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Abstract In this contribution, we present an overview of

the various techniques for combining atomistic molecular

dynamics with Monte Carlo simulations, mainly in the

context of condensed matter systems, as well as a brief

summary of the main accelerated dynamics techniques.

Special attention is given to the force bias Monte Carlo

technique and its combination with molecular dynamics, in

view of promising recent developments, including a

definable timescale. Various examples of the application of

combined molecular dynamics / Monte Carlo simulations

are given, in order to demonstrate the enhanced simulation

efficiency with respect to either pure molecular dynamics

or Monte Carlo.

Keywords Molecular dynamics � Monte Carlo � Long

time scale dynamics

1 Introduction

In order to gain control over properties of and processes in

materials, an atomic scale understanding is of primary

importance. To this end, two main techniques are com-

monly used, viz. molecular dynamics (MD) and Monte

Carlo (MC) simulations [1].

Molecular dynamics (MD) simulations have been shown

to be an invaluable tool to investigate both static and

dynamic properties of systems at the atomic scale. Con-

sequently, they have been applied to a countless number of

systems and processes, ranging from the calculation of

structural and morphological properties of materials [2, 3],

transport properties [4], growth of thin films and other

nanomaterials [5, 6], protein folding [7], etching [8, 9],

sputtering [10], chemical reactions [11], friction [12],

fraction [13], phase changes [14, 15] and so forth.

Classical MD simulations are based on solving the

equations of motion for all particles in the system to obtain

the trajectory of the particles in phase space. Thus, essen-

tially, the integration of these equations yields the positions

and velocities of the particles, as well as the forces acting

on them. The forces are derived from some suitable

interatomic potential. This has two immediate implications.

First, classical MD simulations are approximative, due to

the inexact nature of the calculated forces and energies.

Second, exactly because of this approximative nature, they

are computationally cheap, making calculations of systems

containing millions of atoms feasible, in contrast to more

exact approaches such as Car-Parrinello MD. Also, the

timescale that can be handled is orders of magnitude longer

than what is possible with more exact approaches.

On the other hand, MD simulations are limited in two

main respects. First, while the system may contain up to

millions of atoms, this still only constitutes a material on the

nanometer to sub-micrometer scale at typical solid-state and

liquid densities. This makes it difficult to study, for

instance, grain boundaries in a polycrystallite [16]. A sec-

ond, more severe restriction, is the timescale that can be

reached. Here, the typical limit is in the nanosecond–

microsecond timescale, although in exceptional cases the

(sub-)millisecond range may be reached [17]. This makes it

difficult to simulate, for instance, the growth of a material,

which typically occurs on timescales well beyond this limit.
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A number of so-called accelerated molecular dynamics

techniques have been developed to extend the timescale of

MD simulations, as will be discussed in Sect. 2.

An alternative to MD for studying atomic scale pro-

cesses and calculating material properties is the use of

Monte Carlo methods [1]. In a Monte Carlo (MC) simu-

lation, atoms are displaced based on random numbers.

Thus, in contrast to MD, the MC technique is not deter-

ministic. The most famous MC technique is undoubtedly

Metropolis MC (MMC) [18]. The MMC algorithm leads to

a system in equilibrium, corresponding to the Boltzmann

distribution. Note, however, that the path toward this

equilibrium is not necessarily physical (and usually it is

indeed not). Indeed, whereas a MD simulation typically

generates a single long trajectory of the system through

phase space, MC typically samples configuration space.

Kikuchi et al. demonstrated, however, that MMC is not

restricted to the calculation of equilibrium properties, but

can also be used to study dynamic properties. Specifically,

they applied the MMC method to the study of Brownian

motion of a harmonically bound particle [19]. The same

authors further extended the method to study interacting

Brownian particles including the effects of hydrodynamic

interactions [20].

An different kind of Monte Carlo method is the so-

called Kinetic Monte Carlo method (sometimes also called

Dynamic Monte Carlo) [21], in which the system is

allowed to evolve dynamically from state to state, based on

a catalog of transitions and associated rates. Each transition

is accepted with a probability proportional to its rate. This,

however, assumes that a complete catalog of possible

transitions is known in advance (see [22] for an example of

the importance of this). Alternatively, a catalog may be

built on-the-fly, as proposed by Henkelman et al. [23].

Similar to this technique is the transition state theory

(TST)-based MC technique of Liu et al. [24].

In contrast to the processes observed in MD, KMC is not

self-consistent, that is, it must be assumed that all possible

escape paths from the system’s current state can be found.

Indeed, if one or several paths are systematically missed,

this will corrupt the dynamics of the system [25].

Moreover, often we wish to retain the actual trajectories

of the atoms, which is not possible with pure MC tech-

niques. However, in many cases, this is of primordial

importance, for instance in the study of particles impinging

on a surface. At the same time, it may be desirable to

include the effect of long timescale events which bring the

system toward equilibrium. For this purpose, MD simula-

tions may be combined with MC simulations.

This paper deals with combining MC with MD simu-

lations. However, it is worth to mention also various other

techniques, not based on combining MD with MC, for

extending the effective timescale or taking into account

relaxation phenomena [25]. In the following section, we

will, therefore, briefly summarize the most prominent

techniques that were specifically designed to simulate the

dynamical evolution of the system on a longer timescale

(i.e., accelerated molecular dynamics). Subsequently, we

will present the various possible combinations of coupling

MC to MD. Finally, a number of examples of combined

MD/MC simulations will be given.

2 Accelerated molecular dynamics techniques

A large number of techniques have been developed for

finding saddle points, exploring the free energy landscape

of the system and for exploring the potential energy land-

scape. In the context of accelerating dynamical processes

and taking into account long timescale events in the

dynamical evolution of a system, we shall here first

describe the most prominent techniques for accessing these

dynamics. Techniques specifically designed for identifying

saddle points and/or reaction paths (such as nudged elastic

band [26], the dimer method [27], transition path sampling

[28], the activation relaxation technique (ART) [29], for-

ward flux sampling [30], finite temperature string method

[31] and milestoning [32], and techniques aimed at sam-

pling the free energy landscape (including thermodynamic

integration [33], metadynamics [34], free energy pertur-

bation [35], umbrella sampling [36], adaptive force bias

[37] and steered MD [38]), fall outside the scope of this

paper.

Prominent among the methods for exploring the atomic

scale dynamics of a system, including relaxation and rare

events, are temperature-accelerated dynamics (TAD) [39],

hyperdynamics [40] and parallel replica [41], all developed

by Voter and coworkers. These techniques build on sta-

tistical mechanics principles for infrequent event systems,

and as such do not make any prior assumptions regarding

the atomistic mechanisms. They are designed to simply

allow the system to evolve more quickly from state to state

than they would in normal MD, provided that the barriers

are relatively high compared to kT.

Note that these techniques are not sampling methods, in

contrast to (most of) the methods mentioned above. Similar

to combined MD/MC simulations in the context of con-

densed matter systems, they generate a single long state-to-

state trajectory.

2.1 Temperature-accelerated dynamics

In TAD, which assumes that harmonic transition state

theory (HTST) holds, the simulation is carried out at ele-

vated temperature in order to collect a sequence of escape

times from the local energy minimum in which the system
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resides. Subsequently, each escape time can be extrapo-

lated to the (lower) temperature of interest, based on the

escape time and activation energy as determined from the

high temperature simulation. Finally, the transition corre-

sponding to the shortest escape time at the lower temper-

ature is effectively carried out.

Employing this technique, Voter et al. [25] reached a

dramatic speed-up factors of 107 in the simulation of

vapor-deposited growth of a Cu(100) surface at a temper-

ature of 77 K. The simulation conditions corresponded

exactly with the experimental conditions of Egelhoff and

Jacob [42]. Note, however, that as the boost factor depends

on the ratio between the elevated temperature and the

lower temperature of interest, much lower factors appear

when simulating systems at higher temperatures. Never-

theless, Georgieva et al. [43] recently applied TAD simu-

lations at 500 K to simulate the magnetron sputter

deposition of complex oxide Mg–Al–O thin films,

extending the typical nanosecond MD timescale to the

millisecond range.

2.2 Hyperdynamics

In hyperdynamics, the potential energy surface (PES) of

the system is modified by adding a suitable bias potential

DV . On this modified PES, the system will escape more

rapidly from its local state than it would on the original

PES. The timescale can be extracted from the value of the

bias potential and the MD time required to escape from

the state on the modified PES. In contrast to TAD, it only

requires TST to hold (instead of HTST), although corre-

lated events are assumed not to occur. In the original

hyperdynamics formulation, a Hessian-based bias poten-

tial was used [40]. While this approach satisfies the

necessary conditions, that is, DV [ 0 at the potential

minimum and DV ¼ 0 at the dividing hypersurfaces, it

quickly becomes prohibitively expensive with increasing

system size as the full 3N Hessian needs to be diago-

nalized in every step.

The main difficulty, therefore, lies in the construction of

a suitable and cheap bias potential. Fichthorn et al. [44]

developed a so-called bond-boost method, in which the

boost potential is derived from the concept of bond

breaking events in a solid. Thus, the boost potential in this

approach is a function of all nearest-neighbor bond lengths

associated with the atoms of interest. Using this technique,

these authors studied the diffusion of Cu adatoms, dimers

and vacancies on a Cu(001) surface [44]. In these simula-

tions, average boost factors in the range 106–101 were

obtained in the temperature range 230–600 K.

Another very promising way to handle the boost

potential problem was proposed by Hamelberg et al. [45].

Their boost potential is defined by functions filling up the

energy minima, such that the underlying shape of the

unmodified potential energy landscape is retained. At some

threshold energy value, the modified potential merges

smoothly with the original potential. Combining this boost

potential with MC-based system thermalization, Tiwary

et al. reached a boost factor of 105 for iron lattice diffusion

at 285 K.

2.3 Parallel replica

In parallel replica, which is the most exact of the three

techniques, a dephased version of the system is replicated

on a number of processors. On each of these, the system is

allowed to evolve, until a transition is detected on one of

the processors. The time accumulated on all processors

then corresponds to the advance in simulation time. Par-

allel replica does not even assume TST to hold. The only

requirement is that the infrequent events obey first-order

kinetics. Besides this requirement, it is also necessary to

dephase the systems on all processors, which typically

requires a simulation time of a few ps.

Very recently, Uberuaga employed both TAD and

parallel replica simulations to study the formation of

fullerene and graphene from carbon nanotube fragments

[46]. Using 39 processors, they obtained a boost factor of

28 in the parallel replica simulations, whereas the TAD

simulations resulted in boost factors in the range 10–1400

(depending on the exact structure simulated). While the

boost factor of parallel replica is typically the lowest of

the three methods, it is important to realize that the boost

can be trivially increased by increasing the number of

processors.

3 Combining MD and MC simulations

3.1 Setting the scene: Monte Carlo simulations

In order to understand Monte Carlo simulations in general

and force bias Monte Carlo in particular, it is useful to

recall the crucially important condition of detailed balance.

This condition can be expressed as

Wðr0jrÞPðrÞ ¼ Wðrjr0ÞPðr0Þ ð1Þ

where P(r) is the probability of finding a particle at

position r, and W(r0|r) is the transition probability of the

particle to go from position r to position r0. If P follows a

Boltzmann distribution, then

W ðr0jrÞ
W ðrjr0Þ ¼ expð�bDUÞ with b ¼ 1

kBT
ð2Þ
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where DU is the change in potential energy of the system

due to the displacement. W can be rewritten as:

Wðr0jrÞ ¼ Aðr0jrÞTcðr0jrÞ ð3Þ

where Tc (r0|r) represents the probability distribution of

selecting a new position r0 from the old position r, and

A(r0|r) is the probability of accepting this new position.

Now, we can define a quantity q as follows:

qðr0jrÞ ¼ Tcðrjr0Þ
Tcðr0jrÞ

expð�bDUÞ ¼ T 0c
Tc

expð�bDUÞ ð4Þ

Using this quantity q, the condition of detailed balance can

now be formulated as

Aðr0jrÞ ¼ min½1; qðr0jrÞ� ð5Þ

Thus, the acceptance of the displacement of a particle from

r to r0 is determined by the associated value of q.

In Metropolis Monte Carlo, Tc is defined as

Tc ¼
c if r0 2 DðrÞ
0 if r0 62 DðrÞDðrÞ

�
ð6Þ

in which D(r) is the displacement domain, and c is a

constant. From this, it follows that

q ¼ expð�bDUÞ ð7Þ

From Eqs. 5 and 7, it is immediately clear that when the

energy of the system is lowered due to the chosen dis-

placement (i.e., DU\0), this displacement is always

accepted, while if the energy increases due to the chosen

displacement (i.e., DU [ 0), the probability of accepting

the displacement is equal to expð�bDUÞ.

3.2 Combined MD/MC algorithms

Various approaches have been proposed to combine MD

and MC simulations. Three classes can essentially be

distinguished:

1. Mixed MD/MC algorithms, in which some atoms are

moved by MD and some by MC;

2. Hybrid MD/MC algorithms, in which the algorithm

itself is a combination of MD and MC;

3. Sequential algorithms, in which MD and MC cycles

alternate.

Note that most of these algorithms are used to generate a

single trajectory, similar to the accelerated molecular

dynamics techniques. However, the stochastic MC com-

ponent does not allow to assign a timescale to the

simulation, except in the case of so-called time stamped

force bias Monte Carlo (tfMC, see below) [47]. Thus, a

comparison in terms of a boost factor with the accelerated

dynamics techniques cannot be made.

3.2.1 Mixed MD/MC algorithm

In mixed MD/MC simulations, some of the atoms are

moved by the MD method and some of the atoms are

moved by the MC method. LaBerge et al. [48] demon-

strated that this method rigorously converges to the same

equilibrium state as either MC or canonical MD alone.

Thus, it was shown that the interruption of the forces

produced by the application of the MC moves does not

incorrectly bias the evolution of the MD particles. This

technique was applied by the above authors to a Lennard-

Jones fluid. It was anticipated that this model would be

superior to either MD or MC on its own, in systems where

some particles are more efficiently sampled by MD (for

instance solvent motions), while others are more efficiently

sampled by MC (for instance highly correlated motions).

Ribeiro et al. [49] recently used mixed MD/MC simu-

lations of polyalanine systems in water. The MC trials,

employing the so-called concerted rotations and angles

(CRA) approach of Ulmschneider and Jorgensen [50], were

applied to a subset of the peptide atoms; the remaining

peptide atoms and the solvent molecules were displaced

using MD. It was demonstrated that the mixed MD/MC

approach led to a faster formation of the secondary struc-

ture, and that the a-helix was formed earlier than in pure

MD simulations. It should be noted, however, that both the

study of LaBerge et al. and Ribeiro et al. use the mixed

MD/MC approach for enhanced sampling of configuration

space.

3.2.2 Hybrid algorithms

Whereas in mixed MD/MC simulations, some of the atoms

are moved by ‘‘pure’’ MD, and other particles are moved

by ‘‘pure’’ MC, it is also possible to construct algorithms in

which the displacement itself is determined in part by a

deterministic factor and in part by a stochastic factor. In

this class, we can further distinguish essentially three

techniques: Langevin or stochastic dynamics, hybrid

Monte Carlo, and force bias Monte Carlo and related

techniques.

Langevin dynamics or stochastic dynamics Langevin

dynamics or stochastic dynamics [51] is typically

employed for simulating systems in which certain degrees

of freedom are omitted. A typical example is the simulation

of solvent effects. In this case, one wishes to include the

average effect of the solvent on the solute, without

explicitly adding all solvent molecules. Stochastic

dynamics are based on solving the Langevin equation, in

which the total force acting on a particle originates from

three contributions: the interaction between the particle and

the other particles in the systems (the systematic force), a

frictional drag component on the particle due to the solvent
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(the frictional force), and a random force acting on the

particle due to random fluctuations which result from

interactions with the solvent (the stochastic force). Thus,

the equation to be solved, the Langevin equation, is:

mi
d2riðtÞ

dt2
¼ FiðriðtÞÞ � ci

driðtÞ
dt

mi þ RiðtÞ ð8Þ

where Fi is the systematic force, ci is the friction coeffi-

cient divided by the mass m of the particle (but it is often

simply called the friction coefficient), and Ri is the sto-

chastic force. Application of Langevin dynamics leads to a

canonical distribution.

Langevin dynamics often allow a significant reduction

in computation time, due to the fact that there are consid-

erably less particles to be simulated, and also because often

longer time steps can be taken relative to MD. Note,

however, that Langevin dynamics do not fully simulate the

effect of the solvent. Specifically, this method does not

account for electrostatic screening, nor for hydrophilic/

hydrophobic effects. Furthermore, there is no conservation

of energy, and unless the friction coefficient is small, the

generated trajectories are not physical [52].

Langevin dynamics are very often used to study bio-

physical and biochemical systems. For instance, Forray

et al. [53] used Langevin dynamics simulations to study the

genome packing in bacteriophage. As an all-atom approach

is not feasible for such a system, a coarse-graining

approach was used, in which the DNA is represented by a

wormlike chain of identical beads. Thus, the chemical

structure of the DNA double helix is lost. Each Langevin

dynamics step corresponded to a time Dt ¼ 12:9 ps. The

structure of the packaged DNA condensate was found to

evolve qualitatively according to experimental data. Thus,

Langevin dynamics allows to study systems on a larger

length scale and on longer timescales than is possible with

standard MD, albeit more approximatively.

Hybrid Monte Carlo In MD, all atoms are displaced

simultaneously. In MC, however, typically only one or a

few particles are displaced at a time, in order to retain a

sufficiently high acceptance rate. The moves in MD are

limited by the time step, which needs to be sufficiently

small in order to conserve the total energy. The moves in

MC, on the other hand, are allowed to be large and

unphysical. Hybrid Monte Carlo, or Hamiltonian Monte

Carlo, was developed by Duane et al. [54] to combine the

advantages of both. The idea is to use MD to generate MC

trial displacements. Provided that a time-reversible and

symplectic algorithm is used, the collective moves thus

generated in MD can be accepted or rejected using the

standard MMC criterion. The end result is that trials move

across the sample space in larger steps, and because of the

Hamiltonian evolution of the system between states, the

correlation between successive states is reduced. However,

as pointed out by Frenkel and Smit [1], the performance of

hybrid MC is not always dramatically better than that of the

corresponding MD, although hybrid MC might be advan-

tageous for systems that are not too large.

This technique is most often used in lattice quantum

chromodynamics (QCD) simulations. Mehlig et al. [55]

demonstrated its use by simulating Lennard-Jonesium as an

example of a condensed matter system. Similarly, Clamp

et al. [56] simulated a 2D Lennard-Jones fluid using both MD

and hybrid MC and found that hybrid MC is more ergodic

and samples phase space more efficiently than MD. A more

realistic system was studied by Brotz et al. [57], employed

hybrid MC to calculate the phase diagram of silicon.

Force bias Monte Carlo and related techniques Several

variants of force bias Monte Carlo (fbMC) simulations

have been presented in the literature. Essentially, the goal

of these algorithms is to have a higher acceptance proba-

bility of the atomic displacements relative to MMC, and

thus to allow the system to evolve to equilibrium more

quickly. The original fbMC method was introduced by

Pangali et al. [59, 58]. In the original version, an accep-

tance criterion was used to accept or reject a new config-

uration. In later versions by Dereli [60], Mezei [61] and

Timonova [62], a uniform acceptance was employed.

Recently, detailed balance in these uniform acceptance

algorithms was formally demonstrated by Neyts et al. [63].

In fbMC, the possible displacements are not chosen

randomly in the domain D(r), but are dependent on the

force acting on the particle, in contrast to the MMC

method. The transition matrix is now written as (in the x-

coordinate):

Tc;x ¼ K�1
x expðkbFxdxÞ if x0 2 DðxÞ

0 if x0 62 DðxÞ

�
ð9Þ

In this expression, the displacement dx is given by

dx = x0 - x, Fx is the x-component of the force at position

x, Kx
-1 is a normalization constant, and k is a (in principle)

arbitrary parameter. Analogous expressions appear for the

components in the other directions.

Thus, from Eq. 9, it is clear that displacements in the

direction of the force are more probable than displacements

against the force. As a result, considerably less displace-

ments need to be rejected compared to the Metropolis

algorithm. The obvious downside is that the force needs to

be calculated.

If the domain D(r) corresponds to a cube centered

around r = (x, y, z) and sides 2D� 2D� 2D, then each

displacement in a direction v is limited as:

�D� dv�D ð10Þ

and the displacement can be written as

r0 ¼ rþ n � D ð11Þ
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Each component nv 2 ½�1; 1� from the vector n ¼
fnx; ny; nzg can be computed based on a random number

g 2 ½0; 1� as

nv ¼
1

cv

ln g ejcvj � e�jcvj
� �

þ e�jcvj
h i

ð12Þ

in which

cv ¼ kbFvD ð13Þ

Just as in the case of MMC, all displacements need to be

accepted or rejected, based on the value of q and thus of A.

Mezei et al. [61] used this technique to simulate a DNA-

octamer duplex and Na?ions solvated by water molecules

employing the AMBER force field.

Dereli [60] proposed to use k = 1/2 and accept all

displacements, instead of using q to accept or reject dis-

placements. Somewhat confusingly, Dereli termed this

technique Dynamic Monte Carlo. Recently, Timonova et al.

thoroughly reviewed the method and termed it uniform

acceptance force bias Monte Carlo [62]. These authors

performed a number of tests to investigate under which

conditions reliable results can be expected. The authors

recommended to use a realistic value for the temperature

parameter, although it should be treated carefully, especially

when using large maximum displacements. From their

simulations, it seems that a value for the maximum allowed

displacement in the range D=2 ¼ 0.06Req � 0.15Req, where

Req is the equilibrium bond length, is appropriate for tem-

peratures at or above room temperature for silicon. The exact

value is dependent on the desired accuracy and speed of the

simulation.

Very recently, a formal proof was presented by Neyts

et al. [63] that this uniform acceptance formulation using

k = 1/2 complies with detailed balance, provided that the

domain D, and thus the maximum allowed displacement, is

chosen sufficiently small. Note that this value is dependent

on both the exact potential, as well as on the temperature.

The higher the temperature, the larger the maximum dis-

placement can be chosen without violating detailed

balance.

A novel version of the uniform acceptance algorithm

was recently published by Mees et al. [47]. In this version,

which was termed time stamped force bias Monte Carlo

(tfMC), the conditional probability for a displacement in

the x-direction is given by:

Pc;xðnxÞ ¼
ecxð2nxþ1Þ�e�cx

ecx�e�cx
nx 2 ½�1; 0½

ecx�ecxð2nx�1Þ

ecx�e�cx
nx 2�0; 1�

(
: ð14Þ

Again, analogous expressions appear for the other direc-

tions. In practice, a pair of random numbers (nv, Pv) is

generated for each direction v, with nv 2 ½�1; 1� and Pv 2
½0; 1� for all atoms. If Pc,v(nv) [ Pv, the displacement of

the atom is accepted and its new position is rv;new ¼
rv;old þ Dnv. Else, if Pc,v(nv) \ Pv, a new random pair

(nv, Pv) is generated and its acceptance is reevaluated.

From Eq. 12, it is clear that in fbMC, the displacement

of the particles is based on both a deterministic component,

that is, the force, and a stochastic component, that is, a

random number(s). At low temperature, the deterministic

component dominates, and all displacements are essentially

in the direction of the force. At high temperature, on the

other hand, all displacements will be essentially fully

random.

Importantly, an expression for the statistical time per

MC step was derived from this algorithm:

Dth i ¼ D
3
�
ffiffiffiffiffiffiffiffiffiffiffiffi
pmmin

2kBT

r
ð15Þ

in which mmin is the mass of the lightest element present in

the simulation. In contrast to MMC, this allows to assign a

timescale to the MC simulation. From their tests, the

authors concluded that time steps between about 2 fs and

50 fs per tfMC step can be obtained. This represents a

speed-up relative to MD by a factor of about 2–50 [47].

While this value may seem low compared to the very high

boost factors that may be obtained in accelerated dynamics

as described above, it should be realized that tfMC in

contrast to accelerated dynamics is not limited to infre-

quent event systems, and it does not require (H)TST to

hold. Thus, while the speedup is indeed limited, the method

can be considered to have a wider applicability.

Very similar to these force bias Monte Carlo algorithms

is the Smart Monte Carlo technique by Rossky et al. [64].

This technique also requires the forces acting on the

moving atom to be calculated. Also, the displacement is

determined by two components, that is, the force, which

acts as the deterministic component, and a random vector

dri
R. The displacement is then written as

dri ¼
AFi

kBT
þ drR

i ð16Þ

where Fi is the force acting on particle i and A is a

parameter. The random vector dri
R is chosen from a normal

distribution with zero mean and variance 2A.

In contrast to the fbMC methods, the smart Monte Carlo

method does not impose a limit on the maximum dis-

placement of the particles. This obviously implies that in

this case, acceptance or rejectance must be verified by

calculating q (cfr. Eq. 4 above).

3.2.3 Sequential algorithms: alternating MD and MC

Many authors have combined MD and MC by simply

allowing one technique to alternate with the other tech-

nique. In most cases, one technique is applied to all atoms
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for a predetermined number of steps. The resulting output

is subsequently used as input to the other technique, which

is also run for a predetermined number of steps. Again, the

resulting output is then used as input to the first technique

and the cycle repeats.

The underlying idea is that MD can be used to simulate

fast processes, for instance the impingement of reactive

species on a surface and the chemical bonding to the sur-

face, while the subsequent MC steps take into account the

longer timescale thermal relaxation processes, as sche-

matically depicted in Fig. 1. This technique has for

instance been applied to the fast equilibration of complex

systems such as lipid-cholesterol lipid bilayers and fully

hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine

lipid bilayers [65, 66], but it is equally suited for simulating

for instance deposition processes. Indeed, while in some

cases deposition and growth may be successfully simulated

using MD alone (see for instance [6, 67], longer timescale

processes are very often a critical factor in determining the

final thin film properties.

Taguchi et al. [68, 69] applied this technique to model

the reactive sputter deposition of thin SiO2 films and the

effect of Ar bombardment on the SiO2 deposition process.

In this particular case, it was found that simulating the

deposition process by MD alone resulted in films with a

much lower density that those typically obtained from

experiments under similar conditions. Applying the

sequential MD/MC approach, amorphous SiO2 films with

properties consistent with experiments were obtained.

A somewhat different version of this idea was presented

by Tavazza et al. [70]. In their approach, collective moves

are added to the standard single-atom moves in the MC

method. When an atom or several atoms are displaced by

MC, the local environment is first relaxed using a small

number of MD steps at constant temperature. Only after

this relaxation process the displacement is evaluated and

accepted or rejected using the standard Boltzmann crite-

rion. Thus, in their approach, the MD displacements are

effectively used as trial displacements for the MC simu-

lation, and as such this idea corresponds to the hybrid MC

concept (see above, Sect. 3.2.2)

Yet another version of the same idea was presented by

Tiwary and van de Walle [71]. In their approach, the sys-

tem evolves according to standard MD when the potential

energy is above some threshold, whereas it evolves

according to MMC when the potential energy falls below

this threshold. The MC part takes care of the relaxation of

the system, whereas the MD part allows the system to

explore the high energy region of phase space in which the

infrequent events occur. As there are no velocities in the

MC part, the atomic velocities in the MD part are initiated

from a truncated Maxwell-Boltzmann distribution at the

temperature of interest such that vi � f i [ 0 where vi is

the chosen atomic velocity, and fi is the force acting on the

atom. In parallel to the MC run intended to relax the sys-

tem, a second MC run is launched to estimate the time the

system should have spent in the potential well.

Tiwary et al. [71] applied this algorithm to the vacancy-

mediated diffusion in iron and the plasticity and deforma-

tion of Au nanopillars at realistic strain rates. In both cases,

good agreement with the literature is found, and for the

diffusion studies, an impressive boost factor of 105 was

obtained, demonstrating the usefulness of their technique in

the field of condensed matter simulations.

3.2.4 Sequential algorithms: alternating hybrid algorithms

It is of course also possible to combine MD with fbMC, or

fbMC with MMC, etc. Various examples can be found in

the literature.

Timonova et al. [62] explored two rather similar ver-

sions of combining MD and fbMC, which they termed

‘‘UFMC?’’ and ‘‘UFMC??,’’ both aiming at bringing the

system back to thermal equilibrium and reduce the

unphysical spread in atomic potential energies produced by

the fbMC algorithm. As pointed out by these authors, this

starts by assigning velocities to the atoms, which are absent

in the fbMC algorithm. In their UFMC? simulations, zero

velocities were attributed to all atoms, followed by a short

NVT MD run at the temperature corresponding to the

fbMC temperature. In the UFMC?? version, all atoms

were again given zero velocities, and followed by a short

constant temperature MD run, but this time with the ther-

mostat set to 0 K. This effectively results in a system

quenched to 0 K. The authors found that in both cases,

equilibrium was reached in about 1.5 ps. The UFMC?

simulations were used to study the solid–liquid phase

transition of Si.

Grein et al. [72] employed a fbMC/MMC technique for

simulation of a deposition process. Similar to Taguchi

et al. (who used a MD/MMC approach instead of fbMC/

MMC [68, 69], these authors used fbMC to follow the

actual deposition process and MMC for the subsequent

equilibration. The goal was to describe the initial nucle-

ation and growth of Ge epitaxially depositing on Si(001)

surfaces. Interestingly, they used a maximum displacement

length of 0.5 Å in their fbMC simulations while accepting

all displacements. This displacement length is a factor of

100 or more larger than a typical displacement in MD.Fig. 1 Schematic representation of the alternating MD/MC approach
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While such a large step size must certainly violate detailed

balance (see [63]), the authors nevertheless obtained results

which seem physically reasonable. It should be noted that

such large displacements can be used successfully if an

acceptance criterion is used, as was done in the original

formulation by Pangali et al. [58, 59].

4 Examples of combined MD/MC

In this section, we will review three representative exam-

ples of the techniques described above in the context of

reactive condensed matter simulations, taken from our own

research efforts: Cu surface diffusion by fbMC, (ultra)

nanocrystalline diamond (UNCD) growth using sequential

MD/MMC and carbon nanotube (CNT) growth using

sequential MD/fbMC.

4.1 Hybrid algorithms: Cu surface diffusion by tfMC

As a first basic example, we consider the diffusion of a Cu

adatom on a solid Cu (001) surface, as simulated by tfMC

[47]. The Cu–Cu interaction was described by the standard

embedded atom method potential. The diffusion coefficient

was determined directly from the calculated trajectories,

and the rate constant was calculated from the Arrhenius

equation. The tfMC simulations were carried out using

D ¼ 0:10 Å, corresponding to an average MC time step

between 7.8 and 10 fs, in the temperature range 550–900 K,

and compared with both MD simulations as well as with

the literature. The dynamics of the adatom diffusion pro-

cess as determined from the tfMC algorithm are shown in

Fig. 2. It was found that tfMC correctly reproduces the

different diffusion mechanisms as observed in the MD

simulations. Also, the activation barrier as determined from

tfMC, 0.48 eV, is in close agreement with the literature

values (0.43–0.51 eV). Interestingly, however, the fre-

quency factor found from the tfMC simulations, 14.7 THz,

is in much closer agreement with the literature values

(7.5–35.8 THz) than the MD value (52.5 THz). This

demonstrates that tfMC is indeed capable of correctly

reproducing the atomic dynamics of the system while

significantly increasing the timescale that can be reached.

4.2 Alternating MD and MC: (U)NCD growth by MD/

MMC

As mentioned in the previous sections, the combination of

MC with MD may provide a means to take into account events

that occur on timescales that are beyond the reach of pure MD

simulations. Thus, we performed a number of hybrid MD/

MMC simulations relevant for NCD and UNCD growth,

based on the Brenner potential [73, 74, 75]. In an attempt to

minimize the computational effort, we combined MD with

MMC, introducing two additional criteria, in addition to the

standard Metropolis acceptance criterion [74]. In this imple-

mentation, a criterion is used to select which atoms are dis-

placed in the MMC (in contrast to moving all the atoms), as

well as a criterion deciding after how many steps the MMC is

stopped. We found that the MD/MMC algorithm predicts the

same processes to occur as pure MD while allowing a speedup

of typically one order of magnitude. As a simple example of

the application of this technique, Fig. 3 shows the formation

of a new diamond 6-ring starting from a previously adsorbed

C-atom and C2H2 molecule.

These kind of simulations again provide atomic scale

insights into the mechanisms, while the resulting structures

correspond to the experiment. For instance, the effect of the

prolonged application of a bias on the nucleation was

investigated by both MD/MMC simulations and experi-

ments [73]. In agreement with the experiment, an expo-

nential increase in the growth rate was observed at high

bias voltages. Complementary to the experimental data, it

was found that this is caused by the increased flux of

reactive particles toward the substrate. Furthermore, it was

found that the growing film is activated by the formation of

reactive sites when a sufficiently high bias is applied. Also

in agreement with the literature, an enhanced formation of

long-range order in the films was obtained by the appli-

cation of a bias up to 100 V. Applying bias voltages above

100 V, diamond crystallites could not be formed, again in

agreement with experimental findings.

4.3 Alternating hybrid algorithms: CNT growth

by MD/fbMC

Carbon nanotubes continue to attract a lot of research

attention because of their extraordinary mechanical, optical

Fig. 2 Illustration of the Cu adatom diffusion dynamics as observed

in tfMC simulations. Reproduced with permission by the American

Physical Society from [47]
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and electronic properties. However, these properties are

directly determined by their precise structure, thus neces-

sitating very accurate control over the growth process. In

this case, atomistic simulations may provide the atomic

scale insight needed to understand how the growth process

might be controlled, and why specific structures are formed

for a given growth condition.

One very important factor during the growth is the phase

state of the nanocatalyst. Thus, we performed MD/fbMC

simulations, employing the Shibuta potential, to determine

the phase state of various Ni-nanoparticles as a function of

size and temperature [76]. In this work, the thermalization

was carried out using combined MD/fbMC simulations.

Analysis of the radial distribution of the atomic Lindemann

index revealed that that for the smallest clusters, a dynamic

coexistence process occurs. As illustrated in Fig. 4, surface

melting is observed for the larger particles. In all cases, a

significant depression of the melting temperature relative to

the bulk was observed, due to the Gibbs–Thomson effect,

in agreement with the literature [77–79].

Subsequently, a number of combined MD/fbMC simu-

lations were performed to study the growth of carbon

nanotubes based on the ReaxFF potential to gain an

atomic scale understanding in the actual growth process

[80–82]. In these simulations, rather conservative values

for D=2 ¼ 0:085Req [80] and D=2 ¼ 0:07Req [81, 82] in

the fbMC were chosen. The temperature was set to 1,000 K,

corresponding to a typical experimental growth tem-

perature. After each MC cycle, new random velocities were

assigned to all atoms, and the simulation was continued

with constant temperature MD. Similar to Grein et al., the

impact and deposition of atoms (in this case C-atoms) on

the substrate (in this case a Ni-nanocluster) were followed

by MD, and the subsequent relaxation by fbMC. It was

found that the fbMC method results in healing of the car-

bon network that is formed by the continuous addition of

carbon atoms—a process in which high barriers must be

overcome. An example of this healing mechanism as

observed in the fbMC is shown in Fig. 5. This then finally

leads to CNTs with very few defects, as illustrated in

Fig. 6, in contrast to what is typically observed in pure MD

growth simulations. Both metallic tubes [81] as well as

semi-conducting tubes [80] could be obtained. Further-

more, we also observed that the chirality of the tube may

change in the initial nucleation stage. It was found that this

is due to the incorporation of asymmetric defects, such as

so-called 5–7 defects [81]. Thus, these MD/fbMC simula-

tions allow to gain an understanding of how the longer

timescale events may influence the growth process.

In another study, we used MD/fbMC simulations to

investigate how an electric field may influence the growth

process. In agreement with the experiment [83, 84], SWNT

Fig. 3 Formation of a new diamond 6-ring from an adsorbed C-atom

and adsorbed C2H2 molecule as observed in a MD/MMC simulation.

a The initial configuration, b–d intermediate states and e the final

state. The red atoms indicate the carbon atoms involved in the

formation of the new diamond 6-ring. Reproduced from [74] with

permission from the Royal Society of Chemistry

Fig. 4 Calculated radial distribution of the atomic Lindemann index

for a Ni244 cluster, for various temperatures, revealing a surface

melting mechanism. Reproduced from [15] with permission from the

American Chemical Society
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alignment was observed if a (sufficiently strong) electric

field was applied. This is shown in Fig. 7 for an electric

field value of 700 kV/cm. These simulations shed a new

light on the underlying mechanism: we found that the

electric field is primarily acting on the polar Ni–C bonds, at

the interface between the nickel nanocluster and the

growing SWNT. Thus, as at this interface the C-atoms are

slightly negative, while the Ni-atoms are slightly positive,

the carbon atoms experience both an oriented force, pulling

them toward the tip of the cluster, but are also subject to

random thermal diffusion. If the electric field is sufficiently

strong, the directed migration dominates the random dif-

fusion, an a vertically aligned SWNT emerges. Thus, these

simulations directly provide information about the relevant

processes complementary to the experiment.

5 Conclusion

In this contribution, we have presented a brief summary of

the main accelerated molecular dynamics techniques as

well as more a elaborate description of the various tech-

niques for combining MD simulations with MC simula-

tions, as an alternative to accelerated molecular dynamics

simulations for generating long system trajectories. Using

examples from the literature, it is shown that combined

MD/MC simulations may provide a dynamic picture of a

reactive system, including relaxation events which take

place on timescales typically beyond the reach of pure MD.

Essentially, we can distinguish between algorithms in

which some atoms are moved by MD and some by MC

(combined MD/MC method), algorithms in which the

atomic displacement prescription is in part deterministic

and in part stochastic (hybrid MD/MC method), and algo-

rithm in which MD cycles alternate with MC cycles

(sequential MD/MC method).

Three representative examples from our own research

efforts were shown to demonstrate the applicability of MD/

MC simulations, viz. Cu adatom diffusion, UNCD growth

and CNT growth.

In addition to their ease of implementation and their

general applicability make these methods very attractive

for studying systems in which processes beyond the reach

of standard MD are important.
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