we obtain for the O(εn−2) contribution

(−1)nεn−2 1
β

(
y

β
− 1

)(
y

β
− x

α

)

×

∣∣∣∣∣∣∣∣∣∣∣∣

∇Rn . . . ∇R3 1 1
α

(
x
α − 1

)
+ 1

β

( y
β − 1

)
∇Rn+1 . . . ∇R4

y
β

x
α2

(
x
α − 1

)
+ y

β2

( y
β − 1

)
...

...
...

...

∇R2n−1 . . . ∇Rn+2
yn−1

βn−1
xn−1

αn

(
x
α − 1

)
+ yn−1

βn

( y
β − 1

)

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Subtracting row i − 1 multiplied by x/α + y/β from row i and adding row i − 2
multiplied by (x/α)(y/β) to row i for i = n, . . . , 3, results in

(−1)nεn−2 1
β

(
y

β
− 1

)(
y

β
− x

α

)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇Rn . . . ∇R3 1 1
α

(
x
α − 1

)
+ 1

β

( y
β − 1

)
∇Rn+1 . . . ∇R4

y
β

x
α2

(
x
α − 1

)
+ y

β2

( y
β − 1

)
ΦRn+2 . . . ΦR5 0 0

...
...

...
...

ΦR2n−1 . . . ΦRn+2 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The final step of the rewriting consists in placing the last two columns in front and
using the rule of the Schur complement. In this way, we get for q(x, y)

(−1)3n−4εn−2 1
β

(
y

β
− 1

)(
y

β
− x

α

)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
α

(
x
α − 1

)
+ 1

β

( y
β − 1

)
∇Rn . . . ∇R3

y
β

x
α2

(
x
α − 1

)
+ y

β2

( y
β − 1

)
∇Rn+1 . . . ∇R4

0 0 ΦRn+2 . . . ΦR5

...
...

...
...

0 0 ΦR2n−1 . . . ΦRn+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ εn−1Q(1)

n + εnQ(2)
n

= (−1)3n−5εn−2 1
α

1
β

(
x

α
− 1

)(
y

β
− 1

)(
y

β
− x

α

)2

K(α,β)
n−2 (x, y)

+ εn−1Q(1)
n + εnQ(2)

n . (15)

We will call K(α,β)
n−2 (x, y), which is defined by
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K(α,β)
n−2 (x, y) =

∣∣∣∣∣∣∣
ΦRn+2 . . . ΦR5

...
...

ΦR2n−1 . . . ΦRn+2

∣∣∣∣∣∣∣ =

(n−2)(n+2)∑
i+j=(n−2)(n+1)

kijx
iyj , (16)

the bivariate Froissart polynomial.

3.3. Rewriting the numerator of [n− 1/n]fεH

After subtracting column i+1 from column i for i = 1, . . . ,n, the numerator (12)
looks like

p(x, y) =

∣∣∣∣∣∣∣∣∣
Cn−1 Cn−2 . . . C0 0
∆Cn ∆Cn−1 . . . ∆C1 C0

...
...

...
...

∆C2n−1 ∆C2n−2 . . . ∆Cn Cn−1

∣∣∣∣∣∣∣∣∣ .
Subtracting column i+ 1 multiplied by x/α+ y/β from column i and adding column
i+ 2 multiplied by (x/α)(y/β) to column i for i = 1, . . . ,n− 2, yields for p(x, y)∣∣∣∣∣∣∣∣∣∣∣

εΘRn−1 . . . εΘR2 C1 C0 0
ε∇Rn . . . ε∇R3 ∆C2 ∆C1 C0

ε∇Rn+1 . . . ε∇R4 ∆C3 ∆C2 C1
...

...
...

...
...

ε∇R2n−1 . . . ε∇Rn+2 ∆Cn+1 ∆Cn Cn−1

∣∣∣∣∣∣∣∣∣∣∣
or, reformulated,

εn−2 ×∣∣∣∣∣∣∣∣∣∣∣∣∣

ΘRn−1 . . . ΘR2
x
α2 + y

β2
1
α + 1

β 0

∇Rn . . . ∇R3
x
α2

(
x
α
− 1
)

+ y
β2

(
y
β
− 1
)

1
α

(
x
α
− 1
)

+ 1
β

(
y
β
− 1
)

1
α

+ 1
β

∇Rn+1 . . . ∇R4
x2

α3

(
x
α − 1

)
+ y2

β3

(
y
β − 1

)
x
α2

(
x
α − 1

)
+ y

β2

(
y
β − 1

)
x
α2 + y

β2

...
...

...
...

...

∇R2n−1 . . . ∇Rn+2
xn

αn+1

(
x
α
− 1
)

+ yn

βn+1

(
y
β
− 1
)
xn−1

αn

(
x
α
− 1
)

+ yn−1

βn

(
y
β
− 1
)
xn−1

αn
+ yn−1

βn

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ εn−1P (1)

n−1 + εnP (2)
n−1 + εn+1P (3)

n−1.

Here P (i)
n−1 are polynomials of degree n2 − 1 and order (n − 1)n. In the next trans-

formations we concentrate on the first determinant again. After subtracting x/α times
the one but last column from column n− 1, we obtain for the O(εn−2) contribution
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εn−2 1
β

(
y

β
− x

α

)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

ΘRn−1 . . . ΘR2 1 1
α + 1

β 0

∇Rn . . . ∇R3
y
β
− 1 1

α

(
x
α
− 1
)

+ 1
β

(
y
β
− 1
)

1
α

+ 1
β

∇Rn+1 . . . ∇R4
y
β

(
y
β − 1

)
x
α2

(
x
α − 1

)
+ y

β2

(
y
β − 1

)
x
α2 + y

β2

...
...

...
...

...

∇R2n−1 . . . ∇Rn+2
yn−1

βn−1

(
y
β − 1

)
xn−1

αn

(
x
α − 1

)
+ yn−1

βn

(
y
β − 1

)
xn−1

αn + yn−1

βn

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Subtracting row i − 1 multiplied by x/α + y/β from row i and adding row i − 2
multiplied by (x/α)(y/β) to row i for i = n, . . . , 4, results in

εn−2 1
β

(
y

β
− x

α

)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ΘRn−1 . . . ΘR2 1 1
α + 1

β 0

∇Rn . . . ∇R3
y
β − 1 1

α

(
x
α − 1

)
+ 1

β

( y
β − 1

)
1
α + 1

β

∇Rn+1 . . . ∇R4
y
β

( y
β − 1

)
x
α2

(
x
α − 1

)
+ y

β2

( y
β − 1

)
x
α2 + y

β2

ΦRn+2 . . . ΦR5 0 0 0
...

...
...

...
...

ΦR2n−1 . . . ΦRn+2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The final step of the rewriting consists in placing the last three columns in front and
using the rule of the Schur complement. In this way we get for p(x, y)

εn−2 1
β

(
y

β
− x

α

)
(−1)3(n−2)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
α + 1

β 0 ΘRn−1 . . . ΘR2

y
β − 1

(
x
α − 1

)
+
( y
β − 1

)
1
α + 1

β ∇Rn . . . ∇R3

y
β

( y
β − 1

)
x
α2

(
x
α − 1

)
+ y

β2

( y
β − 1

)
x
α2 + y

β2 ∇Rn+1 . . . ∇R4

0 0 0 ΦRn+2 . . . ΦR5

...
...

...
...

...

0 0 0 ΦR2n−1 . . . ΦRn+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ εn−1P (1)

n−1 + εnP (2)
n−1 + εn+1P (3)

n−1

= (−1)3n−7εn−2 1
α

1
β

(
1
α

+
1
β
− x

αβ
− y

αβ

)(
y

β
− x

α

)2

K(α,β)
n−2 (x, y)

+ εn−1P (1)
n−1 + εnP (2)

n−1 + εn+1P (3)
n−1. (17)
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3.4. Formula for [n− 1/n]fεH

Combining expressions (15) and (17) we obtain for [n− 1/n]fεH the following
fraction, after dividing numerator and denominator by εn−2,

(−1)3n−7 1
α

1
β

(
1
α + 1

β −
x
αβ −

y
αβ

)( y
β −

x
α

)2
K(α,β)
n−2 (x, y) + εP (1)

n−1 + ε2P (2)
n−1 + ε3P (3)

n−1

(−1)3n−5 1
α

1
β

(
x
α − 1

)( y
β − 1

)( y
β −

x
α

)2
K(α,β)
n−2 (x, y) + εQ(1)

n + ε2Q(2)
n

.

(18)
It is important that we point out the great similarity with the univariate formula (4).
Putting ε = 0 confirms the consistency of the univariate and homogeneous Padé
operators since both deliver the unperturbed rational function as the result of the Padé
approximation process:

[n− 1/n]gε(z)|ε=0 =
2− z − z/α

(1− z)(1 − z/α)
, [n− 1/n]fεH (x, y)|ε=0 =

α+ β − x− y
(α− x)(β − y)

.

(19)
Also, in both situations, for small nonzero ε, almost cancelling zeros and poles creep
in, of which the location is given by the so-called Froissart polynomials K(α)

n−2(z)

and K(α,β)
n−2 (x, y), respectively. In the next section we want to investigate the link be-

tween the univariate and homogeneous multivariate result somewhat deeper. As we
will see, one must be careful with the application of the projection property given in
theorem 1 and the correct interpretation of projected Padé approximants for fε(x, y).
As a consequence of these conclusions it will be clear that in the multivariate situa-
tion no conjecture about the location of the zeros of K(α,β)

n−2 (x, y) can be formulated
yet.

4. Numerical illustrations

In order to illustrate the near-cancellation of the additional zeros and poles due
to K(α,β)

n−2 (x, y), we depict the zeros of numerator and denominator of [n− 1/n]fεH for
α = 1 = β, n = 4 and ε = 10−6. These can be found in figures 1 and 2, respectively.
The zeros of the polynomial K(α,β)

n−2 (x, y) are graphed separately in figure 3. In order
to be sure that our function evaluations and pictures are correct and not perturbed a
second time by floating-point round-off errors, the results were computed as follows.

The uniformly distributed rij were computed using the random number generator
ran2 of [15]. These floating-point values were from thereon treated as exact numbers:
they were output in hexadecimal form, in order to avoid the binary to decimal con-
version in traditional output, and afterwards exactly converted to rational numbers for
use in Mathematica. The computer algebra system Mathematica was then used for
the computation of (12) and (13). In this way (16) and (18) could be obtained with-
out floating-point round-off errors. The contour plots p(x, y) = 0, q(x, y) = 0 and
K(1,1)

2 (x, y) = 0 were obtained using the program GrafEq developed by Tupper [16]
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Figure 1. Zeros of the numerator of [3/4]fεH . Figure 2. Zeros of the denominator of [3/4]fεH .

Figure 3. Zeros of factor K(1,1)
2 in [3/4]fεH . Figure 4. Evaluation points for [n− 1/n]fεH .

that produces validated pictures using interval arithmetic. So these pictures are precise
and reliable, of course at the cost of computation time. The black pixels indicate
verified zero locations, the white area is guaranteed to be free of zeros, the gray pixels
represent the unproven part of the graph, which we have kept below 4% in our figures.
For the numerator and denominator of (18) computation time gets unreasonable if one
wants a 100% proven graph. It should be clear to the reader that the zeros/poles dis-
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played in figures 1 and 2 are approximately the Froissart zeros displayed in figure 3
together with the zeros/poles of (19) with α = β = 1.

It is well known that in Padé approximation the poles of f do not form a nat-
ural boundary for the convergence of the approximants, neither in the univariate [1,
pp. 305–315] nor in the multivariate case [7]. Let us now investigate whether the
additional zeros of the Froissart polynomial have any effect on the convergence of
the [n− 1/n]fεH . To this end we choose 14 points in [−2, 2] × [−2, 2] ⊆ R2 and
we evaluate both f (x, y) and [n− 1/n]fεH (x, y) in these points for n = 3, . . . , 8. The
evaluation points are depicted in figure 4 where the real zeros of the denominator of
[3/4]fεH are added to the picture as reference curves. From table 1 we can see that in
none of the 84 evaluations the behaviour of the approximant is disturbed.

We return to the bivariate Froissart polynomial to see whether we can obtain
any additional conclusions using the projection property given in theorem 1 and the
conjectures formulated in [13] for the univariate case. Here we must clearly distinguish
between applying the projection property before or after the perturbation by the added
noise. If the projection property is applied to the perturbed function fε(x, y) with
(λ1,λ2) = (1, `), then we are computing Padé approximants to the perturbed univariate
series developments

fε(z, `z) =
∞∑
k=0

(
1 + `k + ε

∑
i+j=k

rij`
j

)
zk

= f (z, `z) + ε
∞∑
k=0

( ∑
i+j=k

rij`
j

)
zk

=
1

1− z +
1

1− `z + ε
∞∑
k=0

( ∑
i+j=k

rij`
j

)
zk. (20)

It is clear that with uniformly distributed rij , the noise contributions∑
i+j=k

rij`
j , ` ∈ R, k = 0, 1, . . . ,

are no longer necessarily uniformly distributed over (−1, 1). Hence the conjecture
formulated in [13] for the Froissart polynomial associated with

1
1− z +

1
1− `z + ε

∞∑
i=0

riz
i

does not apply to fε(z, `z). Moreover, for the situation arising in (20), no conjecture
has been formulated yet. In order to be dealing with the setting considered in [13],
one must apply the projection property to the unperturbed f (x, y) and afterwards add
uniformly distributed noise terms to the univariate resulting function f (z, `z). We
illustrate this in figures 5 and 6 that will be explained next.
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Table 1
Evaluation of f (x, y) and [n− 1/n]fεH with ε = 10−6.

n (x, y) f (x, y) [n− 1/n](x, y) (x, y) f (x, y) [n− 1/n](x, y)

3 (−1/2, 1/5) 1.91666666666 1.91666637898 (−1, 1/5) 1.75 1.74999986206
4 1.91666666666 1.91666639635 1.75 1.74999988254
5 1.91666666666 1.91666639319 1.75 1.74999653092
6 1.91666666666 1.91666639537 1.75 1.75000111398
7 1.91666666666 1.91666639139 1.75 1.75000105706
8 1.91666666666 1.91666639103 1.75 1.75000855279

3 (−3/5,−1/5) 1.45833333333 1.45833349464 (6/5, 3/5) −2.5 −2.50002013520
4 1.45833333333 1.45833337424 −2.5 −2.49962314033
5 1.45833333333 1.45833361006 −2.5 −2.49994302543
6 1.45833333333 1.45833359115 −2.5 −2.50004962015
7 1.45833333333 1.45833359447 −2.5 −2.49998418565
8 1.45833333333 1.45833359343 −2.5 −2.50002222630

3 (6/5, 8/5) −6.66666666666 −6.67172612455 (9/5, 6/5) −6.25 −6.24934857649
4 −6.66666666666 −6.66662332074 −6.25 −6.24927991704
5 −6.66666666666 −6.66669208105 −6.25 −6.24989791437
6 −6.66666666666 −6.66663811330 −6.25 −6.24838158080
7 −6.66666666666 −6.66645288761 −6.25 −6.24996264045
8 −6.66666666666 −6.66669589454 −6.25 −6.25032940654

3 (−3/10,−1/10) 1.67832167832 1.67832151238 (3/5, 1/5) 3.75 3.74999880665
4 1.67832167832 1.67832151459 3.75 3.74999966054
5 1.67832167832 1.67832151390 3.75 3.74999923730
6 1.67832167832 1.67832151389 3.75 3.74999922231
7 1.67832167832 1.67832151389 3.75 3.74999922511
8 1.67832167832 1.67832151389 3.75 3.74999922367

3 (7/5,−6/5) −2.04545454545 −2.04546938025 (7/5,−3/5) −1.875 −1.87499723023
4 −2.04545454545 −2.04545069177 −1.875 −1.87499535906
5 −2.04545454545 −2.04545423859 −1.875 −1.87499843901
6 −2.04545454545 −2.04544942515 −1.875 −1.87497173357
7 −2.04545454545 −2.04547439550 −1.875 −1.87499804318
8 −2.04545454545 −2.04546017081 −1.875 −1.87502349134

3 (2/5,−7/10) 2.25490196078 2.25490074326 (2/5,−1/5) 2.5 2.49999944645
4 2.25490196078 2.25490050872 2.5 2.49999944834
5 2.25490196078 2.25490090406 2.5 2.49999944756
6 2.25490196078 2.25490098789 2.5 2.49999944736
7 2.25490196078 2.25490100471 2.5 2.49999944742
8 2.25490196078 2.25490099571 2.5 2.49999944742

3 (8/5, 0) −0.666666666666 −0.666670516107 (3/5, 6/5) −2.5 −2.50054513475
4 −0.666666666666 −0.666670516617 −2.5 −2.49998241114
5 −0.666666666666 −0.666662930051 −2.5 −2.50003540571
6 −0.666666666666 −0.666665522907 −2.5 −2.49998575627
7 −0.666666666666 −0.666664410270 −2.5 −2.49997084941
8 −0.666666666666 −0.666663566976 −2.5 −2.50001195516
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Figure 5. Distribution of the coefficients of z0 and z1 (noise after projection).

In figure 5, the numerical experiments performed in [12,13] are backed in the
following way. If we choose α = αj = −cotan(1.57−j/100) in (3) for j = 0, . . . , 314,
we construct 315 univariate projections (which look like g(z) in (3))

f (z, z/αj) =
1

1− z +
1

1− z/αj
, j = 0, . . . , 314,
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Figure 6. Distribution of the coefficients of z0 and z1 (projection after noise).

of the function

f (x, y) =
1

1− x +
1

1− y .

From (6) and (7) we know that in each Froissart polynomial associated with the Padé
approximant [n− 1/n]fε(z,z/αj ) for the perturbed projection fε(z, z/αj ), the coeffi-

cients k
(αj )
i /k

(αj )
n−2 are distributed around 1. Therefore we have plotted for n = 4 the
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distribution of the coefficient k
(αj )
0 /k

(αj )
2 of z0 and k

(αj )
1 /k

(αj )
2 of z1 in (7). To this

end the Froissart polynomial associated with each [3/4]fε(z,z/αj) is computed for 111
different sets of uniformly distributed random univariate noise. This gives us 111
values for k

(αj )
0 /k

(αj )
2 and k

(αj )
1 /k

(αj )
2 , which appear to be distributed around 1 in fig-

ure 5. Each of the 315 distributions is normalized such that the area under the curve
equals 1. The distributions are numbered from 0 up to 314 and are glued together into
a tunnel-like appearance.

Figure 6 is different because here we consider projections of the type given
in (20). Remember that for these functions the noise contributions are no longer
uniformly distributed over (−1, 1), although the rij are. Let us choose ` = `j =
tan(−1.57 + j/100) in (20) for j = 0, . . . , 314 and n = 4 in (18). For each function
54 different random sets are now considered. The distributions are normalized as
above and glued together in figure 6. From the overall picture it is clear that for large
|`j | the coefficients of z0 and z1 are rather distributed around 0 instead of around 1.
These conclusions for (20) show that too little is known to formulate a conjecture
about the location of the zeros of the bivariate Froissart polynomial (16).
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