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Using the multivariate gdg-algorithm developed in [5], it is possible to compute the partial
numerators and denominators of a continued fraction representation associated with a des-
cending staircase in a table of multivariate rational interpolants, more precisely, multivariate
Newton-Padé approximants. The algorithm is only applicable if every three successive ele-
ments on the staircase are different. If a singularity occurs in the defining system of equations
for the multivariate rational interpolant then singular rules must be developed. For the univari-
ate Newton~Padé approximant this was done in [3] by Claessens and Wuytack. The idea to per-
turb the initial staircase and walk around the block structure in the table in order to avoid the
singularity, is explored now in a multivariate setting. Another approach would be to use block
bordering methods in combination with reverse bordering [4] in order to solve the rank defi-
cient linear system of interpolation conditions (Newton-Padé approximation conditions)
recursively. Since this last technique can also be used for scattered multivariate data exhibiting
near-singularity, we describe the second approach in a separate paper [7]. Here we deal only
with partially grid-structured data (satisfying the so-called rectangle rule or inclusion

property).

1. The multivariate rational interpolation problem

For the sake of notational simplicity we will restrict our description to the bivari-
ate case. Let a bivariate function f(x, y) be known in the data points (x;, y;) with
(i, j) € N? and let I be a finite subset of N indexing those data points which will be
used as interpolation points. With the data points we construct the polynomial
basis functions
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Bjj(x,y) = H(x xk)H(y i) -

1=0

The problem of interpolating these data by a bivariate rational function was for-
mulated in [5] as follows. Choose finite subsets N (from “Numerator”) and D
(from “Denominator’’) of N? with N = I and compute bivariate polynomials

p(x,y) = Z a;Byj(x,y), #N=n+1,

(hj)eN

g(x,y)= Y byBi(x,y), #D=m+1, (la)
(i,j)eD
where we denote Op = N and dg = D, such that
(fa-p)(xiy5) =0, (i, ))el,#l=n+m+1. (1b)

If g(x;, y;) # O then this last condition implies that
f (e y) = q(xx,yj) (i,))el. (1c)

We say that I satisfies the inclusion property if whenever a point (i, j) belongs
to I, all the points in the rectangle emanating from the origin with (i, j) as its
furthermost corner belong to 1. Condition (1b), for instance, is met if the following
two conditions are satisfied by the polynomials given in (1a) [5]:

(fa—p)xy)= > dsBy(x,y), (2a)
(i,/)eN*\I
I satisfies the inclusion property, (2b)

where the series development (2a) is formal. Condition (2a), with restriction (2b),
can also be used if some or all of the interpolation points or their coordinates coin-
cide since it can be replaced by conditions in terms of bivariate divided differences

[5]:

(fq)[x07'°'axi]b10,"'ayj] =p[x07"'7xi][y0a"-ayj]’ (i’j)ENa (38.)
(fq)[xoa---7xi]Lv01"'7yj] =01 (i,j)GI\N' (3b)
Using a generalization of Leibniz’ theorem [5] we can substitute (fg)[xo, - . - , Xi]

o, . - ., »j]in (3a~b), with the notation c,;; = f[x4, ..., %] [V, - . ., ¥j], by:
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! J

(fq)[x01 cee 7xi][y0’ s 7yj] = Z Zq[x()a E ix#][y()) oo )yu]cﬂi,uj
p=0 v=0

! J

= E Z by Cpiyj

p=0 =0

= §: b Cuij -

(uv)eD
Also
p[an"-’xi][yOa---;yj]=al'j1 (la])EN

From now on we denote a rational function satisfying (3) by [N/D],. Number-
ing the points in the sets N, D and I as:

N= {(iOa j0)1 ceey (in, ]n)} 3 (43)
D= {(dO)eO))"'y(dmaem)}) (4b)
I=NU {(in+ly jn-H)a ey (in+m’ jn+m)} ) (40)
condition (3) becomes [5]:
Cginseio *++  Cmiviemio \ [ Deoeo Bigjo
= , (5a)
Cdyineahn -+ Caminemn /) \ Ddnem iy,
cdoin+lyeﬁfn+l e Cdm£n+h£mjn+l bﬂ'oeo 0
= (5b)
Cdoin+rmeojn+m s Cdmin+m:emin+m bdmem 0

If the rank of (5b) is not maximal, we look at [N/D|, as being a set of rational func-
tions of which the numerator and denominator are given by (1a) and are satisfying
(5a) and (5b). Such a solution [N /D], is called degenerate.

With the numberings (4a), (4b) and (4c) of the respective indices in N, D and 1
we can set up descending chains of index sets, defining bivariate polynomials of
“lower degree’’ and bivariate rational interpolation problems of “lower order”:

N=Nn =2 ... DNk:{(i07j0)1"-)(ikajk)}3 v DNO={(i0,j0)},
k=0,...,n, (6a)



140 H. Allouche, A. Cuyt / A multivariate quotient—difference algorithm

D=D,> ... oD ={(d,e),...,(de)} > ... 2 Dy={(dp,e)},
1=0,...,m, (6b)
I'="luym> ... DIt = {0, Jo), - - -+ (st Jier1)} > .. =2 To = {(do, jo)},
k+1=0,...,n+m, (6¢)
Devr gt = {(leet Jiew1)s -« o ity o)}y I\N = Dt pgom -

If we assume that each set I;,; < I satisfies the inclusion property in its turn,
we can compute with these subsets the following entries in a “table’ of multivariate
rational interpolants:

[No/Dol;, ---  [No/Dumly,
: : (7
[Nn/DO]I,, s [Nn/Dm]I,,+,,
For the calculation of these entries, if they are not degenerate, one can use the
recursive E-algorithm [4]. Then [N/D]; = [Nn/Dm};, = ES with:
Bik,ﬂ(x’y) = Bk1(x,y)/B,j(x,y), k>lal>.]a
Eél) = Z Cayy,eqy Baoiei(%:¥)y 1=0,...,n+m, (8a)

(iyj)eNl

N (+1) 1+1) (/
E/ngl(c—l,k - EI£—1 )gl(cll,k
I+1) 0 )
gl(c—l,k — &k 1k

E =

1=0,1,...,mk=1,2,...,m, (8b)

tk(l): Z cdki,ekinki,ekj(xvy)7 k=0,...,m,l=0,...,n+m,
(i,j)EN[

O g+ ) O

N Eri1xk8h-14 — 1481,

g}(13c= (+1) 0 , k=h+1,h+2,.... (9b)
Eh—1h — E(h—1,1

¥

If we let n and m increase, infinite chains of index sets as in (6) can be constructed
and an infinite table of multivariate rational interpolants results. Of course, in prac-
tice, only a finite number of entries will be computed. We have seen in [2] that
degeneracy has consequences for neighbouring elements in the table. Let us first
resume the multivariate quotient—difference algorithm for the non-degenerate
case. The new singular rules for the degenerate case are proven in section 4.
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2. The qdg-algorithm and singular interpolation problems

Our aim is to consider descending staircases of multivariate rational interpo-
lants in table (7) and to compute the interpolants on the staircase from a continued
fraction representation. Let us for the moment suppose that the homogeneous sys-
tem of egs. (5b) has maximal rank m. In [3]it is shown that given a descending stair-
case (10) of different elements,

T, = {[N’/DO]I,
[Nr+l/DO]1,+, [Nr+l/Dl]1,+2

(Nes2/Dily,,,  [Nesa/Dal,, (10)
-1,
itis possible to construct a continued fraction C,(x, y) of the form
[Nr+1/Do); —[Nr/D0]1| —q(rH) | —ef*! |
Cr(x,y) =[N/ Doly, + % ‘
' M 1 [ 14470 " 146D
(r+1) (r+1)
~—9 | )
+ + +..., (11)
|1+qgr+1) |1+e§r+l)

of which the successive convergents equal the successive elements on the descend-
ing staircase (10). Here

[N:/Dol, = > CaneiBaiei(%y) = B,
(i,j)EN,
1
[Nr+1/Do)y,, = Z Caoi s Banies (3, ¥) = Eg TV,
(inj)eNr+l

and the coefficients ¢+ and e

Starting values are given by

§'+1) can be computed using the following rules.

1
(1) E§r+1) _ E(gr+ )

1 - E(()r+1) _ E(()r)

1
Cnr+2)—tr+1) &)

: (12)
to(r+ 1) — to(r) g(()"'il-l) _ g(()r,—ll-Z)
while for/>2,
(r+1) (r+1)
ey _ B —ET (13a)

+I-T
E{Y

! T
Y
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) +I-1 (r+i +
_ eﬁ )4532) g512,1—1) - glr—z}-l gy—l} 13b
r+1) r+1-1) ) _(r+H+1) (13b)
€1 1-2,1-1 8i-10 — 81-1)
andfori/>1,
(r+1+1) (r+1)
(r+1) E - K
e +1= +1 14a
1 EI(r+I) _ Ez(jl) (14a)
(r+l)  (r+I+1)
&1~ &1y (r+2)
8111
If we arrange the values q§'+1 )and e§’+1) in a table as follows
1
"
o
2 1
£
egz) egl)
3 2
£
e?) egz)
4 3
o
ei‘” egs)

where subscripts indicate columns and superscripts indicate downward sloping
diagonals, then (13b) links the elements in the rhombus

ety
2 1
g2 gy
(r+2
"1’—1 )

and (14b) links two elements on an upward sloping diagonal
e§r+ 1)

q§r+2)

If the rank of the homogeneous system (5b) is not maximal, but has a deficiency
of s, then we proved in [2] that the table of rational interpolants (7) is, under certain
conditions, structured as follows.
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THEOREM 1
Let p(x, y) and g(x, y) be defined by (1), (4) and (5) with I satisfying the inclusion
property. Let the rank of the coefficient matrix C,41 5+m in (5b) be given by m — s.
Then for each pair (k,/) with 0<k<s,0</<s,k+I=35 and the rank of
Ch—k+1 n+m—s€qual to its maximal rank m — [, the following holds.
(a) If the solution [N,—k/Dm-il;,, = (p/g)(x,y) is such that Op = N,,
0q = D,,—jand

(fq_p)(x)y) = Z dljBlJ(xay)a
(1,)) €N \Lysm

withd;,, .. ijyome 7 Othen (Nu_x/Dm-1);  &[N;i/Dj) i,,, if and only if (i, j) belongs
to the triangle with corner elements (n—km—10),(n+I,m—1) and

(n—k,m+k).
(n-s,m) (n-s,m+s)

7
/

(n,m-s) (n.m)

(n+s,m-s)

(b) Fors; 20,s2>0ands) + s2<s:

ﬂ [Nn+s+1 /Dm+52]]n+m+-t|+-'2 # 0

(51,52)

(n,m-s) |

(n+s,m-s)
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(c) LetO<k<sandtherank of Cy_i41nm—sbeequaltom — s + k:

s
ﬂ[Nn—k/ Dol sy # 0
j=0

ﬂ[NnH/Dm—k]IH,.M_k # 0.

i=0
(n-s,m) (n-s,m+s)
(n-k,m+s)
(n,m-s) ) (n,m+s)
(n+s,m-s) (nes.m-K) (n+s,m)

It is clear that in this case, with the conditions of theorem 1(a—c) fulfilled, some
of the continued fractions C,(x, y) are perturbed because the elements of the stair-

case T, may not all be different. For a rank deficiency of sin Cy.1 s1m 1t concerns the
continued fractions C,(x,y)forr=n-m—2s,...,.n—m+2s — 1.

C‘n—m—s-l in-m—?s
{(n-s)

-m-s

C l' E(n—s) Em*s
n-m-s+1| m

Cn-m's-l
Cnom-s (n) (n) (n)
n n

Em-s Em Em*s
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It is essential for the sequel of the discussion that we do not use indefinite E-
values with zero denominator determinants. So we shall now list several well-
defined E-values solving a number of interpolation problems. Using theorem 1a it
is easy to fill the left upper half of the hexagonal block with nonsingular E-values,
namely by copying the nondegenerate solutions from the leftmost upward sloping
diagonal over the small triangles that fill this half of the hexagon. Using theorem 1b
the triangle emanating from (n,m) can be filled with the regular values from the
rightmost upward sloping diagonal. Moreover, in the case of an isolated hexagonal
block it was proved in [1] that all its entries [Nyis—i/Dma] L fori=0,...,sare
equal. Using theorem Ic it was also proved in [1] that the r1ght lower half of the
structure can be filled with regular E-values using the following ratios of determi-

gants Let E ’“ with numerator and denominator respectively of degree / and k,
enote

() ... tlu—s) tu+l) ...t(l+k+s)
éto(1)
sy =l ,
510(1)
5tk_1(l)

with
55(0) = () - 40), j>0, () =0, i<0.

Then, in the case of an isolated singular block [1] E,(,T SsHentm) i well-defined and

belongs to [Np—sk+i/D +~‘—'L1n+m+ with k = 1, —landi=0,...,s, meaning
that the solution Egy to"™™ of TNn_s+k/Dm+s] Ly, CaD be shifted downwards in
the hexagonal block in the direction of the upward sloping diagonals, because it
also solves the interpolation problem posed in [Ny—stk+i/ Dmys—i) N,

(n-s,m) (n-s,m+s)

(n-s+k,m+s)

(n,m)
(n,m-s) (n,m+s)

(n+s,m-s) (n+s,m)
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In [1] we also find that E™™™ g well defined and belongs to [Npys;

'm—s+k.s
/Dm—stie+ily,,,., Withk=1,...,5—1 and i =0, ...,s, meaning that in the case of
an isolated block the solutlon E,(: 'f_“,_','c')s of [N,,+S/D,,,_s+k] Lumye CA0 be shifted

upwards, because it also solves [Nys_i/ Dm—sti+i] oo

(n-s,m) (n-s,m+s)
(n,m)
(n,m-s) (n,m+s)
(n+s,m-s) .
(n+s,m-s+k) (N*S,m)

These new ratios of determinants which strongly resemble the E-values (the clas-
sical values are obtained for s = 0 and for u>k + [ + s) are calculated recursively
like the E-values [1] but now using help-entries

(51‘],(1) 6tk(u—s) 6tk(u+ 1) 6tk(l+h+s)
éto()

lu 6th—1(l)
Ehs = T ... 1

5[0(1)

(52‘;,_1(1)

In this presentation the rank-deficiency s is fixed because we focus our attention
on a particular singular interpolation problem namely [N,/Dy], .- Hence we
shall drop the index 5 in the notation of both E,E and g,(t ) . From now on when we
refer to a particular element [N;/Dy];, , in the table, we only take the regular solu-
tions in consideration. This means that for the left upper half of the hexagonal
block we work with theorem la (i.e. copies of the nondegenerate elements on the
leftmost upward sloping diagonal) and that for the right lower half of the block we
work with theorem 1c (i.e. copies of the rightmost column or copies of the bottom
line as in the figures above). Intermediate values E Y™ golving

‘m—s+k
[Nn—s+1/ Dm+k] homsure a0d [Nu+1/Dm—s+k] Lomosee With 1<I<s, 1<k <s, [+ k>
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can also be taken into consideration if they are nonsingular. The hexagonal block
of “size” s described above perturbs the partial numerators and denominators
inside and on the border of the following octagonal structure from the qd-table:

—m—. —m—20+1
qf:+;" R Qr(:+.:" )
e’('r:-m-s+l) es:;;n—?.ﬁl)
(n—m—2s+1)
qm+.v+l
(n—m-+s)
m—s+1
(n—m+s+1) —m—.
em—s q’(:+;11;)
: emey
es:‘l:;n-flr)
(n—m+2s) (n—m+s)
m—s+1 m+1
eg.::;zs) . egll-m+.r+l)
(15)

In the sequel of the text we still concentrate on the situation of an isolated hexa-
gonal block. This means that for 0 <k <s the coefficient matrices Cp—st1 ptm—s+k
(top row), Cy—k+1,n+m-s (leftmost antidiagonal), Cyik+1,n4m—s+k (leftmost column),
Crtst1n+mik (bottom row), Cpps—k+1a+m+s (rightmost antidiagonal) and finally
Ch—s+h+1 n+m+k (rightmost column) all have maximal rank. By working with an iso-
lated block, we are certain that all the E-values occurring in the formulas of the
remaining sections are regular. The results of section 4 can of course be extended to
the situation of adjacent blocks.

3. Continued fraction representations in a degenerate table

In order to cope with the rank-deficient situation described in the theorem
above, we introduce staircases 7, that coincide with 7, given by (10) before enter-
ing the hexagonal block and after leaving it. The degenerate elements of T, within
the block are deleted and replaced by a number of nondegenerate elements, mostly
from around the block. In general T is given by the following staircase. We distin-
guish between three cases. Let us use the shorter notation [n/m] instead of
[Nn/Dp)y,,,- The first case is where 7, enters the hexagonal block through the
square in the right upper corner of the hexagon, in other words when r ranges from
n—m-2ston—m-—ys—1:
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(n-sm) 1 (n-sme+s)

+—
|
T
]
(n,m)
(n,m-s) (n'm+s)
(n*+s,m-s) (n+s,m)
7y ={[5]
(7]
0

(16)

mtstr+l
m+s+1

ms+ri2 mistri2
m4s+1 m+s+2

3

The second case is where T, enters the hexagonal block by crossing the upward
sloping diagonal, in other words, when r ranges fromn —m —ston—m+s— 1. If
wewriter =n—m — s+ tthenforevent =2u,u=0,...,5s -1,

(n-s,m) (n-s,m+s)

(n,m-~s) T (n,m+s)

(n+s,m-s) (n+s,m)
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[45*]
=l
[nj:uj:l ] [ n+u+t1 ] [niuj;l ] [ ntu+l ] (17a)
m—u m—u+1 e m+s—u m+s—u+1
[ ntu+2 ]
m+s—u+1

andforoddt=2u+1,u=0,...,5s—1,

5] .

[ n—stut 1] n—s+u+1
m—u—1 m+s—u

(17b)

(n-s,m) (n-s,m+s)

(n,m-s) ] ) (n,m+s)
= 1/
L

(n+s,m)

(n+s,m-s)
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The third case is where T, enters the hexagonal block through the square in the
left bottom corner of the hexagon, in other words when r ranges from»n — m + s to
n—-—m+2s—1.

(n-s,m) (n-s,m+s)
(n,m)
(n,m-s) (n,m+s)
[
™1
[
H
|
(n+s,m-s) — (n+s,m)
oo o b
7y ={ (5]
(2]
0
[m—s r] (18)
m-—s
[n+s+l] [n+s+l ] [n+sﬂ] [ n+s+1 ]
m—s m—s+1 e n+ts—r n+s—r+l1
[ nts+2 ] }
n+s—r+1 T

If | new elements are introduced by working with T,/ + 2 coefficients in
C:(x, y) are perturbed and new rules must be given for the partial numerators and
denominators in the new continued fraction C;(x,y) associated with 7. Before
proceeding to the continued fraction representation C;(x, y), we introduce some
new quantities. We define

EH _ g

(n—m) _
v = W ) (19)

which links 3 consecutive elements in a column of the E-table, and

B9~ 5,
E(") _ E(”)

‘m—2

h(n—m+l) , (20)

which links 3 consecutive elements in a row of the E-table.
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LEMMAI1
(a)
-1 —
rm) _ Boim = Emmen D
m+l T (n_l) e(n_m) m °
m—Im m
(b)
(n)
h(n—m+l) _ Em—1,m (n—;n+2)
m +1 m—
gt(::)—l,m - gf:—l,)m
Proof
(@)
(n—m) __ Er(:+1) — E)(:)
Untl = E,(,:') __E'(:_.l)
— e(n—m+1) E'(':') — Er(:zl
" EY-EyY
— e(n—m+l) 1 E'(:) _ Er(:ll
m eg:—m) E'(':l—l) _ E'(:—_]l)
-1 _
_ g'(r’:—l,)m - gr(::)—l,m el Y (n—m+1)
- (n—1) (n—m) Im )
gm—l,m €m
The proof of (b) is straightforward. 0
(n—m)

From the above rules it is easy to see that v, is computed from a rhombus

rule similar to that for ¢, 7":
g™
q'('r:-m+l) v(n;;n)
m
e’('r:—m+l)
and that hf,'.' ~m+1) can be stored at q,(,',' —m+1).
h(n—m+l)
m
et

In analogy with (13a) and (14a) we define forn—s+ 1<r+I<n,m—s+1
<lsmn+m-—-s+1<r+2i,
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) E1(r+1,n+m) _ E.I(i-il-l,n-{fm)

! - E(r+1,n+m) . (r+l-1,n+m) ? (21)
-1 -1
andforn—s+ 1<r+I+1<nm—s+1<ismn+m—s+1<r+2/+1,
. E(r+1+1,n+m) _ E(r+l,n+m)
e (r+1) _ é A g ’_1+ Tt (22)
i — L

In analogy with (19) and (20) we define for n—s+1<r+Ii<n-1,
m—s<Ii<mr+2l—12zn—m-—s,
v*(r) _ El(r+l+1,n+m) . 1(r+1,n+m)
141 E1(r+1,n+m) _ El(r+l—1,n+m)

(23)

andforn—s<r+I<nm—s+2<I<m,r+2l-22n+m-—s,

I I,
o) _ EI(r+ n+m) El(:-il- n+m) . 24)
1 El(:-il-l,n+m) . El(:+zl,n+m)

It is clear that for definitions linking 3 elements from the E-table, certain transi-
tion rules a?ply when entering and leaving the hexagonal singular block. For
;('H), e;('“ , v;‘('“) and h;('“) this transition is described by the following special
rules. All these special rules are summarized in the following figures. When enter-

ing the singular block, we use

E(n+m—s—1+1,n+m) E(n+m—s—l+1)

*x(n+m—s-21+2) _ Ly S _
a9 - E(n+m—s—1+1) E(n+m—s—1) , m-s+lsism+l,
-1 -
n B0 g
q;(n—s— +1) _ “mts+l 1—1 m+1<i<m+ s, (25)

BB

q

S
\

X

(case 17a)
(n+s,m-s) (n+s,m)



H. Allouche, A. Cuyt / A multivariate quotient—difference algorithm

Z///

(n,m+s)
(case 17a)

(case 17b)
{n+s,m-s) (n+s.m)
(n-s,m) {N-s,mM+s)
h
*—o—e

(n,m+s)
———— (Case 17a)

Z2N

(case 17b)

(n+s,m-s)

(n+s,m-s)

153
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and

(n+m—s—I1+1,n+m) (n+m—s—1I
e*(n+m—s—21+1) _ E] - EI )

1 - EI(n+m—s—I+1) _ E(f—i—m—s—[) )

m—s+1<i<m,

E(n+s+1) _ E(r+m—s)

(r+l1) _ Zm+ts m—s _ _ _
m—s ' = (r+m—s) (rm=s)’ n—-m+s<r<n—m+2s—1.
Em-s —E,

When leaving the singular block we use for staircase (16)

dns-tr1) _ Beory = E7Y
1 - E(n—s) _ pln-s-1)°
I-1 I-1

m+1<I<m+s;

for staircase (18)
(n4s+1) _ p(r4m—s)
ef;(i";l) _ z;;_s) — ET:m—s) , n—m+s<r<n—m+2s—1;
m—s 'm—s—1
for staircase (17a)

E(n+m+:—1+l) _ pplntmts—141)
1

-1
= , m+ 2<Ii<m+s ’
EI(_'_le+S_I+l) _ E'(:—l,n+m)

A (n+m+s—21+2)
1

with Eg =t — E®D and for staircase (17b)

+m+s—1+1 +m+s—1
EI(nms )_El(nms)

v:«(n+m+s—21) _
1+1 - (n+m+s—1) (nntm)
EI - Em—l

m+l<ls<sm+s-1,

with E&m) — plts)

'm—1

THEOREM 2

(26)

(27)

(28)

(29)

(30)

The continued fraction representation C;(x,y) associated with T} as in (16),
(17) or (18) is respectively given by the following formulas. The first and last line of
the expression for C; coincide with that for C, while the middle part deals with the

discrepancy between T} and 7.
(a) For (16) containingm — n + 2s + r + 1 newelementsin T}

E(r+1) _E(r) n—s—r—1 _ (H‘l) _ ("H
C:(x,y) =E(§r)+ 0 0 + Z g; | €; |

+
1 P |1 +q§r+1) fl +e$r+l)
*(r+1) _mm72) | moni2sirel  _ (n-m—2s+i-1)
—qn—s-r m+s+1 m+s+2

+ " { ———
‘1 + Qn(—r:—lr) |1 + ef:+;112s) i=1 |1 t Vper2

(n—m—2s+i—1)
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0 (r+l) | _ ) |
+ 2 ) D (31)
i=m+s+2 n l 1 + €;
(b) For (17a) with u = 0, containing s — 1 new elementsin 7"
1 — 1 r
Eér+ ) —Eg) +m 1( qfr+) | —e( +1 ’) _q’(’rl+1) |

Ci(x,y) = E(g') +

+ |
1 2T+ 1+ e"* D) 114 g5ty
_ *(r+1) =2 _ *(";m‘-""'""l) | _h*(n—m—s+2) |
+ €m + m+ m+s
1+e.) *(r+1) Z():ll + m:;m—s+x+l) |1+h;51;m—s+2)
i ( _q(r-H) (r+l) )
+ o+ - (32)
i=mts+1 | 1+ q,( b ﬁ + e( D

(c) For (17a) with u # 0, containing s — 1 new elementsin 7

(r+1) (| m-ut (r+1) ('+1) (r+1)
. 0, B —E| Z —g; | ~Gm-u
G (x,¥) =E; + 1 + (I 1+ q(r+1) l 1+ (r+l)D | 14g (r+1y

'm—u
e*(r+l) l . t(r+l) l (r+1 i)
m—u m—u-+-1 Z m—u+x+1
* * 1-
[1 t+e (r+l) | 1+ qm(:-:-l%)l i=1 |1+ hmrt+x+1
. —e m( n—m—s+u+2) :—u——2 _vm(+Im—S+"+'+.1) | h:n(-’:r-zu
|1 +e m —m—.r+u+2) pa |1 + v;(i-l—m—.w+u+t+l) Il + hm:{i)u
( gy ‘ D \>
+ i l - (33)
P (v oy

e' (n—m—st+u+2)

Foru =5 — 1the term s does not appear and Zf;}"z is void.

(d) For (17b) containing s — 1 new elementsin 7;':

E(r+1) ED|  mouzt qr+1) | _e(r+1) |
Cr(x,y) =E) + — Z o +1
| 1 +q,' ) |1+e(' )
— gt e?,fiil) | 2 )
iy g Maad " &y ot
*(n—m-+u) (n-m+u—x) | *(r—l) l
m—u+1 Z m—u+1+l + “Upps—u+tl
[P o e M WU
_ e+ 00 q(r+1) l (r+1) I
m+s—u i
+ (34)
14eltD, ,_m_Zu;m [ErRM
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«(n—m+-u)
" 1. .
For u = 0 the term —2 wl__does notappearand 5, is void.

m—u+1

(e) For (17b) withu = s — 1, containing s — 1 new elementsin T:

E(’+1) E(f) m—s q(f+1) | _e(r+1) I
r( ) 0 Z |1+qir+l |1+ (r+1)

i=1

_(r+1) ) *(n—m+s——i 1) v*(r—) |
qm—s+l m—s+l+2 m+2

*#(r+1 «(n— —i—1 *{r—1

= 11 +he Y iy vz
(r+1) (r+1) e(r+1)

+ m+s—u + —q; (35)
TR DI v rew e

() For (18) containingn — m + 2s — rnewelementsin T;':

(r+1) r) m—s—1 (r+1) (r+1) (r+1)
* _ 0 BT —E q, l I —qm—s
Cr(x,y) _EO + 1 + Z (}1 +qr+l) ll +e l‘+1 |1 + ’(;i"‘l')

_e*(r+1) _(n- m+?.s‘+1) | n—m+2s—r —h( n—m+2s—i+1) |

m—s m—s+1 + Z m—s+i+1 1
T A I RS B P G
_e(r:-l) » i ( qr+1) l (r+1) I)
+ N+§—~r + i (36)
1 + e,(,'J:,l_),H i=n+s—r+2 l 1 + q1r+1 | 1 +e (r+1)

Proof

Since the staircases T, and T, coincide outside the hexagonal block, we must
not concentrate on the partial numerators and denominators outside that block. So
we focus only on the new contributions.

Case(a):

This case treats staircase T, given by (16) withn —m — 2s<r<n-m—s—1.
So we enter the block via row n — s and jump out immediately in order to descend
along columnm + s + 1. This gives first

E09 _ g9

q #(r+1) _ _“mts-1 n—s—r—1
n—s—r —_ —5—1 ?
Ergis?r— —E (n—ss-r—)
and then
—s+1 —
pn—m=25) _ Er(:+ss+1) - El(:-}';'z‘l
m+-s+1 E(n-—s) _ gln=s) ?

'm+s+1 'm+-s

with E"%) copied from E&). By dcscendmg along column m + s + 1 we intro-

duce thc coefficients o +::"22J+l ) withi = l,....m—n+2s+r+1.
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Case (b, c):
This case treats staircase 7, given by (17a) with r=n—m— s+ 2u for
u=0,...,s— 1. We enter the block horizontally in Esr—** and we jump down to

[2tetl] which does not contain B+ as a solution. Since Eg—s ™™™ solves
[2tetl] our first new partial numerator is

. E'(’:x_—l;\'+u+l,n+m) _ ’(:_—;‘v+u)
e:n(f: )= E(n—s+u) E(n—s+u)
m-u T Cmoy-]
. —in+ i ,
Since ES7im™ solves [2ts=i] for i=0,...,s —u— 1, we proceed from column

m —utocolumnm — u + 1foru # Oby

E(n—.r+u+1,n+m) (n—s+u+1,n4+m)
*(r+1) _ Em—utl — Fm—u
m—u+l n—s+u+1,n+m n—s+unt+m) ?
E = ) _ E'(n_u )

and we continue along this horizontal until column m. The case u = 0 is different

because there is no horizontal movement then. Since Eo 2" solves [2rusl
foru=1,...,5— 2 (this does not apply to the case u = s — 1), the transition from
column m to column m + 1 involves
(n—s+u+2,n+m) (n—s+u+1,n+m)
e:'l(n—m_s+u+2) = '(r;—s+u+1 n-+m) ~ '(':x—s+u+l n+m)
Ep, ’ —E,

except for the case u = 0 where this transition involves
—5+2, —s+1,
(n—s+2,n+m) _ E,(: s+1,n+m)

*(n—m—s+1) _ Lm

m+1 - E’(:—x+1,n+m) _ E'(':x—s,n+m) ?
with EP=5"m) — E=9) pecause of its definition. Since we shift Elntitu—snm) oo
[ﬁ] foru=1,...,5s—2andi=1,...,5s —u— 1, we continue our walk horizon-
tally but introducing

(n—s+u+i+2,n+m) E(n—s+u+i+1 n+m)

v*(n—m—s+u+i+1) __ LEm — L£m

m+1 T p(n—stutitlntm) E(n—s+u+i,n+m)
m — Lm

We leave the block by means of

1 +ut1 +u+1 1
h*(r+2) - E,(':':::‘) - Er(:+su—u—)l — Et(:+:—u) - Ep(:+:—u—)l
m-+s—u E'(:Lil_) - E'(':x—l,n+m) E'(;::)_u _ '(:;sl)

and continue horizontally to retrieve the old staircase T, with

E(n+u+1) (n+u+1)
q(r+l) _ Pmis—utl T Hmis—u
mts—ut+l T (n4u+l) (n+u+1)
Er(n+s—u - Em+s—u—l
using the fact that E"*- ) = EY 9
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Case(d,e):

Here we deal with staircase 7, given by (17b), in other words, with
r=n—-m-—s+2u+1withu=0,...,5s— 1. We enter the hexagonal block verti-
cally through E,(,:'_—lff;‘“) and we jump to |24t ] which contains E(n-stutlntm)
By shifting ES* 51 into [=stitl]fori=0,...,5 — u — 1, we obtain gt as
a partial numerator and the next partial numerators by continuing along column
m + s — u. The transition from row n — s+ u+ 1 to row n — s + u + 2 generates

D pecause ETH™# = gUHm-umtm) e continue vertically until row n, involv-

m—u—1 m—u—1
ingfori=1,...,s—u—2
(n—s+u+i+2,n+m) E("—J' +utit+1,n+m)
«(r+i) _ Ltm—u — Hm—u
m—u—1 — E'(':g_—;+u+i+l,n+m) _ E'(':z::+u+i,n+m)

The case u = s — 1 is different because there is no vertical movement there. The

transition from rowntorown + 1 involves foru = 1,...,s — 2 (this does not apply
tou=0)
E(n,n+m) (n,n+m)
«(n—-m+tu) __ “m—uyl T m—u
m—u+l T (nnt+m) (n—1,n+m) ?
m-—u - m—u

except foru = s — 1 where it involves

E(n,n+m) _ E(n,n+m)

h*(n—m+s—1) _ _m—s+2 'm—s+1
m—s+2 E(n,n+m) E(n,n+m) ’
m—s+]1 ~ m—s

with Eg™ = E®. By shifting ES7 into [ 4] for u=2,...,5 — 1 and

m4-s—u
i=1,...,u—1,wecancontinue our vertical movement, but obtaining

(n.n+m) (n,n+m)
h*(r—i+1 _ Em—u+i+l — Em—u+i
m—uti+l — E(n,n+m) E(n,n+m)
m—u+i ~ “m—uti-1

We leave the block through
E(n+u+l) _ E(n+u)

*(r—1) _ Emys—u 'm+s—u
mts—u+l L (n+u) (n,ntm)
Em+s—u - Em—l

and we continue along the same column to retrieve T, with
' E(n+u+2) E(n+u+1)

r+1) _ LEmys—u — Lmiys—u
mts—u T (ntutl) (nt+u+1)
EM+s—u - Em+s——u—1
(ntu+2) (n+u+1)
Em+s—u " Em+s——u

- E(n+u+l) _ E(n+u)

m4-s—u 'm+-s—u
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Case (f):

In the case of staircase (18) we enter the hexagonal block horizontally through
column m — s and we immediately jump out of the block with

E(n+s+1) E(r+m—s)

:(r+1) m—s
Em—s (r+m—s) E(r+m—s)
m=s 'm—s—1

When proceeding horizontally on row n + s + 1 in order to retrieve the old stair-
case, the next partial numerator is

E(n+s+1) _ E(n+s+l)

(n—m+2s+1) __ Em—s41 m—s
m—s+1 T p(nts+l) E(r+m—s)
m—s m—s
(n+s+1) (n+s+1)
Em—s+l Em—-‘

BB

followed by h,(::ﬁi'ﬁ_m) fori=1,...,n—-m+2s—r. O

From the above theorem it is clear which v§'+l) and hf'“) have to be computed
in order to deal successfully with the singular hexagonal structure in the table of

rational interpolants. When we want to be able to walk around the entire block we
have to fill the triangular tables

v* (n—m—s+1) v(n—m—?.r)

m+1 m+s+2
*(n—m—s42)
Um+1
*(n—m+s—4) *(n—m—1)
m—s+4 cee Umn+1
(n—m—s—1)
Um+s+2
and
A (n—m—s+4)
m
*x(n—m-+s—1) *(n—m+s-2) *(n—m+1)
hm—.\'+2 hm—s+3 Tt hm
(n—m+2s) (n—"r+s+1)
hmt K

and the diagonals
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+(n—m-—s)
m+s+1
*(n~m+s—4) - (3 7)
vm+3
v:n(;x_;m+x—2)
and
h:n(i;m-s+2)
h*(n—m+s—2) . (38)
m+2
o

4, Singular rules for the gdg-algorithm

To be able to use the continued fraction representations obtained in the previous
section, we must find a coherent computation scheme for its partial numerators
and denominators. Let us first introduce the following notations:

(r (r+1)
G — Eli+1 — gl,rl+1
B (r)
811+1

and

(ryn+m) (r+1,n+m)
Grntm) _g1,1+1m — 81141 "
! - (rintm)
81 1+1

The next lemma deals with the recursive computation of the values of the diagonals
(37) and (38).

LEMMA 2
()
*(n—m+s) __ 1 (n—m+s+1)
hm+1 - G(n+:) e”’!’ s ?
m
-1, «(n—m+s) x(n—m+1
prlms) _ G ™™ ™ g
m+ (n+s—1) *(n—m) ’
G"':+f em
+(n—m—s+2u+2) 1 *(n~m—s+2u+4) .
Prts—u —*Gml)— ,,,_’:_s_u_l , u=0,...,5s-3.

m+s—u—1
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(b)

*(";""H—Z) — 1 pln—mts+1)

m+ GS’):-{.-_") m ’

*(n—m—s+2u 1 *(n—m—s+2u+2

vm(+S—“+l+ )Zm—vm(+s—us+ +)) u=s—2,...,l,
Gm+s—u—1
(nem—s) G(n~ll,n+m) v:n(_;*z_;-m—s+2)q:n(n—m+l)
*(n—m—s) _ My
+5+1 - *(n—
m+s: Gf:::_‘.l_)_l e m(n m)
Proof
(a) The rule for the bottom value h;(:;'"“) of the diagonal is straightforward
from its definition. For the next value,
—1 —1
yromisa) _ Epis D~ Bt
m+2 - +s—1 —1,n+
Er(:+1s )—E'(: )
LB B
= 1) p(nts—1 “Tntm)
Gr(:+f )Er:+ls )_E'(’:l )

we use the equality ES™ = E,(::f D and the definition of h;fi}"'“), g:.r ) and
"™ to derive the computation rule. The other entries on the upward sloping

diagonal are given by
E(n+u+1) _ E(n+u+l)

h*(n—m—s+2u+2) _ m-+s—u m+s—u—1
m+s—u E(n+u+ 1y E(n—l Jnt+m)
m+s—u—1 m
(ntu+2) (n+u+1)
_ 1 Em+s—u—l - Em+s—u—1
T A(ntutl) (n+u+1) (n—1,n+m) ’
Gm+s—u—1 Em+s—u— 1 En

ith E(n+u+l) _ E(n+u+2)
w1 mts—u—1 — Tmts—u-2°

(b) The proof of (b) is similar, except that now the top element of the upward
sloping diagonal involves qf,,("—'"“ and €,"™™ and the other elements are com-

puted bottom-up from one another. a

For the other values v;f[l) and h;(r+1)

r+1)

the recursive computation is completely

similar as that of “521 and h§ inlemmal.
LEMMA33
(@)

*(r+1)
«(r) _ G(r+1,n+m) € *(r+1)
Vi1 = Y4 ECE
1
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(b)Forr+I<n:
I )
(c)Forr+1=n:
B = Kgﬁ efrt=t+2)
Proof
The proofis left to the reader. |

We shall now concentrate on the octagonal gap in the qd-table due to the hexago-
nal block in the table of rational Hermite interpolants. In what follows the singular
rules for the partial numerators and denominators in the new continued fraction
representations C;(x, y) are derived in the same order as they have to be implemen-
ted computationally. The first of them fills the leftmost column of the octagonal
singular block (15) in the qd-table in a bottom-up way.

RULE1
Fork=1,...,s,
*(n —mtstk) _ GUtk=1) p(n-mtstk+1) , *(n—m+s+k+l)
—5 m—s—1 dm-s m s
with gt 2t _ pi-mt2stl) o0 d where by chaining the above rule

m—s—1 m—s m—s

—1
*(n—M+s+l H G("'H e(n—m+2s+1) H q(n—m+s+t+l)

i=l

Proof
From (26b) we have
e*(n—m+x+k) — E'(':' o) Er(:j:s'k_ )
m—s (n+k-1) E(n+k~ )
m—s m~s—1
_EPEY B g g
E(n+k) E(n+k) '(:+sk—1) E(n+k— )
'm—s—1 = m—s—1
1 k-1
_ ,(,ff;'““ ) E,(rffs : (n—m+s+k+1) G(n+k l1)
+k +k m—s m—s—
B E,

Now because of the singular block, E,(,f'ff" ) = ,(,f'fsk) and hence the first ratio of
E-values equals e;"s ™), a
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Let us now concentrate on the leftmost upward sloping diagonal of (15).

RULE2
Fork=s,...,1
(n—s+k=1) (n—m—s+2k+1) *(n—m—s+2k+1
s(n-m—s+2%) _ Gpm_j_1 Im—k )em(—k :
m—k+1 - G(n—s+k,n+m) (n—m—s+2k) ?
m— em—k

andfork=s5-1,...,0
gt (n—m—s+2k+1) +1= G5tk (q*(n—m—s+2k+2) n 1) ,

m—k m—k—1 m—k
with
rmes) _ GS::—A‘— 1) qgl—m—-s+l ) e;t"(n-m—.\'+l)
m+1 G,(:;;) eg:—m—s)
Proof

By definition we have from (21)
E(n—s+k,n+m) _ E(n_—;+k,n+m)

#(n—m—s+2k) _ Lm—k41
m—k+1 T p(n—stk,nt+m) (n—s+k—1,n+m) °
Em—k - Em—k

This formula differs from the regular expression for qf,'::Z;”z") only by the addi-

tion of { ™) in the superscript. Hence the proof is completely analogous to that for
(13b)in[3]. From (22) we know that

(n—s+k+1,n+m) (n—s+k,n+m)
e*(n—m—s+?k+l) _ Em—k - Em—k
m—k T p(n—s+k,n+m) (n—s+k,ntm)
E, —E,

for which the proof is completely analogous to that for (14b). A special value is

q;(:f'"_‘), which is given by (27) and contains fewer additions of ( "+™) Neverthe-
less, the proof can be constructed in the same way. O

We continue our walk around the octagonal block and focus on the top row of
(15), together with special rules for the row immediately above the block since this
uses “degenerate” values.

RULE3
Fork=2,...,s+1

(n—s—1)

*(n—m—s—k+1) __ —Emtk—1,m+k G(n—s— 1) x(n—m—s—k+2)
m+k - (n—s) m+k—2 Im+k—1 )
Emik~1 m+k

with q: (n—m—2s) (n—m-2s)

m+s+1 =qm+s+l ,andfork=1,...,s
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(n—s)
(n-m-s—k) _ ~Emik—1m+k
m+k - _(n—s-1)
gm+k—l,m+k

€

Proof
The first row is computed left to right, where q;f:;'"_’) is given by the previous
rules. When leaving the singular block asin (16) we have

E(n—s) E(n—s,n+m)

*(n—m—s—k+1) _ m+s+1 ~ Tmyk~1
m+k T (n—sn+m) E(n—s—l,n—f-m) ’
mtk—1 T Tmtk~1
(n—s;n+m) __ p(n—sn+m) : Jn+m
where E, "™ = E,">™ and where the superscript ("*™ can be dropped

because of the definition of these E-values. Hence

(n—s) (n—s-1) - -
#(n—m—s—k+1) _ gn’:+li—2,m+k—l = Emtk—2m+k—1 E;(:+3.1 - E,(:_}.]:)_z

m+k (n—s) (n—s) (n—s—1) ?
gm+k—2,m+k—l Em+k—2 - Em+k—2
*(n—m—s—k+1)

which completes the computation rule for q”t ey By chaining the above
n—m—

rule, an explicit formula can be given for ¢,,.  ,~’ as was done in rule 1 for
*(n—m+s+1) (n—-m—s—k) . .
Cis .Thevaluee,, is given by

m+k m+k

m+k - —5—1 —s—1)?
E,(:_,,,: = Er(:+1:—l)

e(n—m—s—k) B E(n—s) _ E(n—s—l)

with E,(:;,:) copied from E,(:;,f)_ |- Now this quotient can be rewritten as
(n—s)
(n—m—s—k) _ —&mtk—1,m+k G(n—s—l)
em+k - (n—_y) (n_s-—l) (—‘ m+k—1 ) ?
gm+k—l,m+k - gm+k~l,m+k

which completes the proof. m|

Let us proceed. Column m + s + 2 of g-values is the first to reappear in the con-
tinued fraction representations C;(x, y). It can be computed from the g-values and
e-values with column index m + s+ 1 using the well-known non-singular rules.
Column m + s + 1 of e-values depends solely on column m + s + 1 of g-values, so
we focus on this last one.

RULE4
Fork=1,...,5s—1

(n—s+k—1,n+m) *(n—m—s+k+1) *(n—m—s+k+1)

(n—m—2s+k) _ Gm_l em dm

m+s+1 - (n—s+k (n—m—s+k ’
G ECET
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where a band of g*-values and e*-values is filled using rules constructed from the
classical ones:

r+i—1,n+ *(r+2) *(r4+2
(41 _ Gyt gty
Gﬁr_—iil,n+m) e;£r1+1) ’

l=m—-s+1,....m, r=n+m—s-214+3,...,.n+m-214+1,
and

67(r+1) +1= Ggr_-}il,n+m) (qa;(r+2) + 1) ,

l=m—-s5s+1,....m, r=n+m—s-2I+2,....n4+m-2I.
Fork =y

(n—m-—s) _ G,(:::ll ntm) s 1 e'(r':—M+s+l)q:=n(n—m+l)
m-+s+1 Gf::-)ps -1 G'(::;)_I e,('r:—m)

Proof
For the first s — 1 elements of columnm + s + 1 of g-values we have

E(n—s+k) E(n—s+k)
q(n—m—2s+k) _ m+s+1 — Emts
m+s+1 E'(r::;+k) _ E'(:;;+k—l)

_ U B B
G ™ B — Bty

1 E,(,:'_:;+k+l) _ E,(,:l_:;+k) E'(:_;s+k—l) . E'(:_—ir+k—l,n+m)

G,(:_:;+k) E,(,:';;+k) _ E’(:_—is‘+k,n+m) E’(':l_::‘i-k) _ E'(:-:;‘-Fk—l)

y E'(:;;+k) _ E'(nnl—s-bk,n+m)
E'(:;;+k—l) _ E'(:_—ir+k—l,n+m)

—m—. —s+k —s+k
1 e'*n(n m—s+k+1) E’(':l s+k,n+m) _ E,(:_ ls-l— n+m)

= (n—s+k «(n—m—s+k (n—s+k—1,n+my) n—s-+k—1,n+m)
G g G

—s+k—1,n+ —m—s+k+1 —m—s+k+1
G(n s+ n+m) e*(n m—s )q:n(n m—s: )

m—1 m
G'(:_:;+k) e:‘n()l—m—‘S‘f'k)

For the bottom value, k = s, we can prove
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(n—m-—s) — Er(:-z-s-{-l - Er(:-)}—s
m+s+1 E'(:l s_ E'(:;;)

1 E(’H'l) _ E(")

— m+s 'm+s
—1
Gr(:l-s Er(:ls - Er(:ﬂ' )
1 "l _11 ¥
_ 1 ERD-ED ERD - B ER - B
0, B, R R D B B

Using the fact that E®) . = E®™) = E™D_ e obtain

m+s mts—1 = Tmts-22

G'('r::ll,n+m) q:"(n—m+1) E(n+l) . E(n)

q(n—m—s) _ m+s mts_
e TG, R

If the above procedure is reapplied to this last quotient of E-values, then finally

E’(:Ll) _ E'(':x_)H 3 s 1 E,(,:"HH) _ E'(:+s)
E(n) _ E'(:-,.nl-}-m) - 4 G(n+i) E'(:ﬂ) _ E'(:fl-i-m)

m+s m+s—i

?

which completes the proof. 0O

To complete our walk around the singularity and to close the gap in the qd-table
we now calculate the remaining elements.

RULES
Fork=s,...,1
(n—m—s+2k—-1) _ 1 (n—m—s+2k)
Dnvs—k+2 = ik) Cmts—k+l
Gm+s—k+1
and inbetween
—m—s+2k—2 — k-1 (n—m—s+2k—1)
r(r':+.:':k:-2 1= Gt:+.r—k-3-1( miskrs |+ 1) :
Onthe bottom linewe havefork =1,...,s
—m425—k+1 —m+2s—k+2
b 4 1= G (g ).
Proof

n—m—s+2k—1)

The computation of ;™ %2 follows the old rules, while for g{",™ "%

m+-s—k+2
we have
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(n+k) (n+k)
q(n—m—s+2k—1) - Em+s—k+2 Em+s—k+l
m+s—k+2 E(n+k) E(n+k 1)
m+s—k+1 — “mts—k+1
(n+k) (n+k)
Em+.r—k+2 Em+.r—k+1
(n+k) (n+k)
Em+s——k+1 - Em+s—k
(n+k+1) (n+k)
1 Em+.\‘—k+l — Pmps—k+1
(n+k) (n+k) (n+k)
G +s—k+1 Em+s—k+l - Em+s

which completes the proof. The e-values follow the normal rules. O

Using rules 1-5, the gap bordered in (15) involves the computation of the ele-
ments listed in the octagon below.

«(n— m—s) *(n—m—2s+1)
Dyt Amts
e;'(n—m—.v+l) .
(n—m~2s+1)
Tmtet1
e:"(n—m)
*(n—m-+s)
qm—-.r+l
t(n—m+s+1) : (n—m—s)
Em—s . Tmts+1
(n—m—.r+1)
€mis
«(n—m+2s—1)
m—s+1
*(n—m+2s
em(—.r )
(n—m-+s)
b m+1
(n—m+2s) (n—m+s+1)
m—s+1 . Em

To be able to use the continued fraction representations from theorem 2 we
must also calculate the necessary v- and h-values.
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