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ABSTRACT: Uniform acceptance force biased Monte Carlo (UFMC) simulations have previously been shown to be a powerful
tool to simulate atomic scale processes, enabling one to follow the dynamical path during the simulation. In this contribution, we
present a simple proof to demonstrate that this uniform acceptance still complies with the condition of detailed balance, on the
condition that the characteristic parameter λ = 1/2 and that the maximum allowed step size is chosen to be sufficiently small.
Furthermore, the relation to Metropolis Monte Carlo (MMC) is also established, and it is shown that UFMC reduces to MMC
by choosing the characteristic parameter λ = 0 [Rao, M. et al. Mol. Phys. 1979, 37, 1773]. Finally, a simple example compares the
UFMC and MMC methods.

■ INTRODUCTION
The molecular dynamics simulation technique is a powerful
tool used to investigate atomic scale processes happening on a
time scale on the order of nano- to microseconds. Especially
attractive is the fact that the full dynamical path of the system
can be traced through space and time. MD simulations
therefore are an excellent tool used to study processes such
as particles impacting on surfaces, sputtering and etching, thin
film growth, folding of proteins, chemical reactions, etc.1,2

However, many processes are taking place on time scales
beyond the reach of pure MD simulations.1 While various
techniques have been developed through the years, these are
typically most suitable for solid-state problems, such as adatom
diffusion. These techniques are typically based on the concept
of an “infrequent event system”.3 In such an infrequent event
system, it is assumed that when the system is in a particular
energy basin, it has no memory of how it got there. This
essentially precludes the occurrence of correlated events
(although in some cases these can be compensated for).
Nevertheless, it would be useful to have a method available

that accelerates the observed processes but at the same time is
not limited to an infrequent event system. One possible
candidate is force biased Monte Carlo (fbMC).4,5 fbMC is a
little used method, which nevertheless shows great potential.
Processes such as surface diffusion, phase transitions and
carbon nanotube growth have successfully been modeled by
fbMC or a hybrid MD/fbMC approach.6−9 The method was
originally conceived in the 1970s.5 In this original version,
fbMC made use of an acceptance criterion in order to satisfy
detailed balance. However, fbMC can be turned into a uniform
acceptance method (“uniform acceptance force biased Monte
Carlo, UFMC”), i.e., in which each Monte Carlo step is
accepted with unit probability,6,10 while still complying with
detailed balance, provided that the maximum allowed displace-
ment is chosen to be sufficiently small. Here, we present, for

the first time, the theoretical foundation for this uniform
acceptance.

■ METROPOLIS MONTE CARLO AND FORCE BIASED
MONTE CARLO

The condition of detailed balance can be written as

′| = | ′ ′W P W Pr r r r r r( ) ( ) ( ) ( ) (1)

Here, W =W(r′|r) andW′ =W(r|r′) is the transition probability
distribution for a particle to be displaced in configuration space
from r to r′ and from r′ to r, respectively, and P(r) is the
probability of the particle to be located at position r. This is a
correct expression for whichever distribution we choose. If we
choose the Boltzmann distribution for P(r′), the expression
becomes

β β′| − = | ′ − ′W V W Vr r r r r r( ) exp[ ( )] ( ) exp[ ( )] (2)

In eq 2, V(r) is the potential energy of the system when the
particle is at point r, and β = 1/kBT. W can be specified as
follows:

′| = ′| ′|W A Tr r r r r r( ) ( ) ( )c (3)

or

=W ATc

Here, Tc is some specified conditional probability distribution
to choose a new position r′ from the old position r, and A is the
probability that this displacement is effectively accepted. Tc is
then chosen such that Tc is normalized, and A must be chosen
such that the condition of detailed balance is satisfied.
The condition of A satisfying detailed balance can be

expressed by defining a quantity q as follows:
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in which ΔV = V(r′) − V(r) is the energy difference between

the system before the particle displacement (r) and after the

particle displacement (r′). Tc′ is the conditional probability

distribution for the reverse displacement, i.e., from r′ to r. Using

q, the condition to satisfy detailed balance then follows from eq

2 as

=A qMin[1, ] (5)

This condition allows us to understand the uniform acceptance

in UFMC. Let us first, however, apply this condition to

Metropolis Monte Carlo.
1. Metropolis MC. In Metropolis MC,11 Tc is chosen as

follows:
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Here, D(r) is a chosen domain in the neighborhood of r. Then,
A becomes

= −βΔA VMin[1, exp( )] (7)

This is simply the Metropolis MC acceptance criterion for the
chosen displacement: if the displacement results in a decrease
in energy, the displacement is always accepted. If the
displacement results in an increase in energy, then the
displacement is accepted with probability exp(−βΔV).
2. fbMC. In fbMC, Tc needs to be defined separately for

each Cartesian coordinate, as it depends on the force in each
direction. In the x direction, Tc,x is chosen as follows:4
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In this expression, K−1 is a normalization constant, Fx is the
force in the x direction acting on a particle when located at
position x, and λ is essentially an arbitrarily chosen parameter.
The displacement x′ − x is represented as δ, and hence δ′ = x −
x′ = −δ. Furthermore, if δ is kept sufficiently small, we can write
for this particle ΔVx = −Fxδ and ΔVx′ = −ΔVx = −Fx′δ′ = Fxδ.
In the interval δ, the force does not change appreciably if the δ
is sufficiently small, such that Fx = Fx′. This corresponds to a
first order Taylor expansion of the energy. Note in this respect,
that in MD, the typical step size is on the order of 0.01 Å. In
UFMC, on the other hand, a typical “conservative” step size is
on the order of 5−10% of the nearest neighbors distance, say
0.10−0.15 Å.6,8,9,12 Thus, the step size in UFMC is about 1
order of magnitude longer than in MD.
In fbMC, the acceptance criterion is determined by q (just as

it is in Metropolis MC):
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and hence by the ratio Tc′/Tc:
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Note that in going from eq 10a to eq 10b we have assumed that
K = K′, which is a direct consequence of the approximation Fx =
Fx′. Although eq 10b is a quite convenient equation for the
Monte Carlo version that we discuss further in this paper, one
is not obliged to rely on this underlying approximation. If so
desired, a correction could be applied to circumvent the
approximation and make the Monte Carlo algorithm exact. We
will show later in this work that this would result in rejecting
the displacement in only a very small proportion of the cases.
We have never found that using the approximation leads to
noticeably distorted results.
Generalizing to all coordinates j and all particles i,
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q then becomes:

λ
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From this expression, three different cases can be discerned.
Case a: λ = 0. Using λ = 0, eq 11 becomes

= −βΔq Vexp( ) (13)

Using

=A qMin[1, ]

the acceptance criterion then becomes

= −βΔA VMin[1, exp( )] (14)

which is identical to the Metropolis MC scheme.
Case b: λ = 1/2. Using λ = 1/2, the expression for q becomes

= − βΔ + βΔ =⎜ ⎟
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and therefore A = 1, i.e., each displacement is accepted. This
constitutes the uniform acceptance in force biased Monte
Carlo, while still satisfying detailed balance.

Case c: λ = 1. Using λ = 1, the expression for q becomes

= βΔ − + βΔ = βΔq V V Vexp( (1 1) ) exp( ) (16)

Therefore, in this case, displacements that lead to a decrease in
energy are accepted with a probability exp(βΔV), while
displacements leading to an increase in energy are always
accepted.

■ DISCUSSION
In principle, an arbitrary value for λ can be chosen while still
satisfying detailed balance. However, as shown above, only the
value λ = 1/2 leads to an acceptance probability = 1 while still
satisfying detailed balance. Using a value of λ = 0 leads to the
Metropolis MC scheme, including the typical acceptance
criterion.
From the above expressions, we can determine the actual

displacement in the case of uniform acceptance force biased
Monte Carlo. Following the notation of Timonova et al.,6 the
actual displacement δ can be rewritten as a normalized
displacement ξ as follows:
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ξ δ=
Δ/2 (17)

Here, Δ constitutes the domain to which the displacement is
confined, and therefore Δ/2 is the maximum displacement
length. This domain can be selected by the user but should be
sufficiently small to ensure that the force does not change
appreciably when executing the displacement. Hence, ξ is
confined to the interval [−1,1]. Since the total probability
density function p(ξ) must be normalized, i.e,

∫ ξ ξ =
−

p( ) d 1
1

1

(18)

and in each Cartesian coordinate, Tc is given by

δ= λβ−T K Fexp( )c
1

(19)

the probability density function is given by

ξ γ= | |
−

γξγ γ| | −| |p )
e e
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(20)

in which γ is given by

γ λ= Δ = ΔF
k T

F
k T

/2 /2
2B B (21)

The actual normalized displacement in each Cartesian
coordinate is then sampled as follows:

ξ
γ

η= − +γ γ γ| | −| | −| |1
ln[ (e e ) e ]

(22)

In eq 22, η is a random number in the interval [0,1]. If η is
uniformly distributed, then this choice of ξ leads to eq 19.
Therefore, the probability density function contains a factor 2
in the denominator, which is unexpected with respect to the
normal Boltzmann distribution:
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This effectively means that every displacement is effectively
sampled from a Boltzmann distribution, albeit containing a
factor 2 in the denominator. As demonstrated above, this factor
2 is a direct result of the uniform acceptance criterion of force
biased Monte Carlo using λ = 1/2.
Now, we continue by showing that this UFMC scheme

generates the same result as the Metropolis MC scheme.

■ APPLICATION TO 1D DIFFUSION
As a very simple test case of the method,6 we consider the
diffusion of a single particle in a 1D sinusoidal potential

π= − ⎜ ⎟
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Q x
L

( )
2
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In this expression, Q is the imposed activation barrier of the
potential, L is the period, and x indicates the position of the
particle. In a first simulation, the particle is displaced by the
UFMC method. In a second simulation, the particle is displaced
according to the Metropolis algorithm (including the accept-
ance criterion), in order to demonstrate that both lead to the
same result for the apparent activation energy. The simulation
is run for various maximum displacement lengths Δ/2, in the
range 0.025−0.2 Å. The period L is set to 1.0 Å. For each
specific displacement length, each run consists of N = 107 steps

and is repeated 20 times, in order to obtain statistically
reasonable results. The apparent activation energy Qa can then
be derived from the Arrhenius equation by performing a series
of simulations at different temperatures:

ν
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where n is the number of jumps over the barrier detected, T is
the temperature, ν0 is the Arrhenius pre-exponential factor, and
t is the elapsed time. Note that both ν0 and t have no direct
meaning in UFMC (nor in fbMC or MMC), but the product
ν0t springs into existence when the Arrhenius equation is used
to determine the apparent activation barrier and represents the
number of attempts in the time considered.
In Figure 1, a plot is shown for the (absence of) variation of

the apparent activation barrier as a function of Δ/2, for an

imposed barrier height Q = 0.25 eV. Each point in the plot is
the average value of the 20 independent runs. The error bars
are the corresponding standard deviations determined from
these 20 independent runs per point.
From this figure, it is obvious that the in the UFMC scheme,

in which each displacement is accepted, the particle feels the
same energy barrier as in the Metropolis MC procedure, in
which the traditional acceptance criterion is applied. This result
therefore corresponds to the analytical result given above.
A second result that is obvious from the figure is that the

apparent activation energy Qa is seen to be independent of the
value of Δ/2. Note, however, that this seems to be dependent
on the method of counting the number of barrier crossings (see
below).
However, while the particle surmounts the same barriers in

both methods, it diffuses much faster in UFMC than in MMC.
To see this, consider the frequency factor as determined from
eq 25. In Figure 2, this frequency factor is plotted for both
algorithms. It can be seen from the figure that in UFMC, the
particle has a much higher attempt frequency to move over the
barrier, which can be interpreted as having a much higher
frequency of vibration in the energy basin. Since the barriers are
identical in both algorithms (and hence are the curvatures and
the opposing forces), this implies that the particle is moving
much “faster” in UFMC than in MMC. Note, however, that the

Figure 1. Apparent activation energy Qa as a function of the maximum
allowed displacement for both the UFMC algorithm (closed symbols)
and the Metropolis MC algorithm (open symbols).
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velocities are not considered in either of both methods. This
enhanced frequency factor is why UFMC is such a powerful
tool to accelerate the simulation.
Note that the result regarding the apparent activation energy

obtained using the UFMC algorithm differs from the result
obtained by Timonova et al.6 Indeed, in ref 6, a dependence of
Qa on the maximum displacement length was found, while we
here do not find such dependence. This seems to be due to a
different counting method: while in ref 6 a moving average of
the consecutive particle positions was used to determine the
number of jumps, we here determine the number of minimum-
to-minimum transitions based on the actual instantaneous
position of the particle.
As mentioned above, a correction could be applied to

circumvent the approximation that K = K′ and make the Monte
Carlo algorithm exact. Thus, we have quantified q without the
approximation and calculated the corresponding rejection
probability. This is shown in Figure 3.
In this figure, the atomic displacement rejection probability is

shown as a function of the temperature for a maximum allowed
displacement of 0.05 Å, 0.075 Å, and 0.1 Å, for the same

sinusoidal potential as discussed above. It can be seen from the
graph that in principle, an arbitrarily small rejection rate can be
obtained by decreasing the maximum allowed displacement. As
mentioned above, recall that in MD, the typical step size is on
the order of 0.5% of the equilibrium bond length, whereas
Figure 3 indicates that at temperatures at or above room
temperature, a “conservative” step size is on the order of 5−
10% of the equilibrium bond length, such that the step size in
UFMC is about 1 order of magnitude longer than in MD.
Finally, note that it would be worthwhile to study if the time

scale enhancement by UFMC as presented here could be
further improved by coupling the method to other methods
such as Goldman’s energy-scaled displacement method.13

Goldman himself already mentions this possibility. In Gold-
man’s method, the maximum displacement is made dependent
on the energy of the atom. In ref 13, Goldman’s method is
compared with force-biased Monte Carlo and was found to be
slightly superior, but the Monte Carlo version used the value λ
= 1 and not the (more efficient) value λ = 1/2 applied here. In
addition, Goldman’s work is predominantly concerned with
equilibrium properties, while we have used our UFMC method
particularly to study the realistic time evolution of systems, such
as recrystallization6 and nanotube growth.8,9 It is therefore not
straightforward to conclude that the two methods would
operate constructively if jointly applied to the same problem.
Nevertheless, a combination study may be useful.

■ CONCLUSIONS

A simple proof is presented to demonstrate that the uniform
acceptance force biased Monte Carlo (UFMC) method using λ
= 1/2 correctly samples from the Boltzmann distributions,
complying with detailed balance, and is in this sense equivalent
to the traditional Metropolis Monte Carlo (MMC) method
with the Boltzmann acceptance criterion. Contrary to MMC,
however, each displacement in UFMC is accepted. The method
relies on atomic displacements small enough to allow the force
to be considered constant over the considered displacement,
such that unphysical displacements are avoided. The simple
one-dimensional diffusion of a particle in a sinusoidal potential
is presented in order to compare both methods in practice.
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