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Abstract: It is well-known that model reduction techniques applied to stable 
multi-dimensional Linear Shift-Invariant (LSI) systems with Infinite-extent 
Impulse Response (IIR) do not necessarily guarantee a stable reduced system. 
Several conditions exist to check stability a posteriori. In this paper we outline 
a new technique that guarantees, a priori, that the system or filter is stable.  
In Section 1 we establish the necessary notation and definitions to deal with 
multi-dimensional systems and filters. Section 2 introduces the technique of 
multivariate Padé-type approximation and deals with stability. In Section 3 we 
illustrate the use of the newly proposed technique in filter design. 
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1 Introduction 

Multi-dimensional systems arise in problems like computer-aided tomography, scene 
analysis, image deblurring, weather prediction, seismology, sonar and radar applications 
and many other problems. Noises can be filtered from spoken messages or picture 
images. Systems can transform a message to a form recognisable by a computer.  
A multi-dimensional discrete signal is represented by a multi-dimensional array 

1( , , ).dx n n

For simplicity of notation we restrict our presentation to d = 2. An important example of 
discrete signals is the unit-impulse (n1, n2) defined by (n1, n2) = 1 for n1 = n2 = 0 and 
(n1, n2) = 0 elsewhere. When talking about 2-dimensional LSI systems we always  

refer to recursive systems or systems with IIR, which transform an input signal x(n1, n2)
into an output signal y(n1, n2) such that y(n1, n2) can be described by a difference equation 
of the form 

1 2 1 2
2 2 \ {(0,0)}

1 2 1 2 1 1 2 2 1 2 1 1 2 2
( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )
N D

k k N k k D
y n n a k k x n k n k b k k y n k n k

⊂ °⊂

∈ ∈ °

= − − − − −  (1) 

where D° ≠ φ. The sets N and D = D° ∪ {(0, 0)} are the regions of support of the arrays 
a(n1, n2) and b(n1, n2), respectively, with b(0, 0) = 1. For x(n1, n2) = (n1, n2) the above 
difference equation becomes 

1 2

1 2 1 2 1 2 1 1 2 2
( , )

( , ) ( , ) ( , ) ( , )
k k D

h n n a n n b k k h n k n k
∈ °

= − − −  (2) 

and since D° ≠ φ the signal h(n1, n2), which is called the impulse response of the system, 
indeed has infinite extent. Taking the z-transform of both sides of equation (2) results in 

1 2

1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2 1 2
( , )

1 2 1 2 1 2 1 2 1 2
( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) .

k k

k k D

k k k k

k k N k k D

H z z A z z b k k H z z z z

a k k z z H z z b k k z z

− −

∈ °

− − − −

∈ ∈ °

= −

= −
 (3) 

Here, H(z1, z2) is the z-transform of the impulse response h(n1, n2) and is called the 
transfer function of the system. So the transfer function of a recursive system is the ratio 
of the z-transforms A(z1, z2) and B(z1, z2) of the coefficient arrays a(n1, n2) and b(n1, n2),
with b(0, 0) = 1: 

1 2

1 2

1 2

1 2

1 2 1 2( , ) 1 2
1 2

1 21 2 1 2( , )

( , ) ( , )
( , ) .

( , )1 ( , )

k k
k k N

k k
k k D

a k k z z A z z
H z z

B z zb k k z z

− −
∈

− −
∈ °

= =
+

 (4) 

Without loss of generality (Dudgeon and Mersereau, 1984, pp.176–180) we restrict 
ourselves here to systems whose impulse response has support on the first quadrant.  
This restriction is, for instance, commonly imposed upon IIR filters to guarantee a 
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recursive implementation. We can therefore write for the transfer function of the desired 
system 

1 2

1 2

1 2 1 2 1 2
0 0

( , ) ( , ) n n

n n
H z z h n n z z

+∞ +∞
− −

= =

=  (5) 

or equivalently, with 1 1
1 1 2 2and ,w z w z− −= =

1 2

1 2

1 2 1 2 1 2
0 0

(1/ , 1/ ) ( , ) n n

n n

H w w h n n w w
+∞ +∞

= =

=  (6) 

where the equality sign is only formal. In the sequel the series representation in the right 
hand side of equations (5) or (6) is denoted by H while the rational function (4) is still 
denoted by H. The output signal y(n1, n2) of a LSI system (5) applied to an input which is 
a complex sinusoid of the form x(n1, n2) = exp i(t1n1 + t2n2), is characterised by the 
system’s frequency response which is given by 

1 2

1 2

1 2 1 1 2 2
0 0

( , ) ( , ) exp( ( )).t t

n n

H e e h n n t n t n
+∞ +∞

= =

= − +i i i

An important issue is stability. If a system is unstable, any input, including computational 
noise, can cause the output to grow without bound. Thus, the condition referred to as 
Bounded-Input-Bounded-Output (BIBO) stability is generally imposed. As indicated in 
Theorem 1, the stability of a multi-dimensional LSI system with transfer function  
H is essentially related to the zero-set of the denominator polynomial B (O’Connor and 
Huang, 1978; Shanks et al., 1972; Strintzis, 1977). 

Theorem 1: Let the two-dimensional first-quadrant LSI system with rational transfer 
function given by (4) have no non-essential singularities of the second kind on the unit 
bicircle. Then the system is stable if and only if one of the following conditions numbered 
(i), (ii), (iii) or (iv) is fulfilled: 

(i) B(z1, z2) ≠ 0 for |z1| ≥ 1, |z2| ≥ 1 

(ii) (a) B(z1, z2) ≠ 0 for |z1| ≥ 1, |z2| = 1 

(b) B(z1, z2) ≠ 0 for |z1| = 1, |z2| ≥ 1 

(iii) (a) B(z1, z2) ≠ 0 for |z1| = 1, |z2| = 1 

(b) B(a, z2) ≠ 0 for |z2| ≥ 1 and any a such that |a| = 1 

(c) B(z1, b) ≠ 0 for |z1| ≥ 1 and any b such that |b| = 1 

(iv) (a) B(z1, z2) ≠ 0 for |z1| ≥ 1, |z2| = 1 

(b) B(a, z2) ≠ 0 for |z2| ≥ 1 and any a such that |a| ≥ 1 

(here the role of z1 and z2 can be interchanged).
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2 Multi-dimensional Padé-type approximation 

The problem with unstable model reduction is with the location of the poles of the 
reduced system, which can usually not be predicted while performing the reduction of  
the given system. The stability of the reduced system can for instance be concluded  
from an inspection of its rootmap. The rootmap shows the loci of the roots of 
B(cos  + isin , z2) and those of B(z1, cos  + isin ) as traverses the interval [–π, π]
as indicated in Theorem 1(ii). Applying a simple technique such as Padé approximation, 
which is also well-understood in the multivariate case (Cuyt et al., 1992; Cuyt, 1999), to 
a stable system such as 

1 1 1 1 2 2
1 2 1 2 1 2

1 1 1 1 2 2
1 2 1 2 1 2

1 2 1 1 1 1 2 2
1 2 1 2 1 2

1 1 1 1
1 2 1 2

1 1.62151( ) 2.63704 0.99994( )

1.62129 ( ) 1.00203
( , ) 0.00895

1 1.78813( ) 3.20640 0.82930( )
1.49271 ( ) 0.6

z z z z z z
z z z z z z

H z z
z z z z z z

z z z z

− − − − − −

− − − − − −

− − − − − −

− − − −

− + + + +

− + +
=

− + + + +

− + + 2 2
1 29823z z− −

 (7) 

in an attempt to further reduce the degree, can generate an instable system.  
For instance, the general order Padé approximant to (7) of partial degree 1 in 

1 1
1 2andz z− −  in numerator and denominator, 

1 2

1 2

1 2

1 2

1
1 2 1 2, 0 1 11 2

1 1 2 21
1 2 1 2 1 2, 0

( , )( , )
,

( , ) ( , )

k k
k k

k k
k k

a k k w wp w w
w z w z

q w w b k k w w
= − −

=

= = =

satisfying 

2
1 2 1 2

( , ) \ {(0,0),(1,0),
(0,1),(2,0),(1,1),(0,2),(2,1)}

( )( , ) ( , ) i j

i j

Hq p w w g i j w w
∈

− =

has a rootmap as shown in Figure 1, since it is given by 

1 2 1 2 1 2

1 2 1 2 1 2

( , ) 0.00895 0.04379 0.02368 0.05357
.

( , ) 1 5.0586 2.8226 7.2707
p w w w w w w
q w w w w w w

− − +
=

− − +

The original rootmap of H(z1, z2), which remains inside the unit disc for both z1 and z2, is 
given in Figure 2. In both figures the unit circle is shown as a reference. The frequency 
response magnitude of the original system (7), which implements a lowpass filter of the 
form (17), is shown in Figure 3. Its 1 2 1 2| ( , ) | 0.1 and | ( , ) | 0.5t t t tH e e H e e= =i i i i  contour 
lines are shown in Figure 4. 

The problem of the undesirable poles can be overcome by using the Padé-type 
approximation (Abouir and Cuyt, 1993), where the denominator polynomial of the 
reduced model is prechosen on the basis of other information, while still in some Padé 
approximation sense 

1 2
1 2

1 2

( , )(1/ ,1/ ) .
( , )

p w wH w w
q w w

≈
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Figure 1 Rootmap of the unstable general order Padé approximant to H(z1, z2) of partial degree 1 
in 1 2

1 1andz z− −  in numerator and denominator 

Figure 2 The original rootmap of H(z1, z2), which remains inside the unit disc for both z1 and z2

Figure 3 The frequency response magnitude of the system H(z1, z2)
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Figure 4 1 2 1 2| ( , ) | 0.1 and | ( , ) | 0.5t t t tH e e H e e= =i i i i  contour lines for H(z1, z2) of Figure 3

In the context of multi-dimensional model reduction, the Padé-type approximation goes 
as follows. Let the polynomial q(w1, w2) be chosen. For instance, q can be a lower  
degree approximant to the denominator polynomial B of H that satisfies the same  
stability conditions as B. Or the coefficients of the polynomial q can be obtained  
as the solution of a least squares approximation subject to linear constraints such as the 
ones obtained in Theorem 2. The latter is illustrated in Section 3. Given the power  
series expansion (6) for the transfer function, we compute a Padé-type approximant  
p(w1, w2)/q(w1, w2) to (6) by determining p(w1, w2), for a given q(w1, w2), from the  
Padé-like accuracy-through-order principle (8). Let the polynomials p(w1, w2) and  
q(w1, w2) be of the general form 

1 2 1 2
( , )

1 2 1 2
( , )

( , ) ( , )

( , ) ( , )

i j

i j N

i j

i j D

p w w a i j w w

q w w b i j w w
∈

∈

=

=

where Ñ (Numerator) and D  (Denominator) are finite subsets of 2. When 
approximating H(z1, z2) in (4), one usually chooses Ñ ⊂ N and .D D⊂  It is now possible 
to let the free polynomial p(w1, w2) satisfy 

2
1 2 1 2

( , ) \

( )( , ) ( , ) .i j

i j N

Hq p w w g i j w w
∈

− =  (8) 

Equation (8) says nothing more than that p(w1, w2) is the appropriate partial sum of the 
series development 1 2( )( , ).Hq w w  Its coefficients can be computed from 

( , )

( , ) ( , ) ( , ) ( , )
k D

a i j b k h i k j i j N
∈

= − − ∈  (9) 
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where h(i – k, j – ) = 0 for i < k or j < . Despite the simplicity of the approximation 
procedure, multi-dimensional Padé-type approximants enjoy a number of nice properties 
(Abouir and Cuyt, 1993, pp.307–310). For a Padé-type approximant to the transfer 
function H(z1, z2) with denominator q(w1, w2) of the form (10), it is now easy to guarantee 
a stable reduced system. We use formulation (ii) of Theorem 1 to derive the a priori 
stability of a denominator q(w1, w2) of the form 

1 2
1 1 1 1 1 1

1 2 1 1 1 2 2 1 2 2 1 2
1 1

( , ) (1 ) (1 )
M M

k k
k

q z z z z z z z zα β α β γ− − − − − −

= =

= − − − − −∏ ∏  (10) 

with real coefficients α1k, 1k, α2 , β2 and γ . It suffices to obtain the stability for each 
factor in q.

Theorem 2: The polynomial q with α1k, 1k, α2 , β2  and γ ∈  satisfies (ii) of  
Theorem 1 if: 

(a) for all 1 ≤ k ≤ M1 the coefficients 1k and 1k satisfy 

|α1k| < 1    |β1k| < 1    |α1k + β1k| < 1    |α1k – β1k| < 1

(b) for all 1 <  < M2 the coefficients α2 , β2  and γ   satisfy 

|α2 | < 1     |β2 | < 1     |γ | < 1

α2  + β2  + γ < 1 α2  – β2  – γ < 1

– α2  + β2  – γ < 1      – α2  – β2  + γ < 1

Proof: The proofs of (a) and (b) are very similar. For each of the M1 factors of the form 
1 1

1 21 z zα β− −− −  we find that: 

• for |z1| = 1, in other words z1 = cos  + isin  with | | ≤ , the zero z2 is given by 

2 2 2

cos sin
1 2 cos 1 2 cos

z β αβ θ αβ θ
α θ α α θ α
− −= +

− + − +
i  (11) 

• and analogously, for z2 = cos φ + isin φ with |φ| ≤ π the zero z1 equals 

1 2 2

cos sin .
1 2 cos 1 2 cos

z α αβ φ αβ φ
β φ β β φ β
− −= +

− + − +
i  (12) 

For equations (11) and (12) to satisfy |z2| < 1 and |z1| < 1 we need 

2

2

| | 1 2 cos

| | 1 2 cos

β α θ α

α β φ β

< − +

< − +
 (13) 

which automatically implies | | < 1 and | | < 1 because cos  + cos φ < 1 for all 
and φ. The conditions (13) simplify to 

| | 1 | | 1 | | 1 | | 1.α β α β α β< < + < − <
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For each of the M2 factors 1 1 1 1
1 1 1 21 z z z zα β γ− − − −− − −  in (b) the expressions (11) and (12) 

are replaced by 

2 2 2

( ) cos ( )sin
1 2 cos 1 2 cos

z β αγ γ αβ θ αβ γ θ
α θ α α θ α

− + − − += +
− + − +

i  (14) 

and

1 2 2

( ) cos ( )sin .
1 2 cos 1 2 cos

z α βγ γ αβ φ αβ γ φ
β φ β β φ β

− + − − +
= +

− + − +
i  (15) 

For equations (14) and (15) to satisfy |z2| < 1 and |z1| < 1 we need 
2 2 2

2 2 2

2 cos 1 2 cos
2 cos 1 2 cos

β γ βγ θ α θ α
α γ αγ φ β φ β

+ + < − +
+ + < − +

 (16) 

which leads to 

| | < 1    | | < 1    |γ | < 1 

α +  +   < 1  –  –  < 1 

–α +  –   < 1    –  –  +   < 1. 

A stable Padé-type approximant to (5) with h(n1, n2) given by (18) is for instance 
2 2

1 2 1 2 1 2 1 2
2

1 2 1 2 1 2

( , ) 0.00895 0.01443( ) 0.00862( ) 0.02336 .
( , ) (1 0.88949( ) 0.79691 )

p w w w w w w w w
q w w w w w w

− + + + +=
− + +

3 Stable filter design 

In IIR filter design (Hasegawa et al., 2000) the issue is to obtain a stable filter p/q  
such that 

1 2
1 2

1 2

( , )( , ) .
( , )

t t
t t

t t

p e eH e e
q e e

− −

− −≈
i i

i i

i i

An ideal lowpass filter can for instance be specified by the frequency response 

1 2 1 2 1 2

1 2

1 ( , ) [ , ] [ , ]
( , ) or ( , )

0 ( , )
t t t t t t T

H e e H e e
t t T

π π π π∈ ⊂ − × −
=

∉
i i i i  (17) 

where the domain T can be as simple as a square, disk or diamond, which are all 2D balls 
with radius r in the ∞, 2 or 1-norm respectively. For T = [–π /8, π /8] × [–π /8, π /8] we 
have for instance 

1 2
1 2

1 2

sin(( / 8) ) sin(( / 8) )( , ) .n nh n n
n n

π π
π π

=  (18) 
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In practical situations it is known to be a problem how to determine a suitable, preferably 
separable, denominator polynomial. Now let q take one of the forms specified in 
Theorem 2 and let p be determined by (8) with h(n1, n2) specified by (17). In addition,  
let S and U be finite grids of points covering respectively T and its complement  
[–π, π] × [–π, π]\T and let 1,2 be positive weights with 1 + 2 = 1. Then, optimal values 
for the parameters 1k, 1k, 2 , 2  and γ  can be obtained from the solution of the 
discretised optimisation problem 

1 2 1 2

1 1
1 2 1 22 2

2 2
1 2, ,

( , ) ( , ), ,

min ( ) ( , ) ( ) ( , )
k k

t t t t

t t S t t U

Hq p e e Hq p e e
α β
α β γ

λ λ− − − −

∈ ∈

− + −i i i i

which simplifies to 

1 2 1 2

1 1 2 2
1 2 1 2

2 2
1 2, , , ,

( , ) ( , )

min ( ) ( , ) ( , ) .
k k

t t t t

t t S t t U

q p e e p e e
α β α β γ

λ λ− − − −

∈ ∈

− +i i i i  (19) 

The difference with a classical (weighted) least-squares approach as in Hasegawa et al. 
(2002) is that in (19): 
• the denominator coefficients in q(w1, w2) are expressed in terms of some parameters 

, and
• the numerator coefficients in p(w1, w2) depend through (8), or equivalently (9), on 

the same parameters 
• only then is the optimisation problem written down, guaranteeing stability through

a number of linear constraints for the , and , expressed in Theorem 2. 

As an example, we take T = [–π /8, π /8] × [–π /8, π /8], 1 = 0.75, 2 = 0.25 and 
1 1 1 1 1 1 1 1

1 2 21 1 2 1 1 2 22 1 2 2 1 2( , ) (1 ( ) )(1 ( ) )q w w z z z z z z z zα γ α γ− − − − − − − −= − + − − + −

with p(w1, w2) in (8) also of partial degree 2 in both w1 and w2. So 

{( , ) | 0 , 2}.N i j i j= ≤ ≤

Covering [–π, π ] × [–π, π ] in (19) by a grid of only 33 × 33 equidistant points (t1, t2)
leads to 

21 22 1 20.7939 0.1436 0.7096 0.2501α α γ γ= = = − =

for the denominator polynomial. The numerator polynomial of the filter is then given by 
1 1 2 2 1 1

1 2 1 2 1 1 1 2
2 1 1 2 2 2

1 2 1 2 1 2

( , ) 0.04350 0.001609( ) 0.004381( ) 0.009265
0.000902( ) 0.001505 .

p w w z z z z z z
z z z z z z

− − − − − −

− − − − − −

= + + + + −

+ + +

The frequency response magnitude of the latter lowpass filter implementation  
p/q, shown on [– , ] × [–π, π] and more closely on [– /4, /4] × [–π /4, π /4] can be 
found in the Figures 5 and 6, respectively. Its contour lines 1 2| ( , ) | 0.1t tH e e =i i and

1 2| ( , ) | 0.5t tH e e =i i  are shown in Figure 7. 
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Figure 5 The frequency response magnitude of the approximating lowpass filter p/q, shown on
[– , ] × [–π, π]

Figure 6 The frequency response magnitude of the approximating lowpass filter p/q, shown on
[– /4, /4] × [–π/4, π/4]  
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Figure 7 1 2 1 2| ( , ) | 0.1 and | ( , ) | 0.5t t t tH e e H e e= =i i i i  contour lines for H (z1, z2) of Figure 5 

More complex optimisation schemes, where weights are used not only for the pass- and 
stopband, but also for the transition band and where different discretisations are applied 
to the different regions, can be considered. A study of the effect of these variations is 
outside the scope of this paper where we want to illustrate the usefulness of the concept 
of Padé-type approximation. 

4 Future work 

The possibility to determine the numerator and denominator coefficients in a  
multi-dimensional rational digital filter with an a priori stability guarantee, opens new 
perspectives. The main drawback of the technique is still the least-squares problem (19) 
which does not lead to a unique global optimum. The authors plan to investigate the 
applicability of quadratic programming techniques as in Salazar Celis et al. (2007) to the 
subject of digital filter design. 
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