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The construction of (near-)minimal cubature formulae on the disk is still a complicated subject on which
many results have been published. We restrict ourselves to the case of radial weight functions and make use
of a recent connection between cubature and the concept of multivariate spherical orthogonal polynomials
to derive a new system of equations defining the nodes and weights of (near-)minimal rules for general
degree m = 2n − 1, n ≥ 2. The approach encompasses all previous derivations.

The new system is small and may consist of only (n + 1)2/4 equations when n is odd and n(n + 2)/4
equations when n is even. It is valid for general n and has a Prony-like structure. It may admit a unique
solution (such as for n = 3) or an infinity of solutions (such as for n = 7). In Section 2, the new approach is
described, whereas the new system is derived in Sections 3 and 4. All well-known (near-)minimal cubature
rules can be reobtained. Some typical illustrations of how this works are given in Section 5.

We expect that this unifying theory will shed new light on the topic of cubature, in particular with
respect to the discovery of new bounds on the number of nodes and their connection with the zeros of
multivariate orthogonal polynomials.

Keywords: orthogonal polynomials; numerical integration; cubature formulas; unit disk.

1. Introduction

Let Ω denote a given region in R
2 and let w(x, y) be a non-negative weight function on Ω . A cubature

rule

∫∫
Ω

f (x, y)w(x, y) dx dy ≈
N∑

i=1

Ai f (xi, yi), (1.1)

is said to be of total degree m, if it is exact for f ∈ P2
m, where P2

m denotes the space of polynomials of
total degree at most m in the real variables x and y. With m = 2n − 1 or m = 2n − 2 where n ≥ 1, the
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298 B. BENOUAHMANE ET AL.

number of nodes N necessarily satisfies (Stroud, 1971, pp. 118–119)

N ≥ n(n + 1)

2
. (1.2)

A cubature rule of degree m with N nodes is called a Gaussian cubature rule when N attains the lower
bound in (1.2). These Gaussian cubature rules rarely exist. Two examples of domains and weight functions
that allow Gaussian cubature rules are as follows:

• Ω = {(x, y) : 1 + x + y > 0, 1 − x + y > 0, x2 > 4y
}

(Schmid & Xu, 1994) with

w
α,β,± 1

2
(x, y) = (1 − x + y)α(1 + x + y)β(x2 − 4y)

± 1
2 ,

• Ω =
{
(x, y) : −3

(
x2 + y2 + 1

)2 + 8
(
x3 − 3xy2

)+ 4 ≥ 0
}

(Li et al., 2008) with

w 1
2
(x, y) =

(
−3
(
x2 + y2 + 1

)2 + 8
(
x3 − 3xy2

)+ 4
) 1

2
.

If the weight function is centrally symmetric, meaning w(x, y) = w(−x, −y), then Gaussian cubature
rules of degree m = 2n − 1 of the form (1.1) do not exist (Xu, 2012). In this case, a stronger lower bound
for N holds (Möller, 1976), namely

N ≥ n(n + 1)

2
+
⌊n

2

⌋
. (1.3)

A cubature rule of degree m with N attaining the lower bound in (1.3) is called minimal. When N is close
to this lower bound, the rule is called near-minimal. The latter is the more frequent.

From now on, we let Ω = B2 with

B2 = {(x, y) ∈ R
2 : ‖(x, y)‖2 ≤ 1}

the unit disk in the Euclidean norm.
It is less known that for m = 2n −1 and centrally symmetric weight functions, a symbolic (instead of

numeric) Gaussian cubature formula exists (Benouahmane & Cuyt, 2000; Cuyt et al., 2004). We denote
by Pm,θ the set of polynomials of degree at most m = 2n−1 in the real variable z with coefficients that are
rational functions in cos θ and sin θ . Note that the vector (cos θ , sin θ) spans the one-dimensional subspace
{(z cos θ , z sin θ) : z ∈ R} of R

2. Then under some simple and obvious conditions (Benouahmane & Cuyt,
2000; Cuyt et al., 2004, 2011),

∫∫
B2

πm(x cos θ + y sin θ)w (‖(x, y)‖2) dx dy =
n∑

i=1

Ai,n(θ)πm

(
ξi,n(θ)

)
,
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NEAR-MINIMAL CUBATURE FORMULAE ON THE DISK 299

Fig. 1. Configurations (from top to bottom and left to right) O, Ax, Ay, B and C.

where πm ∈ Pm,θ and the ξi,n(θ) are the zero curves of the polynomial Pn ∈ Pm,θ satisfying the orthogonality
conditions∫∫

B2

(x cos θ + y sin θ)iPn(x cos θ + y sin θ)w (‖(x, y)‖2) dx dy = 0, i = 0, . . . , n − 1. (1.4)

So a θ -parameterized multivariate polynomial (the result also exists in higher dimensions) of degree
m = 2n − 1 is integrated exactly over the unit ball (the result holds in other norms) by a linear com-
bination of n θ -parameterized weights and evaluations of the polynomial integrand along zero curves
of the spherical orthogonal polynomial of degree n (Cuyt et al., 2004, 2011). In the next section, we
convert this symbolic integration result into a numeric rule of the classical form (1.1), and this for gen-
eral n. In this way, we will rediscover all the minimal and near-minimal rules listed in Table 1. So in
this article we base the derivation of cubature rules on the new theory of spherical orthogonal polyno-
mials, which has (unfortunately) only been developed after the publication of many rules in separate
articles.

In the sequel, we assume that the weight function is of the form w(‖(x, y)‖2), such as the popular
Gegenbauer weight function

wλ (‖(x, y)‖2) = (1 − x2 − y2)
λ−1/2

, λ ≥ 0.

When observing the existing numeric near-minimal cubature formulae on the disk, up to degree 31, for
weight functions w(‖(x, y)‖2), we notice that the sets of nodes consist of pairs, quadruples or octuples
taking one of the configurations in the Figs 1 and 2, namely Ax (nodes on x-axis), Ay (nodes on y-axis),
B (nodes on bisectors), R (rectangle of nodes) or C (composition of 2 related rectangles), sometimes
complemented with the origin O (only in case of odd n).

Moreover, using the system of equations derived here in Section 4, one can see that for general odd
n = 2ν + 1 a cubature rule with a configuration consisting of (ν − 1)ν/2 C, ν B, ν A and O always
exists, and so does for general even n = 2ν a cubature rule with a configuration consisting of (ν − 1)ν/2
C and ν B always exist. So these configurations deserve some special attention. The configurations O,
Ax, Ay and B are all special cases of the general configuration R. We call a B configuration rotated over
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300 B. BENOUAHMANE ET AL.

Fig. 2. Configuration R.

Table 1 Summary of existing (near-)minimal cubature rules

Degree Nodes
2n − 1 N Configuration References

3 4 A Hammer & Stroud (1958)
5 7 R-Ax-O Radon (1948)
7 12 2B-A Hammer & Stroud (1958)
9 19 3R-Ax-2Ay-O Albrecht (1960)
11 26 4R-2Ax-3Ay Piessens & Haegemans (1975a)
13 35 6R-3Ax-2Ay-O Cools & Haegemans (1988)
13 36 2C-2B-3A Cools & Haegemans (1987)
13 37 2C-2B-3A-O Rabinowitz & Richter (1969)
15 44 2C-3B-4A Rabinowitz & Richter (1969)
17 57 4C-3B-3A-O Cools & Kim (2000)
19 72 6C-2B-4A Kim & Song (1997)

π/4 an A configuration (actually a union of Ax and Ay with the same radius). The two rectangles in the
configuration C are rotations of one another over π/2.

In Table 1, we detail the smallest known configurations satisfying (1.1) up to and including degree
19 (n = 10), for w(x, y) = 1, and with nodes (xi, yi) in the closed unit disk and non-negative weights
Ai. With every entry we only list the oldest known reference and do not mention configurations that
are mere rotations. Also, if the cubature rule is not unique, additional constraints may lead to a small
reduction of nodes, sometimes with the effect that other nodes move outside of the domain or weights
become negative (such as for n = 5 (Piessens & Haegemans, 1975b)). Such rules are not listed in the
table because we restrict it to rules with non-negative weights and nodes in the closed unit disk. It does,
however, by no means imply that they are excluded from our new approach in Sections 3 and 4, as they
are then special cases of the general nonunique solution. From degree 21 up to and including degree
31, cubature formulae are presented in Haegemans (1975), but they are not designed for optimality or
near-minimality and therefore are not included in our table.

The close connection between orthogonal polynomials and quadrature formulae on the one hand,
and orthogonal polynomials and Padé approximation theory on the other hand, is well understood in the
univariate case (Brezinski, 1980). In the multivariate case, these connections are less established, but
remain valid as explained in Benouahmane & Cuyt (2000). In the sequel, we show that they deserve more
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NEAR-MINIMAL CUBATURE FORMULAE ON THE DISK 301

of our attention, because they can lead to new insights when exploring a difficult topic such as numeric
cubature.

Making use of this connection, we show in Section 2 how a symbolic cubature rule on Ω = B2

automatically leads to a numeric cubature rule on the same domain. Once this is established, we describe
in Sections 3 and 4 how to obtain numerical rules with a small number of nodes for general degree. In the
past, cubature rules were often obtained for a specific degree, following a tailored approach. The current
idea is generic and covers all of the rules in Table 1 and more.

2. From symbolic to numeric cubature

Let cjk = cos(θjk) and sjk = sin(θjk) with θjk ∈ (−π/2, π/2]. A bivariate polynomial of degree m,

pm(x, y) =
m∑

j=0

j∑
k=0

aj−k,kxj−kyk (2.1)

can be reexpressed as (Cuyt et al., 2012)

pm(x, y) =
m∑

j=0

j∑
k=0

bj−k,k

(
cj−k,kx + sj−k,ky

)j
, c2

j−k,k + s2
j−k,k = 1, (2.2)

if the θjk satisfy

∣∣∣∣∣∣∣∣∣∣

cj
j,0 cj−1

j,0 sj,0 . . . sj
j,0

cj
j−1,1 cj−1

j−1,1sj−1,1 . . . sj
j−1,1

...
...

...
cj

0,j cj−1
0,j s0,j . . . sj

0,j

∣∣∣∣∣∣∣∣∣∣
�= 0, j = 0, . . . , m.

Now let xi = zi cos(ti) and yi = zi sin(ti) with zi ∈ R and −π/2 < ti ≤ π/2. Both for θ and t we need
not consider the full circle ] − π , π ] because the additional half of this set only brings in a sign change,
which can be compensated by bj−k,k or zi.

Lemma 2.1 The integral

∫∫
B2

(x cos θ + y sin θ)jw(‖(x, y)‖2) dx dy, j = 0, 1, . . .

is zero for j odd and independent of θ for j even.

Proof. Let x = z cos t and y = z sin t with −1 ≤ z ≤ 1 and −π/2 < t ≤ π/2. The integral can be
written as a product of two one-dimensional integrals,

∫∫
B2

(x cos θ + y sin θ)jw(‖(x, y)‖2) dx dy =
∫ 1

−1
zjw(|z|)|z| dz

∫ π/2

−π/2
cosj(t − θ) dt.
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302 B. BENOUAHMANE ET AL.

For j odd, the first factor is zero. For j even, the second factor equals

(j − 1)!! π

(j/2)! 2j/2
. �

A straightforward connection between the symbolic cubature rules and the numeric ones is obtained
from the following. If we can construct a numeric cubature formula of the form (1.1) that is exact for a
θ -parameterized bivariate polynomial integrand qm(θ ; x, y) of degree m of the form

qm(θ ; x, y) := qm(x cos θ + y sin θ) =
m∑

j=0

aj(x cos θ + y sin θ)j, (2.3)

in other words a cubature formula guaranteeing, with Ai and (xi, yi) independent of θ , that

∫∫
B2

qm (x cos θ + y sin θ) w(‖(x, y)‖2) dx dy =
N∑

i=1

Aiqm (xi cos θ + yi sin θ)

=
N∑

i=1

Aiqm (zi cos(ti − θ)), (2.4)

xi = zi cos ti, yi = zi sin ti

then we have at the same time a cubature formula that is exact for the general bivariate polynomial pm(x, y)
of degree m given in (2.1). The latter is obtained by combining (2.2), (2.3) and (2.5) into

∫∫
B2

pm(x, y)w(‖(x, y)‖2) dx dy

=
m∑

j=0

j∑
k=0

bj−k,k

∫∫
B2

(
x cos θj−k,k + y sin θj−k,k

)j
w(‖(x, y)‖2) dx dy

=
m∑

j=0

j∑
k=0

bj−k,k

N∑
i=1

Ai

(
xi cos θj−k,k + yi sin θj−k,k

)j

=
N∑

i=1

Aipm(xi, yi). (2.5)

In addition, expression (2.5) is actually independent of θ because of Lemma 2.1.
In Sections 3 and 4, we now develop some particular formulas (2.5), which as we know are equivalent

to formulas of the form (2.5), with the aim to obtain a unified construction of near-minimal numer-
ical cubature rules. To avoid duplication, we concentrate in these sections on odd n-values, because
the formulas and systems for even n-values can be obtained in exactly the same way. For complete-
ness, we present the system for even n-values at the end of the respective Sections 3 and 4 without the
derivation.
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NEAR-MINIMAL CUBATURE FORMULAE ON THE DISK 303

3. Computing (R, Ax, Ay, O) configured cubature formulae

Our aim is to find a combination of nodes on H rectangles R, Kx axes Ax and Ky axes Ay and the origin
O, so that

∫∫
B2

qm (x cos θ +y sin θ) w (‖(x, y)‖2) dx dy

=
H∑

i=1

Ai

[
qm(zi cos(ti − θ)) + qm(−zi cos(ti − θ))

+qm(zi cos(−ti − θ)) + qm(−zi cos(−ti − θ))
]

+
H+Kx∑
i=H+1

Ai

[
qm(zi cos(0 − θ)) + qm(−zi cos(0 − θ))

]

+
H+Kx+Ky∑
i=H+Kx+1

Ai

[
qm(zi cos(π/2 − θ)) + qm(−zi cos(π/2 − θ))

]
+ AH+Kx+Ky+1 qm(0), (3.1)

where qm is as in (2.3) with m = 2n − 1. In the right-hand side, the Ai, zi and ti are unknown, making a
grand total of 3H + 2(Kx + Ky) + 1 values to be determined.

For the left-hand side, we denote

βj =
∫∫

B2

(x cos θ + y sin θ)j w(‖(x, y)‖2) dx dy,

and hence the left-hand side equals

n−1∑
j=0

a2jβ2j. (3.2)

Plugging (2.3) into the right-hand side results in

H∑
i=1

Ai

[
n−1∑
k=0

2a2kz2k
i

(
cos2k(ti − θ) + cos2k(−ti − θ)

)]

+
H+Kx∑
i=H+1

Ai

[
n−1∑
k=0

2a2kz2k
i cos2k(0 − θ)

]
+

H+Kx+Ky∑
i=H+Kx+1

Ai

[
n−1∑
k=0

2a2kz2k
i cos2k(π/2 − θ)

]

+ a0AH+Kx+Ky+1.
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304 B. BENOUAHMANE ET AL.

Furthermore, using the trigonometric identity

cos2k(θ) = 1

22k

((
2k

k

)
+ 2

k−1∑
l=0

(
2k

l

)
cos ((2k − 2l)θ)

)

results for the right-hand side in

4a0

H∑
i=1

Ai + 4
n−1∑
k=1

1

22k
a2k

H∑
i=1

Aiz
2k
i

×
[(

2k

k

)
+ 2

k−1∑
l=0

(
2k

l

)
cos ((2k − 2l)ti) cos ((2k − 2l)θ)

]

+ 2a0

H+Kx∑
i=H+1

Ai + 2
n−1∑
k=1

1

22k
a2k

H+Kx∑
i=H+1

Aiz
2k
i

×
[(

2k

k

)
+ 2

k−1∑
l=0

(
2k

l

)
cos ((2k − 2l)(0 − θ))

]

+ 2a0

H+Kx+Ky∑
i=H+Kx+1

Ai + 2
n−1∑
k=1

1

22k
a2k

H+Kx+Ky∑
i=H+Kx+1

Aiz
2k
i

×
[(

2k

k

)
+ 2

k−1∑
l=0

(
2k

l

)
cos ((2k − 2l)(π/2 − θ))

]

+ a0AH+Kx+Ky+1.

We further denote

γ2j = 22j(2j
j

) β2j.

For w(‖(x, y)‖2) = 1, for instance, γ2j = π/(j + 1). For the Gegenbauer weight function wλ (‖(x, y)‖2),
we find

β2j(λ) = 2π(2j − 1)!!
(2λ + 1)(2λ + 3) · · · (2λ + 2j + 1)

.

Identifying the coefficients of a2k , k = 0, . . . , n − 1 in the left- and right-hand side provides n equations
in the unknown values. Doing the same with the coefficients of a2k cos 2θ , k = 1, . . . , n − 1 leads to an
additional n − 1 equation and so on with a2k cos 4θ , . . . , a2n−2 cos(2n − 2)θ . In total, we obtain in this
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NEAR-MINIMAL CUBATURE FORMULAE ON THE DISK 305

way n(n + 1)/2 equations in the 3H + 2(Kx + Ky) + 1 unknowns that we put together below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
H∑

i=1

Ai + 2
H+Kx∑
i=H+1

Ai + 2
H+Kx+Ky∑
i=H+Kx+1

Ai + AH+Kx+Ky+1 = γ0,

4
H∑

i=1

Aiz
2
i + 2

H+Kx∑
i=H+1

Aiz
2
i + 2

H+Kx+Ky∑
i=H+Kx+1

Aiz
2
i = γ2,

...

4
H∑

i=1

Aiz
2n−2
i + 2

H+Kx∑
i=H+1

Aiz
2n−2
i + 2

H+Kx+Ky∑
i=H+Kx+1

Aiz
2n−2
i = γ2n−2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
H∑

i=1

Aiz
2
i cos(2ti) +

H+Kx∑
i=H+1

Aiz
2
i −

H+Kx+Ky∑
i=H+Kx+1

Aiz
2
i = 0,

...

2
H∑

i=1

Aiz
2n−2
i cos(2ti) +

H+Kx∑
i=H+1

Aiz
2n−2
i −

H+Kx+Ky∑
i=H+Kx+1

Aiz
2n−2
i = 0

...

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
H∑

i=1

Aiz
2n−4
i cos((2n − 4)ti) +

H+Kx∑
i=H+1

Aiz
2n−4
i + (−1)n−2

H+Kx+Ky∑
i=H+Kx+1

Aiz
2n−4
i = 0

2
H∑

i=1

Aiz
2n−2
i cos((2n − 4)ti) +

H+Kx∑
i=H+1

Aiz
2n−2
i + (−1)n−2

H+Kx+Ky∑
i=H+Kx+1

Aiz
2n−2
i = 0

{
2

H∑
i=1

Aiz
2n−2
i cos((2n − 2)ti) +

H+Kx∑
i=H+1

Aiz
2n−2
i + (−1)n−1

H+Kx+Ky∑
i=H+Kx+1

Aiz
2n−2
i = 0. (3.3)

For n even, the system looks identical, with the exception that AH+Kx+Ky+1 needs to be removed from the
very first equation.

4. Computing (C, B, A, O) configured cubature formulae

To reduce the number of unknowns more when n increases, we apply the same approach to a combination
of nodes from I octuples C, J bisector sets B, K axes as in A (Ax and Ay united) complemented with
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306 B. BENOUAHMANE ET AL.

the origin O (remember that n is odd). To be in line with the previous section K = Kx + Ky. The gain is
in the fact that with Kx = Ky each couple of Ax and Ay nodes gets assigned the same weight Ai and the
same (signed) distance zi. Then the grand total of unknowns Ai, zi and ti is 3I + 2J + K + 1. The number
of equations in the system is also greatly reduced.

We denote n − 1 = 2ν and introduce the compact notation

Qm(θ ; zi, ti) = qm(zi cos(ti − θ)) + qm(−zi cos(ti − θ)).

The analogue of (3.1) is

∫∫
B2

qm (x cos θ + y sin θ) w (‖(x, y)‖2) dx dy

=
I∑

i=1

Ai [Qm(θ ; zi, ti) + Qm(θ ; zi, −ti) + Qm(θ ; zi, π/2 − ti) + Qm(θ ; zi, π/2 + ti)]

+
I+J∑

i=I+1

Ai [Qm(θ ; zi, π/4) + Qm(θ ; zi, −π/4)]

+
I+J+K/2∑
i=I+J+1

Ai [Qm(θ ; zi, 0) + Qm(θ ; zi, π/2)] + AI+J+K/2+1 qm(0).

Note that some of the sums may be empty, as before, and hence do not contribute anything to the
expression. The left-hand side remains unchanged and equals (3.2). Now plugging (2.3) into the right-hand
side and making use of the trigonometric identity for cos2k(θ) results in

8a0

I∑
i=1

Ai + 8
n−1∑
k=1

1

22k
a2k

I∑
i=1

Aiz
2k
i

×
[(

2k

k

)
+

k−1∑
l=0

(
2k

l

) (
1 + (−1)k−l

)
cos ((2k − 2l)ti) cos ((2k − 2l)θ)

]

+ 4a0

I+J∑
i=I+1

Ai + 4
n−1∑
k=1

1

22k
a2k

I+J∑
i=I+1

Aiz
2k
i

×
[(

2k

k

)
+ 2

k−1∑
l=0

(
2k

l

)
cos ((2k − 2l)π/4) cos ((2k − 2l)θ)

]

+ 4a0

I+J+K/2∑
i=I+J+1

Ai + 4
n−1∑
k=1

1

22k
a2k

I+J+K/2∑
i=I+J+1

Aiz
2k
i

×
[(

2k

k

)
+ 2

k−1∑
l=0

(
2k

l

) (
1 + (−1)k−l

)
cos ((2k − 2l)θ)

]

+ a0AI+J+K/2+1.
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After identifying the coefficients in the left- and right-hand side again, we arrive at the following system
of (n + 1)2/4 equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8
I∑

i=1

Ai + 4
I+J∑

i=I+1

Ai + 4
I+J+K/2∑
i=I+J+1

Ai = γ0,

8
I∑

i=1

Aiz
2
i + 4

I+J∑
i=I+1

Aiz
2
i + 4

I+J+K/2∑
i=I+J+1

Aiz
2
i = γ2,

...

8
I∑

i=1

Aiz
2n−2
i + 4

I+J∑
i=I+1

Aiz
2n−2
i + 4

I+J+K/2∑
i=I+J+1

Aiz
2n−2
i = γ2n−2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8
I∑

i=1

Aiz
4
i cos(4ti) − 4

I+J∑
i=I+1

Aiz
4
i + 4

I+J+K/2∑
i=I+J+1

Aiz
4
i = 0,

...

8
I∑

i=1

Aiz
2n−2
i cos(4ti) − 4

I+J∑
i=I+1

Aiz
2n−2
i + 4

I+J+K/2∑
i=I+J+1

Aiz
2n−2
i = 0

...

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8
I∑

i=1

Aiz
4ν−4
i cos((4ν − 4)ti) + (−1)(ν−1)4

I+J∑
i=I+1

Aiz
4ν−4
i + 4

I+J+K/2∑
i=I+J+1

Aiz
4ν−4
i = 0

8
I∑

i=1

Aiz
4ν−2
i cos((4ν − 4)ti) + (−1)(ν−1)4

I+J∑
i=I+1

Aiz
4ν−2
i + 4

I+J+K/2∑
i=I+J+1

Aiz
4ν−2
i = 0

8
I∑

i=1

Aiz
4ν
i cos((4ν − 4)ti) + (−1)(ν−1)4

I+J∑
i=I+1

Aiz
4ν
i + 4

I+J+K/2∑
i=I+J+1

Aiz
4ν
i = 0

{
8

I∑
i=1

Aiz
4ν
i cos(4νti) + (−1)ν4

I+J∑
i=I+1

Aiz
4ν
i + 4

I+J+K/2∑
i=I+J+1

Aiz
4ν
i = 0.

This system of (n + 1)2/4 equations can be rewritten in the following form, where the first n equations
are not touched, but the remaining subsystems are:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8
I∑

i=1

Ai + 4
I+J∑

i=I+1

Ai + 4
I+J+K/2∑
i=I+J+1

Ai + AI+J+K/2+1 = γ0,

8
I∑

i=1

Aiz
2
i + 4

I+J∑
i=I+1

Aiz
2
i + 4

I+J+K/2∑
i=I+J+1

Aiz
2
i = γ2,

...

8
I∑

i=1

Aiz
2n−2
i + 4

I+J∑
i=I+1

Aiz
2n−2
i + 4

I+J+K/2∑
i=I+J+1

Aiz
2n−2
i = γ2n−2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8
I∑

i=1

Aiz
4l
i (1 − cos(4lti)) + 4

I+J∑
i=I+1

Aiz
4l
i (1 − cos lπ) = γ4l,

8
I∑

i=1

Aiz
4l+2
i (1 − cos(4lti)) + 4

I+J∑
i=I+1

Aiz
4l+2
i (1 − cos lπ) = γ4l+2,

...

8
I∑

i=1

Aiz
2n−2
i (1 − cos(4lti)) + 4

I+J∑
i=I+1

Aiz
2n−2
i (1 − cos lπ) = γ2n−2

l = 1, . . . , ν. (4.1)

Note that for even l > 1 the contribution from the B configuration in the subsystem, in other words the
sum from I + 1 to I + J , vanishes. The last system, where l = ν, consists of only one equation.

For ł = 2 the particular subsystem consists of n − 4 equations in the unknown coefficients
Ai(1 − cos(8ti)) and the powered z2

i for i = 1, . . . , I . From Prony’s method (Hildebrand, 1956, pp. 378–
382), we then know that I cannot be less than or equal to (n − 5)/2. Otherwise, following Henrici (1974,
p. 603) and Kaltofen et al. (2000), the (I + 1) × (I + 1) matrix

⎛
⎜⎜⎜⎜⎝

γ8 γ10 . . . γ8+2I

γ10

...
...

γ8+2I . . . γ8+4I

⎞
⎟⎟⎟⎟⎠

should be singular, which is a contradiction (for all the weight functions we considered, including the
Gegenbauer weight).

Let us now take a look at the top subsystem, which consists of 2ν + 1 equations. Its first equation
can always serve to compute AI+J+K+1, the weight at the origin. Again using results on Prony-structured
systems, we see that for J = ν (or for K = 2ν), the remaining 2ν equations can be used to compute the
Ai and z2

i for i = I + 1, . . . , I + J (or i = I + J + 1, . . . , I + J + K/2).
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For completeness, we give the system of n(n + 2)/4 equations in case n is even, namely n = 2ν:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8
I∑

i=1

Ai + 4
I+J∑

i=I+1

Ai + 4
I+J+K/2∑
i=I+J+1

Ai = γ0,

8
I∑

i=1

Aiz
2
i + 4

I+J∑
i=I+1

Aiz
2
i + 4

I+J+K/2∑
i=I+J+1

Aiz
2
i = γ2,

...

8
I∑

i=1

Aiz
2n−2
i + 4

I+J∑
i=I+1

Aiz
2n−2
i + 4

I+J+K/2∑
i=I+J+1

Aiz
2n−2
i = γ2n−2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8
I∑

i=1

Aiz
4l
i (1 − cos(4lti)) + 4

I+J∑
i=I+1

Aiz
4l
i (1 − cos lπ) = γ4l,

8
I∑

i=1

Aiz
4l+2
i (1 − cos(4lti)) + 4

I+J∑
i=I+1

Aiz
4l+2
i (1 − cos lπ) = γ4l+2,

...

8
I∑

i=1

Aiz
2n−2
i (1 − cos(4lti)) + 4

I+J∑
i=I+1

Aiz
2n−2
i (1 − cos lπ) = γ2n−2

l = 1, . . . , ν − 1. (4.2)

The same conclusions for I , J and K hold as in the case where n is odd, especially 2I > n − 5. Note that
now the last system, where l = ν − 1, consists of two equations.

In Section 5, we take a look at the systems (3.3) and (4.1)–(4.2) for particular n. All the cubature rules
listed in Table 1 are rediscovered (we worked out all the details, but only present three typical examples:
the cases n = 3, 5, 7)! This new insight should enable us to develop a sharper lower bound for N in the
future.

5. Numerical illustration

Let us for simplicity denote ρi := z2
i and ci := cos(2ti) with 0 ≤ ti ≤ π/2 in (3.3) and Ci := cos(4ti)

with 0 ≤ ti ≤ π/4 in (4.1)–(4.2). We consider w(‖(x, y)‖2) = 1. Rather than going through the details of
the recomputation of every cubature rule in Table 1, we illustrate the principle with one case using (3.3)
and one case using (4.1)–(4.2). In addition, a third illustration supports the result that no 17-point rule
exists for n = 5 (Verlinden & Cools, 1992).

We start with a simple illustration of (3.3) for n = 3. The system (3.3) has n(n + 1)/2 = 6 equations.
The smallest configuration (meaning smallest N) having at least 6 unknowns is the one with H = 1, Kx = 1
and Ky = 0 (or vice versa), O = 1 and N = 7 nodes:
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310 B. BENOUAHMANE ET AL.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4A1 + 2A2 + A3 = π

4A1ρ1 + 2A2ρ2 = π

2

4A1ρ
2
1 + 2A2ρ

2
2 = π

3

4A1ρ1c1 − 2A2ρ2 = 0

4A1ρ
2
1 c1 − 2A2ρ

2
2 = 0

4A1ρ
2
1 (2c2

1 − 1) + 2A2ρ
2
2 = 0.

From the 4th and 5th equation, we find that 2A2ρ2 = 4A1c1ρ1 and 2A2ρ
2
2 = 4A1c1ρ

2
1 . These can be

substituted in the 2nd and 3rd equation to result in:

⎧⎪⎨
⎪⎩

4A1(1 + c1)ρ1 = π

2

4A1(1 + c1)ρ
2
1 = π

3
.

This Prony-structured system can be solved immediately. We find 4A1(1 + c1) = 3π/4 and ρ1 = 2/3.
Substituting these values in the 4th and 5th equation give another Prony-structured system in the unknowns
A2 and ρ2:

⎧⎪⎪⎨
⎪⎪⎩

2A2ρ2 = π

2
− 8

3
A1

2A2ρ
2
2 = π

3
− 16

9
A1.

In terms of A1, the solution is

ρ2 =
π

3 − 16
9 A1

π

2 − 8
3 A1

A2 = 2
(

π

4 − 4
3 A1

)2

π

3 − 16
9 A1

.

For c1 we have the expression c1 = −1 + 3π/(16A1). Substituting everything in the 6th equation gives
us A1 = π/8 from which we can deduce all the other values. The obtained cubature formula is the one
published in Radon (1948):

∫∫
B2

p5(x, y) dx dy = π

8

(
p5

(
1√
2

, 1√
6

)
+ p5

(
− 1√

2
, 1√

6

)
+ p5

(
1√
2

,− 1√
6

)
+ p5

(
− 1√

2
,− 1√

6

))

+ π

8

(
p5

(√
2/3, 0

)
+ p5

(
−√2/3, 0

))
+ π

4
p5(0, 0).

The solution is unique up to some rotations of the configurations R and Ax, since these do not affect the
values ρ1,2 or the weights.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/39/1/297/4718074 by U
niversiteit Antw

erpen Bibliotheek user on 24 August 2020



NEAR-MINIMAL CUBATURE FORMULAE ON THE DISK 311

For n = 5, the choice H = 2, Kx = 2, Ky = 2, O = 1 delivers a 17-point configuration and a system
of 15 equations in 15 unknowns, of which one can easily prove that it has no solution. This is completely
in line with the literature. It is proved in Verlinden & Cools (1992) that no 17-point rule exists on the disk.

For n = 7, two configurations are possible. From the setup of Section 3, we find with H = 2,
Kx = 3, Ky = 2 a Prony-like system of 28 equations in 29 unknowns. The 35-point rule cited in Table 1
is a solution of the system.

The next setup is that of Section 4 with the systems (4.1)–(4.2). We know that I ≥ 2 and we choose
K = 6, as suggested in the previous section. The number of equations in (4.1) is (n + 1)2/4 = 16.
Because of the Prony character of the system of equations, we use it as a lower bound for the number of
unknowns 3I + 2J + K + 1. We remind the reader that Prony systems are square nonlinear (polynomial)
systems containing an equal number of linear and nonlinear unknowns, which can be solved for the
nonlinear and the linear unknowns separately. With I = 2 this gives 2J ≥ 3 or J ≥ 2. We have at least
17 unknowns in (4.1), and hence are expecting nonuniqueness of the solution. The number of nodes for
I = 2, J = 2, K = 6, including the origin, is 37. The system of 16 equations in 17 unknowns is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8A1 + 8A2 + 4A3 + 4A4 + 4A5 + 4A6 + 4A7 + A8 = π

8A1ρ1 + 8A2ρ2 + 4A3ρ3 + 4A4ρ4 + 4A5ρ5 + 4A6ρ6 + 4A7ρ7 = π

2

8A1ρ
2
1 + 8A2ρ

2
2 + 4A3ρ

2
3 + 4A4ρ

2
4 + 4A5ρ

2
5 + 4A6ρ

2
6 + 4A7ρ

2
7 = π

3

8A1ρ
3
1 + 8A2ρ

3
2 + 4A3ρ

3
3 + 4A4ρ

3
4 + 4A5ρ

3
5 + 4A6ρ

3
6 + 4A7ρ

3
7 = π

4

8A1ρ
4
1 + 8A2ρ

4
2 + 4A3ρ

4
3 + 4A4ρ

4
4 + 4A5ρ

4
5 + 4A6ρ

4
6 + 4A7ρ

4
7 = π

5

8A1ρ
5
1 + 8A2ρ

5
2 + 4A3ρ

5
3 + 4A4ρ

5
4 + 4A5ρ

5
5 + 4A6ρ

5
6 + 4A7ρ

5
7 = π

6

8A1ρ
6
1 + 8A2ρ

6
2 + 4A3ρ

6
3 + 4A4ρ

6
4 + 4A5ρ

6
5 + 4A6ρ

6
6 + 4A7ρ

6
7 = π

7

8A1(1 − C1)ρ
2
1 + 8A2(1 − C2)ρ

2
2 + 8A3ρ

2
3 + 8A4ρ

2
4 = π

3

8A1(1 − C1)ρ
3
1 + 8A2(1 − C2)ρ

3
2 + 8A3ρ

3
3 + 8A4ρ

3
4 = π

4

8A1(1 − C1)ρ
4
1 + 8A2(1 − C2)ρ

4
2 + 8A3ρ

4
3 + 8A4ρ

4
4 = π

5

8A1(1 − C1)ρ
5
1 + 8A2(1 − C2)ρ

5
2 + 8A3ρ

5
3 + 8A4ρ

5
4 = π

6

8A1(1 − C1)ρ
6
1 + 8A2(1 − C2)ρ

6
2 + 8A3ρ

6
3 + 8A4ρ

6
4 = π

7

16A1(1 − C2
1)ρ

4
1 + 16A2(1 − C2

2)ρ
4
2 = π

5

16A1(1 − C2
1)ρ

5
1 + 16A2(1 − C2

2)ρ
5
2 = π

6

16A1(1 − C2
1)ρ

6
1 + 16A2(1 − C2

2)ρ
6
2 = π

7

32A1C1(1 − C2
1)ρ

6
1 + 32A2C2(1 − C2

2)ρ
6
2 = 0.
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The way to tackle this larger system is to break it up in smaller (square) Prony subsystems involving only
a subset of the unknowns. We start with the equations 13–15 and add another equation with a symbolic
right-hand side,

16A1(1 − C2
1)ρ

3
1 + 16A2(1 − C2

2)ρ
3
2 = α,

to have a full Prony system in the unknowns Bi = Ai(1 − C2
i ), i = 1, 2 and ρ1, ρ2. So we can compute

expressions for these unknowns in terms of α. Introducing the parameter α will actually allow us to
characterize the whole infinite set of cubature rules of the form (C,B, A, O) for n = 7. Equation number
16 provides us with a relation between C1 and C2,

B1C1ρ
6
1 + B2C2ρ

6
2 = 0,

and hence we can express C2 in terms of B1, B2, C1 and α. From the equations 9–12, we find a Prony
system in the unknowns A3, A4, ρ3 and ρ4. The right-hand sides are in terms of C1 and α and so the
computed solutions for the unknowns are too. From equation number 8 we obtain C1 in terms of α:

B1

1 + C1
ρ2

1 + B2

1 + C2
ρ2

2 + A3ρ
2
3 + A4ρ

2
4 = π

24
.

Substituting this into

Bi = Ai(1 − C2
i ), i = 1, 2

gives us A1 and A2 in terms of α. From the equations 2–7, we obtain expressions for A5, A6, A7 and
ρ5, ρ6, ρ7, also in terms of α. Finally, from the 1st equation we obtain A8(α).

In a nutshell, solving the Prony-like system of 16 equations delivers the cubature rules published in
Rabinowitz & Richter (1969) and Cools & Haegemans (1987). The infinity of solutions is described here
in terms of a parameter α, where a valid range for α is delimited by the constraints

−1 ≤ Ci(α) ≤ 1, i = 1, 2,

0 ≤ ρi(α), i = 1, 2, . . . , 7.

Within this valid region, some of the ρi may become larger than 1 and some weights may become negative.
Without presenting the full symbolic analysis of the set of 37-point rules, the following conclusions for
cubature rules of the type where I = 2, J = 2, K = 6 are easy to see:

• From the formulas

ρ1,2 = −450α + 105π ± √
15

√
13 500α2 − 6650απ + 819π 2

42(−25α + 6π)
,

we immediately deduce that the valid region is a subset of α > 6π/25.

• In this region, we can prove that the B1,2 > 0, and hence that the weights A1,2 > 0, as can be seen in
Fig. 3.

Furthermore, the 37-point rule can be reduced to a 36-point rule by choosing α = α∗, where A8(α
∗) = 0

for α∗ = 0.7751895643351289.
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Fig. 3. Expressions B1(α) (left) and B2(α) (right).

6. Discussion

When increasing the number of octuples, rectangles, squares or axes pairs in the configurations, only
the number of unknowns grows. The number of equations is independent of H , I , J , Kx, Ky and K . So the
result facilitates the search for a minimal configuration: match the number of unknowns, namely (in case
n is odd) 3H + 2Kx + 2Ky for (3.3) and 3I + 2J + K for (4.1)–(4.2), because of the Prony character of
the equations, as closely as possible to the number of these equations, and match the number of nodes,
respectively (again in case n is odd) 4H + 2Kx + 2Ky and 8I + 4J + 2K , as closely as possible to the
lower bound for N . We expect to find more general results on cubature in the near future, using the same
unifying theory as explained in this article. Already, for some of the cubature rules listed in Table 1, we
have been able to reobtain the nodes as common zeros of some linear combinations of the multivariate
spherical orthogonal polynomials satisfying (1.4).
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