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Modeling of the Magnetron Discharge

A. Bogaerts, I. Kolev, and G. Buyle

3.1 Introduction

Because of the industrial importance of sputter deposition magnetrons, there
is a strong drive to simulate the entire magnetron deposition piocess, to
replace trial-and-error experiments. This can lead to serious cost reduction,
both for the manufacturers and the users of magnetron sputter equipment.
The reasons are straightforward. For a typical coating plant, one of the main
costs is the installation cost. Hence, it is a major advantage to have equipment
that can 1ealize a large throughput which fits specifications like required depo-
sition speed, uniformity, reproducibility, or target lifetime. This means that
magnetron manufacturers strive to a minimum “setup time,” which requires
from them the ability to predict whether the proposed design will work or
not before the machine is actually built. This could be achieved by simulating
the machines’ characteristics. Of course, also the possibility of optimizing the
deposition parameters without actually performing any real world experiment
is attractive

The ideal magnetron sputter deposition simulation would use as input
the desired coating characteristics (e.g., electrical resistance, adhesion, 1efrac-
tive index, etc.) and process requirements (e.g., deposition speed, price per
square meter, etc.). It would vield as output the necessary process parame-
ters, e.g., sputter mode (DC, RF, pulsed, etc.), gas pressure, magnetic field
strength, electrical power input, ete. In reality, we are still far away from such
a model The model becomes more realistic when the input and output are
switched (see Fig. 3.1). In this way, the parameters defining the deposition
process are the input; the deposited film properties form the output. Such
model is referred to as a “virtual sputter magnetron.” Efforts are made to
develop such a simulation tool, e.g., [1-4].

Now, we will consider the virtual sputter magnetion of Fig. 3.1 in more
detail. Basically, it consists of the following modules:

— Magunetic field modeling
- Magnetron discharge modeling
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Fig. 3.1. Sketch of a virtual sputter magnetron, a simulation tool that would allow
simulating the entire magnetron sputter-deposition process. The basic parts needed
in such a tool are also shown

— Particle-target interaction, sputtering
— Transport of the sputtered particles through the gas phase
— Deposition and film growth at the substrate

From a scientific view-point, these modules cover a wide range of disciplines
(plasma physics, surface physics, materials science, etc.). Some of the modules
can be considered as known physics, others as challenging research topics. An
example of the latter is the relation between the particles arriving at the
substrate and the properties of the deposited film.

An accurate self-consistent virtual sputter magnetron that can operate
over a wide range of parameters requires careful treatment of each of these
modules. Like in a chain, the weakest link will determine the total strength:
no matter how good the other modules, if there is one in the global model
that is not accurate, the outcome of the whole model will be affected.

In the following, the different parts will be very briefly discussed and
references to some relevant literature will be given.

3.1.1 The Magnetic Field

Essential for a magnetion dischaige is of course the magnetic field. Hence,
it is necessary for any simulation to have accurate values for the magnetic
field. This can be achieved for the most complex magnetic configurations with
high accuracy by using finite element models that are available as commercial
packages or as free- or shareware. Packages reported in the literature regard-
ing magnetron sputtering simulation are, e.g., POISSON [5,6], OPERA [7],
FEMME [8] ot ELF/MAGIC [9]. A disadvantage of this method is that a high
accuracy is only reached for a very dense mesh, which makes the magnetic field
calculation time consuming. Very high accuracy is needed, however. Indeed,
the length scale over which the electrons move during a time step when retrac-
ing their orbits is very small, in the order of 0.1 mm or less. For an accurate
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simulation of the electron orbits, the magnetic field must vary smoothly over
this scale length.

Another possibility is to calculate the magnetic field analvtically. This
has the major advantage that the field strength can be determined almost
instantaneously at any point in space, which guarantees the smooth variation
of the magnetic field along an electron orbit. Drawback is that only relatively
simple magnetic configurations can be modeled and that the effect of magnetic
shunts or complex magnet shapes cannot be dealt with.

The last possibility is to start from a measured magnetic field and inter-
polating or fitting it by an analytical expression. This also leads to a smooth
spatial variation of the magnetic field. Of course, in such an approach the
principle of virtual coater is violated: it does not allow simulating different
magnetic field configurations, unless they are built in reality and measured
accurately.

3.1.2 The Magnetron Discharge

The simulation of the magnetron discharge, based on the magnetic field, the
gas pressure, and the electrical power input, is the next step. The underlying
basic physics is at microscopic level “only” the motion of charged particles in
a region subjected to an electric and magnetic field. This, combined with the
necessary cross sections and electron yields, is in principle sufficient to describe
the magnetron discharge. However, the emerging behavior of the plasma as a
whole can be very complicated and turns this module of the virtual coater into
one of the most difficult hurdles to take. Indeed, the small timescales required
for the electron motion (10~ 11-107!25) combined with the large timescales
required for reaching equilibrium (107%s) make the computational load of
numerical modeling extremely, and for certain configurations even unrealisti-
cally, high (see also Sect. 3.2 below). As the magnetion discharge is in principle
the heart of the process, it is surprising that the more advanced simulation
of the sputter process presented in [2] can completely bypass this and the
previous module. Instead, the simulation starts with a profile characterizing
the sputtered particles.

This module of the virtual sputter magnetron will be dealt with more
extensively in Sect 3.2, where the different modeling approaches and their
specific (dis)advantages will be discussed. Also the rest of the chapter will be
devoted specifically to the magnetion discharge modeling,

3.1.3 The Particle-Target Interaction

The sputtering process is based on the removal of target atoms by ion bom-
bardment. The simulation of ion bombardment on a solid is well developed.
These packages do not only allow determination of the sputter vyield, i.e., the
average number of atoms removed per incoming ion, but are also able to
reproduce the angular and energy distribution of the atoms that leave the
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surface. Very well known are Monte Carlo (MC) codes, such as TRIM [10,11],
SRIM [12], and packages based on these. These packages have as main short-
coming that they are not dynamical, i.e., changes in the solid because of the
incoming ion flux are not taken into account. Packages that take this into
account are for instance TRIDYN [13,14] and KALYPSO [15]. Another MC
simulation package on sputtering is ACAT [16]. All the mentioned packages
are numerical simulations, implying that the computational load is heavy.
This is especially true for the dynamical codes.

Hence, efforts are made to determine properties like the sputter yield and
the angular and energy distributions of the sputtered particles by analytical
expressions. These analytical expressions can be purely empirical or can be
based on a simplified model. For the sputter yield, an example of an empirical
expression is the well-known formula of Matsunami [17], whereas an example
of a simplified model is the work reported in [18]. Also for the energy and
angular distribution of the sputtered particles analytical models exist. A nice
overview of this issue can be found in [19)].

3.1.4 Particle Transport in the Gas Phase

Once the particles are sputtered from the target, they start spreading out
through the vacuum chamber. The collision dynamics of these rather low
energy (typically some tens of eV or below) particles are known. However,
discussion exists about which interatomic potential is to be used [20]. This is
not an academic discussion as the choice of the interatomic potential influences
the simulated energy and angular distribution of the sputtered particles at
the substrate [21]. As such, the exact potential is required for realistic thin
film growth models. Ideally, the sputtered particle transport is described by
combining a MC based model (for nonthermalized particles) and a diffusion
model (for thermalized particles) [22].

In [23] the transport is described by a MC approach (SIMSPUD) and by a
diffusion approach. Also in [24] a MC model is described. In [25] the film thick-
ness distribution is simulated using a MC model for different target materials
and for different target-substrate distances at different pressures. The results
agree well with the experimental results, even for conditions where the ratio of
the substrate and target diameter is large. Of course, also for this aspect of the
magnetron sputter process simplified models have been developed, e.g., [26].
More information on simulations for particle-target interaction and particle
transport in the gas phase can be found in the chapter “Transport of sputtered
particles through the gas phase” by S. Mahieu et al.

3.1.5 Film Growth on the Substrate

For this part, the input consists of the energy and angular distribution of the
particles arriving at the substrate and their arrival rate. With “particles” is
not only meant the sputtered particles but also the electrons and discharge
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gas particles (neutrals and ions) as they also contribute to the energy deposi-
tion at the substrate. The relation between this input and the resulting film
properties is one of the more difficult parts when modeling the magnetion
sputter process.

A first step is the simulation of the film thickness distribution and/or its
deposition rate, as this follows rather straightforwardly from the information
about the incoming particles and the sticking coefficients. In practice, in a lot
of cases only this aspect is considered.

A more advanced form of this is “feature scale modeling.” In microelec-
tronics, the deposited coating might be required to fill structures like a thin
trench or via. Feature modeling tries to simulate the exact coating thickness
on all surfaces of such a feature [27-31].

One step further is to actually simulate the microstructure of the deposited
material. The most accurate simulations are based on molecular dynamics, but
this is extremely computationally intensive. Consequently, (empirical) approx-
imations are needed. A sound discussion of this problem together with some
examples of predicted structures can be found in [32]. In [33] the deposition
on grain boundaries was simulated for Ti. Examples of the microstructural
evolution during film growth (and the kinetic MC simulation thereof) can be
found in [34]. Of course, also simplified models are developed, e.g., for the
biaxial alignment in yttria-stabilized zirconia layers [35].

3.2 Overview of Different Modeling Approaches
for Magnetron Discharges

The term numerical modeling refers to the process of finding approximate
numerical solutions to a system of proper physical equations that adequately
describe the system of interest. In a slightly broader aspect, also analytical
models fall in this category. The latter are based on simplifications of globally
valid, but complicated physical equations, rather than on numerical solutions
of these globally valid equations. The choice of the proper set of equations
is normally based on the given operating conditions. It other woids, certain
physical approximations are assumed already prior to the process of numerical
solving, which in its turn introduces mathematical (numerical) approxima-
tions. The overall goal is always to obtain the most useful results at the lowest
possible computational price,

A complete model of a magnetron discharge must include the magnetron
plasma and its interactions with (some of) the solid surfaces that surround
it. There are two surfaces that cannot be omitted in a model. These are the
cathode (also known as target) and the substrate where the film is deposited.
In many cases, the substrate is grounded, and therefore, acts as an anode.
An intrinsic part of the operation of the magnetron is the effective electric
field that results from the external power source and the movement of the
plasma charged particles. Therefore, a procedure that calculates this field
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should also be a part of the model. When the calculation of the resulting
electric field is included in the model, the model is called self-consistent. It
should be mentioned that for real self-consistency, some external electrical
circuit should be coupled to the magnetron plasma [36-39]. However in the
literature, it is common to use the term self-consistent even when no external
circuit is included.

The existing models of magnetrons can be classified in several ways. The
first division is between analytical and numerical models. The numerical mod-
els can further be split into fluid or kinetic models. The latter (i.e., kinetic)
models can be based on numerical solutions of the Boltzmann equation, or on
Monte Carlo (MC) simulations, also called particle simulations. These models
are, however, not self-consistent, and need to be combined with a solution of
the Poisson equation, resulting in either hybrid models or PIC-MCC simula-
tions. In following sections, a literature overview of these different modeling
approaches will be given.

3.2.1 Analytical Models

Analytical models (e.g., [40-57]) usually approximate the magnetron chamber
with a one-dimensional (or sometimes even zero-dimensional) domain in the
coordinate space, where the electric and magnetic forces are perpendicular to
each other and the electron transport is considered in the direction parallel
to the electric field and perpendicular to the magnetic field. In addition, the
magnetic field is considered constant. Such a picture results, however, in a
particularly simple form of the electron transport coefficients. Indeed, only
the diagonal elements of the tensors of mobility and diffusion aie nonzero and
can be regarded as permutations of the mobility and diffusion referring to the
nonmagnetized case [58]. In such an approach, classical diffusion is considered.

Lieberman and coworkers [5,41-43] have done many efforts for developing
analytical models for magnetron discharges. Wendt and Lieberman (5,42, 43]
developed a two-dimensional analytical model. The dischazge area was split up
into arch-shaped areas, with the shape determined by the magnetic field lines.
In this way, the authors were able to relate the width of the sputter erosion
profile to the discharge voltage and current, and the magnetic field strength,
through the Larmor radius [5]. Also the light emission could be described
with this model [41]. In [43], two different models for the movement of the
electrons in a cylindrical postmagnetron have been proposed and compared
with experimental data.

In [46-48|, a particularly interesting result has been the prediction of the
appearance of a negative space charge region due to the highly restricted
electron mobility at strong magnetic fields and low pressures. This result has
been later on validated by more realistic particle simulations for both cylin-
drical [36] and planar magnetrons [37]. Recently, an analytical model has also
been proposed for an RF sputtering system [49].
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Analytical models have also been used intensively by Bradley and cowork-
ers. In a series of papers, they have investigated different parts of the
magnetron discharge, such as the cathode fall [50], the presheath [51], and
the bulk plasma [52]. All these studies are based on an eatlier work by the
same author {59], which is a one-dimensional fluid description. In [50,51] the
classical diffusion has been replaced by Bohm diffusion and the results have
indicated that the later is a more realistic mechanism for the election transport
across the magnetic force lines

Recently, Moller [53] proposed an analytical model for a reactive mag-
netron plasma (argon - nitrogen gas mixture), based on a balance between
ion generation and transport. Ar™, as well as No¥ and N7, ions were consid-
ered in this model, and it was assumed that all ions, created in the plasma by
electron-impact ionization, arrive at the target in a free-fall transport regime.
Beside the different ion fluxes, also the fluxes of reactive N atoms and Ny
molecules to the target were estimated. These data formed the input for sur-
face processes, such as sputtering and implantation for the various ions, and
adsot ption for the neutral species [53]

Finally, Buyle et al. have recently developed a self-consistent two-dimen-
sional semi-analytical model for a DC planar magnetron, to reproduce the
magnetron dependence on external parameters over a wide range [54-57]
This model will be explained in more detail in Sect. 3.4 below.

A general disadvantage of analytical models is that they are unable to
desctibe quantitatively the complex electron motion in the multidimensional
electric and magnetic fields crossed at arbitrary angles, which is the situation
in real sputter magnetrons, especially in the planar ones. However, analytical
models have proven to be an important step in the understanding of mag-
netron discharges, with several advantages compared to complicated numerical
simulations. Their main advantages are the relative simplicity, the ability to
produce fast results, and the fact that the results are intuitively easy for
understanding. They are particularly suitable in situations where the main
purpose of the model is to define whether a given phenomenon is important
or negligible. Such example is the electron recapture at the cathode, which
has been studied by the semi-analytical model described by Buyle et al. (see
also Sect. 3.4 below) [54-57]. The model has shown unambiguously the major
importance of electron recapture at the cathode, and these results have later
been confirmed by particle simulations [37].

3.2.2 Fluid Models

Fluid models are based on the continuity, the momentum and mean energy
conservation equations of the plasma species. By coupling these equations
to the Poisson equation, the electric field distribution can be calculated in a
self-consistent way.

Fluid methods find extensive use, for instance, in the field of aerody-
namics. However, they are not so commonly used to describe magnetion
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discharges [48,59-64]. Indeed, magnetron discharges cannot be so easily con-
sidered as a fluid. The main reason is that they are operated at relatively low
pressure (typically several millitorr). At such low pressure, the main assump-
tions of the fluid theory are not necessarily valid. An additional difficulty
arises from the complicated forms of the equations of the magnetohydrody-
namics, which describe & magnetized fluid. If these equations are applied to
arbitrary magnetic and electric fields, they require elaborated discretization,
resulting in long computation times. Another issue is the validity of the clas-
sical diftusion at high ratios of the magnetic field and the gas pressure. At
relatively weak magnetic fields and relatively high gas pressure, fluid models
with simplified transport coefficients can be employed. This has been done
in [61], where the bulk plasma in an RF cylindrical postmagnetron has been
simulated and the results have been compared to a particle simulation. A fluid
description has been used also to develop a theory of the cathode sheath in
maguetrons [62]. A two-dimensional fluid model using the drift-diffusion the-
ory has been reported in [63]. It is, however, applied to conditions, which
are different from typical sputtered magnetron conditions, i.e., a pressure of
several torr and a magnetic field weaker than 100 G.

An attempt to overcome the complexity of the full magnetohydrodynam-
ics equations of the electron transport [65] was recently proposed in [64]. In
this paper, the presence of the magnetic field is included as a perturbation
to the flux equations describing the nonmagnetized case and assuming a clas-
sical transport. However, it can be argued that the electrons are so strongly
magnetized that this aspect cannot be represented in their transport by a
perturbation. Hence, the condition for applying the perturbation formalism is
thus violated.

3.2.3 The Boltzmann Equation

The maximum information with minimum assumptions about the dischaige
can be obtained by kinetic models. As mentioned above, they can be divided
into two groups: either solutions of the Boltzmmann equation or particle
simulations.

The direct solution of the Boltzmann equation has been a popular tool for
plasma modeling for many years. For magnetron discharges, the Lorentz force
needs to be included. Adding the Lorentz force term, however, complicates
significantly the solver and makes it impractical in two and three dimensions
and for arbitrary magnetic fields. There is one situation where it can, and has
been, successfully used in magnetrons. This is the simulation of cylindrical
postmagnetrons, where in a large part of the discharge the magnetic field is
one-dimensional and constant, which simplifies the Boltzmann equation. This
is illustrated by the work of Porokhova et al. [66-73].

To find a self-consistent solution for a given input of magnetic field
strength, gas pressure and discharge current, the Boltzmann equation was
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supplemented by some other 1equirements. In [67], self-consistency was reached
by adding an equation, describing the ion motion in the collisional regime
(i.e., a fluid model for the ions) and the Poisson equation. In [69] the radial
distribution of the electric field was determined by fixing the discharge volt-
age to the experimentally measured one and by demanding that the radial
potential distribution provides a radial electron density distribution that is
similar to the experimentally measured one. This latter approach seems “less
self-consistent” because both the discharge current and voltage are used as
input parameters. In [67] the model was one-dimensional, whereas in [69] the
model was extended to two dimensions, so that also the axial inhomogeneities
generated by the shields at the ends of the cylindrical postmagnetron can be
modeled A major advantage of the method is the small computational load: a
typical calculation requires about 2-10min, depending on the number of grid
points [74].

The presented results in the above-mentioned references show a very good
agreement with experimental data. However, the results were obtained at
relatively high gas pressure (above 3Pa) and relatively weak magnetic field
strengths (maximum 400 G). It would be interesting to see whether this mod-
eling approach can deal with low pressures and strong magnetic fields, as
these are the working conditions where anomalous electron transport can be
expected. Furthermore, it is also not evident to adapt this technique to a two-
dimensional model for the planar magnetron discharge, due to the nonuniform
magnetic field [74].

3.2.4 Monte Carlo Simulations

In MC simulations, computational test particles that represent a lazge number
of real plasma particles are followed Their movement is subject to the applied
forces and the collisions of the particles are included by using probabilities
and random numbers. This technique is very easy to implement and fast to
compute. Its main disadvantage is that the forces must be an input, ie., the
simulation is not self-consistent.

There are many MC simulations, often called ditect Monte Carlo simu-
lations (DMCS), of different types of magnetrons reported in the literature.
Among them are [75-83}, which have contributed largely to the understanding
of the transport and collision properties of the charged particles in magnetron
discharges. The group of Sheridan-Goree et al., eg., [75-79], was able to
simulate the ionization distribution using a two-dimensional MC model and
compared it with optical emission measurements. The basis of their model
was a simple retracing of the high energy electron orbits by numerically inte-
grating the Lorentz equation and combining this with a MC approach for the
collision events. Similar work is reported in [84,85]. The group Sheridan-Goree
also simulated the ion motion [78] and the influence of the magnetic field [79]
using the same Monte Carlo model.
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Ido et al. used a MC model to simulate the erosion profile in planar mag-
netrons. First, the erosion profile in a cylindrical and a rectangular magnetron
was simulated for various pressures and magnetic field configurations [85-87].
Then, the erosion profile using ferromagnetic targets was simulated. They
report how the eroded region can be influenced by placing a ferromagnetic
ring on top of the target [88] and by the outer part of the yoke [89]. For a
ferromagnetic target, the eroded region strongly influences the magnetic field
strength. In [90] it is reported how this effect is taken into account, which
leads to a very accurate erosion profile simulation.

The main advantages of the MC method are that it is easy to implement,
it can handle the low gas pressures encountered in magnetron discharges,
and it is much faster than self-consistent methods, such as PIC-MCC models.
Therefore, it can be used on (large) three-dimensional geometries, see e.g., [91—
96]. In all these references the MC model is basically used to investigate
the cross corner effect. This term is used to denote the enhanced ionization
and erosion that occurs at opposite sides of a (long) rectangular target, and
which is attributed to a disturbed E x B drift of the electrons after they
drifted through the end region of the racetrack. Here, the MC method has an
advantage over the PIC-MCC method: In [97] a three-dimensional magnetron
was simulated but the variation of the ionization along the racetrack was
too large to notice the cross corner effect. Although the PIC-MCC method
should undoubtedly be able to reproduce this effect, it would cost an enormous
computational effort.

Another example illustiating the beneficial use of a MC model is the expla-
nation of the so-called plasma emission redistribution (PER) effect [98]. This
effect occurs during pulsed magnetron sputtering. When the plasma emis-
sion of a single pulse is observed, it was noticed that at the very beginning
of a pulse the emission came predominantly from the turnaround regions
of the racetrack, whereas in steady state, the emission came predominantly
from the central straight sections of the racetrack. Using a MC model and
adapting the settings for the situation at the very beginning of a single pulse,
this effect could be reproduced and the origin of the effect could be retraced,
as explained in [98].

Finally, the last application mentioned here for MC simulations of mag-
netron discharges is the simulation of the sputtered atoms transport, as was
also briefly discussed in Sect. 3.1.4. These are normally non-self-consistent
trajectory calculations of the sputtered particles with included collisions with
the background gas atoms (23,24, 89,91, 99-105]. In this way the spatial dis-
tribution of the sputtered atoms and their energy and angular distribution at
the substrate are calculated. This allows accurate predictions for the quality
of the deposited film. Possible effects of the spatial location of the target and
the substrate can be easily studied. Input is needed fo1 the starting positions
of the sputtered atoms at the cathode. This is usually taken either from an
experimentally measured erosion piofile or from a calculated erosion profile
by a particle model



3 Modeling of the Magnetron Discharge 71
3.2.5 Hybrid Models

While electrons are heavily magnetized, as discussed above, the ions can be
considered practically nonmagnetized, due to their large masses. Therefore,
in contrast to the electrons, they can be well desciibed by a classical fluid
approximation. This assumption forms the foundation of the so-called hybrid
models. Hybrid models are usually a combination of fluid and particle models
In the simulations of nonmagnetized glow discharges (e.g., [106]), the ions
and the bulk electrons are regarded as a fluid, while the energetic (beam-like)
electrons, emitted from the cathode or generated in the sheath, are simulated
as particles, i.e., fully kinetically. This approach combines the precision of
the kinetic models with the relatively higher speed of the fluid codes and
successfully overcomes the low pressure restrictions.

Magnetron simulations based on the hybrid model are explained in [9,
107-115]. Shidoji et al. were able to simulate the magnetron discharge and
its dependence on external parameters, such as the gas pressure, the electri-
cal power [92], and the magnetic field strength [114]. Also the influence of
balancing the magnetic field [111] and of depositing an insulating layer [109]
were investigated. Vyas and Kushner [31] used a modification of their two-
dimensional hybrid plasma equipment model [115] to simulate a hollow
cathode magnetron discharge. The effect of power and pressure was inves-
tigated, as well as the influence of magnitude and orientation of the applied
magnetic fields,

The limits of validity ot hybrid modeling for magnetron discharges are dis-
cussed in [112]. It is reported that the application of the hybrid model becomes
problematic for strong magnetic fields and/or low gas pressures. Indeed, in
such cases the results appear unrealistic: a large amount of ionization occurs
at rather large distance from the cathode. The reason is that at high magnetic
field strengths the electrons hardly diffuse across the magnetic field lines any-
more when using the classical theory Consequently, an electric field is formed
between the sheath region and the anode. Because of this electric field, ioniza-
tions occur in that region. Also the simulation results reported in {114] express
this behavior: The ionization in the region from 10 to 40 mm above the target
is stronger for a magnetic field strength of 360 G than for 180 G but the peak
ionization is lower. This is opposite to the behavior reported in [116]: there
the simulated peak ionization rate increases with increasing magnetic field.
The latter result appears more realistic, as the magnetic field is applied to the
discharge to intensify the magnetron discharge, not to spread it out.

The problem of the hybrid model to deal with strong magnetic fields is
probably due to the fact that it does not account for the anomalous elec-
tron transport. Indeed, as mentioned, the slow electron transport is typically
treated using a fluid model. This requires the electron diffusion coefficients
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for the transport perpendicular to the magnetic field lines. This coefficient is
obtained using the classical theory, ie.

_ Dg=o

144

D,

with D the diffusion coefficient in the direction perpendicular to the mag-
netic field lines and Dp—p the one without magnetic field. However, according
to experimental evidence (e.g., [117]), the diffusion across the magnetic field
lines is larger than predicted by D, . This problem of uncertainties in the
electron transport coefficients has been partially overcome by using the data
provided by a parametric study performed by numerical solution of the
Boltzmann equation for given sets of reduced electric and magnetic fields [113].
Similarly, Vyas and Kushner [31] derived the transport coefficients, for use in
the fluid equations, from a kinetic simulation, to enable the fluid algorithm
to represent more accurately the low pressure operation.

The second limitation of a hybrid model is the fact that the ions are
not at all characterized by a Maxwellian distribution, which questions their
description as a fluid. The third problem is 1elated to the criterion of selecting
which electron can be considered slow. In the nonmagnetized situation [106]
the discharge is in a positive space charge mode. Hence, once the electron
has traversed the sheath and has an energy below some threshold, it can
be transferred to the slow group. In magnetrons, depending on the reduced
magnetic field, there can be a negative space charge mode. This means that
even if the electron eneigy is below the threshold at a given moment, the
electron can still become fast. This is definitely the situation at high reduced
magnetic fields. This situation has led to a modification of the classical hybrid
scheme, where all the electrons are treated kinetically, while only the ions are
described as a continaum [114]. In this way, the first and the third drawbacks
are eliminated, but the computational cost, however, approaches that of a
particle model

In conclusion, the main advantage of the hybrid model is that it is faster
than the PIC-MCC models discussed below (a solution can be obtained in
2-3 days). The payoff for this advantage is that assumptions need to be made
about the slow electron motion in crossed electric and magnetic fields. Because
of the latter, this technique seems to fail to describe the anomalous electron
transport that occurs for strong magnetic fields and/or low gas pressures.

3.2.6 PIC-MCC Simulations

When the calculation of the electric field produced by the external power
source and the spatial distribution of the plasma charged particles is added to
a MC simulation, the whole simulation becomes self-consistent. It is commonly
referred to as PIC-MCC simulations [118]. PIC-MCC simulations are the most
powerful numerical tool for the investigation of magnetron discharges. They
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can cope with the low operating pressures and the strongly inhomogeneous
field and density distributions. In addition, they are capable of providing a full
picture about the processes occurring in the discharge chamber. The drawback
of the PIC-MCC simulations is their extensive computational load. This is
especially true when two- and three-dimensional simulations are needed, espe-
cially for simulating magnetron discharges. The latter is related to the long
characteristic times (typically longer than 107%s) for achieving a steady state.

Simulations of cylindrical postmagnetrons have been performed in one
dimension [36,119]. Planar magnetrons can, however, not be simulated with a
one-dimensional code. A full three-dimensional PIC-MCC model of a planar
magnetron has been reported [97,120]. It has shown the lack of angular depen-
dence in axisymmetrical planar magnetrons. This result has opened the way
for simulating this type of magnetrons by a two-dimensional model in cylin-
drical coordinates. The first very thorough work of that kind has been [116]
followed by [121]. The PIC-MCC method has also been successtully applied
to RF sputter magnetrons [122]. Moreover, quite some work reports planar
magnetron simulations using the OOPIC code [4,6-8]. This OOPIC code was
developed by Verboncoeur et al. {123] and can be downloaded freely [124]
Another software package that is used for magnetron discharges is PEGASUS,
which combines PIC-MCC simulations with Gaussian fitting, to investigate
the erosion [125]. The software itsell is described in more detail in [126,127]
and is based on NEPTUNE. The latter is used in [1] to simulate copper depo-
sition by magnetron sputtering. Furthermore, the influence of the dielectric
target in an RF sputtered magnetron has been investigated in [128]. Recently,
a hybrid PIC-MCC - ion relaxation model has been reported [129]. Here, the
electrons are resolved in a standard PIC-MCC algorithm, whereas the ionic
distribution is calculated by a continuum relaxation model.

In [4] and [6] it is reported that no steady state is found in the PIC-MCC
simulations, but the number of particles was continuously increasing. In both
cases, however, the time during which the plasma is simulated was very short
(5 and 3us, respectively). Following the discharge for a longer time period
apparently leads to a steady state, e.g., [8,97,116]. However, it can be argued
that a reliable steady state, i.e., a steady state where the discharge evolves to
the correct region of the current—voltage characteristic, can only be reached
by including an external electric circuit [37]. The required time for reaching
convergence is then typically about 20 s [37], whereas the results of [8] suggest
that convergence was reached after roughly 10pus. We have developed our
own PIC-MCC model for a planar magnetron discharge, which includes the
external circuit [37] and accounts for the gas heating and the sputtered atom
transport and collisions [38]. This model will be discussed in detail further in
this chapter.

It is clear that PIC-MCC simulations produce a wealth of data. However,
care has to be taken when interpreting the results. Here we mention some
shortcomings of the results reported by the group of Nanbu et al. [97,116,121].
First, the time step At used for the election orbits is rather large: in [116]
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it is mentioned that At =~ 0.2ns. The examined magnetrons have By in
the range of 325-650G. With these Bp,.x correspond Larmor frequencies of
6-11 GHz, which means that At varies from 0.18 to 0.36 times the inverse of
the Larmor frequency. In [130] it is argued that such large time steps result
in an inaccurate orbit calculation and in a serious artificial electron energy
loss. These inaccuracies compromise both the position and the amount of ion-
ization simulated, which seriously questions the reliability of the presented
results. This might be the origin of the second shortcoming of these sim-
ulations: the simulated cathode sheath thicknesses are very large, in [116]
sheath thicknesses vary from 4.5 to 5.8 mm. In reality, a sheath thickness
of at most 3mm is observed (e.g., [91,130,131]). Third, the current den-
sities are extremely low for magnetron discharges. From the sketch of the
magnetron configuration in [116] we can infer a racetrack surface of roughly
24 cm? (racetrack length ~24 cm and width ~1 cm). The total currents listed
in the article are between 35 and 50 mA, which means current densities around
1.5-21mA cm™2 These values are at least a factor 10 lower than the cur-
rent densities typically encountered in magnetron sputtering. This discrepancy
can again be attributed to the necessity of including an external electric
circuit [37]. The fourth remark concerns the simulated current—voltage char-
acteristics: With increasing discharge voltage the discharge current and the
electron density are found to deciease, the cathode sheath thickness is found
to increase [121]. These simulated dependences are opposite to experimental
observations (e.g., [130,132]).

On the other hand, a very interesting result of the PIC-MCC simulations
is the magnetic field dependence: in [116] the magnetic field strength Byax
is varied from 325 to 650 G at constant discharge voltage (Vg = 500V) and
gas pressure (0.67 Pa). The simulations show an increase in the plasma density
and in the ionization rate Moreover, the discharge intensifies and the cathode
sheath thickness is found to decrease. This is in agreement with common sense:
with increasing magnetic field strength, the magnetron intensifies and is better
confined. This result seems to indicate that the anomalous electron transport
is, at least qualitatively, correctly simulated (see also the discussion about the
hybrid model above).

In spite of the mentioned shortcomings, the PIC-MCC technique is in
principle a very viable method. Hence, we may conclude that PIC-MCC
simulations are the most powerful tool to tackle the problem with the full
description of the planar magnetrons at all operational conditions. The price
for that, however, is the very long computation time.

3.3 Challenges Related to Magnetron Modeling
No matter how sophisticated a simulation model is, there are some limitations

to what can be expected from the calculation results. The origin of this might
be due to inadequate experimental input data or to the specific geometry or
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operating conditions of the process. As such, these situations can be called
problem cases or, more positive, challenges related to magnetron modeling,
Here, we give a list of the most important ones of these challenges.

3.3.1 Secondary Electron Emission Yield (v)

The secondary electron emission yield = denotes the number of secondary
electrons emitted per incoming ion’ The magnetron characteristics depend
very strongly on the exact value of the secondary electron emission yield
Unfortunately, these yields are extremely difficult to measure. Consequently,
for most materials this yield is not accurately known.

This is probably the most fundamental factor limiting the output of mag-
netron simulations: whatever model used for the magnetron simulation, it
can only give accurate results when the applied secondary electron emission
yield is correct. In Shidoji et al. it is mentioned that reducing the secondary
electron emission yield by 50% can decrease the currents with a factor four
to five [9]. In [116] an increase of the secondary electron emission yield from
0.12 to 0.15 leads to a substantial increase in the plasma density (from 1.1 to
1.7 x 101%cm™3) and in the discharge current (from 34.9 to 49.5mA).

Given this situation, the values for the secondary electron emission yield
used in magnetron simulations strongly vary. Usually, v is taken to be inde-
pendent of the discharge voltage (e g., in [97,120]). On the other hand, Shidoji
et al. use a secondary electron emission yield that depends on the discharge
voltage [9] Sometimes, quite unrealistic values for the secondary electron emis-
sion yield are used, e.g., in [133] where for certain conditions a secondary
electron emission yield of 5 is assumed for a metal surface. Also in [125] v
is used as a tuning parameter: the authors mention that it is set to 0.03
as a larger value sometimes leads to the unbounded increase of superparti-
cles, i.e., the simulation does not reach a steady state but the plasma density
continues to increase.

The challenge here is to make the magnetron simulations so reliable that,
once the model is calibrated using a material with a relatively well-known
secondary electron emission yield, comparison of the experimental and simu-
lation results can be used to determine the secondary electron emission vield
of the investigated target material. This is, however, a very ambitious goal,
due to the many other uncertainties in the models. Therefore, efforts should
also be made for accurate measurements of the secondary election emission
yield. In this respect, Depla et al. recently determined ion induced secondary
electron emission yields for several oxides [134].

3.3.2 Recapture

The orbit of a secondary electron emitted from the target follows the mag-
netic field lines. When the electron does not interact with the discharge gas,
this will lead to an electron—target interaction. This event is characterized by
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the reflection coefficient R, which gives the probability that the electron is
reflected. If the electron is not reflected, it is recaptured by the target (see
also Sect. 3.4 below).

To simulate this effect accurately, the initial electron energy may not be
neglected, the orbit calculation should be performed very accurately and the
reflection coeflicient R needs to be known. The required accuracy has impor-
tant consequences as it can only be reached by reducing the time step used
for retracing the electron orbits, which seriously increases the computational
effort. In [130] it is shown that the time step needs to be at least a factor
of two smaller than currently encountered in magnetron simulations. Second,
experimental values of R, needed as input for the simulation, are very scarce,
This is highly inconvenient because the process of recapture is quite sensitive
to this reflection coefficient [37,135].

3.3.3 Electron Mobility

The problem of the anomalous electron transport was already mentioned
above in Sect. 3.2.5. Indeed, the electron transport in the direction per-
pendicular to the magnetic field lines is larger than expected from classical
diffusion theory. The enhanced mobility is probably due to oscillations in the
electric field.

This effect has its consequences for magnetron modeling. Obviously, all
methods that rely on the classical theory are affected. This is especially true for
the models that rely on the fluid theory, as this requires diffusion coefficients
(see also the discussion about the hybrid model in Sect. 3.2.5).

In principle, the PIC-MCC method should be able to deal with this prob-
lem as it uses no assumptions about the particles., However, a culprit here
might be the timescale at which the phenomena occur. A broad range of
oscillation frequencies have been observed in plasmas, but the typical fre-
quency range is of the order of some 100 kHz, corresponding with a period of
10 us. Logically, it can be assumed that the discharge only reaches a steady
regime after some oscillation periods. This means that the discharge should be
followed during a time span of at least 50 ps. Usually, PIC-MCC simulations
are not performed for such a long time, implying that they will not accurately
describe the effect.

A possible way to model the enhanced electron mobility is by adding an
extra type of collisions, the so-called Bohm diffusion collisions. The contri-
bution of Bohm diffusion can then be tuned until the simulations correspond
with the experimental measurements. This will be briefly explained for the
analytical model in Sect. 3.4. For the modeling of Hall thrusters, a similar
technique has been used, see e.g., [135, 136].

3.3.4 Modeling “Industrially Relevant” Magnetron Discharges

Of course, the magnetron discharges used for industrial sputter deposition
purposes are not fundamentally different from the ones used in laboratories.
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Nevertheless, there are some aspects that make them extremely challenging
to simulate. In principle, including these characteristic features in the models
is not a fundamental problem, but it will make the simulations' much more
computational intensive. Given that the computational load is already high
(order of several days for both the PIC-MCC and hybrid models), it is clear
that an industrially relevant virtual sputter magnetron is not for the imme-
diate future, even taking into account Moore’s law, which states that the
computation power doubles, on average, every 18 months. In the following, a
few of these challenges will be outlined.

Geometry

Although it is not a fundamental limit, the geometry of the magnetron
considered can make certain models useless. In the glass coating industry,
magnetrons with cathodes up to 4m long are used. For such dimensions, the
PIC-MCC technique becomes useless because of the unrealistically high com-
putational effort. Hence, less computational intensive methods are needed.
An example is the simulation of the effect of the turnaround region on the
uniformity. For this type of simulations the MC method is currently used (see
Sect. 3.2.4 above). Although the latter model has the disadvantage that the
influence of the anode cannot be modeled self-consistently, it is still the pre-
ferred method for such large-scale magnetrons, as the computational load of
the PIC-MCC would be forbiddingly high.

(High Power) Pulsed Sputtering

For industrial applications, pulsed sputtering is frequently used. The typical
frequency 1ange is in the order of 10-100kHz. To simulate such processes,
the magnetron needs to be followed for several periods, i.e., several times
100 — 10 ps. At this moment, this cannot be achieved by PIC-MCC modeling.
A good candidate for this type of problems would be a hybrid model.

Currently, high power pulsed sputtering is gaining interest because of
its potential to deposit coatings with unique properties. In such discharges
extremely high electrical powers are applied during short intervals. Because
of the high plasma density, typical approximations made in magnetron mod-
eling are not valid anymore. First, the magnetic field strength in the magnetic
trap region changes because of the large Hall currents induced during the high
power on-pulse [137]. In all simulation models known to us, this influence is
not accounted for.

Second, because of the high ionization degree in these high power dis-
charges, it will not be possible anymore to neglect the interactions between
charged particles (Coulomb collisions). Again, most simulation models for
planar magnetrons neglect this type of interactions. In [138] a cylindrical
postmagnetron is simulated with a PIC-MCC model, taking into account
electron—electron interactions, albeit in a simplified way. We have included
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these interactions in our PIC-MCC model [38,39], based on the method
described by Nanbu [139-141]

Third, the gas density reduction or gas rarefaction: in Sect. 3.6, it is dis-
cussed how the energetic plasma particles can heat the discharge gas, which
leads to a gas density reduction. For standard operating conditions, this effect
can be neglected. However, in high power pulsed sputtering this will not be
the case. This effect is usually not accounted for in magnetron models. To our
knowledge, only the PIC-MCC model described in this chapter (Sect. 3.6) is
able to deal with this effect [38,39].

Accuracy

The specifications for sputter-deposited coatings can be very strict. A typical
example is the required coating uniformity. Even for large area coating of glass
(with cathode lengths of almost 4 m) the required uniformity is usually better
than +0.2%. It is not evident for a numerical technique to reach this level of
accuracy. For an MC technique, the only way to reach this is by following a
sufficiently large number of particles, i.e., the accuracy comes at the cost of
computational load.

Apart from this, several other effects influence the accuracy at this scale.
Some examples are the gas heating due to sputtered particles and the result-
ing gas density reduction, a nonuniform gas inlet, the influence of the erosion
groove formation on the process, redeposition on the target, heating of the
target, the influence of the sputtered particles, etc. Again, all of these exam-
ples form no fundamental problem, but they might seriously increase the
computational effort.

Basically, the mentioned effects are all examples of “extended self-consis-
tency.” Usually, in magnetron modeling the term self-consistency is used with
respect to the electric field. However, because of the on-going sputtering and
deposition during the process, the environment of the magnetron changes. For
a very accurate magnetron simulation, also these changes have to be taken
self-consistently into account.

3.4 Two-Dimensional Semi-Analytical Model
for a DC Planar Magnetron Discharge

In this section, the self-consistent two-dimensional semi-analytical model
developed by Buyle et al. for a DC planar magnetron [54-57,130] will be
explained in more detail, because it is very powerful, in spite of its simplicity.
Also some characteristic results will be presented
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3.4.1 Description of the Model
Tonization Model

First of all, an ionization model was developed, to calculate the ionization
rate due to the high energy electrons, i.e., defined as the electrons with energy
above the threshold for ionization. For this purpose, the discharge area was
split into arch-shaped regions. This can be justified, because the collisionless
motion of these high energy electrons is limited to such arch-shaped regions.
The effect of election collisions with the background gas was analytically
modeled as a probability for the electrons to hop from one arch to another.

Output of this model was the spatial distribution of ions, generated by
a single electron emitted from the target. It was found that the ionization
distribution is not directly influenced by the gas pressure. This characteris-
tic could be used by future models for magnetron discharges, to reduce the
computational load.

Another important result was that a substantial amount of ionization
occurs in the cathode sheath of the magnetion. This so-called sheath ioniza-
tion is important because the electrons generated in this way can be further
accelerated and give rise to more ionization. This effect was characterized by
a multiplication factor, which is defined as the ratio between the total number
of ions generated due to the emission of a single electron, and the theoretical
number of ions that can be generated without sheath ionization. The multi-
plication factor was found to be close to one for electrons emitted at the edge
of the racetrack, but it can rise to values of 3-5 for electrons emitted close
to the racetrack center. Therefore, an average multiplication factor, (m), was
introduced.

Effect of Electron Recapture

Furthermore, the process of electron recapture at the cathode was taken
into account by introducing the effective gas interaction probability (EGIP),
defined as:
s

EGIP = f=1—exp (A-]-), (3.1)
where s is the average distance traveled by the electron before it is recaptured
at the cathode and X is the mean free path length of the election. For typical
magnetron operating conditions (300V discharge voltage, 600G maximum
magnetic field strength, and 0.5 Pa gas pressure} the EGIP was typically found
to be around 1/3, i.e., about 2/3 of the electrons appears to be captured.

Self-Cousistent Model

The model was made self-consistent by considering the ionization distribu-
tion from a large number of electrons emitted from the cathode, taking into
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account the multiplication factor and EGIP for each electron. Indeed, from
the ionization distribution, obtained in this way, the ion bombardment at the
target can easily be deduced. This determines the average number of emitted
electrons, based on the ion-induced secondary electron emission yield (7). In
this way, the model is made self-consistent, by iterating through this process,
and demanding that the original and the new secondary electron emission
profiles should be identical

With this model, the Thornton relation [142] for determining the minimum
discharge voltage at which the magnetron can be maintained is extended to
a general relation: )

Va= —r ——, (32)
v < fm > ge
where W is the eflective ionization energy (~30eV for argon), &; is the ion
collection efficiency, and e, stands for the theoretical number of ions that the
electron efliciently generates before it is lost from the discharge. Both &; and
€. can be assumed equal to one for typical magnetron conditions.

Note that in the original Thornton relation, sheath ionization is not con-
sidered (m = 1) and the EGIP (f) was assumed equal to 0.5. Because the
model developed by Buyle et al. is two dimensional and includes the mag-
netron configuration (geometry and magnetic field strength), f and m can be
calculated more accurately. This extended Thornton relation illustrates that
the pressure and magnetic field influence the magnetron discharge through
f and m, as all the other quantities in the formula are constant for a given
target material and typical magnetion conditions.

Calculation of the Discharge Current

Furthermore, to deduce the discharge current (Iy) from the obtained mag-
netron properties, the line current density, j,,, was introduced, which is related
through the racetrack length, L, as: I4 = juL; To determine j,, the
Child-Langmuir law had to be extended, leading to the following relation
for jm:

Jmn :‘jdAH,tA[|,s‘/B(I>dx7 (33)

where jq is the surface current density, the factors Ay and A account
for the fraction of ions generated within the sheath (typically between 1/4
and 1/2), and for the ions that are generated scattered over the racetrack
length, respectively. Finally, the integration is needed to convert the surface
current density, jq, into the line current density, jm,, and accounts for the
nonuniformity across the racetrack (z is the direction across the width of the
racetrack).

Using this relation, the dischaige current could be calculated. The model
was able to 1eproduce the behavior of the magnetron discharge with decreas-
ing pressure and constant current. Also typical current—voltage characteristics
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could be simulated. However, it appeared that the extreme steepness of the
current—voltage characteristics was missing, and that the influence of the mag-
netic field on the gas pressure dependence was not retrieved. This example
clearly illustrates the possibilities and limitations of analytical modeling.

Effect of Coulomb Collisions
and Anomalous (or Bohm) Transport

Finally, to resolve the discrepancy between the simulated and experimen-
tal results, two processes not included in the model so far were examined,
i.e., Coulomb collisions and Bohm (or anomalous) diffusion. The first process
could explain the magnetic field dependence of the pressure effect in cylin-
drical (or post) magnetron discharges, but it can be ruled out for planar
magnetrons, because the high energy electrons are too energetic.

The latter process was added to the model in an empirical way, by
introducing an artificial type of interactions, the Bohm diffusion collisions.
The idea comes from Hall thruster simulations, where a similar approach
is followed [135,136]. The Bohm diffusion collisions represent the electron
interactions with the electric field oscillations, which are supposed to gener-
ate anomalous diffusion. The “amount” of Bohm diffusion is defined as the
occurrence of the Bohm diffusion collisions relative to the standard collisions
(ionization, excitation, and elastic collisions), and it is proportional to the
magnetic field and inversely proportional to the gas pressure, indicating that
anomalous electron transport is especially important at strong magnetic fields
and low pressures,

The influence of increasing the “amount” of Bohm diffusion on the mag-
netron properties was simulated. These changes could be related to the
increased electron mobility in the direction perpendicular to the magnetic
field lines. The main advantage of including Bohm diffusion is that it enables
to reproduce the extremely steep current—voltage relations, which are charac-
teristic for a magunetion discharge.

3.4.2 Examples of Calculation Results

The results of this analytical model were compared with experimental results,
using two input values, i.e., the electron reflection coefficient and the relative
occurrence of Bohm diffusion collisions, as tuning parameters. Two examples
will be discussed in the sections below. In both cases the experimental results
were obtained using a commercially available planar circular magnetron (Von
Axrdenne PPS50, see also Sect. 3.5)

Calculated Ionization Distribution vs. Measured Plasma
Emission Distribution

Figure 3.2 shows the plasma emission recorded as a function of distance per-
pendicular to the target. The experiment and, hence, the results are very
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Fig. 3.2. The influence of the gas pressure on the optical emission of the magnetron
at 50 W, as measured (a) and as simulated (b). Note that the emission has been
normalized to the maximum emission at 2.2 Pa (2.0 Pa) for the experiments (simu-
lations). The dashed vertical line (part a) indicates the position of the target. The
dotted line (part a) suggests the “true” emission, i.e, without target reflection, for
the case of 040 Pa

similar to what was measured by Lan Gu and Lieberman [41]. The z’-axis rep-
resents the distance along the direction perpendicular to the target (expressed
in pixels). The vertical line at z’ = 107 indicates the position of a small peak
that is due to the light that 1eaches the camera after reflection on the tar-
get. According to [41] the exact position of the target surface is probably at
slightly lower z’-values. The z’-axis in pixel-scale could be converted into the
z-axis in mm-scale.

In the analytical model the light emission of the plasma is not simu-
lated. However, the excitations and ionizations generated by the high energy
electrons occur practically at the same positions. Hence, the ionization rate
distribution can be used for comparison with the experimentally measured
emission intensity and is plotted in Fig. 3.2b. As one can see, the shift of
the peak and the decreased intensity with decreasing pressure are reproduced
very well

Current—Voltage Characteristics

For a second example of the analvtical model, the discharge voltage is cal-
culated as a function of the electrical current for different secondary electron
emission yields () at constant pressure (0.3 Pa). The variation in y was experi-
mentally achieved by using different target materials under otherwise identical
experimental conditions. Figure 3.3 shows that the increasing steepness of the
current—voltage characteristic with increasing v is reproduced nicely. The rel-
ative spacing between the curves is also reproduced very well for v = 0.06
through 0.14 For v = 0.18 the experimental curve lies much closer to v = 0.14
than the simulated one. A possible explanation might be that the choice of
yttrium (Y) as material for obtaining the experimental curve corresponding
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Fig. 3.3. Influence of the secondary electron emission yield - on the current-voltage
characteristics at 0.3 Pa, as measured (a) and as simulated (b). The experimental
curves are obtained with different target materials: Au, Al, Mg, and Y. The cor-
responding ~y-values used in the simulation for these materials are 0 06, 0.10, 0.14,
and 0.18, respectively, as described in [143]

with v = 0.18, is based on a calculated value of v and not on experimental

data, see [143].
In view of the relative simplicity of this analytical model, and the fact

that certain aspects are completely neglected (such as the effect of bulk elec-
trons), the agreement between the simulations and experimental data is very
satisfactory.

Therefore, it can be concluded that this analytical model is able to repro-
duce self-consistently the influence of the main three external parameters
(i.e., magnetic field strength, gas pressure, and electrical power) over a wide
range. Also the effect of the secondary electron emission yield, ~, could be cor-
rectly simulated. This indicates that the model captures the most important
processes occurring in the magnetron discharge, and is therefore a valuable
“virtual” tool to gain insight in the generic magnetron behavior.

3.5 PIC-MCC Model
for a DC Planar Magnetron Discharge

This section will give a detailed description of the PIC-MCC model devel-
oped by Kolev and Bogaerts for a DC planar magnetron [37-39, 144]. Some
characteristic results will also be illustrated.

3.5.1 Particle-In-Cell Model

The PIC model is a numerical model describing an ensemble of collisionless
charged particles, which can be, but not necessarily, under the influence of an
external electromagnetic force. The constituents of the ensemble are not real
physical subjects. They are artificial objects, representing the main physical
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properties of the real particles, such as chaige, mass, and momentum. These
computational particles are referred to as superparticles (SPs). Each SP 1ep-
resents a large number of real particles. This number is called weight and is
in the order 108-10° Thus, the first approximation of PIC is the replacement
of the real particles in a physical system with artificial superparticles. The
second approximation is the discretization of time. This means that the sim-
ulated system jumps from one temporary state to another, in contrast to the
real system, where the time evolution is continuous. The third approximation
is the space discretization. Indeed, a mathematical spatial grid is imposed.
The electrostatic field that results from the position of all simulated particles
at a given moment of time is calculated on the grid only. The external (elec-
tric and magnetic) field, if any, is calculated on the same grid. The particles
advance is then made by interpolating the forces resulting from these fields
from the grid to the particle locations.

The trajectory of the SPs is simulated during a large number of time steps.
A schematic diagram of a PIC computational cycle, over a time period At
equal to the discretization pace in time, for the case of an external magnetic
field, B and electrostatic field E, is presented in Fig. 3.4.

Before the first execution of the cycle, the initial state of the system needs
to be specified. This includes the initial distributions of the particles in the
coordinate and the velocity spaces. In fact, this is the main guess in a PIC
simulation, so it must be a physical one. In following sections, the different
steps of the computational cycle will be explained in detail.

Integration of equations of Particle loss/gain at the
| motion, moving particles boundaries
Fp— vy — x4 (emission, absorption)
Weighting At Yes
(E.By— K

S

" @

Integration of Poisson’s
L) equation on the grid
(p)k — (E)k

Weighting
(%, v}y — (P)

Fig. 3.4. A scheme of a PIC cycle for the case of electrostatic field, E, and an exter-
nal magnetic field, B. Here v represent the velocity of the SPs, x their coordinate,
F the force acting upon them, and p is the charge density. The index k refers to the
grid and the index ¢ to the SPs. The time step of the cycle is At
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Integration of the Equation of Motion

In a DC magnetron, the force acting on a charged particle has two components:
electric and magnetic. The gravitational force is ignored because its magnitude
is very low in comparison to the electric and magnetic forces, due to the small
masses of the electrons and ions. Further, the magnetic force can be considered
external, because the magnetic field that results from the motion of the charges
inside the magnetron is only-a small perturbation to the magnetic field created
by the magnets. The electric force, on the other hand, is a combination of the
applied (external) electric field and the electric field induced by the charged
particles. Thus the force is given by:

F = Fectric + Fmagnetic = qE + (I(v X B) (34)

leading to the equations of motion

d
md—j:q(E+va)

da:vv

dt

where z denotes the coordinate. This is a system of ordinary differential equa-
tions. It is discretized by the method of finite differences [145] using central
differences for maximum stability and accuracy at low computational cost.
A standard way to achieve this is to use the leapfrog algorithm, which is
explained in Fig. 3.5.

~ph e —-"\
velocity / \/
Yoat2 YiAt/2 Vhl»m/z time
L. .
coordinate \/ \

X, Xesaq time

F, Feon

—At/2 0 t—At/2 t  t+AU/2 t+At

Fig. 3.5. A sketch of the leapfrog algorithm. The position of a particle is advanced
from a moment t to a moment ¢ + At, even though the velocity is not known in
neither of the two moments, but in between. This represents the time centering. In
time t = 0, the initial conditions are specified at the same time. That is why the
velocity is initially returned half a time step back in time
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The time centering is clearly seen. The application of the leapfrog algo-
rithm leads to the following system of finite difference equations

VirAt/2 — Vi-Ae/2 q Vitat/2 — Vi—At/2
=2 |E x B
Y o Al
TirAt — Tyt :
—— = 3.5
T ae (35)

The magnetic field is not indexed, because it is constant with time. The system
(3.5) is in vector form. When written in components, it produces in general
six scalar equations. Those of them that originate from the first equation are
heavily coupled because of the rotation term. This makes the direct solution
very complicated and computationally ineffective, because a solution is needed
for every particle per each time step. The problem can be surmounted by
noticing that the first term in the right-hand side of (3.5) is acceleration
along the electric field and changes the magnitude of the velocity, while the
second term is a rotation of the velocity vector, which does not alter the
velocity magnitude. Then the force can be split into pure acceleration and pure
rotation. To stick with the time centering, the acceleration can be performed in
two stages, each with the half of the time step, while the rotation is performed
at once, in between the two half-accelerations. In terms of velocities this can
be expressed as

half acceleration l'/ full rotation 1 half acceleration
v

At/2 At At)2

Vi—At/2 Vitne/2,

where v’ and v” are some dummy velocities. Half-accelerations are trivial
for handling since there is no coupling there. The rotation can be handled
geometrically, as first suggested by Boris [146] and explained in detail in [144].

Charge Assignment

Once the particles’ positions are calculated, the charge density, p, at the grid
must be obtained. This procedure is called charge assignment. It is done, by
ascribing fractions of each point charge to the neighboring grid points. To
account for the charge conservation, the sum of all fractions must be equal to
the point charge. The 1esulting chaige, assigned to a given grid point is the
sum of all fractions assigned to that grid point. The charge density then is
the grid charge divided by some specified volume around it.

The function, which determines what fraction of the point charge is
assigned to a given grid point, is called weighting function or shape fac-
tor, S. The latter term arises from the way the grid sees the particles.
There are different ways to construct the weighting function. The choice is
always a compromise between more accurate physics incorporated and higher
computational costs.

The simplest scheme for charge assignment is the so-called nearest grid
point {NGP) scheme. The NGP scheme assigns the whole point charge to the
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NGP. It is computationally very attractive, but is seldom used, because of its
coarseness that can introduce fatal numerical instabilities. The NGP scheme
is of zeroth order.

The first-order scheme is the so-called cloud-in-cell (CIS) scheme, first
introduced by Birdsall and Fuss [147] for one-dimensional plasma simulations.
The CIS scheme uses linear interpolation to assign the charge to the NGPs,
It is much more accurate and also smoother than the NGP scheme.

When still more smoothness or accuracy is desired, higher order schemes
can be used. Then a point charge is assigned not only to the closest grid points,
but also to one or several distant grid points. The interpolation function is
then of second o1 higher order. The fact that it is not linear anymore leads to
often unacceptable computational intensification. That is why the CIS scheme
is the most commonly used scheme.

In two dimensions, the linear weighting may be performed in two ways. The
first one is the complete analogue of the CIS scheme. The second one is area
weighting, also known as bilinear weighting. When axisymmetric systems are
modeled, the usual choice of coordinate system is cylindrical (r-z). Although
formally two-dimensional, it in fact describes a volume. To represent this
correctly in the charge assignment, the weighting is to be volumetric (12, z),
rather than area weighting. The way it is done is shown and explained in
Fig. 3.6.

Integration of Poisson’s Equation on the Grid

The charge distribution, characterized by the charge density, p, creates an
electrical potential, V', given by Poisson’s equation, which in cylindrical (r, z)
coordinates 1eads

10 oV(r,z) 0 90V(r,z) p(r, z)

el el -

r or dr Jz 0Oz £0

pr,2) = a(ni(r,2) - ne(r,2))  (36)

where n; and n. 1epresent the ion and election number density, respectively.

The discretized form of (3.6) is obtained by applying the Gauss’ law, for
the dashed volume, centered on a grid node (r;, z;) (see Fig. 3.7):

qi.j
= = 2710 AZE, a0y — 21110 AZE, 0

€0
+7 (7/1'2+1/2 - Tz'2~1/2) (Eeiji1/2 — Ezjie1/2),
where the geometric factors are defined as follows
ATip1/2 = Tig1 — Ti
(Arz)z‘, = 71'2+1/2 - 7&%1/2
(AT‘Q)O = 7%/2‘
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Tk

Ti+1

Fig. 3.6. Illustration of the charge assignment in cylindrical (r, z) coordinates,
according to the volumetric weighting CIS scheme. The charge gy, located at point
(7%, zr), is distributed among the four grid nodes A, B, C, and D of the grid cell it
is located in. The fraction of g that is assigned to A, for example, is equal to the
product of g and the ratio of the volumes: (1) obtained by full rotation of the shaded
area of the grid cell ABCD around the z-axis and (2) obtained by full rotation of
the whole grid cell ABCD around the z-axis. Ay and Az are the grid sizes in - and
z-direction, respectively

A
z
” Ar »
EZ
- - - -, R Sh b
: ' o
7. :
1 i hd X
i : .V
r-—--»—l l-—.—-.--—_-‘ AZ
) 2 5
>
0 I T

Fig. 3.7. A sketch of the computational grid with grid separations Ar and Az. The
dashed line centered on the grid point (r;, z;) represents the surface on which the
Gauss’ theorem is applied. The discrete values of the charge, g, and the potential,
V', are known in the grid nodes, whereas the components of the electric field, E; and
E., are defined on the Gauss’ surface. The surfaces allocated at the origin, r = O,
(left-dashed box) are half the size of those located in the volume
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Employing single cell finite differencing

Vit1; = Vi Vigr1 —Viy

ET i+1/2,5 = Ez i,j+1/2 = Az

e

AT7+1/2
and using a standard five-point stencil [146], the discretized form of (3.6)

becomes

21i41/2 S 2rii1y2

A7), Arirrs (Vigr; — Vi) — &%), Br s (Vij = Vie1y)
+ Aizz (Vi1 —2Vij + Vij-1) = %pi.j i>0
(AT_QQ):LAZ__“_/_Q. (Vi,; — Vo,5) + ﬁ (Vo,j41 — 2Vo,5 + Vo 1) = ‘;(;po’j i=0
(3.7)
The charge density p; ; is obtained from p; ; = g; ;/vol; ;, where
vol; ; = m(Ar?); Az, (3.8)

In the second of (3.7), an implicit boundary condition is implied representing
the symmetry around the axis r =0

oV

ar |, _o

=0

The other boundary conditions are discussed in the next section.

Equation (3.6) is an elliptic partial differential equation with separa-
ble coefficients. This favors the use of some of the so-called rapid elliptic
solvers [148], which are much more efficient than the more frequently used
mesh-relaxation methods (MRM’s) [149]. Since there is no periodicity in either
of the directions, fast Fourier transform techniques [150] are inapplicable.
Instead, the cyclic reduction method (CRM) can be employed. The CRM is
more complicated from programmert’s viewpoint, but it is the most efficient
numerical method for the case of interest. The description of the general CRM
and a possible algorithm for its implementation is given in [151]. If an equidis-
tant grid in the z-direction is used, the CRM algorithm is even faster. An
additional advantage of the CRM is that as a direct method, it is presumably
more accurate than any of the MRM’s, which are iterative.

External Circuit

In modeling of magnetron discharges, an external circuit needs to be incor-
porated, to ensure that the model describes the magnetron discharge in the
correct current-voltage regime [37,144). Figure 3.8 gives a schematic diagram
of a simple external circuit, consisting of a constant voltage source, Veyt, and
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Rparn

Fig. 3.8. An external circuit consisting of a constant voltage source, Vex, and a
ballast resistor, Rpai, in series with the cathode. The dot-dashed line represents the
symmetry axis, r = 0

a ballast resistor, Rypay in series with the cathode, together with a sketch of
the planar magnetron considered in the present study.

The presence of an external circuit leads to the necessity of simultane-
ous advance in time of the circuit and the discharge This problem is known
as modeling of bounded plasmas with external circuits [152]. Its numerical
application in 1D has been given in detail in [152-154]. A comprehensive pro-
cedure for the case of 2D Cartesian coordinates can be found in [155]. For 2D
cylindrical (r, z) coordinates, certain modifications in the procedure of [155]
are necessary. This is explained in detail in [144]. In the following, a brief
description is presented.

The coupling between the circuit and the discharge is maintained through
satisfying the charge conservation at the cathode

Ada

E = Iezt (t) + Qdisch (39)

where o is the total surface charge density at the cathode, Iy is the external
circuit current, A is the cathode surface, and Qgiscr is the charge deposited
from the discharge on the cathode during a period dt, due to the bombarding
fluxes of the charged plasma species.

The total surface chaige can be determined independently of (3.9) applying
the Gauss’s theorem on a number of boxes, closely surrounding the cathode.
This is done in the following manner. The cathode surface is divided into nr;
boxes, as shown in Fig. 3.9.
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R Er 0, 1+

Fig. 3.9. The cathode surface (z = 0, r € [0; rnn]) is enclosed by nr1 boxes. For
each of them, the Gauss’ law is applied. For all boxes, except the one centered on
r = nr1, the flux of the electric field through the boxes’ surfaces is nonzero only
in +z-direction. For the box centered on r = 74,1, there is also a nonzero flux in
r-direction

For the ith box the Gauss’ law is
jé gl - ds = (Q,,
S

where S; is the surface of the ith box, ds is the surface element, and @; is the
total charge inside the box. The total charge, Q;, is a sum of the surface charge,
caused by the charging of the cathode by the discharge and the external
circuit, and the volume charge that comes from the charged plasma particles.
Then the Gauss’ law takes the form

]{ coF-ds =Q; = f o;ds + / pidV,
s; S, JVol;

where o; is the surface charge density at point i, p; is the charge density in
the same point, and Vol; is the volume of the box. This is equivalent to

1
eE;i1/2 = Y Vol, + o; (3.10)

By use of finite differences, E. ; 1,2 can be expressed as ($o — V; 1)/Az, where
& is the cathode potential. Rearranging (3.10) for o; and summation over all
boxes %, yields an expression of the total surface charge density on the cathode
(o) as a function of the cathode potential (Py), the potential values at the
first grid point in the discharge, for all the boxes, i.e., radial positions (V; 1),
and the corresponding volume charge densities in these boxes [144].
Furthermore, (3.9) can be discretized with backward finite differences

A(oh — o) = [Leae (t) + Taisn] At (3.11)
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Then according to Kirchhoff’s voltage loop law, the cathode potential, $g =
Vit — Rextloxt. Expressing from there Iox and introducing it to (3.11)
produces

1 At
O"fl“zz (Vve:ct_éo)R ;

+ Qlan | + 0¥ (3.12)

Equation (3.12) can be combined with the equation for o1 (obtained by rear-
ranging (3.10); see above and [144]) in a single equation for @¢ as a function
of the potentials, V; 1 and charge densities, p; o both taken in time ¢, and the
total surface charge density at time (t —1).

The problem here is that such an equation is at the same time a bound-
ary condition for the Poisson’s equation (3.7) (see above). This leads to the
necessity that (3.7) must be solved iteratively until the boundary condition is
fulfilled, which is extremely inefficient in computational sense. Alternatively,
the potential at any grid point, V; ;, can be expressed as a superposition of
two other potentials

Vig = Vi + Vi (3.13)

The potential, V j» 1s a result solely of the presence of charges inside the

magnetron. Thus, it is a solution of (3.7) with boundary conditions v, =

VP = VP = 0, where nr and nz represent the grid nodes located at the

i,nz nr,j
walls of the magnetion. The dimensionless potential, Vh, accounts for the
influence of the cathode potential and is a solution of the Laplace equation
AVL = 0 with boundary conditions Vl<m o= 1and VE = 0 at the walls.
Replacmg Vi,; with (3.13) finally yields an expression for @ as a function of
the potentials and charge densities in the plasma, in front of the cathode, at
time ¢, the external (applied) potential, and the total surface charge density

at time (¢ — 1)
nri—1 P nry—1 Q!
—az Z ‘/1 1 a3vnn, —a4 Y, PO A5Pnri 0+ dmh + a6 Vext +(7T
;=0
Do = : !

Qi
(3.14)

where a;—ag are coefficients, dependent on geometrical factors and on
VZLj [144].

In this way, @¢ at time t can be calculated only from known quantities at
the same time. Then the overall procedure for simultaneous advance of the
circuit and the discharge in time is as follows. In the beginning of the simu-
lation, the Laplace equation is solved to determine VZLJ . Next, the coefficients
a; through ag are calculated. These two steps are performed only once. Then
at each time step, (3.7) is solved with zero boundary conditions to obtain VZP7
With Vs and V", known, (3.14) is solved for @q. Afterward, (3.13) is used

2,
to pIOduce the dlSCIete potential distribution in the discharge V; ;. Finally,
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(3.12) is solved to get o, which is going to be used in (3.14) during the next
time step.
Finally, once the potential, V; ;, is known, the electric field E is calcu-

lated from
E=-VV

Force Interpolation and Smoothing

With E; ; calculated above, the force F; ; needs to be interpolated to the pat-
ticle locations. This operation is known as force interpolation and is inversely
identical to the charge assignment (see the section above). What is important
is that the same shape factor must be used in both chaige assignment and
force interpolation. Not doing so usually results in a nonphysical self-force,
ie, a particle experiences a “force” caused by the particle itself [148,153].
Using the same shape factor secures the total momentum conservation of the
simulated system.

The procedure of weighting (charge assignment and force interpolation)
introduces naturally fluctuations of the grid quantities. The amplitude and
the density of the fluctuations are reversely proportional to the number of
SPs per grid cell. In magnetrons, the charge distribution is very inhomoge-
neous (see Sect. 3.5.4 below). This results in a situation where in some grid
cells the number of SPs is very small, which can cause strong fluctuations.
These fluctuations can evolve in instabilities that can terminate the simula-
tion or bring it to a nonphysical solution. To prevent that from happening,
digital filtering or smoothing is needed. The smoothing can be described as
the substitution of the grid quantities at every grid node with some-averaged
(smoothed) values received by averaging the grid quantities at the adjacent
grid nodes. Difterent methods exist for that. In the current simulation, after
the charge assignment is finished the charge density is smoothed before being
used for calculation of the potential.

There are many digital filters that in principle can be used [156,157).
However, the filter must be isotropic to represent correctly the physical real-
ity Additionally, it must be computationally efficient because the filtering is
performed at each time step. The filter, adopted in our work, uses the unfil-
tered values of the closest neighboring grid points (9-point filtering) {153]. It
can be represented by the following transformation

filtered
i,
Iaw raw Taw 13w raw Taw Traw Taw Taw
- 4p;% +2(Pz>1,j +Pi+1,;+Pi,j—1+Pi,j+1) FPis1 -1 Pi1 g1 tPi 1P -1

16

Stability and Accuracy of the PIC Model

The PIC model is a discrete approximation of a continuous physical picture.
As such, it always introduces a numerical noise. The magnitude of this noise
reaches zero only when the number of SPs per grid cell approaches the number
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of real particles in the same grid cell. Therefore, all kinds of particle simula-
tions are by definition noisy in contrast to fluid models. The noise, however,
should be kept under a certain maximum level to have meaningful results.
More importantly, the ertor introduced by the noise must not be allowed to
grow with the simulation. Several factors directly influence the noise. These
include the time step, the number of SPs per grid cell, the shape factor, and the
grid size. The specific mechanism through which this influence is manifested
depends on the type of the numerical integrator of the equation of motion.
In our model, the leapfrog integrator is implemented. A quantitative analysis
for the error introduced by this method is given in {144]. It is found that the
standard leapfrog algorithm has a quadratic error term for wpAt < 1, where
wp is the characteristic frequency in the simulated system. In DC magnetrons,
the two highest frequencies are the electron plasma frequency

Wpe = \/Neg2/E0Me

and the electron gyro frequency, wee, given by w, = |¢|B/m.

Hence, wg = max{wpe, Wee -

It should be emphasized that the error is cumulative with the number
of time steps. This means that the longer the simulation is run, the bigger
the overall error is. Consequently, the following paradox exists. Setting the
tolerable error too small limits the number of time steps. Allowing a large
number of time steps increases the error as the cube of the time step [153]. In
the literature, a common compromise has been set

wolAt 72 0.2 (3.15)

In magnetrons, the standard leapfrog algorithm is expanded to deal with the
magnetic field and the rotation caused by that field. Thus, it is important
to keep the calculated rotational angle reasonably close to the real one. An
analysis of this problem can be found in [148]. It shows that for magnetic field
strengths of interest the condition (3.15) secures that the rotation term of the
equation of motion (see section “Integration of the Equation of Motion”) is
calculated with an error not exceeding that of the general leapfrog algorithm.
The exact condition is

woAt < 0.35. (3.16)

Generally, in two and three dimensions, the discussion for the stability and
accuracy is much more complex. However, when one of the dimensions is
dominant and the stability is achieved for it, it can be accepted that the whole
simulation is stable. Typically, the dominant dimension is in the direction of
the strongest gradient of the electric field. For our magnetron simulations, it
is the z-direction. In line with that, the Courant criterion [158] is

v At /Az <1, (3.17)

where v, is the characteristic velocity of the kth type of SPs and Aty is its
time step. The meaning is that, if (3.17) is violated, too many SPs are jumping
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over field variations, which leads to numerical heating. Thus for a given Af,
defined by (3.16), the formula (3.17) sets a bottom limit for the grid size, Az.
At the same time, the grid must be fine enough to resolve the sheath. This
leads to the upper limit for Az

Az < Ap, (3.18)

where Ap is the Debye length.

Relations (3.15), (3.17) and (3.18) define the stability and accuracy domain
in terms of time step and grid size for the standard PIC simulation. Adding
to that the MCC method (see below) will bring some additional conditions.
More details about that are given at the end of Sect. 3.5.2. Modifications of
the stability criteria with respect to speeding up the procedure are presented
in Sect. 3.5.3.

3.5.2 Monte Carlo Collision Method

The PIC method has been originally designed to model collisionless plasmas
In magnetrons, as in other types of glow discharges, collisions sustain the
discharge. Therefore, a numerical model must be able to incorporate them.
This can be achieved by coupling the PIC model with a Monte Carlo collision
(MCC) model. This means that at a certain moment of the time step the SPs
should be checked for collisions. The coupling is not just a numerical trick
made to account somehow for the collisions. It has sound physical grounds,
which follow from the Boltzmann equation [144].

The collision probability for all individual SPs needs to be calculated dur-
ing every time step. Let us consider here the elections as example of the SPs,
It can be proven [159] that the probability, P;, for the ith electron to collide
binary with any of the particles of type g (gas atom, for example) during
time At agrees with the probability received from the elementary free-path
theory [160]. That is

P, = vAt,

where v is the collision rate given by v = nggor with ng being the target
density, g the average relative speed between the ith electron and the target
particles, and o is the total cross section. In case of big disparity between the
speed of the colliding particle, v;, and the mean speed of the target particles,
a common approximation is § =~ v;.

The cross section and therefore the collision rate are generally energy
dependent. Since the velocities of the particles change with time, the collision
rate is also time dependent. The probability, @, that an electron, starting at
time ¢t = 0, does not collide in the interval (0,1 + At) is

Q(t + A1) = QO[L - v(tAw)],
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where the term in the square brackets is the probability for no collision in the
interval (¢,t+ At). When At — 0, this equation becomes

dQ
=R

with a solution
t
Q(t) = exp {—/ v(t)dz‘} . (3.19)
0

Consequently, the probability that a collision takes place within a time ¢ = ¢,
is given by:
Prob{t.} = 1 — Q(tc).

This probability is calculated by generating a uniformly distributed random
number (U) in the interval [0,1] [161]

1-Q(t) =U. (3.20)

Hence, once U is generated, the time f., which defines when a collision takes
place, can be calculated from (3.19) and (3.20). This constitutes the gen-
eral Monte Carlo procedure for determining whether a collision takes place.
However, it is impractical, unless the collision rate is constant.

Instead, the null-collision method, first introduced by Scullerud [162], can
be used. Its main feature is the introduction of a constant maximum collision
frequency, Umax, that is always higher than v(¢) for any ¢. Hence, when (3.19)
and (3.20) are solved with vy, instead of v, the solution is

th = —vpl InU (3.21)
To find a 1elation between £, and ¢/, the same U should be used. Then accord-
ing to (3.20), t. < t.. The collision probabilities for v and vpay, 1espectively,

at time, ¢ = ¢/, are
t
P.=1—exp —/ v(t)dt !,
0

(Pc>max =1- GXP(*’Umaxté) (322)

Consequently, the probability that a collision is regarded real, i.e., it really
happens in the model, is equal to P./(P.)max. Note that the condition, P. <
(Pe)max, is always fulfilled.

The efficiency of the method arises from the fact that there is no need to
calculate the actual collision time ¢, in (3.20). If ¢/ is small enough, which
is always true if the time step of PIC is used, the collision 1ate can be
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approximated with a quadratic polynomial. Then the integral in the first of
(3.22) becomes [139]

/O ")t = % [0(0) = 4v(t!/2) + v(tl)]. (3.23)

Equation (3.23) can be used to determine the probability for collision from
(3.22). ‘ o

So far, the total probability of collision, Pr has been discussed. When
there are m types of collision, all possible in the time interval of interest,
the probability for the kth type of collision (0 < k < m), characterized by a
collision rate vy is given by

o
P.=1—exp {—/ vk(t)dt}
0

and
m
Pr=Y P (3.24)
k=1

Then the sampling of the kth collisional event is made with a probability of
P/ Pr.

The drawbacks of the null-collision method are connected to the implicit
condition that the particles in the ensemble have the same collision rates. Or,
what is equivalent, that their mean collision path is the same. Such situation is
easily realized in a uniform electiic field, for instance. That is why the method
is especially efficient in swarm calculations. Its application to PIC simulations
has been introduced by Vahedi and Surendra [163]. However, no theoretical
analysis has been carried out to determine what strengths of the electric field
gradients are allowed for the stability domain of the null-collision method
In magnetrons, strong gradients in both electric and magnetic fields exist,
and as it has already been pointed out, the whole magnetron plasma is very
inhomogeneous. The amplitude of the electric field gradients is proportional to
the strength and geometry of the magnetic field. All this makes the use of the
null-collision method in magnetron modeling highly questionable, especially at
strong magnetic fields. An additional problem may appear from the selection
of the particles (especially the electrons) which are considered for collision
in each time step. The procedure of Vahedi and Surendra [163] requires the
determination of some maximum number of particles eligible for collision. It
is intuitively clear that when the particles are with small dispersion in theix
velocity distribution they can be selected randomly. Unfortunately, the latter
is not the case in magnetrons, where a relatively small number of electrons are
responsible for the main processes that sustain the discharge. Consequently,
if the colliding elections are selected purely on random basis it can lead to
underestimation of the collisions of the “important” group of electrons.



98 A. Bogaerts et al

The above discussion motivates the introduction of a collision sampling
procedure, both capable of dealing with strongly inhomogeneous velocity and
spatial distributions and which is computationally effective. Such a procedure
has been developed by Nanbu [164]. It makes it possible by use of a single
random number to determine not only whether a collision occurs, but also
what type of collision takes place. In this way, the computational efficiency
is significantly improved. The checking is done on per particle basis, which
ensures the equal treatment of all particles. For the case of electron-neutral
collisions, where the speed of the neutrals is neglected and they are considered
homogeneously distributed in space with a density, ng, the procedure is as
follows.

The total probability for collision is given by (3.24), where

Py = ngvoi At (3.25)

Here, v is the electron speed. Equation (3.24) can be rewritten as

1=PT+(1~PT)=§{Pk+<-%~Pkﬂ,

1

which is visualized in Fig. 3.10.

The unit length is divided into m equal intervals, where m stands for the
number of different collision types. Each interval has two parts. In the kth
interval, e.g., the left part has a length equal to 1/m — P and the right
side is Py. The sum of the right parts of all m intervals equals the total
collision probability, Pr and the sum of the left parts gives the probability
of no collision, 1 — Pr. The procedure is to generate a uniformly distributed
random number Ue [0, 1]. The integral part of mU~+1 specifies the kth interval
corresponding to the kth collisional event, i.e., k = int[mU + 1]. Then only
Py, needs to be calculated, which is a significant speed-up in case of big m.
Finally, the same U is checked to see in which part of the kth interval it falls. If

k

U2 _p
m

holds, the kth collisional event occurs. If not, no collision takes place.

1 2 m—k~1  m—k m—1

H m " m m

Fig. 3.10. Visualization of the Nanbu’s method [162] for sampling a collisional
event. The right-hand side of the kth interval (drawn with thicker lines) represents
the probability of the kth type of collision. The sum of the left-hand sides of all
intervals (represented by thinner lines) is equal to the probability of no collision
The sum of the right-hand sides equals the total collision probability, Pr
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In all MCC algorithms, the collisional time step, At.., must be small enough
in order not to miss a real collision. This condition stems from the fact that
for one time step, the colliding particle is allowed to undergo at maximum one
collision. For the Nanbu’s method, this condition is P, < 1/m for all m, for
all electron energies. The electron energies in DC magnetrons are restricted
approximately to the energy equivalent of the applied voltage. Then some
Phax can be estimated, that corresponds to the biggest cross section, opax,
of all the included processes for all the possible energies. Then the maximum
allowed At. can be obtained from (3.25) with o4 replaced by omax and Py =
1/m. This is practically not a limitation at all, when the method is used
in PIC simulations, because the general time step limitation of PIC is more
restrictive (see above (3.16)).

The coupling of the collision check with the PIC cycle can be done in
different moments inside the time step. Our choice is to check for a collision
in the middle of the time step. This choice has been dictated by the time
centering of the leapfrog integrator (see section “Integration of the Equation
of Motion”, and especially Fig. 3.5). At this moment, the positions of the
particles are exactly known. At the same time, only half of the acceleration
is applied. The rotation may or may not be calculated. It does not matter,
because the rotation does not change the speed and hence the energy of the
colliding particle. Therefore, the energy is also known at the middle of the
time step, though the velocity is unknown

The inclusion of the MCC module to the PIC method is shown schemati-
cally in Fig. 3.11. In case of collisions, the precollision velocity of the colliding
particle is 1eplaced by its postcollision velocity, which is determined based
on the fundamental laws of conservation of energy and momentum during
collision, plus geometrical considerations related to the particle’s orienta-
tion before the collision, as is explained in detail in [144], for the different
types of collisions (electron-neutral, ion-neutral, neutral-neutral, and Coulomb
collisions).

3.5.3 Methods for Speeding Up the Calculations

As already mentioned before, PIC-MCC simulations of DC magnetrons are
very time-consuming. This is caused by two main factors. The first one is the
relatively high plasma density leading to a large number of SPs that need to be
simulated. The second one is the time needed for convergence to be achieved.
The simulation should be run for at least 10~°s, which is the relaxation time
in a DC glow discharge [165]. The high plasma density limits the allowed time
step, which results in a large number of time steps (computational cycles)
that should be performed to reach the 107°s limit. All this motivates the
incorporation of computational techniques and physical approximations that
can alleviate the computational load. Here, an overview of the methods, used
to achieve this goal, is given.
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Fig. 3.11. Scheme of a PIC-MCC cycle. The collision check is performed at time
t + (1/2)At. The notation v; refers to the postcollision velocity of the ith particle
All other symbols are as in Fig. 3.4

Subcycling

Subeyeling [158] is the partial advance of the simulated system. This means
that different parts of the system are advanced with different time steps. The
fast evolving components are normally advanced a fixed number of times per
one evolution of the slow components. If the system time step, and therefore
the main cycle, is those of the slower components, then the fast ones are moved
several times within the main cycle. Or in other words, they are subeycled. The
fast particles that require the smallest time step (see section “Stability and
Accuracy of the PIC Model”) are the electrons. Ions are roughly 2,000 times
heavier than electrons and hardly move during an electron time step. This
allows, according to the stability and accuracy criteria of the PIC method,
that they can be advanced safely once per 20-50 electron time steps. The
electric field, however, is recalculated after each electron time step. In this
sense, the term subcycling is to some extent a misnomer in the present study.

Variable Time Step

The initial density, loaded in the beginning of the simulation, is much lower
than the density in a steady state. The time step restriction [(3.16)] must be
obeyed at any time. Since the plasma density changes, so can the time step.

The classical approach is to fix the time step to obey (3.16) for the maxi-
mum expected density. This is a simple and safe decision from a programmer’s
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Fig. 3.12. Adapting of the time step throughout a typical simulation

point of view, but is computationally ineffective, because unnecessary small
time steps are used in the initial stage of the simulation when the discharge
is being built up and the plasma density is low. Alternatively, we choose to
use a variable time step. This is done in the following way. At the beginning,
the time step is set to satisfy (3.16) for the initial electron density. Afterward,
at every 5,000 time steps the maximum electron density in the discharge is
found and if (3.16) does not hold anymore, the time step is increased by 25%.
This is illustrated in Fig. 3.12, where the time evolution of the time step
in a typical simulation is shown. As it is seen, during a significant part of
the simulation, the time step is larger than the steady state time step. This
allows decreasing the necessary number of computational cycles, and hence
the overall computation time, by 30--40%.

Optimization of the Weighting

The weighting has been discussed in previous sections “Charge Assignment”
and “Force Interpolation and Smoothing”. Each particle should be assigned to
the four NGPs at every time step. If the coordinates of the particles are stored
in physical units for distance, a floating-point division should be performed
to determine to which cell the particle belongs. This is computationally very
costly. Instead, the coordinates of the particles are stored in terms of grid
cells. For example, if the ith particle has a coordinate, r = 3.356 expressed in
cell units, rather than in meters, the determination of the cell in which the
particle is located is done by simply taking the integer part of the coordinate.
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The remaining part specifies the location of the particle inside the cell. When
the real coordinate ot the particle is needed, a multiplication is performed,
which is computationally more effective than a division.

Sorting

In the classical form of the PIC method, the simulated particles of a given
type are indistinguishable. Each particle is just an element of an array. The
position of the particle in this array, i.e., its number, is arbitrary and does
not provide any specific information for the particle. This means that there is
no correlation between the position of the particle in the array, and the parti-
cle’s location in the coordinate space. This organization is somehow natural to
understand and straightforward to program. The addition of the MCC tech-
nique fits into this scheme if the collisions are only between the given type of
particles and the background gas, which is homogeneously distributed in the
velocity and coordinate space. Examples for such collisions are the electron-
argon atom collisions. In any other type of collisions (e.g., Coulomb collisions),
a collision partner must be found, based on its spatial location. One way to
do that is to perform a search among all the particles and to find all collision
candidates that are in the vicinity of the incident particle. The usual method
here is to approximate this vicinity to the cell in which the incident particle
is located. Such procedure is, however, computationally very inefficient.

Alternatively, if the array of the particles is not randomly formed, but
ordered in such a way that the number in the array is in direct relation to the
cell where the particle is located, finding a collision partner will be much faster.
The ordering of the particles in such a way is called sorting. It not only facil-
itates the calculation of collisions, but also has a strong, positive side effect
It speeds up the entire PIC-MCC simulation. This acceleration is in relation
with the architecture of the modern computers, as is explained in [144]. Tt
has been reported [166] that for a 2d3v PIC simulation the calculation time
decreases with 40-70% when sorting is implemented.

Algorithms for ordering of data can be found in text books of numeri-
cal methods [167,168] However, common sorting techniques are very slow at
sorting large arrays of particles, which is the case in a PIC-MCC simulation
of a DC magnetron. For example, a quicksort, which is an “in place sort algo-
rithm” [168], needs to pass through the particles approximately log, N times,
where N is the number of particles. This leads to the impressive 8kN log, N
floating point memory loads and stores for the case of a 2d3v PIC-MCC sim-
ulation with k types of particles. This inefficiency is a result of the fact that
most of the well-known sorting algorithms originate from the past, when the
amount of memory has been the main restriction. Contemporary worksta-
tions offer sufficient amount of memory and thus there is no need for in place
algorithms (algorithms that order an array without using auxiliary arrays).
Therefore, we used the “out of place sorting algorithm” [166], as is explained
in detail in [144].
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Different Weights for Different Types of Particles

Depending on the aim of the particular magnetron simulation, different plasma
species can be included that can have rather different number densities. For
example, while the electrons and argon ions have always similar densities, the
density of the sputtered atoms and fast argon atoms is typically one to three
orders of magnitude higher. In this case, it is not feasible to use the same
weight for the neutrals and for the charged particles. The condition that the
minimum number of followed particles must be such that there are at least
several SPs per Debye sphere, combined with the demand for maximal speed
of the calculations, determines the weight of the SPs representing the real type
of particles with the lowest density. The weight of the SPs representing the
real particles with higher density is chosen also higher. How much higher is
determined from the practical consideration that the number of SPs from each
type must be similar. Using different weights allows obtaining the necessary
statistical representation, without paying the price of following an unnecessary
large number of SPs.

The implementation of different weights is trivial in a PIC code. When a
MCC method is added, however, there are two cases. The first one is when
plasma species collide with the uniformly distributed background gas, or when
they collide with other plasma species with the same weight. In this case, the
procedure is the same as when all SPs are equally weighted, because the
weight is anyway included in the charge assignment and force interpolation.
The second case includes collisions between SPs with different weight. This
requires an additional treatment, as explained in detail in [144]. The guiding
principle here is that the SPs represent real particles, and all physical 1elations
between the physical particles must be correctly represented by the SPs.

3.5.4 Examples of Calculation Results
Operating Conditions and Simulation Data

In this section, the PIC-MCC model described in Sect. 3.5, will be applied to
a laboratory magnetron, Von Ardenne PPS 50 (see below), operated in argon
with a copper cathode, to illustrate the type of results calculated with this
model. This includes, among others, the distribution of the electric field and
potential, the densities of the plasma species and their energy distribution
functions, and the erosion profile as a result of cathode sputtering. The calcu-
lation results will be quantitatively compared with existing experimental and
numerical data.

The scheme of the planar magnetron used for the calculations is shown in
Fig. 3.13. It is a Von Ardenne PPS 50 magnetron (commercially available),
used with plasma shield (the sidewall on the scheme in Fig. 3.13). The axisym-
metric magnetic field is created by two concentric magnets located under the
powered electrode, i.e., the cathode. The magnetron is balanced, which means
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Fig. 3.13. Scheme of the magnetron Von Airdenne PPS 50 with the spatial distri-
bution of the (measuied) magnetic field. The scheme is axisymmetrical relative to
the axis, r =0

that the majority of the magnetic flux lines originates at and returns to the
cathode surface without crossing the anode.

All walls, except the cathode, are grounded and act as an anode. The
smallest separation between the electrodes is equal to 2 mm and the distance
between the cathode and the opposite anode plate, where the substrate is
mounted, is 24mm. The cathode is a copper disk with a thickness of 3mm
and a diameter of 58 mm. The discharge is maintained by a DC power supply,
which can be run in a constant current or in a constant voltage mode. The
magnetic field used in tke simulation has been experimentally measured when
the discharge has been not operational. In the simulation, the external circuit
shown in Fig. 3.8 above, is connected to the cathode.

In this numerical study, the magnetron plasma consists of argon atoms,
singly charged argon ions and electrons only All other plasma species are
excluded from the analysis. In addition, the argon atoms are considered
homogeneously distributed at room temperature (300 K). The choice of these
plasma species is dictated from the fact that they are the dominant ingredients
and play the main role for the formation and maintenance of the discharge.
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The influence of the sputtered atoms and the presence of the nonequilibrium
argon atoms will be discussed in Sect. 3.6 below.

The collisions that are taken into consideration are electron elastic scat-
tering from the argon atoms, electron- and ion-induced excitation and single
ionization of the argon atoms, and elastic scattering of argon ions from their
parent atoms. The last process includes isotropic scattering and charge trans-
fer. The excited argon atoms are not followed in this simulation. The process
of their formation, however, is important for a correct representation of the
energy balance. In the case of electrons, it also contributes to the conductivity
of the discharge, since the electrons cross the magnetic field lines due to col-
lisions. Because the main excitation levels of the argon atom are very closely
located in terms of energy [169], all electron-impact excitation processes are
grouped into a single collision with an energy loss for the electrons of 11.55eV.
This is done to limit the computational time. The cross sections of the above-
mentioned collisions have been adopted from the literature [169-173], and can
be found back, plotted as a function of energy, in [144]. At the walls, besides
sputtering and secondary electron emission, also recapture of electrons at the
cathode is included (see also the previous section).

The maximum number of the SPs in this simulation is two millions, i.e., one
million electrons and one million argon ions. In the beginning of the simula-
tion, they are loaded with uniform density in the coordinate space and with
a Maxwellian distribution in the velocity space The initial density equals
3 x 10" m—3. The external circuit is set with a resistor of 1,200k and with a
constant voltage source of —800V. This corresponds to typical experimental
values of this type of magnetron. The maximum magnetic field is 0.045T. The
computational grid has 241 nodes in z-direction and 129 nodes in r-direction
The initial time step is set to 3x 10719 s. The number of electron subcycles per
ion cycle is 25. The simulation is run until convergence is obtained in terms
of cathode potential and particles’ densities. This is illustrated in Fig. 3.14,
where the time evolution of the cathode potential, &g, is shown. Note that,
although the external applied voltage is equal to —800V, the voltage drop
across the magnetron discharge is only about —330V. The gas pressure for
this example of simulation results is kept fixed at 0.67 Pa.

Calculated Potential and Electric Field Distribution

The calculated potential distribution is shown in Fig. 3.15. It has a clearly
expressed radial dependence, which follows the pattern of the magnetic field
The gradient in the potential is steepest near the cathode (i.e., in the sheath,
see below), and at about r = 18.2mm, where the radial component, 5,,
of the magnetic field has a maximum. Above the center of the cathode,
where the magnetic field lines are perpendicular to the cathode surface (see
Fig. 3.13), the potential shape is identical to that of a nonmagnetized dis-
charge. As a whole, the plasma potential is negative almost in the entire
discharge, i.e, the discharge operates in a negative space charge mode. This
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Fig. 3.14. Relaxation of the calculated cathode potential, @9, with the physical
time of the simulated system. The convergence occurs at time, t ~ 12 s

7

R W
\\ \\\\\\ e,
\\\}}}&\\&\\\\\\\\\\E\\\\\\\\\\gw\?‘“
R TR
Hi iR L

%

/////
.

//

Y ettt
RTRHt, .
A i utathnty;
T e Hintatia
R R T BRI
R e
st iy
~2 R R R
AR R L P FE
% RN 30
W )

R
PO

X
R Y
e -“\\‘\‘\“\\\“\\\\“\\\“‘:\ ‘\\‘\‘“'\.\_.. 0
f R
W e
R

harge potential (V)
/ /
.

Disc.
A
=7
—
or

Fig. 3.15. Calculated potential distribution

is in accordance with analytical models [46,62], a 1d PIC-MCC simulation of
a cylindrical postmagnetron [36], and experimental measurements at similar
operating conditions [174].

The sheath architecture can also be seen in Fig. 3.15. The sheath itself
should be redefined in the case of magnetrons. In nonmagnetized glow
discharges, the sheath boundary is frequently defined at the line, which sep-
arates the negative from the positive values of the potential This definition
works well in discharges operated in positive space charge mode. In mag-
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netrons, however, the sheath border should be defined as a line where the
potential has a well-pronounced inflexion. After the sheath, the next part of
the potential can be defined as a presheath. This region is still characterized
by a negative space charge and a relatively small electric field (in comparison
to the sheath). This presheath is totally absent in discharges with positive
space charge. The 1reason for appearance of the negative space charge and the
presheath is in the restricted mobility of the electrons, due to the magnetic
confinement. The potential distribution from Fig. 3.15 creates an electrical
field, which axial and radial components are shown in Figs. 3.16 and 3.17,
respectively.

Fig. 3.16. Axial component, E., of the electric field The white line corresponds to
E, =10kV m™! and may be considered as the end of the sheath

Fig. 3.17. Radial component, E;, of the electric field
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The magnitude of the axial field, F., is approximately ten times stronger
than the magnitude of the radial field, except in the proximity of the gap
between the cathode and the sidewall. In the sheath region above the race-
track, E, approaches 500kV m™'. The sheath border with its strong radial
dependence is represented by the white line in Fig 3.16. Along it, the mag-
nitude of the field is approximately 10kV m™!. The sheath thickness is only
1.6 mm above the racetrack, whereas at v = 0 it is about 13 mm. The sheath
is thinnest and E, strongest exactly in the middle between the magnetic poles

(r = 18.2 mm).
The radial field, E,, changes in the sheath. The field is strongest near
T = Tmax, Where the gap between the cathode and the grounded side wall

is located. The structure of E, is such that the region where E, > 0 repels
the electrons outward, whereas the region FE, < 0 accelerates the electrons
outward. This has an effect of electrostatic trap, which enhances the magnetic
confinement. The “valley-mountain” structure of E, is more clearly seen in
Fig. 3.18, where the region of the discharge away from the sidewall is shown.

Calculated Electron and Art Ion Densities

Figure 3.19 shows the calculated electron density profile. Most electrons are
strongly confined between the magnetic poles. The calculated density profile
reproduces satisfactorily the experimental data obtained by Langmuir probe
measurements. For example, the calculated peak value at p = 5mTorr is
1.6 x 101" m™3, whereas in [174] it is 9 x 10'°m~3 at p = 2mTorr. The plasma
decay with the distance from the cathode, as well as the radial variation of
the electron density, agree very well with the data reported in [172] for p =
5mTorr. The plasma distribution has a distinctive maximum at z = 1.2 mm.

Except in the sheath, the Ar™ ion density profile is identical to the electron
density profile. This is so, because although the ions are not magnetized, and
therefore not magnetically trapped, they are electrostatically bound to the
electrons. The Ar™t ion density profile has a maximum at the same spot as
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the maximum of the electron density. In the sheath, the A1 ion density is
nonzero, in contrast to the electron density. This gives rise to a positive space
charge, and hence strong gradients in the potential distribution and axial
electric field distribution.

Calculated Collision Rates

For the sustainment of the discharge, ionization of the argon atoms is crucial
In the present model, ionization is carried out by electrons and Ar™ ions. The
calculated electron-impact ionization rate is illustrated in Fig. 3.20. The Ar™-
impact ionization rate is not shown, because it is of minor importance at the
operating conditions investigated. It is present only in the sheath where the
ions can gain enough energy from the electric field to ionize the atoms [144]. Its
peak (5x 102! m~3s71) is about 1.5 order of magnitude lower than the peak of
the electron-impact ionization (1.2 x 102 m=2s~1). Integrated over the whole
computational domain, election-impact ionization is about 800 times more
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Fig. 3.21. Calculated electron-impact ionization rate, as a function of distance from
the cathode, above the racetrack at v = 18.2 mm

important than ArT-impact ionization. Therefore, with reasonable accuracy,
the ArT-impact ionization can be omitted in models and estimates for the
current operating conditions. This is like expected, in view of the low volt-
age across the magnetron. In DC nonmagnetized glow discharges, where the
applied voltage is in the order of 1kV, this process cannot be neglected for
an accurate description of the discharge behavior [175].

The axial profile of the electron-impact ionization rate above the race-
track at v = 18.2mm is shown in Fig. 3.21. It has a maximum at z = 1 mm,
i.e., inside the sheath. Its closeness to the cathode can be explained with
the magnetic confinement. The Larmor radius for electrons with a speed of
107 m s~! in a magnetic field of 450G is 1.26 mm. This means that the elec-
trons, ejected from the cathode, stay long enough in a hemisphere, which
center is on the cathode and with a diameter equal to the Larmor 1adius. The
electrons have an energy, which is optimal for ionization, before reaching the
surface of the hemisphere. The shape of the ionization profile shows that most
of the jonization is carried out by the primary electrons, originating at the
cathode, rather than by secondary electrons, created in ionization collisions.
There is nevertheless a significant amount of ionization taking place in the
presheath and even in the bulk plasma. The borders of the two regions are
reflected in the two inflexion points of the ionization profile at z ~ 4 mm and
z &~ 14 mm.

The rates of electron elastic collisions and electron-impact excitation are
characterized by a similar profile as the electron-impact ionization rate, but
a second maximum is observed at about z = 2-3mm. This can be explained,
because the mean electron energy in this region is around 10eV, which gives
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Fig. 3.22. Calculated mean energy of the electrons. Note that the z-axis is now
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results. The cathode is still located at z = 0. The white line in the bulk corresponds
to an energy of 10eV

rise to a lot of elastic collisions and excitation, but which is a bit too low for
efficient ionization.

Calculated Mean Energy and Energy Probability Function

The collision rates, together with the distribution of the electiic and mag-
netic field determine the spatial distribution of the mean electron and ion
energy and the corresponding energy probability functions. The calculated
mean energy of the elections is presented in Fig. 3.22. Note that the z-axis
is reversed now, so that the energy spatial distribution is more clearly visi-
ble. Above the racetrack, where the electrons are strongly magnetized, their
mean energy is about 40eV. With radial displacement from the racetrack,
the mean energy increases to 180eV above the edges of the cathode. This
increase is proportional to the weakening of the radial component of the mag-
netic field away from the centers of the magnets. Those electrons that enter
the bulk are mostly with low energies, i e, below the inelastic threshold. This
fact, as well as the sharp transition of the mean energy profile to a plateau,
immediately after the sheath, illustiates the effectiveness of the magnetron:
the primary electrons are almost entirely utilized in ionization and excita-
tion events before being lost. The region along the symmetry axis is strongly
depleted from electrons, which is reflected by the “valley” in the mean electron
energy profile.

The distribution of the Ar™ ion mean energy (Fig 3.23) follows the poten-
tial distribution. As it can be expected, the mean energy is high only in
the sheath, with a maximum on the cathode surface. In the bulk, it is low,
i.e., between 0.2 and 0.6eV. The mean ion energy in the region between the
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Fig. 3.23. Calculated mean A1r™ ion energy The cathode is located at z = 0

poles of the magnet is about 225eV, which is approximately 70% of the cath-
ode voltage. This ratio is slightly higher than the ratio of 60%, calculated
in [116]. The difference can be explained from the broader sheath in [116],
which allows the ions to spend more time in the sheath and consequently
increases the probability for symmetiic charge transfer collisions. These col-
lisions are one of the two factors preventing the ions from obtaining energy
values equal to the full cathode potential. The second factor is related to the
location of the maximum of the ionization (see Fig 3.20 above); it is between
the sheath and the presheath. Thus, most of the produced ions accelerate in a
potential difference that is less than the full interelectrode potential. All this
shows that the common assumption of “freely falling ions” is not very accu-
rate. Finally, in contrast to the electron mean energy, the ion mean energy
does not have a radial minimum above the racetrack. This is a direct result
from the fact that the ions are not magnetized.

The mean energy does not provide information about the population in the
energy spectrum. Such information is given by the energy probability func-
tion (EPF), f(e)(= F(g)e~1/?), where F(¢) is the energy distribution function
and ¢ is the energy. The normalization of the EPF is: [ f()e!/2de = 1. The
knowledge of the EPF also allows us to determine what the distribution of
the velocities is and therefore to define a temperature, which allows simulated
data to be compared with data received from probe measurements. As it has
been already discussed, probe measurements are normally devoted to study
the bulk plasma, because the sheath region compromises the accuracy of the
probe readings [176]. For this reason, to compare our calculation results with
experimental data, the quasilocal EPF has been sampled in the bulk in the
present example. The sampling spot is a volume given by 14mm < z < 16 mm
and 16 mm < 7 < 20 mm. The calculated electron energy probability function
(EEPF) is shown in Fig. 3.24. It repiesents practically a Maxwellian distribu-
tion with a temperature of 6.7eV. Such a value is in good agreement with the
spatial survey of magnetron plasma by means of a Langmuir probe [177]. In
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Fig. 3.24. Calculated electron energy probability function (EEPF) in the bulk
(14mm < z < 16 mm, 16 mm < r < 20 mm)

the latter experiments, for p = 5 mTorr, the electron temperature at z = 3cm
is found to be 5eV and decreases with increase of z(7, = 2.5eV at z = bcm).
Therefore, our calculated T, of 6.7eV at z = 1.5 cm appears to be consistent
with the experiment

The Maxwellian distiibution at such low pressure is a 1esult of the mag-
netic confinement of the electrons, which secures enough collisions with the
argon atoms before the electrons diffuse into the bulk.

There are reports in the literature for existence of two electron popu-
lations with different temperatures, which produces a Bi-Maxwellian dis-
tribution [178,179]. More recent work [177], however, fails to confirm such
phenomenon. The calculated results in the present example also do not
indicate the existence of two electron populations with different temperatures.

The Ar" ions behave in a very different way than the electrons Being
practically not magnetized, the ions cannot stay for a long enough time in
the discharge. This means they cannot suffer enough collisions for bringing
them in equilibrium with the background gas. This is reflected in their EPF,
shown in Fig. 3.25. As it is clear from this figure, the energy distribution is
far from Maxwellian or other equilibrium distributions. In this case, the use
of the temperature as a characteristic of the velocity distribution makes no
sense. This result indicates that the use of fluid description for the plasma
in DC magnetron discharges operated at standard conditions will not be cor-
rect. The same refers to hybrid models [110], where a Maxwellian distribution
for the ions is normally assumed and they are treated as a continuum. The
IEPF in Fig. 3.25 also questions the idea of measuring the ion temperature
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Fig. 3.25. Calculated Ar' ion energy probability function (IEPF) in the bulk
(14mm < z < 16 mm, 16 mm < r < 20 mm)

in DC magnetions by probe experiments. In a more global aspect, the ion
temperature does not bring any valuable information for the state of the
plasma in DC magnetrons. It can only be used as mean ion energy, without
providing any further insight for the velocity distribution.

Calculated Ion Flux Bombarding the Cathode

The Ar™ ions that reach the sheath region or are created inside the sheath,
accelerate toward the cathode, which they can bombard. This bombarding
flux is responsible for the generation of primary electrons that sustain the
discharge and for the sputtering. The rate of sputtering is proportional to the
energy density of the bombarding flux. The spatial distribution of this flux
at the cathode surface determines the sputtering region, i.e., the racetrack.
Therefore, the knowledge of the flux is important, to predict the utilization of
the target at given operating conditions. The calculated Ar™ ion flux at the
cathode is therefore presented in Fig. 3.26.

The flux is more or less limited to the region between the magnetic poles.
This is in accordance with all experimental data, for instance for the erosion
rate due to sputtering (see also Sect. 3.6). Its amplitude is proportional to the
Ar™ ion density The localization of the flux, which follows the localization of
the ion density in the radial direction, is a confirmation of the fact that the
ions are practically not magnetized. Therefore, their movement in the sheath
can be approximated as being directed toward the target, only disturbed by
the collisions in the sheath.
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Fig. 3.26. Calculated Ar™ ion flux at the cathode

As mentioned before, this Ar™ ion flux gives rise to sputtering at the
cathode (target). The behavior of sputtered atoms and corresponding ions, as
well as of the Ar metastable atoms (which are important for the ionization of
the sputtered atoms), will be described in Sect. 3.6.

3.6 Extension of the PIC-MCC Model:
To Include Sputtering and Gas Heating

In Sect. 3.5, a detailed description has been given about the PIC-MCC model
for an argon DC magnetron with copper cathode. The behavior of the sput-
tered copper atoms and corresponding ions was, however, not yet taken into
account, because the Art ions and electrons are the dominant plasma species,
determining the magnetron discharge behavior. However, to improve the appli-
cation of sputter deposition, it is of course important to have a better insight
in the behavior of the sputtered atoms. Therefore, the present section deals
with an extension of the previously described PIC-MCC model to include the
sputtered atoms and ions.

Moreover, it should be realized that the region in front of the cathode in
a sputter magnetron is a highly dynamic region. Except the charged parti-
cles and equilibrium gas atoms, there exist additional energetic species such as
reflected, neutralized gas atoms, atoms born in charge exchange collisions, and
nonthermal sputtered atoms. All of them can participate in momentum trans-
fer collisions with the background, cold atoms. These collisions are expected
to be highly effective, due to the similar masses of the colliding partners. In
this way, significant energy and momentum can be deposited from the ener-
getic species to the background gas, giving rise to gas heating, and thereby
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creating density inhomogeneity. These processes will also be treated in the
present section.

3.6.1 Description of the Model
Species Included in the Model and Their Collision Processes

The present model is based on the general PIC-MCC algorithm, presented in
the previous section, but some additional species are included, i.e., the fast
argon atoms (Arf), sputtered copper atoms (Cu), singly ionized copper ions
(Cu™) and argon metastable atoms (Ar?). The latter species are included,
because they play an important role in ionization of the sputtered atoms. In
addition, several new collision processes are added, such as electron-impact
excitation to the Ary levels, and excitation and ionization from these A1
levels, quenching of the A1} levels by collisions with electrons or Ar atoms,
electron—ion recombination, ionization of the sputtered Cu atoms by electron-
impact, Penning ionization and asymmetric charge transfer. Details can be
found in [144].

Besides these collision processes in the plasma, also some additional sur-
face interactions are taken into account, such as sputtering and secondary
electron emission caused by fast atoms and copper ions (Cu™). Furthermore,
deexcitation of the metastable argon atoms and recombination of the argon
ions takes place at the walls. The energetic argon atoms are reflected and
possibly thermalized at the walls. The coefficient of thermal accommodation,
which is a measure for the energy exchange between energetic plasma species
and the walls, has been chosen equal to 0.5.

Numerical Procedure

As it has been explained in the previous section, the PIC-MCC simulation
needs to be run until a convergence is obtained. This numerical convergence
must be correlated to the attainment of steady state by the real physical sys-
tem that is the subject of the simulation. The time necessary for the physical
system to reach a steady state is determined by the slowest processes in the
system. When the heating of the gas is taken into consideration, the charac-
teristic time, Ty for thermal equilibrium (i.e., bringing the heat conduction to
a steady state) is the longest: 74 ~ 1072 s. This estimate is based upon the
relation [180]

L eppL?

Ve kO

Here, L (~0.1m [101]) is the characteristic diffusion length, Vi (= k/(pc,L))
is the characteristic speed of heat transfer, ¢, is the specific heat per unit
mass at constant pressure, p (= 7.97 x 10~ %kg m 3 [181}) is the argon mass
density, k& (= 0.018 Wm™! K~! [181]) is the thermal conductivity of argon.

TH
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At the same time, the characteristic time for bringing electrons and ions
to steady state does not exceed 107°s. All other important processes, such
as the relaxation time for thermalization of the energetic neutrals and pres-
sure equalization, are situated in between these two limits. Because of this
big difference in the characteristic time steps of the electrons, ions, fast neu-
trals, and thermal conduction, some modifications in the general PIC-MCC
algorithm are necessary to cope with this disparity. Not doing so would result
in a huge amount of computational time. This is so, because of the general
restriction for the time step (3.16) (see section “Stability and Accuracy of the
PIC Model”).

The procedure used here [182] is to advance the different sorts of parti-
cles with different time steps. The hierarchy being At, < At; < Aty (with
e = electron, i = ion, and n = neutral). This difference in the time steps is
accounted for by the weight, W of the produced energetic, charge-exchange
neutrals and sputtered atoms, i.e.,

Wy =W, = Wii—i?,
where s refers to the sputtered atoms. Elections are subeycled inside the ion
time step (see section “Subcycling”) and have W, = W,. In this way, it is
assured that the production and loss rates of the real plasma particles are
correctly represented, i.e., the global mass conservation is obeyed.

The procedure separates the particles into two groups, i.e., fast and slow.
The upper size of the SPs from each group can be controlled independently
from the coriesponding value of the other group. When the upper limit is
reached, only the members of the corresponding group are reduced twice,
and their weight is doubled. The weight and number of the SPs from the
other group are not changed. However, a change in the time step is needed,
to maintain (3.26) to be valid. Because At; is coherent with the stability
criterion, the time step that always changes is At,(= Aty).

The overall cycle consists of one ion time step. At the end of this time
step, the power, P, transferred to and from the feeding gas is accumulated

me W, V)2 — 2 v? V)2
LG UL T

where v; is the post- and v; the precollision velocity of the [th gas atom, my is
the gas mass, Ve is the volume of the computational grid cell. The first sum
is the contribution from all collisions between the feeding gas atoms from one
side and the ions, fast atoms, metastable atoms, and sputtered atoms from
the other side Only collisions, in which the postcollision energy of the gas
atoms is less than some threshold, are counted. This thieshold is chosen to
be [182]

(3.26)

Eg =9 x 3/2/€ng, (3”27)

where ky, is the Boltzmann constant.
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The other collisions result in creation of fast gas atoms, which are incorpo-
rated by the second sum. The third sum is the contribution of the thermalized
fast gas atoms. This calculated power is used as a source term in the heat
conduction equation

52
0Ty 10 (T%> __P (3.28)
0922  rd or k

which is solved once per 10785 (actually, after each number of time steps
divisible exactly by 100 and which sum is greater than or equal to 10785s)
to calculate the gas temperature, T,. In the above equation, k is the thermal
conductivity of the gas.

It should be mentioned that 7 is a dynamic quantity dependent on the
coordinates. Consequently the threshold energy given by (3.27) is also dynamic
(changes with time) and is a function of the coordinates.

The sputtered atoms are followed as particles until being thermalized.
Once that happens, they cannot anymore contribute to the gas heating
directly; collisions between fast argon atoms and sputtered atoms are dis-
regarded in the model, because of the statistical insignificance of the process.
The overall copper density, however, is an important quantity for film depo-
sition purposes. Therefore, a compromise between accuracy of the algorithm
and its computational efficiency is to treat the thermalized copper atoms as a
fluid. Thus, the overall copper density is a sum of the density of the fast cop-
per atoms and the slow copper atoms. The density of the slow (thermalized)
copper atoms, n{, can be obtained by solving the diffusion equation, which
in (r, z) cylindrical coordinates reads

DCUAn%u(r, Z) = Tloss (7, 2) = Tprod (T, 2), (3.29)

where D¢, is the diffusion coefficient of copper atoms in argon, ryes is the
rate of loss of the slow copper atoms, and rp,0q is their production rate. The
diffusion coefficient is taken to be, D¢y = 1.44 x 1072 ¢m? s ! [183]. This
value is based on the rigid-sphere collision model and refers to a pressure of
1 Torr and temperature of 300K in argon.

The loss 1ate of the copper atoms, 710s(7, z), is equal to the rate of ion-
ization of the copper atoms, caused by electron-impact, Penning ionization,
and asymmetric charge transfer. The production rate of the copper atoms,
Tprod(7, 2), is equal to the 1ate of thermalization of the sputtered atoms.

Equation (3.29), as well as (3.28), is mathematically the same as the
Poisson equation for the potential. Therefore, the same numerical technique,
i.e., cyclic reduction [154], is used for their solution. The boundary conditions
of (3.29) are Anl |wan = 0 and V, [n%u(o,z)} = 0. The latter 1epresents
simply the cylindrical symmetry of the system.

The procedure described above can be represented by the flowchart in
Fig. 3.27.
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Fig. 3.27. Flowchart of the simulation procedure for calculation of the gas heating
and the behavior of the sputtered (copper) species. The abbreviation DMCS stands
for “Direct Monte Carlo simulation”

3.6.2 Examples of Calculation Results

The simulation procedure shown in Fig. 3.27 is applied to the magnetron
discharge presented in Fig. 3.13. Simulations performed for pressures of 0.13,
0.53, 1.3, 3.3, 6.7, and 13 Pa, and for a maximum 1adial magnetic field above
the cathode of 1,300 G, will be illustrated here. To verify the expected pressure
dependence of the gas heating, the parameters of the external circuit (see
section “External Circuit”) have been readjusted in the course of the runs to
maintain a constant power of 70 W,
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Fig. 3.28. Contour plot of the calculated gas temperature distribution at p = 6.7 Pa
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Fig. 3.29. Calculated maximum gas temperature as a function of the gas pressure
at constant electric power of 70 W

Temperature Distribution

Figure 3.28 illustrates the calculated gas temperature distribution for the case
of 6.7 Pa. The temperature reaches its maximum in the center of the discharge
(both in axial and radial direction. The effect of gas pressure on the maximum
gas temperature is plotted in Fig. 3.29. At 0.13 and 0.53 Pa, there is practically
no heating of the gas. The rise of the gas temperature is about 1 K, which is
within the limit of the expected calculation error. With the increase of the
pressure, the gas begins to heat up. For p = 1.3 Pa, the temperature increases
to 316K, at 6.7Pa, the maximum gas temperature is about 600K (cf. also
Fig. 3.28), and it reaching almost 1,000K at 13 Pa.
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Hence, it can be concluded that for the given operating conditions (argon
gas, copper cathode, input power of 70 W), the gas heating is not significant
for pressures of up to 1.3 Pa. These are typical conditions for laboratory mag-
netrons. C