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When using Rutishauser’s qd-algorithm for the determination of the roots of a polynomial
(originally the poles of a meromorphic function), or for related problems, conditions have
been formulated for the interpretation of the computed q- and e-values. For a correct
interpretation, the so-called critical indices play a crucial role. They index a column of
e-values that tends to zero because of a jump in modulus among the poles. For more than
50 years the qd-algorithm in exact arithmetic was considered to be fully understood. In
this presentation we push the detailed theoretical investigation of the qd-algorithm even
further and we present a new aspect that seems to have been overlooked. We indicate a
new element that makes a column of e-values tend to zero, namely a jump in multiplicity
among equidistant poles. This result is obtained by combining the qd-algorithm with
a deflation technique, and hence mainly relying on Bernoulli’s method and Hadamard’s
formally orthogonal polynomials. Our results round up the theoretical analysis of the qd-
algorithm as formulated in its original form, and are of importance in a variety of practical
applications as outlined in the introduction.

© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

0. Introduction

The qd-algorithm in its original form [25,29,28] is used for the determination of poles of a meromorphic function or for
related problems [26,13,18,7]. The proper understanding when a column index is critical or not, is crucial because making
the wrong decision leads to erroneous results. We focus on the correct determination of the columns in the qd-table that
contain important information about the location of the poles of a meromorphic function. In this analysis a new element
that makes a column of e-values tend to zero, is discovered: important e-columns do not only occur at a jump in modulus
among the poles but also at a jump in multiplicity among equimodular poles. The distinction between the two cases can be
made from the speed of convergence. The convergence speed of the e-columns at jumps in modulus is extensively discussed
in [14,23]. The new result which concerns jumps in multiplicity among poles, is of importance in a variety of practical
applications, through its connection with eigenvalue computation [22,10,11] and sparse polynomial interpolation [7] and
polynomial systems. Sparse techniques are currently at the core of some robot kinematics [31], sparse signal processing
[20], drug design [12] and organism evolution [21]. The issue of numeric stability of the qd-algorithm is not being discussed
in the current presentation which focuses on new theoretical results.
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A new and detailed analysis of the convergence speed of the e-values (see the proofs of Theorems 2.2 and 3.3) shows
how one can distinguish between a correct and an incorrect interpretation of the values in the qd-table. The new technique
prevents erroneous conclusions from the inspection of the columns in the qd-algorithm, particularly in the case of poles of
equal modulus and different multiplicity. In the latter case the new results, and their combination with deflation, signifi-
cantly improve the accuracy of the extracted poles. The scheme is illustrated with two detailed numerical examples and the
influence of cancellation is discussed which is typical for deflation techniques.

The convergence of so-called inbetween or additional columns has also been observed in other tables, namely in [30]
for the Padé table and in [19] for the Walsh array. In the former the column number was not explicited: it resulted as the
solution of an integer programming problem. In the latter explicit column numbers were given but the explicit extraction
of the poles was not discussed. In this presentation we show how to obtain all the poles and their multiplicities from the
mere computation of the qd-table. Neither the algorithm nor the proofs necessitate the computation of entries in the Padé
table or the Walsh array. We add to the convergence result of [19] what Rutishauser has added in [25] to the convergence
theorem of de Montessus de Ballore [9].

The paper is structured as follows. In Section 1 we summarize the classical results on the qd-algorithm which can be
found in [17] or the original publications [25,27,24]. Sections 2 and 3 guide the reader through the new results which are
then summarized and illustrated in Sections 4 and 5. Some particular cases are discussed in Section 6. The proofs of all new
results can be found in Section 7.

1. The classical qd-algorithm

Let the function f (z) be known by its formal power series expansion (FPS)

f (z) =
∞∑

i=0

ci z
i . (1)

The series expansion is taken around the origin only to simplify the notation. We set ci = 0 for i < 0. For arbitrary integers
n and for integers m � 0 we define the Hankel determinants

H (n)
m =

∣∣∣∣∣∣∣∣∣∣

cn cn+1 . . . cn+m−1

cn+1 cn+2 . . . cn+m

...
...

cn+m−1 cn+m . . . cn+2m−2

∣∣∣∣∣∣∣∣∣∣
, H (n)

0 = 1,

and the Hadamard polynomials

P (n)
m (z) = H (n)

m (z)

H (n)
m

, m � 0, n � 0,

with

H (n)
m (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

cn . . . cn+m−1 cn+m

...
. . .

...
...

cn+m−1 . . . cn+2m−1

1 . . . zm−1 zm

∣∣∣∣∣∣∣∣∣∣∣∣∣
, H (n)

0 (z) = 1.

The series (1) is termed k-normal if H(n)
m �= 0 for m = 0,1, . . . ,k and n � 0. It is called ultimately k-normal if for every

0 � m � k there exists an n(m) such that H(n)
m �= 0 for n > n(m). With (1) as input we can also define the qd-scheme [25]:

1. the initial columns are given by

e(n)
0 = 0, n = 1,2, . . . ,

q(n)
1 = cn+1

cn
, n = 1,2, . . . ,

2. and the rhombus rules for continuation of the scheme by

e(n)
m = q(n+1)

m − q(n)
m + e(n+1)

m−1 , m = 1,2 . . . , n = 1,2, . . . ,

q(n)
m+1 = e(n+1)

m

e(n)
m

q(n+1)
m , m = 1,2 . . . , n = 1,2, . . . . (2)
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Usually the values q(n)
m and e(n)

m are arranged in a table where subscripts indicate columns and superscripts downward
sloping diagonals and the continuation rules link elements in a rhombus:

q(1)
1

e(1)
1

q(2)
1 q(1)

2

e(2)
1 e(1)

2

q(3)
1 q(2)

2

. . .

e(3)
1 e(2)

2

q(4)
1 q(3)

2

. . .

... e(4)
1

... e(3)
2

...
...

The proof of the following lemma and theorem can be found in [17, pp. 610–613]. As indicated in Lemma 1.1, the condition
of (ultimate) k-normality guarantees the computation of the q- and e-columns. How the periodic occurrence of zeroes can
be avoided is indicated in Section 6.

Lemma 1.1. Let (1) be the FPS at z = 0 of a function f which is k-normal for some integer k > 0. Then the values q(n)
m and e(n)

m exist for
m = 1, . . . ,k and

q(n)
m = H (n+1)

m H (n)
m−1

H (n)
m H (n+1)

m−1

,

e(n)
m = H (n)

m+1 H (n+1)
m−1

H (n)
m H (n+1)

m

.

Theorem 1.2. Let (1) be the FPS at z = 0 of a function f meromorphic in the disk B(0, R) = {z: |z| < R}, and let the poles zi of f in
B(0, R) be numbered such that

z0 = 0 < |z1| � |z2| � · · · < R,

with each pole occurring as many times in the sequence {zi}i as indicated by its order. If f is ultimately k-normal for some integer
k > 0, then the qd-scheme associated with f has the following properties.

(a) For each m with 0 < m � k and |zm−1| < |zm| < |zm+1|,
lim

n→∞ q(n)
m = z−1

m .

(b) For each m with 0 < m � k and |zm| < |zm+1|,
lim

n→∞ e(n)
m = 0.

Any index m such that the strict inequality

|zm| < |zm+1|
holds, is called a critical index. It is clear that the critical indices of a function do not depend on the order in which the
poles of equal modulus are numbered. The theorem above states that if m is a critical index and f is ultimately m-normal,
then

lim
n→∞ e(n)

m = 0.

The e-columns with critical index column number do complicate the computation of the values in the qd-table when using
(2). The fact that they tend to zero and are used in divisions, destabilizes the computation. In order to overcome this
problem a progressive form of the qd-algorithm can be used as in [17, pp. 614–615] or a breakdown-free formulation as in
[16,15].
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Thus the qd-table of a meromorphic function is divided into subtables by the e-columns that tend to zero. Any q-column
corresponding to a simple pole of isolated modulus is flanked by such e-columns and converges to the reciprocal of the
corresponding pole. If a subtable contains j > 1 columns of q-values, the presence of j poles of equal modulus is indicated.
In Theorem 1.3 [17, p. 642] it is also explained how to determine these poles if j > 1.

Theorem 1.3. Let m and m + j with j > 1 be two consecutive critical indices and let f be (m + j)-normal. Let the polynomials p(n)
i (z)

be defined by

p(n)
0 (z) = 1,

p(n)
i+1(z) = zp(n+1)

i (z) − q(n)
m+i+1 p(n)

i (z), n � 0, i = 0,1, . . . , j − 1.

Then there exists a subsequence {pn(�)
j }� such that

lim
�→∞ p(n(�))

j (z) = (z − z−1
m+1

) · · · (z − z−1
m+ j

)
.

According to the above two theorems the qd-scheme seems to be an ingenious tool for determining, under certain
conditions, the poles of a meromorphic function f directly from its FPS at the origin. If f is rational, the last e-column is
even identically equal to zero [17, pp. 610–613].

If m = 0 in Theorem 1.3, then the polynomials p(n)
i (z) coincide with the Hadamard polynomials P (n)

i (z) for i = 0, . . . , j
and the entire sequence converges, as we can see from Theorem 1.4 [17, p. 626].

Theorem 1.4. Let (1) be the FPS at z = 0 of a function f meromorphic in the disk B(0, R) = {z: |z| < R}, and let the poles zi of f in
B(0, R) be numbered such that

z0 = 0 < |z1| � |z2| � · · · < R,

with each pole occurring as many times in the sequence {zi}i as indicated by its order. If f is ultimately m-normal and if |zm| < |zm+1|,
then

lim
n→∞ P (n)

m (z) = (z − z−1
1

)(
z − z−1

2

) · · · (z − z−1
m

)
uniformly on compact subsets of C.

The Hadamard polynomials are usually computed as follows.

Lemma 1.5. For all Hadamard polynomials that are well defined,

P (n)
m (z) = zP (n+1)

m−1 (z) − q(n)
m P (n)

m−1(z).

Theorems 1.2, 1.3 and 1.4 summarize what is known about the extraction of pole information from the FPS coefficients
cn of a meromorphic function. But several problems remain:

• Theorem 1.2(b) gives only sufficient conditions to locate a jump in modulus between the poles of f . If limn→∞ e(n)
m = 0,

there is no guarantee that |zm| < |zm+1|. We only know for sure that if limn→∞ e(n)
m �= 0, then |zm| = |zm+1|. In case the

poles zm and zm+1 have equal modulus, we do not know how the sequence {e(n)
m }n behaves.

• When dealing with poles of equal modulus, Theorem 1.3 only ensures the existence of a converging subsequence, not
the convergence of the entire sequence. The degree of the polynomials p(n)

j (z) is determined from the knowledge of

consecutive critical indices. The convergence of the sequence of polynomials P (n)
m (z) in Theorem 1.4 is only guaranteed

when m is the first critical index. But determining a critical index is easier said than done. One usually observes
the convergence of the e-columns and from this decides which column numbers serve as critical indices. However,
Theorem 1.2(b) does not guarantee the correctness of this procedure because it does not give a necessary condition to
locate a jump in modulus.

Let us now investigate whether these problems can be overcome in some way, and at what price.

2. Computing simple or multiple poles isolated in modulus

In this section we generalize Bernoulli’s method for the extraction of a simple pole of isolated modulus to the case of a
multipole of isolated modulus.

Suppose the poles z1, . . . , zs of f (z) have been determined. Then we can compute the coefficients C (s)
n given by
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C (0)
n = cn,

C (i)
0 = zi C

(i−1)
0 , i = 1, . . . , s,

C (i)
n = zi C

(i−1)
n − C (i−1)

n−1 , n = 1,2, . . . , i = 1, . . . , s,

which are the coefficients in the FPS of

f s(z) = (z1 − z) · · · (zs − z) f (z) =
∞∑

n=0

C (s)
n zs.

For s = 0, f0(z) = f (z). The computation of the coefficients C (s)
n can also be done by solving the linear system (only back-

substitution)

n∑
j=0

z− j−1
s C (s)

n− j = C (s−1)
n , n = 0,1,2, . . . .

The following lemma, which was proved in [17, pp. 569–570], will be very useful.

Lemma 2.1. Let f be a rational function with distinct poles z1, . . . , zs. Let the multiplicity of zi be denoted by mi . Then the FPS
coefficients cn of f are of the form

cn =
s∑

i=0

γi(n)z−(n+1)
i ,

where γi(n) is a polynomial of degree mi − 1 in the index n.

Using Lemma 2.1 the following new result can be proved.

Theorem 2.2. Let (1) be the FPS at z = 0 of a function f meromorphic in the disk B(0, R) = {z: |z| < R} and let the poles zi of f in
B(0, R) be numbered such that their modulus does not decrease, each pole occurring as many times in the sequence {zi}i as indicated
by its order. Let fs+i(z) be ultimately 1-normal for i = 0, . . . , t − 1 and let zs+1 be a pole isolated in modulus, meaning that if for some
i � 1, |zi | = |zs+1| then zi = zs+1 . Then zs+1 is a pole of multiplicity t, in other words

z0 = 0 < |z1| � · · · � |zs| < |zs+1| = · · · = |zs+t | < |zs+t+1| � · · · < R,

zs+1 = · · · = zs+t,

if and only if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
n→∞

C (s)
n

C (s)
n+1

= · · · = lim
n→∞

C (s+t−1)
n

C (s+t−1)
n+1

= zs+1,

lim
n→∞

C (s+t)
n

C (s+t)
n+1

�= zs+1.

The limit of C (s+t)
n /C (s+t)

n+1 not being equal to zs+1, means that either it does not exist or, if it exists, it is infinite or a
different finite complex number. The sufficient conditions in Theorem 2.2 are a means to compute zs+1, while the necessary
conditions allow to detect the presence and the multiplicity of a multipole of isolated modulus.

When inspecting column e(n)
1 computed from the coefficients C (s)

n , then we find that it converges slowly but surely

to zero. This phenomenon will be explained in the sequel. Also column e(n)
t computed from C (s)

n converges to zero, by
Theorem 1.2 because t is a critical index. However, it converges much faster.

The technique even applies to functions like f (z) = log(1 + z) having a pole of infinite multiplicity. Here for each s � 1
and n � s, we find

lim
n→∞

C (s)
n

C (s)
n+1

= −1, C (s)
n = (−1)n+1−ss!

n(n − 1) · · · (n − s)
.

The limit of C (s)
n /C (s)

n+1 can also be larger than R in modulus, in which case we can stop the search for poles in B(0, R)

because they have all been found. When it does not exist at all, we have to turn to the results of the next section.
In the sequel we drop the superscript (s) in the coefficients C (s)

n and the subscript s in the function f s(z). In order to
simplify the notation we denote the deflated function f s(z) by f (z) and its FPS coefficients C (s)

n by cn .
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3. Computing distinct poles of equal modulus

When dealing with several poles of equal modulus, we have to distinguish between the computation of several simple
poles of equal modulus and the case where at least one pole has a multiplicity larger than one. As before we assume that
the poles of lesser modulus have been computed and removed from the FPS expansion.

Lemma 3.1. Let (1) be the FPS at z = 0 of a function f meromorphic in the disk B(0, R) = {z: |z| < R}, and let the poles zi of f in
B(0, R) be such that the first t poles are all simple and of equal modulus, in other words

z0 = 0 < |z1| = · · · = |zt | < |zt+1| · · · < R,

z j = reiθ j , θk �= θ j, k �= j, k, j = 1, . . . , t. (3)

Then for 1 � k < t the sequence of determinants {H̃(n)

k }n (with γ j(n) abbreviated by γ j ) where

H̃ (n)

k =

∣∣∣∣∣∣∣∣∣∣∣

∑t
j=1 γ je−i(n+1)θ j . . . 1

rk−1

∑t
j=1 γ je−i(n+k)θ j

1
r

∑t
j=1 γ je−i(n+2)θ j . . . 1

rk

∑t
j=1 γ je−i(n+k+1)θ j

...
...

1
rk−1

∑t
j=1 γ je−i(n+k)θ j . . . 1

r2k−2

∑t
j=1 γ je−i(n+2k−1)θ j

∣∣∣∣∣∣∣∣∣∣∣
does not converge. For k = t we have H̃(n)

t �= 0.

Theorem 3.2. Let (1) be the FPS at z = 0 of a function f meromorphic in the disk B(0, R) = {z: |z| < R}, and let the poles zi of f in
B(0, R) be such that (3) holds. Then for 1 � k < t the sequence {e(n)

k }n does not converge.

In the situation of Theorem 3.2, the poles z1, . . . , zt are computed using Theorem 1.4 which is a special case of The-
orem 1.3 with m = 0. So the Hadamard polynomials of degree t contain the information on the next t simple poles of
equal modulus. From the proof of Lemma 3.1 it is obvious that an infinite number of entries in the sequences {e(n)

k }n exists

because an infinite number of the determinants H̃(n)

k is nonzero.
Next we consider the situation where at least one of the poles that we want to compute next has a multiplicity larger

than one. We again distinguish between two cases, which are respectively dealt with by Theorems 3.3 and 3.6.

Theorem 3.3. Let (1) be the FPS at z = 0 of a function f meromorphic in the disk B(0, R) = {z: |z| < R}, and let zi denote the distinct
poles of f in B(0, R) with the first t poles z1, . . . , zt having equal modulus but unequal multiplicity. Let f be ultimately 1-normal. If
only one pole’s multiplicity among the first t poles is maximal, say that of zs , then

lim
n→∞

cn

cn+1
= zs, 1 � s � t.

From the proof in Section 7 it is clear that in this case the convergence of cn/cn+1 to zs and that of e(n)
1 to zero is slow,

of the order of 1/nμ where μ is the gap in multiplicity between that of zs and the largest multiplicity of the other poles
of modulus |zs|. This situation is precisely the one that is not detected in Theorem 1.2(b) and that may lead to an incorrect
interpretation of the values in the qd-table. Instead of recommending a convergence acceleration technique, we introduce
the new concept of critical multiplicity index. Rather than merely being a drawback, the slow convergence of this e-column
plays a crucial role in the correct interpretation of the values in the qd-table.

Definition 3.4. Let zi denote the distinct poles of f and let mi denote their multiplicity. Let the zi be numbered such
that their modulus does not decrease and such that the multiplicity among poles of equal modulus does not increase. Let
|z1| = · · · = |zt |,1 � s � t and ms � ms+1. If the respective multiplicities ms and ms+1 of zs and zs+1, being two poles of
equal modulus, satisfy ms > ms+1, or if s = t and 1 < m1 = · · · = mt , then s is called a critical multiplicity index.

This definition distinguishes, among the vanishing columns e(n)
m , those that vanish because of a jump in modulus from

those that vanish because of a jump in multiplicity among poles of equal modulus. Its importance was overlooked in the
past. For both the critical multiplicity index and the critical index the e-column tends to zero. But the latter indicates a
jump in modulus while the former does not.

After eliminating, by applying Theorem 3.3, among the poles of equal modulus, one by one those with strictly larger
multiplicity, in the order of decreasing multiplicity, we are left with a number of poles of equal modulus and equal multi-
plicity. The following theorem deals with this case. Again the function f (z) is the deflated function and the next poles in
line are those of equal modulus and equal multiplicity.
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Lemma 3.5. Let (1) be the FPS at z = 0 of a function f meromorphic in the disk B(0, R) = {z: |z| < R}, and let zi denote the distinct
poles of f in B(0, R). Let the first t poles have equal modulus and let the equimodular poles be numbered according to decreasing
multiplicity. In other words,

z0 = 0 < |z1| = · · · = |zt | < |zt+1| < · · · < R,

z j = reiθ j , θi �= θ j, i, j = 1, . . . , t,

m1 = · · · = ms > ms+1 � · · · , t � s > 1, (4)

with s being the first critical multiplicity index. Then

(a) there exist constants α1, . . . ,αs and an integer τ � 1 such that

cn = nms−1

rn+1

(
α1e−i(n+1)θ1 + · · · + αse−i(n+1)θs + O

(
1

nτ

))
;

(b) the Hankel determinant H (n)
s+1 equals

H (n)
s+1 = n(s+1)(ms−1)

r(s+1)(n+1)

(
A

nμ
e−i(n+1)θ + O

(
1

n

))
,

where A is a constant and μ = ms − ms+1 � 1 and θ = θ(θ1, . . . , θt).

Theorem 3.6. Let (1) be the FPS at z = 0 of a function f meromorphic in the disk B(0, R) = {z: |z| < R}, and let zi denote the distinct
poles of f in B(0, R). Let the first t poles have equal modulus, and let the equimodular poles be numbered according to decreasing
multiplicity, as in (4). Let s be the first critical multiplicity index and let f be ultimately s-normal. Then⎧⎨

⎩
the sequence

{
e(n)

k

}
n does not converge, k = 1, . . . , s − 1,

lim
n→∞ e(n)

s = 0,

and the sequence {P (n)
s (z)}n of Hadamard polynomials converges to

lim
n→∞ P (n)

s (z) = (z − z−1
1

) · · · (z − z−1
s

)
uniformly on compact subsets of C.

In the case of Theorem 3.6, again Hadamard’s polynomials can be used for the extraction of the poles z1, . . . , zs from the
FPS representation of f . Their computation is guaranteed by the ultimate s-normality. Theorem 3.6 generalizes Theorem 3.2
to the case of equimodular poles of different multiplicity or of equal but higher multiplicity.

When s = t in Theorem 3.6, then all poles z1, . . . , zt have the same multiplicity. The difference with the result found in
Theorem 3.2 is that here the multiplicity mt of these equimodular poles is allowed to be larger than one. In that case, The-
orem 3.6 says that t is still a critical multiplicity index, because P (n)

t will only extract each pole once. Actually Theorem 3.6
will be applied mt − 1 times. In the last step the poles z1, . . . , zt remain with multiplicity 1 and then Theorem 3.2 can be
applied.

When m is a critical index and not a critical multiplicity index, then the convergence speed of e(n)
m to zero is of the order

of (|zm/zm+1|)n because m signals a jump in modulus. These e-columns are more clearly visible in the qd-table than the
ones with critical multiplicity index number. But the latter often jeopardize the correct interpretation of the qd-table.

When there is an infinite number of poles of equal modulus, then no e-column will tend to zero because the next critical
index is +∞.

4. Illustrative example

In order to explain the impact of the above results on a pole extraction algorithm based on the qd-table, let us discuss
the application of Theorems 2.2, 3.2, 3.3 and 3.6 to the symbolic function

f (z) = g(z)

(z − z1)4(z − z2)(z − z3)(z − z4)(z − z5)4(z − z6)3(z − z7)2
, (5)

where g(z) is holomorphic in B(0, R), and

|z1| = r1, m1 = 4,

|z2| = |z3| = |z4| = r2, m2 = m3 = m4 = 1,

|z5| = |z6| = |z7| = r3, m5 = 4, m6 = 3, m7 = 2,
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Fig. 1. Poles of f (z) and their multiplicities.

with r1 < r2 < r3 < R . We turn to a truly numeric example in Section 5. Using the deflation technique described above in
combination with the qd-algorithm, the poles are extracted in order of increasing magnitude, and among the equimodular
poles in order of decreasing multiplicity. In case a pole, be it isolated in modulus or not, has higher multiplicity, then it will
be extracted, in different steps, as many times as indicated by its multiplicity. Let us describe what happens in the above
example. At the same time we comment, from our extensive numerical experience, on the numerical quality of the results.

Fig. 1 is a graphical representation in C × N of the situation: the poles of f given in (5) are depicted in the complex
plane and their multiplicity is added as a third dimension.

At the start C (0)
n = cn , and for i = 0, . . . ,3

lim
n→∞

C (i)
n

C (i)
n+1

= z1,

while this does not happen for C (4)
n /C (4)

n+1 because of the specifics on the zi and mi . Hence Theorem 2.2 applies with t = 4.
The pole of smallest radius is z1, apparently of multiplicity 4, but isolated in modulus. A crude approximation of z1 can
be obtained from limn→∞ C (i)

n /C (i)
n+1. Knowing from the application of Theorem 2.2 that the multiplicity of the first pole

isolated in modulus equals 4 (also e(n)
4 converges to zero fast), it is better to compute the Hadamard polynomials P (n)

4 (z)

from the C (0)
n (this is from the q- and e-values computed from the C (0)

n ) and write it as

lim
n→∞ P (n)

4 (z) = (z − z−1
1

)4
.

So we have discovered the first critical index, namely 4. All poles of modulus |z1| = r1 have been extracted. All remaining
poles are of modulus larger than r1.

To move on, we recompute the FPS coefficients C (4)
n of

f4(z) = (z1 − z)4 f (z),

and restart with checking limn→∞ C (4)
n /C (4)

n+1. Since it does not converge, we are certain to encounter equimodular poles of
equal multiplicity. Otherwise either Theorem 2.2 or Theorem 3.3 would apply. So in this case, either Theorem 3.2 (simple
poles) or Theorem 3.6 (with 1 < s here) should be applied to extract (z − z2)(z − z3)(z − z4). To this end new Hadamard
polynomials are computed from the qd-table constructed with the C (4)

n . When we compute this qd-table, of which we
denote the entries by q(n,4)

m and e(n,4)
m , then we see that sufficiently fast

lim
n→∞ e(n,4)

3 = 0,

and that no preceding e-column tends to zero slowly. Therefore all multiplicities are equal. Hence 3 is a critical index and
we are in the situation of Theorem 3.2. The Hadamard polynomials of degree 3 deliver the information on these poles. We
are sure that all poles of modulus r2 have been extracted because we found the critical index. All remaining poles are of
modulus larger than r2.

To continue our search, we now compute the FPS coefficients for

f7(z) = (z2 − z)(z3 − z)(z4 − z) f4(z).

As usual we start by investigating limn→∞ C (7)
n /C (7)

n+1. It now converges to z5 because m5 is strictly greater than the other
multiplicities. We are either facing the case covered by Theorem 2.2 or that covered by Theorems 3.3 and 3.6 (case 1 < s).
By looking at C (8)

n /C (8)
n+1 the case of Theorem 2.2 can be excluded. Both Theorems 3.3 and 3.6 deal with the situation of a

critical multiplicity index. The difference is that in case of Theorem 3.3 column e(n,7)
1 slowly tends to zero, while in case of

Theorem 3.6 with s > 1 column e(n,7)
s slowly converges to zero. In our case

lim e(n,7)
1 = 0,
n→∞
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Fig. 2. Poles of f8(z) with multiplicities. Fig. 3. Poles of f10(z) with multiplicities.

and hence Theorem 3.3 applies. Since 1 is not a true critical index, more poles of the same modulus are present (see Fig. 2).
From the C (8)

n we obtain

lim
n→∞

C (8)
n

C (8)
n+1

= z6.

Is this again a case of Theorem 3.3 or of Theorem 3.6? It cannot be a case of Theorem 2.2 since |z6| = |z5| with z6 �= z5.
Apparently, slowly but surely,

lim
n→∞ e(n,8)

2 = 0.

Hence Theorem 3.6 can be applied. After finding (z − z5)(z − z6), we can compute the coefficients C (10)
n .

From the fact that limn→∞ C (10)
n /C (10)

n+1 does not converge we know that we are in the situation of Theorem 3.2 or
Theorem 3.6 (case s = t), namely the case of equimodular poles having the same multiplicity (see Fig. 3). We investigate
the columns e(n,10)

m and find that limn→∞ e(n,10)
3 = 0 slowly, while limn→∞ e(n,10)

6 quickly. Hence 3 is a critical multiplicity
index, while 6 is a true critical index. All information on the poles has been found. One can check that

lim
n→∞

C (16)
n

C (16)
n+1

= ∞,

indicating that all poles have been discovered, because our function is meromorphic in the entire complex plane. The last
9 poles, all of modulus r3 are best computed by composing the Hadamard polynomial of degree 9 using the q(n,7)

m because
the convergence speed of the Hadamard polynomials is always very high when their degree equals a true critical index.

The new results can also be used to obtain information on the multiplicity of the poles. For instance, the fact that 1 is
a critical multiplicity index for f7(z) entails that m5 � m6 + 1 because 1 pole is of higher multiplicity. The fact that 2 is a
critical multiplicity index for f8(z) entails that m5 � m7 + 1 and m6 � m7 + 1 and hence that m5 � m7 + 2. The fact that 3
is a critical multiplicity index for f10(z) and a true critical index for f13(z) leads us to conclude that

m7 = 2, m6 = m7 + 1, m5 = m7 + 2.

Hence one knows that one is dealing with 3 distinct poles of respective multiplicities 2, 3 and 4 and one can compute the
last 9 poles (we have also found that 9 is a true critical index for f7(z)) from the above-mentioned Hadamard polynomial
rewritten in the form

(z − z5)
4(z − z6)

3(z − z7)
2.

Depending on the precision used in the computations, some nearby poles may of course appear as multipoles. It suffices
to increase the precision to be able to separate those and write the Hadamard polynomial in the proper form (this aspect
is outside the scope of this paper where we want to focus on the theoretical results). Otherwise a center of gravity is
computed with the multiplicity equaling the proper number of poles it represents.

5. Numerical illustration

We now turn to a numeric illustration which is very representative for the multitude of experiments that we have carried
out. We restrict ourselves to the case where the radii can be clearly distinguished. Let us consider the function

f (z) =
(

1

1 − z3
+ 1

(2eiπ/4 − z)2
+ 1

2i − z

)
exp(z),

which is a meromorphic function with 3 simple poles of modulus 1 and 3 poles of modulus 2, one simple and one dou-
ble. We examine the classical qd-algorithm and its deflated generalization presented here. The detailed discussion of this
numerical example leads to some recommendations for a practical implementation.
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Table 1
No critical index.

e(n)
0 q(n)

1 e(n)
1

0.81141−0.31799i
0 −0.5338+0.022792i

0.27791−0.29519i
0 −0.71107+1.91288i

−0.43316+1.61768i
0 1.5832 − 1.43245i

.

.

.

.

.

.

0.8828 + 0.00431i
0 −0.39795−0.00213i

0.48484+0.00218i
0 1.82941+0.01022i

2.31426+0.01240i
0 −1.42088−0.01192i

.

.

.

.

.

.

Table 2
True critical index.

q(n)
3 e(n)

3

−0.37227−0.06994i
0.32911 + 1.12215i

−0.29196+1.48619i
−0.58098 − 1.29901i

.

.

.

.

.

.

1.69434−0.00425i
−0.00253 − 0.00200i

−0.51452−0.00076i
0.00336 − 0.00027i

.

.

.

.

.

.

−0.51296+1.58128×10−6 i
(7.98733−8.47731i)×10−6

.

.

.

.

.

.

Since column q(n)
1 = C (0)

n+1/C (0)
n , which can be found in Table 1, does not converge, one can conclude from Theorem 2.2

that f does not have a single smallest (in modulus) pole, be it simple or multiple. Hence the smallest (in modulus) poles
of f present themselves as a collection of equimodular poles. One can also conclude that one is not dealing with the case
described by Theorem 3.3 because then again q(n)

1 would converge due to the larger multiplicity of one single pole.
It remains to distinguish the problem between the case of Theorem 3.2 and that described by Theorem 3.6. The first

e-column to converge to zero is e(n)
3 and its convergence is fast as we can see from Table 2. So we are in the case of

Theorem 3.2 and column number 3 is a true critical index. If the convergence of the e-column had been slow, then we
would have been in the situation described by Theorem 3.6 and column number 3 would have been a critical multiplicity
index. The poles |z1| = |z2| = |z3| can be determined from Hadamard’s polynomial sequence P (n)

3 (z) given in Table 3, which
converges to −1 + z3.

When advancing further in the qd-table, column e(n)
4 seems to converge to zero (slowly), while column e(n)

6 definitely
converges to zero (fast), as can be seen from Table 4.

From the new results obtained in the previous section we can conclude that 4 is a critical multiplicity index while 6 is
a true critical index in the traditional sense. Assume that we erroneously conclude from Theorem 1.2 that limn→∞ q(n) =
4
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Table 3
Hadamard polynomials.

P (0)
3 (z) = (−0.29070 − 0.42071i) + (−0.04250 − 0.04693i)z + (−0.37732 − 0.25518i)z2 + z3

P (5)
3 (z) = (−0.89823 − 0.03704i) + (−0.08602 + 0.12290i)z + (−0.01319 + 0.00460i)z2 + z3

P (10)
3 (z) = (−0.99905 − 0.00179i) + (−0.00320 + 0.00804i)z + (−0.00168 − 0.01115i)z2 + z3

P (15)
3 (z) = (−0.99960 + 0.00035i) + (8.5 × 10−6 + 0.00009i)z + (−0.00011 − 0.00039i)z2 + z3

P (20)
3 (z) = (−0.99998 + 7.2 × 10−6 i) + (−0.00002 + 1.2 × 10−6 i)z + (−3.2 × 10−6 − 2.0 × 10−6 i)z2 + z3

P (25)
3 (z) = (−1. − 2.9 × 10−8 i) + (−6.3 × 10−7 + 2.2 × 10−7 i)z + (5.7 × 10−7 − 6.4 × 10−7 i)z2 + z3

Table 4
Critical multiplicity index versus true critical index.

e(n)
4 e(n)

5 e(n)
6

−0.22709+0.12968i
−0.10148+0.00752i −0.25962+0.13164i
−0.01123−0.00578i 1.07010+0.52425i −0.00101−0.39214i

.

.

.

.

.

.

.

.

.

−0.00211+0.00833i −0.03414+0.03273i (8.82−7.96i)×10−8

0.00298+0.00651i −0.05320+0.01246i (1.47+0.36i)×10−8

.

.

.

.

.

.

.

.

.

0.00007−0.00400i 0.04118−0.03248i 0.+0.i (underflow)
.
.
.

.

.

.

.

.

.

1/z4 and consequently use the columns q(n)
5 , e(n)

5 and q(n)
6 to compose the quadratic polynomials p(n)

2 (z) as indicated in
Theorem 1.3. A subsequence of these polynomials converges to

p2(z) ≈ −(0.172966167422277 + 0.173275520875674i)

+ (−0.350050652936770 + 0.846801223076168i)z + z2.

From limn→∞ q(n)
4 and the estimate for p2(z) one obtains the very bad estimates for the poles given by

z4 = 1.363856230213032 + 1.345582135771676i,

z5 = 0.011720961979471 + 2.015241354517116i,

z6 = 1.426059438450287 + 1.440168938686209i. (6)

Instead, let us compute the coefficients C (3)
n of the FPS of

f3(z) = (z1 − z)(z2 − z)(z3 − z) f (z).

The sequence C (3)
n /C (3)

n+1 converges very slowly to

z4 = 1.40491 + 1.39518i. (7)

Compared to the estimates for z4, z5 and z6 obtained from the erroneous conclusion, the value

C (3)
30 /C (3)

31 = 1.39032 + 1.36117i

is already a much better estimate of z4 than the approximation (6) extracted from q(30)
4 , which uses exactly the same data.

Since the sequence C (3)
n /C (3)

n+1 converges, we are either in the situation described in Theorem 2.2 or in that covered by

Theorem 3.3. By inspecting limn→∞ C (4)
n /C (4)

n+1, which does not converge to the same value as C (3)
n /C (3)

n+1, we can exclude

the case of Theorem 2.2. When looking at the next columns in the qd-table for f3(z) (we denote its entries by e(n,3)
m

and q(n,3)
m ), one can see that column e(n,3)

1 converges slowly to zero, while e(n,3)
3 tends to zero rather fast. Hence 1 is a

critical multiplicity index for f3, while 3 is a true critical index and we are in the case of Theorem 6. When composing the
Hadamard polynomials P (n,3)

3 (z) for f3 (which is similar to composing the polynomials p(n)
3 for f from q(n)

4 , q(n)
5 and q(n)

6 )
we find the poles

z4 = 1.414212000843331 + 1.41421251989044i,

z5 = 1.414215123904284 + 1.414214604854061i,

z6 = −1.526112569647409 × 10−12 + 1.999999999998472i.
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Using Theorem 3.3, we could also have eliminated z4 found in (7) and computed the C (n)
4 ,q(n,4)

m , e(n,4)
m . It remains to find the

same pole once again, because its multiplicity is 2, and the last pole which is of the same modulus but only of multiplicity 1.
These two remaining poles can be extracted using Theorem 3.2. In doing so however, one obtains numerically less reliable
results. The reason for this only partly lies in the repeated use of the deflation technique which causes a certain error
buildup. The main reason for the loss in significance when eliminating z4, is the fact that the deflation technique is not only
being used when a critical index is encountered, but also at a critical multiplicity index. Although the previous theorems
prove the existence of and explain the concept of critical multiplicity index, it is recommended not to apply deflation in
case of Theorems 3.3 and 3.6.

A wiser use of the new results consists in identifying the critical multiplicity indices and continuing the computation of
q- and e-columns up to the point where a true critical index has been reached. The poles can then be extracted by means
of Theorem 1.4, in which the Hadamard polynomials are computed that contain information on all zi of equal modulus. The
application of Theorems 3.3 and 3.6 however is useful if the condition of m-normality in Theorem 1.4 is not fulfilled while
the weaker 1- or s-normality is, with s being a critical multiplicity index.

The deflation technique allows to extract information on the multiplicity of the poles as explained in Section 4. This kind
of information is new and could not be detected using the theorems given in the existing literature on the qd-algorithm.
When applied to this example, the Hadamard polynomial P (n,3)

3 (z) can be written in the form

P (n,3)
3 (z) = (z − z4)

2(z − z5)

before extracting the three poles.

6. Particular cases

The remaining condition on the function f (z) in Theorems 2.2 and 3.3 is the 1-normality. If this condition is not satisfied,
the following technique can solve the problem. When for a fixed period k the FPS coefficients of f (z) are such that

cki+ j = 0, j = 1, . . . ,k − 1, i = 0,1,2, . . . ,

then the function g(z) defined by

di = cki, g(z) =
∞∑

i=0

di z
i (8)

is ultimately 1-normal and satisfies g(zk) = f (z). The poles of f are the kth roots of the poles of g .
An example of this situation occurs when dealing with

f (z) = 1

cosh(z3)
+ 1

1 − z

From the computation of the coefficients cn , we see that

lim
n→∞ q(n)

1 = 1/ lim
n→∞(cn/cn+1) = 1.

After eliminating the pole z1 = 1, the sequence C (1)
n is clearly not 1-normal but has periodically appearing zeroes. However,

the compressed series

g(z) =
∞∑

i=0

di z
i, d2i = C (1)

3×2i, d2i+1 = C (1)
3×2i+1

is ultimately 1-normal. The qd-table computed with the coefficients C (1)
n (of which we denote the entries with e(n,1)

m and
q(n,1)

m ) delivers

lim
n→∞ e(n,1)

1 �= 0, lim
n→∞ e(n,1)

2 = 0.

Hence the Hadamard polynomials have to be composed with the q(n,1)
1 and the q(n,1)

2 . The sequence of Hadamard polyno-
mials (also denoted with the superscript (n,1) instead of with the superscript (n)) converges to

lim
n→∞ P (n,1)

2 (z) = 0.40528 + z2.

In this way we find for f (z) the poles

z3
2 = i√ , z3

3 = −i√ .

0.40528 0.40528
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Altogether these are really good approximations for the poles of f (z) given by

z1 = 1, z j+1 = 3

√
π

2
ei (2 j−1)π

6 , j = 1, . . . ,6.

To conclude, we point out that a more complete and thorough understanding of the classical qd-algorithm may lead to
new developments in techniques that build on qd, such as its multipoint version [1], its multivariate version [2–4] and the
latter’s connection with Padé approximation [5,6,8].

7. Proofs

Proof of Theorem 2.2. Let us first prove the necessary conditions. We know that the functions f s+i(z) are ultimately 1-
normal and that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
lim

n→∞
C (s)

n

C (s)
n+1

= · · · = lim
n→∞

C (s+t−1)
n

C (s+t−1)
n+1

= z∗,

lim
n→∞

C (s+t)
n

C (s+t)
n+1

�= z∗.

We also know that zs+1 is a pole isolated in modulus. We don’t know how to compute zs+1 or its multiplicity. The function
f s(z) which is analytic in B(0, |zs+1|) can be written as

f s(z) = P (z)

(zs+1 − z)k
+ g(z),

where g(z) is analytic in B(0, |z|), and P (z) is a polynomial of degree k − 1. Let us denote the pole of f (z) that is strictly
larger in modulus than zs+1 by z̃ (since we don’t know the multiplicity of zs+1 yet, we can’t denote it by zs+t+1). The FPS
representation of f s(z) is given by

f s(z) =
∞∑

n=0

C (s)
n zn,

with

C (s)
n = γ (n)z−(n+1)

s+1 + bn, |bn| < μρn, μ > 0, ρ ∈
]

1

|z̃| ,
1

|zs+1|
[
.

Hence

lim
n→∞

C (s)
n

C (s)
n+1

= zs+1,

and consequently zs+1 = z∗ . If k = 1 then zs+1 cannot be a pole of f s+1(z) and hence

lim
n→∞

C (s+1)
n

C (s+1)
n+1

�= z∗.

This inequality should be interpreted as indicated in the discussion following Theorem 2.2. In case t = 1 the proof is
finished. If t > 1 then k = 1 results in a contradiction for limn→∞ C (s)

n /C (s)
n+1. Hence k > 1 when t > 1. When performing

the same computations as above for f s+1(z), we can conclude that zs+2 = zs+1 = z∗ . This can be repeated till we obtain
zs+t = · · · = zs+1 = z∗ and k � t . Since there is no contradiction with

lim
n→∞

C (s+t)
n

C (s+t)
n+1

�= z∗,

the process terminates and we can conclude that k = t .
Let us now prove the sufficient conditions. With zs+1 being a pole isolated in modulus and of multiplicity t , we can

write f s(z) as

f s(z) = P (z)

(zs+1 − z)t
+ g(z),

where the function g(z) is analytic in B(0, |zs+t+1|), and P (z) is a polynomial of degree t . Possibly zs+t+1 = ∞. Then for
i = 0, . . . , t − 1:

C (s+i)
n = γi(n)z−(n+1)

s+1 + bn, |bn| < μρn, μ > 0, ρ ∈
]

1
,

1
[
,
|zs+t+1| |zs+1|
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where the bn are the FPS coefficients of g(z), and γi(n) is a polynomial of degree t − i − 1 in n. Since

lim
n→∞
∣∣z(n+1)

s+1 C (s+i)
n

∣∣= +∞,

the C (s+i)
n are nonzero from a certain n on, because

∃N,∀n > N:
∣∣C (s+i)

n

∣∣> ∣∣z−(n+1)
s+1

∣∣.
Since

lim
n→∞ bn|zs+1|n+1 = 0, lim

n→∞
γ (n)

γ (n + 1)
= 1,

we have

lim
n→∞

C (s)
n

C (s)
n+1

= lim
n→∞ zs+1

γ (n) + bn|zs+1|n+1

γ (n + 1) + bn+1|zs+1|n+2
= zs+1.

Consequently, using the first part of the proof, zs+1 is the pole smallest in modulus and of multiplicity t − 1 of the function
f s+1(z). This can be repeated t times in total. Finally we obtain that zs+1 is not a pole of f s+t(z), and hence that f s+t(z)
is an analytic function in B(0, |zs+t+1|) with |zs+t+1| > |zs+1|. Then the convergence radius of its FPS expansion, which is
given by

lim
n→∞

∣∣∣∣C (s+t)
n

C (s+t)
n+1

∣∣∣∣
if this limit exists, is strictly larger than |zs+1| and so

lim
n→∞

C (s+t)
n

C (s+t)
n+1

�= zs+1.

Again this inequality should be interpreted as indicated in the discussion following Theorem 2.2. This concludes the
proof. �
Proof of Lemma 3.1. The determinant H̃(n)

k equals det(A(n)

kt Btk) where the k × t and t × k matrices A(n)

kt and Btk are respec-
tively given by

A(n)

kt =

⎛
⎜⎜⎜⎝

γ1e−i(n+1)θ1 γ2e−i(n+1)θ2 . . . γte−i(n+1)θt

1
r γ1e−i(n+2)θ1 1

r γ2e−i(n+2)θ2 . . . 1
r γte−i(n+2)θt

· · · · · · · · · · · ·
1

rk−1 γ1e−i(n+k)θ1 1
rk−1 γ2e−i(n+k)θ2 . . . 1

rk−1 γte−i(n+k)θt

⎞
⎟⎟⎟⎠ , (9)

Btk =

⎛
⎜⎜⎜⎝

1 1
r e−iθ1 . . . 1

rk−1 e−i(k−1)θ1

1 1
r e−iθ2 . . . 1

rk−1 e−i(k−1)θ2

· · · · · · · · · · · ·
1 1

r e−iθt . . . 1
rk−1 e−i(k−1)θt

⎞
⎟⎟⎟⎠ . (10)

This is easily verified since for all μ,ν = 1, . . . ,k the entries c̃n+μ+ν−2 of H̃(n)

k satisfy:

c̃n+μ+ν−2 = 1

rμ+ν−2

t∑
j=1

γ je
−i(n+μ+ν−1)θ j

=
t∑

j=1

(
γ je−i(n+μ)θ j

rμ−1

)(
e−i(ν−1)θ j

rν−1

)

=
t∑

j=1

a(n)
μ jb jν .

It is clear that rank(A(n)
) = k and rank(Btk) = k. Let H̃(n) denote the matrix of which H̃(n) is the determinant. Then
kt k k
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H̃(n)

k = A(n)

kt Btk,

rank
(

H̃(n)

k

)
� min

(
rank
(

A(n)

kt

)
, rank(Btk)

)= k.

The determinant H̃(n)

k also equals

H̃ (n)

k =
(

1

r
· · · 1

rk−1

)2



(n)

k = 1

rk(k−1)



(n)

k , (11)

with



(n)

k =

∣∣∣∣∣∣∣∣∣∣∣

∑t
j=1 γ j(n + 1)e−i(n+1)θ j . . .

∑t
j=1 γ j(n + k)e−i(n+k)θ j∑t

j=1 γ j(n + 2)e−i(n+2)θ j . . .
∑t

j=1 γ j(n + k + 1)e−i(n+k+1)θ j

...
...∑t

j=1 γ j(n + k)e−i(n+k)θ j . . .
∑t

j=1 γ j(n + 2k − 1)e−i(n+2k−1)θ j

∣∣∣∣∣∣∣∣∣∣∣
.

The expression γi(n) is a polynomial in n of degree mi − 1 with mi the multiplicity of zi . The determinant 

(n)

k equals (we
again denote γi(n) by γi )



(n)

k =
∑

j1,..., jk∈{1,...,t}

∣∣∣∣∣∣∣∣∣∣

γ j1 e−i(n+1)θ j1 . . . γ jk e−i(n+k)θ jk

γ j1 e−i(n+2)θ j1 . . . γ jk e−i(n+k+1)θ jk

...
...

γ j1 e−i(n+k)θ j1 . . . γ jk e−i(n+2k−1)θ jk

∣∣∣∣∣∣∣∣∣∣
,

where the j1, . . . , jk are mutually distinct. It is sufficient to continue the proof for γi constant. Each vector ( j1, . . . , jk)

represents an injection σ : {1, . . . ,k} → {1, . . . , t}. Let Ak be the set of all such injections. Then



(n)

k =
∑
σ∈Ak

(γ j1 · · ·γ jk )e−i(n+1)(θ j1 +···+θ jk
)

∣∣∣∣∣∣∣∣∣

1 . . . e−i(k−1)θ jk

e−iθ j1 . . . e−i(k)θ jk

...
...

e−i(k−1)θ j1 . . . e−i(2k−2)θ jk

∣∣∣∣∣∣∣∣∣

=
∑
σ∈Ak

(γ j1 · · ·γ jk )e−i(n+1)(θ j1 +···+θ jk
)e−i(θ j2 +2θ j3 +···+(k−1)θ jk

)

∣∣∣∣∣∣∣∣∣

1 . . . 1

e−iθ j1 . . . e−iθ jk

...
...

e−i(k−1)θ j1 . . . e−i(k−1)θ jk

∣∣∣∣∣∣∣∣∣
.

We denote γσ = γ j1 · · ·γ jk and θσ = θ j1 + · · · + θ jk , Θσ = θ j2 + 2θ j3 + · · · + (k − 1)θ jk and


σ =

∣∣∣∣∣∣∣∣∣

1 . . . 1

e−iθ j1 . . . e−iθ jk

...
...

e−i(k−1)θ j1 . . . e−i(k−1)θ jk

∣∣∣∣∣∣∣∣∣
.

Then



(n)

k =
∑
σ∈Ak

γσ e−i(n+1)θσ e−iΘσ 
σ . (12)

Assume 

(n)

k = 0 from some value for n on. Then a regular system of at least card(Ak) linear homogeneous equations with
unknowns Xσ = γσ e−iΘσ 
σ exists, implying Xσ = 0 and hence γi = 0. Consequently

c̃n = 1

rn+1

(
γ1e−i(n+1)θ1 + · · · + γte−i(n+1)θt

)= 0,

from some value for n on, which is not the case. So 

(n)

k = 0 at most for a periodic subsequence of n-values, the period

being strictly less than card(Ak). Therefore 

(n)

k �= 0 for an infinite number of n-values and the sequence {
(n)

k }n oscillates

because of (12). We conclude that the sequence {H̃(n)}n does not converge.
k
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For k = t , the matrices A(n)
tt and Btt are square and

H̃ (n)

k = det
(

A(n)
tt Btt
)= det

(
A(n)

tt

)
det(Btt) �= 0. �

Proof of Theorem 3.2. We have seen that the coefficient cn in the FPS development of f (z) is given by

cn = 1

rn+1

(
γ1e−i(n+1)θ1 + · · · + γte−i(n+1)θt + O

(
hn+1)),

where h = ρr with ρ ∈ ] 1
|zt+1| ,

1
r [. Here zt+1 = ∞, if zt is the last pole. In any case |h| < 1. Let H(n)

k denote the matrix of

which H(n)

k is the determinant. Then

H(n)

k = 1

rn+1

(
A(n)

kt Btk + O
(
hn+1)R(n)

k (h, r)
)
,

where A(n)

kt and Btk are given by (9) and (10) and where

Rk(h, r) =
(

O (hμ+ν−2)

rμ+ν−2

)
1�μ,ν�k

.

Consequently

H (n)

k = 1

rk(n+1)

(
det
(

A(n)

kt Btk
)+ O
(
hn+1))= 1

rk(n+1)

(
H̃ (n)

k + O
(
hn+1)).

For e(n)

k given by

e(n)

k = H (n)

k+1 H (n+1)

k−1

H (n+1)

k H (n)

k

,

we obtain

e(n)

k = rk(n+2)+k(n+1)(H̃ (n)

k+1 + O (hn+1))(H̃ (n+1)

k−1 + O (hn+2))

r(k+1)(n+1)+(k−1)(n+2)(H̃ (n+1)

k + O (hn+2))(H̃ (n)

k + O (hn+1))

= rẽ(n)

k + O
(
hn+1),

with

ẽ(n)

k = H̃ (n)

k+1 H̃ (n+1)

k−1

H̃ (n+1)

k H̃ (n)

k

.

According to Lemma 3.1 the sequence {H̃(n)

k }n oscillates. From (11) we find that

ẽ(n)

k = 1

r2



(n)

k+1

(n+1)

k−1



(n+1)

k 

(n)

k

,

with 

(n)

k given by (12), also oscillates and hence, for 1 � k � t , the sequence {e(n)

k }n does not converge. �
Proof of Theorem 3.3. The FPS coefficients cn in the series development of f (z) are given by

cn =
t∑

j=1

γ j(n)z−(n+1)
j + bn,

with γ j(n) a polynomial of degree m j − 1 in n, where m j is the multiplicity of z j , and with |bn| < μρn , where μ > 0 and
ρ ∈ ] 1

|zt+1| ,
1

|zt | [. Again zt+1 = ∞ if zt is the last pole. With zu being the pole of maximal multiplicity, cn/cn+1 can be written
as

cn

cn+1
= r

γ1(n)e−i(n+1)θ1 + · · · + γt(n)e−i(n+1)θt + bnrn+1

γ1(n + 1)e−i(n+2)θ1 + · · · + γt(n + 1)e−i(n+2)θt + bn+1rn+2

= r
γu(n)

γu(n + 1)
eiθu

γ1(n)
γu(n)

e−i(n+1)(θ1−θu) + · · · + 1 + · · · + γt (n)
γu(n)

e−i(n+1)(θt−θu) + bn
γu(n)

rn+1

γ1(n+1) e−i(n+2)(θ1−θu) + · · · + 1 + · · · + γt (n+1) e−i(n+2)(θt−θu) + bn+1 rn+2
.

γu(n+1) γu(n+1) γu(n+1)
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Now for all j �= u:

lim
n→∞

γ j(n)

γu(n)
e−i(n+1)(θ j−θu) = 0,

lim
n→∞

γu(n)

γu(n + 1)
= 1,

lim
n→∞

bnrn

γu(n)
= 0. �

Proof of Lemma 3.5. We first prove part (a).
With s poles of maximal multiplicity among the t equimodular poles, we have

cn = 1

rn+1

t∑
j=1

γ j(n)e−i(n+1)θ j + bn,

with ∂γ1(n) = · · · = ∂γs(n) = ms − 1 and ∂γ j(n) = m j − 1 < ms − 1 for j = s + 1, . . . , t . Let αk denote the coefficient of nms−1

in γk(n), and this for k = 1, . . . , s. Then cn can be rewritten as

cn = nms−1

rn+1

(
s∑

k=1

(
αk + γk(n) − αknms−1

nms−1

)
e−i(n+1)θk

︸ ︷︷ ︸
I

+
t∑

k=s+1

γk(n)

nms−1
e−i(n+1)θk

︸ ︷︷ ︸
II

+ rn+1bn

nms−1

)
,

with ∂(γk(n) − αknms−1) � ms − 2 for k = 1, . . . , s, and with ∂γk(n) � ms − 2 for k = s + 1, . . . , t . If we define

γ := max
(

max
1�k�s

∂
(
γk(n) − αknms−1), max

s+1�k�t
∂γk(n)

)
= ms − κ, κ � 2,

τ := ms − 1 − γ ,

then γ � ms − 2 and τ � 1. We conclude that

cn = nms−1

rn+1

(
α1e−i(n+1)θ1 + · · · + αse−i(n+1)θs + O

(
1

nτ

))
.

For part (b) the proof is as follows.
We have t equimodular poles of modulus r say, and among these s of them have the same maximal multiplicity, for

simplicity ms (ms > ms+1).
From expression I, we extract

∑s
j=1 α je−i(n+1)θ j and from expression II αs+1

nms−ms+1
e−i(n+1)θs+1 , the rest of I and II being of

order O (1/nτ ).
Then we can write for cn , with b = ms − ms+1,

cn = nms−1

rn+1

(
s∑

j=1

α je
−i(n+1)θ j + αs+1

nb
e−i(n+1)θs+1 + O

(
1

nτ

))
,

and for cn+μ+ν−2 in H(n)
s+1,

cn+μ+ν−2 = nms−1

rn+1

(
n + μ + ν − 2

n

)ms−1

χ
(n)
μν ,

χ
(n)
μν =

s∑
j=1

α je
−i(n+1)θ j + (n + μ + ν − 2)−b αs+1

rμ+ν−2
e−i(n+μ+ν−1)θs+1 + O

(
1

(n + μ + ν − 2)τ

)
1

rμ+ν−2
.

We have(
n + μ + ν − 2

n

)ms−1

= 1 + (ms − 1)(μ + ν − 2)O

(
1

n

)
,

(n + μ + ν − 2)−b = n−b
[

1 − b(μ + ν − 2)O

(
1

n

)]
.

Let us denote
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a(n)
μ j := 1

rμ−1
α je

−i(n+μ)θ j , j = 1, . . . , s,

a(n)
μ,s+1 := 1

rμ−1
n1−καs+1e−i(n+μ)θs+1 ,

b jν := 1

rν−1
e−i(ν−1)θ j , j = 1, . . . , s,

bs+1,ν := 1

rν
e−i(ν−1)θs+1 ,

A(n) := (a(n)
μν

)
1�μ,ν�s+1,

B := (bμν)1�μ,ν�s+1.

Then cn+μ+ν−2 can be rewritten as

cn+μ+ν−2 = nms−1

rn+1

(
s+1∑
j=1

a(n)
μ j b jν + O

(
1

n

)
R(n)

μν

)
,

with

R(n)
μν = (μ + ν − 2)

[
−bn−b αs+1

rμ+ν−2
e−i(n+μ+ν−1)θs+1 + O

(
n

(n + μ + ν − 2)τ

)
1

rμ+ν−2
+ (ms − 1)χ

(n)
μν

]
.

Let us have a closer look at the rest term R(n)
μν :

lim
n→∞−bn−b αs+1

rμ+ν−2
e−i(n+μ+ν−1)θs+1 = 0,

O

(
n

(n + μ + ν − 2)τ

)
1

rμ+ν−2
= O

(
1

nτ−1

)
1

rμ+ν−2
, τ − 1 � 0,

lim
n→∞(n + μ + ν − 2)−b αs+1

rμ+ν−2
e−i(n+μ+ν−1)θs+1 = 0.

Hence for a constant D(μ,ν, r) and an integer N ,

max
n>N

∣∣R(n)
μν

∣∣< D(μ,ν, r).

With R(n)
s+1 defined by R(n)

s+1 = (R(n)
μν)1�μ,ν�s+1, we can write

H(n)
s+1 = nms−1

rn+1

(
A(n)B + O

(
1

n

)
R(n)

s+1

)
,

and consequently

H (n)
s+1 = n(s+1)(m−1)

r(s+1)(n+1)

(
det
(

A(n)
)

det(B) + O

(
1

n

))
.

Now

det
(

A(n)
)= α1 · · ·αs+1

1

rs(s+1)/2

1

nb
e−i(n+1)(θ1+···+θs+θs+1)V ,

with

V =

∣∣∣∣∣∣∣∣∣

e−iθ1 . . . e−iθs e−iθs+1

e−i2θ1 . . . e−i2θs e−i2θs+1

...
...

...

e−i(s+1)θ1 . . . e−i(s+1)θs e−i(s+1)θs+1

∣∣∣∣∣∣∣∣∣
.

So

det(A(n)) = α1 · · ·αs+1
1

rs(s+1)/2

1

nb
e−i(n+1)θ V ,

θ = θ1 + · · · + θs + θs+1.
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Since det(B) is independent of n, we obtain in this case

H (n)
s+1 = n(s+1)(ms−1)

r(s+1)(n+1)

(
A

nb
e−i(n+1)θ + O

(
1

n

))
, A = α1 · · ·αs+1 V

rs(s+1)/2
. �

Proof of Theorem 3.6. We first focus on the e-values. Using Lemma 3.5(a), the cn+μ+ν−2 are given by

cn+μ+ν−2 = (n + μ + ν − 2)ms−1

rn+μ+ν−1

(
s∑

j=1

α je
−i(n+μ+ν−1)θ j + O

(
1

(n + μ + ν − 1)τ

))

= nms−1

rn+1

(
n + μ + ν − 2

n

)ms−1
(

s∑
j=1

α je
−i(n+μ+ν−1)θ j + O

(
1

(n + μ + ν − 1)τ

))

= nms−1

rn+1

(
s∑

j=1

α je
−i(n+μ+ν−1)θ j + O

(
1

n

)
R(n)

μν

)
,

with

R(n)
μν = 1

rμ+ν−2
O

(
n

(n + μ + ν − 1)τ

)
+ (ms − 1)(μ + ν − 2)

(
s∑

j=1

α je
−i(n+μ+ν−1)θ j + O

(
1

(n + μ + ν − 1)τ

))

and

max
n>N

∣∣R(n)
μν

∣∣< D(μ,ν, r),

for a constant D(μ,ν, r) and an integer N . If we define the matrix R(n)

k = (R(n)
μν)1�μ,ν�k, then the k × k Hankel matrix H(n)

k
can be written as

H(n)

k = nms−1

rn+1

(
A(n)

ks Bsk + O

(
1

n

)
R(n)

k

)
,

where the matrices A(n)

ks and Bsk are defined in the proof of Lemma 3.1. From this we can conclude that

H (n)

k = nk(ms−1)

rk(n+1)

(
H̃ (n)

k + O

(
1

n

))
, τ � 1, k = 1, . . . , s,

where the determinant H̃(n)

k is also given in Lemma 3.1. Hence

e(n)

k =
(

n

n + 1

)ms−1

r
H̃ (n)

k+1 H̃ (n+1)

k−1 + O ( 1
n )

H̃ (n)

k H̃ (n+1)

k + O ( 1
n )

, k = 1, . . . , s − 1,

with {H̃(n)

k }n oscillating, as detailed in Lemma 3.1. Hence we can conclude as in the proof of Theorem 3.2 that for 1 � k � t ,

the sequence {e(n)

k }n does not converge.

Note that for ms = 1 the expression above resembles the one obtained for e(n)

k in Theorem 3.2. To show that

limn→∞ e(n)
s = 0, we use the result obtained in Lemma 3.5 for the determinant H (n)

s+1:

e(n)
s = H (n)

s+1 H (n+1)
s−1

H (n)
s H (n+1)

s

= ρn

(
A

nb
e−i(n+1)θ + O

(
1

n

))
(H̃ (n+1)

s−1 + O ( 1
(n+1)

))

(H̃ (n)
s + O ( 1

n ))(H̃ (n+1)
s + O ( 1

(n+1)
))

,

with A and b given in Lemma 3.5, and with

ρn = n(s+1)(ms−1)(n + 1)(s−1)(ms−1)

r(s+1)(n+1)+(s−1)(n+2)

rs(n+1)+s(n+2)

ns(ms−1)(n + 1)s(ms−1)
= r

(
n

n + 1

)ms−1

.

Let us now turn to the sequence of Hadamard polynomials. We introduce the notation

c̃n+μ+ν−2 =
s∑ α j

rμ+ν−2
e−i(n+μ+ν−1)θ j ,
j=1



H. Allouche, A. Cuyt / Applied Numerical Mathematics 60 (2010) 1188–1208 1207
and construct a Hankel determinant H̃(n)
s of size s with these c̃n . The Hadamard polynomial associated with these c̃n is

P̃ (n)
s (z) = H̃ (n)

s (z)

H̃ (n)
s

,

where H̃(n)
s (z) is defined accordingly. The polynomial P̃ (n)

s (z) is monic of degree s. Similar to [17, p. 626] we can check that

P̃ (n)
s (z) =

s∏
j=1

(
z − e−iθ j /r

)
.

Let H(n)
s (z) and H̃(n)

s (z) respectively denote the matrices of which H (n)
s (z) and H̃(n)

s (z) are the determinants. Then

H(n)
s (z) = nms−1

rn+1

(
H̃(n)

s (z) + O

(
1

n

)
R̃(n)

s+1

)
,

with R̃(n)
s+1 given by

R̃(n)
μν = R(n)

μν, 1 � μ � s + 1, 1 � ν � s,

R̃(n)
μ,s+1 = 0,

and consequently

H (n)
s (z) = ns(ms−1)

rs(n+1)

(
H̃ (n)

s (z) + O

(
1

n

)
π(n)(z)

)
,

with π(n)(z) given by

π(n)(z) =
s∑

i=0

π
(n)
i zi,

max
n>N

∣∣π(n)
i

∣∣< pi,

where N is fixed. So if s is a critical multiplicity index, then

H (n)
s = ns(ms−1)

rs(n+1)

(
H̃ (n)

s + O

(
1

n

))
,

and for the Hadamard polynomial

P (n)
s (z) = H̃ (n)

s (z) + O ( 1
n )π(n)(z)

H̃ (n)
s + O ( 1

n )
.

Hence ∣∣∣∣∣P (n)
s (z) −

s∏
j=1

(
z − e−iθ j /r

)∣∣∣∣∣= O

(
1

n

)
π(n)(z) −∏s

j=1(z − e−iθ j /r)

H̃ (n)
s + O ( 1

n )
,

with, for N fixed,

max
n>N

∣∣∣∣π(n)(z) −∏s
j=1(z − e−iθ j /r)

H̃ (n)
s + O ( 1

n )

∣∣∣∣= ∣∣R(z)
∣∣,

where R(z) is a polynomial of at most degree s with coefficients independent of n. On every compact set K ⊂ C we then
have

max
z∈K

∣∣∣∣∣P (n)
s (z) −

s∏
j=1

(
z − e−iθ j /r

)∣∣∣∣∣= O

(
1

n

)
max
z∈K

∣∣C(z)
∣∣,

which converges to zero for n tending to infinity. �
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