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If the system of linear equations def'ming a multivariate rational interpolant is singular, 
then the table of multivariate rational interpolants displays a structure where the basic building 
block is a hexagon. Remember that for univariate rational interpolation the structure is built 
by joining squares. In this paper we associate with every entry of the table of rational interpo- 
lants a well-defined determinant representation, also when this entry has a nonunique solution. 
These determinant formulas are crucial if one wants to develop a recursive computation 
scheme. 

In section 2 we repeat the determinant representation for nondegenerate solutions (nonsin- 
gular systems of interpolation conditions). In theorem 1 this is generalized to an isolated hexa- 
gon in the table. In theorem 2 the existence of such a determinant formula is proven for each 
entry in the table. We conclude with an example in section 5. 

1. Multivariate rational Hermite interpolants 

For the sake of notational simplicity we will restrict our description to the bivari- 
ate case. Let a bivariate functionf(x,  y) be known in the data points (xi, yj) with 
(i, j )  ~ N 2 and let I be a finite subset of N 2 indexing those data points which will be 
used as interpolation points. With the data points we construct the polynomial 
basis functions 

i-1 j-1 

II(x-    /II0' - Y,/. 
k=0 1=0 
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The problem of interpolating these data by a bivariate rational function was for- 
mulated in [5] as follows. Choose finite subsets N (from "Numerator")  and D 
(from "Denominator")  ofN 2 with N c I and compute bivariate polynomials 

p ( x , y )  = ~ ao.Bo.(x,y), # N =  n + 1, 
(i,j) ~v 

q(x ,y )  = ~ biyBq(x,y), # D  = m +  1, (la) 
(i,j) eD 

where we denote Op = N and cgq = D, such that 

Orq-p) (x i ,  y j ) = O ,  ( i , j ) e I , # l = n + m +  l .  (lb) 

I fq(x i ,  yj) 7 ~ 0 then this last condition implies that 

f ( x i ,  Yj) = P  (xi,Yj), ( i , j ) e I .  (Ic) 

We say that I satisfies the inclusion property if whenever a point (i, j)  belongs 
to I, all the points in the rectangle emanating from the origin with (i, j)  as its 
furthermost corner belong to I. Condition (lb), for instance, is met if the following 
two conditions are satisfied by the polynomials given in (1 a) [5]: 

( f q - p ) ( x , y ) =  ~ ai jBq(x ,y) ,  (2a) 
(i, y) ~ N ~ V 

I satisfies the inclusion property, (2b) 

where the series development (2a) is formal. Condition (2a), with restriction (2b), 
can also be used if some or all of the interpolation points or their coordinates coin- 
cide since it can be replaced by conditions in terms of bivariate divided differences 
[5]: 

~ q ) [ x o , . . . , x i ] [ y o , . . . , y j ] = p [ x o , . . . , x i ] [ Y o , . . . , y j ] ,  ( i , j ) e N ,  (3a) 

(fq)[xo, . . . ,xi][Yo, . . . ,yj] = 0 ,  (i, j )  e I \ N .  (3b) 

Using a generalization of Leibniz' theorem [5] we can substitute (fq) [x0, �9 �9 xi] 
[y0, �9 �9 �9 Yj] in (3a- b), with the notation c,i,~j = f [ x ~ , . . . ,  xi] Lye,..., yj], by: 

i j 

0Cq)[x0,... ,xi] [Yo, . . . , yj] = ~ ~ q[xo, . . . , xu][y0,... , y~]cui,vj 
lz=0 v=O 

i j 
= ~-~ ~-~ b~vcN,vy 

#=o v=o 

= ~ b#vc#i, vy. 
(/~,v) eD 

Also 
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p[xo , . . . , x i ]~o , . . . , y j ]  =aij,  ( i , j ) ~ N .  

From now on we denote a rational function satisfying (3) by [N/D]I. Number- 
ing the points in the sets N, D and I as: 

U = ((io, j o ) , . . . ,  (i,,, j,,)}, (4a) 

D =  {(do,eo) , . . . , (dm,em)},  (4b) 

I = N LJ {(/n+l, . ~ + 1 ) , - . . ,  (in+m, in+m)}, (4c) 

condition (3) becomes [5]: 

I Cdoio,eQyo 

Caoi.,eQA �9 .. Cd..i.,e.d. / \ bdmem \ aid. 

(5a) 

Cdoi.+l ,eoj.+l 

C doin+m,eoj.+m �9 .. Cd.,i.+.,,e,,4~+,. \ bdme,. 

(5b) 

If the rank of (5b) is not maximal, we look at [N/D]I as being a set of rational func- 
tions of which the numerator and denominator are given by (1 a) and are satisfying 
(5a) and (5b). Such a solution [N/D]I is called degenerate. 

2. A determinant representation for nondegenerate solutions 

With the numberings (4a), (4b) and (4c) of the respective indices in N, D and I 
we can set up descending chains of index sets, defining bivariate polynomials of 
"lower degree" and bivariate rational interpolation problems of"lower order": 

N =  N ,  = . . .  = N k - - -  { ( i 0 , j 0 ) , . - - ,  (ik, j k )}  = . - .  = NO = {(i0, j 0 ) } ,  

k = O , . . . , n ,  (6a) 

D =  Dm ~ . . .  ~ Dt ={(do,  eo) , . . . , (d t ,  el)} = . . .  ~ Do = {(do, eo)}, 

l = O , . . . , m ,  (6b) 

I =  I,+m = . . .  = Ik+t = ((io, jo) , . . . , ( ik+t ,  jk+t)} = .-. = I0 = {(io, jo)}, 

k +  l = O , . . . , n  + m ,  (6c) 
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Ik+l,k+l = { ( i k + l , A + l ) , . - . ,  (ik+l, A+/)} ,  I \ N  = In+l,n+m. 

If  we assume that each set Ik+t c I satisfies the inclusion property in its turn 
and also that each Ik = N k  for 0 ~< k ~< n, then we can compute with these subsets the 
following entries in a "table" of multivariate rational interpolants: 

[No/Do]Io . . .  [No/Dm]I., 
�9 ~ 

[Nn/Do]i ,  . . .  [Nn/Dm]x,+m 

(7) 

INk/Orb,+, = 

~-~(i,j) ENk caoi,edBiy(x,Y) "'" ~-~'4i,./)~Nk cati,edBiy(x,Y) 

C d o i k + l  , e l l ] ' k + l  " " " C d l i k + l  , e d k + l  

C doik +t,eojk +t �9 �9 �9 C dtik +l,etjk +t 

to(k)  . . .  

6 to(k)  . . .  

6 t l - 1 ( k )  . . .  

B d o e o ( X , y )  . . .  

C do ik + 1 ,eOjk + 1 �9 �9 " 

Cdoik+.edk+t �9 �9 �9 

to ( k  + l) 

�9 to(k + t) 

6tt-1 ( k  + l) 
1 

6to(k)  

 tt_ (k) 

. . .  1 

. . .  6 to (k  + l) 

. . .  6 t t _ l ( k  + l) 

tk(t) = Cdki,ekjBdk,i,ek](X,y), k = O , . . . , m ,  l = 0 , . . . ,  n + m ,  (8a) 
(i,j) ~Nt 

t j( i)  = 0 ,  i < 0 ,  

6tj( i )  = t j+l( i)  - t j ( i ) ,  j>~O.  (8b) 

B d l e t ( X , Y )  

Cdlik+l ,etik+l 

Cdlik+hedk+l 

with 

If  we let n and m increase, infinite chains of index sets as in (6) can be constructed 
and an infinite table of multivariate rational interpolants results. Of course, in prac- 
tice, only a finite number of entries will be computed. For a nondegenerate entry 
in this table the following determinant representation can be given [4]: 
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It was shown in [4] that this last ratio of determinants can be computed recur- 
sively via the E-algorithm of Brezinski [2], at least if one is dealing with a nonde- 
generate solution and if the computation scheme does not break down. Then 
[Nk/Dl]Ik+t = E~ k) a n d  [Nn/Dm]In+m = E(m '0 with 

Bik, j l (X,y)  = B k l ( X , y ) / B i j ( x , y ) ,  k>~i , l>~j ,  

E~ k) = ~_,  Cdo,,eojBdoi,e~(X,y), k = O,. . . ,n  + m ,  (9a) 
(i.y)~Nk 
..C k) (k+l) /?(k+l)~(k)  

E~k) = l~i- lg l - l , l  -- ~1-1 61-1,1 
g(k+l )  _ ,.(k) 

I-l,l 61-I,1 
g(k) 

O,l = t l(k)  - tl-1 (k), 

g(k) g~k)-l,lg~k+l,2 -- g~k+ll~g~k)-l,h 
h,l = g(k+l )  _ ,.(k) ' 

h-l,h 6h-l,h 

k = O ,  1 , . . . , n , l =  1 , 2 , . . . , m ,  

l =  1, . . . ,m,k---O, . . . ,n+m, 

l = h + l , h + 2 ,  . . . .  

(9b) 

(lOa) 

(10b) 

We have seen in [1] that degeneracy has consequences for neighbouring elements 
in the table. If the rank of the homogeneous system is not maximal, but has a defi- 
ciency of s, then we proved in [1] that the table of rational interpolants (7) is, under 
certain conditions, composed of hexagonal blocks built around each degenerate 
[Nn/Dm]In+,,, (see fig. 1). 

3. Some particular degenerate solutions 

Let us introduce some new ratios of determinants. Let E! k'u) denote 

7. 

Fig. 1. 
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to(k) 
6to(k) 

. . .  t o ( u - s )  t 0 ( u + l ) . . ,  to(k + l + s) 

Ei(k,u) 6tt-l(k) . . .  (11) 
IS ---- �9 ~ �9 1 

6to(k) . . .  

60-1(k) . . .  

These values strongly resemble the values E} k) of the previous section: the nonde- 
generate values are obtained for s = 0 and also for u >i k + l + s. We now prove the 
following lemma and theorem for these new ratios of determinants. In both proofs 
we shall only focus on well-defined values, with nonzero denominator. 

LEMMA 1 
Let p(x, y) and q(x, y) be defined by (1), (4) and (5) with I satisfying the inclusion 

property. Let the rank of the coefficient matrix Cn+l,.+m in (5b) be given by m - s 
and let the s linearly dependent rows in Cn+t,n+m be consecutive�9 Let the singular 
block built around [N~/D.,]I.+ m be an isolated hexagonal. Then for some u with 
n +s<<.u~n + m  + s -  1, the rational function E ~  u) belongs to [N./Dm]1.§ 
A[Nn/Dm+s]1.+,.+ . 

Proof  
Let us focus on the defining system of eqs. (5b) that determines the denominator 

coefficients. Suppose that the s consecutive linearly dependent rows of Cn+l,,+m 
are 

Then the homogeneous system (5b) reduces to 

( C d o i n + l  , e ~ n + |  " " �9 C d m i M q - I  ,em]n+t 

�9 �9 

Cdoiu_s,eoju_ s �9 . . Cdmiu_s,emju_ s 

Cdoiu+l ,eoju+l �9 �9 �9 Cdmiu+l ,emj.+t 

�9 �9 

Cdoi.+,.,eQ/.+m �9 �9 �9 Cd,.i.+,.,e~j.+,, 

Cd~i~_,+l ,e,,j~_,+l I 

Cdmi.,emju 

(i) 
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Because of  the linear dependence, the coefficient row 

( Cdoiu+l ,eaju+l "" "Cdmiu+l ,e,n/'u+l ) 

can be replaced by 

s+l C s+l  C \ Cdoiu-s+k,eoju-.+k ~ Cdmiu_s+k,em/u_s+k .~ 
~=1 Bi.-,*ki.*',J.-,*kJ.+'fx'Y)''' ~=I Bi._.+,,.+,,j._.+~/.+,fx, y)J 

and s equations can be added�9 This gives us the following determinant representa- 
tion forp(x, y) and q(x, y) 

Cdoi , eo]B i j ( x 'Y )  
(i,j) e N  

C doi.+ l ,eQ].+ l 

Cdoi,,_,,ed._. 
s+l 

p = ~ ' ,  Cdo~-,+k,eoj.-,+k 

= B i . _ . + k i . + , , A _ . . j . + ,  ( X ,  y) 

Cdoi.+,..ell/n+. 

Cdoinm+s,eojn+m+:r 

Bdoeo(X,Y) 
C do in+ t ,eajn+l 

Cdo~_,,eQ]._, 

s+l  
Cdoiu-s+k,eo]u-s+k 

q = = Bi._,+ki~+l,j.-,+~d.+l (x,y) 

Cdoin+m ,eoJn+m 

Cdoi.~+.,eoj.+m+. 

Cd,. i ,e , .]Bij(x ,y)  
(i,j) eN 

C dmi.+1,e.d~+1 

�9 . . Cdmiu_s,emju_ ~ 

s+l Cami,,_,+k,~,,j~-,+k 
" ' "  ~=1 Bi~-,+7~+a~ x'y) 

�9 �9 �9 Cdmi~+,..e,n]n+,. 

�9 �9 �9 Cdmin+,.+..e,,j.+,,.+~ 

�9 . .  B a . , e . ( x , y )  

�9 �9 �9 Cdmin+l ,e,nj.+l 

� 9  Cdmiu_.,emiu_ , 

s+l  
C d~iu-s+k ,emju-s+k 

�9 � 9  

k=l  Biu-'+kiu+' .ju-.+kJu+l (X ,  y )  

Cdmi.+.,e.d.+m 

Cdmin+m+,,emA+,~+. 

where q(x, y) is nonzero because, as we shall see, it reduces to the denominator of  
E(m'~ "), which is well-defined. It cannot be singular because otherwise one more 
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equation could be added to (5b) and E (~'")m: would solve [N~/Dm+s+l]i,+,+,+, too, 
which contradicts the fact that the singular hexagonal block is isolated. By multi- 
plying the consecutive rows in p and q, from the second on, respectively by 

Bi,+d~+, (x ,y ) , . . . ,  Biu_du_,(x,y), Bi,+tM, (x ,y ) , . . . ,  Bi,+m+d,+,+,(x,y), in the two deter- 
minants above, and after dividing the ( l+  1)th column for l = O , . . . , m  by 
Bdtet (x, y) in the two determinants above, we get a representation for p and q using 
partial sums and terms of the series to, . . . ,  tm defined in (8). Some manipulation 
with the rows and columns (linear combinations) finally gives us, in the same way 
as in [4], 

p(x,y) _ E(n,u) 
q(x,y) m,s , 

with numerator of degree Op = Nn, denominator of degree aq =Dm c Dm+s and 
satisfying the interpolation conditions imposed by In+m+s = In+re. [] 

THEOREM 1 
Letp(x, y) and q(x, y) be defined by (1), (4) and (5) with I satisfying the inclusion 

property. Let the rank of the coefficient matrix C~+l,n+m in (5b) be given by m - s. 
Let for each pair (k, l) with 0 ~<k ~< s, 0 ~< l ~< s, k + l = s, the rank of Cn-k+l,~+m-s 
equal its maximal rank m - l. Let the hexagonal block of degenerate solutions be 
isolated, which means that for 0 ~< k ~< s the coefficient matrices Cn-~+l,~+m-~+k (top 
rOW), C~-k+l,~+m-~ (leftmost diagonal), Cn+k+l,~+m-,+k (leftmost column), 
Cn+s+l,~+m+k (bottom row), C~+s-k+l,~+m+~ (rightmost antidiagonal) and finally 
C~-s+k+l,,+m+k (rightmost column) all have maximal rank. Then for i = 0 , . . . ,  s the 

following can be proved. 
(a) E~-S +i'n+m) is well-defined and solves [Nn-s+i/Dm+s]z,+,+,. It also belongs to 

, E (n-s+i'n+m) solving [N~-s+i+k/Dm+~-k]1.+,+, with k = 0, . . .  s, meaning that m,~ 
[Nn_s+i/Dm+s]i~+,+, can be shifted downwards in the hexagonal block in the di- 
rection of the antidiagonal because it also solves the interpolation problems 
po. sed in [Nn-s+i+k/Dm+s-k]in+,+,. 

(n,n+m) �9 (b) E~,_s+i: is well-defined and solves [Nn+s/Dm-s+i]l~+m+: It also belongs to 
l~.(n,n+rn) [Nn+s-k/Dm-s+i+k]ln+m+, with k = O , . . . , s ,  meaning that -m-,+i: solving 

[Nn+s/Dm-s+i]l~+r.+, can be shifted upwards in the hexagonal block in the direc- 
tion of the antidiagonal because it also solves the interpolation problems posed 
in [Nn+s-k / Dm-s+i+k ]l~+,~+i. 

(c) On the rightmost upward sloping diagonal we have for i =  0 , . . . , s :  
E~n, n+m) 

[Nn+s-i/Dm+i]I.+m+, = m,s . 

Proof 
(a) Let us take a look at the system of equations defining [N~-s+i/Dm+s]x,+,+,: 
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caolo,eQio �9 �9 �9 ca,,,+,io,e,,,+do 

�9 o 

\ Cdoin-,+l,eo]n-s+l �9 �9 �9 Cdm+.in-s+t,em+dn-.+l 
)/b:'~ l/a / 

\ bd=+se..+. / ai ._ ,~ .d ._ .+i  / 

�9 o o ~ o 

\ C d o i n + m + h e Q ] n + r n + t  ' ' '  C d m + s i n + m + i , e m + s J n + m +  i bd~,+sem+, 

We know that  the rank  o f  Cn-s+i+l,n+m-s is maximal,  namely m - i and this for 
i = 0 , . . .  ,s. So for i = s t h e m a t r i x  

I Cdoin+l , e a ] n + l  �9 �9 �9 Cdm-sia+l,em-d.+l 

) �9 . 

Cdoi.+ . . . .  eQ]n+m-~ �9 �9 �9 Cdm-.i.+ . . . .  em-sJn+m-. 

has maximal  r ank  m - s. Hence also the matr ix  

Cdoin+l,ee].+l " �9 �9 Cdmin+l,em]n+l 

�9 " ) (12) 

\ Cdoin+,.-s,eoj.+=-s �9 �9 �9 Cd,,,in+m-s,em].+m-. 

with only longer rows has maximal  rank  m - s. Since C . + l , . + m  has a rank  defi- 
ciency o f s  and since (12) consists of  the top m - s rows of  C.+l,.+m, the s remaining 
rows o f  C.+L.+m must  all be linearly dependent  on the rows of  (12). Let us discard 
f rom (5b) the s linearly dependent  equations and replace them by the equations 

I Cd0i._s+~+1 ,eQ/.-s+l+, 

Cdoi.,eQ]. 
on top and the equations 

( Cdoi.+m+1 ,ed.+~+t 

Cdoin+m+t,edn+m+# 

Cdmin-~-i+l , e m ] ~ - a + i + l  

Cdmin,ent]n 

�9 . .  Cd,.i.+=+~.e,,d.+~+j \ bd~em 

at the end, in total s of them. This completed homogeneous system still has at least 
one nontrivial solution�9 A determinant representation for the rational Hermite 
interpolantp/q given by (la), (5a), (5b) constructed with this particular solution is 
precisely the ratio Etmn-J +i'n+m). From lemma I we know that E~-J +i'n+m) also solves 
[Nn-s+i/Dm+s]l,+m+~. Moreover, the denominator of E(mn,-J +i'dgm) is nonsingular 
because otherwise one could add one more equation to (5b) and prove that 
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E~, J  +i'~+m) also solves [N~_,+dDm+~+i]i,§247 which contradicts the fact that we 
are dealing with an isolated hexagonal block. Since E(mns s+i'n+m) has a numerator 
p(x ,y)  and a denominator q(x,y) of respective degrees Op = N~-~+i and Oq = Din, 
this solution also solves the interpolation problems [N~-~+~+k/D~+~-k]z,§247 for 
k = O , . . . , s .  

(b) The proof is constructed in a completely similar way. 
(c) Since the block does not stretch beyond diagonal n + m + s, we know that 

for each i = 0 , . . . ,  s the rank of Cn+~--i,n+ra+S is maximal and given by m + i. Now 
E(mn, ff +m) solves [N./Dm+s]z.+..+. t""+~J and E,~: also solves [Nn+~/D~]~+~+, according to 
(a) and (b). Hence we have a rational Hermite interpolant with numerator and 
denominator respectively indexed by N~ and Dm and solving the interpolation prob- 
lem imposed by I~+m+~. Because for each i = 0 , . . . , s  the solution 
[N~+~-i/D~+i]1,+ +, is nondegenerate and hence unique, we necessarily have for 
i = 0 , . . .  ,sthat~Nn+s-i/Dm+i]t,+,+, = ,n: �9 [] 

Note that the theorem provides us with a solution in the rightmost column of 
the isolated hexagonal block, column m + s, in the form of a ratio of determinants 
of size m + 1, while the coefficient matrix C~-~+i,n+m+i is regular because the block 
is isolated, implying that its unique solution (up to a multiplicative constant) can 
also be represented as a ratio of determinants of size m + s + 1. From this we can 
conclude that E(m~,-J +i'~+m) and E~+; +0 differ only in a common multiplicative fac- 
tor in numerator and denominator. 

4. Special rules for an isolated hexagonal block 

When, we run across such an isolated singular hexagonal block as in the pre- 
vious section, we want to know the values on the edges of the block, because from 
there on we can take up the nonsingular rules again and proceed with our recursive 
scheme�9 Let us walk around the block and try to identify the rational interpolants 
on all the edges. Remember that [Nt/Dk]z. denotes the complete set of solutions 

�9 ( l )  ( t , u )  �9 ~.+~ while E~ or E~, s denote a parncular solunon from that set. 
First there is the upward sloping diagonal with regular entries 

[Nn-s+i/Dm-i]l.+m_, because C,-,+i+l,n+,,-s has maximal rank for all i = 0 , . . . ,  s. 
Then we proved in [1] that for i = 0 , . . . ,  s the value E(m n-s) also solves the rational 
interpolation problems posed in [Nn-s/Dm+i]z,+,_,+, and analogously for E~n)_~ and 
[Nn+i/Dm-s]l,+~,_,+: So this deals with the top row and leftmost column of our iso- 
lated block. The values in the rightmost column and on the bottom line of the hexa- 

E(n-s+i,n+m) ~(n,n+m) with gonal block were just respectively identified as , , :  and -,,-~+i: 
i = 1 , . . .  , s -  1. The closing rightmost upward sloping diagonal is filled with 
l:i,(n,n+rn) 

at.amj$ 

Let us now discuss some particular solutions at the interior of the hexagon. It is 
essential when identifying certain rational interpolants that we present solutions 
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which are well-defined, in other words, which can be represented as E-values with 
nonzero denominator determinants. In [1] we mentioned how to fill the left upper 
half of the hexagonal block with nonsingular E-values, namely by copying the non- 
degenerate solutions from the upward sloping diagonal over the small triangles 
that fill this half of the hexagon, as shown in the figure below. Using theorem lc the 
triangle emanating from (n, m) in the hexagon can be filled with the regular values 
from the rightmost upward sloping diagonal, which are all equal because of theo- 
rem 1 c and which have the correct degrees Nn and Dm (see fig. 2). We shall now see 
how the rest of the right lower half of the hexagonal structure can be filled with reg- 
ular E-values. From theorem la and lb we learn that well-defined solutions for 
the rational Hermite interpolation problems posed in this half of the hexagon come 
from copies of the rightmost column or copies of the bottom line (see fig. 3). 

Essentially this leaves us with the problem of computing these new values 
(n-s+i,n+m) (n,n+m) �9 �9 

E,~,s and E~n_s+i, s. When trying to provide a coherent computation scheme 
we must be careful not to involve intermediate singular values. A first singular rule 
for the E-algorithm was proved by Brezinski [3], but not in the context of multivari- 
ate rational interpolation. So this rule does not exploit the special hexagonal struc- 
ture of the table of interpolants. When we would like to apply it, as it stands, to 
our problem, we jump from the regular E-values in column m - s to the regular E- 
values in column m + s in one step: 

Em(n-s+k) (n-s+k) ( g(n-s+k) (n-s+k) "~ 
+s = EV-s - \ m-s,m-s+1""gm-s,m+s) 

/ zagm-s ,m-s+ l �9 �9 �9 gm-s,m+s m-s  

> (  �9 ~ . ~ 

(n+s+k-1) A (n+s+k-1) (n+s+k) 
L'~gm-s,m-s+ 1 �9 �9 �9 gm-s,m+s A E ~ - s  

(n,m-s) 

(n+s,m-s) 

(n-s,m) .(n-s,m+s) 

z v (n§ 

Fig. 2. 
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(n,m-s) 

(n§ 

(n-s,m) (n-s,m+s) 

x (n,rn+s) 

(n+s,rn) 

Fig. 3. 

On the other hand, an algorithm that is more tailored to this problem in the sense 
that it exploits the hexagonal structure, is the following application of the E-algo- 

(Z,u) 
rithm to the newly defined values E~, s . This application uses help-entries g~l ,~  

where the linearly dependent rows in the matrices are discarded. The fact that the 
E-algorithm remains valid is due to the special form of the determinant ratio (11) 
which is very similar to the form of the original E~ k).  Using the initialisation 

Em(n-s+i,n+m) (n-s+i) 
-i,s = EV_i , i ---- 1, . . . , S - -  1 ,  

Em(n,n+m) (n+s) 
-i,s = EV_i , i = 1 , . . . , s  - 1 ,  

(n-s+i,n+m) (n-s+i) 
gm-i , r , s  : gm- i , r  , i = 0 , . . . ,  S, 

g(n,n+m) (n+s) (13a) 
m-s+i,r,s = gm-s+i , r ,  i = 1 , . . .  , S ,  

and the rules 

,-~(k,n+m) (k+l,n+m) ,-,(k+l,n+m) (k,n+m) 
p(k,n+m) l~l-l,s g l - l , t , s  - ~ ' i - l , s  gz- l , l , s  

g(k+l,n+m) g(k,n+m) 
l-l,l,s ~ l-l,l,s 

g(k,n+m) (k+l,n+m) g(k+l,n+m)g(k,n+m) 
g(k,n+m) h-l,l,s gh-l,h,s -- h-l,l,s h-l,h,s 

h,l,s ~ gh(k+l,n+m) (k,n+m) 
-1,h,s -- gh-l,h,s 

k = 0, 1 , . . . , n , l  = 1 , 2 , . . . , m ,  

l = h + l , h + 2 , . . . ,  

we can flU the following quasi-triangular table of values: 
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Em(n-s+l,n+m) E(n-s+l,n+m) 
- l , s  m,s 

Em(n-s+ l,n+m) E(n-s+ l,n+ra) 
I 1 ,s m,s 

Em(n-2,n+m) �9 . 
- s + 2 ~  

Em(n-l,n+m) l:i,(n-l,n+m) 
-s+ 1 ,s "-'ra-s+2,s 

EmCn,n+m) l;,(n,n+m) 1~,(n,n+m) ECn,n+m) 
-s+ 1,s ~m-s+2,s . . . .  m -  l,s ms  

(13b) 

where the bottom row and rightmost column of(13b) respectively solve the interpo- 
lation problems in the bottom row and rightmost column of our hexagon. A proof 
for these rules can be constructed as in [4] for the case s = 0. The quasi-triangular 
table (13b) can in its turn only be filled completely if we do not encounter indefinite 
values at the interior of (13b). 

The inltialisations in (13a) are easy to understand. The first is merely by nota- 
tion: from the determinant representations for E(~n.__-~ +0 . ~(,-s+i,,+m) ano ~m-i,, one can see 
that these expressions are equal. The second initialisation follows from theorem 
lb. The inltialisations for the g-values are analogous. The first is by notation, the 
other by theorem lb. How do we now get the starting E- and g-values on the bot- 
tom row of the hexagon? The bottom row of(13b) is computed from the nondegene- 

�9 �9 ( n + s )  ( n + s + l )  �9 �9 rate rules with input values E~-s and E,~-s . The newly described extension 
together with its initialisations can then best be understood from fig. 4. 

C O R O L L A R Y  1 

From (13) it can be seen that the new rule, especially designed for the multivari- 
ate rational Hermite interpolation problem and summarized in fig. 4 computes 
E(n-s+k,n+m) �9 (n- 1) (n-s+k) 

m,s = [Nn_s+k/Dm+s] l , ,+ , , ,+  k making use. of only Em_s+~.,... , Era_r- on the 
(n+s) (n+s) leftmost upward sloping diagonal and ofE~_s+l , . . .  , E~n_s+ k on the bottom row of 

the hexagonal structure. 

(n,m-s) 

(n§ 

(n-s,m) (n-s,m+s) 

v r r / i ~- v ( n §  

F ig .  4. 
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5. A general degenerate table 

Up to now we have only considered isolated hexagonal blocks for which the lin- 
early dependent rows in Cn+l,n+m are consecutive. In general one may have several 
nonconsecutive groups of linearly dependent rows in the coefficient matrix of the 
homogeneous system of defining equations�9 However, it is always possible to give a 
determinant representation with consecutive column numbers as will be shown in 
the following theorem. In (11 ) we already introduced E("] ) involving the coefficient 
rows of Cn+l:+m except for the linearly dependent ones 

�9 �9 . 

k Cdoi~ . . .  Cd, A, 

E(n,kt ,...,k,) In general we will denote by m:l+...+s, a ratio of determinants similar to the one 
given in (11) but now with t groups of linearly dependent rows lacking, namely 
those indexed in C~+l,,+m by 

C d o i k l _ s l + l  " �9 . C d m l k l _ S l + l  

Cdoik~ �9 �9 �9 Cdmikt 

C d o ~ k t _ s t +  1 " �9 �9 C d r a i k t _ s t + l  

Cdoik, �9 �9 �9 Cd.,ikt 

(n,kl , ,k,) Exphcltly E~,st+...+s ' is given by 

E(n,kz ,...,k,) 
m ~ l + . . . + $ t  

to (n)  . . .  to(kl  - $1) to (k l  + 1 ) . . .  to (k t  - s t ) t o ( k t  + 1 ) . . .  to(n  + m + s I + . � 9  -1- St) 

~t0(n) . . .  

6tm-l(n).. �9 
1 . . .  1 

~t0(n) 

~t,~-i (n) 
(14) 
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T H E O R E M  2 

For  each entry [Nn/Dm]z.+. in the table of rational Hermite interpolants a well- 
~.(n,kt,...,k,) exists which belongs to defined determinant  representation of the form ~'t,sl+...+s, 

[N,/Dm]L +, with l ~<m and si > 0 for i --- 1 , . . . ,  t. Numera to rp  and denominator  q of  

E~,~;~:ii~_k'ThaverespectivedegreesOp N,  andOq = Dr. 

Proof  
Let us first construct 1, which will determine the size of  the matrices in the deter- 

minant  representation for [N,/Dm]z.§ Consider C,+l,n+m and permute its rows 
until you have an l x (l + 1) submatrix of  maximal rank l in the upper left corner. 
Do not  permute any columns. Now consider the m x (l + 1) matrix 

I Cdoin+z ,eQ/'n+l �9 �9 �9 CdliN+l ,ed.+l 
\ 

\ Cdoin+m,eojn+m " �9 �9 Cdlin+m,ed.+m 

It is clear that  this matrix contains m - l linearly dependent rows and so we have 
already determined the total size of  the gap that  will occur in the final determinant  
representation, namely sl + . . .  + st = m -  l. However, the linearly dependent  
lines may occur in different groups (say t in total) at different places. By computing 

bdoeo, �9 �9 �9 bdzez from 

c 

�9 . �9 Cdfin+m,edn+m \ bdtez 

/ (15) 

and puttingtbd~+,el§ , . . . . .  bd~,em = 0 we have constructed a nontrivial solution 
q(x, y) = )-~'~i=0 ba, e, Bd, e, (x, y) to (5b). It is clear that  by discarding the linearly depen- 
dent rows in (15) and using the same technique as in lemma 1, a determinant  repre- 
sentation for this solution is given by ~.(,,k~,...,k,) [] 

Z"l,$1 + . . . + s t  " 

In a nondegenerate table every solution [N,/Dm]z.§ is given by a determinant  
representation E~ ") where the numerator  and denominator  determinants are of  size 
m + 1. In a degenerate table one jumps over certain singularities and this implies 
that  the size of a nonsingular determinant  representation is smaller than the cardin- 

E (n-s+i'n+m) with determi- ality of  the denominator  index set Din. Simply consider m,s 
nants of  size m + 1 solving [N,-s+i/Dm+s]z,+.§ which in the nonsingular case only 
has a determinant  formula of  size m + s + 1. Or recall the ideas from the previous 
p roof  to unders tand this phenomenon.  F rom the last paragraph of  section 3 it must  
also be clear that the size l + 1 used in theorem 2 is not  unique. In the r ightmost col- 
umn  of  an isolated hexagon one has different determinant  representations, respec- 
tively with l = m and l = m + s. 

In a general table of  multivariate rational interpolants, we do not  only deal 
with isolated hexagons, but several hexagonal blocks can be adjacent or sometimes 
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partially enlarged at one of  the edges as described in [1 ]. In order to treat the follow- 
ing example we introduce the flags 

sing(n, m) = 0 r Cn+l,n+m has maximal  rank, 

sing(n, m) = 1 ~ Cn+l~+m has a nonzero rank deficiency. 

EXAMPLE 1 
Consider 

f ( x , y )  --  x + y , 
x - y - x y  

with interpolation points (xi,yy) given by xi = i for i = O, 1 , . . .  and yj = j  + 1 for 
j = O, 1, . . . .  We want to obtain a determinant representation for [Nk/Dt]ik+~ with 
1 ~<k, l~<5 and 1 ~<k + l~<6 where 

N6 = D6 = / 6  = {(0,0),  (1,0), (0, 1), (2,0), (1, 1), (0,2), (3 ,0)} .  

We display the table of  values sing(n, m) indicating where the singularities are 
located and we give the numerator determinants of  the representation obtained in 
theorem 2, evaluated at (x,y) = (5, 2). The denominator determinants can be 
found by replacing the first row in the numerator determinants by ( 1 , . . . ,  1). 

sing(n,m) 

Do DI D2 D3 
N1 1 0 0 1 

N2 1 1 1 0 

N3 1 1 0 0 
N4 1 0 0 

N5 1 0 

N6 1 

D4 D5 
0 0 

0 

Do Dt D2 D3 D4 Ds 

N1 -6  -6  

N2 

N3 

N4 

-6  

-6  

-1 
-1 

-1 

? :  

o 6 

-1 
-1 

-6 -6 -6 -1 
: :  , o _ +  

I 5 4 
1 - 2  - 2  

-6 -641 05 -446 -:  -605 --: 

: -I o + :I 
-1 

-6 -6 -4~ 4 0 
1 5 

-6 -6 
4 0 
1 5 
1 - 2  
0 3 

- 4  - 

4 
- 2  
2 
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