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ABSTRACT

Atomistic simulation methods for the quantification of free energies are in wide use. These methods operate by sampling the probability
density of a system along a small set of suitable collective variables (CVs), which is, in turn, expressed in the form of a free energy surface
(FES). This definition of the FES can capture the relative stability of metastable states but not that of the transition state because the barrier
height is not invariant to the choice of CVs. Free energy barriers therefore cannot be consistently computed from the FES. Here, we present a
simple approach to calculate the gauge correction necessary to eliminate this inconsistency. Using our procedure, the standard FES as well as
its gauge-corrected counterpart can be obtained by reweighing the same simulated trajectory at little additional cost. We apply the method to a
number of systems—a particle solvated in a Lennard-Jones fluid, a Diels—Alder reaction, and crystallization of liquid sodium—to demonstrate
its ability to produce consistent free energy barriers that correctly capture the kinetics of chemical or physical transformations, and discuss the
additional demands it puts on the chosen CVs. Because the FES can be converged at relatively short (sub-ns) time scales, a free energy-based
description of reaction kinetics is a particularly attractive option to study chemical processes at more expensive quantum mechanical levels of

theory.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020240

I. INTRODUCTION

Free energy is a key quantity that describes the properties and
transformations of molecular systems. In particular, the analysis of
high-dimensional problems is facilitated by the introduction of the
free energy surface (FES) F(s), which is a function of only a limited
number of physically meaningful collective variables (CVs) s.

Over the last decades, an ever-increasing number of CVs have
been proposed to reconstruct the FES from molecular dynamics
(MD) simulations of a wide range of processes in chemistry, biol-
ogy, and materials science. Implementations of such CVs are widely
available in established reference codes.”” Extensive sampling along
the CVs—necessary for an accurate estimation of the FES—is, in
many cases, not possible within MD time scales because different
metastable states are separated by high free energy barriers. For this
reason, several enhanced sampling methods have been developed to
enhance the exploration of the CV space and produce accurate esti-
mates of F(s) through reasonably short simulations.” '* One partic-
ularly successful class of such methods employs a history-dependent

bias potential V(s) that discourages the system from re-entering pre-
viously visited (metastable) regions in the CV space s. The most
famous of these methods is metadynamics’ that has spawned many
variants and derivatives."’

In principle, the as such obtained FES F(s) encodes both the
thermodynamics as well as the kinetics of any transformation in CV
space. Indeed, the relative thermodynamic stability of metastable
states can be expressed in terms of their free energy difference AF,
whereas the ease of transition is described by the free energy bar-
rier A*F. However, while AF is unambiguously defined within any
appropriate CV space, this is not the case for A*F. This is because
the free energy barrier on the FES is not invariant with respect to
the choice of s."*'® As a consequence, the equilibrium constant for
a state-to-state transition can be directly inferred from F(s), but its
rate cannot.

To study kinetics without having to invoke the free energy bar-
rier, one can also calculate the reaction rate explicitly from biased
trajectories. This is possible provided that dividing surfaces between
states remain unbiased; in that case, rate estimates can be obtained
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by reweighing transition times measured on the biased FES."” Two
variants of common bias-based free energy methods—dubbed infre-
quent metadynamics'® and variational flooding,"” respectively—
have already been proposed specifically for this purpose. These
approaches have been successfully applied to compute the rates of
a broad range of processes, such as chemical reactions of small
molecules,” protein unfolding,”" or drug unbinding from a target
protein.lz

An inconvenient aspect of such explicit rate calculations is that
they are usually more elaborate or have higher computational cost
than the standard approaches to calculate the FES on which they are
based. On one hand, transition state regions can be kept bias-free
if a rough estimate of the barrier is already known,'” or if an iter-
ative series of deep learning steps is adopted.'” On the other hand,
infrequent metadynamics simulations achieve unperturbed kinetics
by very slowly depositing the bias potential, which leads to rather
long MD runs.'® Ad hoc system-dependent optimizations,”’ adaptive
versions of the algorithm,”” or specialized CVs”' can improve its per-
formance, but even then the use of expensive ab initio simulations to
study chemical reactions remains difficult.”

In this paper, we demonstrate how biased simulations can be
used to produce a gauge-invariant version of the FES, from which
consistent estimations of the free energy barrier can be inferred. This
approach can calculate valuable descriptors of the system’s kinetics
within the time scale needed to converge the FES, without requiring
additional simulations.

Il. THEORY
A. Standard and geometric free energies

For a system in thermal equilibrium, its probability distribution
p(R) in the configuration space R at temperature T and potential
energy U(R) follows the Boltzmann distribution,

p(R) =2 e PR, 1)

in which 8 = (ksT)™", kg is the Boltzmann constant, and Z = fdR
¢ PUYM) s the partition function of the system. It is often conve-
nient to analyze the properties of the system along a smaller set of
n coordinates s(R) = (s;(R), s2(R), . . ., s»(R)) that is still sufficient to
distinguish between key states of interest. The marginal probability
distribution p(s) of these collective variables (CVs) s is defined as

p(s) = [ dRals=s(R)]p(R) = (O[s-s(®)])) ()

and can also be expressed as a time average p(s) = (8[s — s(¢)]) under
the ergodic hypothesis. p(s) can be related to the free energy surface
(FES) F(s),

F(s) = —%lnp(s). (3)

Usually, there are multiple possible choices of s capable of char-
acterizing a given process A — B. The shape of the resulting FES
is, however, not invariant to a change in CVs. After all, e PP gs is
the probability in the volume element ds, which has a volume and
shape that are dependent on the precise choice of the CV functions
s(R).

When computing the free energy difference AF4_.p between
metastable states, the lack of gauge invariance of F is of no direct
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concern since any such CV-dependent features can be integrated out
for each separate state,

Fy = —%m fA dse PO, (4)
Fg = —%m [B ds e PF®), )
AFa_p = Fg — Fa. (6)

Such an approach is not as trivially realized for the calcula-
tion of the free energy barrier A*F4_, 5. Indeed, according to the
transition state theory (TST), ka— p is defined as

vTST

kasp=— (7)
A—B 2
with p4 as the probability of state A so that p4 + pp = 1. Now, suppose
the reaction coordinate can be parametrized as the CV s. The TST
crossing rate v'°" is then defined as the total number of crossings of
the transition state sts, located in between states A and B,
st 1t d

po = tlirglo ) dt dt’H[STS s(1)]
in which the Heaviside function H(x) discriminates between states
A and B. Applying the chain rule while realizing that s(t) = s(R(t)),
and converting the time integral into a phase space integral using
ergodicity, yields"

, ®)

L
dt’

1 t
vIST = lim — dt’

t—oo f Jo

Olsts = s(R(1))] ©)

- f dRAV|V - V|- 0s1s - s(R)Jp(R, V). (10)

When explicitly performing the integration over the velocity V, one
retains only the component normal to the chosen dividing surface
and finally gets

VST = lnﬁim f dR|Vs| - 8[sts — s(R) ]p(R). (11)

A different definition of the FES has been proposed specifically
to deal with kinetics."*'® We will use the terminology introduced by
Hartmann and Schiitte,”” who refer to F(s) defined in Eq. (3) as the
standard FES, which relates to the geometric FES F%(s) through

FO(s) = F(s) %ln(MVSDS, (12)

in which (|Vs|)s is an ensemble average of the gradient of s(R) with
respect to the system coordinates, calculated at point s. The magni-
tude of (|Vs|)s depends not only on the choice of s but also on the
unit system employed for R. To acknowledge this, and ensure that
the exponential term remains dimensionless, the length scale A must
be introduced.'* Then, the reaction rate ks_, 5 becomes

TST 1

v —B(FS,~Fy)
kaop = —— = ————e P, (13)
2pa )\/27Bm
where we have used pa = e and FS = F(srs). Most

importantly, Eq. (13) tells us that the geometric FES must be
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invoked whenever kinetics is involved. It also shows that different
parametrizations of the reaction coordinate s should yield the same
FS but, consequently, not necessarily the same Frs. This explains
the meaning of the gauge dependence of the standard FES.

Because Eq. (13) is the TST rate estimate, it will in practice be
the classical upper bound of the true rate. Moreover, it is not triv-
ial to find a simple CV s(R) that is simultaneously the true reaction
coordinate. Different choices of s can thus still give rise to different
values of FY%. Therefore, the best choice of s is the one that mini-
mizes the predicted rate or maximizes F."* Such a CV will also be
an optimal choice for biasing the transition."”

It is useful to point out that the original literature that intro-
duced the geometric free energy used the notation G(s) to distin-
guish it from the standard free energy F(s) and emphasize that
both quantities reflect two interpretations of the free energy that
are equally sensible from a theoretical point of view.'*'” We believe
that such a notation would be somewhat confusing in practice:
the same two symbols are usually also used to distinguish the
Helmbholtz free energy F, which is used in the constant volume
(isochoric-isothermal) ensemble, from the Gibbs free energy G in
constant pressure (isobaric-isothermal) cases. Moreover, free ener-
gies are most commonly invoked to describe the relative stability
of metastable states (i.e., their probability of occurring). This means
that the definition (3) based on marginal probability densities is used
by most free energy methods and the standard FES F(s) is usually
more easily obtainable for a process of interest. It therefore makes
sense to calculate the geometric FES by augmenting F(s), using (12),
which justifies the notation F°(s). Analogously, one can then define
a geometric version of the (standard) Gibbs FES G(s) as G%(s) for
isobaric systems.

A one-dimensional FES is the most simple to analyze, and
reweighing techniques allow us to project a FES on any set of vari-
ables on the fly when using bias-based techniques such as meta-
dynamics.””** However, sometimes multiple CVs are required to
accurately distinguish free energy basins and identify the paths
connecting them. In these cases, one can define the n x n
matrix d,

d,zj = Vsi- Vsj, (14)
and have, as recognized by Branduardi et al” in the context of
metadynamics with adaptive Gaussians,

F9(s) = F(s) - %m(a" det d) (15)

.

Our first objective is now to find a practical way to evaluate
Eq. (15) using tools that are already in place to obtain the stan-
dard FES. Our second objective is to use the geometric FES to give a
consistent definition of the free energy barrier.

B. Geometric FES from biased simulations

In some cases, the gradient Vs can be expressed as a func-
tion of s only so that F can be calculated through an a posteriori
additive correction to F. This requires that |[Vs|r = |Vs|g' whenever
s(R) = s(R"), which may be the case if s is a simple function of a lim-
ited number of microscopic coordinates. However, the biasing and
analysis of complex transformations tend to require more complex
many-body functions as CVs; examples include order parameters
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for crystallization simulations,”’ > SPRINT coordinates for chem-
ical reactions,”* path collective variables,”””® or functions of simpler
candidate CVs derived through machine learning.'”””* In such
cases, Vs is not necessarily uniquely defined for a given s or can only
be expressed as an analytic function of all R.

Some form of numerical averaging is therefore needed, which
would require running a simulation that exhaustively samples the
full CV space of interest. Naturally, this is precisely the goal of bias-
based enhanced sampling methods such as metadynamics or vari-
ationally enhanced sampling. Here, the calculation of any physical
ensemble average requires properly accounting for the effect of the
applied bias potential V, which means that each sampled configura-
tion receives a modified weight w. In its most straightforward appli-
cation, w = w(s, t) = e FVSH, although more recent schemes are
easier to apply.”® In such a reweighing scheme, the marginal density
p(s) is calculated by inserting w into Eq. (2),

p(s) = (w-3[s —s(£)])s, (16)

in which (---), denotes averaging over the biased ensemble. Simi-
larly, we also have

(w-8[s—s(t)]-detd),
(w-8[s—s(1)])s

Multiplying (16) and (17), and using the identities (3) and (15),
we get

(detd), = 17)

FO(s) = 7% In(w - [s — s(£)] - A" det d),. (18)

When comparing (18) to (3) and (16), it can be realized that the cal-
culation of the geometric FES FC(s) is equivalent to calculating the
standard FES F(s) through on-the-fly reweighing but using a modi-
fied weight w - A" det d. As a result, the calculation of the geometric
FES can be easily implemented in any enhanced sampling code that
already supports histogram reweighing and be done concurrently
with the sampling of p(s). Note that Vs is already calculated when the
CV sis biased, for example, during a metadynamics simulation. Both
F(s) and F%(s) can therefore be obtained from the same trajectory at
little extra cost.

C. Free energy barriers

As defined in Egs. (12) and (15), the geometric FES F¢ only has
units of energy, thanks to the length scale parameter A. While the
introduction of the geometric FES allows us to define a free energy
barrier as F% — F, that is invariant to the choice of CVs s, it is the
one that still depends on the choice of length unit in the simulation.

The Eyring equation requires a definition of the free energy
barrier A*F that is free from any such dependency,

K _pat

=g P, (19)
hp

where h is the Planck constant. The transmission coefficient x

compensates for the lowering of the apparent reaction rate by TS
recrossings. When we compare this expression to Eq. (13), we see

that
A [2nm
AiFA_,B :F"?s‘i' ﬁln* —_— —FA. (20)
B h\V B

kAHB =
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Inside the logarithm in the second term, we recognize the transla-
tional partition function inside the segment A.

Equation (20) gives an additional rationalization for the gauge
dependence of Frs. Frs is the free energy of an ensemble of states
within a segment ds around the TS. This segment is associated with
a partition function z*, which depends on the choice of s. The true
TS is constrained at a single point within the CV space s. The con-
tribution of these degrees of freedom must therefore be removed in
order to obtain the free energy of the true TS. This term —~" Inz*
is still present in an estimate of A*F that is purely based on the
standard FES, i.e., Frs — Fa. The volume ds, then, is dependent on
the choice of s and so is -8~ " Inz*. Frs will therefore have a gauge
dependence.

Replacing Frs by FY removes the gauge dependence because
it entails a coordinate transformation from s to a new coordinate
system that has the same units as R, i.e., A. In the limiting case of
a single CV s, for example, this means that the length unit is not
anymore the unit of s but A. Therefore, applying the gauge correction
replaces the CV-dependent z* by the partition function inside A".
The term F{g — F, is therefore independent of s but still contains the
partition function inside a volume element (now A") around the TS.
Only when this dependency on the unit of R is removed, the Eyring
formula is recovered. It is this final realization that allows us to write
Eq. (20) for the case of n CVs because that generalization does not
follow directly from comparing Egs. (13) and (19).

k can be estimated by running trajectories starting from the
blue moon ensemble’ at sts,'"" using Kramers’ rate theory,"” or
by comparing computed TST rates with rates that were explic-
itly sampled using dedicated approaches.'”'®"” For many chemical
reactions, we can assume transport across the TS to be ballistic,
and x = 1.

In what follows, we will use the definition of Egs. (12) and (15)
for the geometric FES. By comparing F and FC, we can then assess
the magnitude of the gauge correction within the chosen unit sys-
tem. The unit A of the system coordinates R will therefore always be
reported but is 1 A in most molecular systems. Whenever free energy
barriers are reported, we will use Eq. (20) because of the ubiquity of
the Eyring equation.

We also remark that the mass m in Eq. (20) is easily defined as
the atomic mass in elementally pure systems or as twice the reduced
mass ¢ = (m;m;)/(m; + m;) when employed CVs are based on pair-
wise terms between pairs of atoms i and j. In more complex systems,
it is more convenient to directly calculate the gradient with respect
to mass-scaled coordinates g; = \/m;x; and drop the factor Vm in
Eq. (20)."* A will then be the unit of g.

Finally, we note that we have made two implicit assumptions
in Sec. II. The first one is that there is a clear time scale separa-
tion between the CVs s and all other degrees of freedom that should
equilibrate on a much faster time scale. Only when this is true, the
concept of a free energy barrier along s is useful. The second assump-
tion is that sampling is sufficient: all relevant values of s should be
well sampled to obtain an accurate FES, and enough configurations
R should be sampled at each s to converge the estimate of (det d)s.
Both of these assumptions—which boil down to sampling of trans-
verse degrees of freedom being possible on an MD time scale—are
also inherent to most enhanced sampling methods based on the bias-
ing of CVs. For the systems we consider in Sec. I1], we find that the
(det d), term converges very quickly.
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I1l. EXAMPLES
A. Dissociation and association in solution

As a first illustration of the difficulties associated with calcu-
lating free energy barriers, we consider the case of two strongly
interacting particles, immersed in a 1000-atom Lennard-Jones (LJ)
fluid of reduced density p = 0.84, close to the triple point density.
The solvent-solvent and solvent-solute interactions are described
using the same L] potential (¢ = € = 1), whereas the two solute atoms
interact through a Morse potential U(r) = 10(1 - 875(771))2 (using
reduced units throughout).

A natural choice of CV to describe the dissociation and associ-
ation of the two strongly interacting particles would be their inter-
atomic distance r. As we will show, this will however result in a
poorly balanced description of the two metastable states vs the tran-
sition state: The bound and transition state will be located in only a
small region of short r, whereas a much wider range of large r values
will represent the unbound state. All states can be given more or less
equal weight when using a switching function with the general form

(g
o(r) = !

T

for which we set 19 =0.75,d = 1.0, n =1, and m = 2.

We performed well-tempered metadynamics simulations at
several temperatures 0.75 < T < 2.50, biasing o(r) by depositing
Gaussians with width § = 0.01 and initial height wy = 0.25 every
2500 time steps. The equations of motion were integrated with a
time step of At = 0.002 using a stochastic velocity rescaling ther-
mostat”’ to control the temperature. A one-dimensional FES was
projected on r and o(r), respectively, using the reweighing scheme of
Tiwary and Parrinello’”® during a sampling run of 10’ steps at each
temperature. A harmonic wall is applied when r > 7. All simulations
were carried out using the LAMMPS package'' and the PLUMED2
plugin.’

Figure 1 depicts the FES for T = 1.5 along both r and o(r),
respectively. Both projections of the FES capture the main charac-
teristics of the system, with a bound state B at short interatomic
separations, an unbound dissociated state D at larger distances,
and a free energy barrier in between. r has a more direct phys-
ical significance, but F(o) is a smoother function which can be
accurately represented on a coarser numerical grid. Moreover, both
metastable states occupy a similarly sized section of CV space so
that the average CV fluctuations in both states will be similar and
the optimal width & of the biasing Gaussian will be the same for
both.”

From the two projections of the FES, we can now attempt to
calculate estimates of the free energy barriers A*F for both associa-
tion (D — B) and dissociation (B — D). Several approaches are used,
and their results are collected in Table I for a temperature of T = 1.5.
We begin by noting that the free energy difference AFp_, 3 between
the two states, as calculated from (6), is independent of the choice
of CVs, as expected; physically, both CVs represent the same degree
of freedom. The association process is thermodynamically favored
at this temperature but still requires a barrier crossing at around
r = 1.6. The magnitude of the barrier can be estimated from the FES
projection through various relations.

@1
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FIG. 1. Free energy profiles for the solvated dimer in a finite cubic box. Standard
FES F(s) and geometric FES FC(s) (with A = 1) for (a) the distance CV r and (b)
the switching function o(r). The gauge-invariant free energy of the transition state
is depicted as a red dashed line.

The most straightforward approach is to estimate a barrier as
the difference between the maximum of F(s) along the reaction path
and its minimum value in the starting basin, i.e., Frs — min F(s € D)
for the association process. Here, we see that the apparent barrier
is twice as large when projecting the free energy on o(r). How-
ever, the two CVs currently under consideration are merely different

TABLE |. Free energy difference AF between the bound (B) and dissociated (D)
dimer states, and their interconversion barriers A*F according to several definitions,
all calculated from the respective FES projected on two different CVs.

r o(r)
AFp_.p —1.39 —1.38
Association
Frs — min F(s € D) 3.18 6.38
Frs — Fp 5.04 3.15
F$s - Fp 4.52 4.48
AYFp_3p 3.44 3.41
Dissociation
Frs — min F(s € B) 8.88 791
Frs — Fp 6.42 4.54
F$s - Fp 5.90 5.86
AYFpp 4.83 4.79
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parametrizations of the same reaction coordinate. In principle, they
should be equally capable of correctly distinguishing the transition
state, albeit with different curvatures in the FES. These different
barrier heights therefore cannot directly correspond to the actual
transition rate between states.

Integrating over the whole free energy basin should eliminate
any effect of its shape around the minima, but, as noted earlier, using
Frs — Fp still does not lead to a consistent value of the barrier. Using
o as a CV now results in a predicted barrier that is two energy units
lower than in the case where r is used. However, this discrepancy
disappears when using the TS free energy, as defined on the geomet-
ric FES, through F% — Fp. From both projections of the FES, this
term can be estimated to be about 4.5 within a small error likely due
to deficiencies of the numerical grid. F{ is more conveniently cal-
culated from F'%(c) because it is smoother around the transition
state.

When using F®, Eq. (20) thus yields consistent barriers: A*F
~ 3.4 from both projections of the FES. (Note that & = 277 in L] units.)
Another intuitive way to reach this conclusion is by observing that
the absolute value of F at the transition state is the same for both
projections, while this is not the case for F (Fig. 1).

Viewing kinetics through the lens of free energies has the
advantage that it is rather straightforward to investigate the trade-
off between energetics and entropy in this context. As is also possible
for the reaction free energy AF, barriers A*F can be evaluated at dif-
ferent temperatures. Then, the entropy S and potential energy U
can be disentangled using the relation F = U — TS. As shown in
Fig. 2, AFp_p and the two barriers vary linearly as a function of
the temperature, making the determination of these thermodynamic
parameters a matter of standard linear regression.

7
@ o
0 e
-
[T o
< R4
o
S e
-10 1 . . . .
8 |
kd
6 pe

w 4 X....

% X.'.'X .....
D
0} « Association

. x Dissociation
2 . .

0.0 0.5 1.0 1.5 2.0 25 3.0
T

FIG. 2. Effect of the temperature T on (a) the dimer association free energy AF and
(b) free energy barriers ATF for both association and dissociation. Linear regres-
sion is performed on all datasets. The intercept with the Y axis corresponds to the
energetic component, the slope with entropy.
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Starting with the reaction thermodynamics, we here find con-
firmation that the bound state has a lower potential energy, but the
dissociated state is entropically favored. Indeed, AUp_p = —-9.12
+ 0.12 and ASp_.g = —5.52 + 0.07. The value of AUp_. 5 is consis-
tent with the formation of a bond of strength U, = —10, which is
offset by the loss of, on average, one solvent partner with interaction
energy U, = —1.

The balance between entropy and potential energy also affects
the barriers. The association reaction in fact has a negative ener-
getic barrier A*Up_p = —1.52 + 0.21 so that the origin of the free
energy barrier is fully attributable to its entropic component A*Sp_,
= —3.46 + 0.12. Conversely, the dissociation barrier is dominated by
a large energetic barrier A*Up_,p = 7.60 + 0.11 but facilitated by
entropic factors with A*Sg_.p = 1.80 + 0.06. Just like the process
thermodynamics, the analysis of the free energy barriers explains
how high temperatures favor dissociation over association.

Finally, we can use our estimates of A*F to calculate rate coef-
ficients k using the Eyring relation [Eq. (19)]. These values are
reported in Table I assuming that x = 1.

Both association and dissociation processes at T = 1.5 are fast
enough to observe in unbiased MD simulations. We can therefore
explicitly calculate the rate by collecting TS crossing times in unbi-
ased MD simulations. In five simulations over an accumulated time
scale of 5 x 10°, 319 association events and 316 dissociation events
were recorded. TST rates were then calculated by dividing the total
number of TS crossings by the simulation time and are also collected
in Table II. We note that the sampling of these rates appears to be
of good quality. Estimating the association free energy as AFp_p
= —B ' In(kp-p/ks—p) yields a value of —1.34, very close to —1.38,
the value obtained from integrating the FES.

Comparing the explicit and FES-derived rates, we can see that
the two sets are in very close agreement with each other. The TST
rates from A*F slightly overestimate the explicit rates, as can be
expected. The true reaction coordinate should likely also contain a
contribution from the solvent-solute interaction.

We can also use a slightly more strict definition of state-to-
state transitions that requires the system to end up deeper in the
respective basins. We commit the system to the bound state once
r < 1.0 and require r > 3.5 for the dissociated state. Fewer events are
now recorded, and both rates decrease strongly. Only 58 association
events and 55 dissociation events are identified on the same set of
accumulated trajectories. Therefore, « ~ 0.19. This is in line with the
highly diffusional nature of particle motion in the considered sys-
tem. Any trajectory reaching the TS region will perform a random
walk, witnessing several recrossings that do not effectively result in
reaching the B or D states.

TABLE II. TST rates k for the association and dissociation reactions of the LJ-solvated
dimer. The rates are calculated by either using free energy barriers obtained from the
FES or explicitly counting TS crossings in unbiased MD simulations. From both sets
of rates, the binding free energy AFp_, g is also estimated.

From FES Explicitly from MD
kp-s 24.70 x 103 220x1073
ks—p 9.80x10° 9.0x10?
AFp_3 —1.38 —1.34
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The rate theory of Kramers"” provides a framework to estimate
x for reactions in the solution. From 15 short (¢t < 1.0) MD runs
originating from the transition state, we estimate the diffusivity of
the CV r to be D = 0.06 + 0.01. The diffusing dimer has a reduced
mass of ¢ = 0.5. This translates into a friction # = (BuD)™" = 50
+ 9. The imaginary harmonic frequency at the TS can be estimated
from F(r) to be wrs = 7.9. Because # > wrs, we can use the strongly
damped limit of Kramers’ theory, for which « ~ wrs/%. We then have
x =0.16 + 0.03 in line with our explicit estimate. Repeating the same
analysis but now based on the o(r) CV is fully analogous except that
the computed individual parameters have different numeric values:
D = 0.015 + 0.003, # = 200 + 30, and wrs = 30, which still yields
x=0.15+0.03.

B. Chemical reaction in vacuum

We now turn to a more realistic system that is also chemi-
cally more complex. The Diels-Alder reaction of ethene and 1,3-
butadiene produces cyclohexene as a product and requires the
simultaneous formation of two new carbon-carbon bonds between
the reactant molecules [Fig. 3(a)]. The reaction also has a very high
barrier on the PM6 PES," with rates below 107 s7! at 600 K."° It
has therefore been a useful testing ground for enhanced sampling
approaches.”®*°

To drive the reaction, we used a single CV derived by Mendels
et al. using their harmonic linear discriminant analysis (HLDA)
method.”® This CV is a linear combination of the six carbon—carbon
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FIG. 3. Diels—Alder reaction of ethene and 1,3-butadiene. (a) Schematic depiction
of the two key C-C contacts r4 and r,. The standard FES F(s) is shown projected
on the two best one-dimensional CVs: (b) HLDA CV and (c) @.
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distances that correspond to bonds in the product state. We per-
formed well-tempered metadynamics simulations with a bias factor
of y = 25, depositing a Gaussian of height w = 1 kcal/mol and width
8 = 0.15 A every 0.5 ps. A time step of 0.5 fs was used, and the
temperature was controlled using a generalized Langevin equation
(GLE) thermostat optimized for efficient canonical sampling."” To
closely mimic the setup of previous infrequent metadynamics sim-
ulations,”® we applied harmonic restraints to keep the chemically
relevant r1 and r, distances below 5 A, calculated forces on the PM6
level,"” and sampled at a temperature of 600 K. The simulation was
performed using CP2K" with the PLUMED2 plugin. The simula-
tion lasted 5 ns in total, with the final 2.5 ns being used for sampling
the FES. The resulting FES is depicted in Fig. 3(b).

The FES was also projected on several candidate CV's besides
the HLDA reaction coordinate used for biasing. All of these CVs
capture an aspect of the reaction and could be adequate CVs. Free
energy parameters derived from their respective FESs are collected
in Table III.

Because the C-C bond formation is concerted, using just one
of the two bond distances (e.g., 71) might be sufficient; the very close
agreement of the predicted AF with that of the HLDA-derived FES
at least implies that it is a CV capable of distinguishing between the
reactant and product state. The predicted barrier AYF, however, is
underestimated by 18 kcal/mol because the CV is too simple. The
barrier on the resultant FES is too low because the true transition
state is mixed with other more stable configurations.” The devi-
ation of AF from the HLDA reference value suggests that the CV
sometimes even assigns configurations to the wrong basin.

A similar observation can be made for SPRINT coordinates.
To construct the contact matrix, we use the switching function of
Eq. (21) and set 1o = 2.65 A, dy=0A, and 2n = m = 12 for all
C-C distances in the system.% Asa CV (denoted SPRINT1), we then
take the average of the SPRINT coordinates of the two carbon atoms
of ethene. This CV is able to distinguish the metastable states and
yields an estimate of AF equal to the one from the HLDA FES. It
fails, however, to accurately isolate the transition region: the barrier
is again underestimated, now by more than 14 kcal/mol. This is a
consequence of the slowly varying long-ranged switching function,
which results in SPRINT coordinates that are affected by all non-
bonded distances in the system. Although a good generic choice for
biasing arbitrary reactions with little a priori knowledge,” such a
switching function therefore cannot target specific reactions well. By
analyzing the 2D FES in (71, r2), we find that the transition state cor-
responds to C-C distances of around 2.12 A. Using this information,
we can design a sharply varying switching function that is tailored
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to strictly discriminate between bonded and non-bonded C-C con-
tacts, by setting 7o = 2.12 A and 2n = m = 48. A FES projected on a
SPRINT-based CV using this switching function (SPRINT2) yields a
free energy barrier that is only 0.5 kcal/mol below the one from the
HLDA FES.

We can also hypothesize that a good identification of the tran-
sition states can be achieved with a significantly more generic CV.
As a basis, we can take the switching function used in the earlier
solvated dimer example. In this simple CV, we calculate switching
functions based on r; and r; and take their average (¢). The parame-
ters of the switching function are ro = dy = 1.0 Aand2n=m=2.The
resulting CV has similar advantages as the ¢ CV used earlier and is
chemically intuitive [Fig. 3(c)]. Despite its simplicity, however, the
FES projected on this CV @ again produces a perfect estimate of AF,
and A*F is even slightly higher than the HLDA reference. Although
optimized for biasing the reaction, the HLDA CV is therefore not
necessarily the best approximation of the reaction coordinate. This
is confirmed by our final set of CVs: when we project the FES on
(r1, r2), we obtain the highest barrier yet.

Ultimately, the four best estimates of AYF are all within
1 kcal/mol, or less than 2% of the total barrier. Several 1D FES pro-
jections therefore do perform quite well for this system. From block
averaging, we can estimate that the uncertainty on predicted free
energy differences is about 0.25 kcal/mol.

When taking A*F = 47.23 + 0.25 kcal/mol as the final best esti-
mate of the barrier, and assuming « = 1, we can calculate the reac-
tion rate to be (7.8 + 1.7) x 107> s~ ', This is very close to Fu and
Pfaendtner’s best infrequent metadynamics estimate of (5.8 + 0.7)
x 107> 57!, obtained while biasing a CVHD-style’’ many-body
CV." Due to the slow bias addition rate in their simulation, record-
ing a single event required at least 15 ns of simulation time, longer
than our total free energy run of 5 ns. Moreover, metadynamics vari-
ants that can converge the FES even faster than well-tempered meta-
dynamics have already been developed, such as transition-tempered
metadynamics. "’

We perform five runs with transition-tempered metadynam-
ics, using the same hill parameters and bias factor as previously,
but with a faster addition stride of 50 fs and a simulation time of
only 250 ps per run. The average estimated barrier of these sim-
ulations as projected on the HLDA CV is A*F = 47.39 kcal/mol.
This value is very close to the one obtained from the longer well-
tempered metadynamics simulations, A*F = 47.01 kcal/mol. More-
over, the standard deviation of the barriers is only 0.60 kcal/mol,
meaning that the estimates produced from a single short
transition-tempered metadynamics run can be quite precise. Kinetic

TABLE IIl. Reaction free energies AF, barriers A*F, the magnitude of the geometric FES correction at the transition state
for the Diels—Alder reaction, and the total value of the correction term 8~ In z* as obtained from different projections of the
FES. All energies in kcal/mol, and A = 1 A

HLDA n SPRINT1 SPRINT2 G (r1, 12)
AF 2325 —23.34 —23.25 —23.25 —23.25 —23.25
A*F 47.01 29.01 32.66 46.51 47.16 47.23
FY — Frs —0.43 —0.41 —0.62 —1.65 1.79 —0.83
B 'nz* 1.45 1.47 1.27 0.24 3.67 2.94
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analysis of high-barrier chemical reactions is therefore achievable
within ab initio time scales.

The use of the gauge-invariant geometric free energy F® is cru-
cial to obtain accurate kinetics. The term In(A" detd), frequently
has an absolute value larger than unity, meaning that the correction
to the barrier exceeds ﬂfl, as can be seen in Table I1I. When com-
paring different CV dimensionalities, ﬁfl Inz* = A'F - (Frs — Fya)
following from Eq. (20) provides a more consistent metric. For
example, the barriers obtained using the CVs SPRINT2 and ¢ are in
very close agreement, but without the correction they would differ
by 2.8 kcal/mol. Moreover, the absolute correction to Frs — F4 can
reach values up to 3.7 kcal/mol. Predicted rates would then differ
by an order of magnitude. Because 8" Inz* is always positive, not
inch;ding this correction might lead to spurious negative estimates
of A*F.

C. Crystal nucleation from the liquid

Phase transitions are true many-body processes because they
involve a (re)ordering of all atoms in the system. Suitable CVs will
accordingly be many-body as well. As an example of such a process,
we here consider the liquid-solid (L — S) transition of sodium, in a
well-tempered metadynamics setup using LAMMPS and PLUMED?2
that closely mimics that of Piaggi et al.”’ The interatomic interac-
tions between 250 Na atoms are described using an embedded atom
model (EAM) potential;”’ constant isotropic pressure dynamics at
1 bar is simulated using a Nosé-Hoover style barostat,”’ a 2 fs time
step, and a stochastic thermostat” to maintain the temperature at
375K, close to the melting point. As shown earlier, the phase transi-
tion can be biased in both directions using two generic CVs based on

0.8
a Standard FES
0.6 F\ ------- Geometric FES
E 04
o
® 021
0.0

time (ns)
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the system’s enthalpy and a pairwise approximation of the entropy.”
Bivariate Gaussian hills of height 0.025 eV were deposited every
5 ps with widths of 0.002 eV/atom in the enthalpic direction and
0.1 kg/atom in the entropic direction. The bias factor was 30.

Two simulations of 200 ns each were carried out, producing
respective estimates of the FES that had a root mean square dif-
ference below 0.02 eV. Analysis was performed using quantities
averaged over both simulations.

The FES can be projected on several possible order parame-
ters. One possible choice of CV would be the pair entropy CV [Sp,
Fig. 4(a)] that was also used for biasing, which can distinguish the
disordered liquid phase from the bcc solid.”” Another CV with this
ability is a locally averaged version of the Qs Steinhardt parameter
[Qg Fig. 4( b)]."" Both projections of the FES allow for a consistent
estimation of the Gibbs free energy of fusion AGs_., as summa-
rized in Table I'V; with AGs— = 0.03 eV, the system is very close
to its melting point and crystallization should be a spontaneous
process.

The predicted nucleation barrier AIGL_,S is quite sensitive to
the choice of CV because—as can also be visually inferred from
Figs. 4(a) and 4(b)—the TS is much lower on GY(Sp) than on
G“(Qg). Therefore, the crystallization barrier is predicted to be
0.45 eV when using Q¢ as CV, which is 0.23 eV higher than the
estimate from G(Sp). Sp therefore does not separate critical states
from the pure liquid and solid phases as well as Qq. This can also
be deduced from tracking the respective CV trajectories during the
biased simulation [Figs. 4(c) and a(d)].B

The crystallization barrier not only mirrors the Diels-Alder
barrier in its strong dependence on the CV choice but also in the
importance of the geometric FES correction. Here, this correction is

0 50 100 150 200
time (ns)

FIG. 4. Crystallization of liquid sodium. Standard and geometric free energies are projected on the (a) Sp and (b) Q CVs. The CV trajectory during a 200-ns metadynamics

run for both (c) Sp and (d) Q.
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TABLE IV. Sodium free energy of fusion AGg_,, crystallization barriers A*G, _ g,
and the magnitude of the geometric FES correction at the transition state, as obtained
from two different projections of the FES. All energies in eV, A = 1 A.

Sp 66
AGs_1 0.03 0.03
A*Grs 0.28 0.51
G% - Grs 0.03 0.11

even larger: When using the Qg CV, its magnitude is about a quar-
ter of the total barrier and more than 3kgT, which would affect a
rate prediction by a factor of 30. Note that the nucleation barrier is
sensitive to finite size effects,”” and that « can be quite small.”

D. General remarks

The calculation of free energy barriers is much less forgiving
with respect to the choice of CVs than biasing. Not only must the
CVs be able to discriminate between different metastable states but
they also have to accurately recognize transition states.'” CVs that
sharply vary in the transition state regions are also preferred because
they result in a smooth FES around the barrier. It is, however, not
always obvious a priori which CVs are optimal.

The reweighing-based approach adopted here somewhat allevi-
ates this problem. An optimal set of CVs for analysis can be selected
independently from the CVs used for biasing, even after perform-
ing the biased simulation. More and more methods are becoming
available to find these optimal CVs.'>”"* Because the FES need
not be directly calculated from a converged bias, barriers can also
be obtained using methods that preserve kinetics.'”'®"” This way,
kinetics can be studied both directly and through a free energy-based
perspective.

Another advantage is computational. An accurate estimate of
the (standard and geometric) FES is generally faster to obtain than
a sufficiently large sample of unperturbed transition times. This
extends access to kinetic information to more complex systems.
Even when TST fails to give highly accurate rates, free energy bar-
riers can be useful to compare the relative importance of competing
reaction pathways or the kinetics across different systems. In such
applications, a gauge correction is also needed.

For efficient reconstruction of the FES, there exists a large
choice of mature bias-based free energy methods. Recent approaches
to specifically enhance sampling of transition states might also yield
accurate barriers at even lower costs.” Indeed, although we have
used the metadynamics method in all examples discussed in this
manuscript, our approach can be applied with any bias-based free
energy method.

IV. CONCLUSIONS

We have presented a simple approach to calculate a gauge cor-
rection to a free energy surface (FES) by reweighing a biased molec-
ular dynamics trajectory. For a number of realistic processes in dif-
ferent systems, we show that predicted free energy barriers can differ
significantly—in the order of several ks T—depending on the choice
of collective variables (CVs) used to construct the FES. Only when
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applying the gauge correction, free energy barriers can be consistent
across different projections of the FES and be used to calculate accu-
rate transition rates. The standard and gauge-corrected FES can be
obtained from the same trajectory at little additional cost.

It is important that the employed CVs are able to strictly
discriminate not only between different metastable states but also
the transition state regions that separate them. Because the FES is
obtained through reweighing, it is also possible to project the FES
on a set of CVs that are different from the CVs used for biasing.

There exists an ever-growing arsenal of biasing methods that
promise rapid convergence of the free energy. By pairing these with
our approach, it becomes possible to study the kinetics of processes
for which explicit rates are difficult to obtain, including ab initio
models of chemical reactions. We therefore hope that our approach
can extend the capabilities of contemporary enhanced sampling
methods.
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