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The purpose of this Brief Report is to point out the mistake in a formula for anisotropic electron scattering,
previously published in Phys. Rev. A 41, 1112 ~1990!, which is widely used in Monte Carlo models of gas
discharges. Anisotropic electron scattering is investigated based on the screened Coulomb potential between
electrons and neutral atoms. The approach is also applied for electron scattering by nonpolar neutral molecules.
Differential cross sections for electron scattering by Ar, N2 , and CH4 are constructed on the basis of momen-
tum and integrated cross sections. The formula derived in this paper is useful for Monte Carlo simulations of
gas discharges.
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I. INTRODUCTION

In a Monte Carlo model, the trajectory of the particles
~e.g., electrons! is followed by Newton’s laws, whereas the
collisions are treated by random numbers ~i.e., for the time
between two collisions, the kind of collision, the new energy,
and direction after scattering!.

To describe electron scattering in gases, a formula for
anisotropic scattering needs to be used. In many papers ~e.g.,
@1–5#!, the expression for the normalized differential scatter-
ing cross section I(e ,x) introduced by Surendra and co-
workers @6,7# is used:

I~e ,x !5

e

4p@11e sin2~x/2!#ln~11e !
, ~1!

which is based on look-alike, screened-Coulomb scattering. e
is defined as the energy of electrons before collision ~in eV!.
However, it appears that this formula is incorrect and misses
some scientific background ~e.g., the energy has to be re-
duced to a dimensionless form by introducing some univer-
sal energy value!.

Some investigations of anisotropic scattering of electrons
have already been made in particular cases @8–11#. In the
present paper, we will derive a different analytical expression
for anisotropic scattering of electrons, which is generally
valid in atomic and nonpolar molecular gases. The general
formula will then be applied to a number of atomic and
nonpolar molecular gases, to derive formulas that are easy to
implement in Monte Carlo algorithms.

II. DIFFERENTIAL CROSS SECTION FOR LOOK-ALIKE
SCREENED-COULOMB SCATTERING

In an atomic gas with atomic number Z the electron-
neutral interaction potential can be approximated by the
screened Coulomb potential

U~r !5ZE0

r0

r
expS 2

r

r0
D . ~2!

Here E0 is the atomic unit of energy (E0527.21 eV) and r0
is the Bohr radius (r050.529310210 m). In this expression
we used as a screening radius the ‘‘outer boundary’’ of the
atom, which is about one Bohr radius @12# according to the
Thomas-Fermi model of an atom.

In the first Born approximation of the quantum mechanics
theory of scattering @12,13# the normalized differential cross
section for screened-Coulomb scattering of an electron is

I~« ,x !5

1

4p

118«

~114«24« cos x !2 , ~3!

where «5E/E0 is the dimensionless energy and E is the
relative energy of electrons.

The probability that an electron with dimensionless en-
ergy « is scattered with an angle x can be found by integrat-
ing Eq. ~3! over all possible scattering angles,

P~« ,x !5

~118« !sin2
x

2

118« sin2
x

2

. ~4!

Finally, to find the scattering angle, a random number R
uniformly distributed in the interval @0,1# is compared with
the probability of scattering; and the reverse function should
be found,

cos x512

2R

118«~12R !
. ~5!

Equation ~5! is very convenient for Monte Carlo modeling
purposes of the electron behavior in atomic gases. We will
now derive a similar expression for electron scattering with
nonpolar molecules ~CH4 , N2 , O2 , etc.!, assuming the same
functional form of differential cross section as for the ideal-
ized atom. Equation ~3! can be rewritten in the more general
form using one fitting parameter @9#,
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I~« ,x !5

1

4p

12j2~« !

@12j~« !cos x#2 , ~6!

similar to the procedure described by Phelps @14#. It should
be mentioned that we used the notation j~«!, which is
equivalent to ‘‘122*b(n)’’ in Phelps notation @14#. This
expression reduces to conventional screened-Coulomb scat-
tering if j54«/(114«). In general, j is a function of en-
ergy ~see below!, which varies in the interval ~21,1!. De-
pending on the kind of interaction potential, j is a different
function of energy. Hence, this yields a different scattering
formula.

Equally, the probability of electron scattering with an
angle x can be calculated. And again, the scattering angle
can be found by comparing a random number R uniformly
distributed in the interval @0,1# with the probability of scat-
tering; and reversing the function,

cos x512

2R~12j !

11j~122R !
. ~7!

This expression is generally valid to describe the scattering
of electrons by nonpolar molecules, and it is convenient to
use in electron Monte Carlo models when the function j~«! is
known.

In the case of conventional screened-Coulomb interaction,
j54«/(114«) ~see above! and it can vary between 0 and 1.
In the low energy limit, j→0 and the scattering becomes
isotropic @i.e., I(« ,x)5constant#. When the energy of the
scattered electron goes to infinity, j→1 and the scattering
corresponds to conventional Coulomb scattering and be-
comes in the forward direction.

In general, the function j~«! can be deduced from the ratio
of integrated and momentum transfer cross sections, based
on the procedure described by Phelps @14#. Indeed, the ratio
of momentum transfer and integrated cross section can be
obtained from the normalized differential cross section by
multiplying with factor 2p(12cos x) and integrating over
all angles. For I(« ,x) from Eq. ~6! it yields for this ratio

sm

s
5

12j

2j2 S ~11j !ln
11j

12j
22j D . ~8!

This expression is generally valid for all kinds of interac-
tions between electrons and atoms or nonpolar molecules. In
the literature, some experimental data are available for both
integrated and momentum transfer cross sections as a func-
tion of electron energy, for electron elastic collisions with
atoms or molecules @8,15–18#. Hence, the function j~«! for a
specific interaction can be obtained from the ratio of experi-
mental cross sections sm(«)/s(«). Finally, when j~«! is
known, the formula for the scattering angle can be obtained
with Eq. ~7!.

The main idea of the procedure to construct differential
cross sections based on the screened-Coulomb functional de-
pendence from the data of the integrated and momentum
transfer cross sections was first published by Belenguer and
Pitchford @9#. In the case of the resonance atom-atom scat-
tering Phelps et al. @19# proposed a three fitting parameter
procedure. Porter et al. @11# proposed even a four fitting pa-
rameter approximation for the differential cross section of
the electron scattering in N2 . But with all these many-
parameter fitting expressions it is difficult to find the scatter-
ing angle that is needed for Monte Carlo modeling. Since it
is the purpose of our paper to derive such formula for the
scattering angle, we present here a single parameter fitting
expression.

The differential cross section constructed in this way for
electron scattering in Ar is in good agreement with experi-
mental data of Vuskovik and Kurepa @20#. It is clear that with
this approach, the main features of scattering are captured,
i.e., the scattering is approximately isotropic at low energies
and becomes peaked in the forward direction at high energy.

This method is generally valid for all atoms or nonpolar
molecules. Polar molecules, on the other hand, are character-
ized by a dipole moment, and therefore a screened-Coulomb-
like interaction potential is not valid. Therefore, the proce-
dure is not applicable to describe electron collisions with

FIG. 1. ~a! Integrated elastic s ~solid! and momentum transfer sm ~dashed! cross sections for Ar from Hayashi @17#; ~b! derived j based
on the data of Hayashi ~solid! and for the screened-Coulomb potential ~dashed! as a function of electron energy.
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polar molecules. However, it can be a reasonable approxima-
tion for anisotropic scattering if no other data are available.

III. THE SCATTERING FORMULA ILLUSTRATED
FOR A FEW NONPOLAR GASES

To illustrate the proposed approach, we have calculated
the parameter j as a function of energy for a few nonpolar
gases, i.e., for argon ~as atomic gas!, methane ~as a poly-
atomic molecule with spherical symmetry!, and nitrogen ~as
a linear molecule!.

For Ar we used the integrated and momentum transfer
elastic cross section data from Hayashi @17#. These cross
sections are presented in Fig. 1~a!. The derived energy de-
pendence of j for electron anisotropic scattering with Ar at-
oms, is presented in Fig. 1~b! ~solid line!.

For CH4 we used the integrated and momentum transfer
elastic cross section data from Tawara et al. @18#. The cross
sections as a function of energy are presented in Fig. 2~a! and
the corresponding j as a function of electron energy is illus-
trated in Fig. 2~b! ~solid line!.

Finally, for N2 we used the integrated and momentum

transfer elastic cross section data from Phelps and Pitchford
@8#. The cross sections are plotted as a function of E in Fig.
3~a!. For electron scattering on N2 , we were able to make an
empirical fit of j(E),

j~E !5

0.065E10.26AE

110.05E10.2AE
2

12AE

1140AE
,

where E symbolizes the electron energy in eV. j(E) is given
in Fig. 3~b!.

In all these figures the corresponding values for j~«! are
also presented for the conventional screened-Coulomb po-
tential ~dashed lines!. It is clear that for an atomic gas such
as Ar, the approximation of the conventional screened-
Coulomb potential is more or less applicable for energies
higher than 1 eV. In such case the expression ~5! can be used
to find out the scattering angle. At lower energy the Ram-
sauer effect becomes important and the screened-Coulomb
approach is not valid anymore. For molecular gases the ap-
proximation of the screened-Coulomb potential is clearly not

FIG. 2. ~a! Integrated elastic s ~solid! and momentum transfer sm ~dashed! cross sections for CH4 from Tawara et al. @18#; ~b! derived
j based on the data of Tawara ~solid! and for the screened-Coulomb potential ~dashed! as a function of electron energy.

FIG. 3. ~a! Integrated elastic s ~solid! and momentum transfer sm ~dashed! cross sections for N2 from Phelps and Pitchford @8#; ~b!

derived j based on the data of Phelps and Pitchford ~solid! and for the screened Coulomb potential ~dashed! as a function of electron energy.
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valid @see Figs. 2~b! and 3~b!# and the more general formula
~6! should be used.

IV. CONCLUSION

A simple expression for the scattering angle useful for
Monte Carlo modeling has been deduced for electron colli-
sions with atomic gases. This expression has been extended
to a one fitting parameter formula that can be used to find the
scattering angle for electron collisions with nonpolar mo-

lecular gases. For elastic collisions of electrons with Ar, N2 ,
and CH4 the energy dependence of this single parameter is
presented in a broad energy range.
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