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Abstract— To illustrate the Handbook of Continued Fractions
for Special Functions with level curves of significant decimal
digits of continued fraction approximants, the reliable graphing
package GrafEq is extended in two ways: with support for
and automatic conversion of complex variables on the one
hand, and with support for additional (non-elementary) functions
implemented externally on the other hand.

I. M OTIVATION

In the wake of the DLMF project [LOZ 06], which revises
Abramowitz and Stegun’s technical best-sellerHandbook of
Mathematical Functions, a smaller international team set up
the project Handbook of Continued Fractions for Special
Functions [CUY 06]. One of the aims of the latter project
is to produce level curves ofs such that

|f(z) − fn(z)| ≤ 1

2
10−s+1|f(z)|, (1)

wherefn(z) is thenth approximant of the continued fraction
for the special functionf(z) with z ∈ C. These level
curves delimit the region in the complex plane wherefn(z)
guarantees at leasts significant decimal digits (in real or
complex arithmetic). In addition to these level curves, which
the readers can reproduce for different values ofs and n,
the latest know-how [CUY 05] on the behaviour of continued
fractions and their tails, on rounding error, and on truncation
error estimates is to be translated into reliable software for the
evaluation of several special functions.

If we take x = ℜz and y = ℑz, the problem is a famil-
iar one—that of producing illustrations of relations defined
implicitly by formulae in x and y. As this problem has
been discussed for centuries, there is an abundance of partial
solutions to it. Until recently [TUP 01], however, there wasno
(published) method capable of reliably solving this problem,
even when restricted to the formulae encountered in high
school. The algorithm implemented in GrafEq (pronounced
“graphic”) correctly graphs mathematical formulae involving
the basic operations, inequalities, and known elementary func-
tions [Ped04]. When applied to a difficult formula that is
beyond its capabilities, ifshow workis enabled, GrafEq clearly
marks the pixels that it cannot decide on. At no point does
GrafEq use any approximations that could cause it to produce
an incorrect graph.

For the continued fraction project, we have extended GrafEq
in two ways.

• Since the manual conversion of complex formulae into
corresponding real formulae (withx = ℜz and y =
ℑz) is tedious and error-prone, we have added support
for complex variables to the user interface, along with
automatic conversion.

• Since GrafEq only has implementations of the elementary
functions and none of the special functions, we dynami-
cally extend the list of functions available to GrafEq and
provide their implementations.

The first extension is discussed in section III and the second
in section IV; section II summarizes the internal workings of
GrafEq.

II. GRAFEQ’ S INTERNAL WORKINGS

With GrafEq’s mathematical foundations, any formula
r(x, y), when evaluated with specific realx andy, is always
either false (F) or true (T). Given a mathematical formula and
a rectangular region[L, R] × [B, T ] of the Cartesian plane,
GrafEq produces an illustration—aW × H rectangular array
of pixels. Each pixel represents a closed rectangular region
of the plane. Since no algorithm can produce correct black
and white illustrations—black meaning that there is at least
one solution ofr(x, y) within the pixel and white meaning
that there are no solutions within the pixel—we allow our
algorithm to color some pixels grey—grey meaning that there
may or may not be solutions ofr(x, y) within the pixel.

Even if the boundsL, R, B, andT of the graphing area are
given as machine numbers, the bounds of individual pixels
might not be representable exactly. GrafEq uses inner and
outer bounds of the rectangular region corresponding to the
pixel as shown in Fig. 1: the inner bounds are used to establish
the presence of solutions and the outer bounds to establish the
absence of solutions. GrafEq uses an interval arithmetic of
boolean values to represent, and process, the result of formula
evaluations. Three boolean intervals are possible:〈F, F〉, 〈F, T〉,
and 〈T, T〉; F < T. The boolean intervals make possible

• domain tracking, by keeping track of whether or not a
quantity, such as

√
x, is well-defined;

• continuity tracking, by providing information on whether
a quantity is continuous or not within given bounds; and

• branch cut tracking, by tracing to which branch each
piece belongs when breaking a discontinuous evaluation
apart into pieces.
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Fig. 1. GrafEq: inner and outer bounds of a rectangular region.

A discontinuous evaluation requires the facility to return
two disjoint intervals for a function evaluation. For instance,
tan(x) for x ∈ [−π/2− δ,−π/2 + ǫ] with δ andǫ small and
positive evaluates to(−∞, tan(−π/2 + ǫ)] ∪ [tan(−π/2 −
δ), +∞). GrafEq also supports this.

III. G RAFEQC’ S COMPLEX PARSER AND OPTIMIZER

Let z = x + iy and w = u + iv. We want to extend the
above to allow the graphing of relationsr(z, w) in GrafEqC
(pronounced “graphics”). To this end the formula involving
the complex variablesz and w is transfered to two parse
trees containingℜr(x, y, u, v) and ℑr(x, y, u, v), expressed
in terms of the real and imaginary parts ofz and w. We
here make use of GrafEq’s support for two additional real
parameters on top of the real variablesx andy. So, in reality,
GrafEq as described in section II, permits to graph relations
of the formru,v(x, y) with u, v ∈ R. Still, in the end, we can
only visualize two-dimensional graphs.

The parse trees forℜr(x, y, u, v) andℑr(x, y, u, v), which
can get very large, are optimized before passing them to the
rendering algorithm. The optimizations currently carriedout
include

• the canonicalization of polynomials, which rewritesx −
x + x + 2x as3x, xxx× x−2 asx (adding the condition
that x 6= 0), 4x2 − 2x2 as2x2, and3xy + 5xy as8xy;

• the elimination of neutral elements,0 for addition and1
for multiplication, which may come out of the symbolic
simplification; and

• the recognition of simple identities,i2 = −1 and
√

1 =
1.

This symbolic preprocessing was suggested for real expres-
sions in [TUP 01].

We can illustrate—in addition to the level curves—curves
such as lemniscates (as shown in Fig. 2) or images of straight
lines in the complex plane by the cosine functioncos(z) (as
shown in Fig. 3). GrafEqC has finished the former, but
not the latter. Generally, GrafEqC will not finish graphing
bivariate complex formulae. It cannot as its main tool for
establishing the existence of solutions of low-dimensional (one
or more dimensions below the ambient space) relations is the

Fig. 2. Illustration of (z − 5 + i)(z − 1 + 2i)(z + 5 − i) = w for
|w| ∈ {2, 16, 32, 64, 128, 256}.

Fig. 3. Plot ofz = cos(w) for ℜw ∈ {−0.5, 1, 2, π/4}.

intermediate value theorem—in Fig. 3, the curve is of real-
dimension 1 and lies in a real-dimension 4 space. GrafEqC

can finish the former as GrafEq has symbolically re-expressed
the relation as a bivariate formula so that the curve is of real-
dimension 1 in a real-dimension 2 space. Although Fig. 3 is
not finished, one does know where the curve is allowed to
be, namely in the grey area. Other programs complete the
graphing process using an arbitrary, yet practical, criterion
such as elapsed time.

IV. SPECIAL FUNCTION PLOTTING

The results obtained in [CUY 05], on the implementation
of special functions in certain regions of the complex plane,
are used. When plotting (1), both the functionf(z) and the
rational approximantfn(z) are evaluated reliably, the latter
by making use of the interface to complex numbers discussed
in section III and the former by calling a reliable interval
evaluation [VER 05] off(z). The interval implementation
also needs to support the domain and continuity tracking
bits required by GrafEq’s internal engine and described in
section II.

Consider the T-fraction approximantfn(z) to f(z) =
exp(z) − 1,

fn(z) =
z

1 − z +

n

K
m=2

(m − 1)z

m − z
, (2a)

where

|f(z) − fn(z)| ≤ 1

2
10−s+1|f(z)|, (2b)

−30 ≤ ℜz ≤ 5, |ℑz| ≤ 35, ands ∈ {6, 7, 8}.

T-fractions approximate well for smallz and small1/z.



Fig. 4. Level curves of (2b) fors ∈ {6, 7, 8}.

The regions corresponding tos being 6, 7, and 8 are,
respectively, printed in light-grey (originally colouredyellow),
medium-grey (originally orange) and dark-grey (originally red)
in Fig. 4. Axes and grid-lines are black. For the sake of the
presentation in grey-shades, we have temporarily renderedthe
uncertain pixels transparent instead of grey. The very small
isolated regions in the left half-plane, which are clearly shown
by our methods, are not shown by conventional graphing
methods. The small insets are each192 × 192 pixel arrays
while the larger picture is192 × 384 pixel arrays. With
73 728(= 192 × 384) plotpoints, Maple does not produce the
correct graph fors = 8.

External functions (C, C++, Fortran, Maple, . . . ) are called
as shown in Fig. 5 forsum(x, y). For each external function,
the engine needs aJTE ExternalDescription list con-
taining: the name used in the user interface (sum), the number
of arguments (2) and the name of the external function (Sum).
After initialization of the engine, the external functionsneed to
be registered. During the rendering, GrafEq’s internal engine
promptsSum(x, y) for a reliable evaluation ofsum(x, y) with
x andy belonging to floating-point intervals.

To conclude, we show in Fig. 6 the number of significant
decimal digits that can be guaranteed by thenth approximant
gn(x) of the continued fraction representation (3) oferfc(x),
wherex ∈ [1, 5] ⊆ R:

gn(x) =
e−x2

√
π

(

2x

2x2 + 1 +

n

K
k=1

−(2k − 1)2k

2x2 + (4k + 1)

)

. (3)

Here erfc(x) is implemented as an external function. Forℓ
being1, 2, 3, and4, respectively, the curves

y = − log10

|erfc(x) − g3ℓ(x)|
5 |erfc(x)| (4)

can be found in Fig. 6 when traversing it from the bottom
right to the upper left corner.

#include "jte.h"

// define your own function sum(x,y)
int Sum(int num_args, JTE_Interval **args, JTE_Interval *result)
{
... // switch to round down
result->lower = args[0]->lower + args[1]->lower;
... // switch to round up
result->upper = args[0]->upper + args[1]->upper;

result->flags = args[0]->flags | args[1]->flags;
// and other settings that can be passed to the engine

return 1; // number of intervals returned
}

#define NumExternals 1

JTE_ExternalDescription externals[NumExternals] = {
{"sum", 2, Sum}
// name in the engine, number of arguments, external name

};

int main(int argc,char **argv)
{
...
JTE_Init();
JTE_RegisterExternals(NumExternals,externals);
...

}

Fig. 5. Sample code.

Fig. 6. Plot of (4) forx ∈ [1, 5] andℓ ∈ {1, 2, 3, 4}.
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