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In his paper the notions of two-point Padé-type and two-point Padé approximants are gen-
eralized for multivariate functions, with a generating denominator polynomial of general form.
The multivariate two-point Padé approximant can be expressed as a ratio of two determinants
and computed recursively using the E-algorithm. A comparison is made with previous defini-
tions by other authors using particular generating denominator polynomials. The last section
contains some convergence results.
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1. Introduction

In [4], Brezinski introduces the notion of multivariate Padé-type approximant from
the so-called rectangular form of a polynomial in two variables. In [18], Orive and
Gonzalez-Vera extend the concept of two-point Padé approximants to functions of two
variables, again following the rectangular approach, by means of certain linear func-
tionals acting on the space of bivariate Laurent polynomials. For (m1,m2) ∈ N

2, the
numerator and denominator polynomials of these approximants respectively take the
form

P(x, y) =
∑

(i,j)∈N
aij x

iyj , Q(x, y) =
∑

(d,e)∈D
bdex

dye,

where

N = ([0, k1 − 1] × [0, k2 − 1] ∪ [k1,m1 − 1] × [k2,m2 − 1]) ∩ N
2,

∗ The work of this author was performed as part of the project P1999/127 of Autónomo de Canarias.
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D = [0,m1] × [0,m2] ∩ N
2,

1 � k1 � m1 − 1, 1 � k2 � m2 − 1.

The aim of this paper is to define a new family of multivariate two-point Padé-type
approximants, admitting a general form for the subsets N and D (see [1]). Next, we
construct multivariate two-point Padé approximants satisfying higher order approxima-
tion conditions. Section 5 contains two examples illustrating the numerical advantage of
the new approximants.

2. Univariate two-point Padé-type approximants

Univariate two-point Padé-type and two-point Padé approximants have been stud-
ied by Draux [11,12], Gonzalez-Vera [13], Jones and Thron [15], McCabe [17] and
others. For results on the convergence of sequences of such approximants, see [10]. Let
the (possibly) formal series expansions

f0(x)=
∞∑
i=0

cix
i, |x| → 0, (1)

f∞(x)=
∞∑
i=1

c∗
−ix

−i , |x| → ∞, (2)

and two integers m and k (0 � k � m) be given.
Given an arbitrary polynomial q(x) = ∑m

i=0 bix
i of degree m with q(0) = 0,

called generating polynomial, we look for a polynomial p(x) = ∑m−1
i=0 aix

i of degree
m − 1 satisfying (

f0 − p

q

)
(x)= O

(
xk

)
, (3)(

f∞ − p

q

)
(x)= O

((
x−1

)m−k+1)
. (4)

The coefficients ai of p(x) are then given by

ai =
m∑
j=0

bj ci−j , 0 � i � k − 1, (5)

ai =
m∑
j=0

bj c
∗
i−j , k � i � m − 1, (6)

where cr = 0 if r < 0 and c∗
s = 0 if s � 0.

Remark that if k = m, the two-point Padé-type approximant is an ordinary Padé-
type approximant (one-point case) [5].
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3. Multivariate two-point Padé-type approximants

Without loss of generality we only write everything down for the bivariate case.
Assume that f represents a function holomorphic in certain neighbourhoods V0 and V∞
of (0, 0) and (∞,∞), respectively. Let f0(x, y) and f∞(x, y) be its respective Taylor
and Laurent expansions,

f0(x, y)=
∞∑
i=0

∞∑
j=0

ci,j x
iyj , (7)

f∞(x, y)=
∞∑
i=1

∞∑
j=1

c∗
−i,−j x

−iy−j . (8)

Let Q(x, y) be an arbitrary polynomial of the form

Q(x, y) =
∑

(d,e)∈D
bdex

dye, D ⊂ N
2, b00 = 0

with the restriction that D satisfies the so-called inclusion property. This means that
for every index point (d, e) in D, the whole rectangle of index points [0, d] × [0, e] is
contained in D.

Choose finite subsets N0 and N∞ of N
2 such that

N0 ∩N∞ = ∅ (9)

and

N0 as well as N = N0 ∪ N∞ satisfy the inclusion property. (10)

Let us now define the product index set of A ⊂ N
2 and B ⊂ N

2 by

A ∗ B = {
(i + k, j + l): (i, j) ∈ A, (k, l) ∈ B

}
and impose the extra restriction

(N0 ∪ N∞) ∗ {
(0, 0), (1, 0), (0, 1), (1, 1)

} = D. (11)

This is illustrated in figure 1.
We introduce the standard notation Z

−
0 for the strictly negative integer numbers,

and the notation E for the subset E = (Z−
0 )

2 ∗ D of Z
2. Note that, since D satisfies the

inclusion property, so does the set E ∩ N
2.

To construct bivariate two-point Padé-type approximants, we look for a bivariate
polynomial P(x, y) of the form

P(x, y) =
∑

(i,j)∈N0

aij x
iyj +

∑
(i,j)∈N∞

aij x
iyj , (12)
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Figure 1.

satisfying

(f0Q − P)(x, y)=
∑

(i,j)∈N2\N0

dij x
iyj , (13)

(f∞Q − P)(x, y)=
∑

(i,j)∈E\N∞

d∗
ij x

iyj . (14)

The rational function (P/Q)(x, y) will be called a multivariate two-point Padé-type
approximant to the pair (f0, f∞), M2PTA for short, and we denote it by

(N0, N∞/D)(f0,f∞) or (N0, N∞/D)f .

Remarks. (a) The construction of the M2PTA is similar to that of the multivariate Padé-
type approximants in [2].

(b) We obtain the univariate situation as a special case by choosing for f (x, 0)

D = {
(i, 0) ∈ N

2: 0 � i � m
}
,

N0 = {
(i, 0) ∈ N

2: 0 � i � k − 1
}
, 0 � k � m − 1,

N∞ = {
(i, 0) ∈ N

2: k � i � m − 1
}
,

while the set E equals

E = {
(i, 0) ∈ Z

2: −∞ � i � m − 1
}
.

(c) Condition (11) on N0 and N∞ is analogous to choosing, in the univariate case,
the degree of the numerator one less than the degree of the generating denominator
polynomial.

(d) Next, we deal with the following situation. Suppose that for two finite index
sets S1 ⊂ N

2 and S2 ⊂ (Z −
0 )2, the expansions f0(x, y) and f∞(x, y) are given by

f0(x, y)=
∑

(i,j)∈S2

cij x
iyj +

∞∑
i=0

∞∑
j=0

cij x
iyj , (x, y) ∈ V0,

f∞(x, y)=
∑

(i,j)∈S1

c∗
ij x

iyj +
∞∑
i=1

∞∑
j=1

c∗
−i,−j x

−iy−j , (x, y) ∈ V∞.
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If we define two other expansions

f1(x, y) =
∞∑
i=0

∞∑
j=0

eij x
iyj

with

eij =
{
cij − c∗

ij , (i, j) ∈ S1,

cij , (i, j) ∈ N
2 \ S1

and

f2(x, y) =
∞∑
i=1

∞∑
j=1

e∗
ij x

−iy−j

with

e∗
ij =

{
c∗
ij − cij , (i, j) ∈ S2,

c∗
ij , (i, j) ∈ [(

Z
−

0

)2] \ S2,

then the M2PTA of (f0, f∞) is given by

(N0, N∞/D)(f0,f∞)(x, y) =
∑

(i,j)∈S2

cij x
iyj +

∑
(i,j)∈S1

c∗
ij x

iyj + (N0, N∞/D)(f1,f2)(x, y).

This situation is studied by Draux in the univariate case [12], and is extended by Orive
and Gonzalez-Vera [18] for the particular case

S1 = [0, µ1] × [0, µ2] ∩ N
2, S2 = [−ν1,−1] × [−ν2,−1] ∩ (

Z
−
0

)2
.

Theorem 1. Let the index sets N0 and N∞ be defined by (9)–(11). Then the numerator
polynomial of the M2PTA is given by

P(x, y) =
∑

(i,j)∈N0

( ∑
(d,e)∈D

bdeci−d,j−e

)
xiyj +

∑
(i,j)∈N∞

( ∑
(d,e)∈D

bdec
∗
d−i,e−j

)
xiyj .

Proof. We write

P(x, y) =
∑

(i,j)∈N0

aij x
iyj +

∑
(i,j)∈N∞

aij x
iyj .

Using Leibniz’ rule, we have

(f0Q)(x, y)=
∞∑
i=0

∞∑
j=0

( ∑
(d,e)∈D

bdeci−d,j−e

)
xiyj

=
∑

(i,j)∈N0

( ∑
(d,e)∈D

bdeci−d,j−e

)
xiyj +

∑
(i,j)∈N2\N0

( ∑
(d,e)∈D

bdeci−d,j−e

)
xiyj ,



16 J. Abouir et al. / Multivariate two-point Padé-type approximants

where ci−d,j−e = 0 if d > i or e > j . From condition (13), we obtain

aij =
∑

(d,e)∈D
bdeci−d,j−e, (i, j) ∈ N0.

On the other hand, if (x, y) ∈ V∞ we have

(f∞Q)(x, y) =
∞∑
i=1

∞∑
j=1

c∗
i,j x

−iy−j ×
∑

(d,e)∈D
bdex

dye =
∞∑
i=1

∞∑
j=1

∑
(d,e)∈D

bdec
∗
i,j x

d−iye−j .

Taking into account the definition of the set E, we can write

(f∞Q)(x, y)=
∑

(i,j)∈E

( ∑
(d,e)∈D

bdec
∗
d−i,e−j

)
xiyj

=
∑

(i,j)∈N∞

( ∑
(d,e)∈D

bdec
∗
d−i,e−j

)
xiyj +

∑
(i,j)∈E\N∞

( ∑
(d,e)∈D

bdec
∗
d−i,e−j

)
xiyj ,

with c∗
d−i,e−j = 0 if d � i or e � j . From (14) we obtain

aij =
∑

(d,e)∈D
bdec

∗
d−i,e−j , (i, j) ∈ N∞. �

Next, we investigate the well-known consistency property. This property asserts
that, given a rational function f , the approximation procedure under consideration re-
constructs the given rational function, assuming that the numerator and denominator
degree of the rational approximant are large enough. We are in a position to show the
extension of this property to M2PTA.

Theorem 2. Let

f (x, y) = P(x, y)

Q(x, y)
=

∑
(i,j)∈N āij x

iyj∑
(i,j)∈D bij xiyj

with b00 = 0. For all N0, N∞ satisfying (9)–(11) and also N0 ∪ N∞ ⊇ N , and with
Q(x, y) being the generating polynomial of the M2PTA, we have

(N0, N∞/D)f (x, y) = f (x, y).

Proof. It is clear that f (x, y)Q(x, y) − P(x, y) = 0. Consider the M2PTA with de-
nominator polynomial Q(x, y): (N0, N∞/D)f (x, y) = P(x, y)/Q(x, y). We have that(

P − P
)
(x, y) = (

P − f0Q
)
(x, y) + (f0Q − P)(x, y) =

∑
(i,j)∈N2\N0

dij x
iyj .

On the other hand, we have(
P − P

)
(x, y) = (

P − f∞Q
)
(x, y) + (f∞Q − P)(x, y) =

∑
(i,j)∈E\N∞

d∗
ij x

iyj .
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So we can write (
P − P

)
(x, y) =

∑
(i,j)∈N2\(N0∪N∞)

d̃ij x
iyj .

Since N0 ∪ N∞ ⊇ N , we can immediately conclude that P = P . �

In order to illustrate this property, consider the function

f (x, y) = 1

(1 − x)(2 − y)
+ 1

(2 − x)(1 − y)

which was used in [18] to show that for the multivariate two-point Padé approximants
considered by these authors the consistency property does not hold. In contrast, in the
present case, let

N0 = {
(0, 0), (1, 0)

}
, N∞ = {

(0, 1), (1, 1)
}
,

D = {
(i, j) ∈ N

2: 0 � i, j � 2
}
.

The sets N0 and N∞ satisfy all conditions of theorem 2. If we take Q(x, y) = (1 −
x)(2 − x)(1 − y)(2 − y) as generating polynomial, we find that

(N0, N∞/D)f (x, y) = 4 − 3x − 3y + 2xy

Q(x, y)
= f (x, y).

4. Higher-order approximants

In [5], Brezinski introduces the notion of higher order approximants by adding
orthogonality conditions to the generating polynomial. In the same way, let us con-
struct higher order approximants and introduce multivariate two-point Padé approxi-
mants (M2PA). We shall see that these are an extension of the multivariate Padé approx-
imants (MPA) defined in [8,16]. In order to do so, we impose additional conditions on
Q(x, y) or rather on its coefficients {bde}.

Let the finite subsets I0 ⊂ N
2 and I∞ ⊂ E be such that (see figures 2 and 3):

N0 ⊂ I0 and N∞ ⊂ I∞,

I0 satisfies the inclusion property,

I∞ satisfies the inverse inclusion property, in other words,

if (i, j) ∈ I∞ then (µ, ν) ∈ I∞ for (µ, ν) ∈ E and µ � i, ν � j,

#(I0 \ N0) + #(I∞ \ N∞) = #(D) − 1.

The additional conditions on {bde} are given by


∑
(d,e)∈D

bdeci−d,j−e = 0, (i, j) ∈ I0 \ N0,

∑
(d,e)∈D

bdec
∗
d−i,e−j = 0, (i, j) ∈ I∞ \ N∞,

(15)
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Figure 2. Figure 3.

where cij = 0 if i < 0 or j < 0 and c∗
ij = 0 if i � 0 or j � 0.

Therefore, the coefficients {aij } are now given by

aij =

∑
(d,e)∈D

bdeci−d,j−e, (i, j) ∈ N0,

aij =
∑

(d,e)∈D
bdec

∗
d−i,e−j , (i, j) ∈ N∞.

(16)

Let P0(x, y) and P∞(x, y) be given by

P0(x, y) =
∑

(i,j)∈N0

aij x
iyj , P∞(x, y) =

∑
(i,j)∈N∞

aij x
iyj ,

where as before

P(x, y) = P0(x, y) + P∞(x, y).

We call the rational function P(x, y)/Q(x, y) the multivariate two-point Padé approxi-
mant and we denote it by

[N0, N∞/D](f0,f∞)

(I0,I∞) or [N0, N∞/D]f(I0,I∞).

Recall that the multivariate Padé approximant defined in [8] is denoted by [N/D]fI .

Theorem 3.

(f0Q − P)(x, y)=
∑

(i,j)∈N2\I0

dij x
iyj , (x, y) ∈ V0, (17)

(f∞Q − P)(x, y)=
∑

(i,j)∈E\I∞
d∗
ij x

iyj , (x, y) ∈ V∞. (18)

Proof. The result follows easily from (15) and (16). �
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Corollary. Let

[N0, N∞/D]f(I0,I∞)(x, y) = P(x, y)

Q(x, y)
.

If I∞ \ N∞ = φ then

P0(x, y)

Q(x, y)
= [N0/D]fI0

(x, y).

Proof. The proof of this result immediately follows from the definition of multivariate
Padé approximants. �

Following the same ideas as in [9] for MPA, the multivariate two-point Padé ap-
proximant introduced here can be expressed as a ratio of two determinants and computed
recursively using the E-algorithm [6].

Brezinski also proved that Chisholm’s [7] C-approximants in two variables can be
seen as higher-order multivariate Padé-type approximants (see [4]). In this sense, by a
particular choice of N0, N∞, I0 and I∞, our approximants can be viewed as an extension
of the bivariate one-point C-approximants.

5. Numerical examples

In this section, we list some numerical experiments comparing our M2PTA
(N0, N∞/D)f with the multivariate two-point Padé approximants ((k1, k2)/(m1,m2))f
defined in [18]. We complement this with numerical results for the M2PA.

Example 1. Consider again the function

f (x, y) = 1

(1 − x)(2 − y)
+ 1

(2 − x)(1 − y)
= 4 − 3x − 3y + 2xy

Q(x, y)
,

which admits the expansions

f0(x, y)=
∞∑
i=0

∞∑
j=0

(2−i−1 + 2−j−1)xiyj , |x| < 1, |y| < 1,

f∞(x, y)=
∞∑
i=1

∞∑
j=1

(2i−1 + 2j−1)x−iy−j , |x| > 2, |y| > 2.

For the computation of M2PA for f (x, y), we choose the index sets

N0 = {
(0, 0), (1, 0)

}
, N∞ = {

(0, 1), (1, 1)
}
,

D = {
(i, j) ∈ N

2: 0 � i, j � 2
}
,

I0 =N0 ∪ {
(0, 1), (2, 0), (1, 1), (0, 2)

}
,

I∞ =N∞ ∪ {
(1, 0), (1,−1), (0, 0), (−1, 1)

}
.
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We then obtain

[N0, N∞/D]f(I0,I∞)(x, y)

= 16 + 8xy

16 − 12(x + y) − x2 + 10xy − y2 − 6(x2y + xy2) + 4x2y2
.

(x, y) [N0, N∞/D]f (x, y) f (x, y)

(0.10D−02, 0.20D−02) 0.1002255082D+01 0.1002254132D+01
(0.10D+00, 0.10D+00) 0.1176436186D+01 0.1169590643D+01

(−0.50D+01,−0.60D+01) 0.4290262982D−01 0.4124149660D−01
(0.75D+02, 0.75D+02) 0.3703703114D−03 0.3702332469D−03
(0.50D+03, 0.40D+03) 0.1006795992D−04 0.1006785800D−04

Example 2. Let us consider the function

f (x, y) = ln

(
1 + 1

(1 − x)(1 − y)

)

which admits the expansions

f0(x, y)= ln(2) + 1

2
x + 1

2
y + 3

8
x2 + 1

4
xy + 3

8
y2 + 7

24
x3 + 1

8
x2y

+ 1

8
xy2 + 7

24
y3 + · · · , |x| < 1, |y| < 1,

f∞(x, y)= x−1y−1 + x−2y−1 + x−1y−2 + x−3y−1 + 1

2
x−2y−2 + x−1y−3

+ x−4y−1 + x−1y−4 + · · · , |x| > 1, |y| > 1.

First consider, for the construction of the M2PTA,

N0 = {
(0, 0), (1, 0)

}
, N∞ = {

(0, 1), (1, 1)
}

D = {
(i, j) ∈ N

2: 0 � i, j � 2
}
.

If we choose

Q(x, y) = 2 − 3(x + y) + x2 + 5xy + y2 − 2(x2y + xy2) + x2y2,

we obtain

(N0, N∞/D)f (x, y) = 1.386 − 1.079x − y + xy

2 − 3(x + y) + x2 + 5xy + y2 − 2(x2y + xy2) + x2y2

and

((1, 1)/(2, 2))f (x, y) = 1.386 + xy

2 − 3(x + y) + x2 + 5xy + y2 − 2(x2y + xy2) + x2y2
.
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Therefore

(x, y) (N0, N∞/D)f (x, y) ((1, 1)/(2, 2))f (x, y) f (x, y)

(−0.50D−03,−0.50D−03) 0.6926276202D+00 0.6921085389D+00 0.6926474305D+00
(0.10D+00, 0.20D+00) 0.8869106994D+00 0.1135573615D+01 0.8708283578D+00
(0.30D+00, 0.30D+00) 0.1167596084D+01 0.2022044056D+01 0.1112126008D+01

(−0.40D+00,−0.60D+00) 0.3662465531D+00 0.2240815648D+00 0.3690974639D+00
(0.25D+01, 0.30D+01) 0.2656408747D+00 0.7405245304D+00 0.2876820725D+00
(0.10D+02, 0.10D+02) 0.1213367644D−01 0.1526442252D−01 0.1227009259D−01
(0.50D+03, 0.50D+03) 0.4015397591D−05 0.4032166808D−05 0.4016040064D−05

To compute the M2PA for f (x, y), we choose the index sets

I0 =N0 ∪ {
(0, 1), (2, 0), (1, 1), (0, 2)

}
,

I∞ =N∞ ∪ {
(1, 0), (1,−1), (0, 0), (−1, 1)

}
,

which yields

[N0, N∞/D]f(I0,I∞)(x, y) = 24 ln(2) + (12 − 18 ln(2))x + 3y + 8xy

24 − 18x − 12y + 9xy − 3y2 − 8x2y − 5xy2 + 8x2y2
.

(x, y) [N0, N∞/D]f (x, y) f (x, y)

(0.40D−02, 0.30D−02) 0.6965790391D+00 0.6966595927D+00
(0.40D−01, 0.60D−01) 0.7450661659D+00 0.7458136452D+00
(0.10D+00, 0.10D+00) 0.8061587811D+00 0.8040478766D+00
(0.75D+02, 0.75D+02) 0.1825231011D−03 0.1825983754D−03
(0.50D+03, 0.40D+03) 0.5021868219D−05 0.5022563868D−05

6. Error formulas

Integral expressions for the error involved in multivariate two-point Padé-type ap-
proximation, are based on the multivariate versions of Cauchy’s and Laurent’s theorems
(see, e.g., [19,20]). In the sequel, we say that a function f belongs to the polydisc
algebra A(P) if f is holomorphic on P and continuous on its closure.

We restrict our attention to functions being holomorphic in a particular class of
domains containing (0, 0) and (∞,∞), the so-called polydisc-type domains (see [19]).
These are domains of the form P = P0 ∪ P∞, with

P0 = {
(x, y) ∈ C

2: |x| < r1, |y| < r2
}

and

P∞ = {
(x, y) ∈ C

2: |x| > R1, |y| > R2
} (19)

with Ri � ri , i = 1, 2. Let us also consider the respective distinguished boundaries of
the above domains

S0 = {
(x, y) ∈ C

2: |x| = r1, |y| = r2
}

and

S∞ = {
(x, y) ∈ C

2: |x| = R1, |y| = R2
}
.

(20)
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Figure 4.

If f ∈ A(P) , then from Cauchy’s and Laurent’s theorems, the following integral
representation for the numerator P holds where w = (u, v):

P(z)= 1

(2π i)2

{ ∫
S0

(f0Q)(w)

uv

(∑
γ∈N0

(
z

w

)γ)
du dv

+
∫
S∞

(f∞Q)(w)

uv

( ∑
γ∈N∞

(
z

w

)γ)
du dv

}
. (21)

On the other hand, since (f0Q) ∈ A(P), by Cauchy’s theorem we have for z ∈ P0:

(f0Q)(z)= 1

(2π i)2

∫
S0

(f0Q)(w)

(u− x)(v − y)
du dv

= 1

(2π i)2

∫
S0

(f0Q)(w)

uv

(∑
γ∈N2

(
z

w

)γ)
du dv. (22)

In the same way, since (f∞Q) ∈ A(K), with K = {z ∈ C
2: Ri < |zi| < R′

i ,
i = 1, 2} (R′ arbitrarily large), we can write

(f∞Q)(z) = 1

(2π i)2

∫
S∞

(f∞Q)(w)

(u − x)(v − y)

(∑
γ∈E

(
z

w

)γ)
du dv. (23)

As a consequence the following result holds.

Theorem 4. If f ∈ A(P), where P = P0 ∪ P∞, with P0 and P∞ as in (19) and
w = (u, v), the following integral representations for the error hold: for z ∈ P0,

E(N0, N∞/D)f (z) = (f − (N0, N∞/D)f )(z)

= 1

(2π i)2Q(z)

{∫
S0

(f0Q)(w)

uv

( ∑
γ∈N2\N0

(
z

w

)γ)
du dv

−
∫
S∞

(f∞Q)(w)

uv

( ∑
γ∈N∞

(
z

w

)γ)
du dv

}
, (24)
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and for z ∈ P∞,

E(N0, N∞/D)f (z)= (f − (N0, N∞/D)f )(z)

= 1

(2π i)2Q(z)

{
−

∫
S0

(f0Q)(w)

uv

(∑
γ∈N0

(
z

w

)γ)
du dv

+
∫
S∞

(f∞Q)(w)

(u− x)(v − y)

( ∑
γ∈E\N∞

(
z

w

)γ)
du dv

}
. (25)

Note that for the special rectangular case treated in [18], the expressions above take a
simpler form.

7. Convergence

Throughout this section, let us assume that f is holomorphic in a domain P =
P0 ∪ P∞ as above. In order to study the convergence of sequences of multivariate two-
point Padé type approximants, we introduce the sequences of lattices

D(m) = [
0, n1(m)

] × [
0, n2(m)

]
, N(m) = [

0, n1(m) − 1
] × [

0, n2(m) − 1
]
,

N0(m) ∪ N∞(m) = N(m), N0(m) ∩ N∞(m) = ∅,
satisfying the initial assumptions

lim
m→∞ n1(m) = lim

m→∞ n2(m) = lim
m→∞ k(m) = lim

m→∞ h(m) = ∞, (26)

where k(m)+h(m) � n1(m)+n2(m)− 2 and k(m)− 1 and h(m)− 1 are the respective
sides of the largest isosceles triangles T0(m) and T∞(m) inscribed in N0(m) and N∞(m)

(see figure 5).
We suppose in addition that the zeros of the sequence of polynomials {Qm} lie

outside P. Suitable choices for {Qm} ensure that the error decays uniformly (and if
possible geometrically) to zero. Let us solve this problem for some particular cases.

Figure 5.
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Example 1. Let us suppose that f ∈ H(P0 ∪ P∞) with ri = Ri for i = 1, 2. Then the
sequence of denominators

Qm(x, y) = (
xn1 − r

n1
1

)(
yn2 − r

n2
2

)
(27)

with n1 = n1(m) and n2 = n2(m) will provide the desired convergence of the approxi-
mants. Indeed, we can apply the error formulas to

P ′
0 = {

(x, y) ∈ C
2: |x| < r ′

1, |y| < r ′
2

}
and

P ′
∞ = {

(x, y) ∈ C
2: |x| > R′

1, |y| > R′
2

}
,

with r ′
i = ri − δi , R′

i = ri + εi and δi and εi arbitrarily small. Under these conditions,
the following result can be proved.

Theorem 5. Let f be holomorphic in the domain

A = {
(x, y) ∈ C

2: |x| < r1, |y| < r2
} ∪ {

(x, y) ∈ C
2: |x| > r1, |y| > r2

}
and let the sequence of multivariate two-point Padé-type approximants {(N0(m),

N∞(m)/D(m))f }m∈N satisfy (26) with the denominators given by (27). Then, this se-
quence converges uniformly to f in compact subsets of A. Moreover, if

lim
m→∞

k(m)

m
= s > 0 and lim

m→∞
h(m)

m
= t > 0,

then the convergence is geometrical, with respective asymptotic degrees of convergence
given by

O

{
max

( |x|
r1
,
|y|
r2

)s}
for z ∈ P0, O

{
max

(
r1

|x| ,
r2

|y|
)t}

for z ∈ P∞.

Observe that the restriction on the radius is compensated by a total freedom in the
choice of the lattices N0 and N∞. Otherwise, one must impose some restriction on the
lattices of contact. In this respect, recall that in [19], the sequence of denominators

Qm(x, y) = (
xk − rk1

)(
xh − Rh

1

)(
yk − rk2

)(
yh − Rh

2

)
where k + h = m, delivers optimal results in the case of lattices as in figure 6. The
following example extends this result.

Example 2. Suppose that for each m ∈ N, there exist six nonegative integers ki =
ki(m), k′

i = k′
i (m) and k′′

i = k′′
i (m) with i = 1, 2, such that

k′′
i � ki � k′

i , i = 1, 2,

[0, k′′
1 − 1] × [0, k′′

2 − 1] ⊆ N0(m) ⊆ [0, k′
1 − 1] × [0, k′

2 − 1], (28)

[k1, n1 − 1] × [k2, n2 − 1] ⊆ N∞(m) ⊆ [k′′
1 , n1 − 1] × [k′′

2 , n2 − 1].
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Figure 6.

Then, for the sequence of denominators

Qm(x, y) = (
xk1 − r

k1
1

)(
xh1 − R

h1
1

)(
yk2 − r

k2
2

)(
yh2 − R

h2
2

)
, (29)

with hi = ni − ki , i = 1, 2, the following result holds.

Theorem 6. If (28) is satisfied and

lim
m→∞

ki(m)

m
= lim

m→∞
k′
i (m)

m
= lim

m→∞
k′′
i (m)

m
= si, 0 < si < 1, i = 1, 2,

then the sequence {(N0(m),N∞(m)/D(m))f }m∈N of multivariate two-point Padé-type
approximants with the denominators given by (29), converges geometrically to f in
compact subsets of P0 ∪ P∞. The respective asymptotic degrees of convergence are

O

{
max

(( |x|
r1

)s1

,

( |y|
r2

)s2
)}

for z ∈ P0,

O

{
max

((
R1

|x|
)1−s1

,

(
R2

|y|
)1−s2

)}
for z ∈ P∞.
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