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A B S T R A C T

Ion irradiation of carbon nanotubes very often leads to defect formation. However, we have

recently shown that Ar ion irradiation in a limited energy window of 10–25 eV may enhance

the initial cap nucleation process, when the carbon network is in contact with the metal

nanocatalyst. Here, we employ reactive molecular dynamics simulations to demonstrate

that ion irradiation in a higher energy window of 10–35 eV may also heal network defects

after the nucleation stage through a non-metal-mediated mechanism, when the carbon

network is no longer in contact with the metal nanocatalyst. The results demonstrate

the possibility of beneficially utilizing ions in e.g. plasma-enhanced chemical vapour

deposition of carbon nanotubes.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon nanotubes (CNTs) hold promise for a multitude of

applications, including sensors, transparent electrodes, inter-

connects, supercapacitors, transistors, energy storage appli-

cations, filters and membranes, high-strength materials,

biomedical applications, and many more [1,2]. Key to many

of these applications is the requirement to precisely tailor

the structure of the CNTs. The intrinsic properties of the

CNTs indeed depend on this structure, which in turn results

from the details of the growth process. Unfortunately, it is

at present not clear how the growth process and therefore

the CNT structure can be controlled exactly.

The CNT structure and properties can also be tailored,

altered and modified by the use of energetic species beams,

including gamma rays [3,4], electrons [5,6] and ions [7–9].

Indeed, irradiation-induced modification of the graphitic net-

work allows to introduce the specific functionalities needed

for specific applications [10–13,7,14–21], for instance for

enhancing CNT field emission [13,14], production of CNT
quantum dots [20] and the fabrication of nanotube-based

composites [21].

Moreover, the interaction of ions and electrons with CNTs

is also of importance for the growth by plasma enhanced che-

mical vapor deposition (PECVD), in which ion and electron

bombardment occur naturally [22,23]. This affects not only

the properties of the resulting tubes, but most importantly

the growth process itself. Gohier et al. for instance investi-

gated the PECVD growth of single walled and multiwalled

CNTs, and concluded that ion bombardment is a limiting

factor in growing especially single walled CNTs using PECVD

[24]. On the other hand, we recently demonstrated by using

combined simulations and experiments, that ion bombard-

ment in a limited energy window of 10–25 eV actually

enhances the graphitic network growth in the nucleation

stage [25]. At higher energies, we observed that ion bombard-

ment destructs the network and thus inhibits the growth.

In view of the importance of ion-irradiation induced

modification of CNTs (both for the properties and the growth

process), many researchers investigated the nature of CNT ion
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irradiation. Defects were identified as the origin of irradiation

induced structural modifications [21,26–29], and defect for-

mation has thus received considerable attention, both by

experiments [3–6,8,9] as well as by simulations [11,7,29–38].

Very recently, O’Brien et al. performed molecular dynamics

(MD) simulations to study the effect of carbon ion irradiation

of CNT bundles on their mechanical properties, in the range

50–300 eV/atom [39]. Also Salonen et al. and Pomoell et al.

investigated ion-irradiation induced defects in CNT bundles

by classical MD [33,40], in the range 100 eV–1 keV. Xu et al.

used MD simulations to probe the stability of single walled

CNTs under Ar+ and C+ irradiation in the energy range

25 eV–1 keV [30,31]. In these simulations, it was shown that

also the chemical nature of the impinging species plays a role

in the damage creation. Finally, Pregler and coworkers [41,42]

investigated ion beam irradiation, by 50 eV Ar+ and CF3
+ ions

and 80 eV Ar+ ions, of MWCNTs and nanotube based

composites, again using MD simulations, demonstrating

that ion bombardment effectively promotes intershell

crosslinking.

Almost all of these studies, however, relate to rather high

energy ion bombardment (several tens of eV and up), focuss-

ing on defect formation. Only a few researchers also studied

defect healing [43–46], but in all cases in the context of a

metal-mediated process and without dealing with ion

bombardment.

At lower energies (below 30 eV), however, defects in the

nucleating network may also be healed by ion bombardment,

which then enhances the formation of the cap structure dur-

ing the initial nucleation stage [25]. It thus appears that dur-

ing the CNT nucleation stage, a balance exists between

defect healing and defect creation by ion bombardment, and

moreover that one could tune this balance by means of the

ion energy. One may therefore ask: ‘‘Does ion bombardment

also heal defects after the initial nucleation stage, when the

carbon network is no longer in contact with the metal nano-

catalyst?’’ Here we use MD simulations as outlined below to

answer this question.

2. Methodology

We employ reactive MD simulations to investigate the

dynamics of the ion-irradiation induced processes. We start

with a fully detached CNT cap structure on a surface-bound

Ni40 cluster, generated in a previous study on the vertical

alignment effect of electric fields during single walled CNT

growth [47]. This structure is thermalized at 1000 K employing

the Berendsen heat bath with a relaxation constant of 250 fs.

This initial structure is shown in Fig. 1a. Note that in contrast

to our previous simulations, in which the number of defects

in the tubes is minimized [45,46], we here deliberately start

from defective tubes. We subsequently bombard this defec-

tive structure using Ar+ ions with energies in the range 10–

50 eV, for 200 consecutive impacts. After each impact, the

structure is rethermalized to 1000 K, to remove excess heat

from the system. In the MD simulation, the ions are modeled

as fast neutrals, as justified by Auger neutralization of the

incoming ion.

Atomic trajectories are integrated using the velocity verlet

integrator. We model the Ni–Ni, Ni–C and C–C interactions by
the Reax Force Field [48], using parameters developed by

Mueller et al. [49]. The Ar–Ni and Ar–C interactions are mod-

eled by means of a Molière potential using Firsov constants,

as we have previously done in other studies investigating

Ar-irradiation of carbon nanostructures [50,51]. We carried

out ten independent simulation runs at each energy, to collect

statistics on the data and to average the global effect. Ring

statistics were generated using the R.I.N.G.S. code [52],

employing Guttman’s shortest path criterion [53].

3. Results and discussion

We previously identified a small energy window (10–25 eV) in

which Ar-ion bombardment of a nucleating SWCNT cap was

found to enlarge the carbon network [25]. In contrast, we here

focus on the possible beneficial effects of ion bombardment

on the carbon network after cap detachment.

In Fig. 1, we show an example of the beneficial effect of ion

bombardment on the network structure, for an impact energy

of 20 eV. Indeed, the network structure seems to have

improved due the ion irradiation. This is substantiated below.

In Fig. 2, we present the global effect of low-energy ion

bombardment on the average number of pentagons and hexa-

gons in the irradiated structure for ions in the energy range of

10–50 eV. The number of pentagons in the structure is actually

higher that what is expected for a clean CNT, which is a direct

result of the insufficient defect healing during the nucleation

and growth stage, which in turn results from the very high

growth rate in the simulation. Note that the number of hepta-

gons in the structure is also fairly large, for the same reason,

but it nearly remains constant under ion irradiation (see also

Fig. 3 below), and is therefore not shown in this figure for

clarity.

We can see in the figure that the number of pentagons and

especially hexagons increases due to the ion impact at 10 eV,

and the number of both rings clearly rises at 25 eV. On the

other hand, it remains more or less constant at 40 eV, and

decreases at 50 eV. If we identify an increase in the number

of (pentagons and) hexagons in the network as a positive

effect, we may thus infer from this result that ion irradiation

of growing SWCNT is beneficial below 40 eV.

We plot in Fig. 3 the evolution of all the rings detected in

the network (i.e., triangles up to nonagons) as a function of

the number of ion impacts for an ion impact energy of

20 eV. As also expected from Fig. 2, we find that the number

of hexagons and pentagons increases at this ion energy, on

average by 29.2% and 20.0%, respectively, for 200 impacts.

The beneficial effect of the ion irradiation, however, is not

limited to the formation of new graphene-like rings (penta-

gons and hexagons), but is also evident from the reduction

in the number of non-graphene-like rings (triangles, octagons

and nonagons). At 20 eV, the change in the number of trian-

gles, octagons and nonagons is �77.5%, �35% and �60%,

respectively, after 200 impacts.

The ion bombardment thus has two important effects: (1)

the graphitic network is enlarged (formation of graphene-like

rings), and (2) at the same time, the defects in the network are

reduced (removal of non-graphene-like rings).

In Fig. 4, we show the percentage change in the number of

hexagons and in the ratio of hexagons to the total number of



Fig. 1 – Initial structure prior to ion bombardment (a), and carbon network after 200 Ar impacts at 20 eV (b). The big grey

spheres represent Ni atoms, and the green and red small spheres represent 2-coordinated and 3-coordinated C atoms,

respectively. The graphitic network structure is indeed clearly improved in (b). (A color version of this figure can be viewed

online.)

(a) (b)

(d)(c)

Fig. 2 – Evolution of the number of pentagons and hexagons in the carbon network upon ion impact, as a function of the

impact number at (a) 10 eV; (b) 25 eV; (c) 40 eV; and (d) 50 eV, averaged over 10 independent runs. The thick grey lines and thin

black lines represent the number of hexagons and pentagons, respectively.
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rings, after 200 impacts, for different ion impact energies. The

figure demonstrates that an optimum is reached at an impact

energy of 25 eV, with an increase in the number of hexagons

of 40%. The increase in the ratio of the number of hexagons

to the total number of rings is 27.5% at 25 eV. It is also clear

from the figure that the number of hexagons as well as the

aforementioned ratio only starts to decrease at 50 eV, relative

to the initial structure. Note that these results indicate a shift

in optimal energy to higher values compared to our earlier

simulations for a carbon network in contact with the metal

nanoparticle [25].

As a typical example of graphitic network improvement

upon ion bombardment, we picture the evolution of a graphi-

tic patch in the network in Fig. 5, as evolving under the action
of the ion bombardment at 20 eV. For the sake of clarity, only

the graphitic rings are shown, and not the carbon chains or

other carbon atoms connected to them. The reader can see

how the network gradually expands from a single hexagon

to a patch of 6 rings, consisting of 4 hexagons and 2

pentagons, required for the curvature on the nanoparticle

surface.

Finally, in Fig. 6, we show the change in the number of car-

bon atoms in the CNT structure due to the ion bombardment

as a function of the ion impact energy. The number of carbon

atoms decreases on average by 0.6% at 10 eV, 1.9% at 20 eV,

2.9% at 25 eV, 4% at 30 eV, 10% at 35 eV and even 32% at

50 eV. Thus, sputtering of carbon atoms becomes important

from about 35 eV.



Fig. 3 – Evolution of the number of various rings detected in

the structure upon ion impact, as a function of the number

of ion impacts, for an ion impact energy of 20 eV, averaged

over 10 independent runs. The increase in number of

pentagons and hexagons, the constant number of

heptagons, and the decrease in the number of octagons,

nonagons and triangles is characteristic for all

impingement energies in the range 10–25 eV.

Fig. 4 – Percent change in the number of hexagons (open

circles, solid line) and ratio of the number of hexagons to the

total number of rings (open squares, dashed line), as

resulting from 200 consecutive Ar ion impacts, as a function

of the ion impact energy. It can be seen that the beneficial

effect of ion bombardment on the C-network structure is at a

maximum at 25 eV.

Fig. 5 – Illustration of the graphitic network improvement

due to ion bombardment for an ion impact energy of 20 eV.

For clarity, only the rings involved in the graphitic network

formation are shown. The number of impacts after which

each structure was obtained is indicated below each

structure.

Fig. 6 – Calculated change in the number of carbon atoms in

the total structure after 200 Ar impacts as a function of the

impact energy.
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This is indeed as expected based on earlier findings.

Indeed, the carbon displacement energy in graphitic

structures is in the range 14–32 eV [11,54–56]. Given that the

kinetic energy mass transfer factor for Ar/C collisions is

71%, an Ar impact energy of 35–40 eV corresponds to a thresh-

old C-displacement energy of about 25–28 eV. As also men-

tioned in our previous study [25], the network is, however,

far from perfect, and some carbon displacements and limited

network damage may already occur at lower impact energies,

due to the non-ideal network coordination and structure. In

most cases, however, the network is improved at these lower

energies, a representative example of which was shown in

Fig. 1 for an ion impact energy of 20 eV.
All of these data point towards a balance between ring for-

mation on one hand, and carbon removal and bond dissocia-

tion on the other hand. At an ion impact energy of around

35–40 eV, both effects balance each other, resulting in no net-

work improvement or destruction. At higher energies, above

40 eV, the CNT structure is sputtered and the number of rings

decreases. On the other hand, at lower energies, i.e., below

35 eV, the CNT-network is enlarged by the increase in penta-

gons and hexagons, and the concurrent removal of defects

from the network.

4. Conclusions

Employing state-of-the-art reactive molecular dynamics

simulations, we demonstrate that low energy ion irradiation

of a growing SWCNT structure, not in contact with the metal

nanocluster, results in an increase in the number of graphitic

rings and a decrease in the number of non-graphitic rings, i.e.,

in defect healing. We estimate that the ion energy at which

there is a balance between defect healing and defect

formation is around 35–40 eV. Below this energy, there is a

net healing of defects, whereas above this energy, there is a
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net formation of defects. We therefore conclude that SWCNT

growth in a plasma setup is feasible, provided that the ion

peak energy is below 40 eV.
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