Electronic Supplementary Information:

Modeling Plasma-based CO₂ and CH₄ Conversion in Mixtures with N₂, O₂ and H₂O: the Bigger Plasma Chemistry Picture

Weizong Wang^{*, 1, (a)}, Ramses Snoeckx^{*, 1, 2, (a)}, Xuming Zhang^{2, 3}, Min Suk Cha² and Annemie Bogaerts^{*},¹

1. Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk-Antwerp, Belgium

2. King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (CCRC), Thuwal 23955, Saudi Arabia

 College of Environmental Science and Engineering, Zhejiang Gongshang University, Xiasha High Education District, Hangzhou, Zhejiang Province, China Corresponding Author

*E-mail: <u>wangweizong@gmail.com</u>, <u>ramses.snoeckx@uantwerpen.be</u>, <u>annemie.bogaerts@uantwerpen.be</u>

(a) These authors contributed equally to this work

1 DESCRIPTION OF THE MODEL AND EXPERIMENTS

1.1 Zero-dimensional (0D) Chemical Kinetics Model and its Application to a DBD Reactor

We use a 0D chemical kinetics model, called ZDPlaskin,¹ to elucidate the plasma chemistry. In this model, the time-evolution of the species densities is calculated by balance equations, taking into account the various production and loss terms, as defined by chemical reactions.

$$\frac{dn_i}{dt} = \sum_j \left\{ \left(a_{ij}^{(2)} - a_{ij}^{(1)} \right) k_j \prod_l n_l^{a_{lj}^{(1)}} \right\}$$
(S1)

where $a_{ij}^{(1)}$ and $a_{ij}^{(2)}$ are the stoichiometric coefficients of species *i*, at the left and right hand side of a reaction *j*, respectively, n_i is the species density at the left-hand side of the reaction, and k_j is the rate coefficient of reaction *j* (see below).

Transport processes are neglected in this 0D model; hence, the species densities are assumed to be constant in the entire simulation volume. However, we can translate the temporal behavior into a spatial behavior (i.e., as a function of distance along the DBD tube) by means of the gas flow rate (i.e., similarity between batch reactor and plug flow reactor). This allows us to mimic the typical filamentary behavior of a DBD used for gas conversion. The gas molecules will pass through several microdischarge filaments on

their way throughout the reactor. This is taken into account in the model by applying a large number of consecutive microdischarge pulses as a function of time, assuming a triangular pulse of power deposition, with a duration of 30 ns for each pulse. The maximum power of the pulse is chosen in such a manner that the total specific energy input (SEI) can be compared with experimental results for validation (see below). This approach has already proven to be applicable for a variety of conditions and gas mixtures.²⁻⁶

The rate coefficients of the heavy particle reactions (i.e., atoms, molecules, radicals, ions, excited species) depend on the gas temperature and are adopted from literature (see below), whereas the rate coefficients for the electron impact reactions are a function of the electron temperature and calculated with a Boltzmann solver, BOLSIG⁺, ⁷ which is integrated into ZDPlaskin.

1.2 Description of the Experiments

For studying the multi-reforming process, dedicated experiments have been performed for further validation of the entire plasma chemistry set. The experimental apparatus consists of a temperature controlled DBD reactor, a power supply system, a reactant supply system, and measurement system, and is described in detail before. ⁸ The temperature-controlled DBD reactor is a coaxial DBD, composed of a quartz tube with inner diameter of 20 mm and length of 180 mm. A stainless-steel rod with diameter of 17.5 mm is used as high voltage (inner) electrode. A 45 mm wide stainless-steel mesh is wrapped around the tube to serve as grounded (outer) electrode. CH₄, CO₂, H₂O, O₂ and N₂ are used as feed gases with a constant total flow rate of 200 mL/min and several different combinations of individual flow rates (see next section). An adjustable high voltage AC power supply is connected to the reactor, and can supply voltage and current up to 20 kV and 30 mA. The discharge power was set to 10 W, providing a specific energy input (SEI) for all investigated cases of 0.76 eV/molecule and the reactor temperature remains constant at 673 K.

1.3 Definitions of Gas Conversion and Product Selectivities

The conversions of CO₂ and CH₄ are defined as:

$$X_{CO2} = \frac{\text{Moles of } CO_2 \text{ converted}}{\text{Moles of } CO_2 \text{ input}} \times 100\%$$
(S2)

$$X_{CH_4} = \frac{\text{Moles of } CH_4 \text{ converted}}{\text{Moles of } CH_4 \text{ input}} \times 100\%$$
(S3)

With the addition of H₂O and O₂, their conversions are defined as

$$X_{H_2O} = \frac{\text{Moles of } H_2O \text{ converted}}{\text{Moles of } H_2O \text{ input}} \times 100\%$$
(S4)

$$X_{O_2} = \frac{\text{Moles of } O_2 \text{ converted}}{\text{Moles of } O_2 \text{ input}} \times 100\%$$
(S5)

The selectivity of H₂, CO and hydrocarbons (C_xH_y) is defined as follows:

$S_{H2} = \frac{\text{Moles of } H_2 \text{ produced}}{2 \times \text{Moles of } CH_4 \text{ converted} + \text{Moles of } H_2 O \text{ converted}}$	$\frac{1}{100\%} \times 100\%$ (S6)
$S_{\rm CO} = \frac{\rm Moles of CO produced}{\rm Moles of CH_4 \ converted + Moles of \ CO_2 \ converted}$	× 100% (S7)

(S8)

 $S_{C_X H_Y} = \frac{x \text{ Moles of } C_X H_Y \text{ produced}}{\text{Moles of } CH_4 \text{ converted} + \text{Moles of } CO_2 \text{ converted}} \times 100\%$

2 OVERVIEW OF THE REACTIONS INCLUDED IN THE MODEL

Table S1. Electron impact reactions with the various molecules and radicals, included in the model. These reactions are treated by energy-dependent cross sections (or rate coefficients), and the references where these cross sections (or rate coefficients) were adopted from, are also included. For the vibrational and electronic excitations, several individual excitations are included, as indicated by the number between brackets.

CH ₄											
Momentum Transfer	e	+ CH ₄	\rightarrow	e	+	CH ₄					(9)
Vibrational Excitation or De-excitation	e	+ CH ₄	\rightarrow	e	+	CH ₄ (v)				(2)	(9)
Ionization	e	+ CH ₄	\rightarrow	2e ⁻	+	CH_4^+					(10)
Dissociative Ionization	e	+ CH ₄	\rightarrow	2e ⁻	+	$\mathrm{CH_3}^+$	+ 1	H			(10)
	e	+ CH ₄	\rightarrow	2e ⁻	+	$\mathrm{CH_2}^+$	+]	H_2			(10)
Dissociation	e	+ CH ₄	\rightarrow	e	+	CH ₃	+]	H			(11-12)
	e	+ CH ₄	\rightarrow	e	+	CH_2	+]	H_2			(11-12)
	e	$+ CH_4$	\rightarrow	e	+	СН	+]	H_2	+	Н	(11-12)
	e	+ CH ₄	\rightarrow	e	+	С	+ 2	2H ₂			(11-12)
CH ₃											
Ionization	e	+ CH ₃	\rightarrow	2e ⁻	+	$\mathrm{CH_3}^+$					(10)

Dissociative	0-		CU		2		CH ⁺		п		(10)
Ionization	e	+	CH ₃	\rightarrow	Ze	+	CH ₂	+	·П		(10)
	e	+	CH ₃	\rightarrow	2e ⁻	+	$\mathrm{CH}^{\scriptscriptstyle +}$	+	- H ₂		(10)
Dissociation	e	+	CH ₃	\rightarrow	e	+	CH ₂	+	· H		(11-12)
	e	+	CH ₃	\rightarrow	e	+	СН	+	- H ₂		(11-12)
CH ₂											
Ionization	e	+	CH ₂	\rightarrow	2e ⁻	+	$\mathrm{CH_2}^+$				(10)
Dissociative Ionization	e	+	CH ₂	\rightarrow	2e ⁻	+	CH^{+}	+	H		(10)
	e	+	CH ₂	\rightarrow	2e ⁻	+	\mathbf{C}^+	+	- H ₂		(10)
Dissociation	e	+	CH ₂	\rightarrow	e	+	СН	+	Н		(11-12)
СН											
Ionization	e	+	СН	\rightarrow	2e ⁻	+	CH^{+}				(10)
Dissociative Ionization	e	+	СН	\rightarrow	2e ⁻	+	C^+	+	H		(10)
Dissociation	e	+	СН	\rightarrow	e	+	С	+	· H		(11-12)
С											
Ionization	e	+	С	\rightarrow	2e ⁻	+	\mathbf{C}^+				(11-12)
C ₂ H ₆											
Momentum Transfer	e	+	C ₂ H ₆	\rightarrow	e	+	C ₂ H ₆				(9)
Vibrational Excitation or De-excitation	e	+	C ₂ H ₆	\rightarrow	e	+	C ₂ H ₆ (v)			(3)	(9)
Ionization	e	+	C_2H_6	\rightarrow	2e ⁻	+	$C_2 H_6^{+}$				(10)
Dissociative Ionization	e	+	C_2H_6	\rightarrow	2e ⁻	+	$C_{2}H_{5}^{+}$	+	H		(10)

	e	$+ C_2 H_6$	\rightarrow	2e ⁻	+	$C_2 H_4^{+}$	$+ \hspace{0.1in} H_2$			(10)
	e	$+ \ C_2 H_6$	\rightarrow	2e ⁻	+	$C_2 H_3^{+}$	+ H ₂	+	Н	(10)
	e	$+ \ C_2 H_6$	\rightarrow	2e ⁻	+	$C_2 H_2^{+}$	$+ 2H_2$			(10)
	e	$+ \ C_2 H_6$	\rightarrow	2e ⁻	+	$\mathrm{CH_3}^+$	+ CH ₃			(10)
Dissociation	e	$+ \ C_2 H_6$	\rightarrow	e	+	C_2H_5	+ H			(13-14)
	e	$+ \ C_2 H_6$	\rightarrow	e	+	C_2H_4	+ H ₂			(13-14)
C ₂ H ₅										
Ionization	e	$+ \ C_2 H_5$	\rightarrow	2e ⁻	+	$C_{2}H_{5}^{+}$				(10)
Dissociative Ionization	e	$+ \ C_2 H_5$	\rightarrow	2e ⁻	+	$C_{2}H_{4}^{+}$	+ H			(10)
	e	$+ \ C_2 H_5$	\rightarrow	2e ⁻	+	$C_2H_3^{+}$	$+ \hspace{0.1in} H_2$			(10)
	e	$+ \ C_2 H_5$	\rightarrow	2e ⁻	+	$C_2 H_2^{+}$	+ H ₂	+	Н	(10)
Dissociation	e	$+ \ C_2 H_5$	\rightarrow	e	+	C_2H_4	+ H			(13-14)
	e	$+ C_2 H_5$	\rightarrow	e	+	C_2H_3	$+$ H_2			(13-14)
C ₂ H ₄										
Momentum Transfer	e	$+ C_2H_4$	\rightarrow	e	+	C ₂ H ₄				(9)
Vibrational Excitation or De-excitation	e	$+ C_2H_4$	\rightarrow	e	+	C ₂ H ₄ (v)			(2)	(9)
Ionization	e	$+ \ C_2 H_4$	\rightarrow	2e ⁻	+	$C_2 H_4^{+}$				(10)
Dissociative Ionization	e	$+ C_2H_4$	\rightarrow	2e ⁻	+	$C_{2}H_{3}^{+}$	+ H			(10)
	e	$+ \ C_2 H_4$	\rightarrow	2e ⁻	+	$C_2 H_2^{+}$	$+ \hspace{0.1in} H_2$			(10)
Dissociation	e	$+ \ C_2 H_4$	\rightarrow	e	+	C_2H_3	+ H			(13-14)
	e	$+ \ C_2 H_4$	\rightarrow	e	+	C_2H_2	+ H ₂			(13-14)
C ₂ H ₃										

S5

Ionization	e	+ C ₂	H ₃	\rightarrow	2e ⁻	+	$C_2 H_3{}^+$				(10)
Dissociative Ionization	e	+ C ₂	H ₃	\rightarrow	2e ⁻	+	$C_2H_2^+$	+	Н		(10)
	e	+ C ₂	H_3	\rightarrow	2e ⁻	+	C_2H^+	+	H ₂		(10)
Dissociation	e	+ C ₂	H_3	\rightarrow	e	+	C_2H_2	+	Н		(13-14)
	e	+ C ₂	H_3	\rightarrow	e	+	C_2H	+	H_2		(13-14)
C ₂ H ₂											
Momentum Transfer	e	+ C ₂	H ₂	\rightarrow	e	+	C ₂ H ₂				(9)
Vibrational Excitation or De-excitation	e	+ C ₂	H ₂	\rightarrow	e	+	C ₂ H ₂ (v)			(3)	(9)
Ionization	e	+ C ₂	H_2	\rightarrow	2e ⁻	+	$C_2H_2^+$				(10)
Dissociation	e	+ C ₂	H_2	\rightarrow	e	+	C_2H	+	Н		(13-14)
	e	+ C ₂	H_2	\rightarrow	e	+	C ₂	+	H ₂		(13-14)
C ₂ H											
Ionization	e	+ C ₂	Н	\rightarrow	2e ⁻	+	C_2H^+				(10)
Dissociation	e	+ C ₂	Н	\rightarrow	e	+	C ₂	+	Н		(13-14)
	e	+ C ₂	Н	\rightarrow	e	+	С	+	СН		(13-14)
C ₂											
Momentum Transfer	e	+ C ₂		\rightarrow	e	+	C ₂				(15)
Ionization	e	+ C ₂		\rightarrow	2e ⁻	+	C_2^+				(13-14)
Dissociation	e	+ C ₂		\rightarrow	e	+	С	+	С		(13-14)
С											
Momentum Transfer	e	+ C		\rightarrow	e	+	С				(13-14)

Ionization	e	+ C		\rightarrow	e	+	\mathbf{C}^+				(13-14)
C ₃ H ₈											
Momentum Transfer	e	+ $C_{3}H_{8}$		\rightarrow	e	+	C ₃ H ₈				(9)
Vibrational											
Excitation or	e	$+ C_{3}H_{8}$	1	\rightarrow	e	+	$C_3H_8(v)$			(2)	(9)
De-excitation											
Dissociative	e	$+ C_3H_8$	1	\rightarrow	2e ⁻	+	$C_2 H_5^{+}$	+	CH ₃		(10)
Ionization	e	$+ C_{3}H_{8}$;	\rightarrow	2e ⁻	+	$C_2H_4^{+}$	+	CH_4		(10)
Dissociation	e	$+ C_{3}H_{8}$;	\rightarrow	e	+	C_3H_7	+	Н		(13-14)
	e	$+ C_{3}H_{8}$;	\rightarrow	e	+	C_3H_6	+	H_2		(13-14)
	e	$+ C_{3}H_{8}$:	\rightarrow	e	+	C_2H_4	+	CH_4		(13-14)
C ₃ H ₇											
Dissociative Ionization	e	+ C ₃ H ₇		\rightarrow	2e ⁻	+	$C_2H_5^+$	+	CH ₂		(13-14)
	e	+ C ₃ H ₇	,	\rightarrow	2e ⁻	+	$C_{2}H_{4}^{+}$	+	CH ₃		(13-14)
	e	$+ C_3H_7$,	\rightarrow	2e ⁻	+	$C_2 H_3^{+}$	+	CH_4		(13-14)
	e	+ C ₃ H ₇	,	\rightarrow	2e ⁻	+	$\mathrm{CH_3}^+$	+	C_2H_4		(13-14)
Dissociation	e	+ C ₃ H ₇	,	\rightarrow	e	+	C_3H_6	+	Н		(13-14)
	e	+ C ₃ H ₂	,	\rightarrow	e	+	C_2H_4	+	CH ₃		(13-14)
	e	+ C ₃ H ₇	,	\rightarrow	e	+	C_2H_3	+	CH_4		(13-14)
	e	+ C ₃ H ₇	,	\rightarrow	e	+	C_3H_5	+	H_2		(13-14)
C ₃ H ₆											
Dissociative Ionization	e	+ C_3H_6	i	\rightarrow	2e ⁻	+	$C_{2}H_{5}^{+}$	+	СН		(13-14)
	e	$+ C_3H_6$	i	\rightarrow	2e ⁻	+	$C_{2}H_{4}^{+}$	+	CH ₂		(13-14)
	e	$+ C_3H_6$	i	\rightarrow	2e ⁻	+	$C_{2}H_{3}^{+}$	+	CH ₃		(13-14)

	e	$+ C_{3}H_{6}$	\rightarrow	2e ⁻	+	$C_2 H_2^{+}$	$+ \ CH_4$		(13-14)
	e	$+ C_{3}H_{6}$	\rightarrow	2e ⁻	+	$\mathrm{CH_3}^+$	$+ C_2 H_3$		(13-14)
Dissociation	e	$+ C_{3}H_{6}$	\rightarrow	e	+	C_3H_5	+ H		(13-14)
	e	$+ C_{3}H_{6}$	\rightarrow	e	+	C_2H_2	$+ CH_4$		(13-14)
C ₃ H ₅									
Dissociative Ionization	e	$+ C_{3}H_{5}$	\rightarrow	2e ⁻	+	$C_2H_3^+$	+ CH ₂		(13-14)
	e	$+ C_{3}H_{5}$	\rightarrow	2e ⁻	+	$C_2 {H_2}^+$	+ CH ₃		(13-14)
	e	$+ C_{3}H_{5}$	\rightarrow	2e ⁻	+	$\mathrm{CH_3}^+$	$+ C_2H_2$		(13-14)
Dissociation	e	$+ C_{3}H_{5}$	\rightarrow	e	+	C_2H_2	+ CH ₃		(13-14)
H_2									
Momentum Transfer	e	+ H ₂	\rightarrow	e	+	H ₂			(16)
Rotational Excitation	e	+ H ₂	\rightarrow	e	+	H ₂ (r)		(2)	(16)
Vibrational Excitation	e	+ H ₂	\leftrightarrow	e	+	H ₂ (v)		(3)	(16)
Electronic Excitation	e	+ H ₂	\rightarrow	e	+	H ₂ (e)		(10)	(16)
Ionization	e	$+$ H_2	\rightarrow	2e ⁻	+	${\rm H_2}^+$			(16)
Dissociation	e	$+$ H_2	\rightarrow	e	+	2H			(16)
H ₂ (v,e)									
Momentum Transfer	e	+ H ₂ (v,e)	\rightarrow	e	+	H ₂ (v,e)			(16)
Ionization	e	+ H ₂ (v,e)	\rightarrow	2e ⁻	+	${\rm H_2}^+$			(16)
Dissociation	e	+ H ₂ (v,e)	\rightarrow	e	+	2H			(16)
Н									

Momentum Transfer	e	+ H		\rightarrow	e	+	Н			(17)
Electronic excitation	e	+ H		\leftrightarrow	e	+	H(e)			(17)
Ionization	e	+ H		\rightarrow	2e ⁻	+	$\mathrm{H}^{\scriptscriptstyle +}$			(17)
H(e)										
Momentum Transfer	e	+ H(e)		\rightarrow	e	+	H(e)			(17)
Ionization	e	+ H(e)		\rightarrow	2e ⁻	+	H^{+}			(17)
O ₂										
Momentum Transfer	e	+ O ₂		\rightarrow	e	+	O ₂			(18)
Vibrational Excitation	e	+ O ₂		\rightarrow	e	+	O ₂ (v)		(4)	(18)
Electronic Excitation	e	+ O ₂		\rightarrow	e	+	O ₂ (a1)			(18)
	e	$+ O_2$		\rightarrow	e	+	O ₂ (b1)			(18)
Ionization	e	$+ O_2$		\rightarrow	2e ⁻	+	${O_2}^+$			(18)
Dissociative Ionization	e	+ O ₂		\rightarrow	2e ⁻	+	O^+	+ O		(19)
Attachment	e	+ O_2 +	М	\rightarrow	O_2^-	+	М			(18)
Dissociative Attachment	e	+ O ₂		\rightarrow	0-	+	0			(18)
Ion-pair formation	e	+ O ₂		\rightarrow	e	+	O ⁺	+ O [*]	Energy dependent rate coefficient	(20)
Dissociation	e	+ O ₂		\rightarrow	e	+	20		(2)	(18)

O ₂ (a1)										
Momentum Transfer	e	+ O ₂ (a1)		\rightarrow	e	+	O ₂ (a1)			(18)
Electronic Excitation	e	+ O ₂ (a1)		\rightarrow	e	+	O ₂ (b1)			(18)
Ionization	e	+ O ₂ (a1)		\rightarrow	2e ⁻	+	O_2^+			(18)
Dissociative Ionization	e	+ O ₂ (a1)		\rightarrow	2e ⁻	+	\mathbf{O}^+	+ 0		(19)
Attachment	e	+ $O_2(a1)$ +	М	\rightarrow	O_2^-	+	М			(18)
Dissociative Attachment	e	+ O ₂ (a1)		\rightarrow	0-	+	0			(18)
Ion-pair formation	e	+ O ₂ (a1)		\rightarrow	e	+	O^+	+ O ⁻	Energy dependent rate coefficient	(20)
Dissociation	e	+ O ₂ (a1)		\rightarrow	e	+	20		(2)	(18)
O ₂ (b1)										
Momentum Transfer	e	+ O ₂ (b1)		\rightarrow	e	+	O ₂ (b1)			(18)
Electronic Excitation	e	+ O ₂ (b1)		\rightarrow	e	+	O ₂ (a1)			(18)
Ionization	e	+ $O_2(b1)$		\rightarrow	2e ⁻	+	O_2^+			(18)
Dissociative Ionization	e	+ O ₂ (b1)		\rightarrow	2e ⁻	+	\mathbf{O}^+	+ O		(19)
Attachment	e	+ $O_2(b1)$ +	М	\rightarrow	O_2^-	+	М			(18)
Dissociative Attachment	e	+ O ₂ (b1)		\rightarrow	0-	+	0			(18)
Ion-pair	e	+ O ₂ (b1)		\rightarrow	e	+	\mathbf{O}^+	+ O ⁻	Energy	(20)

formation							dependent rate coefficient	
Dissociation	e	+ O ₂ (b1)	\rightarrow	e	+	20	(2)	(18)
0								
Momentum Transfer	e	+ 0	\rightarrow	e	+	0		(21)
Electronic Excitation	e	+ 0	\leftrightarrow	e	+	O(1D)		(21)
	e	+ 0	\leftrightarrow	e	+	O(1S)		(21)
Ionization	e	+ O	\rightarrow	2e ⁻	+	\mathbf{O}^+		(21)
Attachment	e	+ O + M	\rightarrow	0-	+	М	$1.00 \text{ x } 10^{-31} \text{ cm}^6 \text{ s}^{-1}$	(19)
O(1D)								
Momentum Transfer	e	+ O(1D)	\rightarrow	e	+	O(1D)		(21)
Electronic Excitation	e	+ O(1D)	\leftrightarrow	e	+	O(1S)		(21)
Ionization	e	+ O(1D)	\rightarrow	2e ⁻	+	O^+		(21)
Attachment	e	+ O(1D) + M	\rightarrow	0-	+	М	$1.00 \text{ x } 10^{-31} \text{ cm}^6 \text{ s}^{-1}$	(19)
03								
Momentum Transfer	e	+ O ₃	\rightarrow	e	+	O ₃		(21)
Dissociative Ionization	e	+ O ₃	\rightarrow	2e ⁻	+	O_2^+ + O		(19)
Attachment	e	$+ O_3 + O_2$	\rightarrow	O_3^-	+	O ₂	Energy dependent	(22)

rate coefficient Dissociative 0 (23) e + O₃ \rightarrow $+ O_2$ Attachment O_2^- (23) + O₃ 0 e +Ion-pair 0 $+ O^+$ + O (19) $+ O_{3}$ e e + \rightarrow formation Energy dependent Dissociation e $+ O_{3}$ e + O_2 + 0 (19) \rightarrow rate coefficient CO_2 Momentum e $+ CO_2$ e + CO_2 (24-25) \rightarrow Transfer Vibrational $+ CO_2$ $CO_2(v)$ (3) (24-25) e e + \rightarrow Excitation Electronic $+ CO_2$ e + $CO_2(e1)$ (24-25) e \leftrightarrow Excitation $+ CO_2$ e CO₂(e2) (24-25) e + \leftrightarrow Ionization + $CO_2(g, e)$ CO_2^+ e 2e⁻ + (24-25) \rightarrow Dissociative + $CO_2(g, e)$ 0 CO (24-25)e + \rightarrow Attachment Dissociation + $CO_2(g, e)$ CO + 0 (26) e e + \rightarrow Dissociative e + $CO_2(g, e)$ e + 0 $+ CO^+$ (27) \rightarrow Ionization CO $+ 0^{+}$ e + $CO_2(g, e)$ e +(27) \rightarrow $+ C^+$ (27) + $CO_2(g, e)$ O_2 e \rightarrow e +СО

Momentum Transfer	e	+	СО	\rightarrow	e	+	СО			(28)
Vibrational Excitation	e	+	СО	\rightarrow	e	+	CO(v)		(1)	(28)
Electronic Excitation	e	+	СО	\rightarrow	e	+	CO(e)		(5)	(28)
Ionization	e	+	СО	\rightarrow	2e ⁻	+	CO^+			(28)
Dissociative Ionization	e	+	СО	\rightarrow	e	+	0	+ C ⁺		(28-29)
	e	+	СО	\rightarrow	e	+	С	+ O ⁺		(28-29)
Dissociative Attachment	e	+	СО	\rightarrow	0-	+	С			(28)
Dissociation	e	+	СО	\rightarrow	e	+	С	+ O		(28)
H ₂ O										
Momentum Transfer	e	+	H ₂ O	\rightarrow	e	+	H ₂ O			(30)
Vibrational Excitation	e	+	H ₂ O	\rightarrow	e	+	H ₂ O (v)		(2)	(30)
Dissociative Attachment	e	+	H ₂ O	\rightarrow	O ⁻	+	H_2			(30)
	e	+	H ₂ O	\rightarrow	OH-	+	Н			(30)
Dissociation	e	+	H ₂ O	\rightarrow	e	+	OH	+ H		(30)
	e	+	H ₂ O	\rightarrow	e	+	0	+ H ₂		(30)
	e	+	H ₂ O	\rightarrow	e	+	0	+ 2H		(30)
Ionization	e	+	H ₂ O	\rightarrow	2e ⁻	+	H_2O^+			(30)
ОН										
Momentum Transfer	e	+	ОН	\rightarrow	e	+	ОН			(31)

Ionization	e	+ OH	\rightarrow	2e ⁻	+	OH^+	Energy dependent rate coefficient	(32)
Dissociation	e	+ OH	\rightarrow	e	+	O + H	Energy dependent rate coefficient	(32)
OH.								
Momentum Transfer	e	+ OH ⁻	\rightarrow	e	+	OH-		(33)
Ionization	e	+ OH ⁻	\rightarrow	2e ⁻	+	ОН		(33)
Dissociative Ionization	e	+ OH ⁻	\rightarrow	2e ⁻	+	O + H	1.95×10^{-8} cm ³ s ⁻¹	(32)
N								
\mathbb{N}_2								
N ₂ Momentum Transfer	e	+ N ₂	\rightarrow	e	+	N ₂		(34)
N ₂ Momentum Transfer Rotational Excitation	e ⁻	+ N ₂ + N ₂	\rightarrow	e ⁻	++	N ₂ N ₂ (r)	(1)	(34) (34)
N ₂ Momentum Transfer Rotational Excitation Vibrational Excitation	e e e	+ N_2 + N_2 + N_2	\rightarrow \rightarrow \leftrightarrow	e e e	+ + +	N ₂ N ₂ (r) N ₂ (v)	(1) (8)	(34) (34) (34)
N ₂ Momentum Transfer Rotational Excitation Vibrational Excitation Electronic Excitation	e e e e	+ N_2 + N_2 + N_2 + N_2	\rightarrow \rightarrow \leftrightarrow	e e e e	+ + + +	N_2 $N_2(r)$ $N_2(v)$ $N_2(a'\Sigma_u^-)$	(1) (8)	(34) (34) (34) (34)
N ₂ Momentum Transfer Rotational Excitation Vibrational Excitation Electronic Excitation	e e e e	+ N_2 + N_2 + N_2 + N_2 + N_2	\rightarrow \rightarrow \leftrightarrow \leftrightarrow	e e e e	+ + + + +	N ₂ N ₂ (r) N ₂ (v) N ₂ (a'Σ _u ⁻) N ₂ (A ³ Σ _u ⁺)	(1) (8)	 (34) (34) (34) (34) (34)
N ₂ Momentum Transfer Rotational Excitation Vibrational Excitation Electronic Excitation	e e e e e	+ N_2 + N_2 + N_2 + N_2 + N_2 + N_2	\rightarrow \rightarrow \leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow	e e e e e	+ + + +	N_{2} $N_{2}(r)$ $N_{2}(v)$ $N_{2}(a'Σ_{u}^{-})$ $N_{2}(A^{3}Σ_{u}^{+})$ $N_{2}(B^{3}Π_{g})$	(1) (8)	 (34) (34) (34) (34) (34) (34)
N ₂ Momentum Transfer Rotational Excitation Vibrational Excitation Electronic Excitation	e e e e e e	+ N_2 + N_2 + N_2 + N_2 + N_2 + N_2 + N_2 + N_2	\rightarrow \rightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow	e ⁻ e ⁻ e ⁻ e ⁻ e ⁻	+ + + + + +	N_{2} $N_{2}(r)$ $N_{2}(v)$ $N_{2}(a'Σ_{u}^{-})$ $N_{2}(A^{3}Σ_{u}^{+})$ $N_{2}(B^{3}Π_{g})$ $N_{2}(C^{3}Π_{u})$	(1) (8)	 (34) (34) (34) (34) (34) (34) (34) (34)

Dissociative Ionization	e	4	⊢ N ₂	\rightarrow	e	+	Ν	$+ N^+$		(34)
N ₂ (v)										
Momentum Transfer	e	+	+ N ₂ (v)	\rightarrow	e	+	N ₂ (v)			(34)
Rotational Excitation	e	4	+ N ₂ (v)	\rightarrow	e	+	N ₂ (r)		(1)	(34)
Electronic Excitation	e	4	⊢ N ₂ (v)	\rightarrow	e	+	$N_2(a'\Sigma_u^-)$)		(34)
	e	4	+ N ₂ (v)	\rightarrow	e	+	$N_2(A^3\Sigma_u^+)$)		(34)
	e	+	+ N ₂ (v)	\rightarrow	e	+	$N_2(B^3\Pi_g)$)		(34)
	e	+	+ N ₂ (v)	\rightarrow	e	+	$N_2(C^3\Pi_u)$)		(34)
Ionization	e	+	+ N ₂ (v)	\rightarrow	2e ⁻	+	N_2^+			(34)
Dissociative Ionization	e	4	+ N ₂ (v)	\rightarrow	e	+	N	$+ N^+$		(34)
Dissociation	e-	+	$+ N_2(v)$	\rightarrow	e-	+	Ν	+ N		(34)
$N_2(e) (N_2(a'\Sigma$	<u>,</u>), N ₂	2(C	$^{3}\Pi_{\mathrm{u}}), \mathrm{N}_{2}(\mathrm{A}^{3}\Sigma_{\mathrm{u}}^{+})$), $N_2(B^3$	³ П _g))					
Momentum Transfer	e-	+	+ N ₂ (e)	\rightarrow	e-	+	N ₂ (e)			(34)
Rotational Excitation	e-	4	+ N ₂ (e)	\rightarrow	e-	+	N ₂ (r)		(1)	(34)
Ionization	e-	-	+ N ₂ (e)	\rightarrow	2e-	+	N_2^+			(34)
Dissociative Ionization	e-	4	+ N ₂ (e)	\rightarrow	e-	+	N	+ N^+		(34)
Dissociation	e-	-	+ N ₂ (e)	\leftrightarrow	e-	+	Ν	+ N		(34)
Ν										

Momentum Transfer	e-	+	N	\rightarrow	e-	+	Ν			(35)
Electronic Excitation	e-	+	Ν	\leftrightarrow	e-	+	N(2D)			(36)
	e-	+	Ν	\leftrightarrow	e-	+	N(2S)			(36)
Ionization	e-	+	Ν	\rightarrow	2e-	+	\mathbf{N}^+			(37)
N(2D)										
Momentum Transfer	e-	+	N(² D)	\rightarrow	e-	+	N(2D)			(35)
Electronic Excitation	e-	+	N(2D)	\leftrightarrow	e-	+	N(2S)			(36)
Ionization	e-	+	N(2D)	\rightarrow	2e-	+	H+			(37)
NH										
Momentum Transfer	e-	+	NH	\rightarrow	e-	+	NH			(38)
Dissociation	e-	+	NH	\rightarrow	e-	+	Ν	+ H		(38)
Dissociative Ionization	e-	+	NH	\rightarrow	2e-	+	\mathbf{N}^+	+ H		(39)
NO										
Momentum Transfer	e	+	NO	\rightarrow	e	+	NO			(21)
Vibrational Excitation	e	+	NO	\rightarrow	e	+	NO(v)		(6)	(21)
Electronic Excitation	e-	+	NO	\rightarrow	e-	+	NO(e)		(3)	(21)
Ionization	e-	+	NO	\rightarrow	2e-	+	\mathbf{NO}^+			(40)
Dissociative Ionization	e-	+	NO	\rightarrow	2e-	+	\mathbf{N}^+	+ O		(40)

	e-	+	NO	\rightarrow	2e-	+	\mathbf{O}^+	+	Ν		(40)
Dissociation	e-	+	NO	\rightarrow	e-	+	Ν	+	0		(41)
Dissociative Attachment	e	+	NO	\rightarrow	0-	+	Ν				(42)
NO ₂											
Momentum Transfer	e-	+	NO ₂	\rightarrow	e-	+	NO ₂				(43)
Ionization	e-	+	NO ₂	\rightarrow	2e-	+	$\mathrm{NO_2}^+$				(44)
Dissociative Ionization	e-	+	NO ₂	\rightarrow	2e-	+	\mathbf{NO}^+	+	0		(44)
Dissociation	e-	+	NO ₂	\rightarrow	e-	+	NO	+	0		(45)
N ₂ O											
Momentum Transfer	e-	+	N ₂ O	\rightarrow	e-	+	N ₂ O				(46)
Vibrational Excitation	e	+	N ₂ O	\rightarrow	e	+	N ₂ O(v)			(3)	(46)
Electronic Excitation	e-	+	N ₂ O	\rightarrow	e-	+	N ₂ O (e)			(3)	(46)
Dissociative Attachment	e	+	N ₂ O	\rightarrow	N_2	+	O ⁻				(46)
Dissociative Ionization	e	+	N ₂ O	\rightarrow	2e-	+	\mathbf{NO}^+	+	Ν		(47)
	e-	+	N ₂ O	\rightarrow	2e-	+	\mathbf{O}^+	+	N_2		(47)
	e-	+	N ₂ O	\rightarrow	2e-	+	N_2^+	+	0		(47)
	e-	+	N ₂ O	\rightarrow	2e-	+	\mathbf{N}^+	+	NO		(47)

Dissociation	e-	+ N ₂ O	\rightarrow	e-	+	N ₂	+ ()	Energy dependent rate coefficient	(45)
	e-	+ N ₂ O	\rightarrow	e-	+	NO	+ 1	1	Energy dependent rate coefficient	(45)
	e-	+ N ₂ O	\rightarrow	e-	+	N_2	+ 0 + 1	D(1 D)	Energy dependent rate coefficient	(45)
H.										
Momentum Transfer	e	+ H ⁻	\rightarrow	e	+	H				(45)
Ionization	e	+ H ⁻	\rightarrow	2e ⁻	+	Н				(48)
${\rm H_2}^+$										
Momentum Transfer	e-	$+ H_2^+$	\rightarrow	e-	+	${\rm H_2}^+$				(45)
Dissociation	e-	$+ H_2^+$	\rightarrow	e-	+	$\mathrm{H}^{\scriptscriptstyle +}$	+ F	ł		(49)
Dissociative Attachment	e	$+ H_2^+$	\rightarrow	$\mathrm{H}^{\scriptscriptstyle +}$	+	H.				(50)
$\mathrm{H_{3}^{+}}$										
Momentum Transfer	e-	$+ H_3^+$	\rightarrow	e-	+	H_3^+				(45)
Dissociation	e-	$+ H_3^+$	\rightarrow	e-	+	H^{+}	+ F	\mathbf{I}_2		(49)
	e-	$+ {\rm H_3}^+$	\rightarrow	e-	+	H^{+}	+ 2	Н		(50)

Table S2. Electron-ion recombination reactions included in the model and the references where these data were adopted from. Some reactions are treated by energy-dependent cross sections, for others the rate coefficients are given by expressions, where T_e is the electron temperature in K and T_g is the gas temperature in K. Note a means "estimated value". The rate constants are in cm³ s⁻¹ or cm⁶ s⁻¹ for binary or ternary reactions, respectively.

e	+	CH ₅ ⁺	\rightarrow	CH ₃	+	2H			$2.57 \times 10^{-7} (T_e/300)^{-0.30}$	(11,51)
e	+	CH_{5}^{+}	\rightarrow	CH_2	+	H_2	+	Н	$6.61 \times 10^{-8} (T_e/300)^{-0.30}$	(11,51)
e	+	$\mathrm{CH_4}^+$	\rightarrow	CH ₃	+	Н			$1.18 \times 10^{-8} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_4}^+$	\rightarrow	CH_2	+	2H			$2.42 \times 10^{-8} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_4}^+$	\rightarrow	СН	+	H_2	+	Н	$1.41 \times 10^{-8} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_3}^+$	\rightarrow	CH_2	+	Н			$2.25 \times 10^{-8} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_3}^+$	\rightarrow	СН	+	H_2			$7.88 \times 10^{-9} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_3}^+$	\rightarrow	СН	+	2H			$9.00 \times 10^{-9} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_3}^+$	\rightarrow	С	+	H_2	+	Н	$1.69 \times 10^{-8} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_2}^+$	\rightarrow	СН	+	Н			$1.00 \times 10^{-8} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_2}^+$	\rightarrow	С	+	H_2			$4.82 \times 10^{-9} (T_e/300)^{-0.50}$	(11,51)
e	+	$\mathrm{CH_2}^+$	\rightarrow	С	+	2H			$2.53 \times 10^{-8} (T_e/300)^{-0.50}$	(11,51)
e	+	CH^+	\rightarrow	С	+	Н			$3.23 \times 10^{-8} (T_e/300)^{-0.42}$	(11,51)
e	+	$C_2 H_6^{+}$	\rightarrow	C_2H_5	+	Н			$2.19 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_2 H_6^{+}$	\rightarrow	C_2H_4	+	2H			$3.36 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_{2}H_{5}^{+}$	\rightarrow	C_2H_4	+	Н			$7.70 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_{2}H_{5}^{+}$	\rightarrow	C_2H_3	+	2H			$1.92 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_{2}H_{5}^{+}$	\rightarrow	C_2H_2	+	H_2	+	Н	$1.60 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_{2}H_{5}^{+}$	\rightarrow	C_2H_2	+	3Н			$8.98 \times 10^{-9} (T_g/300)^{-0.71}$	(14)
e	+	$C_2H_5^+$	\rightarrow	CH ₃	+	CH ₂			$9.62 \times 10^{-9} (T_e/300)^{-0.71}$	(14)
e	+	$C_2H_4^+$	\rightarrow	C_2H_3	+	Н			$8.29 \times 10^{-9} (T_e/300)^{-0.71}$	(14)

e	+	$C_2 H_4^{+}$			\rightarrow	C_2H_2	+	2H			$3.43 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_2 H_4^{+}$			\rightarrow	C_2H	+	H_2	+	Н	$5.53 \times 10^{-9} (T_e/300)^{-0.71}$	(14)
e	+	$C_2 H_3^{+}$			\rightarrow	C_2H_2	+	Н			$1.34 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_2 H_3^{+}$			\rightarrow	C_2H	+	2H			$2.74 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_2 H_2^+$			\rightarrow	C_2H	+	Н			$1.87 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_2 H_2^{+}$			\rightarrow	C_2	+	2H			$1.12 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_2 H_2^{+}$			\rightarrow	2CH					$4.87 \times 10^{-9} (T_e/300)^{-0.71}$	(14)
e	+	C_2H^+			\rightarrow	C_2	+	Н			$1.34 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	C_2H^+			\rightarrow	СН	+	С			$1.09 \times 10^{-8} (T_e/300)^{-0.71}$	(14)
e	+	$C_2 H^+$			\rightarrow	Н	+	2C			$4.29 \times 10^{-9} (T_e/300)^{-0.71}$	(14)
e	+	${\rm H_3}^+$			\rightarrow	3H					f(\sigma)	(50)
e	+	$\mathrm{H_3}^+$			\rightarrow	H_2	+	Н			f(\sigma)	(50)
e	+	H^{+}			\rightarrow	Н					f(σ)	(45)
2e ⁻	+	H^{+}			\rightarrow	e	+	Н			$8.80 \times 10^{-27} (T_e/11604.5)^{-4.50}$	(52)
e	+	${\rm H_2}^+$			\rightarrow	2H					$f(\sigma)$	(49)
e	+	\mathbf{O}^+	+	М	\rightarrow	0	+	Μ			$6.00 \times 10^{-27} (T_e/300)^{-1.50}$	(22)
e	+	\mathbf{N}^+	+	М	\rightarrow	Ν	+	Μ			$6.00 \times 10^{-27} (T_e/300)^{-1.50}$	(22)
e	+	O_2^+	+	Μ	\rightarrow	O_2	+	М			$6.00 \times 10^{-27} (T_e/300)^{-1.50}$	(22)
e	+	\mathbf{NO}^+	+	М	\rightarrow	NO	+	Μ			$6.00 \times 10^{-27} (T_e/300)^{-1.50}$	(22)
e	+	N_2^+	+	М	\rightarrow	N_2	+	Μ			$6.00 \times 10^{-27} (T_e/300)^{-1.50}$	(22)
e	+	\mathbf{O}^+	+	e	\rightarrow	0	+	e			$7.20 \times 10^{-20} (T_e/300)^{-4.50}$	(53)
e	+	\mathbf{N}^+	+	e	\rightarrow	Ν	+	e			$7.20 \times 10^{-20} (T_e/300)^{-4.50}$	(53)
e	+	O_2^+	+	e	\rightarrow	O_2	+	e			$1.00 \times 10^{-19} (T_e/300)^{-4.50}$	(22)
e	+	\mathbf{NO}^+	+	e	\rightarrow	NO	+	e			$1.00 \times 10^{-19} (T_e/300)^{-4.50}$	(22)
e	+	N_2^+	+	e	\rightarrow	N_2	+	e			$1.00 \times 10^{-19} (T_e/300)^{-4.50}$	(22)

e	+	$\mathbf{O_2}^+$	\rightarrow	0	+	0	$1.49 \times 10^{-7} (T_e/300)^{-0.70}$	(53)
e	+	O_2^+	\rightarrow	0	+	O(1D)	$1.08 \times 10^{-7} (T_e/300)^{-0.70}$	(53)
e	+	O_2^+	\rightarrow	0	+	O(1S)	$0.14 \times 10^{-7} (T_e/300)^{-0.70}$	(53)
e	+	N_2^+	\rightarrow	Ν	+	Ν	$0.90 \times 10^{-7} (T_e/300)^{-0.39}$	(53)
e	+	N_2^+	\rightarrow	Ν	+	N(2D)	$0.81 \times 10^{-7} (T_e/300)^{-0.39}$	(53)
e	+	N_2^+	\rightarrow	Ν	+	N(2P)	$0.09 \times 10^{-7} (T_e/300)^{-0.39}$	(53)
e	+	O_4^{+}	\rightarrow	O_2	+	O ₂	$1.40 \times 10^{-6} (T_e/300)^{-0.70}$	(22)
e	+	\mathbf{NO}^+	\rightarrow	0	+	Ν	$0.84 \times 10^{-7} (T_e/300)^{-0.85}$	(53)
e	+	NO^+	\rightarrow	0	+	N(2D)	$3.36 \times 10^{-7} (T_e/300)^{-0.85}$	(53)
e	+	N_2O^+	\rightarrow	0	+	N_2	$2.70 \times 10^{-7} (T_e/300)^{-0.50}$	(53)
e	+	NO_2^+	\rightarrow	0	+	NO	$2.70 \times 10^{-7} (T_e/300)^{-0.50}$	(53)
e	+	$O_2^+ N_2$	\rightarrow	O_2	+	N_2	$1.30 \times 10^{-6} (T_e/300)^{-0.50}$	(53)
e	+	N_3^+	\rightarrow	Ν	+	N_2	$2.00 \times 10^{-7} (T_e/300)^{-0.50}$	(53)
e	+	N_4^+	\rightarrow	N_2	+	N ₂	$2.00 \times 10^{-6} (T_e/300)^{-0.53}$	(53)
e	+	N_4^+	\rightarrow	N_2	+	2N	$1.40 \times 10^{-6} (T_e/300)^{-0.41}$	(54)
e	+	N_3^+	\rightarrow	Ν	+	$N_2(A^3\Sigma_u^+)$	$4.30 \times 10^{-7} (T_e/300)^{-0.50}$	(45)
e	+	N_3^+	\rightarrow	Ν	+	$N_2(B^3\Pi_g)$	$4.30 \times 10^{-7} (T_e/300)^{-0.50}$	(45)
e	+	CO_2^+	\rightarrow	CO	+	0	$2.15 \times 10^{-3} T_e^{-0.50} / T_g$	(55)
e	+	CO_2^+	\rightarrow	С	+	O ₂	$1.66 \times 10^{-5} T_e^{-0.40}$	(56)
e	+	$C_2O_2^{+}$	\rightarrow	CO	+	СО	$9.64 \times 10^{-6} T_e^{-0.34}$	(57)
e	+	$\mathrm{CO_4}^+$	\rightarrow	CO_2	+	O ₂	$4.31 \times 10^{-5} T_e^{-0.50}$	(56)
e	+	CO^+	\rightarrow	С	+	0	$6.33 \times 10^{-6} T_e^{-0.55}$	(58)
e	+	$C_2O_3^{+}$	\rightarrow	CO_2	+	СО	$3.78 \times 10^{-5} T_e^{-0.70}$	(57)
e	+	$C_2O_4^+$	\rightarrow	CO_2	+	CO ₂	$2.15 \times 10^{-3} T_e^{-0.50} / T_g$	(57)
e	+	C_2^{+}	\rightarrow	С	+	С	$1.93 \times 10^{-6} T_e^{-0.50}$	(57)

e	+	H_3O^+	\rightarrow	H_2O	+	Н			$2.50 \times 10^{-8} (T_e/11604.5)^{-0.70}$	(31)
e	+	H_3O^+	\rightarrow	OH	+	H_2			$1.40 \times 10^{-8} (T_e/11604.5)^{-0.70}$	(31)
e	+	H_3O^+	\rightarrow	OH	+	2H			$6.00 \times 10^{-8} (T_e/11604.5)^{-0.70}$	(31)
e	+	H_3O^+	\rightarrow	0	+	Н	+	H_2	$1.30 \times 10^{-9} (T_e/11604.5)^{-0.70}$	(31)
e	+	H_2O^+	\rightarrow	OH	+	Н			$1.49 \times 10^{-6} T_e^{-0.50}$	(59)
e	+	H_2O^+	\rightarrow	0	+	H_2			$4.75 \times 10^{-7} T_e^{-0.50}$	(59)
e	+	H_2O^+	\rightarrow	0	+	2H			$5.28 \times 10^{-6} T_e^{-0.50}$	(59)
e	+	OH^+	\rightarrow	0	+	Н			$6.50 \times 10^{-7} T_e^{-0.50}$	(52)

Table S3. Neutral-neutral reactions included in the model, as well as the corresponding rate coefficients and the references where these data were adopted from. The units of the rate constants are s⁻¹, cm³s⁻¹ and cm⁶s⁻¹ for one, two and three body reactions, respectively. Gas constant $R = 8.314 \times 10^{-3}$ kJ mole⁻¹ K⁻¹. The rate constants are in cm³ s⁻¹ or cm⁶ s⁻¹ for binary or ternary reactions, respectively.

$CH_4 + CH_2$	\rightarrow	$CH_3 + CH_3$	3.01×10^{-19}	(60)
$CH_4 + CH$	\rightarrow	$C_2H_4 + H$	9.97×10^{-11}	(61)
$CH_4+C_2H_5\\$	\rightarrow	$C_2H_6 + CH_3$	$2.51 \times 10^{-15} (T_g/298)^{4.14} \exp(-52.55/(RT_g))$	(60)
$CH_4+C_2H_3$	\rightarrow	$C_2H_4 + CH_3$	$2.13 \times 10^{-14} (T_g/298)^{4.02} \exp(-22.86/(RT_g))$	(60)
$C_2H_4 + CH_3$	\rightarrow	$CH_4 + C_2H_3$	$6.91 \times 10^{-12} \exp(-6.56/(RT_g))$	(61)
$CH_4 + C_2H$	\rightarrow	$C_2H_2 + CH_3$	$4.54 \times 10^{-12} (T_g/298)^{1.58} \exp(-1.73/(RT_g))$	(62)
$C_2H_2 + CH_3$	\rightarrow	$CH_4 + C_2H$	$3.01 \times 10^{-13} \exp(-72.34/(RT_g))$	(60)
$CH_4+C_3H_7$	\rightarrow	$C_3H_8 + CH_3$	$3.54 \times 10^{-16} (T_g/298)^{4.02} \exp(-45.48/(RT_g))$	(63)
$C_3H_8 + CH_3$	\rightarrow	$CH_4 + C_3H_7$	1.61 × $10^{-15} (T_g/298)^{3.65} \exp(-29.93/(RT_g))$	(63)
$CH_4+C_3H_5$	\rightarrow	$C_3H_6 + CH_3$	$1.71 \times 10^{-14} (T_g/298)^{3.40} \exp(-97.28/(RT_g))$	(64)
$C_3H_6 + CH_3$	\rightarrow	$CH_4 + C_3H_5$	1.68 × $10^{-15} (T_g/298)^{3.50} \exp(-23.78/(RT_g))$	(64)
$CH_4 + H$	\rightarrow	$CH_3 + H_2$	$2.94 \times 10^{-10} \exp(-57.65/(RT_g))$	(61)
$CH_3 + H_2$	\rightarrow	$CH_4 + H$	6.86 × $10^{-14} (T_g/298)^{2.74} \exp(-39.41/(RT_g))$	(61)
$CH_3 + CH_3$	\rightarrow	C_2H_5+H	1.46 × $10^{-11} (T_g/298)^{0.10} \exp(-44.40/(RT_g))$	(65)
$C_2H_5 + H$	\rightarrow	$CH_3 + CH_3$	5.99×10^{-11}	(61)
$CH_3 + CH_3 + M$	\rightarrow	C_2H_6+M	$2.39 \times 10^{-30} \exp(29.52/(RT_g))$	(66)
$CH_3 + CH_2$	\rightarrow	$C_2H_4 + H$	7.01×10^{-11}	(61)
$CH_3 + C_2H_6$	\rightarrow	$C_2H_5+CH_4$	$1.74 \times 10^{-16} (T_g/298)^{6.00} \exp(-25.28/(RT_g))$	(61)
$CH_3 + C_2H_5$	\rightarrow	$C_2H_4+CH_4\\$	$3.30 \times 10^{-11} (T_{gas})^{0.50}$	(61)

$CH_3+C_2H_5+M$	\rightarrow	$C_3H_8 + M$	5.0×10^{-29}	a
$CH_3 + C_2H_4$	\rightarrow	$C_2H_3+CH_4$	1.94×10^{-21}	(60)
$CH_3 + C_2H_3$	\rightarrow	$C_2H_2+CH_4\\$	6.51×10^{-13}	(60)
$CH_3+C_3H_7\\$	\rightarrow	$C_3H_6 + CH_4$	$3.07 \times 10^{-12} (T_g/298)^{-0.32}$	(63)
$CH_3 + H$	\rightarrow	$CH_2 + H_2$	$1.00 \times 10^{-10} \exp(-63.19/(RT_g))$	(61)
$CH_2 + H_2$	\rightarrow	$CH_3 + H$	5.00×10^{-15}	(60)
$CH_3 + H + M$	\rightarrow	$CH_4 + M$	$3.01 \times 10^{-28} (T_g/298)^{-1.80}$	(61)
$CH_2 + CH_2$	\rightarrow	C_2H_2+2H	$3.32 \times 10^{-10} \exp(-45.98/(RT_g))$	(61)
$CH_2 + C_2H_5$	\rightarrow	$C_2H_4 + CH_3$	3.01×10^{-11}	(60)
$CH_2 + C_2H_3$	\rightarrow	$C_2H_2 + CH_3$	3.01×10^{-11}	(60)
$CH_2 + C_2H$	\rightarrow	$C_2H_2 + CH$	3.01×10^{-11}	(60)
$CH_2+C_3H_8$	\rightarrow	$C_3H_7 + CH_3$	$1.61 \times 10^{-15} (T_g/298)^{3.65} \exp(-29.93/(RT_g))$	(63)
$CH_2+C_3H_7$	\rightarrow	$C_{2}H_{4} + C_{2}H_{5}$	3.01×10^{-11}	(63)
$CH_2 + C_3H_7$	\rightarrow	$C_3H_6 + CH_3$	3.01×10^{-12}	(63)
$CH_2+C_3H_6$	\rightarrow	$C_3H_5 + CH_3$	$1.20 \times 10^{-12} \exp(-25.94/(RT_g))$	(64)
$CH_2 + H$	\rightarrow	$CH + H_2$	$1.00 \times 10^{-11} \exp(7.48/(RT_g))$	(61)
$CH + H_2$	\rightarrow	$CH_2 + H$	1.48 × $10^{-11} (T_g/298)^{1.79} \exp(-6.98/(RT_g))$	(61)
$CH + C_2H_6 + M$	\rightarrow	$C_3H_7 + M$	1.14×10^{-29}	(61)
CH + H	\rightarrow	$C + H_2$	$1.31 \times 10^{-10} \exp(-6.70/(RT_g))$	(67)
$C + H_2$	\rightarrow	CH + H	1.50×10^{-10}	(68)
$C_2H_6 + C_2H_3$	\rightarrow	$C_2H_5+C_2H_4$	1.46 × $10^{-13} (T_g/298)^{3.30} \exp(-43.9/(RT_g))$	(61)
$C_2H_5 + C_2H_4$	\rightarrow	$C_2H_6+C_2H_3$	5.83 × $10^{-14} (T_g/298)^{3.13} \exp(-75.33/(RT_g))$	(61)
$C_2H_6+C_2H$	\rightarrow	$C_{2}H_{2} + C_{2}H_{5}$	5.99×10^{-12}	(61)

$C_{2}H_{2} + C_{2}H_{5}$	\rightarrow	$C_2H_6+C_2H$	$4.50 \times 10^{-13} \exp(-98.11/(RT_g))$	(61)
$C_2H_6 + C_3H_7$	\rightarrow	$C_{3}H_{8} + C_{2}H_{5}$	$1.19 \times 10^{-15} (T_g/298)^{3.82} \exp(-37.83/(RT_g))$	(63)
$C_{3}H_{8} + C_{2}H_{5}$	\rightarrow	$C_{2}H_{6} + C_{3}H_{7}$	$1.61 \times 10^{-15} (T_g/298)^{3.65} \exp(-38.25/(RT_g))$	(63)
$C_{2}H_{6} + C_{3}H_{5}$	\rightarrow	$C_{3}H_{6} + C_{2}H_{5}$	5.71 × 10 ⁻¹⁴ $(T_g/298)^{3.30} \exp(-83.06/(RT_g))$	(64)
$C_{3}H_{6} + C_{2}H_{5}$	\rightarrow	$C_2H_6 + C_3H_5$	$1.69 \times 10^{-15} (T_g/298)^{3.50} \exp(-27.77/(RT_g))$	(64)
C_2H_6+H	\rightarrow	$C_2H_5 + H_2$	$1.23 \times 10^{-11} (T_g/298)^{1.50} \exp(-31.01/(RT_g))$	(61)
$C_2H_5+H_2\\$	\rightarrow	$C_2H_6 + H$	$4.12 \times 10^{-15} (T_g/298)^{3.60} \exp(-35.34/(RT_g))$	(61)
$C_{2}H_{5} + C_{2}H_{5}$	\rightarrow	$C_2H_6 + C_2H_4$	2.41×10^{-12}	(61)
$C_2H_5+C_2H$	\rightarrow	$C_{2}H_{4} + C_{2}H_{2}$	3.01×10^{-12}	(60)
$C_{2}H_{5} + C_{3}H_{7}$	\rightarrow	$C_{3}H_{8} + C_{2}H_{4}$	1.91×10^{-12}	(63)
$C_{2}H_{5} + C_{3}H_{7}$	\rightarrow	$C_{3}H_{6} + C_{2}H_{6}$	2.41×10^{-12}	(63)
$C_{2}H_{5} + C_{3}H_{5}$	\rightarrow	$C_{3}H_{6} + C_{2}H_{4}$	4.30 × 10 ⁻¹² exp(0.55/(RT_g))	(64)
$C_2H_5 + H$	\rightarrow	$C_2H_4+H_2\\$	3.01×10^{-12}	(60)
C_2H_5+H	\rightarrow	C_2H_6	5.99×10^{-11}	(69)
$C_2H_4 + C_2H$	\rightarrow	$C_{2}H_{2} + C_{2}H_{3}$	1.40×10^{-10}	(70)
$CH_3 + C_2H_3 + M$	\rightarrow	$C_3H_6 + M$	4.91×10^{-30}	(70)
$C_2H_4 + H$	\rightarrow	$C_{2}H_{3} + H_{2}$	4.0 × 10 ⁻¹² $(T_g/298)^{2.53} \exp(-51.22/(RT_g))$	(60)
$C_2H_3 + H_2$	\rightarrow	$C_2H_4 + H$	$1.61 \times 10^{-13} (T_g/298)^{2.63} \exp(-35.75/(RT_g))$	(60)
$C_2H_4 + H$	\rightarrow	$C_2H_5 + M$	7.69 × 10 ⁻³⁰ exp($-3.16/(RT_g)$)	(71)
$C_{2}H_{3} + C_{2}H_{3}$	\rightarrow	$C_2H_4+C_2H_2$	1.60×10^{-12}	(60)
$C_2H_3 + C_2H$	\rightarrow	$C_{2}H_{2} + C_{2}H_{2}$	1.60×10^{-12}	(60)
$C_2H_3 + C_3H_8$	\rightarrow	$C_{2}H_{4} + C_{3}H_{7}$	$1.46 \times 10^{-13} (T_g/298)^{3.30} \exp(-43.9/(RT_g))$	(63)
$C_{2}H_{3} + C_{3}H_{7}$	\rightarrow	$C_{3}H_{8} + C_{2}H_{2}$	2.01×10^{-12}	(63)

$C_{2}H_{3} + C_{3}H_{7}$	\rightarrow	$C_{3}H_{6} + C_{2}H_{4}$	2.01×10^{-12}	(63)
$C_2H_3 + C_3H_6$	\rightarrow	$C_{3}H_{5} + C_{2}H_{4}$	$1.68 \times 10^{-15} (T_g/298)^{3.50} \exp(-19.62/(RT_g))$	(64)
$C_2H_3 + C_3H_5$	\rightarrow	$C_{3}H_{6} + C_{2}H_{2}$	8.00×10^{-12}	(64)
$C_2H_3 + H$	\rightarrow	$C_2H_2+H_2$	2.01×10^{-11}	(61)
$C_2H_3+H+M\\$	\rightarrow	C_2H_4+M	8.26×10^{-30}	(72)
$C_2H_2 + H$	\rightarrow	$C_2H + H_2$	$1.00 \times 10^{-10} \exp(-93.12/(RT_g))$	(60)
$C_2H + H_2$	\rightarrow	$C_2H_2 + H$	$2.51 \times 10^{-11} \exp(-12.97/(RT_g))$	(61)
$C_2H_2+H+M\\$	\rightarrow	$C_2H_3 + M$	$1.08 \times 10^{-25} (T_g/298)^{-7.27} \exp(-30.18/(RT_g))$	(61)
$C_2H + C_2H$	\rightarrow	$C_2H_2+C_2$	3.01×10^{-12}	(60)
$C_2H + C_3H_8$	\rightarrow	$C_{2}H_{2} + C_{3}H_{7}$	5.99×10^{-12}	(63)
$C_2H + C_3H_7$	\rightarrow	$C_{3}H_{6} + C_{2}H_{2}$	1.00×10^{-11}	(63)
$C_2H + C_3H_6$	\rightarrow	$C_{3}H_{5} + C_{2}H_{2}$	5.99×10^{-12}	(64)
C_2H+H+M	\rightarrow	$C_2H_2 + M$	9.44×10^{-30}	(72)
$C_{3}H_{8} + C_{3}H_{5}$	\rightarrow	$C_3H_6+C_3H_7$	5.71 × $10^{-14} (T_g/298)^{3.30} \exp(-83.06/(RT_g))$	(64)
$C_{3}H_{6} + C_{3}H_{7}$	\rightarrow	$C_{3}H_{8} + C_{3}H_{5}$	$1.69 \times 10^{-15} (T_g/298)^{3.50} \exp(-27.77/(RT_g))$	(64)
$C_3H_8 + H$	\rightarrow	$C_{3}H_{7} + H_{2}$	4.23 × $10^{-12} (T_g/298)^{2.54} \exp(-28.27/(RT_g))$	(63)
$C_{3}H_{7} + H_{2}$	\rightarrow	$C_3H_8 + H$	$3.19 \times 10^{-14} (T_g/298)^{2.84} \exp(-38.25/(RT_g))$	(63)
$C_{3}H_{7} + C_{3}H_{7}$	\rightarrow	$C_{3}H_{6} + C_{3}H_{8}$	2.81×10^{-12}	(63)
$C_{3}H_{7} + C_{3}H_{5}$	\rightarrow	$C_{3}H_{6} + C_{3}H_{6}$	2.41 × 10 ⁻¹² exp(0.55/(RT_g))	(64)
$C_3H_7 + H$	\rightarrow	$C_{3}H_{6} + H_{2}$	3.01×10^{-12}	(63)
$C_3H_7 + H$	\rightarrow	C_3H_8	$9.67 \times 10^{-11} (T_g/298)^{0.22}$	(9)(72)
$C_3H_6 + H$	\rightarrow	$C_{3}H_{5} + H_{2}$	4.40 × $10^{-13} (T_g/298)^{2.50} \exp(-10.39/(RT_g))$	(64)
$C_{3}H_{5} + H_{2}$	\rightarrow	$C_3H_6 + H$	$1.39 \times 10^{-13} (T_g/298)^{2.38} \exp(-79.49/(RT_g))$	(64)

$C_3H_6+H+M\\$	\rightarrow	$C_3H_7 + M$	3.79×10^{-33}	(64)
$C_3H_5+H+M\\$	\rightarrow	$C_3H_6 + M$	1.33×10^{-29}	(73)
$H + H_2$	\rightarrow	3Н	4.67 × $10^{-07} (T_g/298)^{-1.00} \exp(-55000.0/T_{gas})$	(59)
H + H + M	\rightarrow	$H_2 + M$	$6.04 \times 10^{-33} (T_g/298)^{-1.00}$	(61)
$H_2(E) + H_2$	\rightarrow	2H ₂	1.00×10^{-13}	(31)
$H(^{2}P) + H_{2}$	\rightarrow	$H + H_2$	1.00×10^{-13}	(31)
$CH_4 + O$	\rightarrow	$CH_3 + OH$	8.32 × $10^{-12} (T_g/298)^{1.56} \exp(-35.503/(RT_g))$	(61)
$CH_3 + OH$	\rightarrow	$CH_4 + O$	$3.22 \times 10^{-14} (T_g/298)^{2.20} \exp(-18.62/(RT_g))$	(74)
$CH_3 + O$	\rightarrow	$CH_2O + H$	1.12×10^{-10}	(75)
$CH_3 + O$	\rightarrow	$\rm CO + H_2 + H$	2.80×10^{-11}	(75)
$CH_3 + O_2 + M$	\rightarrow	$CH_3O_2 + M$	$2.19 \times 10^{-12} (T_g/298)^{0.90}$	(76)
$CH_3 + O_3$	\rightarrow	$CH_3O + O_2$	9.79×10^{-31}	(77)
$CH_2 + O$	\rightarrow	$CO + H_2$	5.53×10^{-11}	(75)
$CH_2 + O$	\rightarrow	CO + 2H	8.29×10^{-11}	(75)
$CH_2 + O_2$	\rightarrow	$CO_2 + H_2$	2.99 × $10^{-11} (T_g/298)^{-3.30} \exp(-11.97/(RT_g))$	(78)
$CH_2 + O_2$	\rightarrow	$CO + H_2O$	1.42×10^{-12}	(78)
$CH_2 + O_2$	\rightarrow	$CH_2O + O$	5.39×10^{-13}	(78)
CH + O	\rightarrow	CO + H	6.59×10^{-11}	(61)
$CH + O_2$	\rightarrow	$CO_2 + H$	1.20×10^{-11}	(75)
$CH + O_2$	\rightarrow	CO + OH	8.00×10^{-12}	(75)
$CH + O_2$	\rightarrow	CHO + O	8.00×10^{-12}	(75)
$CH + O_2$	\rightarrow	CO + H + O	1.20×10^{-11}	(75)
$C + O_2$	\rightarrow	CO + O	4.70×10^{-11}	(79)
$C_2H_6 + O$	\rightarrow	$C_2H_5 + OH$	$8.54 \times 10^{-12} (T_g/298)^{1.50} \exp(-24.28/(RT_g))$	(61)

$C_2H_5 + OH$	\rightarrow	C_2H_6+O	9.85 × $10^{-19} (T_g/298)^{8.80} \exp(-2.08/(RT_g))$	(60)
$C_2H_5 + O$	\rightarrow	$CH_3CHO + H$	8.80×10^{-11}	(75)
C_2H_5+O	\rightarrow	$CH_2O + CH_3$	6.90×10^{-11}	(75)
$C_2H_5 + O$	\rightarrow	$C_2H_4 + OH$	6.31 × 10 ⁻¹² $\left(\frac{T_{gas}}{298}\right)^{0.03} \exp(1.65/(RT_g))$	(75)
$C_2H_5+O_2\\$	\rightarrow	$C_2H_4 + HO_2$	3.80×10^{-15}	(77)
$C_2H_5+O_2\\$	\rightarrow	$C_2H_5O_2$	$3.98 \times 10^{-12} (T_g/298)^{-0.44}$	(80)
$C_2H_4 + O$	\rightarrow	$CH_2CHO + H$	2.63×10^{-13}	(75)
$C_2H_4 + O$	\rightarrow	$CHO + CH_3$	4.51×10^{-13}	(75)
$C_2H_4+O_3\\$	\rightarrow	$CH_2O+CO_2+H_2 \\$	7.06×10^{-19}	(77-78)
$C_2H_4+O_3$	\rightarrow	$\begin{array}{rrrr} CH_2O & + & CO & + \\ H_2O & & & \end{array}$	7.06×10^{-19}	(77-78)
$C_2H_4+O_3\\$	\rightarrow	2CH ₂ O +O	2.69×10^{-19}	(77-78)
$C_2H_3 + O$	\rightarrow	$C_2H_2 + OH$	5.50 × $10^{-12} (T_g/298)^{0.20} \exp(1.79/(RT_g))$	(75)
$C_2H_3 + O$	\rightarrow	$\rm CO + CH_3$	1.25×10^{-11}	(75)
$C_2H_3 + O$	\rightarrow	$CHO + CH_2$	1.25×10^{-11}	(75)
$C_2H_3 + O$	\rightarrow	$CH_2CO + H$	1.60×10^{-10}	(75)
$C_2H_3 + O_2$	\rightarrow	$CH_2O + CHO$	9.00×10^{-12}	(61)
$C_2H_2 + O$	\rightarrow	$CH_2 + CO$	$3.49 \times 10^{-12} (T_g/298)^{1.50} \exp(-7.07/(RT_g))$	(61)
$C_2H_2 + O$	\rightarrow	$C_2HO + H$	7.14 × $10^{-10} \exp(-50.72/(RT_g))$	(61)
$C_2H + O$	\rightarrow	CH + CO	1.69×10^{-11}	(61)
$C_2H + O_2$	\rightarrow	CHO + CO	3.00×10^{-11}	(61)
$C_2H + O_2$	\rightarrow	$C_2HO + O$	1.00×10^{-12}	(60)
C_3H_8+O	\rightarrow	$C_3H_7 + OH$	$1.37 \times 10^{-12} (T_g/298)^{2.68} \exp(-15.548/(RT_g))$	(63)
$H_2 + O$	\rightarrow	OH + H	2.21 × $10^{-12} (T_g/298)^{2.00} \exp(-31.595/(RT_g))$	(81)

H + OH + M	\rightarrow	$H_2 + O + M \\$	$4.38 \times 10^{-33} (T_g/298)^{-2.00}$	(61)
------------	---------------	------------------	--	------

$$CH_4 + CH_3O_2 \longrightarrow CH_3 + CH_3OOH \qquad 3.01 \times 10^{-13} \exp(-77.32/(RT_g))$$
(60)
$$CH_3 + CO + M \longrightarrow CH_3CO + M \qquad 7.83 \times 10^{-29} (T_g/298)^{-7.56} \exp(-45.65/(RT_g))$$
(71)

CH₃CO
$$\rightarrow$$
 CH₃ + CO $3.87 \times 10^{13} (T_g/298)^{0.63} \exp(-70.70/(RT_g))$ (71)
CH₃ + OH \rightarrow CH₂ + H₂O $1.20 \times 10^{-10} \exp(-11.64/(RT_g))$ (71)
CH₂ + H₂O \rightarrow CH₃ + OH 1.60×10^{-16} (60)

CH₃ + OH
$$\rightarrow$$
 CH₂OH + H $1.54 \times 10^{-09} (T_g/298)^{-1.80} \exp(-33.76/(RT_g))$ (86)
CH₂OH + H \rightarrow CH₃ + OH 1.60×10^{-10} (85)

$CH_3 + OH$	\rightarrow	$CH_{3}O + H$	2.57 × $10^{-12} (T_g/298)^{-0.23} \exp(-58.28/(RT_g))$	(86)
$CH_{3}O + H$	\rightarrow	$CH_3 + OH$	9.93×10^{-12}	(75)
$CH_3 + OH + M$	\rightarrow	$CH_3OH + M$	$3.69 \times 10^{-27} \exp(-10.643/(RT_g))$	(87)
$CH_3 + HO_2$	\rightarrow	$CH_3O + OH$	7.68 × $10^{-12} (T_g/298)^{0.27} \exp(2.88/(RT_g))$	(61)
$CH_3 + HO_2$	\rightarrow	$CH_4 + O_2$	5.99×10^{-12}	(60)
$CH_3 + CHO$	\rightarrow	$\mathrm{CH}_4+\mathrm{CO}$	2.01×10^{-10}	(60)
$CH_3 + CH_3O$	\rightarrow	$CH_4 + CH_2O$	4.00×10^{-11}	(60)
CH ₃ + CH ₃ CHO	\rightarrow	$CH_4 + CH_3CO$	2.97 × $10^{-16} (T_g/298)^{5.64} \exp(-10.31/(RT_g))$	(61)
$CH_4 + CH_3CO$	\rightarrow	CH ₃ + CH ₃ CHO	4.82 × $10^{-14} (T_g/298)^{2.88} \exp(-89.8/(RT_g))$	(60)
$CH_3 + CH_3O_2$	\rightarrow	2CH ₃ O	4.00×10^{-11}	(60)
$CH_2 + CO_2$	\rightarrow	$CH_2O + CO$	3.90×10^{-14}	(60)
$CH_2 + OH$	\rightarrow	$CH_2O + H$	3.01×10^{-11}	(60)
$CH_2 + HO_2$	\rightarrow	$CH_2O + OH$	3.00×10^{-11}	(60)
$CH_2 + CH_2O$	\rightarrow	$CH_3 + CHO$	1.00×10^{-14}	(60)
$CH_2 + CHO$	\rightarrow	$CH_3 + CO$	3.01×10^{-11}	(60)
$CH_2 + CH_3O$	\rightarrow	$CH_3 + CH_2O$	3.01×10^{-11}	(60)
$CH_2 + CH_3O_2$	\rightarrow	$CH_2O + CH_3O$	3.01×10^{-11}	(60)
$CH + CO_2$	\rightarrow	CHO + CO	9.68×10^{-13}	(75)
$CH + CO_2$	\rightarrow	2CO + H	9.68×10^{-13}	(75)
CH + CO + M	\rightarrow	$C_2HO + M$	$4.15 \times 10^{-30} (T_g/298)^{-1.90}$	(75)
$C_2H_6 + OH$	\rightarrow	$C_2H_5 + H_2O$	$1.06 \times 10^{-12} (T_g/298)^{2.00} \exp(-3.617/(RT_g))$	(61)
$C_2H_5 + H_2O$	\rightarrow	$C_2H_6 + OH$	2.06 × $10^{-14} (T_g/298)^{1.44} \exp(-84.81/(RT_g))$	(60)
$C_2H_6 + HO_2$	\rightarrow	$C_{2}H_{5} + H_{2}O_{2}$	4.90 × $10^{-13} \exp(-65.52/(RT_g))$	(60)
$C_2H_5+H_2O_2$	\rightarrow	$C_2H_6 + HO_2$	1.45 × 10 ⁻¹⁴ exp(-4.07/(RT_g))	(60)

$C_2H_6 + CHO$	\rightarrow	$C_2H_5 + CH_2O$	4.18 × $10^{-13} (T_g/298)^{2.72} \exp(-76.33/(RT_g))$	(60)
$C_2H_5 + CH_2O$	\rightarrow	$C_2H_6 + CHO$	8.19 × $10^{-14} (T_g/298)^{2.81} \exp(-24.53/(RT_g))$	(60)
$C_2H_6 + CH_3O$	\rightarrow	$C_2H_5 + CH_3OH$	$4.00 \times 10^{-13} \exp(-29.68/(RT_g))$	(60)
$C_2H_5 + CH_3OH$	\rightarrow	$C_2H_6 + CH_3O$	1.12 × $10^{-15} (T_g/298)^{3.10} \exp(-37.42/(RT_g))$	(85)
$C_2H_6 + CH_3O_2$	\rightarrow	$C_2H_5 + CH_3OOH$	4.90 × $10^{-13} \exp(-62.52/(RT_g))$	(60)
$C_2H_6 + C_2H_5O_2$	\rightarrow	$C_2H_5 + C_2H_5OOH$	2.87 × $10^{-14} (T_g/298)^{3.76} \exp(-71.96/(RT_g))$	(88)
$C_2H_5 + OH$	\rightarrow	$C_2H_4 + H_2O$	4.00×10^{-11}	(60)
$C_2H_5 + HO_2$	\rightarrow	$C_2H_6+O_2\\$	5.00×10^{-13}	(60)
$C_2H_5 + HO_2$	\rightarrow	$C_2H_4+H_2O_2$	5.00×10^{-13}	(60)
$C_2H_5 + CHO$	\rightarrow	$C_2H_6 + CO$	2.01×10^{-10}	(60)
$C_2H_5 + CH_3O$	\rightarrow	$C_2H_6 + CH_2O$	4.00×10^{-11}	(60)
$C_2H_5+CH_3O_2$	\rightarrow	$CH_3O + C_2H_5O$	4.00×10^{-11}	(60)
$C_2H_4 + OH$	\rightarrow	$C_2H_3 + H_2O$	$1.66 \times 10^{-13} (T_g/298)^{2.75} \exp(-17.46/(RT_g))$	(60)
$C_2H_3 + H_2O$	\rightarrow	$C_2H_4 + OH$	$1.20 \times 10^{-14} (T_g/298)^{2.90} \exp(-62.19/(RT_g))$	(60)
$C_2H_4 + HO_2$	\rightarrow	$CH_3CHO + OH$	$1.00 \times 10^{-14} \exp(-33.26/(RT_g))$	(60)
$C_2H_3 + OH$	\rightarrow	$C_2H_2 + H_2O$	5.00×10^{-11}	(60)
$C_2H_3 + CH_2O$	\rightarrow	$C_2H_4 + CHO$	8.07 × $10^{-14} (T_g/298)^{2.81} \exp(-24.53/(RT_g))$	(60)
$C_2H_3 + CHO$	\rightarrow	$C_2H_4 + CO$	1.50×10^{-10}	(60)
$C_2H_3 + CH_3O$	\rightarrow	$C_2H_4 + CH_2O$	4.00×10^{-11}	(60)
$C_2H_2 + OH$	\rightarrow	$C_2H + H_2O$	$5.00 \times 10^{-12} (T_g/298)^{2.00} \exp(-58.53/(RT_g))$	(60)
$C_2H_2 + HO_2$	\rightarrow	$CH_2CO + OH$	$1.00 \times 10^{-14} \exp(-33.26/(RT_g))$	(60)
$C_2H + OH$	\rightarrow	$CH_2 + CO$	3.01×10^{-11}	(60)
$C_2H + OH$	\rightarrow	$C_2H_2 + O$	3.01×10^{-11}	(60)

$C_2H + HO_2$	\rightarrow	$C_2H_2+O_2$	3.01×10^{-11}	(60)
$C_2H + HO_2$	\rightarrow	$C_2HO + OH$	3.01×10^{-11}	(60)
$C_2H + CHO$	\rightarrow	$C_2H_2 + CO$	1.00×10^{-10}	(60)
$C_2H + CH_3O$	\rightarrow	$C_2H_2 + CH_2O$	4.00×10^{-11}	(60)
$C_2H + CH_3O_2$	\rightarrow	$CH_3O + C_2HO$	4.00×10^{-11}	(60)
$C_3H_8 + OH$	\rightarrow	$C_3H_7 + H_2O$	1.44 × $10^{-12} (T_g/298)^{1.00} \exp(-1.08/(RT_g))$	(63)
$C_3H_8 + HO_2$	\rightarrow	$C_3H_7+H_2O_2$	1.61 × $10^{-13} (T_g/298)^{2.55} \exp(-69.01/(RT_g))$	(63)
$C_3H_7 + H_2O_2$	\rightarrow	$C_3H_8 + HO_2$	5.15 × $10^{-15} (T_g/298)^{2.11} \exp(-10.73/(RT_g))$	(63)
$C_3H_8 + CHO$	\rightarrow	$C_3H_7 + CH_2O$	5.21 × $10^{-13} (T_g/298)^{2.50} \exp(-77.16/(RT_g))$	(63)
$C_3H_7 + CH_2O$	\rightarrow	$C_3H_8 + CHO$	7.49 × $10^{-14} (T_g/298)^{2.90} \exp(-24.53/(RT_g))$	(63)
$C_3H_8 + CH_3O$	\rightarrow	$C_3H_7 + CH_3OH$	7.21 × $10^{-13} \exp(-27.02/(RT_g))$	(63)
$C_3H_7 + CH_3OH$	\rightarrow	$C_3H_8 + CH_3O$	1.12 × $10^{-15} (T_g/298)^{3.10} \exp(-37.42/(RT_g))$	(63)
$C_3H_8 + CH_3O_2$	\rightarrow	$C_3H_7 + CH_3OOH$	$1.00 \times 10^{-11} \exp(-81.07/(RT_g))$	(63)
$C_3H_7 + CHO$	\rightarrow	$C_3H_8 + CO$	1.00×10^{-10}	(63)
$C_3H_7 + CH_3O$	\rightarrow	$C_3H_8 + CH_2O$	4.00×10^{-11}	(63)
$C_3H_7 + CH_3O_2$	\rightarrow	$\begin{array}{rrrr} C_2H_5 &+& CH_2O &+\\ CH_3O & \end{array}$	5.99×10^{-11}	(63)
$H_2 + OH$	\rightarrow	$H + H_2O$	$1.05 \times 10^{-10} \exp(-24.694/(RT_g))$	(89)
$H + H_2O$	\rightarrow	$H_2 + OH$	$6.82 \times 10^{-12} (T_g/298)^{1.60} \exp(-80.82/(RT_g))$	(61)
$H_2 + HO_2$	\rightarrow	$H + H_2O_2$	5.00 × $10^{-11} \exp(-109.0/(RT_g))$	(60)
$H + H_2O_2$	\rightarrow	$H_2 + HO_2$	2.81 × $10^{-12} \exp(-15.71/(RT_g))$	(61)
$H_2 + CHO$	\rightarrow	$H + CH_2O$	2.66 × $10^{-13} (T_g/298)^{2.00} \exp(-74.58/(RT_g))$	(60)
$\mathrm{H}+\mathrm{CH}_{2}\mathrm{O}$	\rightarrow	$H_2 + CHO$	2.14 × $10^{-12} (T_g/298)^{1.62} \exp(-9.06/(RT_g))$	(71)

$H_2 + CH_3O_2$	\rightarrow	$H + CH_3OOH$	$5.00 \times 10^{-11} \exp(-109.0/(RT_g))$	(60)
$H + CH_3OOH$	\rightarrow	$H_2 + CH_3O_2$	7.11×10^{-15}	(90)
$H + CO_2$	\rightarrow	$\rm CO + OH$	2.51 × $10^{-10} \exp(-111.0/(RT_g))$	(60)
CO + OH	\rightarrow	$H + CO_2$	5.40 × $10^{-14} (T_g/298)^{1.50} \exp(2.08/(RT_g))$	(61)
H + CO + M	\rightarrow	CHO + M	$1.99 \times 10^{-33} \exp(-7.0001/(RT_g))$	(81)
H + OH + M	\rightarrow	$H_2O + M$	$4.38 \times 10^{-30} (T_g/298)^{-2.00}$	(61)
$H + HO_2$	\rightarrow	$H_2 + O_2 \\$	4.15 × $10^{-11} \exp(-2.902/(RT_g))$	(91)
$\mathrm{H} + \mathrm{HO}_2$	\rightarrow	$H_2O + O$	8.30 × $10^{-11} \exp(-4.182/(RT_g))$	(92)
$H + HO_2$	\rightarrow	20H	2.81 × $10^{-10} \exp(-3.66/(RT_g))$	(91)
H + CHO	\rightarrow	$H_2 + CO$	3.32×10^{-10}	(81)
$\mathrm{H}+\mathrm{CH}_{3}\mathrm{O}$	\rightarrow	$H_2 + CH_2O$	2.32×10^{-11}	(75)
$H + CH_3CHO$	\rightarrow	$H_2 + CH_3CO$	8.98×10^{-14}	(61)
$H_2 + CH_3CO$	\rightarrow	H + CH ₃ CHO	2.18 × $10^{-13} (T_g/298)^{1.82} \exp(-73.67/(RT_g))$	(60)
$H + CH_2CO$	\rightarrow	$CH_3 + CO$	1.04×10^{-13}	(61)
$H + C_2 HO$	\rightarrow	$CH_2 + CO$	2.50×10^{-10}	(61)
$H+CH_{3}O_{2} \\$	\rightarrow	$OH + CH_3O$	1.60×10^{-10}	(60)
$O + H_2O$	\rightarrow	20H	$1.38 \times 10^{-10} \exp(-75.745/(RT_g))$	(89)
20Н	\rightarrow	$O + H_2O$	$1.26 \times 10^{-11} \exp(-4.182/(RT_g))$	(89)
$O + HO_2$	\rightarrow	$O_2 + OH$	$1.36 \times 10^{-11} (T_g/298)^{0.75}$	(93)
$O + CH_2O$	\rightarrow	OH + CHO	$1.78 \times 10^{-11} (T_g/298)^{0.57} \exp(-11.56/(RT_g))$	(61)
O + CHO	\rightarrow	$\rm CO + OH$	5.00×10^{-11}	(61)
O + CHO	\rightarrow	$H + CO_2$	5.00×10^{-11}	(61)
$O + CH_3O$	\rightarrow	$CH_3 + O_2$	$3.55 \times 10^{-11} \exp(-1.99/(RT_g))$	(94)
$O + CH_3O$	\rightarrow	$OH + CH_2O$	1.00×10^{-11}	(61)

$O + CH_3CHO$	\rightarrow	$OH + CH_3CO$	8.30 × $10^{-12} \exp(-7.50/(RT_g))$	(61)
$O + CH_2CO$	\rightarrow	$CH_2 + CO_2$	2.29×10^{-13}	(95)
$O + CH_2CO$	\rightarrow	$CH_2O + CO$	7.88×10^{-14}	(95)
$O + CH_2CO$	\rightarrow	CHO + CO + H	4.33×10^{-14}	(95)
$O + CH_2CO$	\rightarrow	2CHO	4.33×10^{-14}	(95)
$O + C_2HO$	\rightarrow	2CO + H	1.60×10^{-10}	(61)
$O + CH_3O_2$	\rightarrow	$CH_3O + O_2$	5.99×10^{-11}	(60)
$O + CH_3OOH$	\rightarrow	$CH_3O_2 + OH$	5.63×10^{-15}	(75)
$O_2 + CHO$	\rightarrow	$\rm CO + HO_2$	$8.50 \times 10^{-11} \exp(-7.07/(RT_g))$	(60)
$O_2 + CH_3O$	\rightarrow	$CH_2O + HO_2$	4.28 × $10^{-13}g^{7.60}\exp(14.762/(RT_g))$	(96)
$O_2 + CH_2CHO$	\rightarrow	$CH_2O + CO + OH$	3.00×10^{-14}	(97-98)
$O_2 + C_2 HO$	\rightarrow	2CO + OH	6.46×10^{-13}	(61)
$O_3 + OH$	\rightarrow	$O_2 + HO_2$	$3.76 \times 10^{-13} (T_g/298)^{1.99} \exp(-5.02/(RT_g))$	(91)
$O_3 + HO_2$	\rightarrow	$2O_2 + OH$	1.97 × $10^{-16} (T_g/298)^{4.57} \exp(5.76/(RT_g))$	(91)
$O_3 + CH_3O_2$	\rightarrow	$CH_3O + 2O_2$	1.00×10^{-17}	(99)
$\rm CO + HO_2$	\rightarrow	$\mathrm{CO}_2 + \mathrm{OH}$	2.51 × 10 ⁻¹⁰ exp(-98.94/(RT_g))	(61)
$\rm CO + CH_3O$	\rightarrow	$\mathrm{CO}_2 + \mathrm{CH}_3$	2.61 × 10 ⁻¹¹ exp(-49.39/(RT_g))	(60)
$H_2O + CHO$	\rightarrow	$CH_2O + OH$	8.54 × $10^{-13} (T_g/298)^{1.35} \exp(-109.0/(RT_g))$	(60)
$CH_2O + OH$	\rightarrow	$H_2O + CHO$	4.73 × $10^{-12} (T_g/298)^{1.18} \exp(1.87/(RT_g))$	(77)
$CH_{3}OH + OH$	\rightarrow	$H_2O + CH_3O$	$1.66 \times 10^{-11} \exp(-7.10/(RT_g))$	(77)
20H + M	\rightarrow	$H_2O_2 + M$	$6.04 \times 10^{-31} (T_g/298)^{-3.00}$	(91)
$OH + HO_2$	\rightarrow	$O_2 + H_2O$	$1.06 \times 10^{-10} (T_g/298)^{-1}$	(100)
$H_2O + CH_3O$	\rightarrow	$CH_3OH + OH$	$1.46 \times 10^{-15} (T_g/298)^{3.80} \exp(-48.06/(RT_g))$	(101)

OH + CHO	\rightarrow	$CO + H_2O$	1.69×10^{-10}	(61)
$OH + CH_3O$	\rightarrow	$CH_2O + H_2O$	3.01×10^{-11}	(60)
$OH + CH_3CHO$	\rightarrow	$CH_3CO + H_2O$	1.49×10^{-11}	(77)
$OH + CH_2CO$	\rightarrow	$\rm CO + CH_2OH$	1.14×10^{-11}	(102)
$OH + CH_3O_2$	\rightarrow	$CH_3OH + O_2$	1.00×10^{-10}	(60)
2HO ₂	\rightarrow	$H_2O_2+O_2$	1.63×10^{-12}	(91)
$HO_2 + CH_2O$	\rightarrow	$CHO + H_2O_2$	$3.30 \times 10^{-12} \exp(-48.81/(RT_g))$	(60)
$CHO + H_2O_2$	\rightarrow	$\mathrm{HO}_{2} + \mathrm{CH}_{2}\mathrm{O}$	$1.69 \times 10^{-13} \exp(-29.02/(RT_g))$	(60)
$HO_2 + CHO$	\rightarrow	$OH + H + CO_2$	5.00×10^{-11}	(60)
$HO_2 + CH_3O$	\rightarrow	$CH_2O + H_2O_2$	5.00×10^{-13}	(60)
$HO_2 + CH_3O_2$	\rightarrow	$CH_3OOH + O_2$	5.12×10^{-12}	(77)
$HO_2 + C_2H_5O_2$	\rightarrow	$C_2H_5OOH + O_2$	7.63×10^{-12}	(77)
$CH_2O + CH_3O$	\rightarrow	CH ₃ OH + CHO	$1.69 \times 10^{-13} \exp(-12.47/(RT_g))$	(60)
$CH_2O + CH_3O_2$	\rightarrow	CHO + CH ₃ OOH	$3.30 \times 10^{-12} \exp(-48.81/(RT_g))$	(60)
CHO + CHO	\rightarrow	$CH_2O + CO$	5.00×10^{-11}	(61)
$CHO + CH_3O$	\rightarrow	$CH_3OH + CO$	1.50×10^{-10}	(60)
$CHO + CH_3O_2$	\rightarrow	$CH_3O + H + CO_2$	5.00×10^{-11}	(60)
$CH_{3}O + CH_{3}O$	\rightarrow	$CH_2O + CH_3OH$	1.00×10^{-10}	(60)
$CH_3O + CH_3O_2$	\rightarrow	$CH_2O + CH_3OOH$	5.00×10^{-13}	(60)
$CH_{3}O_{2} + CH_{3}O_{2}$	\rightarrow	$CH_3OH + CH_2O + O_2$	2.19×10^{-13}	(77)
$CH_3O_2 + CH_3O_2$	\rightarrow	$2CH_3O + O_2$	1.29×10^{-13}	(77)
$C_2H_5O_2 + C_2H_5O_2$	\rightarrow	C_2H_5OH + $CH_3CHO + O_2$	2.43×10^{-14}	(77)
$C_2H_5O_2 + C_2H_5O_2$	\rightarrow	$2C_2H_5O+O_2$	3.97×10^{-14}	(77)

$CH_4 + CH_2OH$	\rightarrow	$CH_3OH + CH_3$	$1.68 \times 10^{-15} (T_g/298)^{3.10} \exp(-67.93/(RT_g))$	(85)
$CH_3OH + CH_3$	\rightarrow	$CH_4 + CH_2OH$	4.38 × $10^{-15} (T_g/298)^{3.20} \exp(-30.02/(RT_g))$	(85)
$CH_3 + CH_2OH$	\rightarrow	$CH_4 + CH_2O$	4.00×10^{-12}	(85)
$CH_3 + C_2H_5OH$	\rightarrow	$CH_4 + C_2H_5O$	3.11×10^{-19}	(103)
$CH_2 + H_2O_2$	\rightarrow	$CH_3 + HO_2$	1.00×10^{-14}	(60)
$CH_2 + CH_3CO$	\rightarrow	$CH_2CO + CH_3$	3.01×10^{-11}	(60)
$CH_2 + CH_3OH$	\rightarrow	$CH_3O + CH_3$	$1.12 \times 10^{-15} (T_g/298)^{3.10} \exp(-29.02/(RT_g))$	(85)
$CH_2 + CH_3OH$	\rightarrow	$CH_2OH + CH_3$	4.38 × $10^{-15} (T_g/298)^{3.20} \exp(-30.02/(RT_g))$	(85)
$CH_2 + CH_2OH$	\rightarrow	$CH_2O + CH_3$	2.01×10^{-12}	(85)
$CH_2 + CH_2OH$	\rightarrow	$C_2H_4 + OH$	4.00×10^{-11}	(85)
$C_2H_6 + CH_3CO$	\rightarrow	$CH_3CHO + C_2H_5$	$1.91 \times 10^{-13} (T_g/298)^{2.75} \exp(-73.334/(RT_g))$	(60)
$C_2H_6 + CH_2OH$	\rightarrow	$CH_3OH + C_2H_5$	8.73 × $10^{-15} (T_g/298)^{3.00} \exp(-58.451/(RT_g))$	(85)
$CH_3OH + C_2H_5$	\rightarrow	$C_2H_6 + CH_2OH$	4.38 × $10^{-15} (T_g/298)^{3.20} \exp(-38.33/(RT_g))$	(85)
$C_2H_5 + CH_2OH$	\rightarrow	$C_2H_6 + CH_2O$	4.00×10^{-12}	(85)
$C_2H_5 + CH_2OH$	\rightarrow	$CH_3OH + C_2H_4$	4.00×10^{-12}	(85)
$C_2H_3 + H_2O_2$	\rightarrow	$C_2H_4 + HO_2$	$2.01 \times 10^{-14} \exp(2.49/(RT_g))$	(60)
$C_2H_3 + CH_3OH$	\rightarrow	$C_2H_4 + CH_3O$	$1.12 \times 10^{-15} (T_g/298)^{3.10} \exp(-29.02/(RT_g))$	(85)
$C_2H_3 + CH_3OH$	\rightarrow	$C_2H_4 + CH_2OH$	4.38 × $10^{-15} (T_g/298)^{3.20} \exp(-30.02/(RT_g))$	(85)
$C_2H_3 + CH_2OH$	\rightarrow	$C_2H_4 + CH_2O$	5.00×10^{-11}	(85)
$C_2H_3 + CH_2OH$	\rightarrow	$C_3H_5 + OH$	2.01×10^{-11}	(85)
$C_2H_2 + CH_2OH$	\rightarrow	$C_2H_3 + CH_2O$	$1.20 \times 10^{-12} \exp(-37.66/(RT_g))$	(85)
$C_2H + CH_3OH$	\rightarrow	$C_2H_2 + CH_3O$	2.01×10^{-12}	(85)
$C_2H + CH_3OH$	\rightarrow	$C_2H_2 + CH_2OH$	1.00×10^{-11}	(85)
$C_2H + CH_2OH$	\rightarrow	$C_2H_2+CH_2O$	5.99×10^{-11}	(85)
--------------------	---------------	--------------------	--	------
$C_3H_8 + CH_3CO$	\rightarrow	$CH_3CHO + C_3H_7$	$1.89 \times 10^{-13} (T_g/298)^{2.60} \exp(-73.916/(RT_g))$	(63)
$C_3H_8 + CH_2OH$	\rightarrow	$CH_3OH + C_3H_7$	$6.56 \times 10^{-15} (T_g/298)^{2.95} \exp(-58.451/(RT_g))$	(63)
$CH_3OH + C_3H_7$	\rightarrow	$C_3H_8 + CH_2OH$	$3.90 \times 10^{-15} (T_g/298)^{3.17} \exp(-38.33/(RT_g))$	(63)
$C_3H_7 + OH$	\rightarrow	$C_3H_6 + H_2O$	4.00×10^{-11}	(63)
$C_3H_7 + CH_2OH$	\rightarrow	$C_3H_8 + CH_2O$	1.60×10^{-12}	(63)
$C_3H_7 + CH_2OH$	\rightarrow	$C_3H_6 + CH_3OH$	8.00×10^{-13}	(63)
$C_3H_6 + O$	\rightarrow	$C_3H_5 + OH$	$1.56 \times 10^{-11} (T_g/298)^{0.70} \exp(-24.61/(RT_g))$	(64)
$C_3H_6 + OH$	\rightarrow	$C_3H_5+H_2O$	4.60 × $10^{-13} (T_g/298)^{2.00} \exp(1.25/(RT_g))$	(64)
$C_3H_6 + HO_2$	\rightarrow	$C_3H_5+H_2O_2$	4.33 × $10^{-14} (T_g/298)^{2.60} \exp(-58.20/(RT_g))$	(64)
$C_3H_5 + H_2O_2$	\rightarrow	$C_3H_6 + HO_2$	7.67 × $10^{-14} (T_g/298)^{2.05} \exp(-56.79/(RT_g))$	(64)
$C_3H_6 + CHO$	\rightarrow	$C_3H_5 + CH_2O$	9.05 × $10^{-13} (T_g/298)^{1.90} \exp(-71.17/(RT_g))$	(64)
$C_3H_5 + CH_2O$	\rightarrow	$C_3H_6 + CHO$	$1.05 \times 10^{-11} (T_g/298)^{1.90} \exp(-76.08/(RT_g))$	(64)
$C_3H_6 + CH_3O$	\rightarrow	$C_3H_5 + CH_3OH$	2.97 × $10^{-15} (T_g/298)^{2.95} \exp(-50.14/(RT_g))$	(64)
$C_3H_6 + CH_3O_2$	\rightarrow	$C_3H_5 + CH_3OOH$	$3.30 \times 10^{-12} \exp(-71.34/(RT_g))$	(64)
$C_3H_6 + CH_3CO$	\rightarrow	$C_3H_5 + CH_3CHO$	$7.82 \times 10^{-13} (T_g/298)^{2.00} \exp(-67.93/(RT_g))$	(64)
$C_3H_5 + CH_3CHO$	\rightarrow	$C_3H_6 + CH_3CO$	6.31 × 10 ⁻¹³ exp(-30.18/(RT_g))	(64)
$C_3H_6 + CH_2OH$	\rightarrow	$C_3H_5 + CH_3OH$	$1.99 \times 10^{-15} (T_g/298)^{2.95} \exp(-50.14/(RT_g))$	(64)
$C_3H_5 + CH_3OH$	\rightarrow	$C_3H_6 + CH_2OH$	4.33 × $10^{-14} (T_g/298)^{2.90} \exp(-85.64/(RT_g))$	(64)
$C_3H_5 + HO_2$	\rightarrow	$C_3H_6+O_2$	4.40×10^{-12}	(75)
$C_3H_5 + CHO$	\rightarrow	$C_3H_6 + CO$	1.00×10^{-10}	(64)
$C_3H_5 + CH_3O$	\rightarrow	$C_3H_6 + CH_2O$	5.00×10^{-11}	(64)

$C_3H_5 + CH_2OH$	\rightarrow	$C_3H_6 + CH_2O$	3.01×10^{-11}	(64)
$H_2 + CH_2OH$	\rightarrow	$CH_3OH + H$	9.96 × $10^{-14} (T_g/298)^{2.00} \exp(-55.87/(RT_g))$	(85)
$CH_{3}OH + H$	\rightarrow	$H_2 + CH_2OH$	2.42 × $10^{-12} (T_g/298)^{2.00} \exp(-18.87/(RT_g))$	(85)
$H+H_2O_2$	\rightarrow	$H_2O + OH$	$1.69 \times 10^{-11} \exp(-14.97/(RT_g))$	(61)
$H + CH_3OH$	\rightarrow	$CH_3O + H_2$	$6.64 \times 10^{-11} \exp(-25.53/(RT_g))$	(81)
$H + CH_2OH$	\rightarrow	$CH_2O + H_2$	1.00×10^{-11}	(104)
$H + CH_2OH$	\rightarrow	CH ₃ OH	$2.90 \times 10^{-10} (T_g/298)^{0.04}$	(105)
$H + CH_3O$	\rightarrow	CH ₃ OH	$1.59 \times 10^{-10} (T_g/298)^{0.24} \exp(26.46/(RT_g))$	(105)
$H + C_2 H_5 OH$	\rightarrow	$H_2 + C_2 H_5 O$	1.33 × $10^{-20} (T_g/298)^{10.58} \exp(18.65/(RT_g))$	(106)
$H + CH_3OOH$	\rightarrow	$H_2O + CH_3O$	5.88×10^{-15}	(90)
$O + H_2O_2$	\rightarrow	HO ₂ + OH	1.42 × $10^{-12} (T_g/298)^{2.00} \exp(-16.63/(RT_g))$	(75)
$O + H_2O_2$	\rightarrow	$O_2 + H_2O$	8.91×10^{-16}	(75)
O + CH ₃ CO	\rightarrow	$OH + CH_2CO$	8.75×10^{-11}	(75)
$O + CH_3CO$	\rightarrow	$CO_2 + CH_3$	2.63×10^{-10}	(75)
O + CH ₃ OH	\rightarrow	$OH + CH_2OH$	7.11 × 10 ⁻¹² exp($-8.48/(RT_g)$)	(107)
$O + CH_3OH$	\rightarrow	$OH + CH_3O$	$1.66 \times 10^{-11} \exp(-19.62/(RT_g))$	(108)
$O + CH_2OH$	\rightarrow	$CH_2O + OH$	7.00×10^{-11}	(85)
$O + C_2H_5OOH$	\rightarrow	$C_2H_5O_2 + OH$	$3.30 \times 10^{-11} \exp(-19.87/(RT_g))$	(75)
$O_2 + CH_2OH$	\rightarrow	$CH_2O + HO_2$	$3.77 \times 10^{-15} (T_g/298)^{2.94} \exp(-18.94/(RT_g))$	(109)
$O_2 + C_2 H_5 O$	\rightarrow	$CH_3CHO + HO_2$	8.12×10^{-15}	(77)
$OH + H_2O_2$	\rightarrow	$\mathrm{HO}_{2} + \mathrm{H}_{2}\mathrm{O}$	$1.30 \times 10^{-11} \exp(-5.57/(RT_g))$	(91)
OH + CH ₃ CO	\rightarrow	$CH_2CO + H_2O$	2.00×10^{-11}	(60)
$OH + CH_3CO$	\rightarrow	$CH_3 + CO + OH$	5.00×10^{-11}	(60)

$OH + CH_3OH$	\rightarrow	$H_2O + CH_2OH$	$3.44 \times 10^{-13} (T_g/298)^{2.80} \exp(1.75/(RT_g))$	(101)
$OH + CH_2OH$	\rightarrow	$CH_2O + H_2O$	4.00×10^{-11}	(85)
$OH + C_2H_5OH$	\rightarrow	$H_2O+C_2H_5O$	2.18 × $10^{-15} (T_g/298)^{3.38} \exp(10.02/(RT_g))$	(77)
OH + CH ₃ OOH	\rightarrow	$H_2O + CH_3O_2$	$1.79 \times 10^{-12} \exp(1.83/(RT_g))$	(77)
$OH + C_2H_5OOH$	\rightarrow	$H_2O + C_2H_5O_2$	1.61 × $10^{-12} (T_g/298)^{2.32} \exp(6.66/(RT_g))$	(61)
$HO_2 + CH_3CO$	\rightarrow	$CH_3 + CO_2 + OH$	5.00×10^{-11}	(60)
$HO_2 + CH_3OH$	\rightarrow	$CH_2OH + H_2O_2$	$1.60 \times 10^{-13} \exp(-52.63/(RT_g))$	(85)
$CH_2OH + H_2O_2$	\rightarrow	$HO_2 + CH_3OH$	5.00 × 10 ⁻¹⁵ exp($-10.81/(RT_g)$)	(85)
$HO_2 + CH_2OH$	\rightarrow	$CH_2O + H_2O_2$	2.01×10^{-11}	(85)
$CH_2O + CH_3CO$	\rightarrow	$CH_3CHO + CHO$	$3.01 \times 10^{-13} \exp(-54.04/(RT_g))$	(60)
$CH_2O + CH_2OH$	\rightarrow	CH ₃ OH + CHO	$7.72 \times 10^{-14} (T_g/298)^{2.80} \exp(-24.53/(RT_g))$	(85)
CH ₃ OH + CHO	\rightarrow	$CH_2O + CH_2OH$	2.41 × $10^{-13} (T_g/298)^{2.90} \exp(-54.88/(RT_g))$	(85)
CHO + CH ₃ CO	\rightarrow	$CH_3CHO + CO$	1.50×10^{-11}	(60)
$CHO + CH_2OH$	\rightarrow	$CH_2O + CH_2O$	3.01×10^{-10}	(85)
$CHO + CH_2OH$	\rightarrow	$CH_3OH + CO$	2.01×10^{-10}	(85)
$CH_{3}O + CH_{3}CO$	\rightarrow	$CH_3OH + CH_2CO$	1.00×10^{-11}	(60)
$CH_{3}O + CH_{3}OH$	\rightarrow	$CH_3OH + CH_2OH$	$5.00 \times 10^{-13} \exp(-17.04/(RT_g))$	(85)
$CH_{3}OH + CH_{2}OH$	\rightarrow	$CH_{3}O + CH_{3}OH$	$1.30 \times 10^{-14} \exp(-50.47/(RT_g))$	(85)
$CH_3O + CH_2OH$	\rightarrow	$CH_2O + CH_3OH$	4.00×10^{-11}	(85)
$CH_3O_2 + H_2O_2$	\rightarrow	$CH_3OOH + HO_2$	$4.00 \times 10^{-12} \exp(-41.57/(RT_g))$	(60)
CH ₃ O ₂ + CH ₃ CO	\rightarrow	$CH_3 + CO_2 + CH_3O$	4.00×10^{-11}	(60)
$CH_3O_2 + CH_3OH$	\rightarrow	CH ₂ OH + CH ₃ OOH	$3.01 \times 10^{-12} \exp(-57.37/(RT_g))$	(85)

$CH_3O_2 + CH_2OH$	\rightarrow	$\begin{array}{rrrr} CH_{3}O & + & OH & + \\ CH_{2}O & & \end{array}$	2.00×10^{-11}	(85)
$H_2O_2 + CH_3CO$	\rightarrow	$CH_3CHO + HO_2$	$3.01 \times 10^{-13} \exp(-34.42/(RT_g))$	(60)
CH ₃ CO + CH ₃ OH	\rightarrow	CH ₃ CHO + CH ₂ OH	2.13 × $10^{-13} (T_g/298)^{3.00} \exp(-51.63/(RT_g))$	(85)
$CH_2OH + CH_2OH$	\rightarrow	$CH_2O + CH_3OH$	8.00×10^{-12}	(85)
$O + CH_2$	\rightarrow	CHO + H	5.01×10^{-11}	(110)
$C_2H_4 + O$	\rightarrow	$CH_3 + CHO$	$1.5 \times 10^{-12} (T_g/298)^{1.55} \exp(-1.79/(RT_g))$	(60)
$C_2H_4 + O$	\rightarrow	$CH_2CHO + H$	$1.13 \times 10^{-12} \exp(-2.93/(RT_g))$	(111)
$CH_3 + O$	\rightarrow	CH ₃ O	$1.22 \times 10^{-10} (T_g/298)^{0.05} \exp(0.57/(RT_g))$	(112)
$CO_2 + M$	\rightarrow	CO + O + M	$3.91 \times 10^{-10} \exp(-49430/T_g)$	(113)
$CO_2 + C$	\rightarrow	$CO + O_2$	$2.80 \times 10^{-11} \exp(-26500/T_g)$	(113)
$CO_2 + C$	\rightarrow	2CO	1.00×10^{-15}	(113)
CO + O + M	\rightarrow	$CO_2 + M$	$8.20 \times 10^{-34} \exp(-1510/T_g)$	(113)
$O_2 + CO$	\rightarrow	$CO_2 + O$	$4.20 \times 10^{-12} \exp(-2400/T_g)$	(113)
$CO + O_3$	\rightarrow	$CO_2 + O_2$	4.00×10^{-25}	(113)
CO + C + M	\rightarrow	$C_2O + M$	6.50×10^{-32}	(113)
C + O + M	\rightarrow	CO + M	2.14 × $10^{-29} (T_g/298)^{-3.08} \exp(-2114/T_g)$	(113)
$O + C_2O$	\rightarrow	CO + CO	5.00×10^{-11}	(113)
O_2+C_2O	\rightarrow	$CO_2 + CO$	3.30×10^{-13}	(113)
$O_2 + O + M$	\rightarrow	$O_3 + M$	$8.20 \times 10^{-34} \exp(-1510/T_g)$	(113)
$O + O_3$	\rightarrow	$O_2 + O_2$	$3.10 \times 10^{-14} (T_g/298)^{0.75} \exp(-1575/T_g)$	(113)
$O_3 + M$	\rightarrow	$O_2 + O + M$	$1.12 \times 10^{-34} \exp(-11430/T_g)$	(114)
O + O + M	\rightarrow	$O_2 + M$	$1.27 \times 10^{-32} (T_g/298)^{-1.00} \exp(-170/T_g)$	(113)

$O_2 + O_2$	\rightarrow	$O_3 + O$	$2.10 \times 10^{-11} \exp(-498000/T_g)$	(53)
$N_2(A^3\Sigma_u^+) + O$	\rightarrow	NO + N(2D)	7.00×10^{-12}	(53)
$N_2(A^3\Sigma_u^+) + O$	\rightarrow	$N_2 + O(1S)$	2.10×10^{-11}	(53)
$N_2(A^3\Sigma_u^+) + O_2$	\rightarrow	$N_2 + O + O(1D)$	$2.10 \times 10^{-12} (T_g/300)^{0.55}$	(53)
$N_2(A^3\Sigma_u^+) + O_2$	\rightarrow	$N_2+O_2\\$	2.54×10^{-12}	(53)
$N_2(C^3\Pi_u) + O_2$	\rightarrow	$N_2 + O + O(1S)$	3.00×10^{-10}	(53)
$N_2(A^3\Sigma_u^+) + O_2$	\rightarrow	$N_2O + O$	$2.00 \times 10^{-14} (T_g/300)^{0.55}$	(53)
$N_2(A^3\Sigma_u^+) + NO$	\rightarrow	$N_2 + NO$	$6.90 imes 10^{-11}$	(53)
$N_2(A^3\Sigma_u^+) + N_2O$	\rightarrow	$N_2 + N + NO$	$1.00 imes 10^{-11}$	(53)
$N_2(A^3\Sigma_u^+) + NO_2$	\rightarrow	$N_2 + O + NO$	$1.00 imes 10^{-12}$	(53)
$N_2(B^3\Pi_g) + O_2$	\rightarrow	$N_2 + O + NO$	$3.00 imes 10^{-10}$	(53)
$N_2(B^3\Pi_g) + NO$	\rightarrow	$N_2(A^3\Sigma_u^+) + NO$	$2.40 imes 10^{-10}$	(53)
$N_2(a'\Sigma_u^-) + O_2$	\rightarrow	$N_2 + O + O \\$	$2.80 imes 10^{-11}$	(53)
$N_2(a'\Sigma_u^-) + NO$	\rightarrow	$N_2 + N + O$	$3.60 imes 10^{-10}$	(53)
$N + N + O_2$	\rightarrow	$N_2(A^3\Sigma_u^+) + O_2$	$1.70 imes 10^{-33}$	(53)
N + N + O	\rightarrow	$N_2(A^3\Sigma_u^+)+O$	$1.00 imes 10^{-32}$	(53)
N + N + NO	\rightarrow	$N_2(A^3\Sigma_u^+) + NO$	$1.70 imes 10^{-33}$	(53)
$N+N+O_2 \\$	\rightarrow	$N_2 \bigl(B^3 \Pi_g \bigr) + O_2$	2.40×10^{-33}	(53)
N + N + O	\rightarrow	$N_2(B^3\Pi_g) + O$	$1.40 imes 10^{-32}$	(53)
N + N + NO	\rightarrow	$N_2(B^3\Pi_g) + NO$	$2.40 imes 10^{-33}$	(53)
N(2D) + O	\rightarrow	N + O(1D)	$4.00 imes 10^{-13}$	(53)
$N(2D) + O_2$	\rightarrow	NO + O	$5.20 imes 10^{-12}$	(53)
N(2D) + NO	\rightarrow	$N_2 + O$	$1.80 imes 10^{-10}$	(53)
$N(2D) + N_2O$	\rightarrow	$N_2 + NO$	$3.50 imes 10^{-12}$	(53)

N(2P) + O	\rightarrow	N + O	$1.00 imes 10^{-12}$	(53)
$N(2P) + O_2$	\rightarrow	NO + O	$2.60 imes 10^{-12}$	(53)
N(2P) + NO	\rightarrow	$N_2(A^3\Sigma_u^+) + O$	3.00×10^{-11}	(53)
O(1D) + O	\rightarrow	O + O	$8.00 imes 10^{-12}$	(53)
$O(1D) + O_2$	\rightarrow	$O + O_2$	$6.40 \times 10^{-12} \exp(67/T_g)$	(53)
$O(1D) + N_2$	\rightarrow	$O + N_2$	$2.30 imes 10^{-11}$	(53)
O(1S) + O	\rightarrow	O(1D) + O	$5.00 \times 10^{-11} \exp(-300/T_g)$	(53)
O(1S) + N	\rightarrow	O + N	1.00×10^{-12}	(53)
O(1S) + O ₂	\rightarrow	O(1D) + O ₂	$1.30 \times 10^{-12} \exp(-850/T_g)$	(53)
O(1S) + O ₂	\rightarrow	0+0+0	$3.00 \times 10^{-12} \exp(-850/T_g)$	(53)
O(1S) + N ₂	\rightarrow	$O + N_2$	$1.00 imes 10^{-17}$	(53)
N + NO	\rightarrow	$O + N_2$	$1.80 \times 10^{-11} \left(T_g / 300 \right)^{0.50}$	(53)
$N + O_2$	\rightarrow	O + NO	$3.20 \times 10^{-12} (T_g/298)^{1.00} \exp(-3150/T_g)$	(53)
$N + NO_2$	\rightarrow	$O + O + N_2$	9.10×10^{-13}	(53)
$N + NO_2$	\rightarrow	$O + N_2O$	3.00×10^{-12}	(53)
$N + NO_2$	\rightarrow	$O_2 + N_2$	$7.00 imes 10^{-13}$	(53)
$N + NO_2$	\rightarrow	NO + NO	2.30×10^{-12}	(53)
$O+N_2(g,v)$	\rightarrow	N + NO	$3.10 \times 10^{-10} \exp(-38370/T_g)$	(53)
O + NO	\rightarrow	$\mathbf{N} + \mathbf{O}_2$	7.50 × $10^{-12} (T_g/300)^{1.00} \exp(-19500/T_g)$	(53)
O + NO	\rightarrow	NO ₂	$4.20 imes 10^{-18}$	(53)
$O + N_2O$	\rightarrow	$O_2 + N_2$	8.13 × $10^{-12} \exp(-14000/T_g)$	(53)
$O + N_2O$	\rightarrow	2NO	$1.50 \times 10^{-10} \exp(-14090/T_g)$	(53)
$O + NO_2$	\rightarrow	$NO + O_2$	9.10 × $10^{-12} (T_g/300)^{0.18}$	(53)
$O + NO_3$	\rightarrow	$NO_2 + O_2$	$1.00 imes 10^{-11}$	(53)

$$N_2(g, v) + O_2 \rightarrow O + N_2O \qquad 2.50 \times 10^{-10} \exp(-50390/T_g)$$
 (53)

NO + NO
$$\rightarrow$$
 N + NO₂ $3.30 \times 10^{-16} (T_g/300)^{-0.50} \exp(-39200/T_g)$ (53)

NO + NO
$$\rightarrow$$
 O + N₂O 2.20 × 10⁻¹²exp(-32100/T_g) (53)
NO + NO \rightarrow O₂ + N₂ 5.10 × 10⁻¹³exp(-33660/T_g) (53)

NO + O₂
$$\rightarrow$$
 O + NO₂ 2.80 × 10⁻¹² exp(-23400/T_g) (53)

$$NO + N_2O \longrightarrow N_2 + NO_2 \qquad 4.60 \times 10^{-10} \exp(-25170/T_g)$$
(53)
$$NO_2 + NO_2 \longrightarrow NO + NO + O_2 \qquad 3.30 \times 10^{-12} \exp(-13500/T_g)$$
(53)

$$NO_2 + NO_2 \rightarrow NO + NO_3 \quad 4.50 \times 10^{-10} exp(-18500/T_g)$$
 (53)

$$NO_2 + O_3 \rightarrow O_2 + NO_3 \qquad 1.20 \times 10^{-13} \exp(-2450/T_g)$$
 (53)

$$NO_2 + NO_3 \rightarrow NO + O_2 + NO_2 = 2.30 \times 10^{-13} \exp(-1600/T_g)$$
 (53)

N + N + O

N + N + NO

 \rightarrow

 \rightarrow

 $O_2 + NO_3$

 $NO_3 + NO_3$

 $N_2(g,\,v)+O_2$

 $N_2(g, v) + O$

 $N_2(g, v) + NO$

 $O_2 + O_2$

$$\rightarrow \text{NO}_2 + \text{O}_3 \qquad 1.50 \times 10^{-12} \exp(-15020/T_g)$$
 (53)

$$\rightarrow O_2 + NO_2 + NO_2 \qquad 4.30 \times 10^{-12} \exp(-3850/T_g)$$
(53)

N + N + O₂

$$5.40 \times 10^{-8} (1 - \exp(-3354/T_g)) \exp(-113200$$

$$/T_g)$$
(53)

$$5.40 \times 10^{-8} (1 - \exp(-3354/T_g)) \exp(-113200$$
(53)

$$5.40 \times 10^{-8} (1 - \exp(-3354/T_g)) \exp(-113200$$
(53)

$$6.10 \times 10^{-9} (1)$$

$$O_2 + N_2 \qquad \rightarrow O + O + N_2 \qquad -\exp(-2240/T_g))\exp(-59380 \qquad (53)$$

$$/T_g)$$

$$3.60 \times 10^{-8} (1)$$

$$\rightarrow O + O + O_2 \qquad -\exp(-2240/T_g))\exp(-59380 \qquad (53)$$

$$/T_g)$$

			$1.28 \times 10^{-7} (1)$	
$O_2 + O$	\rightarrow	O + O + O	$-\exp(-2240/T_g))\exp(-59380/T_g)$	(53)
$O_2 + N$	\rightarrow	O + O + N	6.10 × 10 ⁻⁹ (1 - exp(-2240/ T_g))exp(-59380 / T_g)	(53)
$O_2 + NO$	\rightarrow	O + O + NO	6.10 × 10 ⁻⁹ (1 - exp(-2240/ T_g))exp(-59380 / T_g)	(53)
$NO + N_2$	\rightarrow	$N + O + N_2$	$8.70 \times 10^{-9} \exp(-75994/T_g)$	(53)
$NO + O_2$	\rightarrow	$N + O + O_2$	8.70 × $10^{-9} \exp(-75994/T_g)$	(53)
NO + O	\rightarrow	N + O + O	$1.74 \times 10^{-7} \exp(-75994/T_g)$	(53)
NO + N	\rightarrow	N + O + N	$1.74 \times 10^{-7} \exp(-75994/T_g)$	(53)
NO + NO	\rightarrow	N + O + NO	$1.74 \times 10^{-7} \exp(-75994/T_g)$	(53)
$N_2O + N_2$	\rightarrow	$N_2 + O + N_2 \\$	$1.20 \times 10^{-8} (T_g/300)^{-1.00} \exp(-29000/T_g)$	(53)
$N_2O + O_2$	\rightarrow	$N_2 + O + O_2 \\$	$1.20 \times 10^{-8} (T_g/300)^{-1.00} \exp(-29000/T_g)$	(53)
$N_2O + NO$	\rightarrow	$N_2 + O + NO$	2.40 × $10^{-8} (T_g/300)^{-1.00} \exp(-29000/T_g)$	(53)
N_2O+N_2O	\rightarrow	$N_2 + O + N_2 O \\$	4.80 × $10^{-8} (T_g/300)^{-1.00} \exp(-29000/T_g)$	(53)
$NO_2 + N_2$	\rightarrow	$NO + O + N_2$	6.80 × $10^{-6} (T_g/300)^{-2.00} \exp(-36180/T_g)$	(53)
$NO_2 + O_2$	\rightarrow	$NO + O + O_2$	5.30 × $10^{-6} (T_g/300)^{-2.00} \exp(-36180/T_g)$	(53)
$NO_2 + NO$	\rightarrow	NO + O + NO	5.30 × $10^{-5} (T_g/300)^{-2.00} \exp(-36180/T_g)$	(53)
$NO_2 + NO_2$	\rightarrow	$NO + O + NO_2$	5.30 × $10^{-5} (T_g/300)^{-2.00} \exp(-36180/T_g)$	(53)
$NO_3 + N_2$	\rightarrow	$NO_2 + O + N_2$	$3.10 \times 10^{-5} (T_g/300)^{-2.00} \exp(-25000/T_g)$	(53)

$$O + O_2 + N_2(g, v) \rightarrow O_2 + N_2(g, v) \qquad Max(5.80 \times 10^{-34} (T_g/300)^{-2.80}, 5.40 \times (53))$$

 \rightarrow

$$10^{-34} (T_g/300)^{-1.90}$$
)

$$O + O_2 + O_2 \longrightarrow O_3 + O_2 \qquad 7.60 \times 10^{-34} (T_g/300)^{-1.90}$$
 (53)

$$O + O_2 + NO \longrightarrow O_3 + NO \qquad 7.60 \times 10^{-34} (T_g/300)^{-1.90}$$
 (53)

$$O + O_2 + N \longrightarrow O_2 + N \qquad \qquad Max(3.90 \times 10^{-33} (T_g/300)^{-1.99}, 1.10 \times 10^{-34} \exp(1060/T_g))$$
(53)

$$O + O_2 + H_2 O \longrightarrow O_3 + H_2 O \qquad 9.90 \times 10^{-34} \exp(510/T_g)$$
 (53)

$$O + N_2(g, v) + M \longrightarrow \frac{N_2O + N_2(g, v) +}{M} = 3.90 \times 10^{-35} \exp(-10400/T_g)$$
 (53)

ъ т

ът

$$O + NO + N_2(g, v) \rightarrow NO_2 + N_2(g, v) \qquad 1.20 \times 10^{-31} (T_g/300)^{-1.80}$$
 (53)

$$O + NO + O_2 \rightarrow NO_2 + O_2 \qquad 0.94 \times 10^{-31} (T_g/300)^{-1.80}$$
 (53)

$$O + NO + NO \rightarrow NO_2 + NO \qquad 0.94 \times 10^{-31} (T_g/300)^{-1.80}$$
 (53)

$$O + NO_2 + N_2(g, v) \rightarrow NO_3 + N_2(g, v) = 8.90 \times 10^{-32} (T_g/300)^{-2.00}$$
 (53)

$$O + NO_2 + O_2 \longrightarrow NO_3 + O_2 \qquad 8.90 \times 10^{-32} (T_g/300)^{-2.00}$$
 (53)

$$O + NO_2 + N \rightarrow NO_3 + N \qquad 1.16 \times 10^{-30} (T_g/300)^{-2.00}$$
 (53)

$$O + NO_2 + O \longrightarrow NO_3 + O \qquad 1.16 \times 10^{-30} (T_g/300)^{-2.00}$$
 (53)

$$O + NO_2 + NO \rightarrow NO_3 + NO = 2.14 \times 10^{-31} (T_g/300)^{-2.00}$$
 (53)

$$NO_2 + NO_3 + M \rightarrow N_2O_5 + M \qquad 3.60 \times 10^{-30} (T_g/300)^{-4.10}$$
 (53)

$$CO + NO_2 \qquad \rightarrow \quad CO_2 + NO \qquad 1.48 \times 10^{-10} \exp(-16967/T_g) \tag{45}$$

NO + O + CO₂
$$\rightarrow$$
 CO₂ + NO₂ $1.13 \times 10^{-25} (T_g)^{-2.16} \exp(-529/T_g)$ (115)

$$CN + O \rightarrow CO + N \qquad 3.40 \times 10^{-11} \exp(-210/T_g)$$
 (57)

$$CO + N \rightarrow CN + O \qquad 1.00 \times 10^{12} (T_g)^{-0.50} \exp(-38600/T_g)$$
(115)

CN + NO
$$\rightarrow$$
 ONCN $4.30 \times 10^{-12} (T_g)^{-6.20} \exp(-2455/T_g)$ (115)

$$CN + NO_{2} \rightarrow NCO + NO \qquad 4.00 \times 10^{-11} \exp(186/T_{g})$$
(115)
$$CN + CN + N_{2}(g, v) \rightarrow C_{2}N_{2} + N_{2}(g, v) \qquad 9.44 \times 10^{-23} (T_{g})^{-2.61}$$
(115)

(115)

(115)

 $CN + NO_2$

$$CN + CN + CO_2 \rightarrow C_2 N_2 + CO_2 \qquad 1.50 \times 10^{-22} (T_g)^{-2.62}$$
 (115)

NCO + NO
$$\rightarrow$$
 N₂O + CO $5.61 \times 10^{-12} \exp(196/T_g)$ (115)
NCO + NO \rightarrow N₂ + CO₂ $7.48 \times 10^{-12} \exp(196/T_g)$ (115)

NCO + NO
$$\rightarrow$$
 N₂ + CO + O $3.91 \times 10^{-12} \exp(196/T_g)$ (115)

$$NCO + NO_2 \rightarrow CO + 2NO \qquad 3.00 \times 10^{-11}$$
 (115)

$$NCO + NO_2 \qquad \rightarrow \quad CO_2 + N_2O \qquad 0.60 \times 10^{-11} \tag{115}$$

NCO + CN
$$\rightarrow$$
 NCN + CO 3.00×10^{-11} (115)

$$NCO + NCO \longrightarrow N_2 + 2CO \qquad 3.00 \times 10^{-11}$$
(115)

$$N_2(B^3\Pi_g) \longrightarrow N_2(A^3\Sigma_u^+) \qquad 1.34 \times 10^5$$
(53)

$$\begin{split} N_2(a'\Sigma_u^-) & \rightarrow & N_2 & 1.00 \times 10^2 \end{split} \tag{53} \\ N_2(C^3\Pi_u) & \rightarrow & N_2\big(B^3\Pi_g\big) & 2.45 \times 10^7 \end{aligned} \tag{53}$$

$$N_2(A^3\Sigma_u^+) + N_2 \longrightarrow N_2 + N_2 \qquad 3.00 \times 10^{-16}$$
 (53)

$$N_2(A^3\Sigma_u^+) + N \longrightarrow N_2 + N \qquad 2.00 \times 10^{-12}$$
 (53)

$$N_2(A^3\Sigma_u^+) + N \longrightarrow N_2 + N(2P) \qquad 4.00 \times 10^{-11} (T_g/300)^{-0.667}$$
 (53)

$$\begin{array}{ccc} N_{2}(A^{3}\Sigma_{u}^{+}) & & + \\ N_{2}(A^{3}\Sigma_{u}^{+}) & & & & N_{2} + N_{2}(B^{3}\Pi_{g}) & & 3.00 \times 10^{-10} \end{array}$$
 (53)

$$N_2(A^3\Sigma_u^+) + N_2(A^3\Sigma_u^+) \longrightarrow N_2 + N_2(C^3\Pi_u) \qquad 1.50 \times 10^{-10}$$
(53)

$$N_2 + N_2 (B^3 \Pi_g) \longrightarrow N_2 (A^3 \Sigma_u^+) + N_2 \qquad 3.00 \times 10^{-11}$$
(53)

$$N_2 + N_2 (B^3 \Pi_g) \longrightarrow N_2 + N_2 \qquad 2.00 \times 10^{-12}$$
(53)

$$N_2(a'\Sigma_u^-) + N_2 \longrightarrow N_2 + N_2(B^3\Pi_g) \qquad 1.90 \times 10^{-13}$$
(53)

$N_2(C^3\Pi_u) + N_2$	\rightarrow	$N_2(a'\Sigma_u^-) + N_2$	1.00×10^{-11}	(53)
$N(2D) + N_2$	\rightarrow	$N + N_2$	$2.30 \times 10^{-14} \exp(-510/T_g)$	(53)
N(2P) + N	\rightarrow	N + N	$1.80 imes 10^{-12}$	(53)
N(2P) + N	\rightarrow	N(2D) + N	0.60×10^{-12}	(53)
$N + N + N_2$	\rightarrow	$N_2 + N_2 (B^3 \Pi_g)$	$2.40 imes 10^{-33}$	(53)
$N + N + N_2$	\rightarrow	$N_2 + N_2 (A^3 \Sigma_u^+)$	$1.70 imes 10^{-33}$	(53)
N(2P) + N ₂	\rightarrow	$N + N_2$	$0.60 imes 10^{-13}$	(53)
$N_2(A^3\Sigma_u^+)$	\rightarrow	N_2	0.50	(53)
$N_2(g,v) + N_2$	\rightarrow	$N + N + N_2$	$5.40 \times 10^{-8} (1 - \exp(-3354/T_g)) \exp(-113200/T_g)$	(53)
$N_2(g,v)+N$	\rightarrow	N + N + N	$3.96 \times 10^{-7} (1 - \exp(-3354/T_g)) \exp(-113200/T_g)$	(53)
N + O + M	\rightarrow	NO + M	$1.00 \times 10^{-32} (T_g/300)^{-0.50}$	(53)
$N + O_3$	\rightarrow	$NO + O_3$	$5.00 \times 10^{-12} \exp(-650/T_g)$	(53)
$NO + NO_2 + M$	\rightarrow	$N_2O_3 + M$	$9.10 imes 10^{-13}$	(53)
$N_2O_3 + M$	\rightarrow	$NO + NO_2 + M$	$1.97 \times 10^{-7} (T_g/300)^{-8.70} \exp(-4880/T_g)$	(53)
$NO_2 + NO_2 + M$	\rightarrow	N_2O_4+M	$1.40 \times 10^{-33} (T_g/300)^{-3.80}$	(53)
$N_2O_4 + M$	\rightarrow	$NO_2 + NO_2 + M$	$1.30 \times 10^{-5} (T_g/300)^{-3.80} \exp(-6460/T_g)$	(53)
$CH_4 + CN$	\rightarrow	$CH_3 + HCN$	$1.00 \times 10^{-11} \exp(-857/T_g)$	(116)
$N + CH_3$	\rightarrow	$HCN + H_2$	$1.40 imes 10^{-11}$	(116)
$N + CH_3$	\rightarrow	$H_2CN + H$	1.18×10^{-10}	(116)
$N + CH_2$	\rightarrow	HCN + H	$5.00 \times 10^{-11} \exp(-250/T_g)$	(116)
$N + CH_2$	\rightarrow	CN + 2H	$1.60 imes 10^{-11}$	(116)
$N + CH_2$	\rightarrow	$CN + H_2$	$1.60 imes 10^{-11}$	(116)

$C + N_2$	\rightarrow	CN + N	$1.04 \times 10^{-10} \exp(-23000/T_g)$	(116)
$N + C_2 H_2$	\rightarrow	CH + HCN	$2.70 imes 10^{-15}$	(117)
$N + C_2 H_4$	\rightarrow	$HCN + CH_3$	$3.30 \times 10^{-14} \exp(-353/T_g)$	(117)
$N + C_3 H_6$	\rightarrow	$HCN + C_2H_5$	$1.94 \times 10^{-13} \exp(-654/T_g)$	(117)
$N + H_2$	\rightarrow	NH + H	$1.69 \times 10^{-9} \exp(-18095/T_g)$	(31)
$N + H_2 + NH_3$	\rightarrow	$NH_2 + NH_3$	$1.00 imes 10^{-36}$	(118)
$H_2 + CN$	\rightarrow	H + HCN	$4.98 \times 10^{-19} (T_g)^{2.45} \exp(-1118/T_g)$	(119)
$H + HCN + H_2$	\rightarrow	$H_2CN+N_2 \\$	$4.84 \times 10^{-30} \exp(-2440/T_g)$	(120)
$H + H + CH_4$	\rightarrow	$H_2 + CH_4$	$6.00 imes 10^{-33}$	(61)
$H + H + CO_2$	\rightarrow	$H_2 + CO_2$	$6.00 imes 10^{-33}$	(61)
$H + H + O_2$	\rightarrow	H_2+O_2	$6.00 imes 10^{-33}$	(61)
H + H + CO	\rightarrow	$H_2 + CO$	$6.00 imes 10^{-33}$	(61)
$H + H + H_2O$	\rightarrow	$H_2 + H_2 O$	6.00×10^{-33}	(61)
$H + H + H_2$	\rightarrow	$H_2 + H_2$	$4.00 \times 10^{-32} (T_g/300)^{-1.00}$	(31)
$H+H+N_2 \\$	\rightarrow	$H_2 + N_2 \\$	$2.00 \times 10^{-32} (T_g/300)^{-1.00}$	(31)
$H+N+CH_4 \\$	\rightarrow	$NH + CH_4$	$5.00 imes 10^{-32}$	(31)
$H + N + CO_2$	\rightarrow	$NH + CO_2$	$5.00 imes 10^{-32}$	(31)
$H + N + O_2$	\rightarrow	$\mathrm{NH} + \mathrm{O}_2$	$5.00 imes 10^{-32}$	(31)
H + N + CO	\rightarrow	NH + CO	$5.00 imes 10^{-32}$	(31)
$H+N+H_2O$	\rightarrow	$NH + H_2O$	$5.00 imes 10^{-32}$	(31)
$H + N + H_2$	\rightarrow	$NH + H_2$	$1.00 imes 10^{-31}$	(31)
$H + N + N_2$	\rightarrow	$NH + N_2$	$5.00 imes 10^{-32}$	(31)
$H + NH_2$	\rightarrow	$NH + H_2$	$1.00 imes 10^{-11}$	(120)
$H + NH_2 + M$	\rightarrow	NH ₃ + M	$6.00 imes 10^{-30}$	(118)

H + NH	\rightarrow	$N + H_2$	$1.70 imes 10^{-11}$	(31)
$H_2CN + H$	\rightarrow	$HCN + H_2$	$5.02 \times 10^{-10} (T_g/300)^{0.50}$	(120)
$N_2 + CN$	\rightarrow	$N_2 + C + N$	$4.15 \times 10^{-10} \exp(-70538/T_g)$	(119)
N + CH	\rightarrow	CN + H	$2.10 imes 10^{-11}$	(120)
$H_2CN + N$	\rightarrow	HCN + NH	6.70×10^{-11}	(119)
$N+N+H_2 \\$	\rightarrow	$N_2 + H_2$	$2.50 \times 10^{-34} \exp(-500/T_g)$	(31)
$N_2H_4 + N$	\rightarrow	$N_2H_2 + NH_2$	1.30×10^{-13}	(118)
$N_2H_4 + H$	\rightarrow	$N_2H_3 + H_2$	$1.20 \times 10^{-11} \exp(-1260/T_g)$	(118)
N_2H_3+H	\rightarrow	$NH_2 + NH_2$	$2.70 imes 10^{-12}$	(118)
$N_2H_4 + NH_2$	\rightarrow	$NH_3 + N_2H_3$	$5.20 imes 10^{-13}$	(118)
$N_2H_3 + N_2H_3$	\rightarrow	$NH_3 + NH_3 + N_2$	$5.00 imes 10^{-12}$	(118)
$N_{2}H_{3} + N_{2}H_{3}$	\rightarrow	$N_2H_4+N_2H_2$	$2.00 imes 10^{-11}$	(118)
$NH_3 + H$	\rightarrow	$H_2 + NH_2$	$6.50 \times 10^{-13} (T_g/300)^{2.76} \exp(5135/T_g)$	(118)
$N_2H_2 + H$	\rightarrow	$N_2\!+H_2\!+H$	$4.50 \times 10^{-13} (T_g/300)^{2.63} \exp(115/T_g)$	(118)
$N_2H_2 + NH_2$	\rightarrow	$N_2 + H + NH_3$	$1.50 \times 10^{-13} (T_g/300)^{4.05} \exp(810/T_g)$	(118)
$NH_3 + NH + NH_3$	\rightarrow	$N_2H_4 + NH_3$	1.00×10^{-33}	(118)
$NH_2 + H_2$	\rightarrow	$NH_3 + H$	$2.10 \times 10^{-12} \exp(-4277/T_g)$	(118)
$NH_2 + NH$	\rightarrow	N_2H_3	$1.20\times10^{\text{-}10}$	(118)
$NH_2 + NH_2 + NH_3$	\rightarrow	$N_2H_4 + NH_3$	$6.90 imes 10^{-30}$	(118)
$NH_2 + NH_2$	\rightarrow	$H_2 + N_2 H_2$	$6.60 \times 10^{-11} \exp(-6000/T_g)$	(120)
$NH_2 + NH_2$	\rightarrow	$NH + NH_3$	$8.30 \times 10^{-11} \exp(-5030/T_g)$	(120)
$NH_2 + NH_2$	\rightarrow	N_2H_4	$8.00 imes 10^{-11}$	(120)
$NH_2 + N$	\rightarrow	$N_2 + H + H$	$1.20\times10^{\text{-}10}$	(118)
$NH + NH_2$	\rightarrow	$H+N_2H_2$	$5.25 \times 10^{-11} \exp(-500/T_g)$	(120)

NH + NH	\rightarrow	N_2H_2	$3.50 imes 10^{-12}$	(118)
NH + NH + M	\rightarrow	$H_2 + N_2 + M$	$1.00 imes 10^{-33}$	(119)
NH + NH	\rightarrow	$H + N_2 H$	$2.29 \times 10^{-11} (T_g/300)^{0.50} \exp(-500/T_g)$	(120)
NH + NH	\rightarrow	$NH_2 + N$	$5.72 \times 10^{-12} (T_g/300)^{0.50} \exp(-1000/T_g)$	(120)
NH + NH	\rightarrow	$N_2 + H + H$	$1.20 imes 10^{-9}$	(31)
NH + NH	\rightarrow	$H_2 + N_2 \\$	$1.70\times10^{\text{-}11}$	(31)
NH + N	\rightarrow	$H + N_2$	$2.50 imes 10^{-11}$	(31)
$H_2(v) + N_2$	\rightarrow	$H_2 + N_2$	$1.00 imes 10^{-13}$	(31)
$N_2(v) + N_2$	\rightarrow	$N_2 + N_2$	$1.00 imes 10^{-13}$	(31)
$H_2(v) + N$	\rightarrow	$H_2 + N$	$1.00 imes 10^{-13}$	(31)
$N_2(v) + N$	\rightarrow	$N_2 + N$	$1.00 imes 10^{-13}$	(31)
$H_2(v) + H_2$	\rightarrow	$H_2 + H_2$	$1.00 imes 10^{-13}$	(31)
$N_2(v) + H_2$	\rightarrow	$N_2 + H_2$	$1.00 imes 10^{-13}$	(31)
$H_2(e) + N_2$	\rightarrow	$H_2 + N_2$	$1.00 imes 10^{-13}$	(31)
$H_2(e) + N$	\rightarrow	$H_2 + N$	$1.00 imes 10^{-13}$	(31)
$H(2P) + N_2$	\rightarrow	$H + N_2$	$1.00 imes 10^{-13}$	(31)
H(2P) + N	\rightarrow	H + N	$1.00 imes 10^{-13}$	(31)
$N_2(A^3\Sigma_u^+) + CH_4$	\rightarrow	N_2+CH_3+H	$1.50 imes 10^{-12}$	(119)
$N_2(a'\Sigma_u^-) + CH_4$	\rightarrow	$N_2+C+2H_2\\$	$3.00 imes 10^{-10}$	(119)
$N_2(a'\Sigma_u^-) + CH_4$	\rightarrow	N_2+CH_3+H	$3.00 imes 10^{-10}$	(119)
$N_2(a'\Sigma_u^-) + CH_4$	\rightarrow	$N_2+CH_2+H_2\\$	$3.00 imes 10^{-10}$	(121)
$N_2(A^3\Sigma_u^+) + CH_4$	\rightarrow	$N_2+CH_2+H_2\\$	$1.35 imes 10^{-13}$	(120)
$N_2(A^3\Sigma_u^+) + C_3H_8$	\rightarrow	$N_2 + C_3 H_6 + H_2$	$1.30 imes 10^{-12}$	(119)
$N_2(a'\Sigma_u^-) + C_3H_8$	\rightarrow	$N_2 + C_3 H_6 + H_2$	$3.00 imes 10^{-10}$	(120)
$N_2(A^3\Sigma_u^+) + C_3H_6$	\rightarrow	$N_2 + C_3 H_5 + H$	1.40×10^{10}	(120)

$N_2(a'\Sigma_u^-) + C_3H_6$	\rightarrow	$N_2+C_3H_5+H$	$1.40 imes 10^{-10}$	(120)
$N_2(A^3\Sigma_u^+) + C_3H_6$	\rightarrow	$N_2+C_2H_3+CH_3\\$	1.40×10^{10}	(120)
$N_2(a'\Sigma_u^-) + C_3H_6$	\rightarrow	$N_2+C_2H_3+CH_3\\$	$1.40\times10^{\text{-10}}$	(120)
$N_2(A^3\Sigma_u^+) + C_2H_6$	\rightarrow	$N_2 + C_2 H_4 + H_2$	$1.80 \times 10^{-10} \exp(-1980/T_g)$	(120)
$N_2(a'\Sigma_u^-) + C_2H_6$	\rightarrow	$N_2+C_2H_4+H_2\\$	$5.00 \times 10^{-8} \exp(-1980/T_g)$	(120)
$N_2(A^3\Sigma_u^+) + C_2H_4$	\rightarrow	$N_2+C_2H_3+H$	$5.50 imes 10^{-11}$	(120)
$N_2(a'\Sigma_u^-) + C_2H_4$	\rightarrow	$N_2+C_2H_3+H$	$2.00 imes 10^{-10}$	(120)
$N_2(A^3\Sigma_u^+) + C_2H_4$	\rightarrow	$N_2 + C_2 H_2 + H_2$	$1.10 imes 10^{-10}$	(120)
$N_2(a'\Sigma_u^-) + C_2H_4$	\rightarrow	$N_2 + C_2 H_2 + H_2$	$2.00 imes 10^{-10}$	(120)
$N_2(A^3\Sigma_u^+) + C_2H_2$	\rightarrow	$N_2+C_2H+H_2\\$	$2.00 imes 10^{-10}$	(120)
$N_2(a'\Sigma_u^-) + C_2H_2$	\rightarrow	$N_2+C_2H+H_2\\$	3.00×10^{-10}	(120)
$N_2(A^3\Sigma_u^+) + CH_3$	\rightarrow	N_2+CH_2+H	$4.50 imes 10^{-11}$	(119)
$N_2(A^3\Sigma_u^+) + N_2(A^3\Sigma_u^+)$	\rightarrow	$N_2(A^3\Sigma_u^+)+N_2$	2.00×10^{-12}	(31)
$N_2(A^3\Sigma_u^+) + N_2(a'\Sigma_u^-)$	\rightarrow	$N_2^{+} + N_2 + e^{-}$	1.00×10^{-12}	(31)
$N_2(a'\Sigma_u^-) + N_2(a'\Sigma_u^-)$	\rightarrow	$N_2^+ + N_2 + e^-$	5.00×10^{-13}	(31)
$N_2(a'\Sigma_u^-) + N_2(a'\Sigma_u^-)$	\rightarrow	$N_2(a'\Sigma_u^-) + N_2$	2.00×10^{-12}	(31)
$N_2(a'\Sigma_u^-) + N_2$	\rightarrow	$N_2 + N_2$	$3.70 imes 10^{-16}$	(31)
$N_2(a'\Sigma_u^-) + N$	\rightarrow	$N_2 + N$	2.00×10^{-11}	(31)
$N_2(A^3\Sigma_u^+) + HCN$	\rightarrow	$N_2 + CN + H$	6.00×10^{-12}	(119)
N(2P) + H ₂	\rightarrow	NH + H	$4.60 \times 10^{-11} \exp(-880/T_g)$	(31)
$N(2P) + NH_3$	\rightarrow	$NH + NH_2$	$5.00 imes 10^{-11}$	(122)
N(2P) + M	\rightarrow	N + M	$2.40 imes 10^{-14}$	(31)
$CH_2 + O_2$	\rightarrow	$CO_2 + 2H$	$1.08 \times 10^{-11} \exp(-758/T_g)$	(123)
$CH_2 + O_2$	\rightarrow	CO + OH + H	$1.08 \times 10^{-11} \exp(-758/T_g)$	(123)
CH + O	\rightarrow	OH + C	$2.52 \times 10^{-11} \exp(-2380/T_g)$	(124)

C_2H_6+O	\rightarrow	$C_2H_5 + OH$	$6.10 \times 10^{-11} (T_g/298)^{0.60} \exp(-3680/T_g)$	(60)
H + OH	\rightarrow	$H_2 + O$	$6.86 \times 10^{-14} (T_g/298)^{2.80} \exp(-1950/T_g)$	(60)
$\mathrm{H} + \mathrm{HO}_2$	\rightarrow	$H_2O + O(1D)$	$3.92 \times 10^{-12} (T_g/298)^{1.55} \exp(80.59/T_g)$	(125)
$OH + CH_3OH$	\rightarrow	$H_2O + CH_2O + H$	$1.10 \times 10^{-12} (T_g/298)^{1.44} \exp(-56.53/T_g)$	(126)
$H_2O_2 + CH_2OH$	\rightarrow	$CH_3OH + HO_2$	6.56×10^{-17}	(85)
$CH_3 + O_2$	\rightarrow	$CH_2O + OH$	$5.65 \times 10^{-13} \exp(-4500/T_g)$	(127)
$CH_3 + O_2$	\rightarrow	$CH_3O + O$	$2.19 \times 10^{-10} \exp(-15756/T_g)$	(61)
$CH_3 + O_2$	\rightarrow	$CHO + H_2O$	1.66×10^{-12}	(128)
$CH_2 + CH_3O_2$	\rightarrow	$CH_2O + CH_3O$	3.01×10^{-11}	(60)
$N_2(A^3\Sigma_u^+) + CH_4$	\rightarrow	N_2+CH_4	3.20×10^{-15}	(129)
$N_2(B^3\Pi_g) + CH_4$	\rightarrow	$N_2(A^3\Sigma_u^+) + CH_4$	$2.85 imes 10^{-10}$	(129)
$N_2(B^3\Pi_g) + CO_2$	\rightarrow	$N_2(A^3\Sigma_u^+) + CO_2$	$1.90 imes 10^{-10}$	(130-131)
$N_2(B^3\Pi_g) + CH_4$	\rightarrow	$N_2 + CH_4$	$0.15 imes10^{-10}$	(129)
$N_2(B^3\Pi_g) + CO_2$	\rightarrow	$N_2 + CO_2$	$0.10 imes10^{-10}$	(130-131)
$N_2(a'\Sigma_u^-) + CH_4$	\rightarrow	$N_2+CH_4 \\$	$3.00 imes 10^{-10}$	(129)
$N_2(a'\Sigma_u^-) + CO_2$	\rightarrow	$N_2 + CO_2$	$2.50 imes 10^{-10}$	(132)
$N_2(A^3\Sigma_u^+) + CO_2$	\rightarrow	N_2+CO_2	$9.90 imes 10^{-15}$	(133)
$N_2(A^3\Sigma_u^+) + H_2$	\rightarrow	$N_2 + 2H$	$2.40 imes 10^{-15}$	(129)
$N_2(A^3\Sigma_u^+) + H_2$	\rightarrow	$N_2 + H_2 \\$	$2.10 imes 10^{-10}$	(129)
$N_2(A^3\Sigma_u^+) + H$	\rightarrow	$N_2 + H$	$2.10 imes 10^{-10}$	(129)
$N_2 \left(B^3 \Pi_g \right) + H_2$	\rightarrow	$N_2(A^3\Sigma_u^+) + H_2$	$0.24 imes10^{-10}$	(129)
$N_2(a'\Sigma_u^-) + H_2$	\rightarrow	$N_2 + 2H$	$2.60 imes 10^{-11}$	(129)
$N_2(a'\Sigma_u^-) + H$	\rightarrow	$N_2 + H$	$2.10 imes 10^{-10}$	(129)
$N_2(a'\Sigma_u^-) + H_2$	\rightarrow	$N_2 + H_2 \\$	$2.60 imes 10^{-10}$	(129)

$N_2 \big(B^3 \Pi_g \big) + N_2 O$	\rightarrow	$N_2 + N_2 + O \\$	$0.58 imes10^{-10}$	(134)
$N_2(B^3\Pi_g) + N_2O$	\rightarrow	$N_2 + N + NO$	$0.58 imes10^{-10}$	(134)
$N_2(A^3\Sigma_u^+) + CO_2$	\rightarrow	$N_2 + CO + O$	1.54×10^{-12}	(135)
$N_2(B^3\Pi_g) + CO_2$	\rightarrow	$N_2 + CO + O$	$8.50 imes 10^{-11}$	(134)
$O(1D) + CH_4$	\rightarrow	CH ₃ +OH	$3.11 imes 10^{-10}$	(136)
$O(1D) + CH_4$	\rightarrow	CH ₃ OH	$4.98 imes 10^{-11}$	(137)
$O(1D) + CH_4$	\rightarrow	$CH_2O + H_2$	$1.50 imes 10^{-11}$	(138)
$O(1D) + CH_4$	\rightarrow	$CH_2OH + H$	$6.90 imes 10^{-12}$	(138-139)
O(1D) + CO	\rightarrow	CO_2	$8.00 imes 10^{-11}$	(140)
O(1D) + CO	\rightarrow	CO + O	$5.00 imes 10^{-11}$	(141)
$CH_2O + O$	\rightarrow	$\rm CO + OH + H$	$1.00 imes 10^{-10}$	(142)
$CH_2O + O$	\rightarrow	CHO + OH	$1.78 \times 10^{-11} (T_g/298)^{0.57} \exp(-1390/T_g)$	(61)
$CH_2O + O_2$	\rightarrow	$CHO + HO_2$	$3.40 \times 10^{-11} \exp(-19605/T_g)$	(60)
$O_2(a1) + O$	\rightarrow	$O_2 + O$	$7.00\times10^{\text{-16}}$	(53)
$O_2(a1) + N$	\rightarrow	NO + O	$2.00 \times 10^{-14} \exp(-600/T_g)$	(53)
$O_2(a1) + O_2$	\rightarrow	$O_2 + O_2$	$3.80 \times 10^{-18} \exp(-205/T_g)$	(53)
$O_2(a1) + N_2$	\rightarrow	$O_2 + N_2$	$3.00 imes 10^{-21}$	(53)
$O_2(a1) + NO$	\rightarrow	$O_2 + NO$	$2.50 imes 10^{-21}$	(53)
$O_2(a1) + O_2(a1)$	\rightarrow	$O_2 + O_2(b1)$	$7.00 \times 10^{-28} (T_g)^{3.8} \exp(700/T_g)$	(53)
$O + O_3$	\rightarrow	$O_2 + O_2(a1)$	$1.00 \times 10^{-11} \exp(-2300/T_g)$	(53)
$O_2(b1) + O$	\rightarrow	$O + O_2(a1)$	8.10×10^{14}	(53)
$O_2(b1) + O$	\rightarrow	$O(1D) + O_2$	$3.40 \times 10^{-11} (T_g/300)^{-0.10} \exp(-4200/T_g)$	(53)
$O_2(b1) + O_2$	\rightarrow	$O_2 + O_2(a1)$	$4.30 \times 10^{-22} (T_g)^{2.4} \exp(-281/T_g)$	(53)
$O_2(b1) + N_2$	\rightarrow	$N_2 + O_2(a1)$	$1.70 \times 10^{-15} (T_g/300)^{1.0}$	(53)

\rightarrow	$NO + O_2(a1)$	$6.00 imes 10^{-14}$	(53)
\rightarrow	$2O_2 + O$	$2.20 imes 10^{-11}$	(53)
\rightarrow	$O + O_2(a1)$	1.00×10^{-12}	(53)
\rightarrow	$O + O_2(b1)$	$2.60 \times 10^{-11} \exp(67/T_g)$	(53)
\rightarrow	$O(1D) + + O_2(b1)$	2.90×10^{-11}	(53)
\rightarrow	30	3.20×10^{-11}	(53)
\rightarrow	N_4^{+}	4.00×10^{-12}	(53)
\rightarrow	$N_3^{\ +} + N_2$	1.00×10^{-11}	(53)
\rightarrow	$N_2^+ + e^-$	$2.70 \times 10^{-11} \exp(-67400/T_g)$	(53)
\rightarrow	OH + O	$1.83 \times 10^{-10} \exp(-3188/T_g)$	(143)
\rightarrow	OH + O	$1.83 \times 10^{-10} \exp(-1620/T_g)$	(143)
\rightarrow	$HO_2 + H$	$3.49 \times 10^{-11} \exp(-18216/T_g)$	(143)
\rightarrow	$HO_2 + H$	$3.49 \times 10^{-11} \exp(-11508/T_g)$	(143)
\rightarrow	$HO_2 + O$	$2.16 \times 10^{-11} \exp(-17132/T_g)$	(143)
\rightarrow	$HO_2 + O$	$2.16 \times 10^{-11} \exp(-10111/T_g)$	(143)
\rightarrow	C_3H_8	4.80×10^{-12}	(144)
\rightarrow	$CH_3O + CH_3O$	$4.00 imes 10^{-11}$	(60)
\rightarrow	$CH_3O + NO_2$	$4.20 \times 10^{-11} \exp(180/T_g)$	(145)
\rightarrow	OH + OH	$2.20 imes 10^{-10}$	(138)
\rightarrow	$CH_2OH + OH$	2.99×10^{-10}	(146)
\rightarrow	$CO + H_2O$	1.66×10^{-10}	(146)
\rightarrow	$CO_2 + M$	1.00×10^{-11}	(147)
\rightarrow	$CO_2 + M$	1.00×10^{-11}	(147)
	↑ ↑ <td>→ NO + O₂(a1) → $2O_2 + O$ → $O + O_2(a1)$ → $O + O_2(b1)$ → $O(1D) + + O_2(b1)$ → N_4^+ → N_4^+ → $N_2^+ + e^-$ → $N_2^+ + e^-$ → $OH + O$ → $OH + O$ → $OH + O$ → $HO_2 + H$ → $HO_2 + O$ → $HO_2 + O$ → $HO_2 + O$ → $HO_1 + OH_3O$ → $CH_3O + CH_3O$ → $CH_3O + H$ → $OH + OH$ → $CH_2OH + OH$ → $CO_2 + M$ → $CO_2 + M$</td> <td>\rightarrowNO + O_2(a1)$6.00 \times 10^{-14}$$\rightarrow$$2O_2 + O$$2.20 \times 10^{-11}$$\rightarrow$$0 + O_2(a1)$$1.00 \times 10^{-12}$$\rightarrow$$0 + O_2(b1)$$2.60 \times 10^{-11} \exp(67/T_g)$$\rightarrow$$0(1D) + + O_2(b1)$$2.90 \times 10^{-11}$$\rightarrow$$3O$$3.20 \times 10^{-11}$$\rightarrow$$N_4^+$$4.00 \times 10^{-12}$$\rightarrow$$N_4^+$$4.00 \times 10^{-12}$$\rightarrow$$N_3^+ + N_2$$1.00 \times 10^{-11}$$\rightarrow$$N_3^+ + R^2$$1.00 \times 10^{-11} \exp(-67400/T_g)$$\rightarrow$$N_2^+ + e^*$$2.70 \times 10^{-11} \exp(-67400/T_g)$$\rightarrow$$OH + O$$1.83 \times 10^{-10} \exp(-3188/T_g)$$\rightarrow$$OH + O$$1.83 \times 10^{-10} \exp(-3188/T_g)$$\rightarrow$$OH + O$$1.83 \times 10^{-10} \exp(-1620/T_g)$$\rightarrow$$HO_2 + H$$3.49 \times 10^{-11} \exp(-1508/T_g)$$\rightarrow$$HO_2 + H$$3.49 \times 10^{-11} \exp(-17132/T_g)$$\rightarrow$$HO_2 + O$$2.16 \times 10^{-11} \exp(-10111/T_g)$$\rightarrow$$CH_3O + CH_3O$$4.00 \times 10^{-11}$$\rightarrow$$CH_3O + CH_3O$$4.20 \times 10^{-11} \exp(180/T_g)$$\rightarrow$$CH_3O + NO_2$$2.20 \times 10^{-10}$$\rightarrow$$CH_2OH + OH$$2.99 \times 10^{-10}$$\rightarrow$$CH_2OH + OH$$2.99 \times 10^{-10}$$\rightarrow$$CO_2 + M$$1.00 \times 10^{-11}$</td>	→ NO + O ₂ (a1) → $2O_2 + O$ → $O + O_2(a1)$ → $O + O_2(b1)$ → $O(1D) + + O_2(b1)$ → N_4^+ → N_4^+ → $N_2^+ + e^-$ → $N_2^+ + e^-$ → $OH + O$ → $OH + O$ → $OH + O$ → $HO_2 + H$ → $HO_2 + O$ → $HO_2 + O$ → $HO_2 + O$ → $HO_1 + OH_3O$ → $CH_3O + CH_3O$ → $CH_3O + H$ → $OH + OH$ → $CH_2OH + OH$ → $CO_2 + M$ → $CO_2 + M$	\rightarrow NO + O_2(a1) 6.00×10^{-14} \rightarrow $2O_2 + O$ 2.20×10^{-11} \rightarrow $0 + O_2(a1)$ 1.00×10^{-12} \rightarrow $0 + O_2(b1)$ $2.60 \times 10^{-11} \exp(67/T_g)$ \rightarrow $0(1D) + + O_2(b1)$ 2.90×10^{-11} \rightarrow $3O$ 3.20×10^{-11} \rightarrow N_4^+ 4.00×10^{-12} \rightarrow N_4^+ 4.00×10^{-12} \rightarrow $N_3^+ + N_2$ 1.00×10^{-11} \rightarrow $N_3^+ + R^2$ $1.00 \times 10^{-11} \exp(-67400/T_g)$ \rightarrow $N_2^+ + e^*$ $2.70 \times 10^{-11} \exp(-67400/T_g)$ \rightarrow $OH + O$ $1.83 \times 10^{-10} \exp(-3188/T_g)$ \rightarrow $OH + O$ $1.83 \times 10^{-10} \exp(-3188/T_g)$ \rightarrow $OH + O$ $1.83 \times 10^{-10} \exp(-1620/T_g)$ \rightarrow $HO_2 + H$ $3.49 \times 10^{-11} \exp(-1508/T_g)$ \rightarrow $HO_2 + H$ $3.49 \times 10^{-11} \exp(-17132/T_g)$ \rightarrow $HO_2 + O$ $2.16 \times 10^{-11} \exp(-10111/T_g)$ \rightarrow $CH_3O + CH_3O$ 4.00×10^{-11} \rightarrow $CH_3O + CH_3O$ $4.20 \times 10^{-11} \exp(180/T_g)$ \rightarrow $CH_3O + NO_2$ 2.20×10^{-10} \rightarrow $CH_2OH + OH$ 2.99×10^{-10} \rightarrow $CH_2OH + OH$ 2.99×10^{-10} \rightarrow $CO_2 + M$ 1.00×10^{-11}

$\mathrm{CH_5}^+$	+ CH ₂	\rightarrow CH ₃ ⁺	+	CH ₄		$9.60 imes 10^{-10}$	(59)
$\mathrm{CH_5}^+$	+ CH	\rightarrow CH ₂ ⁺	+	CH_4		$6.90 imes 10^{-10}$	(59)
$\mathrm{CH_5}^+$	+ C	\rightarrow CH ⁺	+	CH_4		$1.20 imes 10^{-09}$	(59)
$\mathrm{CH_5}^+$	$+ C_{2}H_{6}$	\rightarrow C ₂ H ₅ ⁺	+	H_2	+ CH ₄	$2.25 imes 10^{-10}$	(148)
$\mathrm{CH_5}^+$	$+ C_2H_4$	\rightarrow C ₂ H ₅ ⁺	+	CH_4		$1.50 imes10^{-09}$	(59)
$\mathrm{CH_5}^+$	$+ C_2H_2$	\rightarrow C ₂ H ₃ ⁺	+	CH_4		$1.60 imes 10^{-09}$	(59)
$\mathrm{CH_5}^+$	$+ C_2H$	\rightarrow C ₂ H ₂ ⁺	+	CH_4		$9.00 imes 10^{-10}$	(59)
$\mathrm{CH_5}^+$	+ C ₂	\rightarrow C ₂ H ⁺	+	CH_4		$9.50 imes 10^{-10}$	(59)
$\mathrm{CH_5}^+$	+ H	\rightarrow CH ₄ ⁺	+	H_2		$1.50 imes 10^{-10}$	(59)
$\mathrm{CH_5}^+$	+ O	\rightarrow H ₃ O ⁺	+	CH_2		2.20×10^{10}	(59)
$\mathrm{CH_5}^+$	+ H ₂ O	\rightarrow H ₃ O ⁺	+	CH_4		3.70×10^{-09}	(59)
$\mathrm{CH_5}^+$	+ OH	\rightarrow H ₂ O ⁺	+	CH_4		$7.00 imes 10^{-10}$	(59)
CH_4^+	+ CH ₄	\rightarrow CH ₅ ⁺	+	CH ₃		$1.50 imes 10^{-09}$	(59)
CH_4^+	+ C_2H_6	\rightarrow C ₂ H ₄ ⁺	+	CH_4	+ H ₂	1.91×10^{-09}	(148)
CH_4^{+}	$+ C_2H_4$	\rightarrow C ₂ H ₅ ⁺	+	CH ₃		4.23×10^{-10}	(59)
$\mathrm{CH_4}^+$	+ C_2H_4	\rightarrow C ₂ H ₄ ⁺	+	CH_4		$1.38 imes 10^{-09}$	(59)
CH_4^{+}	$+ C_2H_2$	\rightarrow C ₂ H ₃ ⁺	+	CH ₃		1.23×10^{-09}	(59)
CH_4^{+}	$+ C_2H_2$	\rightarrow C ₂ H ₂ ⁺	+	CH_4		1.13×10^{-09}	(59)
CH_4^{+}	+ H ₂	\rightarrow CH ₅ ⁺	+	Н		3.30×10^{-11}	(59)
CH_4^{+}	+ H	\rightarrow CH ₃ ⁺	+	H_2		1.00×10^{-11}	(59)
$\mathrm{CH_4}^+$	+ O	\rightarrow CH ₃ ⁺	+	ОН		$1.00 imes 10^{-09}$	(59)
$\mathrm{CH_4}^+$	+ O ₂	$\rightarrow 0_2^+$	+	CH_4		$3.90 imes 10^{-10}$	(59)
CH_4^+	+ H ₂ O	\rightarrow H ₃ O ⁺	+	CH ₃		$2.60 imes 10^{-09}$	(59)

Table S4. Ion-neutral reactions included in the model, as well as the corresponding rate coefficients and the references where these data were adopted from. The rate constants are in $\text{cm}^3 \text{ s}^{-1}$ or $\text{cm}^6 \text{ s}^{-1}$ for binary or ternary reactions, respectively.

$CH_3{}^+$	+	CH ₄	\rightarrow	CH_4^{+}	+	CH ₃			1.36×10^{-10}	(149)
$\mathrm{CH_3}^+$	+	CH_4	\rightarrow	$C_{2}H_{5}^{+}$	+	H_2			$1.20 imes 10^{-09}$	(59)
$\mathrm{CH_3}^+$	+	CH ₂	\rightarrow	$C_2 H_3^{+}$	+	H_2			9.90×10^{10}	(59)
$\mathrm{CH_3}^+$	+	СН	\rightarrow	$C_2 {H_2}^+$	+	H_2			$7.10\times10^{\text{-}10}$	(59)
$\mathrm{CH_3}^+$	+	С	\rightarrow	$C_2 H^+$	+	H_2			$1.20 imes 10^{-09}$	(59)
$\mathrm{CH_3}^+$	+	C_2H_6	\rightarrow	$C_{2}H_{5}^{+}$	+	CH_4			$1.48 imes 10^{-09}$	(59)
$\mathrm{CH_3}^+$	+	C_2H_4	\rightarrow	$C_{2}H_{3}^{+}$	+	CH_4			$3.50 imes 10^{-10}$	(59)
$\mathrm{CH_3}^+$	+	C_2H_3	\rightarrow	$C_2 H_3^{+}$	+	CH ₃			3.00×10^{10}	(59)
$CH_2{}^+$	+	CH_4	\rightarrow	$\mathrm{CH_3}^+$	+	CH ₃			$1.38 imes 10^{-10}$	(150)
$\mathrm{CH_2}^+$	+	CH_4	\rightarrow	$C_{2}H_{5}^{+}$	+	Н			$3.60 imes 10^{-10}$	(59)
$\mathrm{CH_2}^+$	+	CH_4	\rightarrow	$C_2 H_4^{+}$	+	H_2			$8.40\times10^{\text{-}10}$	(59)
$\mathrm{CH_2}^+$	+	CH_4	\rightarrow	$C_2 H_3^{+}$	+	H_2	+	Н	$2.31 imes 10^{-10}$	(150)
$\mathrm{CH_2}^+$	+	CH_4	\rightarrow	$C_2 {H_2}^+$	+	2H ₂			$3.97\times10^{\text{-}10}$	(150)
$\mathrm{CH_2}^+$	+	С	\rightarrow	$C_2 H^+$	+	Н			1.20×10^{-09}	(59)
$\mathrm{CH_2}^+$	+	H ₂	\rightarrow	$\mathrm{CH_3}^+$	+	Н			1.60×10^{-09}	(59)
$\mathrm{CH}^{\scriptscriptstyle +}$	+	CH_4	\rightarrow	$C_2 H_4^{+}$	+	Н			$6.50 imes10^{-11}$	(59)
$\mathrm{CH}^{\scriptscriptstyle +}$	+	CH_4	\rightarrow	$C_{2}H_{3}^{+}$	+	H_2			1.09×10^{-09}	(59)
$\mathrm{CH}^{\scriptscriptstyle +}$	+	CH_4	\rightarrow	$C_2 {H_2}^+$	+	H_2	+	Н	$1.43 imes 10^{-10}$	(59)
$\mathrm{CH}^{\scriptscriptstyle +}$	+	CH ₂	\rightarrow	$C_2H^{\scriptscriptstyle +}$	+	H_2			1.00×10^{-09}	(59)
$\mathrm{CH}^{\scriptscriptstyle +}$	+	СН	\rightarrow	C_2^{+}	+	H_2			$7.40 imes 10^{-10}$	(59)
$\mathrm{CH}^{\scriptscriptstyle +}$	+	С	\rightarrow	C_2^{+}	+	Н			$1.20 imes10^{-09}$	(59)
$\mathrm{CH}^{\scriptscriptstyle +}$	+	H_2	\rightarrow	${\rm CH_2}^+$	+	Н			$1.20 imes10^{-09}$	(59)
$\mathrm{CH}^{\scriptscriptstyle +}$	+	Н	\rightarrow	\mathbf{C}^+	+	H_2			$7.50 imes10^{-10}$	(59)
CH^{+}	+	0	\rightarrow	CO^+	+	Н			3.50×10^{10}	(59)
\mathbf{CH}^{+}	+	O_2	\rightarrow	CO^+	+	ОН			1.00×10^{-11}	(59)

CH^+	+	O ₂	\rightarrow	O^+	+	СНО	$1.00 imes 10^{-11}$	(59)
CH^+	+	H ₂ O	\rightarrow	H_3O^+	+	С	$5.80 imes 10^{-10}$	(59)
CH^+	+	ОН	\rightarrow	\mathbf{CO}^+	+	H_2	$7.50 imes 10^{-10}$	(59)
C^+	+	CH ₄	\rightarrow	$C_2 {H_3}^+$	+	Н	$1.10 imes 10^{-09}$	(59)
C^+	+	CH_4	\rightarrow	$C_2 H_2^{+}$	+	H_2	$4.00 imes 10^{-10}$	(59)
C^+	+	CH ₃	\rightarrow	$C_{2}H_{2}^{+}$	+	Н	$1.30 imes 10^{-09}$	(59)
C^+	+	CH ₃	\rightarrow	C_2H^+	+	H_2	$1.00 imes10^{-09}$	(59)
C^+	+	CH ₂	\rightarrow	$\mathrm{CH_2}^+$	+	С	$5.20 imes 10^{-10}$	(59)
C^+	+	CH ₂	\rightarrow	C_2H^+	+	Н	$5.20 imes 10^{-10}$	(59)
C^+	+	СН	\rightarrow	CH^{+}	+	С	$3.80 imes 10^{-10}$	(59)
C^+	+	СН	\rightarrow	C_2^{+}	+	Н	3.80×10^{-10}	(59)
C^+	+	C_2H_6	\rightarrow	$C_{2}H_{5}^{+}$	+	СН	2.31×10^{-10}	(59)
C^+	+	C_2H_6	\rightarrow	$C_2 H_4^{+}$	+	CH ₂	$1.16 imes 10^{-10}$	(59)
C^+	+	C_2H_6	\rightarrow	$C_2H_3^{+}$	+	CH ₃	4.95×10^{10}	(59)
C^+	+	C_2H_6	\rightarrow	$C_2 {H_2}^+$	+	CH_4	$8.25 imes 10^{-11}$	(59)
C^+	+	C_2H_5	\rightarrow	$C_{2}H_{5}^{+}$	+	С	$5.00 imes 10^{-10}$	(59)
C^+	+	C_2H_4	\rightarrow	$C_2 H_4^{+}$	+	С	$1.70 imes 10^{-11}$	(59)
C^+	+	C_2H_4	\rightarrow	$C_{2}H_{3}^{+}$	+	СН	$8.50 imes 10^{-11}$	(59)
C^+	+	O_2	\rightarrow	O^+	+	СО	$6.20 imes 10^{-10}$	(59)
C^+	+	O_2	\rightarrow	CO^+	+	0	3.80×10^{-10}	(59)
C^+	+	ОН	\rightarrow	CO^+	+	Н	$7.70 imes 10^{-10}$	(59)
C^+	+	CO_2	\rightarrow	CO^+	+	СО	$1.10 imes 10^{-09}$	(59)
$C_2 H_6^{+}$	+	C_2H_4	\rightarrow	$C_2 H_4^{+}$	+	C_2H_6	1.15×10^{-09}	(59)
$C_2 H_6^{+}$	+	C_2H_2	\rightarrow	$C_{2}H_{5}^{+}$	+	C_2H_3	2.47×10^{10}	(59)
$C_2H_6^+$	+	Н	\rightarrow	$C_2H_5^+$	+	H_2	$1.00 imes 10^{-10}$	(59)

$C_2 H_6^{+}$	+	H ₂ O	\rightarrow	H_3O^+	+	C_2H_5	$2.95 imes 10^{-09}$	(59)
$C_2 H_5^{+}$	+	Н	\rightarrow	$C_{2}H_{4}^{+}$	+	H_2	1.00×10^{-11}	(59)
$C_{2}H_{5}^{+}$	+	H ₂ O	\rightarrow	H_3O^+	+	C_2H_4	1.40×10^{-09}	(59)
$C_2H_4^+$	+	C_2H_3	\rightarrow	$C_{2}H_{5}^{+}$	+	C_2H_2	$5.00 imes 10^{-10}$	(59)
$C_2H_4^+$	+	C_2H_3	\rightarrow	$C_2H_3{}^+$	+	C_2H_4	$5.00 imes 10^{-10}$	(59)
$C_2 H_4^{+}$	+	Н	\rightarrow	$C_2H_3^{+}$	+	H_2	3.00×10^{-10}	(59)
$C_2 H_4^{+}$	+	0	\rightarrow	$\mathrm{CH_3}^+$	+	СНО	1.08×10^{10}	(59)
$C_2 H_3^{+}$	+	C_2H_6	\rightarrow	$C_{2}H_{5}^{+}$	+	C_2H_4	2.91×10^{-10}	(59)
$C_2H_3^{+}$	+	C_2H_4	\rightarrow	$C_{2}H_{5}^{+}$	+	C_2H_2	$8.90 imes 10^{-10}$	(59)
$C_2 H_3^{+}$	+	C_2H_3	\rightarrow	$C_2 H_5^{+}$	+	C_2H	$5.00 imes 10^{-10}$	(59)
$C_2H_3^{+}$	+	C_2H	\rightarrow	$C_2 {H_2}^+$	+	C_2H_2	3.30×10^{-10}	(59)
$C_2H_3^{+}$	+	Н	\rightarrow	$C_2 {H_2}^+$	+	H_2	$6.80 imes 10^{-11}$	(59)
$C_2H_3^{+}$	+	H ₂ O	\rightarrow	$H_{3}O^{+}$	+	C_2H_2	1.11×10^{-09}	(59)
$C_2 H_2^{+}$	+	CH_4	\rightarrow	$C_{2}H_{3}^{+}$	+	CH ₃	$4.10 imes 10^{-09}$	(150)
$C_2 H_2^{+}$	+	C_2H_6	\rightarrow	$C_{2}H_{5}^{+}$	+	C_2H_3	1.31×10^{-10}	(148)
$C_2 H_2^{+}$	+	C_2H_6	\rightarrow	$C_{2}H_{4}^{+}$	+	C_2H_4	2.48×10^{-10}	(59)
$C_2 H_2^{+}$	+	C_2H_4	\rightarrow	$C_2 H_4{}^+$	+	C_2H_2	$4.14 imes 10^{-10}$	(59)
$C_2 H_2^{+}$	+	C_2H_3	\rightarrow	$C_{2}H_{3}^{+}$	+	C_2H_2	3.30×10^{-10}	(59)
$C_2 H_2^{+}$	+	H_2	\rightarrow	$C_{2}H_{3}^{+}$	+	Н	1.00×10^{-11}	(59)
$C_2 H_2^{+}$	+	H ₂ O	\rightarrow	H_3O^+	+	C ₂ H	2.20×10^{-10}	(59)
C_2H^+	+	CH_4	\rightarrow	$C_2 {H_2}^+$	+	CH ₃	3.74×10^{-10}	(59)
C_2H^+	+	CH ₂	\rightarrow	$\mathrm{CH_3}^+$	+	C ₂	$4.40 imes 10^{-10}$	(59)
C_2H^+	+	СН	\rightarrow	$\mathrm{CH_2}^+$	+	C ₂	3.20×10^{-10}	(59)
C_2H^+	+	H ₂	\rightarrow	$C_2 H_2^{+}$	+	Н	$1.10 imes 10^{-09}$	(59)
C_2^{+}	+	CH_4	\rightarrow	$C_2H_2^+$	+	CH ₂	$1.82 imes10^{-10}$	(59)

C_2^{+}	+ CH ₄	\rightarrow C ₂ H ⁺	+	CH ₃	2.38×10^{10}	(59)
C_2^{+}	+ CH ₂	\rightarrow CH ₂ ⁺	+	C ₂	4.50×10^{10}	(59)
C_2^{+}	+ CH	\rightarrow CH ⁺	+	C ₂	3.20×10^{10}	(59)
C_2^{+}	+ C	\rightarrow C ⁺	+	C ₂	$1.10 imes 10^{-10}$	(59)
C_2^{+}	+ H ₂	$\rightarrow C_2 H^+$	+	Н	1.10×10^{-09}	(59)
C_2^{+}	+ O	\rightarrow CO ⁺	+	С	3.10×10^{-10}	(59)
C_2^{+}	+ O ₂	\rightarrow CO ⁺	+	СО	8.00×10^{10}	(59)
C_2^{+}	+ H ₂ O	\rightarrow C ₂ H ⁺	+	ОН	$4.40\times10^{\text{-}10}$	(59)
C_2^{+}	+ OH	\rightarrow OH ⁺	+	C ₂	$6.50 imes 10^{-10}$	(59)
H_3^{+}	+ CH ₄	\rightarrow CH ₅ ⁺	+	H_2	2.40×10^{-09}	(59)
H_3^{+}	+ CH ₃	\rightarrow CH ₄ ⁺	+	H_2	2.10×10^{-09}	(59)
H_3^{+}	+ CH ₂	\rightarrow CH ₃ ⁺	+	H_2	1.70×10^{-09}	(59)
H_3^{+}	+ CH	\rightarrow CH ₂ ⁺	+	H_2	1.20×10^{-09}	(59)
H_3^+	+ C	\rightarrow CH ⁺	+	H ₂	2.00×10^{-09}	(59)
H_3^+	$+ C_2 H_6$	\rightarrow C ₂ H ₅ ⁺	+	2H ₂	$2.40\times10^{\text{-09}}$	(59)
$\mathrm{H_3}^+$	+ C_2H_5	\rightarrow C ₂ H ₆ ⁺	+	H_2	1.40×10^{-09}	(59)
$\mathrm{H_3}^+$	+ C_2H_4	\rightarrow C ₂ H ₅ ⁺	+	H_2	1.15×10^{-09}	(59)
$\mathrm{H_3}^+$	+ C_2H_4	\rightarrow C ₂ H ₃ ⁺	+	2H ₂	1.15×10^{-09}	(59)
H_3^+	+ C_2H_3	$\rightarrow C_2 H_4^+$	+	H ₂	2.00×10^{-09}	(59)
H_3^+	$+ C_2H_2$	\rightarrow C ₂ H ₃ ⁺	+	H ₂	3.50×10^{-09}	(59)
H_3^+	$+ C_2H$	\rightarrow C ₂ H ₂ ⁺	+	H ₂	1.70×10^{-09}	(59)
H_3^+	+ C ₂	\rightarrow C ₂ H ⁺	+	H ₂	$1.80\times10^{\text{-}09}$	(59)
H_3^+	+ O	\rightarrow OH ⁺	+	H ₂	$8.40 imes 10^{-10}$	(59)
H_3^+	+ O	\rightarrow H ₂ O ⁺	+	Н	$3.60 imes 10^{-10}$	(59)
${\rm H_3}^+$	+ OH	\rightarrow H ₂ O ⁺	+	H_2	$1.30 imes 10^{-09}$	(59)

${\rm H_3}^+$	+ H ₂ O	\rightarrow H ₃ O ⁺	+	H_2		5.90×10^{-09}	(59)
H_3^+	$+$ H^{-}	\rightarrow H ₂	+	H_2		$2.30\times10^{\text{-}07}$	(59)
${\rm H_2}^+$	+ CH ₄	\rightarrow CH ₅ ⁺	+	Н		1.14×10^{10}	(59)
${\rm H_2}^+$	+ CH ₄	\rightarrow CH ₄ ⁺	+	H_2		$1.40 imes 10^{-09}$	(59)
${\rm H_2}^+$	+ CH ₄	\rightarrow CH ₃ ⁺	+	H_2	+ H	2.30×10^{-09}	(59)
H_2^+	+ CH ₂	\rightarrow CH ₃ ⁺	+	Н		$1.00 imes10^{-09}$	(59)
H_2^+	+ CH ₂	\rightarrow CH ₂ ⁺	+	H_2		$1.00 imes10^{-09}$	(59)
H_2^{+}	+ CH	\rightarrow CH ₂ ⁺	+	Н		$7.10\times10^{\text{-}10}$	(59)
${\rm H_2}^+$	+ CH	\rightarrow CH ⁺	+	H_2		$7.10\times10^{\text{-10}}$	(59)
${\rm H_2}^+$	+ C	\rightarrow CH ⁺	+	Н		$2.40\times10^{\text{-09}}$	(59)
${\rm H_2}^+$	+ C_2H_6	\rightarrow C ₂ H ₆ ⁺	+	H_2		$2.94\times 10^{\text{-10}}$	(59)
${\rm H_2}^+$	$+ C_2H_6$	\rightarrow C ₂ H ₅ ⁺	+	H_2	+ H	1.37×10^{-09}	(59)
${\rm H_2}^+$	$+ C_2 H_6$	$\rightarrow C_2 H_4^+$	+	$2H_2$		$2.35 imes 10^{-09}$	(59)
${\rm H_2}^+$	+ C_2H_6	\rightarrow C ₂ H ₃ ⁺	+	$2H_2$	+ H	6.86×10^{10}	(59)
${\rm H_2}^+$	+ C_2H_6	\rightarrow C ₂ H ₂ ⁺	+	3H ₂		$1.96 imes 10^{-10}$	(59)
${\rm H_2}^+$	$+ C_2H_4$	$\rightarrow C_2 H_4^+$	+	H_2		2.21×10^{-09}	(59)
${\rm H_2}^+$	$+ C_2H_4$	\rightarrow C ₂ H ₃ ⁺	+	H_2	+ H	$1.81\times10^{\text{-09}}$	(59)
${\rm H_2}^+$	+ C_2H_4	\rightarrow C ₂ H ₂ ⁺	+	$2H_2$		$8.82\times10^{\text{-}10}$	(59)
${\rm H_2}^+$	$+ C_2H_2$	\rightarrow C ₂ H ₃ ⁺	+	Н		$4.80 imes 10^{-10}$	(59)
${\rm H_2}^+$	$+ C_2H_2$	\rightarrow C ₂ H ₂ ⁺	+	H_2		4.82×10^{-09}	(59)
${\rm H_2}^+$	$+ C_2H$	\rightarrow C ₂ H ₂ ⁺	+	Н		$1.00 imes 10^{-09}$	(59)
${\rm H_2}^+$	$+ C_2H$	$\rightarrow C_2 H^+$	+	H_2		1.00×10^{-09}	(59)
${\rm H_2}^+$	+ C ₂	\rightarrow C ₂ H ⁺	+	Н		$1.10\times 10^{\text{-09}}$	(59)
${\rm H_2}^+$	+ C ₂	\rightarrow C ₂ ⁺	+	H_2		1.10×10^{-09}	(59)
${\rm H_2}^+$	+ H ₂	\rightarrow H ₃ ⁺	+	Н		$2.08 imes10^{-09}$	(59)

${\rm H_2}^+$	+	Н	\rightarrow	H^{+}	+	H_2			$6.40 imes 10^{-10}$	(59)
H_2^+	+	0	\rightarrow	$\mathrm{OH}^{\scriptscriptstyle +}$	+	Н			$1.50 imes 10^{-09}$	(59)
${\rm H_2}^+$	+	O ₂	\rightarrow	O_2^{+}	+	H_2			8.00×10^{10}	(59)
${\rm H_2}^+$	+	ОН	\rightarrow	OH^+	+	H_2			$7.60\times10^{\text{-}10}$	(59)
H_2^+	+	ОН	\rightarrow	H_2O^+	+	Н			$7.60 imes 10^{-10}$	(59)
H_2^{+}	+	H ₂ O	\rightarrow	H_2O^+	+	H_2			3.90×10^{-09}	(59)
${\rm H_2}^+$	+	H ₂ O	\rightarrow	H_3O^+	+	Н			$3.40\times10^{\text{-09}}$	(59)
${\rm H_2}^+$	+	СО	\rightarrow	CO^+	+	H_2			$6.44 imes 10^{-10}$	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	CH ₄	\rightarrow	CH_4^+	+	Н			$1.50 imes10^{-09}$	(59)
H^{+}	+	CH ₄	\rightarrow	$\mathrm{CH_3}^+$	+	H_2			$2.30 imes 10^{-09}$	(59)
H^{+}	+	CH ₃	\rightarrow	$\mathrm{CH_3}^+$	+	Н			$3.40 imes 10^{-09}$	(59)
H^{+}	+	CH ₂	\rightarrow	$\mathrm{CH_2}^+$	+	Н			1.40×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	CH ₂	\rightarrow	CH^{+}	+	H_2			1.40×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	СН	\rightarrow	CH^+	+	Н			1.90×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_6	\rightarrow	$C_{2}H_{5}^{+}$	+	H_2			1.30×10^{-09}	(148)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_6	\rightarrow	$C_{2}H_{4}^{+}$	+	H_2	+	Н	$1.40 imes 10^{-09}$	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_6	\rightarrow	$C_{2}H_{3}^{+}$	+	2H ₂			2.80×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_5	\rightarrow	$C_{2}H_{4}^{+}$	+	H_2			$1.65 imes 10^{-09}$	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_5	\rightarrow	$C_{2}H_{3}^{+}$	+	H_2	+	Н	3.06×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_4	\rightarrow	$C_2 H_4^{+}$	+	Н			1.00×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_4	\rightarrow	$C_{2}H_{3}^{+}$	+	H_2			3.00×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_4	\rightarrow	$C_2 H_2^{+}$	+	H_2	+	Н	1.00×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_3	\rightarrow	$C_2H_3^{+}$	+	Н			2.00×10^{-09}	(59)
$\mathrm{H}^{\scriptscriptstyle +}$	+	C_2H_3	\rightarrow	$C_2 H_2^{+}$	+	H_2			2.00×10^{-09}	(59)
\mathbf{H}^+	+	C_2H_2	\rightarrow	$C_2 H_2^{+}$	+	Н			5.40×10^{10}	(59)

H^{+}	+	C ₂ H	\rightarrow	C_2H^+	+	Н	$1.50 imes 10^{-09}$	(59)
H^{+}	+	C ₂ H	\rightarrow	C_2^+	+	H ₂	1.50×10^{-09}	(59)
H^{+}	+	C_2	\rightarrow	C_2^+	+	Н	3.10×10^{-09}	(59)
H^{+}	+	0	\rightarrow	\mathbf{O}^+	+	Н	3.44×10^{-10}	(59)
H^{+}	+	O ₂	\rightarrow	$\mathbf{O_2}^+$	+	Н	$2.00 imes 10^{-09}$	(59)
H^{+}	+	ОН	\rightarrow	OH^+	+	Н	2.10×10^{-09}	(59)
H^{+}	+	H ₂ O	\rightarrow	H_2O^+	+	Н	$6.90\times10^{\text{-}09}$	(59)
H-	+	CH ₃	\rightarrow	CH_4	+	e	1.00×10^{-09}	(59)
H⁻	+	CH ₂	\rightarrow	CH ₃	+	e	$1.00 imes 10^{-09}$	(59)
H	+	СН	\rightarrow	CH_2	+	e	$1.00 imes 10^{-10}$	(59)
H	+	С	\rightarrow	СН	+	e	$1.00 imes 10^{-09}$	(59)
H	+	C_2H	\rightarrow	C_2H_2	+	e	1.00×10^{-09}	(59)
H	+	C ₂	\rightarrow	C_2H	+	e	1.00×10^{-09}	(59)
H	+	Н	\rightarrow	H_2	+	e	1.30×10^{-09}	(59)
H	+	0	\rightarrow	OH	+	e	$1.00 imes10^{-09}$	(59)
H	+	ОН	\rightarrow	H_2O	+	e	$1.00 imes 10^{-10}$	(59)
H	+	H ₂ O	\rightarrow	OH	+	H ₂	3.80×10^{-09}	(59)
\mathbf{O}^+	+	CH ₄	\rightarrow	CH_4^{+}	+	0	8.90×10^{10}	(59)
\mathbf{O}^+	+	CH_4	\rightarrow	$\mathrm{CH_3}^+$	+	ОН	$1.10 imes 10^{-10}$	(59)
\mathbf{O}^+	+	CH ₂	\rightarrow	$\mathrm{CH_2}^+$	+	0	$9.70 imes 10^{-10}$	(59)
\mathbf{O}^+	+	СН	\rightarrow	$\mathrm{CH}^{\scriptscriptstyle +}$	+	0	$3.50 imes 10^{-10}$	(59)
\mathbf{O}^{+}	+	СН	\rightarrow	CO^+	+	Н	3.50×10^{10}	(59)
O^+	+	C_2H_4	\rightarrow	$C_{2}H_{4}^{+}$	+	0	$7.00\times10^{\text{-}11}$	(59)
O^+	+	C_2H_4	\rightarrow	$C_{2}H_{3}^{+}$	+	ОН	2.10×10^{10}	(59)
\mathbf{O}^+	+	C_2H_4	\rightarrow	$C_2 H_2^{+}$	+	H ₂ O	$1.12 imes 10^{-09}$	(59)

\mathbf{O}^+	$+ C_2 H_2$		\rightarrow	$C_2 H_2^{+}$	+	0	3.90×10^{-11}	(59)
\mathbf{O}^{+}	$+ C_2H$		\rightarrow	$C_2 H^+$	+	0	$4.60\times10^{\text{-}10}$	(59)
O^+	$+ C_2H$		\rightarrow	CO^{+}	+	СН	$4.60\times10^{\text{-}10}$	(59)
O^+	+ C ₂		\rightarrow	C_2^{+}	+	0	$4.80\times10^{\text{-}10}$	(59)
O^+	+ C ₂		\rightarrow	CO^{+}	+	С	$4.80\times10^{\text{-10}}$	(59)
O^+	+ H ₂		\rightarrow	$\mathrm{OH}^{\scriptscriptstyle +}$	+	Н	$1.70 imes10^{-09}$	(59)
O^+	+ H		\rightarrow	H^{+}	+	0	$5.82 imes 10^{-10}$	(59)
O^+	+ O	$+ O_2$	\rightarrow	${\rm O_2}^+$	+	O ₂	$1.00 imes 10^{-29}$	(19)
O^+	+ O ₂		\rightarrow	O_2^{+}	+	0	$2.00\times10^{\text{-}11}$	(19)
\mathbf{O}^{+}	+ O ₃		\rightarrow	O_2^{+}	+	O ₂	$1.00 imes 10^{-10}$	(22)
0^{+}	+ OH		\rightarrow	$\mathrm{OH}^{\scriptscriptstyle +}$	+	0	$3.60 imes 10^{-10}$	(59)
0^{+}	+ OH		\rightarrow	O_2^{+}	+	Н	$3.60 imes 10^{-10}$	(59)
\mathbf{O}^{+}	+ H ₂ O		\rightarrow	H_2O^+	+	0	3.20×10^{-09}	(59)
O^+	+ CO ₂		\rightarrow	O_2^{+}	+	СО	9.40×10^{10}	(59)
O^+	+ CO		\rightarrow	CO^+	+	0	1.15×10^{-18}	(59)
O_2^{+}	+ CH ₂		\rightarrow	$\mathrm{CH_2}^+$	+	O ₂	4.30×10^{10}	(59)
O_2^{+}	+ CH		\rightarrow	$\mathrm{CH}^{\scriptscriptstyle +}$	+	O ₂	3.10×10^{10}	(59)
O_2^{+}	+ C		\rightarrow	CO^+	+	0	$5.20 imes 10^{-11}$	(59)
O_2^{+}	+ C		\rightarrow	C^+	+	O ₂	$5.20\times10^{\text{-}11}$	(59)
O_2^{+}	$+ C_2 H_4$		\rightarrow	$C_2 H_4^{+}$	+	O ₂	$6.80 imes 10^{-10}$	(59)
O_2^{+}	$+ C_2 H_2$		\rightarrow	$C_2 H_2^{+}$	+	O ₂	1.11×10^{-09}	(59)
O_2^{+}	+ C ₂		\rightarrow	C_2^{+}	+	O ₂	4.10×10^{10}	(59)
O_2^{+}	+ C ₂		\rightarrow	$\mathrm{CO}^{\scriptscriptstyle +}$	+	CO	$4.10 imes 10^{-10}$	(59)
O_2^{+}	+ O ₂	+ O ₂	\rightarrow	O_4^{+}	+	O ₂	2.40×10^{-30}	(22)
O_4^{+}	+ O		\rightarrow	O_2^+	+	O_3	3.00×10^{10}	(22)

O_4^{+}	+	O_2		\rightarrow	O_2^{+}	+	O ₂	+	O_2	1.73×10^{-13}	(22)
0-	+	CH_4		\rightarrow	OH	+	CH ₃			$1.00 imes 10^{-10}$	(59)
0-	+	С		\rightarrow	СО	+	e			$5.00 imes 10^{-10}$	(59)
0-	+	H_2		\rightarrow	H_2O	+	e			$7.00 imes 10^{-10}$	(59)
0-	+	H_2		\rightarrow	OH	+	Н			3.00×10^{-11}	(59)
0-	+	Н		\rightarrow	OH	+	e			$5.00 imes10^{-10}$	(59)
0-	+	0		\rightarrow	O_2	+	e			$2.30 imes 10^{-10}$	(151)
0-	+	O_2		\rightarrow	0	+	O ₂	+	e	k = f(E/N)	(19)
0-	+	O_2		\rightarrow	O_2^-	+	0			k = f(E/N)	(19)
0-	+	O_2		\rightarrow	O ₃	+	e			$5.00 imes 10^{-15}$	(19)
0-	+	O_2	$+ O_2$	\rightarrow	O_3^-	+	O_2			1.10×10^{-30}	(19)
0-	+	O ₃		\rightarrow	O_3^-	+	0			$5.30 imes 10^{-10}$	(19)
0-	+	O ₃		\rightarrow	O_2	+	O_2	+	e	3.00×10^{-10}	(152)
0-	+	CO		\rightarrow	CO_2	+	e			$6.50 imes 10^{-10}$	(59)
O_2^-	+	0		\rightarrow	O ⁻	+	O ₂			3.30×10^{-10}	(19)
O_2^-	+	0		\rightarrow	O ₃	+	e			3.30×10^{-10}	(151)
O_2^-	+	O ₂		\rightarrow	O_2	+	O_2	+	e	2.18×10^{-18}	(19)
O_2^-	+	O ₂	$+ O_{2}$	\rightarrow	O_4^-	+	O_2			3.50×10^{-31}	(22)
O_2^-	+	O ₃		\rightarrow	O_3^-	+	O ₂			4.00×10^{-10}	(19)
O_3^-	+	0		\rightarrow	O ⁻	+	O ₃			1.00×10^{-13}	(152)
O_3^-	+	0		\rightarrow	O_2	+	O ₂	+	e	3.00×10^{-10}	(22)
O_3^-	+	0		\rightarrow	O_2^-	+	O ₂			3.20×10^{-10}	(22)
O ₃ -	+	O ₂		\rightarrow	O ₃	+	O ₂	+	e	2.30×10^{-11}	(19)
O_3^-	+	O ₃		\rightarrow	O ₂	+	O ₂	+	O ₂	1.00×10^{-12}	(152)
O_4^-	+	0		\rightarrow	O_3^-	+	O_2			4.00×10^{10}	(22)

O_4^-	+	0	\rightarrow	0-	+	O_2	+	O_2	$3.00 imes 10^{-10}$	(22)
O_4^-	+	O ₂	\rightarrow	O_2^-	+	O_2	+	O_2	3.08×10^{-12}	(22)
$\mathrm{CO_2}^+$	+	CH_4	\rightarrow	CH_4^{+}	+	CO_2			$5.50 imes 10^{-10}$	(59)
$\mathrm{CO_2}^+$	+	C_2H_4	\rightarrow	$C_2 H_4^{+}$	+	CO_2			$1.50 imes 10^{-10}$	(59)
CO_2^+	+	C_2H_2	\rightarrow	$C_2 {H_2}^+$	+	CO_2			$7.30 imes 10^{-10}$	(59)
CO_2^+	+	O ₂	\rightarrow	$\mathbf{O_2}^+$	+	CO_2			$5.30 imes 10^{-11}$	(59)
CO_2^+	+	0	\rightarrow	O_2^{+}	+	CO			$1.64 imes 10^{-10}$	(59)
CO_2^+	+	0	\rightarrow	\mathbf{O}^+	+	CO_2			9.62×10^{-11}	(59)
CO_2^+	+	H ₂ O	\rightarrow	H_2O^+	+	CO_2			$2.04 imes 10^{-09}$	(59)
CO^{+}	+	CH_4	\rightarrow	CH_4^{+}	+	CO			$7.93 imes 10^{-10}$	(59)
CO^{+}	+	CH ₂	\rightarrow	$\mathrm{CH_2}^+$	+	CO			$4.30 imes 10^{-10}$	(59)
CO^+	+	СН	\rightarrow	CH^+	+	CO			$3.20 imes 10^{-10}$	(59)
CO^{+}	+	С	\rightarrow	\mathbf{C}^+	+	CO			1.10×10^{10}	(59)
CO^+	+	C_2H	\rightarrow	C_2H^+	+	CO			3.90×10^{-10}	(59)
CO^+	+	C_2	\rightarrow	C_2^{+}	+	CO			$8.40 imes 10^{-10}$	(59)
CO^+	+	Н	\rightarrow	H^{+}	+	CO			$7.50\times10^{\text{-}10}$	(59)
CO^{+}	+	O ₂	\rightarrow	O_2^{+}	+	CO			1.20×10^{10}	(59)
CO^{+}	+	0	\rightarrow	O^+	+	CO			1.40×10^{10}	(59)
CO^+	+	CO_2	\rightarrow	$\mathrm{CO_2}^+$	+	CO			$1.00 imes 10^{-09}$	(59)
CO^{+}	+	H ₂ O	\rightarrow	H_2O^+	+	CO			1.72×10^{-09}	(59)
CO^{+}	+	ОН	\rightarrow	OH^+	+	CO			$3.10 imes 10^{-10}$	(59)
H_3O^+	+	CH ₂	\rightarrow	$\mathrm{CH_3}^+$	+	H ₂ O			$9.40 imes 10^{-10}$	(59)
H_3O^+	+	СН	\rightarrow	$\mathrm{CH_2}^+$	+	H ₂ O			$6.80 imes 10^{-10}$	(59)
H_3O^+	+	C_2H_3	\rightarrow	$C_2 H_4^{+}$	+	H ₂ O			$2.00 imes 10^{-09}$	(59)
H_3O^+	+	C_2	\rightarrow	C_2H^+	+	H ₂ O			$9.20 imes 10^{-10}$	(59)

H_2O^+	+	CH ₄	\rightarrow	H_3O^+	+	CH ₃	$1.40\times10^{\text{-09}}$	(59)
H_2O^+	+	CH ₂	\rightarrow	$\mathrm{CH_3}^+$	+	ОН	$4.70 imes 10^{-10}$	(59)
$H_2O^{\scriptscriptstyle +}$	+	CH ₂	\rightarrow	$\mathrm{CH_2}^+$	+	H ₂ O	4.70×10^{10}	(59)
$H_2O^{\scriptscriptstyle +}$	+	СН	\rightarrow	$\mathrm{CH_2}^+$	+	ОН	3.40×10^{10}	(59)
H_2O^+	+	СН	\rightarrow	CH^{+}	+	H ₂ O	3.40×10^{10}	(59)
H_2O^+	+	С	\rightarrow	CH^{+}	+	ОН	$1.10 imes 10^{-09}$	(59)
H_2O^+	+	C_2H_6	\rightarrow	H_3O^+	+	C_2H_5	1.33×10^{-09}	(59)
H_2O^+	+	C_2H_6	\rightarrow	$C_2 H_6^{+}$	+	H ₂ O	$6.40 imes 10^{-11}$	(59)
H_2O^+	+	C_2H_6	\rightarrow	$C_2 H_4{}^+$	+	H_2O + H_2	$1.92\times10^{\text{-10}}$	(59)
H_2O^+	+	C_2H_4	\rightarrow	$C_2 H_4^{+}$	+	H ₂ O	$1.50 imes10^{-09}$	(59)
H_2O^+	+	C_2H_2	\rightarrow	$C_2 {H_2}^+$	+	H ₂ O	$1.90 imes 10^{-09}$	(59)
H_2O^+	+	C_2H	\rightarrow	$C_2 {H_2}^+$	+	ОН	4.40×10^{10}	(59)
H_2O^+	+	C_2H	\rightarrow	C_2H^+	+	H ₂ O	4.40×10^{10}	(59)
H_2O^+	+	C_2	\rightarrow	C_2H^+	+	ОН	4.70×10^{10}	(59)
H_2O^+	+	C_2	\rightarrow	C_2^{+}	+	H ₂ O	4.70×10^{10}	(59)
H_2O^+	+	H_2	\rightarrow	H_3O^+	+	Н	6.40×10^{10}	(59)
H_2O^+	+	O ₂	\rightarrow	O_2^{+}	+	H ₂ O	$4.60 imes 10^{-10}$	(59)
H_2O^+	+	0	\rightarrow	O_2^{+}	+	H_2	$4.00 imes 10^{-11}$	(59)
H_2O^+	+	H ₂ O	\rightarrow	H_3O^+	+	ОН	2.10×10^{-09}	(59)
H_2O^+	+	ОН	\rightarrow	H_3O^+	+	0	$6.90 imes 10^{-10}$	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	CH ₄	\rightarrow	$\mathrm{CH_5}^+$	+	0	1.95×10^{10}	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	CH ₄	\rightarrow	$H_{3}O^{+}$	+	CH ₂	1.31×10^{-09}	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	CH ₂	\rightarrow	$\mathrm{CH_3}^+$	+	0	$4.80\times10^{\text{-}10}$	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	CH ₂	\rightarrow	$\mathrm{CH_2}^+$	+	ОН	$4.80\times10^{\text{-}10}$	(59)
OH^+	+	СН	\rightarrow	$\mathrm{CH_2}^+$	+	0	$3.50 imes 10^{-10}$	(59)

$\mathrm{OH}^{\scriptscriptstyle +}$	+	СН			\rightarrow	$\mathrm{CH}^{\scriptscriptstyle +}$	+	OH			3.50×10^{10}	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	С			\rightarrow	$\mathrm{CH}^{\scriptscriptstyle +}$	+	0			$1.20\times10^{\text{-09}}$	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	C_2H_6			\rightarrow	H_3O^+	+	C_2H_4			1.60×10^{-10}	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	C_2H_6			\rightarrow	$C_2 H_6^{+}$	+	ОН			$4.80\times10^{\text{-}11}$	(59)
OH^+	+	C_2H_6			\rightarrow	$C_{2}H_{5}^{+}$	+	H_2	+	0	3.20×10^{10}	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	C_2H_6			\rightarrow	$C_2 H_4^{+}$	+	H_2	+	OH	$1.04\times 10^{\text{-09}}$	(59)
OH^{+}	+	C_2H			\rightarrow	$C_2 {H_2}^+$	+	0			4.50×10^{10}	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	C_2H			\rightarrow	$C_2 H^{\scriptscriptstyle +}$	+	OH			4.50×10^{10}	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	C ₂			\rightarrow	$C_2 H^{\scriptscriptstyle +}$	+	0			4.80×10^{10}	(59)
OH^+	+	C ₂			\rightarrow	C_2^{+}	+	ОН			4.80×10^{10}	(59)
OH^+	+	H_2			\rightarrow	H_2O^+	+	Н			$1.01\times10^{\text{-09}}$	(59)
OH^+	+	O ₂			\rightarrow	O_2^+	+	ОН			5.90×10^{10}	(59)
OH^+	+	0			\rightarrow	O_2^+	+	Н			7.10×10^{10}	(59)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	H_2O			\rightarrow	H_2O^+	+	OH			1.59×10^{-09}	(59)
OH^+	+	H_2O			\rightarrow	H_3O^+	+	0			1.30×10^{-09}	(59)
OH^+	+	ОН			\rightarrow	H_2O^+	+	0			7.00×10^{10}	(59)
OH	+	CH ₃			\rightarrow	CH ₃ OH	+	e			$1.00\times10^{\text{-09}}$	(59)
OH	+	СН			\rightarrow	CH ₂ O	+	e			5.00×10^{10}	(59)
OH	+	С			\rightarrow	СНО	+	e			5.00×10^{10}	(59)
OH	+	Н			\rightarrow	H_2O	+	e			$1.40\times10^{\text{-09}}$	(59)
CO_2	+	0-	+	М	\rightarrow	CO ₃ -	+	М			$9.00\times10^{\text{-}29}$	(113)
CO_2	+	O_2^-			\rightarrow	CO ₄ -	+				1.00×10^{-29}	(113)
CO_2	+	O ₃ -			\rightarrow	O ₂	+	CO ₃ -			5.50×10^{10}	(113)
CO_2	+	O_4^-			\rightarrow	O ₂	+	CO ₄ -			4.80×10^{10}	(113)
CO_2	+	CO_2^+	+	М	\rightarrow	$C_2O_4^{+}$	+	М			$3.00\times10^{\text{-}28}$	(113)

$\rm CO_2$	+	O_2^+	+	Μ	\rightarrow	$\mathrm{CO_4}^+$	+	Μ			2.30×10^{-29}	(113)
CO	+	CO ₃ ⁻			\rightarrow	2CO_2	+	e			$5.50\times10^{\text{-}17}$	(113)
CO	+	$C_2O_3^{+}$			\rightarrow	$C_2O_2^{+}$	+	CO_2			1.10×10^{-09}	(113)
CO	+	$C_2O_4^{+}$			\rightarrow	$C_2 O_3^{+}$	+	CO_2			$9.00 imes 10^{-10}$	(113)
CO	+	$C_2O_3^{+}$	+	М	\rightarrow	$C_2O_2^{+}$	+	CO_2	+	М	2.60×10^{-26}	(113)
CO	+	$C_2O_4^{+}$	+	М	\rightarrow	$C_2 O_3^{+}$	+	CO_2	+	М	$4.20 imes 10^{-26}$	(113)
O_2	+	$C_2O_2^{+}$			\rightarrow	O_2^{+}	+	2CO			$5.00\times10^{\text{-12}}$	(113)
0	+	CO ₃ ⁻			\rightarrow	CO_2	+	O_2^-			$8.00\times10^{\text{-}11}$	(113)
0	+	CO_4^-			\rightarrow	O_2	+	CO_3^-			$1.40\times10^{\text{-}11}$	(113)
0	+	CO_4^-			\rightarrow	CO_2	+	O ₃ -			$1.40\times10^{\text{-}11}$	(113)
O ₃	+	CO_4^-			\rightarrow	CO_2	+	O ₃ -	+	O_2	$4.00 imes 10^{-13}$	(113)
$C_2O_2^{+}$	+	М	+	М	\rightarrow	CO^+	+	CO	+	М	$1.00 imes 10^{-12}$	(113)
$C_2O_4^{+}$	+	М	+	М	\rightarrow	$\mathrm{CO_2}^+$	+	CO_2	+	М	$1.00\times10^{\text{-14}}$	(113)
0-	+	Ν			\rightarrow	NO	+	e			$2.60 imes 10^{-10}$	(53)
0-	+	NO			\rightarrow	NO_2	+	e			$2.60 imes 10^{-10}$	(53)
0-	+	$N_2(g, v)$			\rightarrow	N_2O	+	e			$5.00 imes 10^{-13}$	(53)
0-	+	$N_2(A^3\Sigma_u^+)$			\rightarrow	0	+	N_2	+	e	$2.20 imes 10^{-09}$	(53)
0-	+	$N_2(B^3\Pi_g)$			\rightarrow	0	+	N_2	+	e	1.90×10^{-09}	(53)
O_2^-	+	Ν			\rightarrow	NO ₂	+	+	e		$5.00 imes 10^{-10}$	(53)
O_2^-	+	$N_2(A^3\Sigma_u^+)$			\rightarrow	O_2	+	N_2	+	e	$2.10 imes 10^{-09}$	(53)
O_2^-	+	$N_2(B^3\Pi_g)$			\rightarrow	O_2	+	N_2	+	e	$2.50 imes 10^{-09}$	(53)
O ⁻	+	NO_2			\rightarrow	NO_2^-	+	0			$1.20 imes10^{-09}$	(53)
O ⁻	+	N_2O			\rightarrow	NO	+	NO			$2.00 imes 10^{-10}$	(53)
0-	+	N_2O			\rightarrow	N_2O^-	+	0			$2.00 imes 10^{-12}$	(53)
O_2^-	+	NO_2			\rightarrow	NO_2^-	+	O_2			$7.00 imes10^{-10}$	(53)

O_2^-	+	NO_3			\rightarrow	NO_3^-	+	O_2			5.00×10^{-12}	(53)
O ₃ -	+	NO			\rightarrow	NO ₃ ⁻	+	0			$1.00\times 10^{\text{-}11}$	(53)
O_3^-	+	NO			\rightarrow	NO_2^-	+	O_2			2.60×10^{-12}	(53)
O ₃ -	+	NO_2			\rightarrow	NO_2^-	+	O ₃			$7.00\times10^{\text{-}11}$	(53)
O ₃ -	+	NO_2			\rightarrow	NO ₃ ⁻	+	O_2			2.00×10^{-11}	(53)
O ₃ -	+	NO ₃			\rightarrow	NO ₃ ⁻	+	O ₃			5.00×10^{10}	(53)
NO	+	O ₂			\rightarrow	O_2^-	+	NO			5.00×10^{10}	(53)
NO	+	NO_2			\rightarrow	NO_2^-	+	NO			7.40×10^{10}	(53)
NO	+	N_2O			\rightarrow	NO_2^-	+	N_2			$2.80\times10^{\text{-14}}$	(53)
NO_2^-	+	O ₃			\rightarrow	NO ₃ ⁻	+	O_2			$1.80\times10^{\text{-}11}$	(53)
NO_2^-	+	NO_2			\rightarrow	NO ₃ ⁻	+	NO			$4.00\times10^{\text{-12}}$	(53)
NO_2^-	+	NO ₃			\rightarrow	NO ₃ ⁻	+	NO_2			5.00×10^{10}	(53)
NO_2^-	+	N_2O_5			\rightarrow	NO ₃ ⁻	+	$2NO_2$			$7.00\times10^{\text{-}10}$	(53)
NO ₃ ⁻	+	NO			\rightarrow	NO_2^-	+	NO_2			$3.00\times10^{\text{-15}}$	(53)
O_4^-	+	NO			\rightarrow	NO ₃ ⁻	+	O_2			2.50×10^{10}	(53)
0-	+	NO	+	М	\rightarrow	NO_2^-	+	М			1.00×10^{-29}	(53)
NO	+	Ν			\rightarrow	N_2O	+	e			$5.00\times10^{\text{-10}}$	(53)
O ₃ ⁻	+	Ν			\rightarrow	NO	+	O_2	+	e	$5.00\times10^{\text{-10}}$	(53)
N_2O^-	+	Ν			\rightarrow	NO	+	N_2	+	e	$5.00\times10^{\text{-10}}$	(53)
NO_2^-	+	Ν			\rightarrow	NO	+	NO	+	e	$5.00\times10^{\text{-10}}$	(53)
NO ₃ ⁻	+	Ν			\rightarrow	NO	+	NO_2	+	e	$5.00\times10^{\text{-10}}$	(53)
NO	+	0			\rightarrow	NO_2	+	e			$1.50\times10^{\text{-10}}$	(53)
N_2O^-	+	Ο			\rightarrow	NO	+	NO	+	e	$1.50\times10^{\text{-10}}$	(53)
NO_2^-	+	0			\rightarrow	NO	+	O_2	+	e	1.50×10^{10}	(53)
NO ₃ ⁻	+	0			\rightarrow	NO	+	O ₃	+	e	$1.50 imes 10^{-10}$	(53)

O ₃ ⁻	+	$N_2(A^3\Sigma_u^+)$	\rightarrow	N_2	+	O ₃	+	e	$2.10 imes 10^{-09}$	(53)
NO	+	$N_2(A^3\Sigma_u^+)$	\rightarrow	N_2	+	NO	+	e	2.10×10^{-09}	(53)
N_2O^-	+	$N_2(A^3\Sigma_u^+)$	\rightarrow	N_2	+	N ₂ O	+	e	$2.10 imes 10^{-09}$	(53)
NO_2^-	+	$N_2(A^3\Sigma_u^+)$	\rightarrow	N_2	+	NO_2	+	e	$2.10 imes 10^{-09}$	(53)
NO ₃ ⁻	+	$N_2(A^3\Sigma_u^+)$	\rightarrow	N_2	+	NO ₃	+	e	2.10×10^{-09}	(53)
O_3^-	+	$N_2(B^3\Pi_g)$	\rightarrow	N_2	+	O ₃	+	e	2.50×10^{-09}	(53)
NO	+	$N_2(B^3\Pi_g)$	\rightarrow	N_2	+	NO	+	e	2.50×10^{-09}	(53)
N_2O^2	+	$N_2(B^3\Pi_g)$	\rightarrow	N_2	+	N_2O	+	e	2.50×10^{-09}	(53)
NO ₂ ⁻	+	$N_2(B^3\Pi_g)$	\rightarrow	N_2	+	NO_2	+	e	2.50×10^{-09}	(53)
NO ₃ ⁻	+	$N_2(B^3\Pi_g)$	\rightarrow	N_2	+	NO ₃	+	e	2.50×10^{-09}	(53)
N^+	+	0	\rightarrow	Ν	+	\mathbf{O}^+			1.00×10^{-12}	(53)
\mathbf{N}^+	+	O ₂	\rightarrow	Ν	+	O_2^{+}			$2.80\times10^{\text{-}10}$	(53)
\mathbf{N}^+	+	O ₂	\rightarrow	0	+	\mathbf{NO}^+			$2.50\times10^{\text{-}10}$	(53)
\mathbf{N}^+	+	O ₂	\rightarrow	NO	+	\mathbf{O}^+			$2.80 imes 10^{-10}$	(53)
\mathbf{N}^+	+	O ₃	\rightarrow	O_2	+	\mathbf{NO}^+			$5.00 imes10^{-10}$	(53)
\mathbf{N}^+	+	NO	\rightarrow	Ν	+	\mathbf{NO}^+			$8.00 imes 10^{-10}$	(53)
\mathbf{N}^+	+	NO	\rightarrow	0	+	N_2^+			3.00×10^{-12}	(53)
\mathbf{N}^+	+	NO	\rightarrow	N_2	+	\mathbf{O}^+			1.00×10^{-12}	(53)
\mathbf{O}^+	+	$N_2(g, v)$	\rightarrow	Ν	+	\mathbf{NO}^+			$1.00 \times 10^{-12} \exp(-0.31/T_g)$	(31)
\mathbf{O}^+	+	NO	\rightarrow	\mathbf{NO}^+	+	0			$2.40 imes 10^{-11}$	(53)
\mathbf{O}^+	+	NO	\rightarrow	${\rm O_2}^+$	+	Ν			3.00×10^{-12}	(53)
\mathbf{O}^+	+	N(2D)	\rightarrow	\mathbf{N}^+	+	0			1.30×10^{-10}	(53)
\mathbf{O}^+	+	N ₂ O	\rightarrow	\mathbf{NO}^{+}	+	NO			2.30×10^{10}	(53)
\mathbf{O}^+	+	N ₂ O	\rightarrow	N_2O^+	+	0			$2.20\times10^{\text{-}10}$	(53)
\mathbf{O}^+	+	N ₂ O	\rightarrow	${\rm O_2}^+$	+	N_2			$2.00\times10^{\text{-}11}$	(53)

\mathbf{O}^+	+	NO_2	\rightarrow	NO_2^+	+	0			1.60×10^{-09}	(53)		
${N_2}^+$	+	0	\rightarrow	${\rm O_2}^+$	+	N_2			$1.30\times 10^{\text{-10}}~(T_g/300)^{\text{-0.5}}$	(31)		
${N_2}^+$	+	O ₂	\rightarrow	\mathbf{NO}^+	+	0			$1.00 \times 10^{-12} \exp(-0.31/T_g)$	(31)		
N_2^{+}	+	O ₃	\rightarrow	O_2^+	+	0	+	N_2	$1.00 imes 10^{-10}$	(53)		
N_2^+	+	NO	\rightarrow	NO^+	+	N_2			$3.30 imes 10^{-10}$	(53)		
N_2^{+}	+	N ₂ O	\rightarrow	N_2O^+	+	N_2			$5.00 imes10^{-10}$	(53)		
N_2^{+}	+	N ₂ O	\rightarrow	NO^+	+	N_2	+	Ν	$4.00 imes 10^{-10}$	(53)		
O_2^{+}	+	$N_2(g, v)$	\rightarrow	NO^+	+	NO			$1.10 imes 10^{-17}$	(31)		
O_2^{+}	+	Ν	\rightarrow	NO^+	+	0			$1.20\times10^{\text{-}10}$	(53)		
O_2^{+}	+	NO	\rightarrow	NO^+	+	O_2			$6.30 imes 10^{-10}$	(53)		
O_2^{+}	+	NO_2	\rightarrow	NO^+	+	O ₃			$1.00 imes 10^{-11}$	(53)		
O_2^{+}	+	NO_2	\rightarrow	NO_2^+	+	O_2			$6.60 imes 10^{-10}$	(53)		
N_3^+	+	O_2	\rightarrow	O_2^+	+	Ν	+	N_2	2.30×10^{-11}	(53)		
N_3^+	+	O_2	\rightarrow	NO_2^+	+	N_2			$4.40 imes 10^{-11}$	(53)		
N_3^+	+	NO	\rightarrow	NO^+	+	Ν	+	N_2	$7.00 imes 10^{-11}$	(53)		
N_3^+	+	NO	\rightarrow	N_2O^+	+	N_2			$7.00 imes 10^{-11}$	(53)		
NO_2^+	+	NO	\rightarrow	NO^+	+	NO_2			$2.90 imes 10^{-10}$	(53)		
N_2O^+	+	NO	\rightarrow	NO^+	+	N_2O			$2.90 imes 10^{-10}$	(53)		
N_4^{+}	+	O_2	\rightarrow	O_2^+	+	N_2	+	N_2	$2.50 imes 10^{-10}$	(53)		
N_4^{+}	+	0	\rightarrow	O^+	+	N_2	+	N_2	$2.50 imes 10^{-10}$	(53)		
N_4^{+}	+	NO	\rightarrow	NO^+	+	N_2	+	N_2	$4.00 imes 10^{-10}$	(53)		
O_4^+	+	N ₂ (g, v)	\rightarrow	$O_2^+ N_2$	+	O ₂			4.60 × $10^{-12} (T_{effN4})$ /300) ^{2.50} exp(-2650 / T_{eff4})	(53)		
O_2^+ N_2	+	O ₂			\rightarrow	\mathbf{NO}^+	+	2O ₂			$1.00 imes 10^{-09}$	(53)
------------------------------	---	-----------------------	---	-------	---------------	------------------------------	---	-----------------	---	--------------------------	---	------
${O_2}^+$ N_2	+	$N_2(g, v)$			\rightarrow	O_2^+	+	N ₂	+	N ₂ (g, v)	$1.10 \times 10^{-6} (T_{effN4})^{-5.30} \exp(-2360)^{-7.30} (T_{effN4})$	(53)
O_4^{+}	+	NO			\rightarrow	O_4^+	+	N_2			$1.00 imes 10^{-10}$	(53)
\mathbf{N}^+	+	0	+	М	\rightarrow	NO^+	+	М			1.00×10^{-29}	(53)
O^+	+	N ₂ (g, v)	+	М	\rightarrow	\mathbf{NO}^+	+	Ν	+	М	$6.00 \times 10^{-29} (T_{effN}) / 300)^{-2.00}$	(53)
\mathbf{O}^+	+	Ν	+	М	\rightarrow	\mathbf{NO}^+	+	Μ			$1.00 imes 10^{-29}$	(53)
O_2^+	+	N ₂ (g, v)	+	N_2	\rightarrow	${O_2}^+ N_2$	+	N_2			$9.00 \times 10^{-31} (T_{effN2})$ $/300)^{-2.00}$	(53)
CO ₃ ⁻	+	NO			\rightarrow	NO ₂ ⁻	+	CO ₂			$1.10 \times 10^{-11} (T_g / 300)^{0.50}$	(53)
CO ₃ -	+	NO ₂			\rightarrow	NO ₃ -	+	CO ₂			$2.00 \times 10^{-10} (T_g / 300)^{0.50}$	(53)
CO ₄ -	+	NO			\rightarrow	NO ₃ -	+	CO ₂			$1.10 \times 10^{-11} (T_g / 300)^{0.50}$	(53)
NO	+	СО			\rightarrow	NO	+	СО	+	e	5.00×10^{-13}	(53)
NO	+	CO_2			\rightarrow	NO	+	$\rm CO_2$	+	e	$8.30 imes 10^{-12}$	(53)
\mathbf{N}^+	+	Ν	+	М	\rightarrow	N_2^+	+	М			$1.70 imes 10^{-29}$	(53)
\mathbf{N}^+	+	$N_2(g, v)$	+	N_2	\rightarrow	N_3^+	+	N_2			$1.70 \times 10^{-11} (T_{effN})$ $/300)^{2.10}$	(53)
N_2	+	$N_2(A^3\Sigma_u^+)$			\rightarrow	N_3^+	+	Ν			$3.00 imes 10^{-10}$	(53)

N_2^+	+	Ν			\rightarrow	N^+	+	N_2			$7.20 \times 10^{-13} (T_{effN2})^{1.00}$	(53)
N_2^+	+	$N_2(g, v)$	+	N_2	\rightarrow	N_4^{+}	+	N_2			$5.20 \times 10^{-29} (T_{effN2})^{-2.20}$	(53)
N_2^{+}	+	$N_2(g,v)$	+	N	\rightarrow	N_3^+	+	$N_2(g,v)$			$9.00 \times 10^{-30} \exp(400.0$ $/T_{effN4})$	(53)
N_3^+	+	Ν			\rightarrow	N_2^+	+	N_2			$6.60 imes 10^{-11}$	(53)
N_4^+	+	N ₂ (g, v)			\rightarrow	N_2^+	+	$N_2(g, v)$			min(2.10 × $10^{-16} \exp(\frac{T_{effN4}}{121}, 1.00 \times 10^{-10})$	(53)
N_4^{+}	+	Ν			\rightarrow	\mathbf{N}^+	+	$2N_2$			$1.00 imes 10^{-11}$	(53)
$\mathrm{H}^{\scriptscriptstyle +}$	+	H_2	+	М	\rightarrow	${\rm H_3}^+$	+	Μ			$1.00 imes 10^{-29}$	(31)
$\mathrm{H}^{\scriptscriptstyle +}$	+	Н	+	М	\rightarrow	${\rm H_2}^+$	+	М			$1.00 imes 10^{-34}$	(31)
$\mathrm{H}^{\scriptscriptstyle +}$	+	Ν	+	М	\rightarrow	\mathbf{N}^+	+	Н			$5.00 imes 10^{-11}$	(31)
H.	+	М			\rightarrow	Н	+	e			$2.70 \times 10^{-6} (T_g)$ /300) ^{0.50} exp(-5590/T_g)	(31)
H-	+	Н			\rightarrow	H_2	+	e			$1.30 imes 10^{-09}$	(31)
H-	+	Ν			\rightarrow	NH	+	e			1.00×10^{-09}	(31)
N_4^{+}	+	C_3H_8			\rightarrow	$C_2 H_5^{+}$	+	$2N_2$	+	CH ₃	$6.70 imes 10^{-10}$	(31)
N_4^{+}	+	C_3H_8			\rightarrow	$C_2 H_4^{+}$	+	$2N_2$	+	CH_4	$4.30\times10^{\text{-}10}$	(31)
N_4^{+}	+	М			\rightarrow	N_2^{+}	+	N_2	+	М	$2.50\times10^{\text{-15}}$	(31)
N_3^+	+	NH ₃			\rightarrow	$\mathrm{NH_3}^+$	+	N_2	+	Ν	$2.10\times10^{\text{-09}}$	(122)
N_3^+	+	М			\rightarrow	N_2^{+}	+	Ν	+	М	$6.60 imes 10^{-11}$	(135)
N_2^{+}	+	C_3H_8			\rightarrow	$C_2 H_5^{+}$	+	N_2	+	CH ₃	3.90×10^{10}	(135)
N_2^+	+	C_3H_8			\rightarrow	$C_2H_4^+$	+	N_2	+	CH_4	$2.20 imes10^{-10}$	(135)

N_2^+	+	C_3H_8			\rightarrow	$C_{2}H_{3}^{+}$	+	$N_2 + H_2 \ + \ CH_3$	$5.20 imes 10^{-10}$	(135)
N_2^{+}	+	NH ₃			\rightarrow	$\mathrm{NH_3}^+$	+	N_2	$1.90\times10^{\text{-09}}$	(122)
N_2^+	+	N_2	+	М	\rightarrow	N_4^+	+	М	$6.80 \times 10^{-29} (T_g / 300)^{1.64}$	(31)
N_2^+	+	Ν	+	М	\rightarrow	N_3^+	+	М	$9.30 \times 10^{-30} (T_g)$ /300) ^{1.00} exp(-400/T _g)	(31)
\mathbf{N}^+	+	NH ₃			\rightarrow	$\mathrm{NH_3}^+$	+	Ν	2.40×10^{-09}	(122)
\mathbf{N}^+	+	N_2			\rightarrow	N_2^+	+	Ν	1.00×10^{-09}	(31)
\mathbf{N}^+	+	N_2	+	М	\rightarrow	N_3^+	+	М	$9.30 \times 10^{-30} \exp(-400)$ /T _g)	(31)
\mathbf{N}^+	+	Н			\rightarrow	H^{+}	+	Ν	$2.00 imes 10^{-09}$	(31)
\mathbf{N}^+	+	NH			\rightarrow	N_2^+	+	Н	3.70×10^{-10}	(31)
$\mathrm{NH_3}^+$	+	H_2			\rightarrow	NH_4^+	+	Н	4.00×10^{-13}	(135)
$\mathrm{NH_2}^+$	+	NH ₃			\rightarrow	$\mathrm{NH_3}^+$	+	NH ₂	1.10×10^{-09}	(135)
$\mathrm{NH_2}^+$	+	NH ₃			\rightarrow	$\mathbf{NH_4}^+$	+	NH	$1.10 imes 10^{-09}$	(135)
$\mathrm{NH_2}^+$	+	H_2			\rightarrow	$\mathrm{NH_3}^+$	+	NH	1.00×10^{-09}	(135)
\mathbf{NH}^+	+	NH ₃			\rightarrow	$\mathrm{NH_3}^+$	+	NH	1.80×10^{-09}	(135)
\mathbf{NH}^+	+	NH ₃			\rightarrow	$\mathrm{NH_4}^+$	+	Ν	$6.00 imes 10^{-10}$	(135)
\mathbf{NH}^+	+	NH_2			\rightarrow	$\mathrm{NH_2}^+$	+	NH	1.80×10^{-09}	(135)
O ⁻	+	O ₂ (a1)			\rightarrow	O ₃	+	e	$3.00 imes 10^{-10}$	(53)
O ⁻	+	O ₂ (b1)			\rightarrow	0	+	O_2 + e^-	$6.90 imes 10^{-10}$	(53)
O_2^-	+	O ₂ (a1)			\rightarrow	$2O_2$	+	e	2.00×10^{10}	(53)
O_2^-	+	O ₂ (b1)			\rightarrow	2O ₂	+	e	3.60×10^{-10}	(53)
O_4^{+}	+	O ₂ (a1)			\rightarrow	2O ₂	+	O_2^+	$1.00 imes 10^{-10}$	(53)
O_4^{+}	+	O ₂ (b1)			\rightarrow	2O ₂	+	O_2^+	$1.00 imes 10^{-10}$	(53)

O_4^-	+ $O_2(a1)$	$\rightarrow 2O_2$	$+ O_2^{-1}$	$1.00 imes 10^{-10}$	(53)
O_4^-	+ O ₂ (b1)	$\rightarrow 2O_2$	$+ O_2^{-}$	$1.00 imes 10^{-10}$	(53)
0-	+ O ₂ (a1)	$\rightarrow 0$	+ O ₂ ⁻	$1.00\times10^{\text{-10}}$	(53)

Table S5. Ion-ion reactions included in the model, as well as the corresponding rate coefficients and the references where these data were adopted from. The rate constants are in $\text{cm}^3 \text{ s}^{-1}$ or $\text{cm}^6 \text{ s}^{-1}$ for binary or ternary reactions, respectively.

\mathbf{C}^+	+	H			\rightarrow	С	+	Н			$2.30\times10^{\text{-}07}$	(59)
${\rm H_2}^+$	+	H			\rightarrow	H_2	+	Н			$2.30 imes 10^{-07}$	(59)
H^{+}	+	\mathbf{H}^{-}			\rightarrow	Н	+	Н			$2.30 imes 10^{-07}$	(59)
H	+	\mathbf{O}^+			\rightarrow	Н	+	0			$2.30 imes 10^{-07}$	(59)
H	+	H_3O^+			\rightarrow	H_2	+	OH	+	Н	$2.30 imes 10^{-07}$	(59)
H	+	H_3O^+			\rightarrow	H ₂ O	+	H_2			$2.30 imes 10^{-07}$	(59)
\mathbf{O}^+	+	O ⁻			\rightarrow	0	+	0			$4.00\times10^{\text{-08}}$	(151)
\mathbf{O}^+	+	O ⁻	+	0	\rightarrow	O_2	+	0			2.00×10^{-25}	(19)
\mathbf{O}^+	+	O ⁻	+	O_2	\rightarrow	O_2	+	O_2			2.00×10^{-25}	(19)
\mathbf{O}^+	+	O_2^-			\rightarrow	0	+	O_2			$2.70 imes 10^{-07}$	(151)
\mathbf{O}^+	+	O_2^-	+	O_2	\rightarrow	O ₃	+	O_2			2.00×10^{-25}	(19)
\mathbf{O}^+	+	O ₃ ⁻			\rightarrow	O ₃	+	0			$1.00 imes 10^{-07}$	(19)
O_2^+	+	O ⁻			\rightarrow	0	+	O_2			$2.60 imes 10^{-08}$	(151)
O_2^+	+	O ⁻			\rightarrow	0	+	0	+	0	$2.60 imes 10^{-08}$	(151)
O_2^+	+	O ⁻	+	O_2	\rightarrow	O ₃	+	O_2			2.00×10^{-25}	(19)
${\rm O_2}^+$	+	O ₂ -			\rightarrow	O_2	+	O_2			$2.00 imes 10^{-07}$	(151)
O_2^+	+	O ₂ -			\rightarrow	O_2	+	0	+	0	$1.00 imes 10^{-07}$	(19)
O_2^+	+	O ₂ -	+	O_2	\rightarrow	O_2	+	O_2	+	O_2	2.00×10^{-25}	(19)
O_2^+	+	O ₃ -			\rightarrow	O_2	+	O ₃			$2.00 imes 10^{-07}$	(19)
O_2^+	+	O ₃ -			\rightarrow	0	+	0	+	O ₃	$1.00\times10^{\text{-}07}$	(19)
CO ₃ ⁻		$\mathrm{CO_2}^+$				$2CO_2$	+	0			$5.00 imes 10^{-07}$	(113)
CO_4^-		$\mathrm{CO_2}^+$				$2CO_2$	+	O_2			$5.00 imes 10^{-07}$	(113)
O ₂ -		$\mathrm{CO_2}^+$				CO	+	O_2	+	0	$6.00 imes10^{-07}$	(113)

CO_3^{-}		$C_2O_2^{+}$				CO_2	+	2CO	+	0	$5.00 imes 10^{-07}$	(113)
CO_4^-		$C_2O_2^{+}$				CO_2	+	2CO	+	O_2	$5.00\times10^{\text{-}07}$	(113)
O ₂ -		$C_2O_2^{+}$				СО	+	СО	+	O_2	$6.00 imes 10^{-07}$	(113)
CO_3^-		$C_2O_3^{+}$				2CO ₂	+	СО	+	0	$5.00 imes 10^{-07}$	(113)
CO_4^-		$C_2O_3^{+}$				2CO ₂	+	CO	+	O_2	$5.00 imes 10^{-07}$	(113)
O ₂ -		$C_2O_3^{+}$				CO_2	+	CO	+	O_2	$6.00 imes 10^{-07}$	(113)
CO_3^-		$C_2O_4^{+}$				3CO ₂	+	0			$5.00\times10^{\text{-}07}$	(113)
CO_4^-		$C_2O_4^{+}$				3CO ₂	+	O_2			$5.00\times10^{\text{-}07}$	(113)
O ₂ -		$C_2O_4^{+}$				2CO ₂	+	O_2			$6.00 imes 10^{-07}$	(113)
CO_3^{-}		${\rm O_2}^+$				CO_2	+	0	+	O_2	$3.00\times10^{\text{-}07}$	(113)
CO_4^-		O_2^{+}				CO_2	+	$2O_2$			$3.00\times10^{\text{-}07}$	(113)
O ₃ -	+	\mathbf{N}^+	+	М	\rightarrow	O ₃	+	Ν			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
O ₃ -	+	${ m N_2}^+$	+	М	\rightarrow	O ₃	+	N_2			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
O ₃ -	+	\mathbf{O}^{+}	+	М	\rightarrow	O ₃	+	0			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
O ₃ -	+	$\mathbf{O_2}^+$	+	М	\rightarrow	O ₃	+	O_2			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
O ₃ ⁻	+	NO^{+}	+	М	\rightarrow	O ₃	+	NO			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
O ₃ -	+	N_2O^+	+	М	\rightarrow	O ₃	+	N_2O			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
O ₃ -	+	NO_2^+	+	М	\rightarrow	O ₃	+	NO ₂			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)

NO	+	\mathbf{N}^+	+	М	\rightarrow	NO	+	Ν	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO	+	N_2^+	+	М	\rightarrow	NO	+	N_2	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO	+	\mathbf{O}^+	+	М	\rightarrow	NO	+	0	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO	+	O_2^+	+	М	\rightarrow	NO	+	O ₂	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO	+	\mathbf{NO}^+	+	М	\rightarrow	NO	+	NO	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO	+	N_2O^+	+	М	\rightarrow	NO	+	N ₂ O	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO	+	$\mathrm{NO_2}^+$	+	М	\rightarrow	NO	+	NO ₂	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
N_2O^-	+	\mathbf{N}^+	+	М	\rightarrow	N ₂ O	+	Ν	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
N_2O^-	+	N_2^+	+	М	\rightarrow	N ₂ O	+	N_2	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
N_2O^-	+	\mathbf{O}^+	+	М	\rightarrow	N ₂ O	+	0	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
N_2O^-	+	O_2^+	+	М	\rightarrow	N ₂ O	+	O ₂	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
N_2O^-	+	\mathbf{NO}^+	+	М	\rightarrow	N ₂ O	+	NO	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
N_2O^-	+	N_2O^+	+	М	\rightarrow	N_2O	+	N ₂ O	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)

N_2O^{-}	+	NO_2^+	+	М	\rightarrow	N_2O	+	NO ₂	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₂ ⁻	+	\mathbf{N}^{+}	+	М	\rightarrow	NO ₂	+	Ν	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₂ ⁻	+	N_2^+	+	М	\rightarrow	NO ₂	+	N_2	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₂ ⁻	+	O^+	+	М	\rightarrow	NO ₂	+	0	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₂ ⁻	+	O_2^+	+	М	\rightarrow	NO ₂	+	O ₂	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₂ ⁻	+	\mathbf{NO}^+	+	М	\rightarrow	NO ₂	+	NO	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₂ ⁻	+	N_2O^+	+	М	\rightarrow	NO ₂	+	N ₂ O	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₂ ⁻	+	$\mathrm{NO_2}^+$	+	М	\rightarrow	NO ₂	+	NO ₂	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₃ ⁻	+	\mathbf{N}^+	+	М	\rightarrow	NO ₃	+	Ν	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₃ -	+	N_2^+	+	М	\rightarrow	NO ₃	+	N_2	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₃ ⁻	+	\mathbf{O}^+	+	М	\rightarrow	NO ₃	+	0	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₃ ⁻	+	O_2^+	+	М	\rightarrow	NO ₃	+	O ₂	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₃ ⁻	+	\mathbf{NO}^+	+	М	\rightarrow	NO ₃	+	NO	$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)

NO ₃ ⁻	+	N_2O^+	+	М	\rightarrow	NO ₃	+	N_2O			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
NO ₃ ⁻	+	NO_2^+	+	М	\rightarrow	NO ₃	+	NO ₂			$2.00 \times 10^{-25} (T_{ionN2})^{-2.50}$	(53)
H⁻	+	${\rm H_3}^+$			\rightarrow	H_2	+	2H			$1.00 imes 10^{-07}$	(31)
H.	+	${\rm H_2}^+$			\rightarrow	H_2	+	Н			$2.00 \times 10^{-7} (T_g)$ /300) ^{-0.50}	(31)
H-	+	${\rm H_2}^+$			\rightarrow	3Н					$1.00 imes 10^{-07}$	(31)
H	+	${\rm H_2}^+$	+	М	\rightarrow	H_2	+	Н	+	М	$2.00 \times 10^{-25} (T_g)$ /300) ^{-2.50}	(31)
H.	+	$\mathrm{H}^{\scriptscriptstyle +}$			\rightarrow	Н	+	Н			$2.00 \times 10^{-7} (T_g)$ /300) ^{-0.50}	(31)
H.	+	$\mathrm{H}^{\scriptscriptstyle+}$	+	М	\rightarrow	Н	+	Н	+	М	$2.00 \times 10^{-25} (T_g)$ /300) ^{-2.50}	(31)
H	+	C^+			\rightarrow	Н	+	С			1.00×10^{-07}	(31)
$\mathrm{H}^{\scriptscriptstyle +}$	+	0-			\rightarrow	Н	+	0			$1.93\times10^{\text{-}07}$	(31)
H^{+}	+	O_2^-			\rightarrow	Н	+	O_2			1.93×10^{-07}	(31)
$\mathrm{H}^{\scriptscriptstyle +}$	+	O_2^-			\rightarrow	Н	+	20			$1.00 imes 10^{-07}$	(31)
$\mathrm{H}^{\scriptscriptstyle +}$	+	CO ₃ ⁻			\rightarrow	Н	+	CO_2	+	0	$1.00 imes 10^{-07}$	(31)
H^{+}	+	CO_4^-			\rightarrow	Н	+	CO_2	+	O_2	$1.00\times10^{\text{-}07}$	(31)
H^{+}	+	OH			\rightarrow	Н	+	OH			$1.93 imes 10^{-07}$	(31)
H^{+}	+	OH			\rightarrow	2H	+	0			$1.00\times10^{\text{-}07}$	(31)
H⁻	+	O_2^+			\rightarrow	Н	+	O_2			1.93×10^{-07}	(31)
Η	+	O_2^+			\rightarrow	Н	+	20			$1.00 imes 10^{-07}$	(31)
H	+	CO^+			\rightarrow	Н	+	CO			$1.93 imes 10^{-07}$	(31)

H.	+	$\mathrm{CO_2}^+$	\rightarrow	Н	+	O_2			1.93×10^{-07}	(31)
H	+	$\mathrm{CO_2}^+$	\rightarrow	Н	+	CO	+	0	$1.00\times10^{\text{-}07}$	(31)
H	+	$\mathrm{OH}^{\scriptscriptstyle +}$	\rightarrow	Н	+	OH			1.93×10^{-07}	(31)
H	+	OH^+	\rightarrow	2H	+	0			$1.00\times10^{\text{-}07}$	(31)
H	+	H_2O^+	\rightarrow	Н	+	H_2O			$1.93\times10^{\text{-}07}$	(31)
H	+	H_2O^+	\rightarrow	2H	+	OH			$1.00\times10^{\text{-}07}$	(31)
H_3^+	+	O ⁻	\rightarrow	2H	+	0			$1.93\times10^{\text{-}07}$	(31)
H_2^+	+	O ⁻	\rightarrow	H_2	+	0			$1.00 imes 10^{-07}$	(31)
H_2^+	+	O_2^-	\rightarrow	H_2	+	O ₂			1.93×10^{-07}	(31)
H_2^+	+	O_2^-	\rightarrow	2H	+	O ₂			$1.00 imes 10^{-07}$	(31)
H_2^+	+	O_2^-	\rightarrow	H_2	+	20			$1.00 imes 10^{-07}$	(31)
H_2^+	+	O_2^-	\rightarrow	2H	+	20			$1.00 imes 10^{-07}$	(31)
${\rm H_2}^+$	+	CO ₃ ⁻	\rightarrow	H_2	+	0	+	CO_2	1.93×10^{-07}	(31)
${\rm H_2}^+$	+	CO ₃ ⁻	\rightarrow	2H	+	0	+	CO_2	$1.00 imes 10^{-07}$	(31)
${\rm H_2}^+$	+	CO_4^-	\rightarrow	H_2	+	O ₂	+	CO_2	1.93×10^{-07}	(31)
${\rm H_2}^+$	+	CO_4^-	\rightarrow	2H	+	O ₂	+	CO_2	1.00×10^{-07}	(31)
${\rm H_2}^+$	+	OH	\rightarrow	H_2	+	OH			1.93×10^{-07}	(31)
H_2^+	+	OH	\rightarrow	2H	+	OH			$1.00 imes 10^{-07}$	(31)
${\rm H_2}^+$	+	OH	\rightarrow	Н	+	0	+	H_2	$1.00 imes 10^{-07}$	(31)
${\rm H_2}^+$	+	OH	\rightarrow	3H	+	0			$1.00 imes 10^{-07}$	(31)
OH^{+}	+	O ⁻	\rightarrow	0	+	OH			1.93×10^{-07}	(31)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	O ⁻	\rightarrow	20	+	Н			1.00×10^{-07}	(31)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	O_2^-	\rightarrow	O_2	+	ОН			1.93×10^{-07}	(31)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	O_2^-	\rightarrow	O_2	+	0	+	Н	$1.00 imes 10^{-07}$	(31)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	O_2^-	\rightarrow	20	+	OH			$1.00\times10^{\text{-}07}$	(31)

OH^+	+	O_2^-	\rightarrow	30	+	Η			$1.00 imes 10^{-07}$	(31)
OH^+	+	CO ₃ ⁻	\rightarrow	OH	+	0	+	CO_2	$1.00\times10^{\text{-}07}$	(31)
OH^+	+	CO ₃ ⁻	\rightarrow	Н	+	20	+	CO_2	$1.00\times10^{\text{-}07}$	(31)
OH^+	+	CO_4^-	\rightarrow	ОН	+	O_2	+	CO_2	$1.00\times10^{\text{-}07}$	(31)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	CO_4^-	\rightarrow	O + H	+	O_2	+	CO_2	$1.00 imes 10^{-07}$	(31)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	OH	\rightarrow	ОН	+	OH			$1.93\times10^{\text{-}07}$	(31)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	OH	\rightarrow	ОН	+	0	+	Н	$1.00\times10^{\text{-}07}$	(31)
$\mathrm{OH}^{\scriptscriptstyle +}$	+	OH	\rightarrow	20	+	2H			$1.00\times10^{\text{-}07}$	(31)
OH⁻	+	O^+	\rightarrow	0	+	OH			$1.93\times10^{\text{-}07}$	(31)
OH⁻	+	O^+	\rightarrow	20	+	Н			$1.00\times10^{\text{-}07}$	(31)
OH	+	O_2^+	\rightarrow	ОН	+	O ₂			$1.93\times10^{\text{-}07}$	(31)
OH	+	O_2^+	\rightarrow	Н	+	O_2	+	0	$1.00\times10^{\text{-}07}$	(31)
OH	+	O_2^+	\rightarrow	20	+	OH			$1.00\times10^{\text{-}07}$	(31)
OH⁻	+	O_2^+	\rightarrow	30	+	Н			$1.00 imes10^{-07}$	(31)
OH⁻	+	CO^+	\rightarrow	ОН	+	CO			$1.93\times10^{\text{-}07}$	(31)
OH	+	CO^+	\rightarrow	0	+	CO	+	Н	$1.00\times10^{\text{-}07}$	(31)
OH^{-}	+	CO_2^+	\rightarrow	OH	+	CO_2			$1.93\times10^{\text{-}07}$	(31)
OH^{-}	+	$\mathrm{CO_2}^+$	\rightarrow	0	+	Н	+	CO_2	$1.00\times10^{\text{-}07}$	(31)
OH	+	CO_2^+	\rightarrow	CO	+	0	+	OH	$1.00\times10^{\text{-}07}$	(31)
OH	+	CO_2^+	\rightarrow	CO	+	20	+	Н	$1.00\times10^{\text{-}07}$	(31)
OH	+	H_2O^+	\rightarrow	ОН	+	H_2O			$1.93\times10^{\text{-}07}$	(31)
OH	+	H_2O^+	\rightarrow	Н	+	H_2O	+	0	$1.00\times10^{\text{-}07}$	(31)
OH-	+	H_2O^+	\rightarrow	2OH	+	Н			$1.00 imes 10^{-07}$	(31)
OH	+	H_2O^+	\rightarrow	ОН	+	2H	+	0	$1.00\times10^{\text{-}07}$	(31)
OH^{-}	+	H_3O^+	\rightarrow	OH	+	H_2O	+	Н	$1.00\times10^{\text{-}07}$	(31)

OH	+	H_3O^+			\rightarrow	0	+	H_2O	+	2H	$1.00 imes 10^{-07}$	(31)
H_2O^+	+	0-			\rightarrow	0	+	H_2O			$1.93 imes 10^{-07}$	(31)
H_2O^+	+	0-			\rightarrow	OH	+	Н	+	0	$1.00 imes 10^{-07}$	(31)
H_2O^+	+	O_2^-			\rightarrow	O ₂	+	H_2O			$1.00 imes 10^{-07}$	(31)
H_2O^+	+	O_2^-			\rightarrow	OH	+	Н	+	O_2	$1.00 imes10^{-07}$	(31)
H_2O^+	+	O_2^-			\rightarrow	20	+	H_2O			$1.00 imes10^{-07}$	(31)
H_2O^+	+	O_2^-			\rightarrow	OH	+	Н	+	20	$1.00 imes 10^{-07}$	(31)
H_2O^+	+	CO ₃ ⁻			\rightarrow	0	+	H_2O	+	CO_2	$1.00\times10^{\text{-}07}$	(31)
H_2O^+	+	CO_3^-			\rightarrow	OH + O	+	Н	+	CO_2	$1.00 imes10^{-07}$	(31)
$H_2O^{\scriptscriptstyle +}$	+	CO_4^-			\rightarrow	O_2	+	H_2O	+	CO_2	$1.00\times10^{\text{-}07}$	(31)
$H_2O^{\scriptscriptstyle +}$	+	CO_4^-			\rightarrow	OH + H	+	O_2	+	CO_2	$1.00\times10^{\text{-}07}$	(31)
H_3O^+	+	O ⁻			\rightarrow	Н	+	H_2O	+	0	$1.00\times10^{\text{-}07}$	(31)
H_3O^+	+	O_2^-			\rightarrow	Н	+	H_2O	+	O_2	$1.00 imes 10^{-07}$	(31)
H_3O^+	+	O_2^-			\rightarrow	Н	+	H_2O	+	20	$1.00 imes 10^{-07}$	(31)
H_3O^+	+	CO_3^-			\rightarrow	O + H	+	H_2O	+	CO_2	$1.00 imes 10^{-07}$	(31)
H_3O^+	+	CO_4^-			\rightarrow	$O_2 + H$	+	H_2O			$1.00 imes 10^{-07}$	(31)
H_3^+	+	0-			\rightarrow	Н	+	H_2	+	0	$1.00 imes 10^{-07}$	(31)
H_3^+	+	O_2^-			\rightarrow	Н	+	H_2	+	O_2	$1.00 imes 10^{-07}$	(31)
H_3^+	+	O ₃ ⁻			\rightarrow	Н	+	H_2	+	O ₃	$1.00\times10^{\text{-}07}$	(31)
H_3^+	+	O ₃ ⁻			\rightarrow	H + O	+	H_2	+	O_2	$1.00\times10^{\text{-}07}$	(31)
H_3^+	+	O ₃ -	+	Μ	\rightarrow	H + M	+	H_2	+	O ₃	1.66×10^{-24}	(31)
H_3^+	+	OH ⁻			\rightarrow	ОН	+	Н	+	H_2	$1.00\times10^{\text{-}07}$	(31)
H_3^+	+	OH			\rightarrow	0	+	2H	+	H_2	1.00×10^{-07}	(31)
H.	+	\mathbf{N}^+			\rightarrow	N	+	Н			$2.00 \times 10^{-7} (T_g)$ /300) ^{-0.50}	(31)

H	+	\mathbf{N}^{+}	+	М	\rightarrow	NH	+	М			$2.00 \times 10^{-25} (T_g)$ /300) ^{-2.50}	(31)
H.	+	N_2^+			\rightarrow	N_2	+	Н			$2.00 \times 10^{-7} (T_g)$ /300) ^{-0.50}	(31)
H	+	N_2^+			\rightarrow	2N	+	Н			$1.00 imes 10^{-07}$	(31)
H.	+	N_2^+	+	М	\rightarrow	N_2	+	Н	+	М	$2.00 \times 10^{-25} (T_g)$ /300) ^{-2.50}	(31)
H	+	N_3^+			\rightarrow	N_2	+	Н	+	N	$1.00 imes10^{-07}$	(31)
\mathbf{H}^{-}	+	N_4^{+}			\rightarrow	$2N_2$	+	Н			$1.00\times10^{\text{-}07}$	(31)

3 UNDERLYING MECHANISMS OF PLASMA-BASED CO2 AND CH4 CONVERSION

3.1 CO₂ Conversion

Figure S1. Relative contributions of the main processes leading to CO_2 loss (a) and formation (b) in a $CO_2/CH_4/N_2$ mixture, as a function of N_2 content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The N_2 content was varied with the remainder being CO_2 and CH_4 .

Figure S2. Relative contributions of the main processes leading to CO_2 loss (a) and formation (b) in a $CO_2/CH_4/N_2/O_2$ mixture, as a function of O_2 (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 %, with the remainder being O_2 and N_2 .

Figure S3. Relative contributions of the main processes leading to CO_2 loss (a) and formation (b) in a $CO_2/CH_4/N_2/H_2O$ mixture, as a function of H_2O (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 % with the remainder being H_2O and N_2 .

3.2 CH₄ Conversion

Figure S4. Relative contributions of the main processes leading to CH_4 loss (a) and formation (b) in a $CO_2/CH_4/N_2$ mixture, as a function of N_2 content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The N_2 content was varied with the remainder being CO_2 and CH_4 .

Figure S5. Relative contributions of the main processes leading to CH_4 loss (a) and formation (b) in a $CO_2/CH_4/N_2/O_2$ mixture, as a function of O_2 (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 %, with the remainder being O_2 and N_2 .

Figure S6. Relative contributions of the main processes leading to $CH_4 loss$ (a) and formation (b) in a $CO_2/CH_4/N_2/H_2O$ mixture, as a function of H_2O (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 % with the remainder being H_2O and N_2 .

3.3 CO Production

Figure S7. Relative contributions of the main processes leading to CO formation (a) and loss (b) in a $CO_2/CH_4/N_2$ mixture, as a function of N_2 content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The N_2 content was varied with the remainder being CO_2 and CH_4 .

Figure S8. Relative contributions of the main processes leading to CO formation (a) and loss (b) in a $CO_2/CH_4/N_2/O_2$ mixture, as a function of O_2 (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 %, with the remainder being O_2 and N_2

Figure S9. Relative contributions of the main processes leading to CO formation (a) and loss (b) in a $CO_2/CH_4/N_2/H_2O$ mixture, as a function of H_2O (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 % with the remainder being H_2O and N_2 .

3.4 H₂ Production

Figure S10. Relative contributions of the main processes leading to H_2 formation (a) and loss (b) in a CO₂/CH₄/N₂ mixture, as a function of N₂ content, for a 1:1 CO₂/CH₄ ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The N₂ content was varied with the remainder being CO₂ and CH₄.

Figure S11. Relative contributions of the main processes leading to H₂ formation (a) and loss (b) in a

 $CO_2/CH_4/N_2/O_2$ mixture, as a function of O_2 (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 %, with the remainder being O_2 and N_2 .

Figure S12. Relative contributions of the main processes leading to H_2 formation (a) and loss (b) in a CO₂/CH₄/N₂/H₂O mixture, as a function of H₂O (and N₂) content, for a 1:1 CO₂/CH₄ ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO₂ and CH₄ content were both 10 % with the remainder being H₂O and N₂.

3.5 C₂H₆ Production

Figure S13. Relative contributions of the main processes leading to C_2H_6 formation (a) and loss (b) in a $CO_2/CH_4/N_2$ mixture, as a function of N₂ content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The N₂ content was varied with the remainder being CO_2 and CH_4 .

Figure S14. Relative contributions of the main processes leading to C₂H₆ formation (a) and loss (b)

in a $CO_2/CH_4/N_2/O_2$ mixture, as a function of O_2 (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 % with the remainder being O_2 and N_2 .

Figure S15. Relative contributions of the main processes leading to C_2H_6 formation (a) and loss (b) in a $CO_2/CH_4/N_2/H_2O$ mixture, as a function of H_2O (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 % with the remainder being H_2O and N_2 .

3.6 C₃H₈ Production

Figure S16. Relative contributions of the main processes leading to C_3H_8 loss (a) and formation (b) in a $CO_2/CH_4/N_2$ mixture, as a function of N_2 content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The N_2 content was varied with the remainder being CO_2 and CH_4 .

Figure S17. Relative contributions of the main processes leading to C_3H_8 loss (a) and formation (b) in a $CO_2/CH_4/N_2/O_2$ mixture, as a function of O_2 (and N_2) content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 %, with the remainder being O_2 and N_2 .

Figure S18. Relative contributions of the main processes leading to C_3H_8 loss (a) and formation (b) in a $CO_2/CH_4/N_2/H_2O$ mixture, as a function of H_2O content, for a 1:1 CO_2/CH_4 ratio, a fixed total flow rate of 200 ml/min and a corresponding SEI of 0.76 eV/molecule. The CO_2 and CH_4 content were both 10 % with the remainder being H_2O and N_2 .

REFERENCE

(1) Pancheshnyi, S. ; Eismann, B. ; Hagelaar G. J. M. ; Pitchford, L. C. Computer code ZDPlasKin, University of Toulouse, LAPLACE, CNRS-UPS-INP, Toulouse, France, 2008, http://www.zdplaskin.laplace.univ-tlse.fr.

(2) Snoeckx, R.; Aerts, R.; Tu, X.; Bogaerts, A. Plasma-based Dry Reforming: a Computational Study Ranging from the Nanoseconds to Seconds Time Scale. *J. Phys. Chem. C* **2013**, *117*, 4957-4970.

(3) Snoeckx, R.; Ozkan, A.; Reniers F.; Bogaerts, A. The Quest for Vaue-added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: a Chemical Kinetics Study. *ChemSusChem* **2017**, *10*, 409–424.

(4) Snoeckx, R.; Setareh, M.; Aerts, R.; Simon, P. ; Maghari, A.; Bogaerts, A. Influence of N_2 Concentration in a CH_4/N_2 Dielectric Barrier Discharge Used for CH_4 Conversion into H_2 . *Int. J. Hydrogen Energy* **2013**, *38*, 16098-16120.

(5) Snoeckx, R.; Heijkers, S.; Van Wesenbeeck, K.; Lenaerts, S.; Bogaerts, A. CO_2 Conversion in a Dielectric Barrier Discharge Plasma: N_2 in the Mix as a Helping Hand or Problematic Impurity? *Energy Environ. Sci.* **2016**, *9*, 999-1011.

(6) Aerts, R.; Somers, W.; Bogaerts, A. Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: a Combined Experimental and Computational Study. *ChemSusChem* 2015, *8*, 702-716.

(7) Hagelaar, G. J. M.; Pitchford, L. C. Solving the Boltzmann Equation to Obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models. *Plasma Sources Sci. Technol.***2005**, *14*,722-733.

(8) Zhang X.; Cha, M. S. Electron-induced Dry Reforming of Methane in a Temperature-Controlled Dielectric Barrier Discharge Reactor. J. Phys. D. Appl. Phys. 2013, 46, 415205.

(9) Janev, R. K. Atomic and Molecular Processes in Fusion Edge Plasmas, Plenum Press, New York, U.S.A., 1995.

(10) Janev, R. K.; Murakami, I. ; Kato T.; Wang, J. Cross Sections and Rate Coefficients for Electron-Impact Ionization of Hydrocarbon Molecules. Toki, Gifu, Japan, 2001.

(11) Janev R. K.; Reiter, D. Collision Processes of CH_y and CH_y^+ Hydrocarbons with Plasma Electrons And Protons. *Phys. Plasmas* **2002**, *9*, 4071-4081.

(12) Janev, R. K. Collision Processes of Hydrocarbon Species in Hydrogen Plasmas. Part 1. The Methane Family. *ChemInform* **2003**, *34*, 1-47.

(13) Janev R. K.; Reiter, D. Collision Processes of Hydrocarbon Species in Hydrogen Plasmas. Part 2. The Ethane and Propane Families. *ChemInform* **2003**, *34*, 1-124.

(14) Janev R. K.; Reiter, D. Collision Processes of $C_{2,3}H_y$ and $C_{2,3}H_y^+$ Hydrocarbons with Electrons and Proton. *Phys. Plasmas* **2004**, *11*, 780-829.

(15) Janev, R. K. ;Wang, J. G. ; Murakami I. ; Kato T. 2001 NIFS-Data 68, National Institute for Fusion Science.

(16) Phelps Database, www.lxcat.net. Buckman S. J. ; Phelps, A. V. JILA Information Center Report No. 27, University of Colorado (May 1, 1985), Vibrational Excitation of D_2 by Low Energy Electrons. *J. Chem. Phys.* **1985**, *82*, 4999.

(17) IST-Lisbon database, www.lxcat.net. Marques, L.; Jolly, J. ; Alves, L. L. Capacitively Coupled Radio-Frequency Hydrogen Discharges: the Role of Kinetics. *J. Appl. Phys.* **2007**, *102*, 063305.

(18) Lawton S. A.; Phelps, A. V. Total and Partial Ionization Cross Sections of Atoms and Ions by Electron Impact Atom. *J. Chem. Phys.* **1978**, *69*, 1055-1068.

(19) Eliasson, B. ; Hirth M.; Kogelschatz, U. Ozone Synthesis from Oxygen in Dielectric Barrier Discharges. J. Phys. D. Appl. Phys. 1987, 20, 1421-1437.

(20) Gudmundsson, J. T.; Kouznetsov, I. G.; Patel K. K.; Lieberman, M. A. Electronegativity of Low-pressure High-density Oxygen Discharges. J. Phys. D. Appl. Phys. 2001, 34, 1100-1109.

(21) Morgan, W. L. Kinema Research & Software, LXcat database.

(22) Kossyi, I. A.; Kostinsky, A. Y.; Matveyev A. A.; Silakov, V. P. Kinetic Scheme of the Non-Equilibrium Discharge in Nitrogen-Oxygen Mixtures . *Plasma Sources Sci. Technol.* **1992**, *1*, 207-220.

(23) Matejcik, S. ; Kiendler, A.; Cicman, P. ; Skalny, J. ; Stampfli, P. ; Illenberger, E. ; Chu, Y. ; Stamatovic A.; Märk, T. D. Electron Attachment to Molecules and Clusters of Atmospheric Relevance: Oxygen and Ozone. *Plasma Sources Sci. Technol.* **1997**, *6*, 140-146.

(24) Lowke, J. J.; Phelps A. V.; Irwin, B. W. Predicted Electron Transport Coefficients and Operating Characteristics of CO₂–N₂–He Laser Mixtures. *J. Appl. Phys.* **1973**, *44*, 4664-4671.

(25) Hake R. D. Jr.; Phelps, A. V. Momentum-transfer and Inelastic-collision Cross Sections for Electrons in O₂, CO, and CO₂. *Phys. Rev.* **1967**, *158*, 70-84.

(26) Polak L. S.; Slovetsky, D. I. Electron Impact Induced Electronic Excitation and Molecular Dissociation. *Int. J. Radiat. Phys. Chem.* **1976**, *8*, 257-282.

(27) Itikawa, Y. Cross Sections for Electron Collisions with Carbon Dioxide. J. Phys. Chem. Ref. Data 2002, 31, 749-767.

(28) Land, J. E. Electron Scattering Cross Sections for Momentum Transfer and Inelastic Excitation in Carbon Monoxide. *J. Appl. Phys.* **1978**, *49*, 5716-5721.

(29) Mangan, M. A.; Lindsay B. G.; Stebbings, R. F. Absolute Partial Cross Sections for Electronimpact Ionization of CO from Threshold to 1000 eV. J. Phys. B: At. Mol. Opt. Phys. 2000, 33, 3225-3234.

(30) Itikawa Y.; Mason, N. Cross sections for Electron Collisions with Water Molecules. J. Phys. Chem. Ref. Data 2005, 34, 1-22.

(31) Van Gaens W.; Bogaerts, A. Kinetic Modelling for an Atmospheric Pressure Argon Plasma Jet in Humid Air. J. Phys. D. Appl. Phys. **2013**, *46*, 275201.

(32) Riahi, R. ; Teulet, P. ; Ben Lakhdar Z. ; Gleizes, A. Cross-section and Rate Coefficient Calculation for Electron Impact Excitation, Ionisation and Dissociation of H_2 and OH Molecules. *Eur. Phys. J. D* **2006**, *40*, 223-230.

(33) Pedersen, H. B.; Djuri'c, N. ; Jensen, M. J. ; Kella, D.; Safvan, C. P. ; Schmidt, H.T. ; Vejby-Christensen L. ; Andersen, L. H. Electron Collisions with Diatomic Anions. *Phys. Rev. A* **1999**, *60*, 2882-2899.

(34) Phelps Database, www.lxcat.net. Phelps , A. V.; Pitchford, L. C. Anisotropic Scattering of Electrons by N₂ and its Effect on Electron Transport. *Phys. Rev.* **1985**, *31*, 2932.

(35) Geltman, S. Free-free Radiation in Electron-neutral Atom Collisions. J. Quant. Spectrosc. Radiat. Transfer **1973**, 13, 601-613.

(36) Berrington, K. A.; Burke P. G.; Robb, W. D. The Scattering of Electrons by Atomic Nitrogen. J. Phys. B 1975, 8, 2500-2511.

(37) Smith, A.; Caplinger, E.; Neynaber, R. ; Rothe E. ; Trujillo, S. Electron Impact Ionization of Atomic Nitrogen. *Phys. Rev.* **1962**, *127*, 1647-1649.

(38) Hayashi, M. Nonequilibrium Processes in Partially Ionized Gases (NATO Advanced Science Institutes Series, Series B, Physics vol 220) ed Capitelli, M.; Bardsley, J. N. (New York: Plenum) pp 333-440, 1990.

(39) Tarnovsky, V.; Deutsch H.; Becker, K. Cross-sections for the Electron Impact Ionization of ND_x (x =1-3). *Int. J. Mass Spectrom*.**1997**, *167-168*, 69-78.

(40) Itikawa, Y. Cross Sections for Electron Collisions with Nitric Oxide. J. Phys. Chem. Ref. Data 2016, 45, 033106.

(41) Josi'c, L.; Wr'oblewski, T.; Petrovi'c, Z. ; Mechlinska-Drewko J. ; Karwasz, G. Influence of Resonant Scattering on Electron-swarm Parameters in NO. *Chem. Phys. Lett.* **2001**, *350*, 318-324.

(42) Rapp D. ; Briglia, D. D. Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. II. Negative-ion Formation. J. Chem. Phys. **1965**, *43*, 1480-1489.

(43) Sakai, Y.; Okumura T.; Tagashira, H. Measurement of Electron Impact Ionisation and Attachment Coefficients in NO₂/He Gas Mixtures and Estimated Electron Collision Cross Sections for NO₂. *J. Phys.* **1995**, *48*, 419-426.

(44) Lindsay, B. G.; Mangan, M. A.; Straub H. C.; Stebbings, R. F. Absolute Partial Cross Sections for Electron-impact Ionization of NO And NO₂ from Threshold to 1000 eV. J. Chem. Phys. **2000**, *112*, 9404.

(45) Gordillo-V'azquez, F. J. Air Plasma Kinetics under the Influence of Sprites. J. Phys. D: Appl. Phys. **2008**, *41*, 234016.

(46) Hayashi M.; Niwa, A. 1987, Gaseous Dielectrics vol V ed Christophorou, L. G.; Bouldin D. W. (New York: Pergamon) p 27.

(47) Kushner, M. J. Strategies for Rapidly Developing Plasma Chemistry Models. 52nd Gaseous Electronics Conf. (Norfolk, VA, October 1999) *Bull. Am. Phys. Soc.* **1999**, *44*, 63.

(48) Janev, R. K. ; Reiter D. ; Samm, U. Collision Processes in Low-temperature Hydrogen Plasmas 2003, Technical Report Forschungszentrum Juelich GmbH.

(49) Chan, C. F. Reaction Cross-sections and Rate Coefficients Related to the Production of Positive Ions 1983, Lawrence Berkeley Laboratory Report No LBID-632.

(50) Tawara, H.; Itikawa, Y.; Nishimura H.; Yoshino, M. Cross Sections and Related Data for Electron Collisions with Hydrogen Molecules and Molecular Ions. *J. Phys. Chem. Ref. Data* **1990**, *19*, 617.

(51) Florescu-Mitchell, A. I.; Mitchell, J. B. A. Dissociative Recombination. *Phys. Rep.* **2006**, *430*, 277-374.

(52) Liu, D. X.; Bruggeman, P.; Iza, F.; Rong M. Z.; Kong, M. G. Global Model of Low-temperature Atmospheric-pressure He + H₂O Plasmas. *Plasma Sources Sci. Technol.* **2010**, *19*, 025018.

(53) Capitelli, M.; Ferreira, C. M.; Gordiets B. F.; Osipov, A. I. Plasma Kinetics in Atmospheric Gases (2000) Springer.

(54) Whitaker, M.; Biondi M. A.; Johnsen, R. Electron-temperature Dependence of Dissociative Recombination of Electrons with N_2^+ N_2 Dimer Ions. *Phys. Rev. A* **1981**, *24*, 743-745.

(55) Hokazono, H. ; Fujimoto, H. Theoretical Analysis of the CO_2 Molecule Decomposition and Contaminants Yield in Transversely Excited Atmospheric CO_2 Laser Discharge. J. Appl. Phys. **1987**, 62 1585-1594.

(56) Beuthe T. G.; Chang, J. S. Chemical Kinetic Modelling of Non-equilibrium Ar-CO₂ Thermal Plasmas. *Japan. J. Appl. Phys.* **1997**, *36*, 4997-5002.

(57) Cenian, A.; Chernukho A.; Borodin, V. Modeling of Plasma-chemical Reactions in Gas Mixture of CO₂ Lasers. II. Theoretical Model and its Verification. *Contrib. Plasma Phys.* **1995**, *35*, 273-296.

(58) Liu W.; Victor, G. A. Electron Energy Deposition in Carbon Monoxide Gas. *Astrophys. J.* **1994**, *435*, 909-919.

(59) Woodall, J.; Ag'undez, M.; Markwick-Kemper A. J.; Millar, T. J. The UMIST Database for Astrochemistry 2006. *Astronom. Astrophys.* **2007**, *466*, 1197-1204.

(60) Tsang, W.; Hampson, R. F. Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds. J. Phys. Chem. Ref. Data **1986**, 15, 1087-1279.

(61) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, T.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker R. W.; Warnat, J. Evaluated Kinetic Data for Combustion Modelling. *J. Phys. Chem. Ref. Data* **1992**, *21*, 411-734.

(62) Matsugi, A.; Suma, K.; Miyoshi, A. Deuterium Kinetic Isotope Effects on the Gas-Phase Reactions of C₂H with H₂(D₂) and CH₄(CD₄). *Phys. Chem. Chem. Phys.* **2011**, *13*, 4022-4031.

(63) Tsang, W. Chemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane. J. Phys. Chem. Ref. Data **1988**, 17, 887-951.

(64) Tsang, W. Chemical Kinetic Data Base for Combustion Chemistry. 5. Propene. J. Phys. Chem. Ref. Data **1991**, 20, 221-273.

(65) Stewart, P. H.; Larson, C. W.; Golden, D. M. Pressure and Temperature-dependence of Reactions Proceeding via A-Bound Complex. 2. Application to 2CH₃->C₂H₅+H. *Combust. Flame* **1989**, *75*, 25-31.

(66) Van den Bergh, H. E. The Recombination of Methyl Radicals in the Low Pressure Limit. *Chem. Phys. Lett.* **1976**, *43*, 201-204.

(67) Harding, R. Guadagnini, G. C. Schatz. Theoretical-studies of the Reactions H+CH->C+H₂ and C+H₂->CH₂ using an Abinitio Global Ground-State Potential Surface for CH₂. *J. Phys. Chem.* **1993**, 97, 5472-5481.

(68) Lin, S. Y.; Guo, H. Case study of a Prototypical Elementary Insertion Reaction: $C(^{1}D)+H_{2} \rightarrow CH+H$. *J. Phys. Chem. A* **2004**, *108*, 10066-10071.

(69) Kurylo, M. J.; Peterson, N. C.; Braun, W. Absolute Rates of the Reactions $H + C_2H_4$ and $H + C_2H_5$. *J. Chem. Phys.* **1970**, *53*, 2776-2783.

(70) Laufer, A. H.; Fahr, A. Reactions and Kinetics of Unsaturated C₂ Hydrocarbon Radicals. *Chem. Rev.* **2004**, *104*, 2813-2832.

(71) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, T.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J. et al. Evaluated Kinetic Data for Combustion Modeling - Supplement-1. *J. Phys. Chem. Ref. Data* **1994**, *23*, 847-1033.

(72) Harding, L. B.; Georgievskii, Y.; Klippenstein, S. J. Predictive Theory for Hydrogen Atom - Hydrocarbon Radical Association Kinetics. *J. Phys. Chem. A* **2005**, *109*, 4646-4656.

(73) Harding, L. B.; Klippenstein, S. J.; Georgievskii, Y. On the Combination Reactions of Hydrogen Atoms with Resonance-stabilized Hydrocarbon Radicals. *J. Phys. Chem. A* **2007**, *111*, 3789-3801.

(74) Cohen, N.; Westberg, K. R. Chemical Kinetic Data Sheets for High-temperature Reactions. Part II. J. *Phys. Chem. Ref. Data* **1991**, *20*, 1211-1311.

(75) Baulch, D. L.; Bowman, C. T.; Cobos, C. J.; Cox, R. A.; Just, T.; Kerr, J. A.; Pilling, M. J.; Stocker, D.; Troe, J.; Tsang, W. et al. Evaluated Kinetic Data for Combustion Modeling: Supplement II. *J. Phys. Chem. Ref. Data* **2005**, *34*, 757-1397.

(76) Fernandes, R. X.; Luther, K.; Troe, J. Falloff Curves for The Reaction CH_3+O_2 (+M) -> CH_3O_2 (+M) in the Pressure Range 2-1000 Bar and the Temperature Range 300-700 K. *J. Phys. Chem. A* **2006**, *110*, 4442-4449.

(77) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Evaluated kinetic and Photochemical Data for Atmospheric Chemistry: Volume II - Gas Phase Reactions of Organic Species. *Atmos. Chem. Phys.* **2006**, *6*, 3625-4055.

(78) Fang, D. C.; Fu, X. Y.; Cassef and Cas+1+2 Studies on the Potential Energy Surface and the Rate Constants for the Reactions Between CH₂ and O₂. *J. Phys. Chem. A* **2002**, *106*, 2988-2993.

(79) Becker, K. H. ; Brockmann, K. J. ; Wiesen, P. Spectroscopic Identification Of $C({}^{3}P)$ Atoms in Halogenomethane + H Flame Systems and Measurements of $C({}^{3}P)$ Reaction Rate Constants by Two-photon Laser-Induced Fluorescence. *J. Chem. Soc. Faraday Trans.* 2 **1988**, *84*, 455-461.

(80) Sheng, C. Y.; Bozzelli, J. W.; Dean, A. M.; Chang, A.Y. Detailed Kinetics and Thermochemistry of $C_2H_5 + O_2$: Reaction Kinetics of the Chemically-Activated and Stabilized CH₃CH₂OO Adduct. *J. Phys. Chem. A* **2002**, *106*, 7276-7293.

(81) Warnatz, J. Rate Coefficients in the C/H/O System, 1984, Combustion Chemistry ed. Gardiner, W. C., Jr., Springer-Verlag, NY.

(82) Miller, J. A.; Garrett, B. C. Quantifying the Non-RRKM Effect in the $H + O_2 = OH + O$ Reaction. *Int. J. Chem. Kinet.***1997**, *29*, 275-287.

(83) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J. A.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. *3.* Iupac Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. *J. Phys. Chem. Ref. Data* **1989**, *18*, 881-1097.

(84) Bonard, A.; Daele, V.; Delfau, J.-L.; Vovelle, C. Kinetics of OH Radical Reactions with Methane in the Temperature Range 295-660 K and with Dimethyl Ether and Methyl-Tert-Butyl Ether in the Temperature Range 295-618 K. *J. Phys. Chem. A* **2002**, *106*, 4384-4389.

(85) Tsang, W. Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol. J. Phys. Chem. Ref. Data **1987**, *16*, 471-508.

(86) Pereira, R. D. ; Baulch, D. L.; Pilling, M. J. ; Robertson, S. H.; Zeng, G. Temperature and Pressure Dependence of the Multichannel Rate Coefficients for the CH₃+OH System. *J. Phys. Chem. A* **1997**, *101*, 9681-9693.

(87) Humpfer, R.; Oser, H.; Grotheer, H-H.; Just, T. The Reaction System $CH_3 + OH$ at Intermediate Temperatures. Appearance of a New Product Channel. *Symp. Int. Combust. Proc.***1994**, *25*, 721-731.

(88) Carstensen, H. H.; Dean, A. M. Rate Constants for the Abstraction Reactions $RO_2 + C_2H_6$; R = H, CH₃, and C₂H₅. *P. Combust. Inst.* **2005**, *30*, 995-1003.

(89) Kaufman, F.; Del Greco, F. P. Fast Reactions of OH Radicals. Symp. Int. Combust. Proc. 1963, 9, 659-668.

(90) Slemr, F.; Warneck, P. Kinetics of Reaction of Atomic-Hydrogen with Methyl Hydroperoxide. *Int. J. Chem. Kinet.* **1977**, 9, 267-282.

(91) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume I - Gas Phase Reactions of O_x , HO_x , NO_x And SO_x Species. *Atmos. Chem. Phys.* **2004**, *4*, 1461-1738.

(92) Lloyd, A. C. Evaluated and Estimated Kinetic Data for Phase Reactions of the Hydroperoxyl Radical. *Int. J. Chem. Kinet.* **1974**, *6*, 169-228.

(93) Shaw, R. Estimation of Rate Constants as a Function of Temperature for the Reactions W + XYZ = WX + YZ, where W, X, Y, and Z are H or O Atoms. *Int. J. Chem. Kinet.* **1977**, *9*, 929-941.

(94) Cobos, C. J.; Troe, J. Theory of Thermal Unimolecular Reactions at High Pressures. II. Analysis of Experimental Results. *J. Chem. Phys.* **1985**, *83*, 1010-1015.

(95) Sun, H.; Tang, Y. Z.; Wang, Z. L.; Pan, X. M.; Li, Z. S.; Wang, R. S. DFT Investigation of the Mechanism of CH₂CO+O(P-3) Reaction. *Int. J. Quantum Chem.* **2005**, *105*, 527-532.

(96) Frenklach, M.; Wang, H.; Rabinowitz, M. J. Optimization and Analysis of Large Chemical Kinetic Mechanisms using the Solution Mapping Method—Combustion of Methane. *Prog. Energy Combust. Sci.* **1992**, *18*, 47-73.

(97) Kuwata, K. T.; Hasson, A. S.; Dickinson, R. V.; Petersen, E. B.; Valin, L. C. Quantum Chemical and Master Equation Simulations of the Oxidation and Isomerization of Vinoxy Radicals. *J. Phys. Chem.* A **2005**, *109*, 2514-2524.

(98) Delbos, E. ; Fittschen, C. ; Hippler, H. ; Krasteva, N. ; Olzmann, M.; Viskolcz, B. Rate Coefficients and Equilibrium Constant for the CH₂CHO+O₂ Reaction System. *J. Phys. Chem. A* **2006**, *110*, 3238-3245.

(99) Tyndall, G. S.; Wallington, T. J.; Ball, J. C. FTIR Product Study of the Reactions $CH_3O_2+CH_3O_2$ and $CH_3O_2+O_3$. *J. Phys. Chem. A* **1998**, *102*, 2547-2554.

(100) Kim, T. J.; Yetter, R. A.; Dryer, F. L. New Results on Moist CO Oxidation: High Pressure, High Temperature Experiments and Comprehensive Kinetic Modeling. *Symp. Int. Combust. Proc.* **1994**, *25*, 759-766.

(101) Jodkowski, J. T.; Rayez, M. T.; Rayez, J. C.; Berces, T. ; Dobe, S. Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol. 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals. *J. Phys. Chem. A* **1999**, *103*, 3750-3765.

(102) Hou, H.; Wang, B. S.; GU, Y. S. Mechanism of the OH+CH₂CO Reaction. *Phys. Chem. Chem. Phys.* **2000**, *2*, 2329-2334.

(103) Xu, Z. F.; Park, J.; Lin, M. C. Thermal Decomposition of Ethanol. III. A Computational Study of the Kinetics and Mechanism for the CH₃+C₂H₅OH Reaction.*J. Chem. Phys.* **2004**, *120*, 6593-6599.

(104) Li, S. C.; Williams, F. A. Experimental and Numerical Studies of Two-stage Methanol Flames. *Symp. Int. Combust. Proc.* **1996**, *26*, 1017-1024.

(105) Jasper, A. W.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B. Kinetics of the Reaction of Methyl Radical with Hydroxyl Radical and Methanol Decomposition. *J. Phys. Chem. A* **2007**, *111*, 3932-3950.

(106) Park, J.; Xu, Z. F.; Lin, M. C. Thermal Decomposition of Ethanol. II. A Computational Study of the Kinetics and Mechanism for the H+ C₂H₅OH Reaction. *J. Chem. Phys.* **2003**, *118*, 9990-9996.

(107) Basevich, V.Ya.; Kogarko, S.M.; Furman, G. A.The Reactions of Methanol with Atomic Oxygen. Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) **1975**, *24*, 948-952.

(108) Lu, C. W. ; Chou, S. L.; Lee, Y. P. ; Xu, S. C. ; Xu, Z. F. ; Lin, M. C. Experimental and Theoretical Studies of Rate Coefficients for the Reaction O(P-3)+CH₃OH at High Temperatures. *J. Chem. Phys.* **2005**, *122*, 244314.

(109) Grotheer, H.; Riekert, G.; Walter, D. Th. Just, Non-arrhenius Behavior of the Reaction of Hydroxymethyl Radicals with Molecular Oxygen. *J. Phys. Chem.***1988**, *92*, 4028-4030.

(110) Tsuboi, T.; Hashimoto, K. Shock Tube Study on Homogeneous Thermal Oxidation of Methanol. *Combust. Flame* **1981**, *42*, 61-76.

(111) Hidaka, Y.; Nishimori, T.; Sato, K. et al. Shock-Tube and Modeling Study of Ethylene Pyrolysis and Oxidation. *Combust. Flame* **1999**, *117*, 755-776.

(112) Harding, L. B.; Klippenstein, S. J.; Georgievskii, Y. Reactions of Oxygen Atoms with Hydrocarbon Radicals: A Priori Kinetic Predictions for the CH_3+O , C_2H_5+O , and C_2H_3+O Reactions. *Proc. Combust. Inst.* **2005**, *30*, 985-993.

(113) Koz'ak T.; Bogaerts, A. Splitting of CO₂ by Vibrational Excitation in Non-equilibrium Plasmas: A Reaction Kinetics Model. *Plasma Sources Sci. Technol.* **2014**, *23*, 045004.

(114) Hadj-Ziane, S.; Held, B.; Pignolet, P.; Peyrous, R.; Coste, C. Ozone Generation in an Oxygen-Fed Wire-To-Cylinder Ozonizer at Atmospheric-Pressure. *J. Phys. D: Appl. Phys.* **1992**, *25*, 677-685.

(115) Guerra V.; Loureiro, J.; Non-equilibrium Coupled Kinetics in Stationary N₂-O₂ Discharges. J. Phys. D. Appl. Phys. **1995**, 28, 1903.

(116) Pintassilgo, C. D. ; Jaoul, C. ; Loureiro, J. ; Belmonte T.; Czerwiec, T. Kinetic Modelling of a N_2 Flowing Microwave Discharge with CH₄ Addition in the Post-Discharge for Nitrocarburizing Treatments. *J. Phys. D: Appl. Phys.* **2007**, *40*, 3620.

(117) Moreau, N.; Pasquiers, S.; Blin-Simiand, N.; Magne, L.; Jorand, F.; Postel C.; Vacher, J-R. Propane Dissociation in a Non-thermal High-pressure Nitrogen Plasma. *J. Phys. D: Appl. Phys.* **2010**, *43*, 285201.

(118) Arakoni, R. A.; Bhoj, A. N.; Kushner, M. J. H₂ Generation in Ar/NH₃ Microdischarges. J. Phys. D. Appl. Phys. 2007, 40, 2476-2490.

(119) Pintassilgo, C. D.; Jaoul, C.; Loureiro, J.; Belmonte, T.; Czerwiec, T. Kinetic Modelling of a N_2 Flowing Microwave Discharge with CH₄ Addition in the Post-Discharge for Nitrocarburizing Treatments. *J. Phys. D. Appl. Phys.* **2007**, *40*, 3620-3632.

(120) Moreau, N.; Pasquiers, S.; Blin-Simiand, N.; Magne, L.; Jorand, F.; Postel, C. et al. Propane Dissociation in a Non-thermal Highpressure Nitrogen Plasma. J. *Phys. D. Appl. Phys.* **2010**, *43*, 285201.

(121) Pintassilgo, C. D.; Loureiro, J. Kinetic Study of a N₂-CH₄ Afterglow Plasma for Production of Ncontaining Hydrocarbon Species of Titan's Atmosphere. *Adv. Space Res.* **2010**, *46*, 657-671

(122) Dorai, R. Modeling of Atmospheric Pressure Plasma Processing of Gases and Surfaces, University of Illinois at Urbana-Champaign, 2002.

(123) Stahl G.; Warnatz, J. Numerical Investigation of Time-Dependent Properties and Extinction of Strained Methane and Propane-Air Flamelets. *Combust. Flame* **1991**, *85*, 285-299.

(124) Murrell, J. N.; Rodriguez, J. A. Predicted Rate Constants for the Exothermic Reactions of Ground State Oxygen Atoms and CH Radicals. *J. Mol. Struct. Theochem.* **1996**, *139*, 267-276.

(125) Mousavipour S. H.; Saheb, V. Theoretical Study on the Kinetic and Mechanism of H+HO₂ Reaction. *Bull. Chem. Soc. Jpn.***2007**, *80*, 1901-1913.

(126) Srinivasan, N. K.; Su, M. C.; Michael, J. V. High-temperature Rate Constants for $CH_3OH+Kr \rightarrow$ Products, $OH+CH_3OH \rightarrow$ Products, $OH+(CH_3)CO \rightarrow CH_2COCH_3+H_2O$, and $OH+CH_3 \rightarrow CH_2+H_2O$. *J. Phys. Chem. A* **2007**, *111*, 3951-3958.

(127) Zellner R.; Ewig, F. Computational Study of the $CH_3 + O_2$ Chain Branching Reaction. J. Phys. Chem. **1988**, 92, 2971-2974.

(128) Seery, D. J. Comments on a Shock-Tube Investigation of the Ignition of Lean Methane and N-Butane Mixtures with Oxygen. *Symp. Int. Combust. Proc.* **1969**, *12*, 588-590.

(129) Horvath, G. ; Skalny, J. D. ; Mason, N. J. ; Klas, M. ; Zahoran, M. ; Vladoiu R. ; Manole, M. Corona Discharge Experiments in Admixtures of N_2 and CH_4 : a Laboratory Simulation of Titan's Atmosphere. *Plasma Sources Sci. Technol.* **2009**, *18*, 034016.

(130) Guerra V.; Loureiro, J. Electron and Heavy Particle Kinetics in a Low Pressure Nitrogen Glow Discharge. *Plasma Sources Sci. Technol.* **1997**, *6*, 361-372.

(131) Piper, L. G. Energy Transfer Studies of $N_2(X^1\Sigma_g^+, v)$ and $N_2(B^3\Sigma_g)$. J. Chem. Phys. **1992**, 97, 270–275.

(132) Piper, L. G. Quenching Rates Coefficients for $N_2(a^1\Sigma_u^-)$. J. Chem. Phys. **1987**, 87, 1625-1629.

(133) Dreyer, J. W.; Perner, D.; Roy, C. R. Rate Constants for the Quenching of $N_2(A^3\Sigma_u^+, vA = 0-8)$ by CO, CO₂, NH₃, NO, and O₂. J. Chem. Phys. **61**, 1974, 3164-3169.

(134) Campbell I.; Thrush, B. Behaviour of Carbon Dioxide and Nitrous Oxide in Active Nitrogen. *Trans. Faraday Soc.* **1966**, *62*, 3366-3374.

(135) Koeta, O.; Blin-Simiand, N.; Faider, W.; Pasquiers, S.; Bary, A.; Jorand, F. Decomposition of Acetaldehyde in Atmospheric Pressure Filamentary Nitrogen Plasma. *Plasma Chem. Plasma Process.* **2012**, *32*, 991-1023.

(136) Heidner III, R. F.; Husain, D. Electronically Excited Oxygen Atoms O (21D2). A Time-resolved Study of the Collisional Quenching by the Gases H_2 , D_2 , NO, N_2O , CH_4 , and C_3O_2 using Atomic Absorption Spectroscopy in the Vacuum Ultraviolet. *Int. J. Chem. Kinet.* **1973**, *5*, 819–831.

(137) Bradley, J. N.; Edwards, A. D.; Gilbert, J. R. The Gas-phase Reactions of Singlet Oxygen Atoms with Methane. *J. Chem. Soc. A* **1971**, 326-331.

(138) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, Jr. R. F.; Kerr, J. A.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Supplement IV, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. *J. Phys. Chem. Ref. Data* **1992**, *21*, 1125-1568.

(139) Chang A. H. H.; Lin, S. H. A Theoretical Study of the O $(1D) + CH_4$ Reaction II. *Chem. Phys. Lett.* **2004**, *384*, 229-235.

(140) Tully, J. C. Reactions of O(1D) with Atmospheric Molecules. J. Chem. Phys. 1975, 62, 1893-1898.

(141) Noxon, J. F. Optical Emission from O(1D) and $O_2(B1\Sigma G)$ in Ultraviolet Photolysis of O_2 and CO_2 . *J. Chem. Phys.* **1970**, *52*, 1852-1873.

(142) Dean, A. M.; Kistiakowsky, G. B. Oxidation of Carbon Monoxide/Methane Mixtures in Shock Waves. J. Chem. Phys. 1970, 54, 1718-1725.

(143) Starik A. M.; Titova, N. S. Kinetics of Detonation Initiation in the Supersonic Flow of the $H_2 + O_2$ (Air) Mixture in O_2 Molecule Excitation by Resonance Laser Radiation. *Kinetics and Catalysis* **2003**, *44*, 28-39.

(144) Halberstadt, M. L.; Crump, J. Insertion of Methylene into the Carbon-Hydrogen Bonds of the C1 to C4 Alkanes. *J. Photochem.* **1973**, *1*, 295-395.

(145) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. J.; Molina, M. J. Chemical Kinetic and Photochemical Data for Use in

Stratospheric Modeling: Evaluation No. 11 of the NASA Panel for Data Evaluation, JPL Publication 94-26, 1996.

(146) Togai, K. Kinetic Modeling and Sensitivity Analysis of Plasma-assisted Combustion. The Pennsylvania State University, PhD thesis, 2015.

(147) Aerts, R.; Martens T.; Bogaerts, A. Influence of Vibrational States on CO₂ Splitting by Dielectric Barrier Discharges. *J. Phys. Chem. C* **2012**, *116*, 23257.

(148) Kim, Y. H.; Fox, J. L. The Chemistry of Hydrocarbon Ions in the Jovian Ionosphere. *Icarus* **1994**, *112*, 310-325.

(149) Tahara, H.; Minami, K.; Murai, A.; Yasui, T.; Yoshikawa, T. Diagnostic Experiment and Kineticmodel Analysis of Microwave CH₄/H₂ Plasmas for Deposition of Diamond-Like Carbon-films. *Jpn. J. Appl. Phys.* **1995**, 34, 1972-1979.

(150) Tachibana, K.; Nishida, M. ; Harima, H. ; Urano, Y. Diagnostics and Modeling of a Methane Plasma Used in the Chemical Vapor-deposition of Amorphous-carbon Films. *J. Phys. D: Appl. Phys.* **1984**, *17*, 1727-1742.

(151) Gudmundsson, J. T.; Thorsteinsson, E. G. Oxygen Discharges Diluted with Argon: Dissociation Processes. *Plasma Sources Sci. Technol.* **2007**, *16*, 399-412.

(152) Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Yuryshev, N. N. Physics and Engineering of Singlet Delta Oxygen Production in Low-temperature Plasma. *J. Phys. D: Appl. Phys.* **2007**, *40*, R25-R61.