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On the Structure of a Table of 
Multivariate Rational Interpolants 

H. Allouche and A. Cuyt 

Abstract. In the table of multivariate rational interpolants the entries are 
arranged such that the row index indicates the number of numerator coefficients 
and the column index the number of denominator coefficients. If the homogeneous 
system of linear equations defining the denominator coefficients has maximal 
rank, then the rational interpolant can be represented as a quotient of determin- 
ants. If this system has a rank deficiency, then we identify the rational interpolant 
with another element from the table using less interpolation conditions for its 
computation and we describe the effect this dependence of interpolation condi- 
tions has on the structure of the table of multivariate rational interpolants. In the 
univariate case the table of solutions to the rational interpolation problem is 
composed of triangles of so-called minimal solutions, having minimal degree in 
numerator and denominator and using a minimal number of interpolation 
conditions to determine the solution. 

1. The Structure of the Univariate Rational Interpolation table 

Let the univariate function f(x) be known in the points x~ with i E N, and let the 
functions 

i -1  
/3i(X) = I ]  (X--Xk) 

k=O 

span the space of univariate polynomials. The rational interpolation problem of 
order (n, m) for f consists in finding polynomials 

p,,m(x) = ~ a,Bi(x), 
i=o 

(la) 
1 1 1  

q.,m(x) = ~ b~B~(x), 
i=0 

such that 

Ob) ( f  q . ,  r~ - -  Pn,,n)(Xk) = O, k = 0 . . . . .  n + m. 
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Condi t ion ( lb )  can be reformulated as 

(2) ( f  q., m - Pn, ,.)(x) = ~ diB,(x), 
i>n+m+ l 

where the Newton  series deve lopment  is formal,  and which can also be used if some 
or all of the in terpolat ion points  coincide I-1]. Let  us denote  the divided difference 
f [ x ~ , . . . ,  xf] by c u with c u = 0 if i > j .  Then condi t ion (2), stating that  di = 
( f  qn,,n - Pn,,,)[Xo . . . . .  Xi] = 0 for i = 0 . . . . .  n + m, is equivalent  with 

(3a) 

(3b) 

 coo0 0t(  ) 
C01 Cll  0 �9 0 b~ a~  

\ C o n  C1 n C2n . . .  CmnJ n 

\Co,n+m Cm, n+,n] 

If  the rank of (3b) is m - s [2] then (up to a multiplicative cons tant  factor)  a unique 
solution i0., re(X) and c].,,.(x) of  (3) exists with t~/~n, m < n - s and ~cin,,. < m - s, 
where at least one of the upper  bounds  is attained. Since the polynomials  i0n, re(X) 
and qn,,.(x) have the p roper ty  that  their degrees cannot  be lowered s imultaneously 
anymore ,  unless some interpolat ion condit ions are lost, they are called a "min ima l  
solution." This means  that  they solve (1)-(3) with a minimal  number  of pa ramete rs  
a~ and b/, namely,  at  most ,  n + m - 2s. All other  solutions Pn, re(X) and  qn, ,.(x) are a 
po lynomia l  mult iple of the minimal  solution /~.,m(X) and qn,,.(x). The minimal  
solutions can be a r ranged  in a table where the n u m e r a t o r  degree n is the row index 
and the denomina to r  degree m is the co lumn index�9 For  this table, the following 
theorem due to Claessens holds [2]. We denote the coefficient matr ix  of the linear 
system (3b) by Cn+i , .+  m. 

Theorem 1. Le t  the rank o f  C .  + i , .  + m and the rank o f  Cn_~ + i,n +,.-22 be m - s, and 
let Pn, m(x) and gin, m(x) be the minimal solution o f  the rational interpolation problem o f  

order (n, m ) f o r  f . 

(a) I f  a~.,m = n - s - t 1 and the rank of  C . -~ - t ,+ l , .+m-2s -~ l  = m - s, then all 

( n - s - t  i ,m-s) 

(n-s ,m-s)  

(n+s,m-s) 

(n -s - t l ,m+s+t  I ) 
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the rational interpolation problems o f  order (i , j)  with (i , j)  lying in the triangle 
with corner elements ( n -  s -  t 1 , m - s ) ,  ( n -  s -  t a,m + s + tl), and 
(n + s, m - s) have ~., re(x) and C1., r"(x) as minimal solution. 

(b) I f  &l.,m = m -- s -- t2 and the rank o f  C. -s+ l , .+ , . -  z~-,2 = m - s - tz, 
then all the rational interpolation problems o f  order (i , j)  with (i , j)  lying in 
the triangle with corner elements ( n -  s, m -  s -  t2), ( n -  s, m + s), and 
(n + s + t2, m - s - t2) have ~., r"(x) and gl., r"(x) as minimal solution. 

(n-s,m-s-t 2) ! 
J 

(n-s,m-s) (n-s,m+s) 

(c) i f  

(n*s*t2,m-s- ~) 

( f  gt,, r" - #., r")(x) = ~ diBi(x ) 
i > n + r " + t 3 +  l 

with dn+m+ta+l ~ O, then all the rational interpolation problems of  order 
(i , j)  with (i , j)  lying in the triangle with corner elements ( n -  s, m -  s), 
( n - s , m + s + t 3 ) ,  and (n + s + t 3 , m - s )  have p.,r"(x) and gl.,r"(x) as 
minimal solution. 

(n-s,m-s) (n-s,m+s+t 3) 

(n+s+t 3,m-s) 

(d) I f  t?~.,r" = n - rl, agl.,,. = m - r2, the rank of  C._. l+l , .+r"_. l_.2 is m - r2 
and 

( f  Ct., r" - p.. r")(x) = ~ d,B,(x) 
i > n + r " +  l 

with d.+r"+ l r O, then Pi,~ = fin, r. and gli,j = gl.,r" i f  and only if  (i , j)  belongs to 
the triangle with corner elements ( n -  rl, m - r 2 ) ,  ( n -  r l , m  + rl), and 
(n + r2, m- -  r2). 
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In Section 3 a multivariate analogon of Theorem 1 on minimal solutions will be 
proved and its differences with the univariate theorem will be discussed. The 
minimal solutions defined above may still be reducible by a common polynomial 
factor. Lemma 1 on these common factors is proved in [1]. We shall also make 
clear in Section 3 why Corollary 1 is harder to generalize. 

Lemma 1. I f  (x  - ~)P represents a common fac tor  o f  the minimal solution ~in, ~ and 
n q- rll Cl . . . .  then (x ~ (Xk}k= 0 and fl < m~ where m~ denotes the multiplicity o f  the interpola- 

n -l- m tion point c~ in (Xk}k= O" 

In other words, when minimal solutions are reducible, the true rational 
interpolation problem 

Pn, m'X.. 
f -- - - I ( X k )  = O, k = 0 . . . . .  n + m, 

qn, m,] 

has a number of "unattainable" interpolation points, namely, precisely those 
c~ = Xk for which q, ,m(Xk)= p, ,m(Xk)= 0. Although a number of interpolation 
conditions are then lost by considering the irreducible form of solutions of the 
rational interpolation problem, we still call this irreducible form the "rational 
interpolant." 

Corollary 1. Let  p(x)  and gt(x) be the minimal solution o f  the (n, m) rational 

interpolation problem with ~ff = n - r 1, 9gl = m - r 2. Le t  the rank o f  

C,_rl+ 1,,+,,_rl_r2 be m -- r 2 and ( f~  - i0)(x)  = ~,i_>,+m+ 1 diBi(x) with dn+m+ 1 
O. Then for  all ( i , j )  in the square determined by (n - r 1, m - r2) and (n + r 2. m + rl)  
the solutions o f  the rational interpolation problem o f  order ( i , j )  have the same 

irreducible form. 

The proof is given in [2]. From Corollary 1 the reader could get the impression 
that, once the order of the interpolation points is fixed, the table of rational 
interpolants (which is different from t h e  table of minimal solutions) has, under 
certain conditions, a square block structure. This is not true. The block mentioned 
in Corollary 1 is square and hence symmetric with respect to its own block 
diagonal, in [2] it is proved that further down the table one may encounter more 
"trailing" blocks filled with the same irreducible rational interpolant and built 
symmetrically above and below the extended diagonal of the first block. 

2. The Multivariate Rational Interpolation Problem 

For  the sake of notational simplicity we will restrict our description to the bivariate 
case. Let a bivariate function f ( x ,  y)  be known in the data points (x  i, y j) with 
( i , j )  ~ N 2, and let I be a finite subset o f N  2 indexing those data points which will be 
used as interpolation points. With the data points we construct the polynomial 
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basis functions 

i - 1  j - 1  

B,j(x, y) = ~ I  (x - Xk) 1-] (Y -- Y3" 
k=O / = 0  

The problem of interpolating these data by a bivariate rational function was 
formulated in [31 as follows. Choose finite subsets N (from "Numerator")  and D 
(from "Denominator") of N 2 with N ~ I and compute bivariate polynomials 

p(x ,  y)  = ~ aijBij(x, y), # N = n + 1, 
( i , j )  e N  

(4a) 
q(x,  y)  = ~, b~jBij(x, y), # O = m + 1, 

( i , j ) eD  

such that 

(4b) ( f q  - p)(xi ,  y j) = O, (i, j )  ~ I, # I = n + m + 1. 

If q(xi,  y j) # O, then this last condition implies that 

(4c) f ( x i ,  Yj) = P- (xi ,  Yj), ( i , j )  e I. 
q 

We say that I satisfies the inclusion property if whenever a point ( i , j )  belongs to I, 
all the points in the rectangle emanating from the origin with (i, j) as its furthermost 
corner belong to I. Condition (4b) is, for instance, met if the following two 
conditions are satisfied by the polynomials given in (4a) [31: 

(5a) ( f  q - p)(x,  y)  = ~ dijBij(x, y), 
( i , j ) ~ N 2 \ I  

(Sb) I satisfies the inclusion property, 

where the series development (Sa) is formal. Condition (Sa) can also be used if some 
or all of the interpolation points or their coordinates coincide since it can be 
replaced by conditions in terms of bivariate divided differences [31 

(6a) ( f  q)[Xo . . . . .  x i ] [ y o , . . . ,  y~] = p[xo  . . . . .  x l][Yo,  . . . ,  yj] ,  ( i , j )  ~ N ,  

(6b) ( f q ) [ x o , . . . ,  xl][yo . . . . .  yj] = O, ( i , j )  ~ I \ N .  

Using a generalization of Lcibniz' theorem [31 we can substitute 
( f  q ) [x  o . . . .  , x i ] [ y  0 . . . . .  yj] in (6a-b), with the notation cui, v j = 
f [ x  u . . . . .  x J [ y v ,  . . .  , yj] ,  by 

i j 

( f  q)[Xo . . . . .  x , ] [yo  . . . .  , Yj] = ~ ~ q[xo  . . . . .  xu][yo,.. . ,y~]cu,,,  j 
/z=O v=O 

i j 

= Z Z b,vc,i,  vJ. 
t~=O v = 0  

= Z b~vcui, v j" 
(U, v )eD 
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Also 

p [ x o  . . . .  , xi-][yo . . . . .  yj]  = aij ,  (i,j) ~ N. 

F r o m  now on we denote a rat ional  function satisfying (6) by  [ N / D ]  I .  N u m b e r i n g  
the points  in the sets N, D, and  I as 

(7a) N = {( io ,Jo  ) . . . . .  ( in,Jn)},  

(7b) D = {(do, eo) . . . .  , (din, e,,)}, 

(7c) I = N w {(i,+ 1,J,,+x), . . . ,  (i,,+m,J,,+,,,)}, 

condi t ion (6) becomes 

(8a) ( Cd~176176176 "'" Cdmi~176176 ) =~ai : j~ j ,  tai~176 
Cdoin,eojn " " " Cdrnin, emJn d em 

b (co ...... c . . . . . .  

Cdoir, + m, eojr, + m " " " Cdmin + m, emJn + m/  bd~em 
It  is obvious  that  at least one nontr ivial  solution of (8) exists, but  it is not  so (unlike 
the univariate  case) that  different solutions Pl, ql and P2, q2 of (8) are necessarily 
equivalent,  meaning  that  ( P l q 2 ) ( x ,  Y) = ( P 2 q O ( x ,  Y). Hence P l / q l  and P2/q2 m a y  be 
different functions. Consider  the following example:  

x + y  
f (x ,  y )  - 

x - y - x y '  

x~ = i, i = O, 1, 2, . . . ,  

y j = j +  1, j = 0, 1 , 2 , . . . ,  

i~ = {(o, o), (1, o), (o, 1), (2, o), (1, 1), (o, 2)}, 

f ( I s )  = { - 1 ,  - 2 ,  - 1 ,  - 3 ,  - 1 ,  - 1 } ,  

N 2 = {(0, 0), (1, 0), (0, 1)}, 

D 3 = {(0 ,  0), (1, 0), (0, 1), (2, 0)}, 

3 ( x -  1) 3 
[ N 2 / D 3 ] I  s = P l  (x, y) = 

ql (X -- 1)(X -- 3) X -- 3'  

[ N 2 / D a ] x  ~ = P22 (x ,  y )  - y - 1 
q2 l Z y -  1. 

In the next section we shall discuss what  is so typical abou t  the mul t ivar ia te  case 
and causes this to happen.  Note  tha t  in the above  example  bo th  irreducible forms 
satisfy neither (4b) nor  (4c). This phenomenon ,  which was also described in the 
previous section for the univariate case, can occur  even if (4b) has an essentially 
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unique solution. Consider  the same example  as above  now with 

14 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1)), 

f (14)  = { -- 1, -- 2, -- 1, -- 3, -- 1 } 

N~ - ((0, 0), (1, 0)), 

D3 = {(0, 0), (1, 0), (0, 1), (2, 0)}, 

P (x, y) = 3(x - 1) 3 
[N1/Da]I4 = q (x - 1)(x - 3) - x - 3" 

U p  to a multiplicative constant  factor  in the n u m e r a t o r  and denomina to r  this 
solution is unique, but  its irreducible form r(x, y) = 3/(x  - 3) does not  satisfy the 
in terpolat ion condit ions in (xl,  Yo) and (xl,  Yl) anymore  

f ( x l ,  Yo) = - -2  :A r(xl,  Yo) = --3/2,  
f ( x l ,  Y l )  = -- 1 r r(x  1, Yl) = -- 3/2. 

Also the polynomials  p(x,  y) = 3 and  q(x, y) = x - 3 do not  satisfy (8) anymore .  
When  this second p h e n o m e n o n  (loss of  in terpola t ion condit ions)  occurs, the 

in terpolat ion p rob lem is said to have "una t t a inab le"  in terpolat ion points. We shall 
not  discuss this here in more  detail. The first p h e n o m e n o n  (loss of  equivalence) can 
only occur  if essentially different solutions of  (8) exist and in that  case the 
coefficient matr ix  in (8b) is rank-deficient.  Hence, if the rank  of (8b) is not  maximal ,  
we should look at [N/D]~ as being a set of  ra t ional  functions of which the 
n u m e r a t o r  and  denomina to r  are given by (4a) and are satisfying (8a) and  (8b). A 
solution [N/D]~ containing numera to r s  and denomina to r s  of  different "degrees"  is 
called "degenerate ."  

With  the number ings  (7a),  (7b),  and  (7c)  of the respective indices in N ,  D, and  1 
we can set up descending chains of index sets, defining bivar ia te  polynomials  of 
" lower  degree"  and bivar ia te  rat ional  in terpolat ion p rob lems  of " lower  o rde r"  

(9a) N = U,, ~ . . .  ~ N k = {(io,Jo) . . . .  , (ik,Jk)} ~ "'" ~ No = {(io,Jo)}, 

k = 0 , . . . ,  n, 

(9b) D = D,, = .-- = D, = {(do, eo) . . . . .  (dr, e,)} = .-- = Do = {(do, eo)}, 

l = 0 , . . . , m ,  

(9c)  I = I,,+,,, = . . .  ~ Ik+ , = {( io ,Jo)  . . . . .  ( i k + t , J k + t ) }  = "'" = I0 = {( io ,Jo)} ,  

k + l = O , . . . , n + m ,  

Ik+l .k+r = ( ( i k + l , A +  1 ) , - - - ,  ( ik+ t ,J~+t ) ) ,  I \ N  = I . + 1 , . + , . .  

With these subsets we can compu te  the following entries in a "table '?  of  mul t ivar-  
iate rat ional  interpolants:  

[Uo/Oo]xo . . .  [No/D.,]I,~ 

(10) : : 

[Nn/Do] t ,  . . .  [Nn/D,,_],.+m 
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If we let n and m increase, infinite chains of index sets as in (9) can be constructed, 
and an infinite table of multivariate rational interpolants results. Of course, in 
practice, only a finite number of entries will be computed. We shall see in the next 
section that degeneracy has consequences for neighboring elements in the table. 

3. The Degenerate Case 

Let us denote the coefficient matrix of (8b) by C. § +,.. We remark that the rows 
are indexed by I.+~..+,.. Let the set H.§ ~_ I.+~..+,. denote the indices in 
1.+1..+m of the rows in C.+l,.+m that are linearly independent. If the rank of 
C.+ a,.+m is maximal, then H.+ 1,.+m = 1.+ a,.+~, and we have a representation of 
IN~D]1 as a quotient of determinants [3]: 

Cdoi, eojBij(x,Y) "" ~ Cd,,,i,e,,,jBij(x,Y) 
( i , j ) ~ N  ( i , j ) ~ N  

Cdoin+ l ,eOJn+ 1 Cdmln+ h e m j n +  I 

C doin + m, eojn  + m C dmin + m, emJn + m 
[N/D]r = 

Bdo~o(X , y) .-. B~,~(x ,  y) I 
I 

Cdoin+ l . ,eojn+ i Cdmi~+ i , e m j n +  1 I 

I 
C doin + m, eo jn  + m C drnin + m, emjn  + m ] 

As pointed out above, there are very good reasons not to continue our discussion 
by studying irreducible forms of solutions: 

(a) in a degenerate case different solutions may not be equivalent and hence 
(unlike the univariate case) not generate a unique irreducible form; 

(b) an irreducible form may not satisfy all the interpolation conditions anymore 
and its numerator and denominator polynomials may not satisfy (8) 
anymore; 

(c) in the univariate case the structure of the rational interpolation table is 
deduced from that of the minimal solution table and we shall see that this is 
also the case for the multivariate rational interpolation table. 

Hence, in the sequel of the text, we shall always work with solutions of (8). 
In the univariate case and under certain conditions, the table of minimal 

solutions of the rational interpolation problem consists of triangles, once the 
numbering of the interpolation points is fixed [2]. The size of the triangles, as 
pointed out in Theorem 1, is related to the rank deficiency of the interpolation 
problem. We shall now prove a similar multivariate theorem and point out the 
differences with the univariate theorem. From this discussion it will also become 
clear why different solutions of the same rational interpolation problem are not 
necessarily equivalent, as was shown in the example of the previous section. 

Given data, indexed by the set I as in (7c), satisfying the inclusion property, and 
given index sets N and D as in (7a) and (7b), a table of multivariate rational 
interpolants as in (10) can be set up. We assume in the following theorem that the 
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involved [N/D]t  belong to the part of the table that can be computed with the 
given data. In the sequel of the text we shall use the notation 

ap = N ,_ t  "~ p(x, y) = ~ auBu(x, y) with % - u . - ,  r 0. 
(i,j)eNn-t 

Theorem 2. Let p(x, y) and q(x, y) be defined by (4), (7), and (8). Let the rank of  
C~+l,~+m in (8b) be given by m -  s. Then for each pair (k, l), with 0 <_ k <_ s, 
0 <_ l <_ s, k + l = s, and the rank of Cn_k+l,.+m_ ~ equal to m -- l, the following 
statements hold: 

(a) For O <_s 1, O <_s2, and s 1 + SE <_S, [N.-k/Dm-z]1 . . . . .  belongs to the 
solution set [N ,_  k +JDm-z+ ~21I . . . . . . .  1+ s2' meaning that the (up to a multipli- 
cative constant factor) unique rational function 

[S,-k/D,.-l]i . . . . .  

also solves the interpolation problems posed in 

[ N . - k + J D . - l + j 1  . . . . . . .  , +~, 

where [Nn_k+s,/Dm_t+s2]Z . . . . . . . .  "+s2 lies in the triangle of the table 
of  rational interpolants with corner elements [N._k/D,._l]i . . . . .  , 

[N._k/Dm+k] x . . . .  and [N.+JDm-l]~.+m. 

(n-s,m) 
....i ............... 7 

(n-k,m-1) ,.."" ! . /"  

(b) I f  the solution I N n _ k / D i n _ l ]  I . . . . .  =- (p/q)(x, y) is such that ap = N n _ k _ t ,  with 
t 1 > O, then under the condition that rank C,-k- t ,+l , ,+m-~- t ,  = m -- l, 

[N.-k-,fl)m-l]i . . . . . . . .  

also solves 

[gn-k-tl+s,/Dm-l+s2 ]1 . . . . . . . . . . . . . .  

for O <_ s~, O <_ s2, and s~ + s2 <_ s + t~. 

(n-s,m) 

.... , / "  

( n , m - s )  i e" ......... ~ 
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(C) I f  the solution [Nn_k/Dm_t] I . . . . .  = (p/q)(x, y) is such that Oq = Dm_l_t2 with 
t z > O, then under the condition that rank C . - k + t . . + m - s - t 2  = m - -  1 - -  t2 ,  

[ S n - k / D m - l - t z ] l  . . . . . . .  2 

also solves 

[ N n - k + s J D m - l - t 2 + s 2 ] l  . . . . . . .  2+,t +,2 
for  0 < st,  0 < s2, and s t + s 2 <_~ s -4- t 2 . 

(n-s,m) 
..,~ .. . . . . . . . . . . . . . .  7 

(n-k,m- 1 - t (n-k,m-1)2) / "  i / "  

(n,m-s) ( " " ' V  

( d )  I f  the solution [N._k/Dm_t]I  . . . . .  = (p/q)(x, y) is such that 

( f  q - p)(x, y) = ~,, duBu(x, y) 
( i , j )  e N 2 \ I n + m + t 3  

with t a > 0,  then 

also solves 

[ N . _  k/Dm_ t ] ,  . . . . .  

[N.-k+s,/D~-l+~[}I . . . . . . . . . . .  , 

where 0 < sl,  0 < s 2, and s 1 + s 2 <~ s -~- t a. 

(e) I f  the solution 

c3q = O m_ l, and 

(n -k ,m- ] )  c / i ....... /*" 

(n,m-s) !" . . . . . . . .  

F 
i ......... (n+l+tz, m-1) 

(n-s,m) 
/i ............ 17 

....... (n_k,m+k+t3) 

[Nn_k/Dm_t]1 . . . . .  = (p /q) (x ,y )  is such that Op = N . - k ,  

( f  q - p)(x, y) = ~. duBu(x, y) 
(i, j )  e N 2 \ I n  + m 
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wi th  di . . . .  ~j . . . .  ~ # O, then  [ N n _ k / D , , _ l ]  t . . . . .  E [NJD3] t ,+~ i f  and  o n l y  i f  
( i , j )  b e longs  to the  t r iang le  w i th  corner  e l e m e n t s  (n - k, m - I), (n + l, m - l), 
and  (n - k, m + k). 

Proofi (a) T a k e k a n d l w i t h 0 < k _ _ _ s ,  0 < l _ < s , k + l = s a n d w r i t e d o w n ( 8 )  
for [ N n _ k / D m _ l ]  ! . . . . .  : 

Cdoi~-k+ J.,,eoj.-;,+ 1 . bdo. eo 

Cdoin+m-s ,  e o j n + m - s  ' ' '  C d m - l i n + m - s ,  e m - l j n + r a - s  'bd,,, tern t' 

We know from the fact that  C , - k +  1 , . + , , - s  has maximal  rank, that  (8) has a unique 
solution up to a multiplicative factor  in the numera to r  and denomina to r  of  
[ N , - k / D m - z ] I  . . . . .  . We shall now prove that  this solution also belongs to 
[ N . - k + , l / D , , - l + s 2 ] r  . . . . . . .  , +s2. We know from the rank deficiency of  the homoge-  
neous system (8b) for [ N , / D , , ] I . + m  that  at most  an extra s parameters  among  its 
unknowns  can be choosen freely or  an extra s linearly independent  condit ions can 
be imposed. By choosing 

bd,,,_,+ ~e,.,,_,+ ~ = "'" = bd.,e,. = 0 

and imposing 

al._~+13._k+, = "'" = ai.3~ = 0, 

one constructs a solution (p /~ ) ( x ,  y )  of [N . /D , . ] , .+ .  that  belongs to the solution set 
[N, ,_k/Dr, ,_ t]  r . . . . .  with a number  of extra terms in ( f ~  - p)(x, y) canceled out, 
namely those indexed by I .+ , ._s+l , .+ , . .  Hence ( p / ~ ) ( x , y )  also belongs to 
[ N . _ k + s , / D ~ _ , + j l  . . . . . . . . . .  ~ as long as 0 _< s 1, 0 < s2, and s~ + s z < s. Since the 
solution of (8) is unique, (P/~l)(X, y )  = [ N , - J D , , - I ] I  . . . . .  �9 

(b) As in (a), the unique solution (p /q ) ( x ,  y )  of [ N , - k / D , . - l ] i  . . . . .  can be proved 
to cancel all those terms in the formal series development  of ( f q  - p ) ( x ,  y )  indexed 
by I ,+, , .  Since now Op = N , _ k _ t ,  with t~ > 0, ( p / q ) ( x , y )  also belongs to 
[Nn-k-t~+sjDm-l+s2]l . . . . . . . . . . . . .  2 for 0 < s 1, 0 < s 2, and s 1 + s2 < s + tl. 

(c) The proof  is similar to the one for (b). 
(d) The proof  is trivial. 
(e) Let us prove the sufficient condition. I f ( i , j )  belongs to the given triangle, then 

i _> n - k, j > m - l, and i + j  < n + m. This implies that  [ N . _ k / D m _ z ]  I . . . . .  = 
( p / q ) ( x , y )  solves the rational interpolation problem of order  ( i , j )  because the 
numera to r  and denomina to r  polynomials  have the desired degree and the rest 
series ( f q  - p)(x ,  y)  has the desired order. The p roof  of the necessary condit ion is 
obvious. [ ]  

Let us now point  out  some differences between this theorem and its univariate 
counterpar t  in [2]. First of all, it is impor tan t  to note that  both  the univariate and 



80 H. Allouche and A. Cuyt 

the multivariate theorem are proved under  the same conditions. With the rank of 
C,+ t , ,+, ,  equal to m - s, we are able in bo th  cases to construct  solutions Pl, ql of  
[N,-~/Dm]r . . . . .  and P2, q2 of [N,]D,,_s] I . . . . .  that  are also contained in 
INto~Din]i,,+ ~. We have 

(Pxq2 - P2ql)(x, Y) = [ q l ( f  qz - P2) - qa ( f  ql - PI)]( x, Y) 

= qx( x, Y) Z dl2)BiJ( x,  Y) 
( i , j )~N2\n+m 

q2(x, y) ~', araB., x - - i j  , j ( , Y ) ,  
(i ,  j) �9 N2\In + m 

from which we can conclude that  (Plq2 - -  q lP2) (x i ,  Y j )  = 0 for all (i,j) e I.+m with 
I .  + ~ satisfying the inclusion property.  We also have 

~(Plq2 -- qlP2) = {(i,j) = (r, s) + (t, u)l(r, s) e N, ,  (t, u) e Din}. 

Before we continue our  reasoning we prove the following lemma:  

Lemma 2. Let  I ~ N z satisfy the inclusion property and let the bivariate polynomial 

p ( x , y ) =  ~ aikx iy  i 
(i,j)eOp 

be such that ap ~ I and p(x~, y j) = 0 for  (i, j )  e I, then p = O. 

Proof. Given 

for 

one can prove that  

p(x,, y j) = O, (i, j )  e I, 

p ( x , y ) =  ~ aijxiy j 
(i,j)~Op 

= E clijBij(x' Y), 
(i,j)~Op 

p [ x o , . . .  , x J [ y  o . . . . .  yj] = O, (i,j) ~ I. 

Since ~ j  = p[x  o . . . .  , x J [ y o ,  ... , y j] the p roof  is completed. �9 

Of  course, we should want  to apply this lemma to (P lq2  -- q l P 2 ) ,  but  since we do 
not  always have that  

~(Plq2 - qlP2) c In+m, 

we cannot  conclude that  (Plq2 - q lP2) (  x Y) = O, and hence we cannot  prove as in 
[2] that  it is also possible to construct  a solution Pa, q3 of [N,/D,,]I.+m with 
OP3 c N , - s  and Oqa c Dm-s. In  the univariate case, however, 

U ,  = {(i, 0)[0 _< i < n}, 

D., = {(j, 0)10 < j  _< m}, 

{(i + j ,  0)li e N , , j  e Din} ~ In+ m = {(k, 0)10 ~ k ~ n + m}, 
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and hence P l q 2  = P 2 q P  Hence  in the univar ia te  case the conf igurat ion described in 
T he o rem 2 can also be enlarged with the triangle with corner  elements 
[ N . _ J D m _ J I  . . . . . . .  [ N . _  1/D,,,_~]I . . . . . . . .  and [ N . _ J D , . _  111 . . . . . .  ~ resulting in 
the conf igurat ion described in T h e o r e m  I. 

(n-s,m-Fn-s,m) 
................... i77 

(n,m-s) ~ ...... ".7:"(n,m ) 
i /  
V 

To  illustrate this impor t an t  remark ,  consider again our  first example,  

x + y  
f (x,  y)  - 

x - -  y - - x y '  

x~ = i, i = 0, 1, 2 . . . . .  

y j = j +  1, j = 0 , 1 , 2  . . . . .  

N a = {(0, 0), (1, 0), (0, 1)}, 

D a = {(0, 0), (1, 0), (0, 1), (2, 0)}, 

15 = N 2 u {(2, 0), (1, 1), (0, 2)}, 

f ( I s )  = {--1 ,  - - 2 , - - 1 ,  - -3,  - - 1 , - - 1 } .  

The homogeneous  system to be solved for the compu ta t i on  of [ N 2 / D a ] , ,  is ,boo t I:) (! 1~ ill ~ 0 
1 0 / b~ = ' 
0 0 

b2o 

with rank  C 3 ,  5 = 2. The general solut ion of [N2/D3"]I~ is given-by 

p ( x ,  y) = 3=(x - 1) - f l ( y  - 1), 

q(x ,  y) = - 3c~(x - 1) + f l ( y  - 1) + otx(x  - 1). 

With  ~ = 1 and fl = 0 we find [ N 1 / D 3 1 1 , .  With e = 0 and fl = 1 we find [N2/D2] , r  , .  

But dea r ly  [ N 1 / D = ] t 3  = - 1 - -  x is no t  conta ined in [ N = / D a ] x , .  

(1,2) ( 1,3) 

(2,2) ~ , 3 )  
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How is Theorem 2 then to be understood as a generalization of Theorem 1? 
Clearly, minimal solutions are not uniquely determined anymore. In Theorem 2 all 
solutions [Nn_k/Dm_t'] with k + l = s are "minimal"  in the sense that they use a 
minimal number of parameters and data to solve the (n, m) rational interpolation 
problem. Now each of the minimal solutions on the (n + m - s) th diagonal (with 
numerator  and denominator "degree," respectively, less than or equal to n and m) 
give rise to a triangular structure in the table. There is a whole triangle of rational 
interpolation problems that is solved by each minimal solution from the (n + m - 
s) th diagonal. 

(n-s,m) (n-s,m+s) 

(n,m-s) 

(n+s,m-s) 

In the univariate case the minimal solution is unique and is either a true 
irreducible solution or a deficient solution with unattainable interpolation points. 
We have just seen that in the multivariate case a minimal solution is not unique 
anymore. What  is more, in the multivariate case, a rational interpolation problem 
can have both a true irreducible minimal solution and a deficient minimal solution 
at the same time. For  the same function as used in the examples above, Table 1 lists 
the solution sets [N,/Dr,]~,+,, for a number  of (n, m) rational interpolation 
problems. Note that [No/D4"]I4 and [N1/D3114 a r e  two minimal solutions for 
[N1/D4"]Is, where [No/D4]~, is a true irreducible solution satisfying (4c) and 
[N1/D3]~, is a deficient solution reducible by (x - t), with (xl, Yo) and (xt, Yt) as 
unattainable points. In the multivariate case a solution must not be reducible in 
order to have unattainable interpolation points. Take a look at [N2/D311~ and you 
see that the general solution (p/q)(x, y) with ~fl # 0 is irreducible while (xt, Yo) is an 
unattainable interpolation point since p(x~, Yo) = 0 = q(xt, Yo). This is a situation 
which is essentially different from the univariate one. 

Table 2 gives the configuration proved in Theorem 2(a) for the table of minimal 
solutions. It does not give the "maximal"  triangles of equal "minimal"  solutions as 
described in Theorem 2(b)-(e). One can see that the rational interpolation problem 
[NJD2]I~ has a rank deficiency of s = 2 and that each of the functions [N4/Do]~,, 
[N3/D~]x,, and [N2/D2],, solves a triangle of interpolation problems emanating 
from itself. Theorem 2(d) applies to [Nz/D2]t 4 with t 3 = 1. F rom Table 1 one can 
also see that [N1/D1]~, [N1/D4]I~, and [N2/Ds]I7 all have a rank deficiency of 
s = 1. Theorem 2(c) applies to [N1/Ds]t~ with t 2 = 1. In the univariate case 
Theorem l(a) and l(b) never apply simultaneously [2] while this can be true in the 
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Table 2 

D O D t D 2 D a D 4 D~ D 6 

N1 

N2 

N3 

N4 

N 6 - 

multivariate case. Look at the rational interpolation problem [N4/Ds],9 which has 
a rank deficiency of s = 1. For [Na/Ds]I8 Theorem 2(b) and 2(c) apply at the same 
time with ti = 1 = t2, such that the triangular configuration emanates from the 
rational interpolation problem of order (n - k - tl, m - l - t2). 

It must be clear by this time that Corollary 1 cannot easily be generalized to the 
multivariate case, since the concept of "rational interpolant" as a unique irreduc- 
ible form is not well defined. However, the following multivariate counterpart 
holds. 

Corollary 2. Let  p(x, y) and q(x, y) be defined by (4), (7), and (8). Let  the rank of  
C.+l,.+m in (Sb) be given by m - s. Then the following holds: 

(a) For sl > O, sE > O, and s t + s 2 < s: 

(n-s ,m)  (n -s ,m§ 

(n,m-s) (n,m§ 

(n+s,m-s) (n*s,m) 

(b) Let  0 <_ k < s and the rank o f  C.-k+ l,n+m-~ be equal to m - s + k: 

j=O 

i=O 
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(n,m-s) 

(n+s,m-s) 

(n-s,m) (n-s,m+s) 

(n+s,m) 
(n+s,m-k) 

Proof. (a) Since the coefficient matrix C. + ~,,. + ~ of (8b) has a rank deficiency of s, 
we can add at least s conditions to the homogeneous system and still find a 
nontrivial solution for the coefficients b u. The rational function (p/q)(x, y) with 
numerator coefficients a u and denominator coefficients b u indexed, respectively, by 
N and D as given in (7a) and (7b) and satisfying 

Cdoin+ l , e o j n +  l " " " Cdmin+ 1 , emjn+  1 
�9 . 

C doln + m, eo jn  + rn �9 �9 �9 C dmira + rn, e m j n  + rn 

C d o i n + m + s ,  e o j n + m + s  C d m i ~ + m + s , e ~ j . + ~ + s  

( bd-~ I = ,:l(i), 
belongs to the solution set [N./D,.]x.+m and also to all the solution sets 
[ N . + ~ , / D m + j I  . . . . .  for all sl > 0 and s2 > 0 with s 1 + s2 < s. 

�9 + ~ + 2  - -  - -  - -  

(b) We shall give the proof only for the first intersection�9 The second intersection 
is proved analogously. Knowing that the rank of C.-k+ ~,.+,.-~ equals m -- s + k, 
we can conclude that the rank of 

" ' "  Cd,'ain + 1., e m j n  + 1 

" ' "  Cd,..i . . . .  L e , . j  . . . . .  f '  

equals m -  s. Knowing that the rank of C.+1,.+,. also equals m -  s, we can 
conclude that in C.+ L.+,. the last s rows are dependent from the first m - s rows. 
Hence the rank of 
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is at most m, and consequently the homogeneous system with coefficient matrix 
C,-k+ 1,.+m+,-k and unknowns b,ojo . . . . .  b~..+sj,.+, has a nontrivial solution. This 
so lu t i on  belongs to  [Nn_k/D,n]i  . . . .  k n [Nn_k/Drn+s]x . . . . . . .  �9 �9 

The solution of [Nn/Dm]~,+m common to all solution sets [N.+sJD,,+s2]i . . . . . . . .  
as described in Corollary 2(a) could be called the "optimal solution" in the sense 
that it satisfies as many conditions as possible. If the rank of C, + 1,, +m +s is still 
not maximal even more conditions can be added. So in the rational interpolation 
table a triangle emanating from [ N ,,/ D ,,,] t,,+ ,. can be filled with the optimal solution, 
while triangles emanating from [N,-~/Dr,-t]1 . . . . .  with k + l = s can be filled with 
minimal solutions. The rest of the hexagon is filled with the solutions constructed 
in the proof  of Corollary 2(b). 
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