
Merging Metadynamics into Hyperdynamics: Accelerated Molecular
Simulations Reaching Time Scales from Microseconds to Seconds
Kristof M. Bal* and Erik C. Neyts

Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium

*S Supporting Information

ABSTRACT: The hyperdynamics method is a powerful tool to simulate slow
processes at the atomic level. However, the construction of an optimal hyperdynamics
potential is a task that is far from trivial. Here, we propose a generally applicable
implementation of the hyperdynamics algorithm, borrowing two concepts from
metadynamics. First, the use of a collective variable (CV) to represent the accelerated
dynamics gives the method a very large flexibility and simplicity. Second, a
metadynamics procedure can be used to construct a suitable history-dependent bias
potential on-the-fly, effectively turning the algorithm into a self-learning accelerated
molecular dynamics method. This collective variable-driven hyperdynamics (CVHD)
method has a modular design: both the local system properties on which the bias is
based, as well as the characteristics of the biasing method itself, can be chosen to match the needs of the considered system. As a
result, system-specific details are abstracted from the biasing algorithm itself, making it extremely versatile and transparent. The
method is tested on three model systems: diffusion on the Cu(001) surface and nickel-catalyzed methane decomposition, as
examples of “reactive” processes with a bond-length-based CV, and the folding of a long polymer-like chain, using a set of
dihedral angles as a CV. Boost factors up to 109, corresponding to a time scale of seconds, could be obtained while still accurately
reproducing correct dynamics.

1. INTRODUCTION

In order to gain insight into the fundamental dynamic processes
of matter, the molecular dynamics (MD) method has been
shown to be an indispensable tool. With MD simulations, it is
possible to study the dynamical evolution of an arbitrary system
with atomic detail. However, MD simulations invariably suffer
from severe time-scale limitations. Indeed, whereas MD cannot
be used to simulate time and lengths beyond the nanoscale,
many relevant processes occur infrequently, beyond the
microsecond time scale.
Several solutions to tackle the MD time scale problem exist.

The family of accelerated MD methods developed by Voter and
co-workers operate within the basic framework of MD, and use
elevated temperatures,1 bias potentials2,3 or parallelization4,5 to
shorten the time between infrequent events. On the other end
of the spectrum, there are the various kinetic Monte Carlo
(kMC) methods, where the full system evolution is represented
as a coarse-grained sequence of infrequent events; the kMC
event catalog must either be predefined6 or is constructed on-
the-fly during the simulation.7−12 Finally, force-bias Monte
Carlo simulations13−15 can be used to accelerate relaxation
processes and push out-of-equilibrium systems toward global
minima faster than MD,13,16 although they generally do not
reproduce exact dynamic paths.16

A technique closely related to accelerated MD is
metadynamics.17 The metadynamics method was originally
designed to explore reaction pathways and calculate free-energy
landscapes by using a history-dependent bias potential. It has
been widely used in many scientific fields.18,19 The power of

metadynamics lies in its simplicity: the bias potential is
constructed as a function of a small number of collective
variables (CVs) used to distinguish between all the relevant
states of the system. Provided that a CV can be developed for a
certain process, it can be studied using metadynamics.
Conceptually, it is very similar to hyperdynamics, in the sense
that both methods rely on adding a bias potential to the global
potential energy surface of the system. The bias potential (ΔV)
is used to fill energy minima and, hence, shorten the waiting
time between minima-to-minima transitions. In hyperdynamics,
it is ensured that ΔV becomes zero in the transition-state
region, in which case correct relative dynamics is preserved.2

Tiwary and Parrinello later recognized that, if this condition is
also enforced in metadynamics simulations, the method can
also be used to calculate the rates of slow processes
accurately,20 even in complex systems.21

The CV-based flexibility of metadynamics, combined with
the recent notion that it is able to describe system dynamics
correctly, makes it a promising candidate for a more generally
applicable bias potential-based accelerated MD method.
Various hyperdynamics-based approaches have been devel-
oped22−30 precisely for this purpose, but these are usually
specifically tailored to the (sub)class of systems for which they
were developed: the bias potential is dependent directly on a
property of the studied system. In contrast, the biasing in a
more general CV-based method such as metadynamics is
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dependent only on the CVs used, and applying it to a new
system only requires changing the CVs, rather than adapting
the overall method. Moreover, a particular point of interest in
the field of hyperdynamics is the development of self-learning
variants of the algorithm,31−33 in which the applied bias
potential is constructed on-the-fly during the simulation. This
could also be achieved using the metadynamics algorithm,
which is self-learning by construction.
However, there is a difference in scope between metady-

namics rate calculations and accelerated MD, in a general sense.
Metadynamics rate calculations are used to characterize the
dynamical pathways connecting a limited number of states, e.g.,
states A and B, which are already known (e.g., the α and β
states of alanine dipeptide20 or the bound and unbound states
of a protein−ligand complex21). In this case, the choice of CVs
is dictated by the requirement that these can be used to
distinguish between states A and B, while additional CVs might
be required to properly differentiate between other states
discovered along the A ↔ B path. However, such an approach
is not suited for a more “explorative” accelerated MD study,
which aims to find the “natural” unconstrained state-to-state
dynamics over long time scales, with the only state known in
advance being the initial state A: an example of such a process
would be the prediction of the product composition of complex
chemical process, or the outcome of a growth procedure. In
such an application, it is very difficult to select a proper set of
CVs capable of describing this full, a priori unknown pathway.
Indeed, metadynamics rate calculations can be used to
rigorously calculate the rates of processes in a limited part of
the phase space, whereas it would be interesting to have a
similar method that is capable of uncovering unknown
processes throughout (in principle) the full phase space.
In this paper, we describe an accelerated MD method that

combines the CV-based flexibility of metadynamics with the
ability of hyperdynamics to track the natural long time scale
evolution of a complex system. In Section 2, we describe a
generic class of CVs that can be used to accelerate arbitrary
processes in systems with many relevant degrees of freedom.
Such a CV can then be used in a traditional hyperdynamics
implementation with a predefined bias. Moreover, it is also
possible to use these CVs in a metadynamics protocol to
construct the bias potential on-the-fly. To demonstrate the
flexibility of our approach, the collective variable-driven hyper-
dynamics (CVHD) method, we apply it to three very different
systems in Section 3. As a first example, diffusion on the
prototypical Cu(001) model system is used as an example of a
“reactive” process involving bond breaking. The second process
is the folding of a long polymer-like chain is a system in which
the activated process involves the rotation around bonds,
changing the various dihedral angles in the chain structure. The
third process is the full methane decomposition pathway on the
Ni(111) surface, as an example of heterogeneous catalysis.

2. THEORY
2.1. Global Structure of the CVHD Method. In

hyperdynamics, simulations are not performed on the true
potential energy surface V(R), but on a modified potential
V*(R), which is obtained by adding a bias potential ΔV(R):2,3

* = + ΔV V VR R R( ) ( ) ( ) (1)

A key simplification of the CVHD method is that the function
ΔV(R) is reduced to a function ΔV(η) of only one parameter,
the CV η. The method is modular by design, as depicted in

Figure 1. The central element of the method is η, which can be
thought of as a global reaction coordinate and can take

continuous values between 0 and 1. To complete the method,
two additional elements must be defined. These are (a) the set
of local degrees of freedom that are appropriate properties to
gauge the state of the system, and (b) the bias potential ΔV(η),
which is only a function of η.

2.2. The Collective Variable (CV). The key point in
applying a method such as metadynamics is the choice of an
appropriate CV to describe the relevant dynamics. For example,
the coordination number (CN) CV34 was developed for
reactive systems:
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in which n < m are integers, ri the distance between an atom
pair i, and d a parameter that controls the decay of the pair’s
contribution when ri increases. This type of CV is well-suited
for the study of mechanisms and free-energy profiles of
individual reactions using metadynamics. However, applying
this CV is only possible if the reactive centers or bonds are
already known, and it is difficult to use it to discover new
pathways. First, a system-wide coordination number CV will
not be able to distinguish between various states. For example,
consider the diffusion of a single adatom on a surface: every
possible stable state will be represented by the exact same
global CN value. Second, using the coordination CV would
make it extremely difficult to guarantee that no bias is deposited
in transition-state regions. Every contact contributes equally to
the total CV which, when there are many atom pairs, will lead
to random fluctuations in the CN value that are larger than the
change caused by a bond effectively breaking.
Very similar problems occur in the context of the so-called

“accelerated molecular dynamics” (aMD) implementation of
hyperdynamics,24−26 in which the bias potential is dependent
on the instantaneous value of the system’s potential energy.
Although conceptually very attractive because of its simplicity,
the method has severe limitations. In practice, a bias potential is
added as long as the energy is below a cutoff value. If one uses a
large cutoff, which is needed if energy fluctuations in the system
are large, many transition states will lie below the cutoff, within
the boosted phase space region, thereby violating the main
requirement of hyperdynamics. Using a low energy cutoff can
circumvent this problem, but will not be very efficient, because

Figure 1. Schematic depiction of the structure of the CVHD
algorithms. See text for details.
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it will result in a small average boost. Again, if a process of
interest only makes a rather small contribution to the global CV
that is used to construct a bias potential, it is very difficult to
either guarantee the correctness of the biased dynamics, or its
efficiency.
Therefore, for this type of problem, a CV must be developed

in which the influence of a single degree of freedom on the total
CV is dependent on its contribution to actual transitions, rather
than treating all contributions equally. This way, large systems
in which many different types of events occur can be studied,
without having to “tag” reactive degrees of freedom in advance.
Furthermore, it is impossible to distinguish all (possibly
unknown) states that the system will encounter using a single
generic CV. Therefore, we will drop this requirement and will
use a CV of which the value can only be used to describe the
system’s position within the current state.
The CV we use here is inspired conceptually by the Bond

Boost implementation of hyperdynamics,27,35 which is a quite
powerful approach to accelerate reactive systems, and func-
tionally by the CV introduced by Tiwary and van de Walle.36

We generalize these approaches to a CV based on a set of local
system properties or generalized degrees of freedom (s1, ..., sN),
which groups all the relevant degrees of freedom (or CVs) of
the full slow system dynamics. For each local property si, a local
distortion (χi) can now be defined (χi = χ (si)), which is a
function that can return values between 0 and 1. χ must be
designed in such a way that if a property si is directly involved in
a transition, and takes a value si

† at the corresponding dividing
surface, χ(si

†) = 1. If si is far enough from si
† and closer to its

equilibrium value, χi < 1. Whenever any property si is involved
in a transition somewhere in the system (and, hence, χi = 1),
the system, as a whole, is about to cross a dividing surface, and
the global CV describing the full system must reflect this. For
this purpose, we calculate the global distortion (χt) as

36
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in which p > 1. While the algorithm in ref 36 did not require
continuous and vanishing derivatives at both “edges” of the CV,
this is required in a hyperdynamics implementation such as
CVHD. Therefore, here, the actual CV η is calculated from χt,
according to
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In short, the exponent p is used in the calculation of χt to
ensure that large distortions make a larger contribution to η
than small ones. As a result, most of the bias energy flows into
properties that are about to contribute directly to a transition
(modulated by the magnitude of p), similar to what the Bond
Boost method does with the breaking of bonds. Hence, the CV
can be used to selectively boost large changes in small parts of
the included phase space, insensitive to smaller fluctuations in
the other parts. No biasing forces are applied to the system
when χt > 1: if χ(s) is properly designed, this means that no bias
is added in a transition-state region. Also, the specific form of χt
does not only allow one to describe transitions involving single
properties (χt = 1, because a single χt = 1) but also the
simultaneous distortion of multiple local properties (e.g., N
properties all having only χi = (1/N)1/p, such that χt = 1).36 The

precise value of p is not a critical parameter determining the
accuracy of the CVHD method. Rather, it only controls to what
extent the bias energy is distributed across the system: large
values of p will suppress the influence of smaller distortions on
η and will thus lead to a more localized bias potential. To
optimize the method, p can be varied as a function of how
“concerted” events are expected to be, but its effect was found
to be rather small for values between 4 and 12.
The final part of our algorithm deals with transitions. In

order to be able to describe multiple consecutive events in a
single biased MD run, a criterion is added to “reset” the
procedure: if η remains equal to 1 during a waiting time tw, the
system is assumed to have undergone a transition, and is
thermalized in its new state. Then, a new property list is
created, and the accelerated MD procedure is resumed.
A practical example of a property s is the stretch of a bond,

which can be used to study reactive events involving bond
breaking.27,36 Here, it is assumed that, for every bond pair i with
length ri, there are distances ri

min and ri
max, which mark the begin

point and end point of possible reactive events. If ri < ri
min, the

bond is not likely to dissociate soon, and is not biased, whereas
if ri = ri

max, the bond is about to dissociate and the system is
close to a dividing surface. When the simulation starts, a list of
bonds is created from all atomic pairs that are a shorter distance
apart than a cutoff ri

cut. Then, local distortions can be calculated
as
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Given the relative simplicity of this implementation of η,
which only has a few parameters, we expect that it is rather
widely applicable. Since it only requires the slow to-be-boosted
process to involve bond breaking, the CV can be readily applied
to a wide variety of processes. It is also not necessarily restricted
to accelerated MD simulations. It could also, for example, be
applied to more “traditional” metadynamics investigations such
as the exploration of possible reaction pathways.
Finally, as explained above, the basic functional form of eq 5

could also be applied to properties other than bond lengths to
study a wide variety of other processes. Indeed, as long as slow
events lead to a significant distortion of a small subset in a large
collection of local parameters, the CVHD algorithm will be
efficient. In the given example, we use bond distances to
construct the global distortion function χt, but the set of system
properties si could also be something else, as we will show in
Section 3.3. A simple modification of eq 5 could be the use of
an atomic strain, rather than bonds, which is a suitable property
to study dislocation nucleation.30 The formalism as outlined in
this section is sufficiently general and flexible to be used as a
starting point for the development of such new CVs, without
having to modify the full boosting algorithm.

2.3. The Bias Potential. If η is now used as a CV in a
metadynamics simulation, the bias potential ΔV(η) is slowly
“grown” at intervals of τG by the metadynamics algorithm in the
form of Gaussian functions with width δ and height w:
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This means that the bias potential is history-dependent,
because the Gaussian bias functions are dependent on the CV
value at the moment they were deposited. The nature of the
metadynamics method ensures that this bias potential matches
the underlying free-energy surface of the studied processes and
should thus guarantee a safe and efficient bias. However, an
important difference between the CVHD method and
metadynamics is that the bias deposited in state A is deleted
once a new state is reached: even when state A is visited again
later, the bias potential must be generated again. This is because
the CV η does not have to distinguish all possible states in the
system, as in conventional metadynamics17 and metadynamics
rate calculations,20 but is only required to identify the system’s
position in the current state. Note that this also explains the use
of a criterion based on tw to determine whether a new state has
been reached, rather than having this explicitly reflected by the
CV value. The CVHD method thus gains flexibility in the size
of the phase space that can be explored, but, at the same time,
loses some efficiency.
The use of CVs is not limited to metadynamics, and could

also be the basis of a traditional “static” hyperdynamics
potential. η can satisfy the important constraint that no bias can
be added in the transition-state region, provided a proper form
of χ is selected (or ri

max in eq 5). This means that a simple linear
function of η can be an appropriate bias potential:

η ηΔ = Δ −V V( ) (1 )max
(7)

in which ΔVmax is the maximal bias strength. Just as is the case
for traditional hyperdynamics implementations, ΔVmax must be
chosen appropriately: large enough to obtain a substantial
boost, but not larger than the barriers of interest. Note that this
static approach requires some a priori knowledge of the possible
events in the system, in contrast to the dynamic application
(see below).
The expression for the bias potential itself should preferably

not be specifically tailored for a particular system or process.
Rather, in the spirit of other CV-based methods, all the
complexity of the investigated process should be abstracted by
the proper choice of a CV. As a result, the simple linear
function of eq 7 is sufficient. As such, the CVHD family of
methods is highly flexible. Both the underlying local property
(as implemented by its associated distortion function) and the
bias function itself can be changed to fit the needs of the
studied process. The only characteristic that is shared by all
(sub)methods, as Figure 1 shows, is the CV η.
2.4. Comparison of Static and Dynamic CV-Based

Bias. An important advantage of a metadynamics-based
accelerated MD protocol (dynamically biased CVHD,
dCVHD) is that it does not require the definition of an
analytical bias potential function. Rather, a suitable bias
potential is constructed on-the-fly. This means that, as long
the system dynamics can be represented by a combination of
local contributions, such as in eq 3, the algorithm can adapt to
all types of processes with unknown activation barriers. As such,
the algorithm can be interpreted as a self-learning implementa-
tion of hyperdynamics. However, if the studied system is
reasonably well-characterized, a predefined static CV-based bias
(statically biased CVHD, or sCVHD) could be more suitable.
Such a bias can be more efficient because it will immediately
start at its full strength and does not need to be built up during
the simulation. Therefore, it can be expected that the
performance of the dynamic bias method will not be as good
as that observed for the static bias in the case of relatively fast

successive events. Furthermore, a static bias eliminates the
additional simulation parameters introduced by metadynamics:
the Gaussian hill width, height, and deposition rate. However,
both methods do share the same fundamental structure (see
Figure 1).
It must be stressed that, although the dCVHD method uses a

metadynamics protocol to construct the bias potential, strictly
speaking, it is not a metadynamics method. Indeed, the
deposited bias is not stored during the entire simulation, as the
CV η does not span the entire phase space, but only the current
state. Once a new state is reached, all deposited bias is deleted
and bias deposition is initiated again. Furthermore, bias is never
deposited in transition-state regions. Therefore, the CVHD
method cannot be used to calculate free-energy profiles, which
require extensive complete sampling of a limited part of the
phase space and for which “traditional” metadynamics is
required.
In both the static and the dynamic approach, the

acceleration, relative to MD (the boost factor), is an ensemble
average over the biased potential energy surface involving the
bias potential ΔV(η):

= ⟨ ⟩β ηΔBoost e V( )
(8)

in which β = 1/(kBT). The effectively simulated physical time,
or the hypertime, can then be calculated by multiplying this
boost factor with the MD time.2 Note that accurate hypertime
calculations require good sampling of the regions with large
boost, which limits the imposed strength of a static bias
potential.27 In the case of a dynamic bias, however, the
deposition of a large bias in a certain region of the CV space
implies that this region is frequently visited, because the
number of hills deposited in a specific region is dependent on
the time the system spends there. This means that the dynamic
bias method can apply strong bias potentials while still
maintaining a high accuracy of the calculated hypertime.

2.5. Critical Aspects. When applying the CVHD method,
some important considerations must be kept in mind. Here, we
summarize the main critical aspects and limitations of the
CVHD method in its current form.
Every valid accelerated MD method that employs a bias

potential must ensure that this bias vanishes in the transition-
state regions. In our algorithms, the key to achieving this is the
choice of χ. Our static bias approach will vanish at the transition
state if, for every property si, χ(si

†) = 1. In the case of eq 5, this
means that every ri

max of a bond should be smaller than the
corresponding ri at a transition state ri

†. Parametrizing χi
functions to achieve this behavior is not a trivial task, since it
requires some knowledge of the transition states that the
system will encounter: a first estimation of “safe” parameter
choices can be obtained from some (presumed) relevant
transition states that are already known, and verified against
other transitions that are discovered during an initial
simulation. When using a dynamic bias, it is possible to impose
the same constraint on ri

max as in the static case, which will cause
all bias force to vanish when ri > ri

max. The metadynamics
algorithm, in contrast, will, by default, keep depositing bias at
any time. This will become problematic when the system starts
spending a large part of its time at the boundaries of the well (η
≈ 1) once the bias is at its full strength in the minima, a
situation that becomes more common with increasing system
size.27 If this happens, a large bias could be deposited at the
boundary of the CV, which is unphysical and will negatively
impact the accuracy of the hypertime calculation (eq 8) and the
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dynamics in general. A simple solution to avoid this bias
accumulation is to restrict the metadynamics algorithm from
depositing any bias at large η values (for example, at η > 0.9).
Additional control of the magnitude of deposited bias can be
achieved through the well-tempered implementation of
metadynamics.37

A second phenomenon that can cause excess dynamic bias
deposition is the presence of hidden CVs. In such a situation,
the CV used does not include all relevant “slow” degrees of
freedom, which might block certain dividing surfaces, leading
the system to cross other dividing surfaces. Especially when
low-lying pathways are not included in the CV, this will lead to
an erroneous overbiasing, which is a problem that is discussed
in more detail in ref 18. When using the functional form of the
CVs used in the CVHD method, one must ensure that all
relevant local properties are included in the CV. This is both an
inherent strength and a limitation of the CVHD method. On
one hand, if it is possible to describe the full “slow” dynamics by
a set of simple local properties, such as chemical reactions
involving bond breaking being fully described by bond length
local properties, no hidden CVs will be present. On the other
hand, the requirement that the system dynamics can be
decomposed into contributions by a small number of highly
localized interactions renders the CVHD method impractical to
study systems in which this is not the case: especially complex
biological processes involving various types of nonbonded
interactions are very difficult to study this way. Fortunately, the
latter case can be covered by metadynamics rate calculations,
employing a well-tailored set of CVs,21 whereas the CVHD
method is more suitable for, e.g., the prediction of reaction
product compositions or the properties of grown materials.
An important disadvantage of CV-based methods (and many

conventional hyperdynamics implementations as well) is their
poor scaling with the system size: in large systems, events will
occur more frequently, leading to additional overhead.
Representing all to-be-accelerated dynamics by a single CV
does not allow for a parallel treatment of events, leading to a
deterioration of the boost in such large systems. Possibly, our
method could be improved by incorporating aspects of a
recently proposed “local” variant of the Bond Boost
algorithm.38 Similarly, existing solutions to address the small-
barrier problem,39 to improve the calculation of the hyper-
time,40 or to construct appropriate CVs on-the-fly,41 could also
be beneficial for the methods presented here.
2.6. Related Methods. To achieve an additional boost, a

joint application of our method with parallel replica4,5 or force-
bias Monte Carlo13−16 methods could be possible. Parallel
replica is not restricted to transition-state theory and, therefore,
is very generic. Unlike CVHD, it is not limited to transitions
that can be localized in small parts of the system. This way,
parallel replica can be used to accelerate transitions between
large superstates of the system, rather than the microstate
dynamics on which CVHD acts. Force-bias Monte Carlo
methods, on the other hand, do not require the definition of
“events” at all: this makes them very suited to study processes
in which “fast”, unbiased degrees of freedom can still provide a
bottleneck in the case of very strongly biased “slow” dynamics.
Of course, as is the case with conventional metadynamics
simulations, bias deposition in dynamically biased simulations
should always be sufficiently slow, in order to allow the system
to equilibrate along the “fast” degrees of freedom not included
in the CV.

A few other self-learning or adaptive hyperdynamics methods
also exist. The recently proposed HD-MD method has a bias
dependent on the system’s instantaneous potential energy
(similar to the aMD method) and uses short MD runs within
each local energy basin to parametrize a bias potential function
on-the-fly.31 These parameters are chosen based on the desired
boost, which can therefore be made equal in every new basin
(this is not necessarily the case in CVHD). The fact that the
bias potential is only a direct function of the system’s potential
energy makes the method conceptually very simple. However,
because the method is based on aMD and has no explicit way
to detect transition states, the bias potential may be nonzero at
dividing surfaces, in contrast to CVHD. Also, within the context
of the aMD method, a simpler algorithm, dubbed the Adaptive
Hyperdynamics (AHD) method, was proposed.32 In the AHD
method, the threshold energy (below which biasing is allowed)
is adjusted in time intervals τ by comparing the current
potential energy of the system to the minimal energy in the
previous interval, and changing the threshold accordingly.
Although very simple, the algorithm causes the biasing force to
be discontinuous, because of the stepwise modification of ΔV,
which is not the case when metadynamics is used to deposit
bias. Finally, within the framework of the Bond Boost method,
a self-learning hyperdynamics method was derived by Perez and
Voter.33 This algorithm calculates an on-the-fly estimate of a
pairwise potential of mean force (PMF), which is then used to
improve the bias strength iteratively. The method was found to
be very efficient in finding exactly the optimal boost for a given
process, but lacks the generality and simplicity inherent to using
generic CVs and a metadynamics-like self-learning bias.

3. APPLICATION
3.1. General Methodology. All simulations were carried

out using the LAMMPS package42 and a modified version of
the Colvars module.43 (All modifications and their descriptions
are provided in the Supporting Information.) To control the
system temperature, ensure its homogeneity, and allow for swift
decorrelation, a Langevin-type thermostat44 with a relaxation
time of 1 ps was employed. The equations of motion were
integrated with a MD time step of 1 fs, except when using the
ReaxFF potential, which required a time step of 0.1 fs. Boost
and hypertime were calculated by evaluating eq 8 at every step;
we did not compensate for the overhead induced by the bias
calculation, because it was found to be insignificant, compared
to the evaluation of the interatomic potential.

3.2. Bond-Based Collective Variable: Diffusion on
Cu(001). As an illustration of the bond-based CV in eq 5, we
apply both the static and dynamic CVHD methods to diffusion
on the Cu(001) surface. Specifically, we apply the methods to
the diffusion of adatoms, dimers, and vacancies, which can all
diffuse through simple hopping mechanisms. However, copper
adatom and dimer diffusion can also occur by a two-atom
exchange.45 Thus, we can assess the performance of the bias
methods for a set of competitive mechanisms with different
characteristics, in terms of the number of atoms and bonds
involved, and minimal ri

†. The same processes have also been
previously studied with the Bond Boost method,27 which allows
us to directly compare the performance of our generic CV-
based methods to a dedicated hyperdynamics implementation.
The studied system consisted of a six-layer slab, each layer

containing 50 atoms. The Cu−Cu interactions were described
using a standard EAM potential.46,47 The two bottom layers
were kept fixed and, depending on the studied mechanism, an
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adatom or dimer was placed on top of the slab, or a vacancy
was created by removing an atom from the top layer.
Climbing Image Nudged Elastic Band (cNEB)48 calculations

were used to obtain information on the minimal ri
† values of

breaking bonds associated with every mechanism. Of all the
mechanisms considered, these are the smallest for adatom
hopping, where the two partially broken bonds have a length of
3.3 Å at the transition state. Therefore, a global ri

max value of 3.3
Å was used for each bond in all simulations. The ri

min value for
every bond was chosen to be the average bond length as
obtained from an equilibration run of tw (after an initial waiting
time tw before detecting a transition), and ri

cut was a global
constant of 3.0 Å. We furthermore set p = 8 and tw = 5 ps. In
the dynamic bias simulations, Gaussian hills with a height of
0.005 eV and width of 0.025 were added with an interval of 1
ps. Well-tempered metadynamics37 with a bias temperature ΔT
= 2000 K is used to deposit the dynamic bias. In the
hyperdynamics simulations, we set ΔVmax = 0.3 eV, as a
compromise between boost and accurate hypertime sampling.
Reaction rates Γ for all event types were quantified by

counting the observed number of diffusion events ni and
dividing this by the calculated hypertime, Γi = ni/thyper. At
temperatures between 150 K and 600 K, rates were obtained
and averaged over multiple runs of 2 × 108 steps (1 × 108 for
vacancies). Then, the calculated rates were fitted to the
Arrhenius relation Γ(T) = Γ0e

−βEA. The fitted prefactor (Γ0)
and activation energy (EA) values can be readily compared to
those reported by Miron and Fichthorn in their Bond Boost
study of the same system.27

It can be seen from Table 1 that both the static and dynamic
biasing methods yield the same Γ0 and EA values, both in
excellent agreement with the Bond Boost result and the static
barriers calculated by the cNEB method. We have also explicitly
compared CVHD-obtained rates with MD results and found
excellent agreement, as discussed in the Supporting Informa-
tion. The performance of both CV-based methods, as expressed
by the achieved boost is, as Figure 2 shows, quite comparable,
yielding a boost up to 3 × 104 for adatom diffusion at a
temperature of 250 K and up to 109 for vacancy diffusion at 150
K. The methods show the same basic behavior typical for
hyperdynamics methods, with a boost that declines with
increasing temperature, because of the inverse temperature
dependence of β. Furthermore, it can be seen that the relative
efficiency of the static bias method, compared to its dynamic
counterpart, improves with increasing temperature. This is
because waiting times between events are shorter at higher
temperatures which, as a result, puts the dynamic method at a
disadvantage. This difference becomes irrelevant at lower
temperatures where waiting times, even with full-strength static

bias, are much longer than the time needed by the
metadynamics protocol to construct the dynamic bias.
Not all processes occur at similar rates at every temperature.

As Figure 2a shows, vacancy diffusion was studied at
temperatures as low as 150 K, where we were able to observe
∼60 events over a total MD time of 0.5 μs: this is because the
associated hypertime reached ∼500 s. However, all other
processes are much slower at this temperature. For example,
according to the kinetic parameters in Table 1, adatom hopping
will be ∼2000 times slower, with an average waiting time in the
order of 104 s, explaining why we were able to observe the latter
process with an appreciable frequency only from 250 K and
higher, as depicted in Figure 2b. The higher barriers and
waiting times of the adatom diffusion processes, compared to
vacancy diffusion, also increase the relative efficiency of the
dynamic bias method, as expected. Similarly, exchange
processes could only be observed starting from 400 K, and
show the same boost characteristics as their respective hopping
counterparts. Generally, the bond-based CV, as used in the
CVHD algorithm, performs about as well as the Bond Boost
method, albeit being part of a much more generic framework.

Table 1. Prefactors (Γ0) and Activation Energies (EA) for Elementary Diffusion Processes on the Cu(001) Surface, As Obtained
from Dynamic Boost (DB) and Static Boost (SB) Simulations (See Text for Details)a

Prefactors Activation Energies

process Γ0
DB (THz) Γ0

SB (THz) Γ0
BB (THz) EA

DB (eV) EA
SB (eV) EA

BB (eV) EA
cNEB (eV)

vacancy hop 83e±0.1 54e±0.5 54e±0.5 0.44 ± 0.01 0.43 ± 0.02 0.44 ± 0.03 0.44
adatom hop 54e±0.3 33e±0.1 40e±0.5 0.53 ± 0.01 0.51 ± 0.01 0.52 ± 0.03 0.51
adatom exchange 430e±1.0 130e±1.2 270e±0.6 0.76 ± 0.04 0.71 ± 0.05 0.73 ± 0.04 0.71
dimer hop 34e±0.2 21e±0.2 30e±0.7 0.51 ± 0.01 0.49 ± 0.02 0.47 ± 0.03 0.49
dimer exchange 137e±1.3 213e±1.2 190e±0.8 0.74 ± 0.06 0.76 ± 0.05 0.71 ± 0.06 0.70

aFor comparison, the Bond Boost (BB) estimates27 and static barriers computed with the cNEB method are also included. DB and SB error bars
reflect the 90% confidence interval.

Figure 2. Calculated boost factor as a function of the temperature, of
both the static as the dynamic CVHD method, for (a) vacancy and (b)
adatom diffusion on Cu(001). (As explained in the text, dimer
diffusion behaves essentially the same as adatom diffusion.)
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Furthermore, because all relevant processes were already well-
characterized, use of the dynamic biasing method has no added
advantage, since an optimized static bias could be applied at
lower cost.
3.3. Dihedral-Based Collective Variable: Folding of a

Helix. To demonstrate the flexibility of the CVHD framework,
we study a process governed by a different local property or
CV: the folding of extended chain to a helix. This process is
very different from the Cu(001) diffusion example in two ways.
First, the activated processes underpinning the system
evolution are not bond breaking, but rotation around bonds,
changing the dihedral angles. Second, whereas the Cu(001)
system remained in equilibrium, and every state was associated
with the same handful of possible escape pathways, a folding
chain may visit a much larger number of different states, all of
which may have wildly different and unpredictable kinetic and
thermodynamic stabilities. The dihedral angle is also a four-
atom local property, setting it apart from the pairwise
properties that are commonly used in hyperdynamics methods
such as the Bond Boost method.
We use a simple model system, consisting of a chain of 50

connected beads, interacting with harmonic bond and angle
functions. The dihedral potential energy term49 is designed in
such a way that there are three minima, of which the g− state is
preferred to the t and g+ states. In our parametrization, the
barrier for the t → g− transition of a single dihedral is ∼0.37 eV
(or ∼8 kcal/mol), and the g− state is ∼0.7 eV more stable than
the two other options, thus favoring a helix over an extended
chain. Further details are provided in the Supporting
Information. Similar to the bond-based system property of eq
5, the local distortion function can be calculated from a dihedral
angle ϕi as

χ

ϕ ϕ
ϕ

ϕ ϕ ϕ
=

−
Δ

∈ ± Δ
⎧
⎨
⎪⎪

⎩
⎪⎪

(if [ ])

1 (if otherwise)

i

i i

i
i i i

ref
ref

(9)

Here, ϕi
ref is a reference dihedral angle, which is determined as

the dihedral angle of the closest local minimum (here, ±60° or
±180°) at the moment the property list is created. Δϕi is the
maximal deviation from ϕi

ref that keeps ϕi far enough from
transitions, which we set to be 40°. The choice of Δϕi, like all
parametrizations of a local distortion χ, requires some a priori
knowledge of the system; in our case, we use a well-defined
model potential; however, in more complicated systems, one
should always verify that, for all observed events, the
requirement that η = 1 at the transition state is satisfied. The
other parameters are not dependent on the local property used,
and we set p = 8 and tw = 5 ps. In the dynamic bias simulations,
Gaussian hills with a height of 0.005 eV and width of 0.05 were
added with an interval of 1 ps and a bias temperature of ΔT =
1000 K. In the case of the static bias, we use ΔVmax = 0.15 eV.
We start every simulation from a fully extended chain, with

all dihedrals in the t conformation (see Figure 3a), and run
unbiased MD, static and dynamic bias simulations at 300 K,
while monitoring the number of dihedral rotations. Because of
the way our bias potential is designed, it is highly unlikely any
other transitions will occur before there are no more t → g−

events possible. Therefore, 47 transitions were always found to
be sufficient to reach a perfect helix (Figure 3b).
Examples of the system evolution, in terms of the number of

transitions, are depicted in Figure 4a for both static and

dynamic bias. It can be seen that, initially, using a static bias is
initially more efficient than a dynamic bias. As discussed
previously, a well-tailored static bias has the advantage of
starting at its full strength, whereas a dynamic bias takes time to
be constructed. However, we notice that, after 42 transitions,
the dynamically biased simulation surpasses the statically biased
case. Indeed, because the studied process obeys first-order
kinetics in the number of t dihedrals, the waiting time between

Figure 3. Some possible states of the helix model system: (a) fully
extended, (b) perfect helix, (c) half-folded after 23 folding events, and
(d) after 46 (or, rather, 46 + 2n) events.

Figure 4. (a) Number of transitions, as a function of simulation time
in the helix folding test system, and (b) hypertime, as a function of
simulation time in the helix folding test system, for both static and
dynamic bias (see text for details).
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events increases the closer the system is to the fully folded state.
The choice of ΔVmax = 0.15 eV was calibrated to the initial
phase of the folding process, and it is very well-suited for this
first stage with relatively short waiting times, but becomes less
efficient when the number of t dihedrals is low and the waiting
time is increased. The dynamic biasing scheme, on the other
hand, will keep strengthening the bias potential while waiting
for a transition to occur. The dCVHD method thus dynamically
uses a larger bias in the case of long waiting times.
A different look at this subject is given by Figure 4b, which

compares the hypertime reached by both methods as a function
of the simulation time. Whereas this quantity linearly increases
for the static bias, indicating a constant boost, it shows an
exponential increase in the case of the dynamic bias. Because of
this property, the dynamic biasing scheme resulted in a perfect
helix ∼2 times faster than the static scheme.
The achieved boost factors of both biasing methods are, as

Figure 4b shows, quite different. On one hand, the static biasing
scheme provides a constant boost of ∼200. On the other hand,
the dynamic scheme adapts itself to match the boost
requirements of the current state in which the system resides,
arriving at an accumulated boost of ∼500 when completing the
folding process. This also explains the different behavior of both
methods after the perfect helix is formed: any transition from
the g− state has a barrier that is ∼2 times higher than the one
associated with the t → g− transition, which means that the
statically biased simulation will not be able to escape from the
helix state within a reasonable computational time. However, in
the dynamically biased simulation, the bias will slowly be
increased until a transition to a less favorable state (see Figure
3d) can occur. Such a process only occurs after ∼0.1 ms, which
is much longer than the 5 μs required to obtain the folded helix.
The escape pathways from this unfavorable “kinked” helix have
lower barriers than from the perfect helix. As a result, the
construction of a suitably strong bias to return to the latter state
requires fewer simulation steps than the reverse reaction,
explaining the successive occurrence of short and long “steps”
in the dynamic transitions curve in Figure 4a.
Although the general performance characteristics of both

accelerated methods in the case of the folding model system
have now been established, their accuracy must still be
ascertained. Table 2 therefore collects the average times for

full folding (47 transitions) and obtaining a half-folded
structure, such as the one depicted in Figure 3c (23
transitions), as obtained by biased simulations but also long
unbiased MD runs. For both processes, all considered methods
are in excellent agreement with each other.
3.4. A Complex, Realistic Process: Methane Dissocia-

tion on Ni(111). Finally, as an example of the type of complex
dynamics that can be accessed with CVHD simulations, we
consider the catalytic dissociation of methane on the Ni(111)
surface. This process is important not only in methane

reforming processes, but also in chemical vapor deposition
growth of carbon nanostructures. The initial dissociative
adsorption of CH4 has an activation energy in the order of
20 kcal/mol,50 rendering direct MD simulations of this process
difficult; to observe appreciable CH4 dissociation, previous
simulation attempts were required to use elevated temper-
atures51−53 (up to 1500 K), instead of experimental temper-
atures of 800−1000 K, or only focus on plasma-activated
species (CHx radicals).

54,55 From a technical point of view, this
type of reaction is a useful additional test case for the CVHD
method, being both an example of a system with a phase
boundary, and of heterogeneous catalysis in general.
The methane dissociation process is modeled starting from a

single CH4 molecule above a six-layer nickel slab (64 atoms per
layer), with the two bottom layers held fixed. A reflective wall is
used at a z-height of 20 Å, leading to a gas phase volume of
∼19.9 Å × 17.4 Å × 8 Å. The interatomic interactions are
described by the ReaxFF potential,56 as implemented in
LAMMPS,57 using the Ni/C/H parameter set of Mueller et
al.58 and the QEq method59 to calculate atomic charges.
The simulations are carried out at 800 K, applying the bond-

based CV of eq 5 with p = 6 and tw = 0.1 ps to C−H bonds, and
dynamic biasing with a deposition stride of 10 fs, a hill width of
0.025, a hill height of 0.25 kcal/mol, and a bias temperature of
4000 K. Compared to the previously discussed processes,
metal-catalyzed methane decomposition poses two additional
challenges. First, the general problem of thermostatting gas-
phase species is that it is a poor model of energy exchange in
such a system: in reality, this only occurs at discrete moments
in time during collisions. Also, a Langevin thermostat distorts
the diffusion path of gas-phase particles. However, thermo-
statting the methane molecule is necessary to dissipate the
excess energy introduced by the dynamic bias procedure, and to
avoid unphysical heating of the molecule. As a compromise, we
apply a separate Langevin thermostat to the CH4 molecule that
only acts on the vibrational and rotational degrees of freedom,
and leaves its translational motion untouched. The second
problem is specific to the successive dehydrogenation pathway
of methane, in which the separate steps have very different
bond lengths at the transition state (r†) for the dissociating
bonds, ranging from 1.55 Å for CH→ C + H to 1.80 Å for CH3
→ CH2 + H on the Ni(111) surface.60 Safe rmax values for the
former were found to perform very poorly when attempting to
boost the latter process. Therefore, we used a global rmax value
of 1.8 Å and rmin = 0.9 Å. Although the safety of such a setting is
not completely guaranteed, we found that little to no bias was
effectively deposited in the transition state regions of the
“unsafe” cases.
We carried out 15 independent simulations of 106 steps,

corresponding to a MD time of 100 ps each, and were always
able to observe the full methane decomposition process. For
every elementary step in the reaction, we calculated the average
reaction time, summarized in Table 3. These results
demonstrate the usefulness and power of a dynamic biasing
method. Indeed, methane decomposition at 800 K is a process
that consists of rather fast steps such as the dissociation of a C−
H bond of adsorbed CH2 (which requires ∼50 ps), to the very
slow decomposition of adsorbed CH, which requires more than
0.1 ms. Therefore, studying this reaction sequence with a static
bias would not be achievable; the vast time scale spread of the
various elementary processes is illustrated in Figure 5. Boosts of
2 × 106 are achieved.

Table 2. Average Folding and Half-Folding Times for the
Helix Model System, As Obtained from Unbiased MD and
CV-Based Simulations with Static and Dynamic Bias,
Respectivelya

process unbiased MD static bias dynamic bias

half folding time (μs) 0.45 ± 0.08 0.38 ± 0.05 0.39 ± 0.04
full folding time (μs) 6 ± 2 7 ± 2 6 ± 1

aAll error bars are at the 90% confidence level.
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The very long reaction time of the various reactions means
that we cannot verify the accuracy of the values in Table 3 by
direct comparison to MD simulations: even at a temperature of
1000 K, we did not observe any reaction within 100 ps.
However, it is possible to compare the relative rates of the
elementary steps to estimations based on differences between
their respective activation energies.60 The barrier for C−H
dissociation in adsorbed CH3 is 10 kcal/mol higher than that
for adsorbed CH2, meaning that the latter is ∼1000 times faster
than the former, in agreement with our findings. Similarly, the
dissociation of adsorbed CH has a barrier that is 14 kcal/mol
higher than the dissociation step involving adsorbed CH3,
leading to a rate that differs by an order of magnitude of 104,
again in agreement with the results in Table 3. Finally,
according to kinetic theory, the initial CH4 pressure is ∼40 bar,
with a flux to the surface of 0.3 ps−1. Considering a dissociation
barrier of 19 kcal/mol,58 we can make a crude estimation of the
average reaction time to be 0.5 μs, which is also consistent with
our observations.

4. CONCLUSION
We have developed a theoretical framework, the collective
variable-driven hyperdynamics (CVHD) method, which is an
implementation of the hyperdynamics method that includes
some of the strengths of metadynamics. The CVHD method is
intended to be used as an accelerated MD method, in which the
waiting time between infrequent events is shortened by adding
a bias potential to the energy minima in the system, without
requiring a priori knowledge of the pathways and states that will
be encountered. From metadynamics, the method borrows the
concept of using collective variables (CVs) to describe the
system’s dynamics and to express the bias potential as a simple
function of the CV, essentially a generalized reaction
coordinate, giving rise to the statically biased CVHD

(sCVHD) method. However, the metadynamics algorithm
can also be used to dynamically build up a suitable bias
potential for every new potential energy basin that the system
encounters. This dynamically biased CVHD (dCVHD) method
is effectively a self-learning hyperdynamics implementation and
does not require a priori knowledge of the activation barriers
that the system can encounter during its long time scale
evolution.
A key point of the CVHD methods is its modular design. All

relevant dynamics is represented by a single global CV η, which
measures the distortion associated with an arbitrary set of local
degrees of freedom. Both the biasing method, which depends
on the CV, as the local properties on which the CV depends
can be chosen independently to be optimal for the system
studied. In this work, we have demonstrated the applicability of
the bond length and dihedral angle local properties, in the study
of solid-state diffusion and heterogeneous catalysis, and chain
folding, respectively.
If the studied process is already well-characterized and all

relevant activation barriers are known, using a static bias (the
sCVHD method) is the optimal choice: a well-optimized static
bias can be constructed, and the on-the-fly construction of a
dynamic bias will only cause additional overhead. On the other
hand, in systems undergoing a more complex evolution, using a
dynamical metadynamics-based bias may be the more optimal
choice, as it is generally not possible to construct a single static
bias that is both safe and efficient for every process
encountered. This ability of the dCVHD method to adapt its
bias to the specific requirements of the system at any time is an
important advantage of the method. Irrespective of their
relative efficiency, however, both biasing methods give rise to a
correct sequence of state-to-state transitions.
Although the CVHD method is inherently flexible in the type

of local properties that it can use to calculate its global CV, its
performance does not seem to suffer from this genericity. For
example, in the case of low-temperature diffusion on the
Cu(001) with the bond length local property, accelerations as
large 109 can be obtained, corresponding to physical times up
to several seconds. Generally, the CVHD method is almost as
efficient as the Bond Boost implementation of hyperdynamics,
but has the added advantage of being more general. The local
distortion functions developed so far already span a large range
of processes and systems, and additional ones can be
incorporated to further extend the scope of the method.
Therefore, we believe that the CVHD method will be a valuable
tool in the study of slow or activated processes in a wide range
of scientific fields including growth, conformational sampling,
and catalysis.
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Table 3. Average Reaction Time for All Elementary Reaction
Steps of the Full Methane Dehydrogenation Process CH4(g)
→ C(ad) + 4H(ad), on Ni(111) at 800 K, As Obtained from
ReaxFF dCVHD Simulationsa

process reaction time

CH4(g) → CH3(ad) + H(ad) 4−9 μs
CH3(ad) → CH2(ad) + H(ad) 0.09−0.22 μs
CH2(ad) → CH(ad) + H(ad) 37−91 ps
CH (ad) → C(ad) + H(ad) 0.3−0.8 ms

aReaction times are given as a 90% confidence interval.

Figure 5. Hypertime evolution in a dCVHD simulation of methane
decomposition on Ni(111), at 800 K. The observed elementary steps
are shown at the time step at which they occurred.
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