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Continued fractions for special functions in Maple
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The numtheory[cfrac] command in Maple does not adhere to the standard continued fraction terminology
and only offers some basic support to handle continued fractions. Therefore the idea was launched to develop
a full-fletched continued fraction package.
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The all-time scientific best-seller is undoubtedly the Handbook of Mathematical Functions by Abramowitz
and Stegun [1], which is now being revised in the Digital Library for Mathematical Functions project [2]. Yet,
the topic of continued fractions is not well represented in [1]. The same is true for most software packages. For
instance, Maple only offers some basic support to handle continued fractions through its numtheory[cfrac]
command. Therefore the idea was launched to develop a continued fraction package for use in the symbolic
computing environment Maple.

Basic functionality of this package includes routines for creating continued fractions and computing approx-
imants with the possibility to make use of tail estimates. Furthermore, a continued fraction can be transformed
from one form to another and it is also possible to construct the corresponding continued fraction from a given
series. In the sequel, we will briefly demonstrate this functionality.

1 Creating a continued fraction

A continued fraction is an expression of the form
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where the partial numerators am and partial denominators bm are all complex numbers with am 6= 0 for all m. A
common name for the ordered pair [am, bm] is element. For example, a continued fraction for arctan(z) is given
by [3]
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Note that, except for the first partial numerator, all the partial numerators are of the form a2k for even indices or
of the form a2k+1 for odd indices, while the partial denominators are all 1.

Such a continued fraction can easily be constructed using our package with the create command. In fact,
any continued fraction that can be written in the form
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can be created. Here, only the last part is obligatory. That is, a continued fraction may have a front term b0, a
factor f , some non-general begin elements ai/bi for i = 1, . . . , n, but it is always followed by a repetition of
its general elements cj(m)/dj(m) for j = 1, . . . , t. To define the continued fraction given by (2), the following
create statement is used:

> arctancf := create( ’contfrac’,
begin = [ [z/(1+zˆ2),1] ],
general = [ [-(m*(m-1)*zˆ2)/((2*m-3)*(2*m-1)*(1+zˆ2)),1],
[-((m-1)*(m-2)*zˆ2)/((2*m-3)*(2*m-1)*(1+zˆ2)),1] ] );

arctancf := table
([

type = contfrac, front = 0, factor = 1, variable = z, index = m,

begin =
[[

z

1 + z2
, 1
]]

,

general =
[[
− m (m− 1) z2

(2m− 3) (2m− 1) (1 + z2)
, 1
]

,

[
− (m− 1) (m− 2) z2

(2m− 3) (2m− 1) (1 + z2)
, 1
]] ])

The create command can take several arguments. The first one is compulsory and set to ’contfrac’.
The only other compulsory argument is ’general’, which must be assigned the list of items of the form
[cj(m), dj(m)] for the successive general elements of (3). If they occur, the front term can be assigned to the
’front’ argument, the factor to the ’factor’ argument, and the begin elements can be assigned to the
’begin’ argument as a list of items of the form [ai, bi]. By default, it is assumed that all the general elements
are expressions in the index m. Another symbol can be used for this index by explicitly assigning it to the
’index’ argument. Likewise, it is assumed that all the elements can be expressions in the variable z; this can
be changed by explicitly reassigning the ’variable’ argument. Note that not all indices that appear at the
left hand sides in the table were explicitly specified as arguments to the create command; they were added
automatically and given their default value.

2 Retrieving information of a continued fraction

Since the create command returns a table, the Maple functions assigned and indices can be used to check
which parts from the general form (3) have been specified. The new commands nthnumer and nthdenom can
be used to get the n-th partial numerator and denominator respectively, while the nthelement command returns
them both within a list. For example, the following statement gives the fifth partial numerator of (2):

> nthnumer( arctancf, 5 );

− 4 z2

21 (1 + z2)

A list with the first 5 elements of (2) can be retrieved by executing the following statement:

> seq( nthelement( arctancf, i ), i=1..5 );[
z

1 + z2
, 1
]

,

[
− 2 z2

3 (1 + z2)
, 1
]

,

[
− 2 z2

15 (1 + z2)
, 1
]

,

[
− 12 z2

35 (1 + z2)
, 1
]

,

[
− 4 z2

21 (1 + z2)
, 1
]

After retrieving the elements, their limiting behaviour can be checked, which plays an important role in the further
analysis of the continued fraction.
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3 Computing approximants

Evaluating a continued fraction means truncating it after a certain number of elements and evaluating the result-
ing approximant. For this purpose, the nthapprox command can be used. This command takes at least two
arguments, namely a continued fraction that was previously created with the create command as its first argu-
ment and a positive number that specifies which approximant to compute. The following statement computes the
fifth approximant of (2) symbolically:

> nthapprox( arctancf, 5 );(
315 + 420 z2 + 113 z4

)
z

15 (21 + 14 z2 + z4) (1 + z2)

To do a numerical evaluation, a value for z must be provided as the third argument to nthapprox. For example,
we can compute the value of the tenth approximant of (2) with z = 0.567 as follows:

> nthapprox( arctancf, 10, 0.567 );

0.5158012842495719216894167653770274021221

Here, the Digits environment variable of Maple has been set to 40. This means that all calculations will be
done using 40 decimal figures.

Truncating a continued fraction means replacing its tail with 0. However tails of a continued fraction, which
are in themselves again continued fractions, do not need to converge to zero. This indicates that better results
may be obtained if the tail is replaced with some other value w, called a modification. Such w can be assigned to
the ’modification’ argument of the nthapprox command.

Looking at (2), since we know that the partial numerators have the limit

lim
m→∞

am = a = −1
4

z2

1 + z2
,

a better approximation can be obtained if the following modification is used [3, 4] :
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)
.

Adding this modification to the above statement leads to:

> nthapprox( arctancf, 10, 0.567,
modification = 1/2*(sqrt(1-zˆ2/(1+zˆ2))-1) );

0.5158012842519658005138841796487955244524

which improves the first result by providing two more correct digits, since we know that arctan(0.567) =
0.51580128425173001545252 . . . .

4 Contractions and equivalence transformations

An even (respectively odd) contraction of a continued fraction is a new continued fraction of which the approx-
imants of the latter are equal to the even (respectively odd) approximants of the former. Such a contraction can
be created with the transform command by supplying the original continued fraction as its first argument and
’even contraction’ (respectively ’odd contraction’) as its second argument. The even contraction
of (2) can be obtained by executing the following statement:
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> arctancfeven := transform( arctancf, even_contraction );

arctancfeven := table
([

type = contfrac, front = 0, variable = z, index = m,

begin =
[[

z

1 + z2
,

z2 + 3
3 (1 + z2)

]]
, general =

[[
4 (m− 1)2 (2m− 3)2 z4

(4m− 7) (4m− 5)2 (4m− 3) (1 + z2)2
,

8 m2 z2 + 16 m2 − 24 m− 12 m z2 + 5 + 3 z2

(4m− 5) (4m− 1) (1 + z2)

]] ])
Evaluating the fifth approximant of this continued fraction for z = 0.567 gives

> nthapprox( arctancfeven, 5, 0.567 );

0.5158012842495719216894167653770274021221

as expected.
Besides computing contractions, we can also apply an equivalence transformation. Such a transformation has

the property that the approximants are not changed. For instance, for each continued fraction for which all partial
denominators are different from zero, an equivalent continued fraction exists which has all denominators equal
to 1. Using transform this can be computed by specifying ’simregular’ as its second argument. Take for
instance the following continued fraction expansion for arctan(z) [5]

arctan(z) =
z

1 + z2 −
2z2

3 −
2z2

5(1 + z2) −
12z2

7 −
12z2

9(1 + z2) − . . .
.

If we create this continued fraction and then apply the ’simregular’ transformation, we get:

> arctancfwolfram := create( ’contfrac’, begin = [ [z,1+zˆ2] ],
general = [ [ -m*(m-1)*zˆ2, 2*m-1 ],

[ -(m-1)*(m-2)*zˆ2, (2*m-1)*(1+zˆ2) ] ] ):
> transform( arctancfwolfram, ’simregular’ );

table
([

type = contfrac, front = 0, variable = z, index = m,

begin =
[[

z

1 + z2
, 1
]

,

[
−2 z2

3 (1 + z2)
, 1
]]

,

general =
[[
− (m− 1) (m− 2) z2

(2m− 3) (2m− 1) (1 + z2)
, 1
]

,

[
− m (m− 1) z2

(2m− 3) (2m− 1) (1 + z2)
, 1
]] ])

which clearly equals the continued fraction given in (2).
Finally, this package can also be used to transform series representations and continued fractions from one

into the other.
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