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Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful
technique to access longer timescales in atomistic simulations allowing, for example, phase transi-
tions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC)
method, was derived with inclusion of an estimated effective timescale; this timescale, however, does
not seem able to explain some of the successes the method. In this contribution, we therefore explic-
itly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple
single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100)
surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain
new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up
to three orders of magnitude compared to molecular dynamics, can be achieved for solid state sys-
tems by lowering of the apparent activation barrier of occurring processes, while not requiring any
system-specific input or modifications of the method. We furthermore address the pitfalls of using
the method as a replacement or complement of molecular dynamics simulations, its ability to explic-
itly describe correct dynamics and reaction mechanisms, and the association of timescales to MC
simulations in general. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902136]

I. INTRODUCTION

Molecular dynamics (MD) simulations have been shown
to be an invaluable tool to investigate both static and dy-
namic properties of systems at the atomic scale. MD simu-
lations are a robust and versatile technique and allow tracing
the full dynamical path of the system through space and time.
However, many processes take place at timescales well be-
yond the reach of pure MD simulations, which are typically
limited to the pico- or nanosecond range. Several so-called
accelerated molecular dynamics methods1, 2 were therefore
developed by Voter and co-workers in order to extend the
MD timescale. Although these methods allow to speed up
of MD simulations by several orders of magnitude, they are
also limited to infrequent event systems, in which the system
evolves through infrequent transitions from one metastable
state to another. Many systems, however, violate this assump-
tion. For instance, bond-switching events in the Ni/C system
have been shown to occur at the sub-ps timescale, although
the actual nickel-catalyzed growth of carbon nanotubes ex-
ceeds the timescale limits of MD.3

A different and potentially more general way to ac-
cess longer timescales in atomistic simulations is the cou-
pling of MD simulations with stochastic Monte Carlo (MC)
simulations.4 In this joint approach, a MD cycle can used to
simulate fast processes (e.g., impacts on a surface), while the
subsequent MC steps take into account the longer timescale
thermal relaxation processes. Because the Metropolis Monte
Carlo (MMC) method5 was originally developed to carry out
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efficient sampling of the configuration space, it can be ex-
pected that it is able to efficiently relax an out-of-equilibrium
system. Indeed, it has been shown that the sequential appli-
cation of MD and MMC allows an enhanced description of
thin film growth, as evidenced by the higher quality of the
obtained films that better match experimental results.6–9 This
comes at the cost of losing detailed information on the de-
scribed physical timescale, of which only rough estimates are
available.8

Kikuchi et al.10, 11 furthermore showed that MMC can be
interpreted as a numerical solution of the Fokker-Planck equa-
tion and thus in principle has the ability to describe the true
time evolution of Brownian diffusion processes. Because the
MC system evolution corresponds to actual physical events,
a MC step can thus be considered to be proportional to a
MD time step. The size of this (statistical) MC time step
has been explicitly determined in the case of diffusion in liq-
uids by comparing the respective diffusivity in MD and MC
simulations,12, 13 whereas explicit formulas were derived in
the case of colloidal particles.14–18

In order to increase the MC acceptance rate in strongly
interacting systems, the force-bias MC (fbMC) method19, 20

was developed. By including deterministic forces into the
stochastic MC algorithm, fbMC methods have much larger
acceptance ratios than conventional MMC simulations. It was
later recognized that the method can even be turned into a uni-
form acceptance algorithm, i.e., in which each Monte Carlo
step is accepted with unit probability,21 provided that the max-
imum allowed particle displacement is chosen to be suffi-
ciently small.22 This “uniform-acceptance force-bias Monte
Carlo” (UFMC) shows great potential: processes such as sur-
face diffusion,23 phase transitions,23 thin film growth,24 and
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the growth of carbon nanotubes,25 and graphene26 have been
successfully modeled by UFMC or a hybrid MD/UFMC ap-
proach. Indeed, (hybrid) UFMC simulations seem to describe
much longer timescales than those that can be reached by con-
ventional “pure” MD.23, 25

The origin of the apparent efficiency of fbMC with
respect to MD, however, is not immediately clear. Mees
et al.27 attempted to answer this question and, starting from
the canonical ensemble, derived a new uniform acceptance
force-bias MC algorithm which they dubbed “time-stamped
force-bias Monte Carlo” (tfMC). A universal timescale was
derived, and the authors suggested that the method could
be a valuable MD alternative, which would still be able to
describe system dynamics but with an enhanced timescale.
Moreover, the new method was recently also successfully
applied to study carbon nanotube (CNT) cap nucleation28

and phase transitions.29 However, the obtained time step of
about 10 fs, although an order of magnitude larger than a
typical MD time step, is not nearly large enough to explain,
for example, the growth of defect-free carbon nanotubes. The
validation of the timescale was furthermore rather limited;
in fact, all previous quantitative MC timescale studies had
a small scope and only considered one particular process or
system, mainly diffusion in liquids, and never bound systems
undergoing chemical reactions.

In this contribution, we present an extensive study of the
tfMC timescale. The aim of our work is twofold. First, we
will explicitly quantify the timescale tfMC is able to access
for a variety of systems, ranging from a simple single-particle,
one-dimensional model system to amorphous solids – which
is to our knowledge the largest scope of such a “calibration”
yet – in order to gauge the method’s applicability for these
various classes of systems. Second, we wish to gain further
general insight in the tfMC method, the mechanisms by which
it operates and how these affect its performance for all kinds
of systems.

This paper is organized as follows. First, the tfMC
method is reviewed and its dependence on its main param-
eters is investigated (Sec. II). After having described the gen-
eral computational details (Sec. III), the tfMC timescale is
studied for three systems in equilibrium: the Lennard-Jones
liquid, an adatom on the Cu(100) surface and a silicon crys-
tal with point defects (Sec. IV). As a last system, the healing
of a highly defected graphene structure is studied as model
system for defect healing in CNT growth, the as of yet most
successful application of fbMC methods (Sec. V).

II. THEORETICAL DISCUSSION

A. Description of the tfMC method

In a single tfMC simulation step, each atom i is displaced
over a distance ξ i, j�i in every Cartesian direction j. ξ i, j is a
stochastic variable distributed according to27
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with

γi,j = Fi,j�i

2kBT
, (2)

in which Fi, j is the force acting on the atom along component
j, kB is the Boltzmann constant, and T is the temperature. The
maximal displacement length of atom i, �i, is dependent on
its mass and is calculated from a system-wide parameter �,
the atom’s mass mi, and the smallest mass in the system mmin,

�i = �

√
mmin

mi

, (3)

where � should be chosen to be sufficiently small in order to
comply with detailed balance.22, 27 The tfMC timescale was
derived by realizing that an (statistically relevant) average
time step could be related to the mean displacement 〈δi, j〉,

〈δi,j 〉 = �
1
∫
−1

|ξi,j |p(ξi,j )dξi,j

≈ �

3
, (4)

and velocity of the atoms

〈vi,j 〉 =
√

2kBT

πmi

, (5)

so that

〈�t〉 = 〈δi,j 〉
〈vi,j 〉

≈ �

3

√
πmmin

2kBT
. (6)

(6) also explains the particular form of (3), which ensures that
the average tfMC time step is not mass-dependent. It can be
calculated that, according to (6), the time step will be in the or-
der of 10 fs for typical condensed matter simulations. Besides
being able to describe longer timescales than MD, uniform-
acceptance fbMC methods also have advantages over con-
ventional MC methods, such as MMC. Not only do they not
require an explicit acceptance procedure for trial moves, but
they also generate a system evolution in a MD-like fashion, in
which all atoms are displaced at once in every step, instead of
the single-particle moves common in MMC.

It is obvious that the choice of � is crucial to the suc-
cess of the simulation: larger values allow for a faster sys-
tem evolution but, at the same time, a larger violation of de-
tailed balance. Indeed, the algorithm is formally only correct
in the limit of an infinitesimally small �,22, 27 meaning that
any practical simulation will violate detailed balance to some
degree. Nevertheless, a correction could be applied to circum-
vent the uniform acceptance approximation by explicitly cal-
culating the acceptance criterion. For a simple 1D test system,
it was shown that for processes with barriers in the order of
0.25 eV and � = 0.1 Å, this approach leads to rejection prob-
abilities in the order of 10%,22 although under these condi-
tions the method is still found to be equivalent to MMC22 and
generates correct canonical averages, even for larger choices
of � and interaction strength.27 Thus, it appears that explicitly
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monitoring the acceptance rate of a fbMC simulation does not
result in immediately available conclusions about the practi-
cal validity of the method. Rather, a careful validation of the
obtained physics can be used as a more practical measure of
the safe range of �. For example, Timonova et al. carried
out an extensive validation of UFMC for the study of pro-
cesses in silicon, and found that values of � up to 0.25 Å
lead to results equivalent to MD simulations.23 Studies of car-
bon nanotube growth25 and Cu adatom diffusion27 also con-
firmed that maximum displacement lengths between 0.1 and
0.15 Å (about 5%–10% of a typical nearest neighbor distance)
lead to physically meaningful results, in agreement with ei-
ther MD simulations or the experiment, and can be considered
“conservative” choices.

B. Importance of �

It is important to note the linear relation between � and
〈�t〉, as this contradicts the idea of a MC simulation be-
ing a random walk. Indeed, it has been recognized by many
authors14–18 that a (M)MC timescale should be proportional to
the squared MC displacement length. Although these previous
results were only obtained for MMC and Brownian systems
(i.e., liquids), their basic principles should still be applicable
to tfMC simulations of bound systems.

To elucidate this contradiction, we consider a simple one-
dimensional case study: diffusion of a single particle in the
sinusoidal potential surface U(x),

U (x) = Q

2

[
1 − cos

(
2πx

L

)]
, (7)

in which Q and L are the energy barrier and the period of
the potential, respectively. If we assume that the number of
jumps over the barrier is proportional to the physical time de-
scribed by the simulation, such a simple model system will
allow us to gain a fundamental insight into tfMC simulations
of bonded systems. Indeed, other studies22, 23, 27 of UFMC and
tfMC have already used this model system and, for example,
have found that tfMC is able to generate the correct canonical
distribution.27

In this study, we first performed a series of simulations
at various temperatures, in which we checked the influence
of the maximum displacement length �. Q was taken to be
0.25 eV, L = 1 Å, and each simulation consisted of 109 it-
erations in order to gain sufficient statistics, during which
the number of jumps N was counted by only considering
minimum-to-minimum transitions (“effective” transitions). It
is clear from Figure 1 that the tfMC timescale, based on the
number of effective transitions, indeed is proportional to �2,
as is the case for other MC timescales. As mentioned earlier,
this can be understood by seeing the tfMC simulation as con-
ducting a random walk: each subsequent step is independent
of the previous simulation steps. The timescale described by
(6), however, assumes that the tfMC trajectory can be mapped
onto a MD-like trajectory in which all steps are inherently cor-
related, contributing to one smooth trajectory. This assump-
tion is closely tied to the suggestion of the tfMC authors that
the method would be able to describe (approximate) system
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FIG. 1. Dependence of the number of effective transitions N, and hence time,
on the maximal displacement squared �2, for various temperatures, during
109 tfMC iterations. Q was taken to be 0.25 eV, L = 1 Å.

dynamics, which however cannot be achieved by a random
walk.

In order to explicitly quantify the “real” tfMC timescale,
rather than only establishing qualitative relations, we com-
pared the number of effective transitions with those in a MD
simulation (using a time step of 1 fs, 109 steps per run, veloc-
ity Verlet integration,30 and an Andersen thermostat31 with a
collison time of 1 ps), in which the tfMC time step is mea-
sured as

〈�t〉tfMC = �tMD
NtfMC

NMD

, (8)

and N the number of transitions. Figure 2 clearly shows that
the tfMC timescale (6) overestimates the real, physical time
when one is interested in actual, effective transitions and
which only is about 1–5 fs. What the figure also shows, how-
ever, is that the tfMC timescale is correct as long one only
considers processes occurring in a single tfMC step. Indeed,
while an effective (minimum-to-minimum) transition is not
such a single-step process, but the crossing of the transition
state (TS) is. The difference between real dynamics and tfMC
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FIG. 2. Time step size of an individual tfMC step, calculated for � = 0.05
and 0.1 Å using both effective transitions or TS crossings. Dashed lines are
corresponding time steps as calculated using (6), whereas solid lines are least
squares fitted straight lines. Q was taken to be 0.25 eV, L = 1 Å.
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trajectories is that, according to transition state theory (TST),
every effective transition coincides with a single TS crossing,
whereas due to the random walk-like nature of tfMC, many
TS (re)crossings can happen in the course of only one effec-
tive transition (or the system may even end up in the original
minimum again).

C. Effect of the temperature

It has been suggested by both Timonova et al.23 and
Neyts et al.22 that fbMC methods are able to capture system
dynamics because they are able to “feel” reaction barriers.
When carrying out simulations using the sinusoidal potential
(7), they noted that an Arrhenius plot could be used to obtain
the activation energy Q of the diffusion process,

ln(N ) = ln(ν0t) − Q

kBT
, (9)

implying that temperature-dependent dynamics could be
reproduced using fbMC simulations. It was also found, how-
ever, that the “measured” activation energy was always lower
than the imposed value Q, which inspired the hypothesis that
this lowering of the apparent activation energy is the mecha-
nism by which fbMC methods operate,22, 23 as this can lead to
significant speed-ups of the simulation compared to MD.

As has been noted in Sec. II B, however, it is danger-
ous to assume MC methods can be treated as if they were
MD. In particular, it should be established whether the tfMC
timescale is temperature-dependent: (6) already suggests it is,
although this relation provides an incorrect estimate of the
tfMC time step. Still, intuitively one expects there should be
a temperature effect: � imposes a limit on the displacement
length per iteration and is temperature-independent, whereas
in a MD simulation, atoms will be able to travel a longer dis-
tance per time step at higher temperatures.

A qualitative derivation, suited for solid state systems, is
as follows. Although it is not possible to map a single tfMC
step to a MD step, atomic movement is most of the time also
limited by a maximum displacement length: the vibrational
amplitude A of the atom in a potential energy well. Assuming
this well is harmonic and has an associated force constant kf,
the equipartition theorem then states that kf A2 = 2kBT. Rec-
ognizing that the tfMC timescale is proportional to �2, which
can be seen as equivalent to A2, one finds

t ∼ kf �2

T
. (10)

When inspecting Figure 2, one clearly sees that it indeed re-
covers this 1/T dependence of the tfMC timescale.

This also means one has to compensate for this fact
when calculate activation barriers through an Arrhenius fit:
Figure 3 demonstrates this, by showing both the measured
values of Q when directly using a plot of ln (N) vs. 1/T or
by compensating for the T-dependence by using ln (N · T)
instead. The first method clearly underestimates the imposed
value of Q = 0.25 eV by about 20%, in agreement with pre-
vious results,22 whereas the compensated variant recovers the
correct value (a small underestimation of about 2% remains,
probably due to the coarser nature of the tfMC steps). Also, it
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FIG. 3. Measured activation energies Q, using either an unscaled or a scaled
Arrhenius fit, for different choices of �. Set value of Q is 0.25 eV, L = 1 Å.

can be seen that the unscaled approach yields much larger un-
certainties (at the 95% confidence level) on the calculated bar-
riers as a result of the poorer fit. This is an encouraging result
as it shows that tfMC simulation do resemble actual dynam-
ical simulations under certain conditions, even with mecha-
nisms that are very close to the actual, physical dynamics.
Moreover, although the enhancement compared to MD is not
as large as the original timescale (6) suggests, tfMC indeed is
able to describe longer timescales then MD. These time step
values of 1–5 fs are, however, not large enough to explain the
method’s successes describing growth and phase transitions,
a question we will address in Secs. III–V.

III. GENERAL COMPUTATIONAL METHODOLOGY

For all following simulations, the LAMMPS package32

was used. NVT MD simulations were performed using a
Nosé-Hoover chain thermostat33 (three thermostats), whose
equations of motion were integrated using the algorithm of
Martyna et al.34 as implemented in LAMMPS. Prior to this
production stage, the system was always equilibrated with a
Langevin-type thermostat35 in combination with velocity Ver-
let integration.30 Damping constants for the thermostats were
always set to be equal to 100�tMD and periodic boundaries
were used in all directions. For this study, the tfMC method
was implemented in LAMMPS as an additional fix36 and the
method was used for both production runs as the preceding
equilibration.

IV. SYSTEMS IN EQUILIBRIUM

A. Determination of the timescale

In this section, we will explicitly quantify the tfMC
timescale for various different systems in equilibrium. In such
systems, no specific transition from one macrostate to another
can occur so that their transport properties provide a sim-
ple and constant benchmark. A tfMC time step 〈�t〉tfMC can
be estimated by comparing a selected property, e.g., a mean
square displacement (MSD) with the same property as ob-
tained from a MD simulation of the same number of steps
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and with time step �tMD,

〈�t〉tfMC = �tMD
MSDtfMC

MSDMD

. (11)

B. The Lennard-Jones liquid

As the simplest of systems, the Lennard-Jones liquid is
an attractive model system to study liquid diffusion and offers
a simple method of calibrating the tfMC timescale. Through-
out this section, reduced units are used. In all simulations, the
system consisted of 4000 atoms in a cubic periodic box, with
a density of ρ∗ = 0.9 and at a temperature of T∗ = 1. The
MD time step was 0.005, whereas various values of � were
used in order to verify the scaling of the tfMC time step size.
In order to establish the safe range of � values, we moni-
tored the potential energy and radial distribution functions of
the system, and found that for values of � = 0.14 and below,
no anomalous energy fluctuations and incorrect radial distri-
bution functions were obtained.36 The system was allowed to
equilibrate for 106 steps, after which the MSD was obtained
during a production run of the same length. For each value of
�, the time content of a tfMC step was calculated using (11).

It is clear from Figure 4 that the t ∼ �2 scaling also holds
for this real system, in agreement with previous MMC stud-
ies. It is also seen that tfMC, within its safe range, is hardly
competitive with MD in terms of the described timescale. In-
deed, tfMC only surpasses MD for � ≈ 0.12, very close to
the � = 0.14 limit. The original tfMC timescale, however,
predicts a much larger tfMC time step: for � = 0.1, one finds
a time step of about 0.04, whereas the actual value (through
the MSD) is only 0.003. This further confirms that the “uni-
versal” tfMC timescale is not correct. The specific observa-
tion that tfMC performs poorly in simulating liquid diffusion
is in fact a general aspect of stochastic methods. Not only
MC, but also stochastic MD techniques such as the Andersen
or Langevin thermostats do not conserve (or, in the case of
MC, possess) momentum; liquid diffusion, however, is driven
by momentum transport. Indeed, when Huitema and van der
Eerden12 performed a similar MSD-based calibration of the
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MMC timescale for LJ diffusion they also found their MC
moves had similar time contents as a single MD step, and
furthermore pointed out that using a formula such as (6) to
determine the MC time step would be “naive.”

Furthermore, it should be mentioned that a mass-based
scaling of the maximal displacement length as proposed by
Mees et al.27 [Eq. (3)] should be modified to comply with our
new findings: diffusion coefficients and reaction rate coeffi-
cients scale as m−1/2 and hence �i should be scaled as

�i = �

(
mmin

mi

)1/4

. (12)

Figure 5 confirms this finding for the LJ liquid, as it
shows that a tfMC simulation using our new scaling matches
the mass-dependence of the MD result, whereas the original
scaling does not. Using this scaling, combined with the find-
ings in Sec. II, it can be expected that the method will be
able to generate a correct pseudodynamics of mixed-element
systems.

C. Surface diffusion

Although tfMC does not perform well while studying liq-
uid diffusion, it has to be kept in mind that the method was
primarily developed to be applied to bonded systems. Diffu-
sion of adatoms on a surface constitutes an interesting model
system for the study of diffusion in solid state systems, and
is also well documented.37 The simulated system consisted of
an adatom on a copper(100) surface made from six consec-
utive layers, each containing 60 atoms. The four bottom lay-
ers were kept fixed to mimic the bulk of the crystal. The Cu-
Cu interaction was described by an embedded atom (EAM)
potential.38, 39 The MD time step was 1 fs and � = 0.1 Å, us-
ing an equilibration stage of 105 steps and a production run of
108 steps, collecting data within a temperature range between
500 and 800 K. The tfMC timescale was determined using
(11), but instead of the MSD, the number of adatom hops N
was used.

It is clear from Figure 6 that the temperature dependence
of the tfMC timescale follows a 1/T relation, in agreement
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with our earlier findings. Furthermore, it can be seen that for
a conservative step size of � = 0.1 Å, tfMC is competitive
with MD, although the corresponding time step of about 1
fs does not constitute a real improvement over MD. In or-
der to gauge the method’s accuracy in reproducing dynami-
cal properties, we calculated the (apparent) activation energy
for an adatom hop through an Arrhenius fit. Our MD result
is 0.52 ± 0.02 eV, in agreement with other studies using the
same potential.40–43 An Arrhenius fit of the tfMC results with-
out temperature correction (i.e., using ln (N) rather than ln
(N · T)) unsurprisingly yields an activation energy of 0.41 ±
0.02 eV, which is much too low. This observation was also
made by Timonova et al.23 during the UFMC study of surface
diffusion, but, as they obtained a similar activation energy
lowering for the sinusoidal potential (7), attributed it to some
inherent property of the method. However, when compensat-
ing for the temperature dependence of the tfMC timescale in
a similar fashion as we did earlier for the sinusoidal potential,
the tfMC method yields an activation barrier of 0.46 ± 0.02
eV, much closer to the MD value and literature results of this
potential.

Nonetheless, the system still experiences a somewhat
smaller activation energy in tfMC simulations than in MD.
Thus, although the global dynamical behavior of a system in
a tfMC simulation will be very similar to the “real” dynam-
ics, small discrepancies might still occur. In particular when
studying more complex phenomena such as material growth,
different processes can occur; in order to describe correct
global dynamics, all the respective activation energies should
be reproduced faithfully. Therefore, Sec. IV D will describe a
system for which we study two different processes.

D. Silicon self-diffusion

Diffusion in silicon is of great technological importance
considering its role in the fabrication of silicon-based inte-
grated circuits. The simplest of these diffusion mechanisms
are the two pathways of silicon self-diffusion, which can hap-
pen through either a vacancy or an interstitial mechanism.
These two processes have different rate constants (with both
different activation barriers and pre-exponential factors) and

thus pose an interesting test case to determine the correctness
of the dynamical behavior of the tfMC method. We employed
a silicon crystal containing 512 ± 1 atoms with a lattice con-
stant of 5.431 Å, modeled with the Stillinger-Weber (SW)
potential.44 The MD time step was 1 fs, whereas multiple val-
ues of � were used. The MSD was calculated in a temperature
range between 500 and 1200 K during 108 steps, preceded by
an equilibration run of 105 steps.

When using � = 0.1 Å, a conservatively small choice
for this parameter, we obtained activation energies of
0.41 ± 0.01 eV for vacancy and 0.78 ± 0.05 eV for inter-
stitial diffusion, matching the MD results of 0.44 ± 0.02 eV
and 0.86 ± 0.07 eV, respectively, and in good agreement with
other simulations using the SW potential.45–47 (We compen-
sated for the t ∼ T −1 scaling of the timescale in the Arrhe-
nius fit.) By comparing the fitted pre-exponential factors of
both defect types, tfMC time step sizes of 1.2 ± 0.5 and 0.74
± 0.84 fs are found for vacancy and interstitial diffusion, re-
spectively (the large error margins are due to exponentiation;
the obtained time steps of ∼1 fs were corroborated by com-
paring individual MSDs rather than fitted pre-exponential fac-
tors). Therefore, it can be concluded that both processes are
described by tfMC with the correct relative rates, albeit with-
out a speedup compared to MD.

It was shown by Timonova et al., however, that UFMC is
able to accomplish much higher boosts for Si-based systems,
up to several orders of magnitude, provided that larger val-
ues for � are chosen. Indeed, as Figure 7 shows, we also ob-
serve that tfMC can possess average time steps of up to about
500 fs in the case of � = 0.27 Å. This, however, comes at the
cost of (1) incorrect relative dynamics, as interstitial diffusion
is more strongly boosted than vacancy diffusion by an order
of magnitude, and (2) loss of the t ∼ �2 scaling in favor of
an exponential dependence on �2. For smaller displacements
(� < 0.1 Å) on the other hand, we also verified and recovered
this previously derived relation.

The nature of the exponential boost caused by larger �

becomes clear when inspecting Figure 8, showing that the ap-
parent activation energy of both processes decreases as a lin-
ear function of �2. This contradicts our findings in Sec. II
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FIG. 7. Magnitude of the tfMC time step, as obtained through comparison
with MD, for the two diffusion pathways in silicon, at 800 K. The magnitude
of the MD time step (1 fs) is also shown for clarity.
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FIG. 8. Apparent activation energy of the two diffusion pathways in silicon
in a tfMC simulation, and its dependence on �2.

were we found that tfMC reproduces the correct barriers, ir-
respective of the size of �. The main difference between the
crystal currently under consideration and the model system
(7) we used previously is the nature of the potential energy
surface (PES). Indeed, whereas the sinusoidal potential con-
stitutes a fixed PES for the diffusion particle, each atom in
a multi-particle system is subjected to a variable PES, which
is imposed by its neighbors. Larger values of � introduce a
stronger deformation of the crystal structure, and therefore
increase of the total potential energy. Assuming harmonic be-
havior over smaller distortions it is logical this increase of the
potential energy, and subsequent lowering of apparent barri-
ers, will have a �2 dependence.

Lowering of the apparent activation energy of course al-
lows for a substantial boost, but comes at the price of losing
correct relative (pseudo)dynamics: as Figure 8 shows, the ap-
parent activation energy decreases more rapidly with increas-
ing displacement length in case of the interstitial mechanism,
possibly because its higher true barrier will be more prone to
large fluctuation caused by the stochastic displacements of the
diffusing atom’s neighbors. Interestingly, taking the �2 → 0
limit for both mechanisms recovers values in excellent agree-
ment with MD result, i.e., 0.45 ± 0.02 and 0.86 ± 0.07 eV for
the vacancies and interstitials, respectively. Thus, in the limit
of an infinitesimally small maximum displacement length,
one will obtain fully “correct” dynamics (and full compli-
ance with detailed balance) but of course no advantage to MD
at all. On the other hand, although large choices of � must
certainly violate detailed balance to a certain degree, Timo-
nova et al. found that UFMC simulations with � < 0.25 Å
are a safe choice for most processes in Si, meaning that these
simulations yield a global system evolution that is still phys-
ical. It is, however, intrinsically impossible to assign a single
“timescale” to such a process, as we have seen that individual
processes are boosted differently.

V. DEFECTED GRAPHENE

The most impressive application of fbMC methods has
been the growth of carbon nanostructures: in the case of

carbon nanotube (CNT) growth, they were instrumental in
achieving the first simulations of chiral growth,25 and nu-
cleation from hydrocarbon precursors.28 The crucial long-
timescale process that fbMC methods (but also MMC49, 50)
allow to access is the healing of topological defects in the
growing structure, in order to obtain a perfect hexagonal lat-
tice. It is therefore interesting to quantify the tfMC timescale
for a system that is closely related to these carbon-based sys-
tems as it gives an indication on the actual speed-up that was
gained in the aforementioned simulations, information that is
as of yet still unavailable. In addition to the relevance of its
associated timescale as such, defected graphene is also an out-
of-equilibrium system and able to undergo a phase transition,
which is an important class of dynamic processes this paper
has not addressed up to this point.

An amorphous graphene-like structure was generated by
random displacement of all atoms in a perfect graphene lattice
containing 360 atoms, and subsequent quenching and equi-
libration of 104 MD steps at 1000 K. The C-C interaction
was described by the second generation REBO potential.48

The MD time step was 0.25 fs, whereas � was chosen to be
0.05 and 0.1 Å, which were shown to yield physical results
for this type of system.25, 28 After initial (pure MD) equilibra-
tion, the resulting structure was relaxed using either MD or
tfMC. Figure 9 then clearly shows that, at 1000 K and using
� = 0.1 Å, tfMC is able to relax the defected structure
much better than MD. Indeed, while 2 × 105 MD steps are
not able to cause an appreciable energy decrease or healing,
tfMC is able to rapidly lower the structure’s energy by about
0.15 eV/atom and decrease the number of three-membered
rings and over- or under-coordinated atoms. After 4 × 107

steps (10 ns in case of MD), the difference between the
two structures (Figure 10) is even more apparent, with tfMC
having healed out all over-coordination and three-membered
rings (catalysis or higher temperatures are required to obtain
perfect graphene only consisting of six-membered rings49, 50).

This efficiency of MC methods has of course already
been established, but the exact timescale at which this healing
process takes place is not clear. In order to explicitly quantify
the boost tfMC achieves, we prepared 20 different structures
at temperatures between 800 and 1500 K using the same pro-
cedure as above. These structures were relaxed using MD or
tfMC with � = 0.05 or 0.1 Å up till the point where an energy
decrease of 0.15 eV/atom was reached. The average number
of iterations required to achieve this target can again be used
to determine the average size of the tfMC time step, or the
boost the method can achieve. As Figure 11 then shows, this
boost can be as large as 800 (a tfMC time step of about 200
fs) at 800 K when using � = 0.1 Å. This boost rapidly de-
creases at higher temperatures to about 40 at 1500 K, but this
corresponds to a tfMC time step of 10 fs, which is still sub-
stantial. The performance of the method when � = 0.05 Å
is much lower, however, as it is clear that at 800 K, it is
about 300 times slower (time step of only ∼0.5 fs). These
huge difference between the two choices of the displacement
length, combined with the rapid deterioration of the boost
with increasing temperature, show that lowering of apparent
activation energies also for this system plays an important
role.
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FIG. 9. Healing of a defected graphene sheet. (a) Initial (equilibrated) structure; (b) evolution of the potential energy during the relaxation at 1000 K; (c) final
structure after 2 × 105 MD steps; (d) final structure after 2 × 105 tfMC steps with � = 0.1 Å. Red-colored carbon atoms are over-coordinated (higher than
sp2), green-colored are under-coordinated (lower than sp2), respectively.

The additional energy that the tfMC methods injects into
the structure in the case of � = 0.1 Å thus allows for a
strongly increased healing rate, leading to similar speedups
as found in Sec. IV D. In the case of � = 0.05 Å, a time
step of similar magnitude as for the Si system with � = 0.1
Å is found, suggesting no significant changes of the appar-
ent barriers are introduced and a more “well-behaved” pseu-
dodynamics. Although we cannot expect the relative impor-
tance of processes as seen in the � = 0.1 Å to match the MD

result, it is clear from our results that both simulation meth-
ods lead to the same global evolution: decrease the number of
three-membered rings and over- or under-coordinated atoms.
Moreover, from a thermodynamic viewpoint, all methods
simulating the NVT ensemble are bound to ultimately bring
the system to its free energy minimum, which is a perfect
graphene sheet. The previous MD/fbMC CNT growth sim-
ulations that resulted in tubes with a definable chirality25

are an example of such a process, and demonstrate that the

FIG. 10. Further healing of the defected graphene sheet of Figure 9a, after 4 × 107 steps of (a) MD or (b) tfMC, at 1000 K. Color coding is the same as in
Figure 9.
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incorrect “dynamics” of fbMC methods with too large a dis-
placement can still produce physically meaningful results,
albeit with loss of kinetic fidelity.

VI. CONCLUSIONS

A comprehensive study of the timescale of the tfMC
method was carried out in order to verify the method’s ap-
plicability to a wide range of systems and gain insight into
the fundamental mechanisms underpinning its apparent effi-
ciency.

Using a simple one-dimensional model system, it is
found that the originally derived timescale of the tfMC
method, when compared to MD results, does not match the
actual physical time associated with the observed events. In-
deed, tfMC does not offer a large timescale elongation com-
pared to MD for this model system. However, it is established
that tfMC simulations are subjected to the same activation
barriers and hence will be able to describe a pseudoynamics
that is very close to physical dynamics as accessed by MD.

When applied to solid state systems, one has to find
a compromise between physical accuracy and boost. Small
maximum displacement lengths � ensure that the processes
as obtained by tfMC closely match MD results in terms of
relative importance, which guarantees both methods give rise
to very similar mechanism and hence the same global evo-
lution of the system, albeit without tfMC achieving a signif-
icant boost. If � is made larger, however, one can observe
large speedups in comparison to what is possible using MD
explaining, for example, the ability of the method to describe
the growth of chiral carbon nanotubes. This large boost comes
at the price of losing correct relative dynamics because this
acceleration is caused by a lowering of the apparent activa-
tion energy of processes due to larger deformations of the sur-
rounding crystal. Therefore, it can be concluded that it is in-
herently impossible to derive a universal timescale to describe
the system evolution during a tfMC simulation.

Although the tfMC method might not be generally suited
to study relative dynamics, it still generates realistic system

evolutions, as evidenced by the healing of defective graphene.
Because these relaxing processes can be described several or-
ders of magnitude faster than possible with MD, the tfMC
method is excellently suited as an easy to implement, simple
method that is able to quickly bring the system to equilib-
rium. The method furthermore requires no specific system-
dependent information, making it an attractive alternative to
more complicated accelerated MD or kinetic Monte Carlo
methods, and is from a technical perspective closer to MD
than MMC. However, to extend the timescale of atomistic
simulations beyond the timescales reported in this paper, or
with more detailed mechanistic information, accelerated MD
methods will be needed. Such methods still require further
development to make them more efficient and generally ap-
plicable, an ongoing field of research of which tfMC can be
a part as well: recently, the successful combination of hyper-
dynamics and MC methods was presented,51, 52 thus opening
new exciting perspectives for further development and appli-
cations of the tfMC method.
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