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Model or reality?

Atomistic modeling techniques have had an enormous impact on chemistry,
materials science, andmolecular biology. The continuous development of elec-
tronic structure theory has made it possible to accurately describe the interac-
tions between atoms in arbitrary environments—properties of molecules and
materials can be derived directly from fundamental principles, and chemical re-
actions studiedwith atomic resolution. Suchmethodologies are not only limited
to “static” calculations of energies or structures. Simulations based onmolecu-
lar dynamics (MD) orMonte Carlo (MC)methods can even explicitly describe
the atom-level dynamical evolution of matter.

It might be tempting to conclude that computational chemistry could allow
one to fully reproduce or replicate reality. Such a belief—although enticing and
widely held—is however fundamentally misguided. Length, time and detail in
atomistic models are limited to the nanoscale, and even the smallest isolated
systems can only be modeled with a finite accuracy—the best models still rely
on some approximations. For most practical purposes, the mismatch in scale
and complexity between experiment and atomistic model therefore prevents a
perfect one-to-one correspondence. This type of exact relation is also wholly
unnecessary for most scientific purposes: if simulation and experiment were to
give identical answers, one of themwould be superfluous! Indeed, as Anderson
already noted back in 1980, one should not be blinded by the perceived accuracy
of a model, if the model itself is not physically transparent:

“… a great deal of the physics is concealed inside the machinery
of the technique, and that very often once one has the answers that
these techniques provide, one is not exactly clear what the source
of these answers is. In other words the better the machinery, the
more likely it is to conceal the workings of nature, in the sense that
it simply gives you the experimental answer without telling you
why the experimental answer is true.”

1



model or reality?

Awell-performing model is not a model that reproduces the experiment, but
one that explains the experimental observations. For this reason, the very act
ofmodel construction is significantlymore interesting than routine applications
of one existing model to different experiments.Why does a model work?When
does it fail? Are there competing approaches and, if yes, what canwe learn from
their differences?What can we improve? A stimulating activity indeed, and one
we believe only must (somewhat) adhere to two key rules.

On one hand, a model must have a suitably limited scope. Simulations and
models pare down the complexity of the real world, and unveil underlying
truths precisely because of their reductive simplifications: a model can be lim-
ited to exactly the processes, molecules, mechanisms, or conditions of interest,
excising any distracting real-life complexities. Indeed, the actual construction
of the model can be much more revealing than any of its actual applications.
Simulations are not bound by many of the experiment’s restrictions—one has
infinite control over all aspects of the model, and physical realities inaccessible
by the experiment can be explored.

On the other hand, any practical model should still in some way intersect
with reality. The model’s simplifications and assumptions are only acceptable
insomuch that the model itself is still physically sound—as simple as it can be,
but not simpler. To be of proper value, the model must make predictions that
are meaningful and can in some way give insight into the actual properties of
the experiment. In other words, while experiment and model do not have to
overlap, it should be possible to put them side by side.

This thesis presents two case studies that attempt to rise to these challenges.
In the first part, we strengthen the link between existing models and experiment.

Assuming that a suitably simplified atomistic simulation model exists, we in-
tend to bring it closer to real-life conditions. In particular, we will develop al-
gorithms to performmicroscopically detailedMD simulations over macroscopic
time scales. The goal of our novel methodology is to produce long time scale
chemical transformations involving hundreds of reactions in a complex chemi-
cal environment. The improved interplay between the very different beasts that
are simulation and experiment does not mean that either is turned into an exact
copy of the other, but because they share the same timescale it becomes easier
to exchange and combine insights from the two approaches.

The second part describes how modeling can be used to obtain a deeper in-

2



sight into a complicated process. As a case study, we take plasma catalysis,
which consists of a highly complicatedweb of tightly coupled cross-interactions
that are very difficult to properly characterize at a fundamental level. In order
to achieve the promising potential of plasma catalysis in important 21st cen-
tury challenges such as greenhouse gas conversion, a systematic insight is re-
quired. In this thesis, a new model is constructed stepwise to isolate a single factor
of plasma catalysis—the presence of excess plasma-supplied electrons at the
catalyst surface—and thoroughly assess its effect. Even for such an ostensibly
simplified model, it is of paramount importance to ascertain its relevance and
tangible connection to the actual experiment, and we thoroughly dive into the
search of a right balance of simplicity, realism, and accuracy.

Both of these goals are rather ambitious but thankfully,we stand on the shoul-
ders of giants, and have come a long way since the first Monte Carlo simula-
tion of a liquid on the Los Alamos maniac in 1953. Many highly challenging
modeling problems have already been tackled, and have lead to the creation of
powerful dedicated methods and algorithms. We have even reached the point
where computational chemistry can give more information than is strictly nec-
essary. Asking the right questions is becomingmore important than ever, and it
is useful to take a step back and take a critical look at the way the current state-
of-the-art methods are applied to a problem of interest, and how approaches
that have been successful in other fields might benefit from a new perspective.
Innovation driven by this type of lateral thinking has the potential to lead to
new surprising applications of existing concepts in novel disciplines. Hence, by
recognizing the limitations of existingmodels, and identifying the untapped po-
tential of others, a level of innovation beyond the traditional scientific method
can be achieved. In this thesis, we will draw from many sources, and find new
and exciting applications even for well-established models and methods.

3





part i

Macroscopic time scales from
microscopic simulations
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chapter 1

Simulating slow processes

1.1 The time scale problem in atomistic simulations

Themolecular dynamicsmethodhas become an indispensable tool acrossmany
branches of science and engineering. MD simulations can be used to under-
stand the mechanisms of complex processes, calculate properties of materials,
explain experimental results, and make predictions—all while providing full
atomistic resolution. Such a level of detail, however, comes at a price: the time
step used to discretize the equations of motion must be shorter than the fastest
motion in the system, putting an upper limit to the time scales that can reason-
ably be addressed. In general, simulations based on (computationally cheap)
classical force fields are restricted tomicroseconds, whereas more expensive ab
initio methods cannot even reach beyond nanoseconds. Because many systems
spendmost of their time inmetastable states with long lifetimes ofmilliseconds
or more, the MD time scale is often insufficient to study common chemical
processes. The system remains trapped in a single metastable state during the
whole MD simulation, and not a single reaction or transition is observed.

Circumventing the MD time scale limitation is an area of active research.
Broadly speaking, developments in this area can have one of two specific objec-
tives, schematically depicted in Figure 1.1. Accelerated MD methods focus on
accelerating the global system evolution, so that the simulation is able to pro-
duce the correct sequence of state-to-state transitions. In such an approach, the
focus lies on accelerating the escape rate frommetastable states while correctly
reproducing the probability of all possible escape pathways. As a result, an ac-
celerated MD method should produce a coarse-grained system evolution that
is statistically indistinguishable from a (very long) standard MD simulation.

A different viewpoint is taken by enhanced sampling methods. Here, MD’s
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figure 1.1: The different objectives of accelerated MD and enhanced sampling
methods.

lack of ergodicity is addressed. In principle, thermodynamic properties of the
system can be derived from ensemble averages obtained during anMD simula-
tion. However, correct averaging is only possible if the simulation can exactly
reproduce the probability distribution associated with the system. That is, the
probability Pi to find the system in a state i with state energy Ei at a tempera-
ture T should obey Pi ∼ e−βEi , with β = (kBT)−1. Correct sampling of this sort
is impossible if, for example, the system remains trapped in a single metastable
state during the simulation—other relevantmetastable states are never reached
and Pi = 0 is erroneously predicted for many relevant states. Hence, enhanced
sampling methods strive to provide a more balanced sampling of relevant parts
of the configuration space, within the framework of MD.

1.2 Accelerated MD and related methods

1.2.1 Infrequent event systems
At the heart of all acceleratedMDmethods lies the concept of events: the system
is trapped in metastable states for extended periods while it are the “events,”
i.e., jumps to a different state, that are of interest. If barriers are high, most of
the simulation time is spent waiting for an event to occur, and the term infre-
quent event system is used to refer to this type of situation. 1 In such a system, all
events can be considered to be decorrelated, because the system spends such a
long time in eachmetastable basis that it loses allmemory of how it got there.An
accelerated MDmethods does therefore not need to provide a perfect descrip-
tion of the dynamics within the basin, in between events. Only the right relative
probability of finding each of the possible escape paths must be preserved. The
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figure 1.2: Schematic depiction of the four main classes of atomistic simulation meth-
ods applicable to infrequent event systems. These are the kmc (kinetic
Monte Carlo) method, and the three base accelerated MD methods tad
(temperature-accelerated dynamics), hyperdynamics, and prd (parallel
replica dynamics).

degree by which these escapes are accelerated is commonly referred to as the
boost factor of amethod. The true physical time scale of the infrequent event dy-
namics is the overall MD time scale, multiplied by the boost factor. Voter and
coworkers introduced most of the key theoretical developments of infrequent
event-based atomistic simulation methods, which we can divide in four main
categories, sketched in Figure 1.2.

1.2.2 Full coarse-graining
If it is the goal to increase the occurrence of infrequent events in the simulation,
the most efficient approach might be to do away with anything but these events.
That is, if the system evolution can be purely described as the sequence of infre-
quent events, only these events themselves have to be considered in the model;
the time evolution simply occurs as a series of jumps between local minima.

Such a coarse-grained approach to the dynamics forms the basis of the kinetic
Monte Carlo (kmc) method. In a kmc model, the system is represented only
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by minimum energy configurations (local minima) of the system, and a catalog
of events (and associated rate constants) connecting them.2 At each simulation
step, a list of all possible escape routes out of the current state is extracted from
the event catalog, and an escape event is selected by drawing a random num-
ber. The probability of drawing an event is made to be proportional to its rate
constant ki, and the simulation clock is advanced by drawing an escape time
from the distribution p(t) = ktot exp(−ktott), with ktot overall escape rate, i.e.,
the sum of all possible ki.

In its original form, the kmc approach cannot be used to predict or discover
new events, because they must be defined a priori in the form of the event cata-
log.Many atomistickmc algorithms furthermoremap all atomic positions onto
a lattice to simplify the storage of configurations and the identification of possi-
ble events which, however, means that only processes in crystalline solids can
be modeled. By coupling the kmc algorithm to an open-ended saddle point
searchingmethod such as the dimermethod3 or activation-relaxation technique
(art)4 various adaptive (or off-lattice) kmc methods have been devised that
allow to self-consistently predict transformations of materials over long time
scales without confining events to a lattice.5–9

Common saddle point searching methods as applied in adaptive kmc typi-
cally use the curvature of thepes to find transition paths and can only be used in
systems where all events are fully characterized just by theminimal energy con-
figurations of two consecutive states, and the saddle point in between.This sim-
plification applies rather well to solids, but is inadequate once configurational
entropy by low-barrier diffusional motion becomes important—the constantly
changing nearest neighbor interactions in liquids or gasses cannot be included
because these do not conform to the more static view of events in typical atom-
istic kmcmethods. Evidently, systems with such “soft” modes of motion also
cannot be described by lattice-based kmc.

The limited scope of widely used (atomistic)kmc implementations does not
diminish the general utility and power of the kmcmethod, and dedicated vari-
ants can be developed for any kind of problem involving transitions between
states. It does, however, illustrate the practical hurdles that prevent the devel-
opment of an efficient kmc approach to arbitrary chemical transformations.
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1.2.3 Temperature elevation
High barriers are easier to cross at elevated temperatures. In fact, the use of
artificially high temperatures is a rather common trick to circumvent the MD
time scale problem. However, while a high-temperature simulation can bring
infrequent events within the MD time scale, it also describe a different system
altogether. The high-temperature simulation will give more weight to entrop-
ically favored higher-barrier transitions. As a result, an incorrect system evo-
lution is predicted, at least if one is actually interested in the low-temperature
processes.

The temperature-accelerated dynamics (tad) method 10 can construct an ap-
propriate low-temperature event sequence from high-temperature simulations.
This is achieved through akmc-like handling of events. In tad, a simulation is
conducted at a high temperature Thi at which events can occur withinMD time
scales. Each time an event is detected, its associated barrier EA is computed us-
ing an interpolating saddle point-searching technique such as the nudged elas-
tic band (neb) method, 11 and stored along its final configuration and escape
time thi. Then, the system is rolled back to the initial state and decorrelated to
resume the simulation; a criterion is defined to determine when a sufficiently
complete catalog of escape pathways is obtained. Once this happens, all escape
times thi can be extrapolated to the target temperature Tlo by assuming that har-
monic transition state theory (htst) 12 holds, so that the relation t ∼ eβEA can
be used:

tlo = thi e(βlo−βhi)EA . (1.1)

Finally, the product state corresponding to the shortest tlo is selected, and the
simulation at Thi is resumed from there.

For very low Tlo, impressive boost factors (up to 109) have been obtained
with tad. 10,13 If Tlo is fairly high and close to Thi, the efficiency of the method
decreases. There is also typically an upper limit to Thi at which anharmonic
effects become unacceptably large. 10 Due to the reliance on pes-based saddle
point searching and htst, tad largely suffers from the same limitations that
restrict kmc to processes in the solid phase. Nevertheless, tad remains in ac-
tive development, 14 extending the method to both larger systems and longer
timescales, respectively through spatial, 15,16 and temporal parallelization strate-
gies. 14
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1.2.4 Bias potentials
Events would be accelerated if the high barriers separating metastable states
were lower. In the hyperdynamics method, 17 simulations are not carried out
on the true potential energy surface (pes) V(R), but on a modified potential
V∗(R), which is obtained by adding a bias potential ΔV(R):

V∗(R) = V(R) + ΔV(R), (1.2)

in which R denotes the system coordinates. If properly designed, ΔV can be
made to fill deep metastable basins, and lower the effective barriers for escape.
If standard transition state theory (tst) is assumed to hold, and ΔV vanishes at
all the dividing surfaces between states, it can be proved that (1) relative rates for
different escape pathways out of a basin are preserved, and (2) the boost factor
can be computed as

boost = ⟨eβΔV⟩
b
, (1.3)

in which ⟨⋯⟩b denotes an average over the trajectory on the biased potential.
Designing an accurate, efficient and general expression for the bias potential

is rather difficult due to the complexity of the underlying potential energy sur-
face V(R), which is a 3N-dimensional function. In the original formulation of
hyperdynamics, Voter introduced a bias potential based on the lowest eigen-
value ε1 of the Hessian, which naturally allows to detect saddle points, where
ε1 < 0. 17 The performance of Hessian-based approaches deteriorates with in-
creasing systems sizes, and although more efficient schemes that avoid diago-
nalization of the Hessian have been proposed, 18 this class of bias potentials did
not find widespread use.

Simplified forms of the bias potential, based on intuitive arguments rather
than on strict theoretical foundations, have been quite successful. The simplest
class of methods make ΔV a direct function of the potential energy of the sys-
tem: the lower the potential energy, the larger the bias should be. Variations on
this approach range from “flat” potentials, setting V∗ = E if V is below some
threshold E, 19 to somewhat more elaborate forms such as

ΔV(R) = (E − V(R))2

α + (E − V(R))
if V(R) < E, (1.4)

used by the rather unfortunately-named “accelerated MD” (aMD)
method.20,21 In all cases, potential energy-based methods only work well
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on a simple and smooth pes, where saddle points can be identified purely
by the value of V(R). Once the thermal contribution to the potential energy
(~3NkBT/2) or the energy difference between states become larger than the
smallest barrier, the boost factor becomes negligible, or some accuracy must
be sacrificed. Larger systems can be treated by using localized energies, such
as the potential energies of single atoms22 or, as common in aMD, dihedral
energy terms in proteins.20 Nevertheless, with typically applied large boost
potentials (in the order of hundreds of kcal/mol in aMD) energy-based biasing
methods will always corrupt the transition state, and cannot form the basis of a
formally correct hyperdynamics method—in spite of its name, aMD is actually
more an enhanced sampling method.

If one has some idea of the mechanism of the to-be-accelerated process, a
specifically-tailored bias potential can be developed. Recognizing that solid-
state processes typically involve bond breaking, Miron & Fichthorn proposed
theBond Boost method, where the bias potential is an explicit function of theNb

bond lengths ri in the system.23 The Bond Boost bias is designed in such a way
that it is largely controlled by the bonds that are compressed or stretched the
most relative to the equilibrium distance reqi , because those are the most likely
ones to be involved in a reaction:

ΔV = A(ε1, . . . , εNb)
ΔVmax

Nb

Nb

∑
i

⎡⎢⎢⎢⎢⎣
1 − ( εi

q
)
2⎤⎥⎥⎥⎥⎦

with εi =
ri − reqi

reqi
. (1.5)

The bias is multiplied by a so-called “envelope function” A that ensures the
bias is smoothly turned off if εmax > q, before the saddle points are reached.
For simple solids, the Bond Boost method requires little parametrization and is
cheap to evaluate, and has been applied to various film growth processes.24–26

Its main limitations are the fact that the bias potential is a “hard-coded” func-
tion of bonds, so no other types of mechanisms can be accelerated and, like all
hyperdynamics methods, the strength of the bias must be pre-defined (through
ΔVmax). The method has a rather narrow time spectrum and will only be effi-
cient for systems in which all barriers are of similar height.

1.2.5 Parallelization
The most accurate accelerated MD method is parallel replica dynamics (prd):
the only assumption made is that of an infrequent event system obeying first-
order kinetics.27 In prd, multiple statistically independent replicas of the same
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system state are simulated, each on different processors until an event is de-
tected on any replica. Then, the simulation clock is advanced by the total wait-
ing time on all replicas, and the newly discovered state is communicated to
all other replicas to initiate a new cycle. Because recent advances in high per-
formance computing have been primarily driven by increased parallellization
(rather than higher clock speeds of individual processors), prd and its variants
are an efficient way to harness the abilities of modern hardware resources.28,29

This fact—and the high generality of the method—makes prd in many ways
the most attractive accelerated MD method. However, prd will only be feasi-
ble if each replica can actually be run on a small number of processors: ab initio
methods or large classical simulations have much more extensive hardware de-
mands for their force evaluation alone, so that a single replica will already take
up tens or hundreds of processors, leaving only little room for additional repli-
cas.

1.3 Enhanced sampling: metadynamics

1.3.1 Sampling in collective variable space
Because an enhanced sampling method aims to improve the overall sampling
of (a region of ) the configuration space, a mere event-based breakdown of the
dynamics will be insufficient. Of course, analysis of all 3N degrees of freedom
of the system will just as well give little physical insight—it becomes impos-
sible to see the forest for the trees once the system contains more than a few
atoms. A compromise is given by collective variables: a collective variable s is
a function of the system coordinates R that captures a relevant aspect of the
physics of a problem of interest, and allows to extract physically meaningful
insights from a complicated (computer-generated) trajectory. A proper defini-
tion of s(R) is therefore a crucial aspect of representing human intuition and
reasoning as machine-readable (and computable) concepts, and vice versa. Af-
ter all, development of better and faster simulation techniques will only make
sense if we are able to represent our ideas and results in a meaningful way.

If a small number of CVs s = (s1(R), s2(R), . . . , sn(R)) is defined, the prob-
ability distribution of the CVs can be defined as

P(s) = ∫ δ [s − s(R)]P(R)dR, (1.6)
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with P(R) the Boltzmann distribution

P(R) = e−βV(R)

∫ e−βV(R) dR
. (1.7)

Hence, all “irrelevant” degrees of freedom are integrated out, andwe can focus
on the few variables that matter to us.

One particularly interesting property that can be calculated once the distri-
bution P(s) is defined, is the free energy surface (fes):

F(s) = − 1β lnP(s). (1.8)

The fes is typically a smoother function than the rugged, high-dimensional
pes, and therefore much easier to analyze. For any process that is well-
characterized by the chosen CVs, the nature and relative stabilities of states,
and the barriers separating them, can be directly inferred from the fes, with
all other degrees of freedom folded into these properties as averaged back-
ground effects. For example, a chemical reaction in solution must be treated
with full atomistic resolution in order to correctly sample all possible configu-
rations of the surrounding solvent and its interaction with the reactants. How-
ever, to identify educt, product, and intermediate states, only the broken and/or
formed bonds must be tracked—just a few physically sensible variables! In this
sense, the introduction of CVs and the fes can reconcile large-scale MD sim-
ulations with conventional chemical intuition. Indeed, such a reduced picture
is also used in most chemistry textbooks: only the reacting molecules are de-
picted, and all other degrees of freedom are implicitly discussed as averaged
steric, conformational, or solvation effects.

An enormous number of CVs has been reported in the literature, from sim-
ple geometric parameters such as distances, angles or torsions to more elabo-
rate functions such as crystal order parameters, hydrogen bond patterns, pro-
tein structure descriptors, andmanymore, which are implemented in reference
codes such as plumed30,31 and Colvars.32 In essence, identification of appro-
priate CVs is equivalent to definition of events in accelerated MD simulations
because here, too, a simplified representation is used to analyze the state of the
system. Of course, event detection is much cruder than using actual CVs—no
continuous variables are required. Less sophisticated approaches are therefore
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typically applied: usually, simple position-based descriptors suffice to identify
events in the solid phase.

1.3.2 How compute the free energy?
A direct evaluation of (1.6) through MD simulation simply entails comput-
ing this property as a running ensemble average ⟨δ [s − s(R)]⟩, and obtaining
the fes through (1.8). The reason why enhanced sampling methods exist is
of course the lack of ergodicity of MD in most systems, as a consequence of
the time scale problem: typically only a limited part of the CV space is prop-
erly sampled. Various techniques have been developed to improve exploration
of CV space, and some key examples are briefly summarized here. It is inter-
esting to note that most of these methods in some aspect resemble one of the
accelerated MD methods—all of them either use bias potentials, temperature
elevation, or parallelization across multiple replicas—a fact that we will exploit
later on.

As outlined above, the construction of a fes typically requires the defini-
tion of a few CVs s. Some enhanced sampling methods do not depend on s
during the simulation and only use them for post factum analysis, while other
techniques attempt to explicitly improve sampling along them.

The most famous member of the former class is the replica exchange MD
method, which exploits some of the same ideas underpinning tad and prd
for enhanced sampling.33,34 A replica exchange simulation consists of several
replicas i with different temperatures Ti that are independently simulated in
parallel. High-temperature replicas can more easily escape metastable states
and provide better sampling, while the lowest-temperature replica has the de-
sired temperature and is used for the actual computation of the fes. At fixed
steps during the simulation, an attempt is made to swap system coordinates of
two replicas i and j, accepted with the probability

α = min (1, e(βj−βi)(V(Rj)−V(Ri))) , (1.9)

so that the low-temperature replica ends up benefiting from the enhanced sam-
pling in the higher-temperature replicas.

In principle, the aMDmethod also belongs to the class of CV-free enhanced
sampling methods: although the sampling bias always depends on the potential
energy, which is a CV, the fes is reconstructed as a function of different CVs
specifically chosen for the problem at hand.
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The temperature-accelerated MD (tamd) method explicitly depends on the
CVs of interest. tamd simulates an extended system in which the equations of
motion of the CVs are evolved at a temperature Thi that is higher than the sys-
tem temperature T. That way, the probability distribution of the CVs follows
e−βhiF(s,T)—rather than e−βF(s,T)—and sampling along the CVs is improved.35,36

The distribution P(s) is hence effectively flattened, the degree of which is con-
trolled by the ratio Thi/T, in a manner similar to well-tempered metadynamics
(vide infra).

Many CV-based free energy sampling techniques are based on a bias poten-
tial, and umbrella sampling is historically the first of these methods.37 In um-
brella sampling, a bias potential is added to confine the system to a small section
of CV space, in which extensive sampling can be carried out. Separate simula-
tions are performed in other (partially overlapping) parts of CVs space, after
which all windows are reweighed and combined to produce the unbiased distri-
bution.

As the name implies, the adaptive biasing force (abf) method is force-based
rather than potential-based.38–40 abf calculates the average force along s in dif-
ferent bins along CV space, and iteratively constructs an estimate of ∇s F(s)
which, if applied as an external biasing force, exactly compensates the average
force along the CVs, and hence effectively flattens the fes. Once an accurate
estimate of the average gradient of F(s) is known, abf efficiently samples the
full fes, which can be reconstructed through integration of ∇s F(s).

1.3.3 Metadynamics
Most of this work, however, is primarily based on the metadynamics method.41

Inmetadynamics, a history-dependent bias potential is generated during the sim-
ulation as a sum of periodically deposited repulsive Gaussians of width σ.

ΔV(s) =
hills

∑
i

wi exp
⎡⎢⎢⎢⎢⎣
−

CVs

∑
j

(sj − sj(ti))2

2σ2
j

⎤⎥⎥⎥⎥⎦
. (1.10)

Between deposition times ti, the simulation is propagated as anMD simulation
on the biased potential. In practice, this formulation means that whenever the
system ends up in a metastable state, the metadynamics simulation will con-
tinue to fill up the basin until the system escapes. After some time (formally
t → ∞), the whole underlying fes has been compensated by the deposited

17



chapter 1 simulating slow processes

figure 1.3: Schematic depiction of a metadynamics procedure. Initially, the system is
trapped in some metastable state, and several other states of relevance
would remain unexplored. Bias is therefore slowly added to the system,
pushing it over a barrier to another metastable state. After some time, the
whole fes is visited, which is eventually fully compensated by the accumu-
lated bias.

ΔV(s), so that P(s) becomes uniform, which means that

ΔV(s) = −F(s), (1.11)

up to an irrelevant additive constant. This way, metadynamics does not only
improve the sampling in collective variable space, but also produces the recon-
structed fes as a byproduct. The general evolution of the bias during a meta-
dynamics simulation is illustrated in Figure 1.3.

The original formulation of metadynamics attempts to improve sampling by
completely flattening the fes (or, equivalently, P(s)). A less aggressive varia-
tion on the concept is well-tempered metadynamics (wt-metaD),42 in which the
bias is given by

ΔV(s) = −(1 − 1
γ)F(s). (1.12)

The bias factor γ controls the strength of bias potential, and can be viewed as
the scaling factor by which the fes is flattened. In other words, the probability
distribution of the CVs is made proportional to [P(s)]1/γ, and fluctuations in
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the system are enhanced if γ is increased. γ can also be interpreted as a scaling
factor of the sampling temperature, so that sampling is enhanced as if carried
out at higher temperature γT = T + ΔT, in which ΔT is the bias temperature.
A practical realization ofwt-metaD relies on this concept of bias temperature.
Instead of constructing the bias of (1.10) using hills of constant height wi = w, it
is determined upon deposition as a function of the instantaneous bias, accord-
ing to wi = we−ΔV(s(ti))/kBΔT. Standardmetadynamics does not fully converge to
the actual fes, but fluctuates around the correct value as a function of the de-
position parameters.43 In contrast, it can be proved that the smoothly decaying
hills in wt-metaD add up to a converged bias potential, and an equally con-
verged fes can be recovered though (1.12).44 Note that for γ → ∞, original
metadynamics is recovered, whereas setting γ = 1 represents unbiased MD.

Continued development has expanded the application domain of metady-
namics to fields as diverse as chemistry, biology, materials science, and statis-
tical mechanics.45–48

1.3.4 Dynamics from metadynamics
Conceptually, adding bias potentials to enhance the escape rate frommetastable
states is rather similar to hyperdynamics, but because metadynamics aims to
fully fill the fes, it does not fulfill the hyperdynamics requirement that ΔV = 0
at dividing surfaces between states. Tiwary & Parrinello recognized that this
restriction can be more or less enforced if the bias deposition rate is sufficiently
low.49 After all, the time spent by the system at the dividing surfaces is very
short, so the probability that bias is deposited in these regions can be made ar-
bitrarily small (Figure 1.4). This approach, dubbed the infrequent metadynam-
ics method, allows to compute transition rates between metastable states by
combining the history-dependent metadynamics bias potential (1.10) with the
hyperdynamics-style time scale reweighing of (1.3). Spurious bias deposition in
the transition state regions is not strictly avoided—to verify the quality of the
calculated rates, an a posteriori check must be performed. If the obtained distri-
bution of escape times is that of a Poisson process, it can be assumed that the
rescaled dynamics has not been corrupted.50

In contrast to hyperdynamics, that focuses on generating trajectories through
the full configuration space, infrequent metadynamics is still a metadynamics
method, confined in collective variable space. The objective of the method is
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figure 1.4: Contrasting standard direct metadynamics and its infrequent variant.

to generate many transitions between a small number of metastable states that
are distinguishable by the chosen set of CVs s, and it has been successfully ap-
plied to challenging processes such as protein-ligand unbinding in explicit sol-
vent.51 Furthermore, chemical reaction rates could be obtained from ab initio
force fields, an application that however also exposes a weakness of the infre-
quent metadynamics approach: the requirement to use very slow bias deposi-
tion rates, with intervals larger than 1 ps, is difficult to combine with expensive
quantum chemical calculations that limit the overall time scale of the simula-
tion to only a few tens of ps.52

1.3.5 Choosing the right CVs
The accuracy and efficiency of any metadynamics simulation is largely deter-
mined by the appropriateness of the chosen CVs. The key issue is that the CVs
should not only be able to distinguish between all states and pathways of in-
terest, but also have to contain all slow modes in the system. Because the bias
potential is meant to accelerate sampling along the slow modes, it should in
some way be a function of them—otherwise the barriers associated with these
modes are hidden to the algorithm.46 If this is not the case, hysteretic behavior
can be observed, and accurate sampling of the underlying fes is not possible.

CV selection requires the user to have a good a priori idea of the relevant
mechanisms and their associated slow modes. In many cases, finding a suitable
set of CVs is therefore the most challenging aspect of applying metadynamics.
One practical way to sidestep this complication is given by path collective vari-
ables: if some initial guess of the mechanism can be made—in the form of a
number of configurations that describe the transformation of interest—a ref-
erence path can be interpolated.53 Biasing is performed on two collective vari-
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ables, one of which is a projection of the system’s configuration on the refer-
ence path, while the other measures how much the system is straying from it.
As such, path CVs are able to naturally incorporate states and pathways that are
not covered by the initial guess of the mechanism.

It can be argued that all employedCVs for biasing are supposed to have an ac-
tual physical meaning, because only then meaningful insight into the dynamics
of the system can be obtained. Therefore, one preferably should try to derive
CVs that represent specific motions of the system, rather than relying on brute
force approaches such as pathCVs thatmight allow for correct biasing, but have
no direct correlation with the actual physics taking place. Two approaches have
been recently presented that attempt to identify slow modes in the system and
construct appropriate CVs based on physical descriptors of the dynamics. Both
methods, spectral gap optimization of order parameters (sgoop)54 and the varia-
tional conformational dynamics approach to metadynamics (vac-metaD),55 entail
performing an initial wt-metaD simulation with a suboptimal CV that never-
theless suffices to (crudely) sample the transition of interest. Then, the biased
trajectory is post-processed and improved CVs are obtained as a linear combi-
nation of a large set of possibly relevant, simpler CVs.

In sgoop, a single CV is used for biasing: a linear combination of d CVs

f = c1s1 + c2s2 +⋯ + cdsd, (1.13)

in which the initial coefficients {ci} are trial values. Through post-processing of
a biased trajectory on this trial CV, improved {ci} are obtained that maximize
the spectral gap of f, i.e., produce the CV that is the best representation of the
slowest modes in the system.

The initial CVs used in vac-metaD can be just a subset of a larger number
of candidate CVs. First, a biased trajectory is obtained with a few simple CVs,
after which the observed conformational dynamics of the system is expanded
as a linear combination of the full set of candidate CVs. More precisely, the full
CV set is a basis set in which the approximate eigenvectors of the dynamical
propagator of the system can be expanded; the eigenvectors corresponding to
the largest eigenvalues are approximate representations of the slowest modes,
and will be optimal CVs.

Besides leading to improved sampling, this class of methods also opens new
avenues to improved physical insight. Using sgoop, Tiwary & Berne analyzed
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host–ligand unbinding in water to assess the relative importance of the water–
solute interaction relative to the (strong) host–ligand interactions—and found
that an optimal reaction coordinate has to contain both, in contrast to what is
typically assumed.56 With vac-metaD, Piccini et al. demonstrated that even
for ostensibly simple chemical reactions, slow modes do not only correspond
to bond breaking or formation: conformational degrees of freedom are also part
of the reaction coordinate, and the relative contributions of these motions are
temperature-dependent.57 The prospect of being able to simultaneously im-
prove sampling and gain insight into mechanistic aspects of microscopic pro-
cesses is very exciting, and will likely have a large impact on the field of molec-
ular simulation. Very recently, new methods were presented to generate CVs
by deep neural network processing of simulation trajectories,58 or by analysis
of fluctuations in the metastable state, i.e., without having to sample any tran-
sition or even guess a reaction path a priori.59

1.4 Reconciling the two worlds

It is clear that the two families of long time scale atomistic simulation techniques
are based on shared theoretical concepts, and have largely similar objectives.
Yet, in many ways both approaches also seem to live on two entirely different
planes of existence.

In the world of accelerated MD, highly sophisticated approaches have been
devised to generate nonequilibrium trajectories as efficiently as possible. In
most cases, though, these algorithms are either tied to the solid state, require
systems in which events have mechanisms involving few atoms, or assume that
interatomic interactions can be described by fairly cheap force fields.

The application domain of collective variable-based enhanced sampling
methods is enormous and spans the physical, chemical, and biological sciences.
CV spaces of many forms can be efficiently explored. Within the single frame-
work of the metadynamics formalism one can reconstruct the fes, disentangle
transition mechanisms, and compute reaction rates of activated processes. The
only missing family member is a generic approach to discover reaction path-
ways, and generate trajectories through configuration space of entire reaction
systems. Of course, the foundational concept of the CV space is a deliberate re-
duction of the degrees of freedom, which is antithetical to letting the simulation
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off the leash.
In this work, we attempt to combine the strengths of accelerated MD, and

enhanced sampling methods. Specifically, we wish to develop a hyperdynamics
method that has some of the flexibility of metadynamics. Primarily, the method
should use an adaptive bias that does not need to be determined a priori, and
the ability to be applied to a much wider range of systems without having to
modify the formalism. Such an algorithm could also be seen as a metadynamics
variant—one that extends the family with the ability to discover new pathways.
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The CVHDmethod

2.1 Objectives

Wewish to develop an accelerated MDmethod that retains the key strength of
hyperdynamics (large boosts), but cures its main weakness (need for system-
specific optimization of the bias potential function). Therefore, the method
should possess the following properties.

A CV-based algorithm. As demonstrated by the tremendous flexibility of
methods such as metadynamics, CVs form an excellent basis for a truly
generic biasing strategy. A clear separation between the core biasing al-
gorithm and any system-specific details would be desirable.

CVs that do not impose any specific mechanism or pathway on the system.
Most standard CVs are designed to describe one specific kind of motion.
One can either use detailed CVs to specifically describe the dynamics
of small set of atoms (such as coordination number), or variables that
capture the averaged behavior of a large group of atoms (e.g., the mean
squared displacement (msd)). We, however, wish to bias all atoms in a
large system, but still have the flexibility to follow any of the accessible
detailed chemical pathways. No a priori definition of the pathway or
mechanism should be required.

The ability to explore the full configuration space. Standard metadynamics
requires that the employed set of CVs is able to discriminate between

The results presented in this chapter were published in:
K.M. Bal and E. C.Neyts.Mergingmetadynamics into hyperdynamics: acceleratedmolec-
ular simulations reaching time scales frommicroseconds to seconds. J. Chem. Theory Com-
put. 11, 4545 (2015).
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all possible states that are encountered in the simulation. It is our
intention to discover new pathways and predict product states, which is
not possible with a small set of traditional CVs, which assume that these
are all already known to some degree.

An always-appropriate bias potential. Because the simulation will end up in
many different states of various kinds of systems, a suitably flexible bias
potential is required. In particular, the pre-defined shape and strength of
the bias function has limited other hyperdynamics implementations to
a specific subset of processes in a single system. Our method should be
able to have some sort of self-learning ability to tailor its bias to the needs
of the system at each stage of the simulation, without user intervention.

To meet these goals, we will have to draw from both the accelerated MD
world, as from the field of enhanced samplingmethods.The resulting algorithm
is dubbed the collective variable-driven hyperdynamics (cvhd) method.

2.2 Description of the algorithm

2.2.1 The CV
Interestingly, a class of CVs that appears to satisfy our demands already exists.
Based on graph theory, the social permutation invariant (sprint) coordinates
of Pietrucci & Andreoni define a unique topology for any possible configura-
tion of all N atoms in a system.60 The eigenvector corresponding to the high-
est eigenvalue of the N × N contact matrix gives a set of N atomic CVs that
suffice to identify any possible bonding configuration. We deem sprint co-
ordinates unsuitable for our purposes because for large systems, the number of
CVs to bias becomes very large, while the performance ofmetadynamics deteri-
orates exponentially with the number ofCVs. Indeed,sprint coordinates have
only been applied to chemical transformations in fairly small systems (N ≈ 10)
with very aggressive biasing.61 Furthermore, it has been claimed that even for
small molecules, sprint CVs cannot always properly distinguish all possible
isomers.62

In the cvhd approach, we attempt to devise a class of CVs that avoid the
pitfalls of sprint coordinates, but have a similar or even greater flexibility.
The CV we use here is inspired conceptually by the Bond Boost method,
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which is known to be able to handle large systems, and implementation-wise
by a functional form introduced by Tiwary & van de Walle in their sisyphus
method.63 We assume there exists a (large, possibly redundant) set of local CVs
s = (s1, s2, . . . , sn) that can distinguish between all available escape paths out
of a reference state sref. For each local CV si, a local distortion χi = χ (si) can
now be defined, which is a continuous function that can return values between
0 and 1. χ must be designed in such a way that if a CV si is directly involved in a
transition, and takes a value s‡i at the corresponding dividing surface, χ (s

‡
i ) = 1.

If si is far enough from s‡i and closer to its equilibrium value, χi < 1. Whenever
any local CV si is involved in a transition somewhere in the system (and hence
χi = 1), the system as a whole is about to cross a dividing surface, and the global
CV describing the full system must reflect this. For this purpose, we calculate
the global distortion χt as:

χt = (
n

∑
i
χp

i)
1/p

, (2.1)

in which p > 1. While sisyphus does not need continuous and vanishing
derivatives at both “edges” of the CV, this is required in a hyperdynamics im-
plementation like cvhd. Therefore, the actual CV η is here calculated from χt
according to the Tersoff-style64 cutoff function

η =
⎧⎪⎪⎨⎪⎪⎩

1
2
(1 − cos (πχ2

t )) if χt ≤ 1
1 if χt > 1

. (2.2)

In short, the exponent p is used in the calculation of χt to ensure that large
distortions make a larger contribution to η than small ones. As a result, most of
the bias energy flows into CVs that are about to contribute directly to a transi-
tion (modulated by themagnitude of p), similar to what the Bond Boost method
doeswith the breaking of bonds.Hence, the globalCVs χt or η can be used to se-
lectively boost large changes in small parts of the included configuration space,
insensitive to smaller fluctuations in the other parts. No biasing forces are ap-
plied to the system when χt > 1: if χ(s) is properly designed, this means that no
bias is added in a transition state region. Also, the specific form of χt does not
only allow to describe transitions involving single degrees of freedom (χt = 1 be-
cause a single χi = 1) but also the simultaneous distortion of multiple local CVs
(e.g., N CVs all having only χi = (1/N)1/p such that χt = 1). The precise value
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of p is not a critical parameter determining the accuracy of the cvhdmethod.
Rather, it only controls to what extent the bias energy is distributed across the
system: large values of p will suppress the influence of smaller distortions on χt
and will thus lead to a more localized bias potential. To optimize the method, p
can be varied in function of how “concerted” events are expected to be, but its
effect was found to be rather small for values between 4 and 12.

As presented here, a CV like η will only be of use as long as the system re-
mains in the state described by sref. Once the system escapes from this basin,
and ends up in a different state, η will have a constant value and no physical
meaning anymore. In order to be able to describe multiple consecutive events
in a single biased MD run, without user intervention, a criterion is added to
“reset” the procedure: if η = 1 over a waiting time tw, the system is assumed to
have undergone a transition, and thermalized in its new state. Then, a new set
of sref is chosen, based on the current state, and the acceleratedMD procedure
is resumed. Hence, by slightly bending the rules, a single CV can be used to (1)
give the system full freedom to escape out of a basin and (2) repeat this feat for
each subsequent state.

A practical example of a local CV si is the stretch of a bond, which can be
used to study reactive events involving bond breaking. Here, it is assumed that
for every bond pair iwith length ri, there are distances rmin

i and rmax
i , whichmark

the begin and end point of possible reactive events. If ri < rmin
i , the bond is not

likely to dissociate soon, and not biased, whereas if ri = rmax
i , the bond is about

to dissociate and the system is close to a dividing surface. When the simulation
starts, a list of bonds is created from all atomic pairs that are shorter apart than
a cutoff rcuti . Then, local distortions can be calculated as

χi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if ri < rmin
i

ri − rmin
i

rmax
i − rmin

i

if rmin
i ≤ ri ≤ rmax

i

1 if ri > rmax
i

. (2.3)

Given the relative simplicity of this implementation of η, which only has a
few parameters, we expect that it is rather widely applicable. As it only requires
the slow to-be-boosted process to involve bond breaking, the CV can be read-
ily applied to a wide variety of processes. Finally, as explained above, the basic
functional form (2.3) could also be applied to local CVs other than bond lengths
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to study a wide variety of other processes. Indeed, as long as the slow events of
interest involve a significant distortion in a small subset of s, the cvhd algo-
rithmwill be efficient. In the given example, we use bond distances to construct
the global distortion function χt, but the basis set of local CVs could also be
something else, as we will show in the following section. The formalism as out-
lined in this section is sufficiently general and flexible to be used as a starting
point for the development of such new CVs, without having to modify the full
boosting algorithm.

Some time after the initial derivation of thecvhdCV, it was recognized that
an evenmore general and flexible formulation of η exists. Instead of directly en-
coding transition state safety into the definition of χ, this role can be transferred
to η. For example, again using the example of bonds lengths as local CVs, one
could write:

χi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if ri < rrefi
ri − rrefi

rrefi

if ri ≥ rrefi
(2.4)

and

η =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
⎛
⎝
1 − cos π (

χt

χcut)
2⎞
⎠

if χt ≤ χcut

1 if χt > χcut
. (2.5)

Such a formulation has the advantage that χt behavesmore like a standardCV—
one that measures the distance from some reference state. Ensuring that tran-
sition states remain uncorrupted is then relegated to the proper choice of χcut.

2.2.2 The bias
If η is now used as a CV in a metadynamics simulation, a bias potential ΔV(η)
will be a slowly “grown” function of the form (1.10). The nature of the meta-
dynamics method ensures that this bias potential matches the underlying fes
of the studied processes and should thus guarantee a safe and efficient bias. An
important difference between the cvhdmethod and metadynamics, however,
is that the bias deposited in a stateA is deleted once a new state is reached: even
when state A is visited again later, the bias potential must be generated again.
This is a consequence of the fact that the CV η cannot distinguish all possible
states in the system, like in conventional (infrequent)metadynamics, but is only
required to identify the system’s position in the current state. Note that this also
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figure 2.1: Graphical representation of the key steps occurring in a cvhd simulation of
a single transition. At any time, the CV can only properly resolve the current
reference state. Whenever a transition to a new state is detected, a new CV
will be defined and the simulation forgets the old state.

explains the use of a criterion based on tw to determine whether a new state has
been reached, rather than having this explicitly reflected by the CV value. The
cvhd method thus gains flexibility in the size of the configuration space that
can be explored, but at the same time loses some efficiency. All in all, cvhd is
metadynamics paired with a dynamical redefinition of its CV, as summarized
in Figure 2.1.

The use of CVs is not limited to metadynamics, and could also be the ba-
sis of a traditional “static” hyperdynamics potential. η can satisfy the impor-
tant constraint that no bias can be added in the transition state region, provided
that a proper form of χ is selected (for instance, rmax

i in equation (2.3) is made
sufficiently small). This means that a simple linear function of η could be an
appropriate bias potential:

ΔV(η) = ΔVmax(1 − η), (2.6)

in which ΔVmax is the maximal bias strength. Just as is the case for traditional
hyperdynamics implementations, ΔVmax must be chosen appropriately: large
enough to obtain a substantial boost, but not larger than the barriers of interest.
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Note that this static approach requires some a priori knowledge of the possible
events in the system, in contrast to the dynamic application (see below). If bond
lengths are used as local property, cvhd with a static bias essentially reduces
to the Bond Boost method (equation (1.5)).

The expression for the bias potential itself should preferably not be specif-
ically tailored for a particular system or process. Rather, in the spirit of other
CV-basedmethods, all the complexity of the investigated process should be ab-
stracted by the proper choice of a CV. As a result, the simple linear function
of equation (2.6) is sufficient. As such, the cvhd family of methods is highly
flexible. Both the underlying local property (as implemented by its associated
distortion function) as the bias function itself can be changed to fit the needs of
the studied process. The only characteristic that is shared by all (sub)methods
is the CV η.

An important advantage of a metadynamics-based accelerated MD protocol
(dynamically biased cvhd) is that it does not require the definition of an an-
alytical bias potential function. Rather, a suitable bias potential is constructed
on-the-fly. This means that as long the system dynamics can be represented by
a combination of local contributions such as (2.1), the algorithm can adapt to all
kinds of processeswith unknown activation barriers. As such, the algorithm can
be interpreted as a self-learning implementation of hyperdynamics. However,
if the studied system is reasonably well-characterized, a predefined static CV-
based bias (statically biased cvhd) could be more suitable. Such a bias can be
more efficient as it will immediately start at its full strength and does not need
to be built up during the simulation. Therefore, it can be expected that the per-
formance of the dynamic bias method will not be as good as for the static bias
in the case of relatively fast successive events. Furthermore, a static bias elim-
inates the additional simulation parameters introduced by metadynamics: the
Gaussian hill width, height and deposition rate. Both methods do, however,
share the same fundamental structure summarized in Figure 2.2.

It must be stressed that although the dynamically biased cvhdmethod uses
a metadynamics protocol to construct the bias potential it is, strictly speaking,
not ametadynamicsmethod. Indeed, the deposited bias is not stored during the
whole simulation, as the CV η does not span the whole configuration space, but
only the current state. Once a new state is reached, all deposited bias is deleted
and bias deposition is initiated again. Furthermore, bias is never deposited in
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figure 2.2: Schematic depiction of the structure of the cvhd algorithms.

transition state regions. Therefore, the cvhdmethod cannot be used to calcu-
late free energy profiles, which require extensive complete sampling of a (lim-
ited part of ) the configuration space and for which “traditional” metadynam-
ics is required. On the other hand, the many technical aspects shared by cvhd
and metadynamics make the former very easy to implement in common com-
puter programs that already support metadynamics. After all, as represented
in Figure 2.1, a dynamically biased cvhd simulation is a sequence of standard
metadynamics simulations, but each with a different CV.

Calculation of the hypertime, i.e., the physical time recovered from the boost
factor, is done the hyperdynamics way, through equation (1.3). Accurate hyper-
time calculations require good sampling of the regions with large boost, which
limits the imposed strength of a static bias potential. In the case of a dynamic
bias, however, the deposition of a large bias in a certain region of the CV space
implies this region is frequently visited, because the number of hills deposited
in a specific region depends on the time the system spends there. This means
that the dynamic bias method can apply strong bias potentials while still main-
taining a high accuracy of the calculated hypertime.

2.2.3 Critical aspects
Thecvhdmethod as conceived above satisfies all requirementswe set tomeet.
Before testing the method on real-life systems, we here summarize the main
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critical aspects and intrinsic limitations of the cvhd method in its current
form.

First, every valid accelerated MD method employing a bias potential has to
ensure that this bias vanishes in the transition state regions. In cvhd, the key to
achieving this is the parametrization χ(s) or choice of χcut. Our static bias ap-
proach will vanish at the transition state if for every local CV si, χ (s‡i ) = 1 (or
χcut < χ (s‡i )). In the case of eq. (2.3), thismeans that every rmax

i of a bond should
be smaller than the corresponding ri at any transition state r‡i . Parametrizing
χ(s) or χcut to achieve this behavior is not a trivial task, as it requires some
knowledge of the transition states the system will encounter: a first estimation
of “safe” parameter choices can be obtained from some (presumed) relevant
transition states that are already known, and verified against other transitions
that are discovered during an initial simulation.

When using a dynamic bias, it is possible to impose the same constraint on
η as in the static case, which will cause all bias force to vanish before any s‡i
is reached. A convenient consequence is that, by construction, no bias can be
deposited in the transition state region. In contrast to infrequent metadynam-
ics, cvhd is therefore not restricted to very slow bias deposition and will have
larger boost factors. It must be noted that the metadynamics algorithm will by
default keep depositing bias at any time, which will become problematic when
the system starts spending a large part of its time at the boundaries of the well
(η ∼ 1) once the bias is at its full strength in the minima, a situation that be-
comes more common with increasing system size. If this happens, a large bias
could be deposited at the boundary of the CV, which is unphysical and will
negatively impact the accuracy of the hypertime calculation and the dynamics
in general. A simple solution to avoid this bias pile-up is to restrict the meta-
dynamics algorithm from depositing any bias at large η values (for example, at
η > 0.9). Additional control of the magnitude of deposited bias can be achieved
withwt-metaD.

A second phenomenon that can cause excess dynamic bias deposition is the
presence of hidden CVs. When usingcvhd-type CVs, one has to ensure that all
relevant degrees of freedom are included in the global CV. This is both an in-
herent strength and a limitation of the cvhdmethod. On one hand, if it is pos-
sible to describe the full “slow” dynamics by a set of simple localized degrees of
freedom—like howchemical reactions involving bond breaking are fully charac-

33



chapter 2 the cvhd method

terized by changes in bond lengths—no hiddenCVswill be present. In any case,
the bias deposition rate in dynamically biased simulations may not be too high,
in order to allow the system to equilibrate along the “fast” degrees of freedom
not included in the CV. On the other hand, the requirement that the system
dynamics can be decomposed into contributions by a small number of highly
localized interactions renders the cvhd method impractical to study systems
in which this is not the case: especially complex biological processes involving
various types of non-bonded interactions are very difficult to study this way.
Fortunately, the latter use case can be covered by infrequent metadynamics,
employing a well-tailored set of CVs, whereas the cvhdmethod is more suit-
able for, e.g., the prediction of reaction product compositions or the properties
of grown materials.

Third, an important disadvantage of CV-based methods (and many conven-
tional hyperdynamics implementations as well) is their poor scaling with the sys-
tem size: in large systems, events will occur more frequently, leading to addi-
tional overhead. Representing all to-be-accelerated dynamics by a single CV
does not allow for a parallel treatment of events, leading to a deterioration of the
boost in such large systems. Possibly, our method could be improved by incor-
porating aspects of a recently proposed “local” variant of the Bond Boost algo-
rithm.65 Similarly, existing solutions to deal with the small-barrier problem,24

to improve the calculation of the hypertime,66 or to construct appropriate CVs
on-the-fly67 could also be beneficial for the methods presented here.

2.2.4 Related methods
A few other self-learning or adaptive hyperdynamics methods also exist. The
recently proposed hd-md method has a bias depending on the system’s in-
stantaneous potential energy (like the aMD method) and uses short MD runs
within each local energy basin to parametrize a ΔV on-the-fly.68 These param-
eters are chosen based on the desired boost, which can therefore be made equal
in every new basin (this is not necessarily the case in cvhd). The fact that the
bias potential is only a direct function of the system’s potential energy makes
the method conceptually very simple. However, because the method is based
on aMD and has no explicit handling of transition states, the bias potential may
be nonzero at dividing surfaces.

Also within the context of the aMDmethod, a simpler algorithm, dubbed the
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adaptive hyperdynamics method (ahd) method, was proposed.69 In the ahd
method, the threshold energy E (below which biasing is allowed) is adjusted in
time intervals τ by comparing the current potential energy of the system to the
minimal energy in the previous interval, and changing the threshold accord-
ingly. Although very simple, the algorithm causes the biasing force to be dis-
continuous due to the stepwise modification of ΔV, which is not the case when
metadynamics is used to deposit bias.

Finally, within the framework of the Bond Boost method, a self-learning hy-
perdynamicsmethodwas derived by Perez&Voter.70 This algorithm calculates
an on-the-fly estimate of a pairwise potential ofmean force (pmf), which is then
used to iteratively improve the bias strength. The method was found to be very
efficient in finding exactly the optimal boost for a given process, but lacks the
generality and simplicity inherent to using generic CVs and a metadynamics-
like self-learning bias.

2.3 Applications

2.3.1 General methodology
All simulations were carried out using the lammps package71 and a modified
version of the Colvars module.32 To control the system temperature, ensure its
homogeneity, and allow for swift decorrelation, a Langevin-type thermostat72

with relaxation time of 1 ps was employed. The equations of motion were in-
tegrated with a MD time step of 1 fs, except when using the ReaxFF potential,
which required a 0.1 fs time step. Boost and hypertime were calculated by up-
dating a running average of eq. (1.3) at every step; we did not compensate for
the overhead induced by the bias calculation as it was found to be insignificant
compared to the evaluation of the interatomic potential.

2.3.2 Bond-based CV: diffusion on Cu(001)
As an illustration of the bond-based CV in equation (2.3), we apply both the
static and the dynamic cvhd methods to diffusion on the Cu(001) surface.
Specifically, we apply the methods to the diffusion of adatoms, dimers and va-
cancies, which can all diffuse through simple hopping mechanisms. Copper
adatom and dimer diffusion, however, can also occur by a two-atom exchange.73

Thus, we can assess the performance of the bias methods for a set of competi-
tive mechanisms with different characteristics in terms of the number of atoms
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and bonds involved, and minimal r‡i . The same processes have also been previ-
ously studied with the Bond Boost method,23 which allows us to directly com-
pare the performance of our generic CV-based methods to a dedicated hyper-
dynamics implementation.

The studied system consisted of a six-layer slab, each layer containing 50
atoms. The Cu−Cu interactions were described using a standard eam poten-
tial.74,75 The two bottom layers were kept fixed and, depending on the studied
mechanism, an adatom or dimer was placed on top of the slab, or a vacancy was
created by removing an atom from the top layer.

Climbing Image Nudged Elastic Band (ci-neb) 11 calculations were used to
obtain information on the minimal r‡i values of breaking bonds associated with
every mechanism. Of all the mechanisms considered, these are the smallest for
adatom hopping, where the two partially broken bonds have a length of 3.3 Å
at the transition state. Therefore, a global rmax

i value of 3.3 Å was used for each
bond in all simulations. The rmin

i value for every bondwas chosen to be the aver-
age bond length as obtained from an equilibration run of tw (after an initial wait-
ing time tw before detecting a transition), and rcuti was a global constant of 3.0 Å.
We furthermore set p = 8 and tw = 5 ps. In the dynamic bias simulations, Gaus-
sian hills with a height of w = 0.005 eV and width of σ = 0.025 were added with
an interval of 1 ps.wt-metadDwith a bias temperature ΔT = 2000 Kwas used
to deposit the dynamic bias. The hill height was kept sufficiently low (< kBT ) to
minimize temporary heating effects—and incorrect sampling—along the CV.
(Taking 10w ≈ kBT is a rule of thumb we will also implicitly adopt for later ap-
plications.) Analogously, we set ΔVmax = 0.3 eV in the static bias simulations,
as a compromise between large boosts and accurate hypertime sampling.

Reaction rates ki for all event types iwere quantified by counting the observed
number of diffusion events ni and dividing this by the calculated hypertime,
ki = ni/thyper. At temperatures between 150 and 600 K, rates were obtained and
averaged over multiple runs of 2 × 108 steps (1 × 108 for vacancies). Then, the
calculated rates were fitted to the Arrhenius relation k (T) = Ae−βEA . The fit-
ted prefactors A and activation energies EA can be readily compared to those
reported by Miron and Fichthorn in their Bond Boost study of the same sys-
tem.23

It can be seen from Table 2.1 that both the static and dynamic biasing meth-
ods yield the same values for A and EA, both in excellent agreement with the
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table 2.1: Prefactors (A, in THz) and activation energies (EA, in eV) for elementary dif-
fusion processes on the Cu(001) surface, as obtained from dynamic bias (db)
and static bias (sb) cvhd simulations (see text for details). For comparison,
the Bond Boost (bb) estimates and static barriers computed with the ci-neb
method are also included. db and sb error bars reflect the 90% confidence
interval.

ADB ASB ABB

vacancy hop 83e±0.1 54e±0.5 54e±0.5

adatom hop 54e±0.3 33e±0.1 40e±0.5

adatom exchange 430e±1.0 130e±1.2 270e±0.6

dimer hop 34e±0.2 21e±0.2 30e±0.7

dimer exchange 137e±1.3 213e±1.2 190e±0.8

EDB
A ESB

A EBB
A ECI−NEB

A
vacancy hop 0.44 ± 0.01 0.43 ± 0.02 0.44 ± 0.03 0.44
adatom hop 0.53 ± 0.01 0.51 ± 0.01 0.52 ± 0.03 0.51
adatom exchange 0.76 ± 0.04 0.71 ± 0.05 0.73 ± 0.04 0.71
dimer hop 0.51 ± 0.01 0.49 ± 0.02 0.47 ± 0.03 0.49
dimer exchange 0.74 ± 0.06 0.76 ± 0.05 0.71 ± 0.06 0.70

BondBoost result and the static barriers calculated by theci-nebmethod.The
performance of both CV-based methods, as expressed by the achieved boost
is, as Figure 2.3 shows, quite comparable, yielding a boost up to 3 × 104 for
adatom diffusion at a temperature of 250 K and up to 109 for vacancy diffusion
at 150K. Themethods show the same basic behavior typical for hyperdynamics
methods, with a boost that declines with increasing temperature, due to the in-
verse temperature dependence of β.23 Furthermore, it can be seen that the rel-
ative efficiency of the static bias method compared to its dynamic counterpart
improves with increasing temperature. This is because waiting times between
events are shorter at higher temperatures which, as a result, puts the dynamic
method at disadvantage. This difference becomes irrelevant at lower tempera-
tures where waiting times, even with full-strength static bias, are much longer
than the time needed by the metadynamics protocol to construct the dynamic
bias.

Not all processes occur at similar rates at every temperature. As Figure 2.3a
shows, vacancy diffusion was studied at temperatures as low as 150 K, where
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figure 2.3: Calculated boost factor as function of the temperature, of both the static
as the dynamic cvhdmethod, for (a) vacancy and (b) adatom diffusion on
Cu(001). (As explained in the text, dimer diffusion behaves essentially the
same as adatom diffusion.)
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we were able to observe about 60 events over a total MD time of 0.5 µs: this
is because the associated hypertime reached about 500 s. All other processes,
however, aremuch slower at this temperature. For example, according to the ki-
netic parameters in Table 2.1, adatom hopping will be about 2000 times slower,
with an average waiting time in the order of 104 s, explaining why we were able
to observe the latter process with an appreciable frequency only from 250 K
and higher, as depicted in Figure 2(b). The higher barriers and waiting times of
the adatom diffusion processes, compared to vacancy diffusion, also increase
the relative efficiency of the dynamic bias method, as expected. Similarly, ex-
change processes could only be observed starting from 400 K, and show the
same boost characteristics as their respective hopping counterparts. In general,
the bond-based CV as used in the cvhd algorithm performs about as well as
the Bond Boost method, albeit being part of a much more generic framework.
Furthermore, because all relevant processes were already well-characterized,
use of the dynamic biasing method has no added advantage since an optimized
static bias could be applied at lower cost.

2.3.3 Dihedral-based CV: folding of a helix
To demonstrate the flexibility of the cvhd framework, we study a process gov-
erned by a different local property or CV: the folding of extended chain to a
helix. This process is very different from the Cu(001) diffusion example in two
ways. First, the activated processes underpinning the system evolution are not
bond breaking, but rotation around bonds, changing the dihedral angles. Sec-
ond, whereas the Cu(001) system remained in equilibrium, and every state was
associated with the same handful of possible escape pathways, a folding chain
may visit a much larger number of different states, all of which may have wildly
different and unpredictable kinetic and thermodynamic stabilities. The dihe-
dral angle is also a four-atom local property, setting it apart from the pairwise
properties that are commonly used in hyperdynamicsmethods such as theBond
Boost method.

We use a simple model system, consisting of a chain of 50 connected beads,
interacting through a number of standard potential energy functions

V = Vbond +Vangle +Vnon−bond +Vdihedral. (2.7)

The bond and angle terms are simple harmonic potentials of the bond length ri
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and valence angle θi, respectively:

Vbond =
bonds

∑
i

Kr (ri − r0)2 , (2.8)

and

Vangle =
angles

∑
i

Kθ (θi − θ0)2 . (2.9)

We choose parameters that are in the order of magnitude of those used for C−C
bonds. There is no specific real system we wish to model, but as a global tar-
get, the beads are chosen to be rather close to carbon atoms in behavior and
properties. This way, we can ensure that all values and system properties are in
the range of those of real molecular systems, rather than first calibrating a true
coarse-grained potential. Based on these considerations we use r0 = 1.52 Å,
θ0 = 109.5°, Kr = 5 eV/Å2, and Kθ = 2 eV/rad2.

Non-bonded interactions are taken into account for all pairs other than 1−2,
1−3 and 1−4 interactions using a standard Lennard-Jones potential:

Vnon−bond =
pairs

∑
i
4ε [( σ

ri
)
12

− ( σ
ri
)
6

] , (2.10)

whose parameters are σ = 4 Å and ε = 2.5 meV. This interaction is mainly
included to provide a repulsive core to all particles, in order to prevent inter-
particle distances to become unphysically close. Also, care must be taken that
the non-bonded attractions do not lead to similar energy contributions as the
dihedral term, as this will make the simple potential energy surface more com-
plicated, and anomalously stabilize more compact, less ordered states.

Finally, the dihedral interaction is given by76

Vdihedral =
dihedrals

∑
i

A [1 − cos (ϕi)] + B [1 + cos (3ϕi)]

+C [1 + cos(ϕi +
π
4
)] , (2.11)

which produces three minima, one corresponding to the trans (t) state, and the
two gauche states (g+ and g−). Of these, g− is preferred. We found that setting
A = B = C = 0.3 eV gives t → g− transition barriers in the order of 8 kcal/mol,
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which is similar to those in peptide backbones.With these settings, we can guar-
antee that a helical structure is the global energy minimum and crossing tor-
sional barriers is an infrequent event but, at the same time, the full folding of
helix is still possible to study in long unbiased MD simulations (within about
10 µs).

Similar to the bond-based system property of eq. (2.3), the local distortion
function can be calculated from a dihedral angle ϕi as

χi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RRRRRRRRRRR

ϕi − ϕ
ref
i

Δϕi

RRRRRRRRRRR
if ϕi ∈ [ϕ

ref
i ± Δϕi]

1 if otherwise
. (2.12)

Here, ϕref
i is a reference dihedral angle, which is determined as the dihedral

angle of the closest local minimum (here, ±60° or ±180°) at the moment the
property list is created. Δϕi is the maximal deviation from ϕref

i that keeps ϕi

far enough from transitions, which we set to be 40°. The choice of Δϕi, like
all parameterizations of a local distortion χ, requires some a priori knowledge
of the system; in our case, we use a well-defined model potential, but in more
complicated systems one should always verify that for all observed events the
requirement that η = 1 at the transition state is satisfied. The other parameters
do not depend on the local property used, and we set p = 8 and tw = 5 ps. In the
dynamic bias simulations, Gaussian hills with a height of 0.005 eV and width of
0.05were addedwith an interval of 1 ps and a bias temperature of ΔT = 1000K.
In the case of the static bias, we use ΔVmax = 0.15 eV.

We start every simulation from a fully extended chain, with all dihedrals in
the t conformation (see Figure 2.4a), and run unbiasedMD, static and dynamic
bias simulations at 300 K, while monitoring the number of dihedral rotations.
Because of the way our bias potential is designed, it is highly unlikely any other
transitions will occur before there are no more t → g− events possible. There-
fore, 47 transitions were always found to be sufficient to reach a perfect helix
Figure 2.4b.

Examples of the system evolution in terms of the number of transitions are
depicted in Figure 2.5a for both static and dynamic bias. It can be seen that
initially, using a static bias is initially more efficient than a dynamic bias. As
discussed before, a well-tailored static bias has the advantage of starting at its
full strength, whereas a dynamic bias takes time to be constructed. However,
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figure 2.4: Some possible states of the helix model system: (a) fully extended, (b) per-
fect helix, (c) half-folded after 23 folding events and (d) after 46 (or, rather,
46 + 2n) events.

figure 2.5: (a) Number of transitions as a function of simulation time, and (b) hyper-
time as a function of simulation time in the helix folding test system, for
both static and dynamic bias.
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we notice that after 42 transitions, the dynamically biased simulation surpasses
the statically biased case. Indeed, because the studied process obeys first order
kinetics in the number of t dihedrals, the waiting time between events increases
the closer the system is to the fully folded state. The choice of ΔVmax was cali-
brated to the initial phase of the folding process, and is very well-suited for this
first stage with relatively short waiting times, but becomes less efficient when
the number of t dihedrals is low and the waiting time is increased. The dynamic
biasing scheme, on the other hand, will keep strengthening the bias potential
while waiting for a transition to occur. The dynamic cvhd method thus dy-
namically uses a larger bias in the case of long waiting times.

A different look at this subject is given by Figure 2.5b, which compares
the hypertime reached by both methods as a function of the simulation time.
Whereas this quantity linearly increases for the static bias, indicating a constant
boost, it shows an exponential increase in the case of the dynamic bias. Because
of this property, the dynamic biasing scheme resulted in a perfect helix about
two times faster than the static scheme.

The achieved boost factors of both biasingmethods are, as Figure 2.5b shows,
quite different. On one hand, the static biasing scheme provides a constant
boost of about 200. On the other hand, the dynamic scheme adapts itself to
match the boost requirements of the current state in which the system resides
– arriving at an accumulated boost of about 500 when completing the folding
process. This also explains the different behavior of bothmethods after the per-
fect helix is formed: any transition from the g− state has a barrier that is about
twice as high as the one associated with the t→ g− transition, which means that
the statically biased simulation will not be able to escape from the helix state
within a reasonable computational time. However, in the dynamically biased
simulation, the bias will slowly be increased until a transition to a less favor-
able state (Figure 2.4d) can occur. Such a process only takes place after about
0.1 ms, much longer than the 5 µs required to obtain the folded helix. The es-
cape pathways from this unfavorable “kinked” helix have lower barriers than
from the perfect helix. As a result, the construction of a suitably strong bias to
return to the latter state requires fewer simulation steps than the reverse re-
action, explaining the successive occurrence of short and long “steps” in the
dynamic transitions curve in Figure 2.5a.

Although the general performance characteristics of both accelerated meth-
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table 2.2: Average folding and half-folding times (µs) for the helix model system, as
obtained from unbiased MD and cvhd with static and dynamic bias, respec-
tively. All error bars are at the 90% confidence level.

unbiased static bias dynamic bias
half folding 0.45 ± 0.08 0.38 ± 0.05 0.39 ± 0.04
full folding 6 ± 2 7 ± 2 6 ± 1

ods in the case of the foldingmodel system have now been established, their ac-
curacy must still be ascertained. Table 2.2 therefore collects the average times
for full folding (47 transitions) and obtaining a half-folded structure, such as the
one depicted in Figure 2.4c (23 transitions), as obtained by cvhd simulations
but also long unbiased MD runs. For both processes, all considered methods
are in excellent agreement with each other.

2.3.4 Methane dissociation on Ni(111)
Finally, as an example of the kind of complex dynamics that can be accessed
with cvhd simulations, we consider the catalytic dissociation of methane on
the Ni(111) surface. This process is important not only in methane reforming
processes, but also in chemical vapor deposition growth of carbon nanostruc-
tures. The initial dissociative adsorption of CH4 has an activation energy in the
order of 20 kcal/mol,77 rendering direct MD simulations of this process dif-
ficult; to observe appreciable CH4 dissociation, previous simulation attempts
were required to use elevated temperatures78–80 (up to 1500 K), instead of ex-
perimental temperatures of 800–1000 K, or only focus on plasma-activated
species81,82 (CHx radicals). From a technical point of view, this type of reaction
is a useful additional test case for the cvhdmethod, being both an example of
a system with a phase boundary, and of heterogeneous catalysis in general.

The methane dissociation process is modeled starting from a single CH4

molecule above a six-layer nickel slab (64 atoms per layer), with the two bot-
tom layers held fixed. A reflective wall is used at a z-height of 20 Å, leading to a
gas phase volume of about 19.9 × 17.4 × 8 Å3. The interatomic interactions are
described by the ReaxFF potential83 as implemented in lammps,84 using the
Ni/C/H parameter set of Mueller et al.85 and the QEq method86 to calculate
atomic charges.

The simulations are carried out at 800 K, applying the bond-based CV of

44



2.3 applications

table 2.3: Average reaction time for all elementary reaction steps of the full methane
dehydrogenation process CH4(g)→C(ad)+4H(ad), onNi(111) at 800K, as
obtained from ReaxFF dynamically biased cvhd simulations. Reaction times
are given as a 90% confidence interval.

reaction time
CH4(g)→ CH3(ad) +H(ad) 4–9 µs
CH3(ad)→ CH2(ad) +H(ad) 0.09–0.22 µs
CH2(ad)→ CH(ad) +H(ad) 37–91 ps
CH(ad)→ C(ad) +H(ad) 0.3–0.8 ms

eq. (2.3) with p = 6 and tw = 0.1 ps to C−H bonds, and dynamic biasing with a
deposition stride of 10 fs, a hill width of 0.025, a hill height of 0.25 kcal/mol and
a bias temperature of 4000K. Compared to the previously discussed processes,
metal-catalyzedmethane decomposition poses two additional challenges. First,
the general problem of thermostatting gas phase species is that it is a poor
model of energy exchange in such a system: in reality, this only occurs at dis-
crete moments in time during collisions. Also, a Langevin thermostat distorts
the diffusion path of gas-phase particles. However, thermostatting themethane
molecule is necessary to dissipate the excess energy introduced by the dynamic
bias procedure, and to avoid unphysical heating of the molecule. As a compro-
mise, we apply a separate Langevin thermostat to the CH4 molecule that only
acts on the vibrational and rotational degrees of freedom, and leaves its trans-
lational motion untouched. The second problem is specific to the successive
dehydrogenation pathway of methane, in which the separate steps have very
different bond lengths at the transition state (r‡) for the dissociating bonds,
ranging from 1.55 Å for CH → C + H to 1.80 Å for CH3 → CH2 + H on the
Ni(111) surface.87 Safe rmax values for the former were found to perform very
poorly when attempting to boost the latter process. Therefore, we used a global
rmax value of 1.8 Å and rmin = 0.9 Å. Although the safety of such a setting is not
completely guaranteed, we found that little to no bias was effectively deposited
in the transition state regions of the “unsafe” cases.

We carried out 15 independent simulations of 106 steps, corresponding to a
MD time of 100 ps each, and were always able to observe the full methane de-
composition process. For every elementary step in the reaction, we calculated
the average reaction time, summarized in Table 2.3. These results demonstrate
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figure 2.6: Hypertime evolution in a dynamically biased cvhd simulation of methane
decomposition on Ni(111), at 800 K. The observed elementary steps are
shown at the time step at which they occurred.

the usefulness and power of a dynamic biasing method. Indeed, methane de-
composition at 800 K is a process that consists of rather fast steps such as the
dissociation of a C−H bond of adsorbed CH2 (which takes about 50 ps), to the
very slow decomposition of adsorbed CH, which requires more than 0.1 ms.
Studying this reaction sequencewith a static biaswould therefore not be achiev-
able; the vast time scale spread of the various elementary processes is illustrated
in Figure 2.6. Boosts of 2 × 106 are achieved.

The very long reaction time of the various reactions means that we cannot
verify the accuracy of the values in Table 2.3 by direct comparison toMD simu-
lations: even at a temperature of 1000 Kwe did not observe any reaction within
100 ps. It is, however, possible to compare the relative rates of the elementary
steps to estimations based on differences between their respective activation
energies.87 The barrier for C−H dissociation in adsorbed CH3 is 10 kcal/mol
higher than for adsorbedCH2, meaning that the latter is about 1000 times faster
than the former, in agreement with our findings. Similarly, the dissociation of
adsorbed CH has a barrier that is 14 kcal/mol higher than the dissociation step
involving adsorbed CH3, leading to a rate that differs by an order of magnitude
of 104, again in agreement with the results in Table 2.3. Finally, according to ki-
netic theory, the initial CH4 pressure is about 40 bar, with a flux to the surface
of 0.3 ps−1. Considering a dissociation barrier of 19 kcal/mol,87 we can make a
crude estimation of the average reaction time to be 0.5 µs, which is also in line
with our observations.
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2.4 Conclusions

We have developed a theoretical framework, the collective variable-driven hy-
perdynamics (cvhd) method, which is an implementation of the hyperdynam-
ics method that includes some of the strengths of metadynamics. The cvhd
method is intended to be used as an accelerated molecular dynamics method,
in which the waiting time between infrequent events is shortened by adding a
bias potential to the energy minima in the system, without requiring a priori
knowledge of the pathways and states that will be encountered. A self-learning
implementation of hyperdynamics is, essentially, realized as a sequence of dis-
crete metadynamics simulations. At each point in time, a single global CV η
measures the deviation of the system from its current reference state, while the
metadynamics biasing algorithm is used to dynamically build up a suitable bias
potential for every new potential energy basin the system encounters, and even-
tually escapes from. This dynamically biased cvhdmethod does not require an
a priori knowledge of the activation barriers the system can encounter during
its long time scale evolution. Furthermore, unlike standardmetadynamics CVs,
no specific details about possible pathways or mechanisms have to be supplied
for the construction of η. Rather, cvhd only requires the identification of all
possibly relevant degrees of freedom, from which a fresh definition of η is au-
tomatically generated after each event. cvhd is therefore easily adaptable to
wildly different processes: in this chapter, we have demonstrated its applicabil-
ity to solid state diffusion, heterogeneous catalysis, and chain folding.

If the studied process is already well-characterized and all relevant activation
barriers are known, the statically biased cvhdmethod is the optimal choice: it is
easy to construct well-optimized one-size-fits-all static bias, where the on-the-
fly construction of a dynamic bias will only cause additional overhead. On the
other hand, in systemsundergoing amore complex evolution, using a dynamical
metadynamics-based bias may be the more optimal choice, as it is generally not
possible to construct a single static bias that is both safe and efficient for every
process encountered. This ability of the dynamically biased cvhd method to
adapt its bias to the specific requirements of the system at any time is an impor-
tant advantage of the method. Irrespective of their relative efficiency, however,
both biasingmethods give rise to a correct sequence of state-to-state transitions
and are therefore formally correct hyperdynamics methods.

47



chapter 2 the cvhd method

Although the cvhdmethod is inherently flexible in the kind of local CVs it
can use to calculate its global CV, its performance does not seem to suffer from
this genericity. For example, in the case of low-temperature diffusion on the
Cu(001) with the bond length local property, accelerations as large as 109 can
be obtained, corresponding to physical times up to several seconds. In general,
the cvhd method is about as efficient as the Bond Boost implementation of
hyperdynamics, but has the added advantage of being more general. The local
distortion functions developed so far already span a large range of processes and
systems, and additional ones can be incorporated to further extend the scope of
the method.We therefore believe that the cvhdmethod will be a valuable tool
in the study of slow or activated processes in a wide range of scientific fields in-
cluding growth, conformational sampling, and catalysis.More generally,cvhd
demonstrates how well-known simulation techniques can be combined and ap-
plied in surprising new ways; it will give access to simulations that used to be
impossible.
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Advanced applications of CVHD

3.1 Pyrolysis and combustion as a case study

A detailed understanding of pyrolysis and combustion is of great technological
and industrial importance. A fundamental insight in (bio)fuel decomposition
chemistry is essential to improve the selectivity of cracking and reforming pro-
cesses and increase the efficiency of combustion engines and minimize their
production of pollutants. For example, low temperature combustion (ltc)
strategies can significantly decrease production of particulate matter (PM) and
nitrogen oxides (NOx) in engines, but additional insights in their operation are
required for further optimization.88,89 To screen and improve possible operat-
ing conditions, kinetic modeling can be used to explain and guide experimental
investigations.90–93 It is, however, extremely challenging to create sufficiently
complete and accurate kinetic models due to the wealth of possible intermedi-
ates and pathways that can all contribute significantly to the overall process,
which generally limits predictive power of these models. Therefore, such a
class of processes provides an excellent test case for the predictive capabilities of
cvhd. In principle, cvhd only requires the definition of an initial state of the
system (i.e., the fuel or fuel–oxygen mixture, density, and temperature), and
all relevant pathways, intermediates and products under these conditions will
follow naturally from these choices. Hence, cvhd simulations can not only be
used to predict the outcome of a complex chemical process, but the thus ob-
tained fundamental knowledge can also be used to extend and improve existing
kinetic models.

The results presented in this chapter were published in:
K. M. Bal and E. C. Neyts. Direct observation of realistic-temperature fuel combustion
mechanisms in atomistic simulations. Chem. Sci. 7, 5280 (2016).
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Interesting for our purposes is also the availability of a perfectly cromu-
lent ReaxFF potential, which has been successfully applied to various pyrolysis
and combustion reactions, and gives us the ability to conduct simulations of
large-scale processes over fairly long MD time scales.94–102 cvhd simulations
also have the potential to significantly improve on the state-of-the-art: previous
MD studies invariably used very high (>2000 K) simulated temperatures to be
able to observe any appreciable pyrolysis or combustion chemistry within the
short MD time scale. Of course, it is difficult to correlate insights from high-
temperature simulation with industrially relevant processes at lower tempera-
tures, such as alkane cracking at ~1000 K or low-temperature diesel engines,
and a clear motivation to extend the simulation time scale ought to be present
in the combustion community. It is a problem that also touches on the broader
question raised earlier in this thesis: with ReaxFF, much effort has been di-
rected towards the development of a rather complex and accurate description
of the interatomic forces, which is then essentially wasted on simulations that
have little relevance to the actual processes of interest. Hence, the quality of
the model’s Hamiltonian should be matched by a proper correspondence with
experimental conditions, which means that the simulation time scale must be
dramatically extended.
cvhd is the only candidate method that can meet this goal. As mentioned

before, methods that require saddle-point searching, such as tad or adaptive
kmc, have difficulties handling liquid- or gas-like systems. The prd method
imposes almost no constraints on the simulations and has been applied to the
thermal decomposition of n-hexadecane 103 and 1-hexene. 104 In the latter case,
pyrolysis could be simulated at 1350 K over a simulated time of ~1 µs by using
up to 180 replicas. A further extension of the prd time scale to themillisecond-
to-second range necessary for capturing processes at temperatures of 1000 K
or lower is, however, impractical. Indeed, because the boost factor of prd is
proportional to the number of processors, simulating this kind of process would
put unrealistic demands on available computational resources.

Arbitrarily long time scales can be reached with hyperdynamics, but tradi-
tional implementations of the method such as Bond Boost would also not be
suitable: there is a large separation of reaction barriers (and associated reac-
tion time scales) that can be encountered during the process, ranging from
~30 kcal/mol for alkyl radical β-scissions to ~80 kcal/mol for initiation reac-
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tions of alkane pyrolysis. This has a major impact on the applicability of hyper-
dynamics, since a simple “static” bias potential can only be designed to work
well for a small range of possible barriers; a bias that achieves a good acceler-
ation of β-scissions will still fall short in bringing the initiation reaction within
reach. In some specific cases, a conventional hyperdynamics scheme can be suf-
ficient: Cheng et al. exploited the very fast radical chemistry in hydrogen com-
bustion by only applying a predefined Bond Boost bias potential to radical ini-
tiation. 105 However, the much longer lifetimes of hydrocarbon radicals 104 and
the employed ReaxFF-specific concepts render this approach not generally ap-
plicable. The self-learning bias of cvhd, however, should be uniquely suited
to deal with this type of problem.

In this work, we apply the cvhd method to the initial phase of n-dodecane
pyrolysis and combustion to, for the first time, uncover detailed atomic-level
fuel decomposition pathways under realistic conditions. These simulations are
the first direct atomistic simulations of fuel pyrolysis and combustion chemistry
under realistic conditions and provide an additional validation of contemporary
mechanistic insights.

3.2 Methodology

All simulationswere carried out with lammps71 and theColvarsmodule,32 us-
ing the ReaxFF potential83 with the Chenoweth et al. parameter set94 and QEq
charge equilibration,86 as implemented in lammps.84 The equations of mo-
tion were integrated with a time step of 0.1 fs, and the systemwas initially equi-
librated at the target temperature with a Langevin-type thermostat.72 Further
sampling in the nvt ensemble was achieved through application of a Nosé–
Hoover chain 106 with a relaxation time of 0.1 ps, whereas for isotropic npt
simulations, theMartyna–Tobias–Klein (mtk) equations of motion 107 were in-
tegrated through the scheme of Tuckerman et al., 108 using a relaxation time of
1 ps. For pyrolysis simulations, the system consisted of 24 alkanemolecules in a
50×50×50 Å3 periodic box, corresponding to a density of about 0.05 g/cm3. As
local degrees of freedom we used C−C and C−H bond lengths to calculate the
bond distortion according to equation (2.3). The rmin

i and rmax
i parameters were

respectively 1.55 and 2.20Å forC−Cbonds, and 1.05 and 1.65Å forC−Hbonds.
The rmax

i values were specifically chosen to be smaller than the lengths of the
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figure 3.1: Applied maximal bias potential during the initial steps of a 1000 K cvhd
pyrolysis simulation. The time scales of the two displayed distinct regimes
are also shown.

breaking C−C and C−H bonds in the transition states of radical β-scissions and
intramolecular hydrogen atom transfers, respectively, to ensure these states re-
main unbiased. This choice of CVmeans that only events involving bond break-
ing are accelerated, and conformational changes are unbiased; following a sim-
ilar reasoning as in previous work, low-barrier conformational dynamics can be
considered to have reached equilibriumwell within the time spentwhilewaiting
for a reaction. 103 Gaussian hills of width σ = 0.025 and heightw = 0.25 kcal/mol
were added every 0.2 ps; the waiting time to detect events was tw = 1 ps. cvhd
simulations were carried out between 1000 and 1800 K; for comparison, unbi-
ased MD simulations were conducted at a temperature of 2500 K.

Constant density combustion simulations were carried out for a 40 × 40 ×
40 Å3 box containing 5 n-dodecane and 100 oxygen molecules, corresponding
to a fuel-lean mixture with a density of about 0.1 g/cm3. Thecvhd parameters
are the same as those of the pyrolysis simulations, with all interactions involving
oxygen atoms being described by the corresponding values for carbon. Biased
simulations were carried out between 700 and 1800 K, and conventional MD
was again performed at 2500 K. The average pressures in these simulations
range from ~200 bar at 700 K to almost 500 bar at 1800 K.

In order to capture the pressure dependence of the oxidation process over
the range of pressures relevant to practical combustion applications, we also
carried out a set of constant pressure simulations at 1000 K and pressures be-
tween 10 and 500 bar. cvhd simulations of gas-phase systems suffer from a

52



3.3 results

table 3.1: Lowest temperatures achieved in the cvhd simulations of n-dodecane pyrol-
ysis and combustion, and corresponding physical times and boost factors.

pyrolysis combustion
Lowest temperature 1000 K 700 K
Longest simulated time 57 ms 39 s
Largest boost 6.3 × 106 1.3 × 109

particular complication: lower pressures also mean lower collision frequencies
in the system. Therefore, to prevent excessive buildup of bias between possi-
ble reactive collisions, and an overestimation of the time scale, the Gaussian
deposition stride must be lowered accordingly. While 0.2 ps suffices for the
high-density nvt simulations, we found that the 10 bar simulation requires a
deposition interval of 0.5 ps, a value we used in all npt simulations. When ap-
plyingcvhd to other gas-phase systems, care must again be taken to choose an
appropriate deposition stride.

Unless noted otherwise, all comparisons between simulations at different
temperatures, such as of product compositions and time scales, are made at a
fixed conversion level. For pyrolysis, analysis was performed at 50% fuel conver-
sion. Combustion simulations were carried out until 20% of the O2 molecules
were consumed. For every condition, two independent trajectories were cal-
culated to obtain reliable statistics. Error intervals, if reported, reflect the 90%
confidence level.

3.3 Results

3.3.1 Accessible time scale
The dynamic self-learning nature of the cvhd method is illustrated in Fig-
ure 3.1, which shows the evolution of the applied bias potential in the first stages
of a pyrolysis simulation: the bias strength is slowly increased until an event is
detected, and the biasing procedure is restarted. It can also be seen that the
initiation reaction, which is a C−C bond fission, is the slowest event that re-
quires the largest bias potential, whereas subsequent radical isomerizations and
β-scissions have lower barriers. Thus, the bias strength is automatically tuned
to be optimal for the current stage of the simulation. As summarized in Ta-
ble 3.1, application of cvhd allows us to observe alkane pyrolysis and combus-
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figure 3.2: Products of the n-dodecane pyrolysis simulations at different temperatures.
The mass fraction is that of carbon only, and reflects how carbon is dis-
tributed over the various species.

tion at temperatures as low as 1000 and 700 K, respectively; the largest boost
factor in our simulations is 8× 106 larger than that of the longest pyrolysis prd
simulation. 104 The longest simulated physical time is therefore almost 40 s.

3.3.2 Pyrolysis
In general, the alkane decomposition chemistry observed in the cvhd simu-
lations is similar to previous high-temperature (>2000 K) MD simulations of
alkane pyrolysis.96,97 Most reactions of large alkyl radicals are either isomer-
ization by intramolecular H-transfer, or decomposition to 1-alkenes through β-
scission (theRice–Kossiakoff mechanism). At high temperatures, the entropically
favored decomposition reactions are the dominant process: ethylene is by far
the dominant reaction product, in agreement with previous high-temperature
MD simulations. In contrast, low-barrier isomerization occurs much more fre-
quently at low temperatures, formingmore stable secondary radicals which give
rise to the formation of larger 1-alkenes after eventually undergoing β-scission.
Therefore, lower pyrolysis temperatures yield larger product molecules, as
shown in Figure 3.2. In contrast to the 2500 K simulation, where the C2 frac-
tion is dominant and higher fractions are negligible, heavier molecules (C3 and
higher) comprise about 50% of the products at 1000 K. Similarly, we observe
that low-temperature propagation reactions involving H-abstraction by small
radicals such as H, CH3 and C2H5 constitute the main consumption channel
of unreacted alkanes, but at high temperatures unimolecular initiation through
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bond fission gains importance.
The relative stability of C−C andC−Hbonds is also found to be temperature-

dependent. Because a C−H bond is about 25 kcal/mol stronger than a C−C
bond, unimolecular initiation at low temperatures only occurs through C−C
dissociation; at high temperatures, considerable C−H dissociation is also ob-
served, resulting in highly reactive free H atoms, in agreement with earlier
high-temperature simulations of n-heptane pyrolysis.97 A constant supply of
free H radicals has a large impact on the overall reactivity of the system and
the propagation rate, again illustrating the temperature-dependence of the py-
rolysis mechanism. At low temperatures, C−H dissociation is only observed
in radicals: ReaxFF predicts that C−H bonds vicinal to a radical site are about
50 kcal/molweaker than those in alkanes (dissociation energies of ~50 and ~100
kcal/mol, respectively), significantly facilitating their dissociation. Especially
the ethyl radical, which has a C−H bond dissociation energy of 45 kcal/mol,
frequently decomposes into C2H4 +H.

3.3.3 Oxidation
More complicated mechanisms are observed in the oxidation simulations, of
which there are two distinct limiting cases, summarized in Figure 3.3a. In the
low-temperature mechanism, the oxidation process is always initiated with hy-
drogen abstraction by an oxygenmolecule. The subsequently formed alkyl radi-
cal combines with another oxygenmolecule to form a peroxy radical ROO• and
further isomerization leads to a hydroperoxyalkyl radical •QOOH, which can
react through a variety of pathways. Additional H abstractions by O2 or reac-
tive oxygen species from alkenes, radicals and carbonyl-containing compounds
lead to the formation of compounds such as (conjugated) alkenes, ketenes and
keto-hydroperoxides. At high temperatures, on the other hand, initial steps are
essentially a pyrolysis process initiated by unimolecular C−C bond fission and
subsequent β-scissions, forming primarily C2H4 which is further oxidized in a
later stage.

At intermediate oxidation temperatures, both mechanisms are at play: below
1500 K, alkanes are initiated by H abstraction but then easily break down into
olefins, whereas from 1000 K and lower, C−C bond fission only rarely occurs
in the initial oxidation stages. These temperature-dependent mechanisms are
reflected by the product distributions of Figure 3.3b.High temperatures primar-
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figure 3.3: cvhd simulations of n-dodecane oxidation. (a) Limiting temperature-
dependent initial mechanisms, and (b) products of the constant-density sim-
ulations at different temperatures. Unox species do not contain oxygen,
whereasOx do; large products are C3 or heavier.
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figure 3.4: Pressure-dependence of n-dodecane oxidation at 1000 K. Presentation of
the data is the same as in Figure 3.3.

ily produceC2H4 and its oxidation products, whereas lowering the temperature
suppresses dissociation events. In agreement with the findings of the pyrolysis
simulations, alkyl radical β-scissions become less likely at lower temperatures,
but the formed 1-alkenes are larger due to the relatively increased isomeriza-
tion rate so that the mass fraction of produced hydrocarbons remains almost
constant.

The temperature also has an impact on the formation of hydrogen peroxide
and water. A first hydrogen atom transfer to O2 forms a hydroperoxyl radical,
HO2, which can subsequently either abstract another hydrogen atom and form
H2O2, or transfer its hydrogen atom to another radical. The further reactivity of
H2O2 is strongly temperature-dependent, as it is found to be stable at low tem-
peratures, whereas at high temperature, dissociation in two OH radicals occurs
within a short amount of time. These highly reactiveOH radicals can then carry
out an additional hydrogen abstraction to formH2O. Therefore, at low temper-
atures, the kinetically stable H2O2 tends to accumulate whereas high tempera-
tures favor the formation of OH and water. Indeed, at 700 K, the H2O2 fraction
accounts for ~17% of the non-O2 oxygen atoms to be compared with ~14% in the
H2O fraction. At 1000 K, this ratio is already 10/20 and from 1200 K onwards,
the H2O2 fraction is negligible while the H2O fraction contains about 30% of
all reacted O2. These observations are in agreement with conceptual models of
low-temperature diesel engines. 109

Combustion chemistry is also affected by pressure, and cvhd simulations
can be used to investigate this effect. If the pressure-dependent reaction rate is
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figure 3.5: Comparison of experimental and simulated product distributions of n-
dodecane pyrolysis at 1000 K.

proportional to pn and, at constant temperature and assuming ideal gas behav-
ior, the average reaction time ⟨t⟩ ∼ p/rate, the overall reaction order n can be
determined by fitting ln ⟨t⟩ = m ln p + ln ⟨t⟩p=1, in which m = 1 − n. This way, we
obtained n = 2.07 ± 0.07, indicating that the rate-determining step of the oxi-
dation is of second order, most likely involving hydrogen abstraction. Average
oxidation time scales ranged from0.6ms at 500 bar, to 45ms at 10 bar.The pres-
sure effect on the relative importance of uni- and bimolecular processes is also
reflected by the product distribution, as depicted in Figure 3.4. Although this
effect is less pronounced than the influence temperature has on the oxidation
process, it can be seen that pyrolytic mechanisms are favored at low pressures,
but suppressed in denser systems.

3.3.4 Comparison with experiments and unbiased MD
Our cvhd simulations also compare well with experimental results and ex-
isting kinetic models. The product distribution of the 1000 K pyrolysis process
can be compared with a recent experimental study at the same temperature and
is, as depicted in Figure 3.5, in good agreement with our results. 110 Moreover,
the half-life of n-dodecanewas found to be in the order of 20–40ms,which com-
pares well with the results in Table 3.1. The temperature-dependent oxidation
mechanisms observed in cvhd simulations are also consistent with generally
accepted models90,91 and experiments. 110

There exist some discrepancies between our simulations and oxidation ex-
periments.While experimentally, an early pyrolytic stage is already observed at
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table 3.2: Kinetic parameters of n-dodecane pyrolysis and combustion as obtained from
fitting apparent first order Arrhenius and Eyring equations.

pyrolysis combustion
Temperature range (K) 1000–1800 700–1800
EA (kcal mol−1) 70 ± 5 46 ± 1
A (s−1) 5 × 1015 to 2 × 1017 7 × 1011 to 3 × 1012

Δ‡H (kcal mol−1) 68 ± 5 44 ± 1
Δ‡S (cal mol−1 K−1) 12 ± 4 −8 ± 1

1050 K, our simulations suggest that this requires higher temperatures above
1200 K. This can be attributed to the high pressures in our constant den-
sity simulations, which will favor bimolecular over unimolecular reactions and
thus a relative decrease of β-scissions over alkyl radical reactions with oxygen-
containing species. Indeed, as shown earlier, lowering the pressure in our
1000 K cvhd simulation suppresses bimolecular reactions and gives rise to
an early pyrolytic stage at lower temperatures than suggested by high-pressure
simulations.Moreover, deficiencies of the force field can also reduce agreement
with the experiment.

Finally, apparent first order rate constants for pyrolysis and combustion were
computed from the C12H26 and O2 consumption rates, respectively. Two sets
of kinetic parameters, collected in Table 3.2, were derived from these rate con-
stants. By fitting a linearized Arrhenius equation

ln k = lnA − EA

kB

1
T

with k = 1
⟨t⟩

, (3.1)

prefactors A and activation energies EA were obtained, and activation en-
thalpies Δ‡H and entropies Δ‡S were calculated from the Eyring equation

k = kBT
h

e−
Δ‡G
kBT , (3.2)

which can be linearized in 1/T as

ln
hk

kBT
= Δ‡S

kB
− Δ‡H

kB

1
T
. (3.3)

The pyrolysis parameters are consistent with other ReaxFF pyrolysis stud-
ies of n-dodecane, in which values of EA between 56 and 66 kcal/mol and A
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figure 3.6: Arrhenius plots of the apparent first order rate constants of n-dodecane py-
rolysis and combustion as obtained from cvhd simulations. Filled symbols
at 2500 K are unbiased MD simulations that were not included in the fit.

from 1015 to 1016 s−1 are found,96 and with a unimolecular C−C dissociation
as rate-determining step, as indicated by the positive entropy of activation.
For combustion, the activation energy matches that of a hydrogen abstraction
by O2. Indeed, experimental barriers of hydrogen atom transfers from alka-
nes to O2 lie between 44 and 51 kcal/mol 111 and ReaxFF predicts a barrier of
~50 kcal/mol for O2-mediated hydrogen abstraction frommethane.94 The neg-
ative Δ‡S value for combustion is also in line with a bimolecular mechanism.
This means that hydrogen atom transfers to O2 are rate-determining at all tem-
peratures, regardless of the different temperature-dependent initial reaction
steps. Furthermore, as can be seen from the Arrhenius plots in Figure 3.6, the
cvhd values are also consistent with unbiased MD simulations: extrapolation
of the cvhd results to higher temperatures agree with the MD results, there-
fore further validating the application of cvhd to pyrolysis and combustion.

3.4 Conclusions

We have applied the cvhd method to pyrolysis and combustion of the n-
dodecane model fuel. Owing to the unprecedented long time scale of our simu-
lations, we were able to conduct the first explicit verification of temperature-
and pressure-dependent pyrolysis and combustion mechanisms through di-
rect atomistic simulations. Reaction pathways uncovered bycvhd simulations
agree well with experiments and kinetic models and prove cvhd’s ability to
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extend and supplement chemical kinetic models. Moreover, these results show
that a flexible accelerated molecular dynamics method such as cvhd can give
access to the long-timescale dynamics of complex chemical processes, and how
it can further extend the interpretive and predictive power of atomistic simula-
tions by bridging the gap between theory and experiment.

3.5 Further applications of CVHD

The cvhdmethod has already been applied in research not directly related to
this PhD project, applications that are briefly summarized here.

Hydrogen etching of graphite. In a collaboration with researchers from the
Dutch Institute for Fundamental Energy Research (differ), the inter-
action of graphite with a hydrogen plasma was investigated. 112,113 The
time scale limitation of MD simulations has meant that previous MD
studies of hydrogen atom etching of materials had to impose artificially
high fluxes in order to observe any relevant mechanisms. By applying
cvhd in between individual hydrogen impacts,Aussems et al. could tune
the inter-impact time and, hence, the overall ion flux—the longest inter-
impact times (> 1 µs) corresponded to the conditions on experimentally
feasible set-ups. The cvhd simulations revealed that at low fluxes, dif-
ferent C−C bond breaking mechanisms are at play, also significantly af-
fecting the erosion yield. Smaller hydrocarbon species are ejected from
the surface due to the switch from ion-induced etching to chemical ero-
sion. Similarly, hydrogen atoms were found to have flux-dependent C−H
interactions, going from sputtering and Eley-Rideal surface recombina-
tion at high fluxes, towards thermal processes as Langmuir-Hinshelwood
recombination and H desorption upon reduction of the flux.

Methanol oxidation on V2O5. In previous MD studies of this process, the
V2O5 catalyst was isothermally kept at 650 K, while the methanol gas
phase molecules were given a high temperature of 2000 K to be able to
observe any chemistry within the MD time frame. Neyts & Bal applied
cvhd with specific aim to study the effect of a plasma-supplied electric
field at a more realistic temperature of 650 K for the entire system. 114 For
the specific setup employed in the study, it had to be concluded that the
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electric field had little impact.

More pyrolysis. Ashraf et al. performed ReaxFF-based MD simulations
of the supercritical pyrolysis of fuel mixture ( JP10/toluene and n-
dodecane/toluene). 115 To justify the high temperatures (>2000 K) used
in these simulations, however, some cvhd simulations at 1200 K were
also performed. At least the qualitative differences in reactivity of the
individual fuels were found to be preserved at this lower temperature, al-
though the authors acknowledged that the overall chemistry would most
likely be very different.

Polymer degradation. Arash et al. used cvhd to investigate the impact of wa-
ter on the thermal degradation of polyamide 6,6 (PA 6,6). 116 Realistic
temperatures as low as 1000 Kwere investigated, and kinetic parameters
related to the degradation process could be extracted, consistent with ex-
perimental observations.

Rate calculations Some of cvhd’s properties can be spliced back into its par-
ent enhanced sampling methods. Fu et al. calculated gas-phase reaction
rates with infrequent metadynamics to assess various types of CVs. 117

They found that simulations with the cvhd CV η, using bond lengths
or sprint coordinates as local CVs, were more efficient than simula-
tions that directly biased these local CVs, by an order of magnitude.
These authors identified cvhd’s dimensionality reduction as the key
factor behind the method’s efficiency, making it the best choice for high-
demanding simulations based on ab initio force fields.
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A different approach to biasing

4.1 Towards even more challenging applications

Theprevious chapters have documented the remarkable successes of thecvhd
method across a diverse range of problems.Nevertheless, a few areas of possible
improvement can still be identified, and these must be addressed to give the
method an even wider reach.

• Metadynamics-style dynamic bias deposition is in many cases quite in-
efficient. 106 time steps until transition (as observed for alkane pyrolysis
initiation) are trivial to reach for modestly-sized classical systems, but
utterly intractable once simulations become more expensive.

• Folding all dynamics into a single CV is great for efficiency, but also very
restricting. In particular if some of the constituent local CVs are much
stiffer than others, unbalanced or inefficient biasing could be observed.
For example, if both bonded and non-bonded pairs are combined, the
large fluctuations from the latter drown out the stiff, small-amplitude vi-
brations of the former.

• Amechanism to prevent transition state corruption is explicitly encoded
into the cvhd CV, but still relies on a proper parametrization. Restrict-
ing the bias to small distortions is a safe choice, but will also result in
limited biasing and poor performance.

It is clear that the application of cvhd to more complex phenomena de-
scribed by more accurate ab initio force fields demands an extension of the
method. By leveraging cvhd’s inherent flexibility, some of the method’s key
weaknesses could perhaps be alleviated. The option to use different biasing

63



chapter 4 a different approach to biasing

strategies has been available from its inception, and alternatives to the prac-
tical but sometimes unsatisfactory metadynamics bias can be easily integrated
if available. Here, we will develop a variant of the cvhdmethod that uses the
recently developed variationally enhanced sampling (ves)method 118 to generate
its bias.

4.2 A variational approach to CVHD

4.2.1 Variationally enhanced sampling
In metadynamics, a bias potential is added to the system to enhance explo-
ration of the CV space. Instead of obeying the true probability distribution
P(s) ∼ e−βF(s), the free energy landscape is flattened, defined by a new dis-
tribution p(s). Conventional metadynamics simulations completely fill the un-
derlying fes and hence impose a uniform distribution p(s) = c, whereas wt-
metaD samples p(s) ∼ [P(s)]1/γ. It would be interesting to design a bias po-
tential ΔV(s) to specifically sample a completely arbitrary target distribution
p(s), i.e., to limit sampling to specific regions of CV space. Such a bias poten-
tial should hence obey the relation

ΔV(s) = −F(s) − 1
β ln p(s), (4.1)

up to an irrelevant additive constant. The extent to which a trial bias is able to
produce the desired target distribution can be written as the functional

Ω [ΔV] = 1
β ln
∫ e−β[F(s)+ΔV(s)] d s

∫ e−βF(s) d s
+ ∫ p(s)ΔV(s)d s, (4.2)

which is minimized by the optimal bias of eq. (4.1). In other words, it is possible
to use the variational principle to iteratively obtain a suitable bias. 118

A practical choice of ΔV is a linear expansion in some basis fk(s),

ΔV(s) =∑
k
αk fk(s), (4.3)

using the expansion coefficients {αk} as variational parameters. Common
choices of basis functions are either polynomials of the Legendre or Chebyshev
types (for nonperiodic CVs) or plane waves (if periodicity is required). In the
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most general implementation of ves, the basis set consists of one-parameter
functions—the actual bias expansion in a multidimensional CV space uses all
possible products of the single-CV basis functions. Of course, nothing in the
ves formalism enforces the use of a global linear expansion bias, and different
forms have already been proposed for specific purposes. 119,120

As Ω [ΔV] is based on expectation values, an iterative optimization of the
bias demands some sort of dynamic sampling. To be precise, the optimization
of ΔV is based on the gradient andHessian of ΔVwith respect to the expansion
coefficients, which also entail the calculation of several ensemble averages on
the biased potential.Hence, aves simulation consists of periodic updates of the
bias following short (~1 ps) sampling runs to estimate the required averages. 118

The considerable freedom offered by the target distribution-based approach
makes ves a potentially very powerful method. In particular high-dimensional
CV spaces can be much more efficiently explored if sampling is limited to only
the small subspace of interest. 120 Furthermore, p(s) need not be a predefined
analytical function. Just like the actual bias potential, a target distribution can
also be periodically updated—which is howves implements thewell-tempered
target distribution. 121

4.2.2 Integrating VES in CVHD
Infrequent metadynamics allows for rate calculations and served as one of the
inspirations for cvhd. A ves variant for similar purposes also exists, but is
implemented by exploiting its variational nature. In this method, dubbed vari-
ationally optimized free energy flooding, the fes is filled up to a predefined cutoff
value Fc. 122 As long as the free energy barrier is located above Fc, transition
states remain uncorrupted, and rates can be extracted in a manner similar to
infrequent metadynamics.

The flooding bias ΔV is constructed as

ΔV(s) = v(s)S(−v(s) − Fc), (4.4)

in which v(s) is the ves bias that is optimized to minimize Ω [ΔV] to satisfy
eq. (4.1). S(x) is a switching function that turns off the bias when it becomes
too large, and is usually taken to be of the Fermi type:

S(x) = 1
1 + e λx . (4.5)
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Finally, the target distribution is dynamically computed based on an iteratively
improving guess of F(s), i.e., F∗(s),

p(s) = S(F∗(s) − Fc)

∫ S(F∗(s′) − Fc) d s′
. (4.6)

By using this particular form of p(s), one essentially enforces uniform sampling
below Fc, and no biasing above. In practice, the flooding bias is first optimized
through the iterative ves procedure, and then used as a static bias in a subse-
quent rate calculation. 122,123

All in all, many aspects of cvhd are also included in the variational flood-
ing formalism. ves-based methods can efficiently handle higher-dimensional
CV spaces 118 and transition state protection can be natively—and explicitly—
enforced. 122 Moreover, the basis set expansion (4.3) provides a more efficient
route to a suitable bias than slow deposition of small Gaussian kernels.With the
aim of developing a generic hyperdynamics method to study arbitrary chemical
reactions, we can join aspects of cvhd and variational flooding as follows. We
still use a CV of the form

χt = (
n

∑
i
χp

i )
1/p

, (4.7)

and take as local CV s a commonly used30–32 switching function of the inter-
atom distance ri

si(ri) =
1 − (ri/d)n
1 − (ri/d)m

. (4.8)

The choice of d will depend on the nature of the atom pair, and should be very
well-calibrated if different types of contacts have to combined into a single p
norm-based CV (4.7). The actual distortion χi can then be simply taken as χi =
∣si − srefi ∣, where any srefi is either 0 (i.e., non-bonded reference) or 1 (bonded
reference).

To lift the stringent requirements on the choice of d, we propose to split
up radically different interaction types—bonded or non-bonded pairs, light or
heavy elements—into their own global CVs. Then, the fes is flooded up to a
pre-chosen Fc. No safe distortion cutoffs have to be selected, and all interac-
tion types will be biased equally in a natural fashion. In contrast to the standard
flooding approach, time scale recovery is carried out on the dynamic bias, be-
cause each transition requires its resetting and re-optimization. In other words,
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instead of first optimizing a suitable flooding potential and then using that as a
static bias for rate calculations, we simply flood the fes and keep optimizing
ΔV until a transition is observed.

Only one user-selected choice remains, that is, a proper choice ofFc. For this,
we define an initial cutoff Fc,init, that is gradually (every few ps) incremented.
If Fc,init and its increments are sufficiently small the generated bias will always
remain safe. In a way, they represent the target accuracy of the simulation—
Fc,init can be chosen to be a bit higher then strictly possible, sacrificing some
accuracy for small barrier events of lesser importance.

4.3 Application

As a prototypical test, we considered the symmetric gas phase SN2 reaction of
methyl chloride, i.e., ClCH3 + Cl– ÐÐ⇀↽ÐÐ Cl– + CH3Cl: a common benchmark
reaction that requires the simultaneous biasing of bond breaking and forming,
and hence an excellent test case for our variationalcvhdmethod. To assess its
the accuracy, repeated reactions were sampled in a temperature range of 300–
600 K to compare its performance to infrequent metadynamics simulations of
the same process.52,117 As in these previous studies, energies and forces were
described at the semi-empirical pm6 level, 124 as implemented in the Quickstep
module 125 of the cp2k 4.1 package. 126 A single methyl chloride molecule and
chloride ion were placed at the center of a 20 × 20 × 20 Å3 nonperiodic box in
which electrostatics were treated by a wavelet-based solver. 127

The equations ofmotionwere integratedwith a time step of 0.5 fs. At all tem-
peratures, the systemwas first equilibrated for 1 ps with a stochastic global ther-
mostat, 128 followed by five independent nvt production runs of 1 ns each. To
prevent the ion and molecule from moving too far apart, both C−Cl distances
were held below 3 Å by harmonic restraints. Two CVs were used to describe
bonded and non-bonded C−Cl interactions, respectively, which were both de-
scribed by a switching function of the type (4.8) with d = 2.5 Å and m = 2n = 12.
The bias was expanded as a linear combination of Chebyshev polynomials up
to 12th order and updated every 1 ps with a step size of 0.05 kcal/mol. Fc,init was
5 kcal/mol, with Fc being incremented by 1 kcal/mol every 10 ps until transition.
Transitions were detected when any of the CV values exceeded 0.9.

The average reaction times at each temperature were computed from a fit to
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table 4.1: Rate calculations for the symmetric gas phase SN2 reaction ofmethyl chloride
from variational cvhd. Average reaction times (in seconds) are reported at
different temperatures (in K). The total number of observed events, p value
from the Kolmogorov−Smirnov analysis, and average boost factor are also
reported.

temperature ⟨t⟩ nevent pKS boost
300 2.94 × 10−7 58 0.15 3.42 × 103

400 9.69 × 10−9 70 0.19 1.36 × 102

500 1.51 × 10−9 86 0.29 2.60 × 101

600 3.86 × 10−10 113 0.21 8.72 × 100

figure 4.1: Arrhenius plot for the symmetric gas phase SN2 reaction ofmethyl chloride.

an exponential escape time distribution as used in the Kolmogorov−Smirnov
test developed for infrequent metadynamics,50 and collected in Table 4.1. De-
spite not being designed for continuous biasing, the variational flooding algo-
rithm appears to be able to guarantee a safe bias even while unconverged, as
evidenced by the fact that pKS > 0.05 in all cases, meaning that the escape
time distribution is Poissonian (and uncorrupted).50 The performance of vari-
ational cvhd appears to be quite competitive, too: while infrequent metady-
namics with two bond distance CVs can provide a boost factor of 60 at 300 K
for this particular system, 117 we obtain a value of 3.42 × 103. If multiple CVs
are required for biasing, variational cvhd can hence be considered to be more
efficient than its metadynamics-based variant. The boost also deteriorates with
increasing temperature, as expected.

The average reaction times at different temperatures can be used to construct
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an Arrhenius plot, as depicted in Figure 4.1. From a linear fit of ln k = ln⟨t⟩−1
versus T−1 an activation energy of EA = 7.9 ± 0.5 kcal/mol and pre-exponential
factor A = 1.93e±1.1 THz can be obtained (error bars reflect the 95% condidence
level). These values agree well with estimates from infrequent metadynamics
(on the same pm6 pes), although EA falls somewhat on the high end of the
known range (~6.5–8.0 kcal/mol). 117 Combined with the fairly low values of
pKS, that usually exceed 0.5 in the competing infrequent metadynamics simula-
tions, someminor transition state corruption cannot be ruled out.However, the
average transition times obtained from our simulations are of excellent quality:
other estimates at 300 K fall in the range of 183 to 312 ns, consistent with our
value of 294 ns.

4.4 Conclusions

The inherent flexibility of thecvhdmethodmakes it easy to incorporate novel
biasing strategies. A variational version of cvhd can be achieved by replacing
the metadynamics-style bias with a ves flooding potential. By exploiting the
variational principle, several user-supplied parameters can be replaced ormade
less critical, and an overall more flexible method is obtained.
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Untangling the experiment through
modeling: the case of surface
charges in plasma catalysis
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chapter 5

Computational models of charged
surfaces

5.1 The plasma-catalytic enigma

5.1.1 The virtues of plasma catalysis
A plasma or gas discharge is a partially ionized gas, consisting of free electrons,
ions, and neutrals (molecules, radicals and excited species), which can all inter-
act with each other, giving rise to a “rich” and reactive plasma environment. 129

In plasma catalysis, a heterogeneous solid catalyst is integrated in a plasma to
obtain a technique that combines the reactivity of the two, potentially resulting
in a better efficiency or selectivity than would be accessible with the individ-
ual approaches. Plasma catalysis is a rapidly growing research domain, with as
hugely important envisaged application the efficient conversion of greenhouse
gases into value added chemicals. The key strength of plasma catalysis can be
summarized as follows:

• Plasmas are in a far-from-equilibrium state at relatively low temperatures,
typically in the range 300 K-1000 K. The combination of reactivity, far-
from equilibrium state and low temperature operation enables plasma-
based processes to be operated at much milder conditions than tradi-
tional thermal methods. It also means that a plasma-exposed catalyst is
not necessarily subjected to the scaling laws 130 that limit the performance
of traditional thermal catalysis, and thermodynamically unfavorable con-
versions can be made to take place.

The results presented in this chapter were published in:
K. M. Bal and E. C. Neyts. Modelling molecular adsorption on charged or polarized sur-
faces: a critical flaw in common approaches. Phys. Chem. Chem. Phys. 20, 8456 (2018).
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figure 5.1: Possible plasma-catalyst cross-interactions, as seen from the perspective of
the catalyst.

• Inmany cases, synergistic effects have been claimed, i.e., the conversion,
yield, energy efficiency or selectivity is observed to be greater than the
sumof pure plasmaprocessing of the gas andpure thermal catalysis. 131–134

• The plasma is driven by electrical power, making plasma technology
much more flexible and easier to switch on or off than its thermal coun-
terparts. This property fits well with the current trend towards electri-
fication of our society, where fossil fuel-based thermal energy is being
replaced by electricity from renewable sources. 135 The fluctuating sup-
ply of wind and solar energy demands significantly higher flexibility from
chemical industry.

The mechanisms underpinning this apparent efficiency are not fully under-
stood: they must be unraveled to achieve a better understanding of the pro-
cess and optimize its performance.The key characteristic—andkeydifficulty—
that sets plasma catalysis apart from pure plasma-technological or catalytic ap-
proaches is the presence of a strong cross-interaction between the plasma and
the catalyst surface, mutually changing each other’s properties (see Figure 5.1).

5.1.2 Constructing models of plasma-catalyst interactions
From the perspective of the catalyst, the impact of a plasma can be considered
to be perturbation of the catalytic chemistry which, on itself, is already a very
complex process with a massive number of chemical and physical degrees of
freedom. To untangle all these influencing factors, a “bottom-up” approach
based on theoretical atomistic calculations is ideally suited to study the role
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of the chemical building blocks that make up the overall catalytic process. 136

For traditional catalytic approaches to CO2 activation, for example, this kind
of incrementally improved understanding of increasingly complex technologies
has already been extensively demonstrated in the literature, mostly based on
density functional theory (dft) calculations.

Theoretical studies of traditional catalytic processes are strictly structure-
activity focused. That is, the performance of catalyst in a specific application
is assumed to be dictated only by its composition and morphology, so that cal-
culations are applied to evaluate and screen the properties of current materi-
als and new candidates in a systematic manner. This is been rather extensively
achieved for the CO2 conversion processes, through extensive characterization
of the energetic and kinetic parameters of a variety of simple catalyst models,
such as flat transition metal surfaces 137–144 (both pure metals and alloys) and
oxide single crystals. 145–153 However, realistic industrial applications (as well
as plasma catalysis 154) typically do not employ “pure” materials, but rather
supported metal particles deposited on some other material. Naturally, the ac-
tivity of such catalysts depends on a significantly larger set of interactions and
cross-interactions between reactants, intermediates, products, metal catalyst,
and support.

Models can again provide valuable insights, but with increasing model com-
plexity computational work becomes scarcer, and just a few material combina-
tions have been already studied. 155–158 Yet, these studies have led to the conclu-
sion that the catalyst–support interface plays a significant role in the catalytic
activity of the metal, and that reaction mechanisms on a supported cluster can
be quite different from those on a pure metal catalyst. 159 The as such obtained
insight from incrementally more complex models highlights the power of com-
putational approaches to increase our understanding of catalytic processes.

In principle, plasma catalysis can be treated as another layer of complexity
that is added to the computational model of the catalyst, one that goes beyond
standard scaling laws and structure-activity relations. Plasma effects can be in-
troduced separately, so as to disentangle the effect of the various mechanisms
through which the plasma can interact with the catalytic process. This way,
the effect of phenomena such as plasma-generated radicals, excited molecules,
ions, photons, electrons and electric fields can be studied in isolation to assess
their individual impact and relative importance. 160 In fact, most experimental
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studies of plasma catalysis currently primarily treat the process as a black box,
and focus on improving conversion or energy efficiency. Detailed experimen-
tal insights in the atomic-level aspects of the process are sorely lacking, which
gives modeling a unique opportunity to dramatically advance the understand-
ing of the plasma-catalytic process.

From the comparatively extensive simulation literature on plasma-enhanced
material growth and surface modification, it is already known that plasma-
supplied radicals are an important source of interesting chemistry. Therefore it
is perhaps not surprising that the few computational investigations of potential
plasma-catalytic effects have also introduced the effect of a plasma radical flux
on the catalytic process. Using dft calculations 161,162 and molecular dynamics
simulations,81 it was confirmed that gas phase plasma activation of inert gasses
such as CH4 leads to improved chemisorption, which lowers the temperature
threshold for plasma catalysis. Moreover, a high surface coverage of plasma-
generated radicals can significantly modify the activity of the catalyst towards
CO2 activation. 163,164 In other words, these limited initial studies already ex-
plicitly show that the performance of a plasma-catalytic process is not purely
determined by traditional scaling laws or structure-activity relationships. The
presence of a plasma could therefore allow for conversions not accessible by
standard catalytic approaches.

5.1.3 Understanding the effect of charging
Of the many other possible plasma-surface interactions, perhaps the most in-
triguing is the ability of a plasma to modify the electronic structure of the
catalyst through charging. All surfaces exposed to a gas discharge accumu-
late a negative charge due to the influx of plasma-supplied electrons, which is
much larger than the influx of ions. Although physical models 165 and exper-
iments 166–169 suggest that these surface charges can be quite substantial and
long-lived, little to nothing is known about their effect on the chemical prop-
erties of the catalysts. Nevertheless, this effect can be expected to be important
because catalytic bond breaking and formation processes are governed by the
flow of electrons to and from the surface. Again, a plasma effect might be able
to tune catalyst properties beyond the standard correlations explored in catalyst
development.

Because charging is a fully reversible process that does not modify the cata-
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lyst’s physical structure, a recent set of plasma-catalytic experiments is partic-
ularly intriguing: the plasma-catalyst synergistic effect is found to also be fully
reversible, i.e., no permanent plasma-induced chemical or physical modifica-
tion of the catalyst is observed, 170 which suggests that surface charging could
indeed play a role in this process. Since no direct experimental work in this
direction has been carried out—and a controlled set-up to isolate the charge ef-
fect on the surface chemistry is difficult to achieve—computational approaches
must be applied to gauge its impact on the plasma-catalytic process. Compu-
tational approaches to charged catalysts in general are, however, rather chal-
lenging, and have mostly tackled catalyst charging in an indirect fashion. For
example, charged electrocatalysts were modeled as slabs in contact with a par-
tially ionized aqueous phase, 171,172 and charge effects in photocatalysts could be
approximated through the introduction of defects or dopants. 173,174

Only a few computational studies have attempted to directlymodel the effect
of a surface charge. Here, the focus has mostly been on reversible gas adsorp-
tion: through addition or removal of electrons, the (relative) affinity of a nano-
material for gas molecules can be changed, implying that charging can effec-
tively be used as a switch in gas capture, storage, and separation technologies. 175

dft calculations consistently predict that extensive charging greatly modifies
the selective adsorption of gasses such as CO2 or H2 on nanomaterials, i.e.,
hexagonal boron nitride (h-BN) 176, graphitic carbon nitrides 177–182, MXenes, 183

doped graphene or carbon nanotubes, 184–187 borophene, 188,189 and nanocom-
posites of these materials. 190,191 Similar switchable properties have also been
demonstrated for electric fields in reversible gas adsorption 192–195 and processes
relevant to catalysis. 196–198 Hence, this type of studies predicts that electrically
switchable interfacial properties will play a major role in the development of
new “green” technologies, where reversible gas capture and activation meth-
ods are required for carbon capture and sequestration, and the transport and
storage of hydrogen gas. Consequently, charge effects in plasma catalysis can
also be anticipated to be significant.

In order tomake accurate predictions of charging-relatedmaterial properties,
the employed computational approaches must be adequate. Typically, models
of adsorption and reactions on solid surfaces use small semi-infinite slabs, with
periodic boundary conditions approximating the macroscopic surface. How-
ever, properties of systemswith excess charges or large polarization are difficult
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to properly converge. 199 Furthermore, traditional computational approaches to
charged periodic simulation cells have been found to be inadequate for inhomo-
geneous systems.200 Indeed, these issues are well-known for charged defects in
solids. A proper model of the bulk solid requires the application of periodic
boundaries, but also introduces artificial long-ranged Coulomb interactions be-
tween the periodic images of the localized charges. Moreover, the inclusion
of an implicit neutralizing background charge introduces unphysical contribu-
tions to the total energy, rendering a straightforward calculation of the defect
formation energy impossible. For this situation, a number of techniques has
been devised that allow to eliminate any spurious electrostatic interaction, i.e.,
to treat the defect as isolated, embedded in a semi-infinite neutral matrix.201–203

Calculation of adsorption on charged surfaces poses a very different chal-
lenge. Indeed, because all periodic cells of interest—containing the pristine sur-
face slab and adsorption complex, respectively—carry the same net charge, the
energetic term originating from an implicit background charge is eliminated.
Furthermore, the surface is assumed to be homogeneously charged, meaning
that long-range interactions along periodic boundaries are a physically justifi-
able aspect of the model. However, full periodic boundary conditions (as usu-
ally applied) introduce an unphysical interaction of thematerial with itself, nor-
mal to its surface. In other words, the calculation cell dimensions along the sur-
face directions have a physicalmeaning as they are a function of thematerial lat-
tice parameters,whereas the edge length along the surface normal represents an
arbitrary degree of freedom.To avoid spurious interactions fromsurface dipoles
or charges, correction schemes exist, but the contemporary literature on elec-
trochemically switchable adsorbents and catalysts does not adopt any specific
corrective measures. Rather, sizable vacuum regions—as is also common prac-
tice in the study of nonpolar or neutral surfaces—have been claimed to be suf-
ficient without explicit confirmation of the adequacy of this approach. 176–197 In
other words, the comparatively new field of charge- and field-tunable surface
chemistry has not yet adopted a rigorous, consistent and properly validated
standard computational procedure.

The challenging problem of plasma-catalyst interactions should only be tack-
led if the proposed methodology is properly validated on comparatively simple
problems. Therefore, we first revisit three prominent applications of switchable
CO2 capture from the literature as representative case studies for the modeling
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challenges posed by charged or polarized surfaces. Specifically, we consider
charge-enhanced adsorption on g-C4N3 (a half metal) and h-BN (a wide-gap
semiconductor) as well as electric field-tuned adsorption, again on h-BN. We
attempt to reproduce previously reported results for these systems, and inves-
tigate to what extent theoretical predictions are dependent on the employed
computational model.

5.2 Methodology

All dft calculations were carried out with the Quickstep module 125 in the
cp2k 4.1 package 126 within the Gaussian and plane wave (gpw) frame-
work,204 employing Goedecker-Teter-Hutter (gth) pseudopotentials205,206

for the core-valence interactions and a polarized double-ζ (m-dzvp) basis
set207 to expand the Kohn–Sham valence orbitals. An auxiliary plane wave
basis set defined by a cutoff of 1000 Ry was used to expand the electron
density. Exchange and correlation were treated with the pbe functional,208

supplemented by Grimme’s D3 dispersion correction209 in its Becke-Johnson
damping form.210 Atomic partial charges were calculated by the self-consistent
Hirshfeld-I scheme.211 All energies are reported without thermal or zero-point
energy corrections, and adsorption energies on the nanosheet are defined as
Eads = Emol+sheet − Emol − Esheet so that a negative Eads corresponds to a sta-
ble adsorption configuration. Two different periodicities were considered: fully
periodic calculations employed the defaultcp2k Poisson solver for electrostat-
ics, whereas the Martyna-Tuckerman (MT) solver212 allowed to impose two
periodic (along the surface, XY plane) and one nonperiodic direction (along
the surface normal, Z direction). Unless noted otherwise, geometries were op-
timized in cells with a nonperiodic Z length of 25 Å and used in single point
energy calculations in all other cells.

The MT solver is a reciprocal space-based method to calculate electrostatic
energies that also allows treating both isolated and periodically replicated sys-
tems within the same formalism. It can therefore be applied to systems with
mixed boundary conditions. The MT solver has one specific limitation that
must be kept inmind: the cell length along any nonperiodic axis must be at least
two times the size of the charge distribution (including ions and electrons) of
the system along this direction. For all of our systems, this means that very
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figure 5.2: Investigated CO2 adsorption configurations on 2D nanomaterials. The two
considered adsorbents are (a) a 4×4 g-C4N3 sheet and (b) 6×6 h-BN. The
molecule is adsorbed on (c) 4e− charged g-C4N3, (d) 2e

− charged h-BN,
and (e) h-BN subjected to an electric field of 0.04 a.u., pointing downward.
All configurations have been previously described in the literature. Atom
color codes: gray, carbon; blue, nitrogen; pink, boron; red, oxygen.

small vacuum spaces (10 Å or lower) cannot be used.
Because all studied systems systems have already been characterized bydft

calculations, adsorption structures and relevant charge or field conditions can
initially be directly taken from the literature. For charged g-C4N3, a charge state
equivalent to 1e− in a 2 × 2 supercell, as used in the literature, 177 is considered;
to compensate for the lack of k point sampling beyond the Γ point in our cal-
culations we use a larger 4 × 4 supercell (Figure 5.2a), with a 4e− charge. An
h-BN sheet was modeled as a 6 × 6 supercell (Figure 5.2b), either carrying a
2e− charge 176 or subjected to an electric field of 0.04 a.u. (about 2 V Å−1). 194 In
all cases, the considered charge levels or field strength have been reported to
lead to a shift of the CO2 adsorption mode from physisorption to chemisorp-
tion. The relevant adsorption structures for these systems are depicted in Fig-
ure 5.2c–e.

5.3 Results

The only “free” computational parameter with no true physical analogue is the
vacuum space between the repeated periodic images of the adsorbent material,
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figure 5.3: Convergence dependence of CO2 adsorption energies on charged g-C4N3
on the vacuum size. (a)Dependence of the adsorption energy on the vacuum
space for both fully as partially periodic cells. (b) Extrapolation to infinite
vacuum. Details can be found in the text.

i.e., the Z length of the simulation cell. Therefore, we first perform adsorption
energy calculations using different sizes of the vacuum region, for both the pris-
tine sheet and the adsorption complex, to assess its impact. In Figure 5.3a, these
energies are plotted for CO2 adsorption on charged g-C4N3, demonstrating the
huge impact of the vacuum region. Depending on the imposed intersheet spac-
ing, the interaction of CO2 with the sheet is either predicted to be very favorable
(with a strongly negative adsorption energy), or not binding at all, which means
that not only quantitative predictions, but even qualitative trends are sensitive
to the vacuum size. Furthermore, no clear convergence is observed, even when
using a very large cell length of 50 Å, which is significantly larger than the com-
monly reported vacuum sizes of 15–25 Å. No convergence studies of this type
have been previously reported in the literature.
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figure 5.4: Absolute signed errors for adsorption energies in all systems for various
vacuum sizes. As a reference, converged energies obtained from partially
periodic calculations are used.

One way to avoid the problem of periodic images interacting with each other
is to use specialized Poisson solvers for electrostatics, that allow tomix periodic
and nonperiodic boundaries. We repeat the adsorption energy calculations in
different cell sizes, but now apply theMT solver to impose nonperiodic bound-
aries along the Z direction. This setup gives rise to adsorption energies inde-
pendent of the cell dimensions, as expected (Figure 5.3a). If the adsorption en-
ergy obtained in a partially nonperiodic cell is assumed to reflect the properly
converged solution, it can be inferred that calculations in fully periodic cells
consistently underestimate this property, even when large vacuum sizes are
used. This can be understood as follows: significant charge transfer toward the
adsorbed molecule takes place upon adsorption, and the region carrying a net
charge becomes “thicker” compared to the pristine “clean” nanosheet. The
repulsive interaction between periodic images of clean sheets can be expected
to be proportional to L−1, with L the vacuum spacing along the Z direction.
The effective separation between sheets carrying adsorbed molecules, then, is
reduced. For large L, the as such introduced error will be simply proportional
to L−1 and extrapolating L→∞ should give adsorption energies free of any er-
ror. Indeed, as depicted in Figure 5.3b, extrapolated adsorption energies from
fully periodic cells are identical to the solution obtained in a cell with partial
periodicity, also confirming the appropriateness of the latter.

The same treatment can also be applied to the other systems—some key
results are summarized in Figure 5.4. Similar to g-C4N3, the effect of charge-
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figure 5.5: Absolute signed errors for adsorption energies on h-BN in different charge
states, in a fully periodic boxwith a vacuumof 30Å.As a reference, energies
obtained from partially periodic calculations are used.

enhanced adsorption on h-BN is significantly underestimated in fully periodic
cells: the commonly applied vacuum space of 20 Å gives rise to a significant
error of 0.44 eV, and even an impractically large cell edge length of 50 Å is still
off by 0.18 eV. Furthermore, the error increases with the magnitude of the sur-
face charge, as depicted in Figure 5.5. Evidently, such a large charge-dependent
error renders computational studies of charge response properties213 useless.

A somewhat different picture arises for electric field-modulated adsorption.
Here, fully periodic cells tend to overstabilize adsorbed CO2 (Figure 5.4). This
can be explained by the difference in interaction across periodic images, which
is not a charge-charge repulsion, but an attractive dipole-dipole attraction. Elec-
tric field-enhanced adsorption of CO2 relies on a large polarization effect from
the electric field to push electrons from the nanosheet into themolecule, which
causes the adsorption complex to have a larger induced dipole, and hence
stronger interactions across periodic boundaries than the pristine nanosheet,
where electrons have nowhere else to go. Nevertheless, energies from the fully
periodic cells can also be extrapolated to the partially periodic result for this
system.

While energetics are strongly affected by the treatment of periodicity, elec-
tronic structures of the considered systems are fairly insensitive to this. For
example, the charge transfer to CO2 (as an indication of the relevant electronic
structure) on charged h-BN is 1.187e− in a converged calculation, and 1.175e− in
a fully periodic systemwith amodest vacuum size of 20Å. Similar observations
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for this transition can be made for h-BN subjected to an electric field (0.523e−

to 0.554e−) and charged g-C4N3 (0.416e− to 0.383e−). These highly similar elec-
tron densities also imply a similar ground state structure, which indeed appears
to be the case: reoptimizing the adsorption complex on charged g-C4N3 in a pe-
riodic cell with 25 Å vacuum yields a structure with an N–CO2 bond of 1.53 Å,
as compared to the 1.54 Å in the cell with partial periodicity. On h-BN we find
somewhat larger deviations, with the N–CO2 bond in electric field-enhanced
adsorption changing from 1.71 Å to 1.82 Å upon reducing periodicity.

Unfortunately, we have been unable to cross-check our results with some of
the relevant previous studies 177,194 because these are inherently unreproducible.
Rather than reporting exact box dimensions, employed vacuum spacings are
consistently reported as being “larger than” a certain value, which is a very
troubling carelessness that appears to permeate the literature (see, e.g., any
publication by Smith and coworkers). Because results can be“tuned” by chang-
ing the vacuum spacing, such vague language is not acceptable: it makes inde-
pendent validation and comparison across materials, molecules, and computa-
tional codes impossible. Thankfully, we could find well-defined computational
results for charged h-BN, for which a vacuum distance of 15 Å was used. 176 For
that particular setup, we find a CO2 adsorption energy of −2.45 eV, in good
agreement with the previously reported value of −2.32 eV. Compared to fully
converged cell sizes that produce an adsorption energy of −3.04 eV, these fully
periodic results are in error by ~0.6 eV, or 25%.

5.4 Conclusions

We have shown that conventional computational approaches to charge- and
electric field-controlled gas capture, storage and conversion processes can give
rise to significant artifacts due to incomplete convergence of interlayer interac-
tions across periodic boundaries. These errors appear to affect the bulk of the
literature on the subject. 176–197,213 In futurework, fully converged adsorption en-
ergies can be obtained through one of two possible strategies: extrapolation of
fully periodic calculations to infinite vacuum, or adoption of specialized Pois-
son solvers that also allow for a nonperiodic direction along the surface normal.
The former approach can be easily realized in any of the standard periodicdft
codes, whereas the latter will also be able to self-consistently yield converged
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minimum energy configurations and is hence preferred. We stress that in gen-
eral, calculations of fully periodic systems with large vacuum can reasonably
capture charge-modulated adsorption phenomena, but quantitative predictions
will be off.

More generally, these results show the difficulty of constructing physically
soundmodels. Even if one consciously limits the scope of themodel—only pure
charging effects, no embedding of the catalyst in a solvent or plasma, no defects,
only 2D materials, etc.—plenty of pitfalls remain. Within the stylized nature
of the model, with little direct correspondence to real-life problems, it is even
more important to at least ensure internal consistency, and remain critical of
conventional wisdom. Only when we get the simplest of models right, we can
build towards bigger and better things.

Armed with these new insights, we can now move to the construction of
meaningful models of plasma-charged catalysts.
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chapter 6

Catalytic effects in plasma catalysis

6.1 Surface charging and plasma catalysis

A plasma catalysis reactor is commonly created by packing a plasma reactor
with catalyst beads, which are usually made of an oxide support material on
which transition metal particles are deposited. At an atomistic level, the cat-
alytic process is dependent on the morphology and chemical composition of
the catalyst. While a negative surface charge is known to change the chemical
characteristics of a material, it is unclear to what extent this effect is influenced
by the nature of the material, which raises a number of questions. Is the ef-
fect of plasma charging the same for all catalysts?Which catalytic processes are
affected by charging, and how? Is it possible to control this effect? Is the magni-
tude of these effects relevant for typical experimental conditions? Can charging
help explain the differences between thermal and plasma catalysis?

In a first attempt to answer these questions, we construct a number of model
systems of common plasma-catalytic experiments, i.e., CO2 splitting by dif-
ferent oxide-supported transition metal catalysts. In particular, atomically dis-
persed Ti, Ni and Cu on a γ-Al2O3 (110) surface are considered in order to (1)
characterize the structure of single atom catalysts on Al2O3 and (2) investigate
the CO2 reduction ability of these catalysts and the dependence of their chem-
ical properties on the nature of the metal. Besides being a very promising class
of materials,214,215 single atom catalysts also allow us to “purify” the model
from the structural complexity of larger supported clusters, models of which

The results presented in this chapter were published in:
K.M. Bal, S. Huygh, A. Bogaerts and E. C. Neyts. Effect of plasma-induced surface charg-
ing on catalytic processes: application to CO2 activation. Plasma Sources Sci. Technol. 27,
024001 (2018).
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have many more degrees of freedom and therefore require somewhat arbitrary
choices of cluster size, structure and orientation. 155–158 For this reason, using a
model based on single metal atoms allows for a fairer and clearer comparison
of different catalytic transition metals, although preliminary tests indicate that
our general conclusions are unaffected by cluster size.

6.2 Methodology

6.2.1 Model systems
The same gpw/pbe-d3/m-dzvp level of theory as in Chapter 5 was used,
but with a slightly higher plane wave cutoff of 1200 Ry for improved accuracy.
Calculations were carried out on a slab of the γ-Al2O3 structure proposed by
Digne et al.216 The (110) surface was modeled as a 2 × 2 supercell contain-
ing 240 atoms, corresponding to six layers of which the bottom two were kept
fixed at their bulk positions. The simulation cell dimensions were 16.1606 ×
16.8106 × 40Å3. Partial periodicity was enforced with theMartyna-Tuckerman
Poisson solver;212 calculations involving isolated atoms or molecules were also
carried out in these cell sizes. The surface exposes both coordinatively unsat-
urated Al and O atoms. Tri- (AlIII) or tetracoordinate Al (AlIV) atoms provide
Lewis-acidic sites, whereas di- (O2) and tricoordinate (O3) surface atoms are
Lewis basic.217 Although the (110) surface termination is the most common, it
is not stable in its “dry” form, which is why a hydrated variant was also con-
sidered in this work (structure s1a from the literature217) containing 4 adsorbed
water molecules, corresponding to a density of about 3 OH nm−2. This surface
is the most stable adsorption configuration of a single adsorbed water molecule
per unit cell, which is dissociated into an OH group adsorbed on the AlIII site
and a proton bonded with an O2 atom. Comparison of the two surfaces allows
assessing the impact of adsorbed water on the properties of the Al2O3 support.

Unless noted otherwise, the abovementioned pbe-d3 based methodology
was employed for all calculations, but a small subset of structures was re-
optimized using different exchange-correlation functionals in order to assess
the reproducibility or our results and their dependence on the chosen approxi-
mations. A more detailed description of all cross-checks is given in Section 6.5.
We find that the sensitivity of our results on the choice of the density functional
approximation is very small, and has therefore no impact on the general conclu-
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sions presented here. WhenMD simulations were carried out, a reduced plane
wave cutoff of 400 or 600 Ry and box Z length of 25 Å was used, with full pe-
riodic boundaries. The equations of motion of the Nosé-Hoover chain 106 were
integratedwith a 0.5 fs time step. Before production runs, each systemwas equi-
librated for 1 ps at the desired temperature. cvhd biasing was applied with the
plumed plugin,31 in the form of equations (2.4) and (2.5). Bond distortions
were biased up to a maximal value of 0.5 (50% bond elongation compared to
equilibrium) through addition of a Gaussian of height 0.01 eV and width 0.05
every 10 fs, with a bias factor of γ = 20. The boost factors that were obtained
range from ~100 at 800 K, to over 3 × 106 at 400 K.

6.2.2 Modeling correct charge distributions
A naive approach to model a plasma-charged catalyst surface would be a
straightforward introduction of the charge, i.e., adding an additional electron
to a surface slab model to generate a negative surface charge. Although this a
reasonable way to treat homogeneous systems (such as a solvated ion) in which
the background charge essentially approximates the effect of a uniformdistribu-
tion of counterions, it breaks down for systems with an inhomogeneous coun-
tercharge distribution.200 In particular, such a charge distribution will be a poor
approximation of a surface exposed to a plasma, in which there is a clear charge
separation between the negatively charged surface and the plasma sheath that
contains positively charged ions. We believe that an explicit counterion added
to the gas phase at a sufficient distance above the surface, with periodic bound-
aries parallel to the surface, will essentially act as a charged plate of opposite
charge and generate an electric double layer. This way, an electric field perpen-
dicular to the surface of a magnitude appropriate to the surface charge density
will be naturally obtained as a byproduct of the procedure. Hence, such an ap-
proach yields a realistic model of a charged catalyst surface exposed to a plasma
because (1) the charge distributionsmatch those of the true system, i.e., a nega-
tively charged surface exposed to a gas phase carrying positive countercharges
and (2) an electric field, perpendicular to the surface follows self-consistently
from these charge distributions.

The practical realization of this approach in a standard dft code (such as
cp2k) is as follows. The negative surface charges in this work require a posi-
tive countercharge which, in the simplest case, can be a proton. It is, however,
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figure 6.1: Convergence of computed CO2 adsorption energies (in the d-IVb configu-
ration) on a negatively charged slab with respect to the position of the neu-
tralizing countercharge. For the total energies, a straight line is fitted.

not always straightforwardly possible to introduce gas phase ions of specified
charge into the simulation box. Indeed, if this approach were attempted in a
plane wave dft code, charge transfer could occur to the point charge due to
use of a non-localized basis set, making it impossible to control the charge of
the slab; after all, the ground state solution of such a surface+free atom sys-
tem, given full variational freedom of the electron density, is perhaps not the
required charge-separated state. This can be compensated by using adft code
that expands the Kohn–Sham orbitals in an atom-centered (localized) basis: if
no basis functions are added on the counterion, no electronic density can spill
over, its charge can be precisely controlled, and the desired surface charge can
be enforced.Themethod is in principle readily usable in anydft code that uses
localized basis sets but has, to the best of our knowledge, not yet been described
in the literature.

In the setup adopted in this work, a single additional electron is considered
and a proton countercharge is placed at a Z position of 40 Å in a box of di-
mensions 16.1606 × 16.8106 × 100 Å3. The accuracy of the countercharge ap-
proach hinges on the assumption that if the energetic contribution from the
point charge (besides generating a perpendicular electric field) is the same for
all systems, adsorption energies are not affected because its effect is cancelled
when subtracting the energies of the slab + adsorbate and the clean slab. To
verify this assumption, energies were computed for different Z positions of the
countercharge, depicted in Figure 6.1. The interaction energy of the counter-
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charge and the slab is linearly dependent on their mutual distance, which is the
expected behavior for two interacting infinite charged plates. At sufficient sepa-
ration, the effect of the adsorbed species on this interaction becomes negligible,
and the computed adsorption energy converges. That is, the electrostatic in-
teractions between the surface and the countercharge reduce to a simple plate-
plate interaction (with corresponding electric field) in an averaged sense, rather
than a point charge–adsorbed molecule interaction that can be observed if the
point charge is too close. A Z-position higher than 30 Å (or a distance of ~20 Å)
suffices, and the value of 40Å used in our production calculations is a very con-
servative choice.

The fact that the slab-countercharge interaction quickly converges at fairly
short distances is also a further validation of the physical soundness of the
model. Typical Debye lengths λD in nonthermal plasmas are in the order of
µm to mm,218 so that the plasma sheath thickness is beyond the length scales
of our simulation cell which, however, is shown here to give converged electro-
statics. In other words, our model of the charge distribution is a rather good ap-
proximation of an electric double layer, provided that the characteristic length
scales are large. It would therefore not work for charged slabs in contact with an
electrolyte solution. For example, a room temperature aqueous solution with a
0.1 M ionic strength has λD ≈ 1 nm, which means that counterions are mostly
present at distances with unconverged slab–ion interactions, and more fine-
grained descriptions of the charge distribution must be adopted.

For the surface model used, a single excess electron corresponds to an elec-
tron density of 3.68×1017 m−2 or a surface charge density of about −0.06 Cm−2.
Recent measurements on alumina exposed to a multi-filament atmospheric
pressure dielectric barrier discharge (dbd) put the plasma-induced surface
electron density in the order of 1015–1017 m−2, close to values used here. 168 In
viewof these results, and assuming that the charge penetration depth is nomore
than 1 nm, the relatively small surface model employed in this work is in fact
also a realistic approximation of the charged plasma-exposed alumina surface
itself.
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figure 6.2: Transition metal adsorption on neutral and negatively charged alumina sur-
faces. (a) and (b) top view of the most favorable transition metal adsorp-
tion configuration on the dry and hydrated surfaces, respectively.Hydrogen:
white, oxygen: red, aluminium: gray, and metal: blue. (c) Metal adsorption
energies on the two surfaces, with and without extra charge. (d) Correlation
of metal binding energies and the change of surface electron affinity Δχ =
Eads (M, neutral) − Eads (M, charged) induced by metal binding with metal
ionization energies.
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figure 6.3: Projected densities of states (pdos) for Ni supported on the dry surface.
Shown are the states of Ni and surface oxygens. Energies are centered on
the Fermi level. It can be seen that mixing of metal and surface states is
essentially nonexistent.

6.3 Results

6.3.1 Transition metal atom adsorption on the Al2O3 support
The Al2O3 surface is known to provide strong anchoring sites for adsorbed
metal atoms, and is therefore an excellent supportmaterial to stable single atom
catalysts.219–221 For the Ti, Ni, and Cu atoms, different adsorption sites were
probed on both the dry and hydrated surface. As discussed in Section 6.5, ad-
ditional coordination by adsorbed water has an impact on the adsorption char-
acteristics and relative energetics of the surface sites. However, for all metal–
surface combinations, the adsorption configuration in which the metal atom is
coordinated by two O2 atoms (Figure 6.2a) was found to be the most favorable,
and is the only one considered in the following (all configurations and their en-
ergies are given in Section 6.5). The effect of surface hydration (and additional
OH coordination, Figure 6.2b) on the metal adsorption energy is limited (<
10%), indicating that transition metal bonding at the surface does not depend
strongly on the precise hydration degree or pattern. In all configurations and
on all surfaces, Ti adsorbs much more strongly on the oxide surface than Ni or
Cu, as depicted in Figure 6.2c.

Transitionmetal adsorption on the negatively charged surface is not as favor-
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able. The structures of all metal–support combinations were reoptimized with
an additional electron, and absolute metal adsorption energies are about 1 eV
smaller in all cases or, alternatively, the electron affinity of the support con-
sistently decreases by this quantity when a transition metal atom is adsorbed.
In support of the latter phrasing we find two major indications that the metal–
support interaction is mostly ionic in character, with the metal atom adsorbed
in its M2+ state. First, only very limited mixing of the metal and support elec-
tronic states is observed in the projected density of states (pdos, see Figure 6.3
showing Ni as example), which can be associated with a primarily ionic bond.
Second, the adsorption energies of themetal atoms on the dry support correlate
verywellwith their combinedfirst and second ionization energies, i.e., the ener-
getic cost ofM→M2++2 e– in the gas phase (Figure 6.2d). Combined with the
near-constant ~1 eV metal-induced downward shift of the support’s electron
affinity, it can be inferred that metal atom adsorption on Al2O3 is a redox reac-
tionwherein the support is reduced, which therefore becomesmore resistant to
further reduction through the absorption of (plasma-supplied) electrons. This
reduction of the support upon metal adsorption is of the samemagnitude inde-
pendent of the metal, which is always oxidized to M2+ (in this particular con-
figuration), meaning that the support’s electron affinity is also modified in the
same constant fashion.

6.3.2 CO2 adsorption
CO2 can either chemisorb on the metal atom, or on the Al2O3 support. In all
cases, the adsorbed CO2 molecule adopts a bent carbonate-like structure, with
the O−C−O angle deformed by over 40°, as shown in Figure 6.4a-b.

On the support, the preferential adsorption site is on an AlIV-O2 Lewis pair,
forming Al−O and O−C bonds (Figure 6.4a). Another configuration involving
an AlIII-O2-AlIV site is 0.46 eV less favorable due to the higher Lewis acidity of
theAlIII site. Indeed,CO2 is a Lewis acid and consequently its affinitywith a sur-
face site is proportional with the site’s basicity, which is why it is typically used
as probe molecule to determine surface basicity. In line with this reasoning, the
Lewis acidity of the most favorable AlIV site increases upon hydroxylation of
AlIII,217 correlating with the lower (by 0.62 eV) CO2 adsorption energy on the
hydrated surface. A negative charge transfer, respectively −0.33e and −0.31e on
the dry and the hydrated surface, further confirms the Lewis acidic behavior of
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figure 6.4: Effect of surface charging on CO2 adsorption. (a) and (b) Most favor-
able adsorption configuration on the support and supported transitionmetal
atom. (c) Adsorption energies on all sites, with and without extra charge.
(d) pdos of C in CO2 adsorbed on all relevant sites on the dry support,
centered on the Fermi level (or, rather, the energy of the highest occupied
orbital). The relevant high-lying bonding orbitals are marked with dashed
boxes.
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the CO2 molecule. CO2 chemisorption on the γ-Al2O3 (110) surface is gener-
ally quite similar to adsorption on many other oxides, with adsorption energies
in the range of −0.5 to −2.5 eV, formation of a surface carbonate with Lewis
basic surface oxygens, strongly bent bi- or tridentate adsorption configurations,
and negative charge transfer to the molecule. 137–144 The fairly strong adsorp-
tion of CO2 on the alumina support might also increase the retention time of
the molecule near the surface—giving it more time to reach an active catalyst
site—although it could also increase the competition between metal and sup-
port sites.

For all metal–surface combinations, the IVa adsorption configuration is the
most stable, and is therefore used in the CO2 adsorption calculations. In all
cases, CO2 is found to adsorb in a bridged structure on both themetal atom and
the neighboring AlIV surface atom, highlighting the important effect of the sup-
port material on the chemical properties of the adsorbed transition metal (Fig-
ure 6.4b). Similar bindingmodeswere observed for larger supportedmetal clus-
ters, for which the metal–support interface was also the preferred CO2 adsorp-
tion location. 155,156 Ni and Cu exclusively bind the CO2 carbon atom, whereas
the surface Al atom binds one of its oxygen atoms. Ti, on the other hand, forms
an η2 complex with the molecule, coordinating both atoms of a C−O bond,
while the Al surface atom coordinates the other C−O bond. The ability of the
metal–support interface to provide Lewis acid–base pairs is an important prop-
erty of oxide-supported metal catalysts that can significantly impact its reac-
tivity, with the support material playing in active role beyond merely acting as
support for the metal catalyst.

The supported metal atoms show a very diverse CO2 binding behavior, with
Ti having the strongest interaction of −2.12 eV (−2.25 eV on the hydrated sur-
face), Ni half as strong with −1.11 eV (−0.99 eV), and Cu even weaker with
only −0.54 eV (−0.30 eV), following trends that were established earlier for fcc
(100) metal surfaces. 140 In fact, the van der Waals component contributes to
about half of the Cu/CO2 interaction (amounting to 0.22 eV and 0.18 eV on the
dry and hydrated surface, respectively), pointing to only very limited chemical
bonding, insomuch that adsorption on the alumina support is favored over ad-
sorption on the Cu atom. On the dry surface, this is also true for Ni, although
hydration greatly diminishes the support’s CO2 adsorption ability and favors
adsorption on supported Ti or Ni (at least for the particular hydration pattern
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employed here).
Introduction of an additional electron has a dramatic impact on the adsorp-

tion properties, significantly improving the binding characteristics of all CO2

adsorption modes, as summarized in Figure 6.4c. The magnitude of the effect
is the most striking in the case of Cu, which (on the hydrated surface) sees a
four-fold increase of the binding energy upon charging, even becoming com-
petitive to Ni. In general, surface charging appears to somewhat “level out”
the differences between the metal catalysts, because the effect is much weaker
for Ti, which already shows very strong binding with neutral charge.

From a Lewis acid–base theory perspective, negatively charging the surface
will naturally increase its basicity and hence improve the bindingwith the acidic
CO2 molecule. To explain the differences between the adsorption modes, their
electronic structure must however be analyzed. In particular, examination of
the bonding states in the pdos, depicted in Figure 6.4d, and their position rel-
ative to the Fermi level is here useful. The comparatively minor surface charg-
ing effect on adsorption at the dry support can be attributed by the fact that the
highest bonding state, formed by overlap of CO2 antibonding π∗ orbitals with
surface p or d states, is fairly low-lying, centered around−2.55 eV (relative to the
Fermi level) and shifting to −3.31 eV upon charging; similar observations can
be made for CO2 adsorption on supported Ti (−2.13 eV dropping to −2.38 eV).
In contrast, the bondingM−CO2 states of the neutral dry Ni and Cu-based cat-
alysts lie partially above the Fermi level, especially explaining the very limited
Cu−CO2 bonding: the lower the energy of the metal d states, the more diffi-
cult they overlap with the high-lying CO2 antibonding π∗ orbitals, resulting in
a higher energy (i.e., less stabilization) of the bonding states. Surface charging
can therefore have a much larger impact in these cases, lowering the bonding
states from −1.00 to −1.43 eV (Ni), and from 0.46 to −0.28 eV (Cu), relative to
the energy of the highest occupied orbital. The relative lowering of the bond-
ing states upon charging is also reflected by the charge of the adsorbed CO2

molecule: increased occupation of these orbitals, which are partially localized
on the molecule, leads to a larger electron density; for example, the charge of
CO2 adsorbed on Cu on the hydrated surface changes by −0.27e upon surface
charging, compared to only −0.08e and −0.12e on Ti and Ni, respectively.
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table 6.1: Influence of surface charging on molecular adsorption energies (eV) at vari-
ous sites on the Al2O3 support (d: dry surface, h: hydrated surface).

molecule site neutral charged
H2O d-AlIII −2.42 −2.56
CH4 d-AlIV −0.38 −0.46

h-AlIV 0.14 0.11
CO d-AlIII −1.38 −1.20

d-AlIV −1.07 −1.02
h-AlIV −1.29 −1.14

6.3.3 Adsorption of other molecules on the support
While the Lewis acidic CO2 shows improved adsorption behavior on a nega-
tively charged substrate, this is not necessarily a good indicator for molecular
adsorption in a general sense. Therefore, we calculated the adsorption energies
of water, methane, and carbon monoxide on both the neutral and the charged
surface, summarized in Table 6.1. For water, the hydration energy is consid-
ered, i.e., the reaction energy of forming the hydrated surface model from the
dry surface. Similarly, for methane, dissociative adsorption into CH3 and H is
the studied process. CO is commonly used as basic probemolecule to assess the
Lewis acidity of a surface, and is also amajor reaction product inCO2 reduction.

Generally, surface charging improves the adsorption behavior of σ-bonded
species (H2O and CH4), but to a much smaller degree (no more than 0.15 eV)
due to absence of unoccupied states close to the Fermi level. CO shows the op-
posite behavior, consistent with its Lewis basic character, also again showing
the relative hydration-induced decrease in basicity for this particular configu-
ration. While CO binds on the surface by donating its lone electron pair on C,
a negative surface charge can be donated back to CO by partially filling its anti-
bonding π∗ orbitals, which becomemore easily accessible because of the higher
energy of the surface electronic states. For example, a CO molecule bound at
an AlIII surface atom has a total charge of 0.06e on the neutral, and 0.02e on
the charged surface. Hence, in all cases unoccupied states close to the Fermi
level play a crucial role in determining the charge dependence on adsorption;
the precise direction of the effect depends on their (anti)bonding nature. The
implications of these contrasting respective bonding/antibonding interactions
in adsorbed CO2 and CO will be further explored in the following section.
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figure 6.5: cvhd simulation of CO2 splitting by supportedmetal atoms. Reaction steps
observed for (a) Ti at 400 K and (b) Ni at 800 K. Accelerated time is given
below each frame. Given the time scales, it can be concluded that for Ni,
proton transfer and C−O splitting are essentially concerted.

6.3.4 Impact on surface reactions
The uncatalyzed gas-phase splitting of CO2 (i.e., CO2 → CO + 1

2O2) is ther-
modynamically highly unfavorable (ΔH = 2.9 eV). On a suitable catalyst, the
reaction CO2 (g) → CO (g) + O (ads) can be made to take place more easily,
having a beneficial impact on the overall rate of any process that depends on
CO2 splitting, including dry reforming. Although a structurally simple atomi-
cally dispersed catalyst can ostensibly only take part in a small number of reac-
tionmechanisms (direct C−O splitting in this case), the chemical activity of the
support material significantly increases the number of possible CO2 activation
pathways. While it is not in the scope of this work to obtain a comprehensive
picture of the complete catalytic processes of the considered systems, it is use-
ful to have an initial picture of the most common reactions of adsorbed CO2.

In cvhd simulations of CO2 adsorbed on the hydrated Ti-based catalyst,
the direct splitting reaction, CO2 (ads) → CO (ads) + O (ads)) (Figure 6.5 a),
could be observed at a temperature as low as 400 K (which is indeed typically
achieved in a dbd plasma) after a simulated time of 4.1 µs. Ni is not found to
be active at 400 K within the cvhd time scale (which does not, however, rule
out the general possibility of a reaction), but does react at 800 K after 0.14 ns.
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However, no direct splitting is observed in this case, but rather a proton-mediated
mechanism in which a proton is first transferred to the CO2 molecule from an
OH group at the support, leading to instantaneous dissociation into CO and
OH (Figure 6.5 b) in a near-concerted fashion.

Motivated by this apparent difference in the reactivity of Ti andNi, the over-
all reaction energies of the two competing CO2 activation pathways leading to
CO (g) + O (ads) and CO (g) + OH (ads), respectively (in their most stable
configuration as depicted in Figure 6.6a and b), were calculated for all metals
on both the neutral and charged surface. It is indeed found thatTi ismore active
towards direct splitting, while Ni and Cu favor a proton-mediated mechanism
(Figure 6.6c). Also in agreement with the simulations is the much more favor-
able reaction energy of the initial splitting step on Ti, which reacted at 400 K
and exhibits a reaction energy of −0.98 eV, as compared to Ni, which reacted at
higher simulated temperatures and has a reaction energy of 0.27 eV. The much
higher reactivity of Ti can be attributed to its higher intrinsic reductive abilities:
while formally adsorbed in the Ti2+ state, a further oxidation to Ti4+ is possible,
which can be achieved by reducing CO2.

When examining the effect of an excess electron on the overall splitting pro-
cess the results largely echo those of CO2 adsorption, with reactions on Ti rel-
atively unaffected (ΔΔEads = −0.08 eV for direct splitting) and the process on
Cu exhibiting a very strong influence (ΔΔEads = −0.92 eV for proton-induced
splitting) by the additional negative surface charge (Figure 6.6c). Interestingly,
when decomposing the energetic contributions of the separate process steps
(depicted in Figure 6.6d), it can be seen that the initial CO2 adsorption step is
in fact themost affected by the charge, while the subsequent steps are not as dis-
similar to their counterparts on the neutral surface. Larger effects are observed
again for the desorption of CO, which is more strongly bound on the charged
than the neutral surface, in contrast to what was found for the adsorption on
the support. Indeed, CO2 always adsorbs through hybridization of its antibond-
ing π∗ orbitals with high-lying surface states, giving rise to new bonding states
around the Fermi level that can be further stabilized with an excess negative
charge. CO, however, interacts with the support through a σ-bonded interac-
tion involving its lone pair, leaving its mostly unmodified π∗ orbitals available
in an antibonding state that can be occupied by an excess electron, destabilizing
the adsorption complex. In contrast, CO interaction with a metal involves a d–
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figure 6.6: Effect of an excess electron on the reaction energies of the CO2 splitting
process. (a) Product of the direct splitting reaction. (b) Product of proton-
mediated splitting. (c) Overall reaction energies for the two studied mech-
anisms. (d) Most favorable pathways on all metals. Empty symbols and
dashed lines: neutral surface, filled symbols and full lines: charged surface.
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figure 6.7: Contrasting adsorption behavior of CO2 and CO. pdos of the C−M inter-
action, with M being the surface atom forming a bond with a C atom in the
molecule. It can be seen that around the Fermi level, CO2 π∗ states are al-
ways hybridized with the surface states, giving rise to new bonding states.
This is also true for CO bound on a metal atom (here Ni), but not on the
support, where the π∗ orbitals remain clearly recognizable as such, do not
mix appreciably with the surface states, and remain antibonding. Blue lines:
C, red dashed lines: M.
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π∗ overlap that again produces a bonding interaction that will be strengthened
by charging. These concepts are illustrated in Figure 6.7.

While it becomes more difficult to release CO from the metal catalyst upon
the charging, the overall CO2 splitting process is more favorable. Moreover,
CO need not be the final product, but could react further to yield base chem-
icals, such as formaldehyde or methanol upon addition of a hydrogen source,
just as well as the additional oxygen atom on the surface can take part in vari-
ous oxidation processes. This kind of more detailed pathway studies should be
investigated further.

While we have primarily discussed the thermodynamic effects of the excess
electron, the kinetics of the catalytic reaction are also of great importance. As
a first assessment of the impact of the surface charge on reaction barriers, esti-
mated transition states of the direct splitting reactionwere determined.We find
that the presence of a negative surface charge consistently lowers the energy
of configurations with partially broken bonds such as transition states, lowering
the estimated splitting barrier on all metals: from 1.15 eV to 0.75 eV onTi, from
0.80 eV to 0.65 eV onNi, and from 1.26 eV to 0.83 eV onCu.Through the pres-
ence of an additional electron, partially unsaturated atoms in the transition state
receive some additional stabilization, hence lowering the apparent reaction bar-
rier and increasing the reaction rate. It must be mentioned that the calculated
barriers do not necessarily reflect the lowest energy splitting pathway, but are
chosen so as to provide a consistent set of benchmark configurations. For ex-
ample, in our cvhd simulations we find that CO2 splitting on Ti occurs from
a rearranged state in which the molecule is bound exclusively on the metal, as
opposed to the metal-support bridge we used as initial state here, as shown in
Figure 6.5.

6.3.5 Larger clusters
Although we have primarily focused on supported single atoms, it is instruc-
tive to assess to what extent our extensive conclusions for these systems might
be valid for larger supported clusters. In a general sense, introducing larger
clusters defeats the purpose of using single atoms: the number of degrees of
freedom increases with the number of metal atoms in the cluster, meaning that
results could becomemore andmore influenced by the choice of the configura-
tions used in the calculations, in contrast to the rather limited set of structures
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table 6.2: Charge effect on CO2 binding by a supported Cu13 cluster. Energies (eV) of
a Cu13 cluster adsorption on the dry Al2O3 surface, and of CO2 adsorption
and activation on this cluster.

neutral charged
Cu13 adsorption on Al2O3 −6.13 −5.63
CO2 adsorption on Cu13 −0.78 −1.16
CO2 split on Cu13 −0.12 −0.15
CO desorption from Cu13 1.70 1.87
Overall CO2 splitting 0.79 0.56

figure 6.8: CO2 splitting on a supported Cu13 cluster. (a) CO2 adsorption configu-
ration, (b) configuration after splitting. The cluster is adsorbed on the dry
Al2O3 surface.

that must be considered in the case of single atom catalysts. Therefore, these
initial calculations cannot offer the same fine-grained level of conclusions that
has been reached for supported single atoms but, rather, reveal if our previous
conclusions are not an artifact of the particular (pragmatic) choice of catalyst
model.

We investigated the charging effect on the properties of a supported icosa-
hedral Cu13 cluster, bound on the surface by three O2 surface atoms and one
O3 site. Upon absorption of an electron most of the additional charge is local-
ized in the cluster, which is changed by −0.79e, and a destabilization of 0.5 eV
is observed (Table 6.2). As the studied CO2 binding mode we considered a
bridged structure at themetal–support interface, in analogy with the structures
obtained on the single atom catalysts (Figure 6.8). Again, as evidenced by Ta-
ble 6.2, the trends observed for the single atom catalysts are retained, although
in somewhat diminished form. Yet, the overall splitting reaction CO2 (g) →
CO (g) + O (ads) is 0.23 eV more favorable on the negatively charged surface,
which is significant.
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6.4 Conclusions

In the most general sense, electron deposition leads to a chemical reduction of
the catalytic surface and, hence, increases its reductive capabilities. Specifically,
this phenomenon has a very favorable effect on CO2 activation, with respect to
both adsorption strength and overall reaction energy of the splitting reaction.
For the strongly oxidizable adsorbedTi catalyst, this effect is not as pronounced
as forNi andCu:while allmetals formally adsorb in theirM2+ state,Ti can easily
be further oxidized to Ti4+, allowing it to act as a strong reducing agent without
having to be charged, as evidenced by its strong CO2 activation abilities. The
properties of the latter are also largely in line with the redox properties of TiO2

surfaces, resulting from oxygen vacancy creation and annihilation and which
allow for efficient reduction of CO2.

A less general interpretation of the phenomenon involves viewing the neg-
atively charged catalyst as more Lewis basic, which is appropriate for the de-
scription of the bare Al2O3 support, but is more difficult to apply once adsorbed
transitionmetal clusters have to be considered, as evidenced by the different be-
havior of CO adsorbed on the support or the metal, respectively. An analysis
of the electronic structure of the adsorption complex hence provides the most
valuable and robust insight into its response to surface charging.

The major impact of surface charging on the catalytic performance of
supported Ni and Cu—even inducing a reversal of their relative activity—
demonstrates that conclusions drawn for “conventional” thermal catalysis not
necessarily hold for processes involving charged catalysts in, e.g., a plasma. In-
deed, the presence of a large surface charge might help explain often-observed
but poorly understood synergistic effects in plasma catalysis.

It remains to be seen to what extent the large excess electron-induced effects
observed for the systems and reactions of this study are applicable to other cat-
alysts and processes. Different support materials (e.g., semiconductors rather
than isolators), larger supported clusters, transition metal surfaces, and a more
exhaustive set of redox processes should all be considered in order to assess the
influence of a negative surface charge on catalysts in a more general sense. The
methodology outlined in this work can provide the template for such a system-
atic undertaking. However, the results presented in this work already point to
a phenomenon with potentially far-reaching consequences: by varying the dis-
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charge parameters of the plasma and the degree of electron deposition on the
plasma-facing catalyst, its Lewis acidity and redox properties can be modified
as well. Thus, controlling the electron deposition on a catalyst opens another
avenue towards activity and selectivity control of a plasma-catalytic process.

106



6.5 additional information

figure 6.9: Metal adsorption configurations on the dry and hydrated surface. Config-
urations starting with “d-” denote the dry surface, while those with “h-”
describe the hydrated surface. Hydrogen: white, oxygen: red, aluminium:
gray, and metal: blue. The depicted configurations are for adsorbed Ni, but
do not differ significantly for Ti and Cu.

6.5 Additional information

6.5.1 Transition metal adsorption
For the Ti, Ni, and Cu atoms, different adsorption sites were probed on both
the dry and hydrated surface. These configurations are based on those of the Al
atoms in the “next” surface layer; that is, the location of the Al atoms in a hy-
pothetical additional atomic layer atop the actual surface layer in this work. The
sites are named after the Al atom on which they were based meaning that, e.g.,
the d-III configuration is based on the position of an AlIII atom in the hypothet-
ical top layer. The possible metal atom adsorption configurations are depicted
in Figure 6.9.

The most stable adsorption site on the dry surface for all three metals is d-
IVa, at which two highly unsaturated (dicoordinate) O atoms can coordinate the
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figure 6.10: Relative energies of the metal adsorption configurations on the dry and
hydrated surface. Empty bars reflect adsorption on the dry surface, filled
bars represent the hydrated surface.

metal atom, while d-III and d-IVb have a similar stability (Figure 6.10, empty
bars). Hydration has a drastic impact as it introduces OH groups on the surface
that can provide additional coordination of the metal atom; for Cu, the h-IVa
and h-IVb configurations are essentially degenerate (Figure 6.10, filled bars).
Remarkably, however, the IVa configuration remains the most favorable in all
considered cases. It is conceivable that at higher water coverages or with differ-
ent hydration patterns, a wider array of adsorption configurations are possible;
our calculations provide a first step towards a more complete understanding of
transition metal adsorption on realistic alumina surfaces.

The deformation of the surface upon transitionmetal adsorption is quite lim-
ited in case of Ni and Cu, mainly amounting to a small (< 0.1 Å) elongation of
the Al−O bonds of the coordinating surface O atoms. Ti, however, can have
a much larger impact on the support surface structure: in the d-Ti-IVa con-
figuration, the AlIVb−O2b bond is extended from 1.69 Å to 2.41 Å, essentially
converting AlIVb into an AlIII site. Therefore, Ti can strongly affect the activity
of the surface region close to it.

6.5.2 A reference van der Waals-corrected functional
The rvv10 nonlocal correlation functional,222 which is a revision of the vv10
functional223 that is better suited for plane wave calculations, consists of a
standard rpw86pbe224 generalized gradient approximation (gga) exchange-
correlation functional combinedwith a nonlocal correlation termdue toVydrov
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figure 6.11: Ar dimer binding curve. Energies from calculations employing uncorrected
pbe and optimized pbe-rvv10 functionals are compared against an accu-
rate reference.

and Van Voorhis. Combining a different base gga functional with the nonlocal
correlation term as van der Waals correction can be achieved by refitting the
adjustable parameters in the nonlocal term.225 Of these parameters, b controls
the short range behavior, and C the long range. Hence, only b should be refitted
when the base functional is changed, and the original value for C = 0.0093 can
be retained.

It is found that even for the original vv10 implementation, optimal b values
depend on the fitting target. When fitting against a standard test set, b = 5.9
is obtained, whereas a correct description of noncovalent interactions in liquid
water226 or layered solids requires b > 9.227 We therefore decided to only fit
pbe-rvv10 against a simple “fundamental” reference system, namely the ar-
gon dimer binding curve. This way, accuracy for specific systems is sacrificed
in favor of a more clear and simple parameterization strategy with little empiri-
cism.228

We use an accurate estimate of the attractive part of the Ar dimer binding
curve as reference.229 Calculations were carried out in a 25 × 25 × 25 Å3 box
using a 1200 Ry cutoff for the density. To minimize the basis set superposition
error, the very large aug-qzv3p basis set 125 was used to expand theKohn–Sham
valence orbitals. All calculations were evaluated self-consistently.

The value of b = 9.5 was found to be optimal (minimizing the rms devia-
tion from the reference), and the resulting pbe-rvv10 functional yields a good
binding curve for the Ar dimer, depicted in Figure 6.11 . Due to the shallowness
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table 6.3: Computational consistency checks of the effect of the exchange-correlation
functional. Hydration (per H2O molecule) and CO2 adsorption energies (in
eV) for different adsorption configurations, as calculated by different density
functional methods.

PBE PBE-D3 PBE-rVV10 revPBE-D3 TPSS-D3
H2O −2.23 −2.42 −2.36 −2.36 −2.42
d-CO2-III −0.37 −0.65 −0.64 −0.52 −0.66
d-CO2-IVb −0.82 −1.11 −1.07 −1.02 −1.17
h-CO2-IVb −0.20 −0.49 −0.44 −0.43 −0.56

of the curve, recovering the exact minimum is difficult with pbe-rvv10, but in
overall terms, energetics are well-described.

6.5.3 Computational cross-checks
The stability of the various CO2 adsorption sites was reinvestigated using a set
of different approximations of the exchange-correlation energy. This small se-
ries of calculations should not be seen as a true “benchmark” of these approx-
imations (due to the unavailability of a reference to measure against) but rather
a “consistency check” to verify to what extent our conclusions depend on the
computational choices that were made. Specifically, the treatment of disper-
sion interactions was verified by comparing the “plain” uncorrected pbe func-
tional with its D3- and rvv10-corrected variants, whereas the role of the under-
lying functional was assessed by comparing three common approximations to
the exchange-correlation energy: the widely used pbe gga functional208 (and
used throughout the rest of this work), its revpbe variant230 (which tends to
perform better for thermochemistry231 and surface science232), and the tpss
meta-gga233 (which represents a higher, more advanced, rung on “Jacob’s lad-
der” of density functional approximations234). These functionals were applied
in their D3-corrected form.209,210

Inspection of Table 6.3 demonstrates that all methods are in close agreement
with respect to the relative stability of the CO2 adsorption sites and, for the
dispersion corrected methods, even in terms of absolute adsorption energies.
Furthermore, all methods give hydration energies in good agreement with the
value of −2.34 eV/H2O calculated byWischert et al.217 It should be noted, how-
ever, that our plain pbe calculations do not recover the results of Pan et al. 145 of
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table 6.4: Computational consistency checks for transition metal adsorption. Compar-
ison of D3 and rvv10 dispersion corrections for transition metal adsorption
on the alumina surface. All calculations use pbe-d3 geometries. Adsorption
energies are in eV.

PBE-D3 PBE-rVV10
M @ dry surface
d-Ti-III −4.44 −4.24
d-Ti-IVa −5.62 −5.49
d-Ti-IVb −4.37 −4.26
d-Ni-III −2.67 −2.53
d-Ni-IVa −3.95 −3.85
d-Ni-IVb −2.73 −2.61
d-Cu-III −2.05 −1.90
d-Cu-IVa −3.00 −2.87
d-Cu-IVb −1.84 −1.71
M @ hydrated surface
h-Ti-III −4.07 −3.88
h-Ti-IVa −6.14 −5.97
h-Ti-IVb −5.38 −5.22
h-Ni-III −2.52 −2.38
h-Ni-IVa −4.12 −3.99
h-Ni-IVb −3.69 −3.57
h-Cu-III −1.93 −1.78
h-Cu-IVa −3.31 −3.17
h-Cu-IVb −3.28 −3.16

CO2 adsorption on the γ-Al2O3 (110) surface, as these authors reported a differ-
ent relative ordering of d-III and d-IVb configurations, with adsorption energies
of −0.43 and −0.27 eV, respectively, and a bidentate structure for d-III rather
than a tridentate. The origin of this discrepancy is unclear to us, but our results
are more in line with those of other oxides and the relative Lewis acidity of the
sites.217

It can be seen that the effect of including dispersion corrections is quite large,
amounting to about 0.3 eV for CO2 adsorption. The necessity of including dis-
persionwas previously demonstrated forCO2 adsorption onTiO2

235 and is con-
firmed here for Al2O3. It is reassuring to observe that the D3 and rvv10meth-
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table 6.5: Computational consistency checks for CO2 adsorption. Comparison of D3
and rvv10 dispersion corrections for CO2 adsorption on the alumina surface.
All calculations use pbe-d3 geometries. Adsorption energies are in eV.

PBE-D3 PBE-rVV10
CO2 @ support
d-CO2-IVb −1.11 −1.06
h-CO2-IVb −0.49 −0.44
CO2 @ metal atom
d-Ti-CO2 −2.12 −2.09
d-Ni-CO2 −1.11 −1.09
d-Cu-CO2 −0.54 −0.52
h-Ti-CO2 −2.25 −2.23
h-Ni-CO2 −0.99 −1.01
h-Cu-CO2 −0.30 −0.27

ods, although based on different principles (atom pairwise and nonlocal den-
sity based, respectively), give very similar results, thus validating each other’s
applicability to this system. In all other calculations (of the neutral systems),
we adopted the pbe-d3 method for all geometry optimizations but, because
we deal with the rather challenging case of metal-containing systems, follow
Hujo & Grimme’s recommendation225 and verify pbe-d3 results against sin-
gle point cross-checks with pbe-rvv10. These tests are collected in Table 6.4
and Table 6.5, and show that while rvv10 consistently gives smaller adsorption
energies for transition metal atoms (in the order of 0.1–0.2 eV), it is very close
to D3 for adsorption of CO2 on those metals and, most importantly, gives the
same energy differences between adsorption sites.

6.5.4 Should cell neutrality always be enforced?
In this chapter, we have enforced net neutrality of the simulation cell through
the explicit treatment of the countercharge distribution. The prime motivation
for this choice of model was its appropriateness for the problem at hand, where
plasma sheath electrostatics could be easily approximated within an atomistic
model. However, inclusion of countercharges also solves the somewhat more
philosophical problem of the implicit neutralizing background charge that is
present in charged simulation cells: to what extent is a calculation with this kind
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of unphysical charge distribution really a goodmodel of anything? In Chapter 5,
we brushed over this question by pointing out that it is the best we can do in
terms of building a model that purely captures charging effects, not affected by
any external fields arising from interactions with a countercharge distribution.
In that sense, it is in fact an excellent model for gaining fundamental insights
because of its purity.

Yet, a very similar setup could also be realized in a neutral cell, and is worth
investigating. An explicit countercharge has been used to simulate the plasma
sheat by placing all charge on one side of the slab, clearly distinguishing one side
as the surface, and one as the bulk end. Evidently, an additional electric field is
created through the addition of the charge. However, if the countercharge were
evenly distributed above and below the slab, the net field generated should be
zero.

We test this assumption by revisiting the adsorption of CO2 on 2e−-charged
h-BN of Chapter 5. Instead of imposing a net charge on the simulation cell, two
counterions were added in the form of basis set-free protons. They were placed
at Z positions of ±20 Å relative to the sheet, enclosed by a periodic box with a
nonperiodic Z length of 100 Å. The CO2 adsorption energy in the case of this
explicitly compensated charge is −3.044 eV, which is almost identical to cal-
culations with implicitly compensated surface charges, for which we obtained
−3.042 eV. It can therefore be concluded that if one is interested in adsorp-
tion energetics at charged surfaces, the overall simulation cell charge is irrel-
evant. Rather, one should ask whether only the isolated charge effects are of
interest, or if the model requires some additional electrostatic interactions. For
instance, a plasma-style charge distribution—with all countercharge placed at
one side, 40Å above the surface—yields amarkedly different adsorption energy
of−5.108 eV. These conclusionsmirror the results ofHub et al., who found that
not the magnitude of the cell charge is of relevance, but rather its distribution
across the cell.200
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chapter 7

A brave new world for DFT?

7.1 The density functional zoo

In the preceding chapters, we have constructed computational models of the
chemistry at charged surfaces.Wehave explicitly dealtwith appropriate choices
of the specific surface model, the charge distribution, and the properties of
the simulation cell. What has not been addressed is the choice of the density
functional approximation (dfa). A standard gga functional (pbe) and van
der Waals corrections (of the D3 type) were adopted as the workhorse method
for electronic structure en geometry optimizations, without specific validation
tests. InChapter 6, we have tested the effect of the chosen semilocal (meta)gga
and description of van der Waals interaction and found no major differences
between the methods, but only for a subset of cases involving neutral surfaces.
Given the only fairly recently growing interest in charge-modulated catalytic
processes, it might be useful to asses to what extent computational predictions
depend on the applied level of theory.

Density functional theory is a very active research field, and has been ex-
haustively discussed in several excellent recent reviews.236–241 dft exchange-
correlation functionals can be grouped by their mathematical form, where each
incremental increase in complexity is a higher rung on Jacob’s ladder234 towards
the “heaven of chemical accuracy”—the higher the rung they are on, the bet-
ter dfas tend to perform.242 The first-rung local density approximation (lda)
only depends on the electron density ρ, or the spin-labeled densities ρ↑ and ρ↓
(local spin density approximation, lsda). It is in principle only suited for uni-

The results presented in this chapter will be published as:
K. M. Bal and E. C. Neyts. On the applicability of density functional theory to charged
electrocatalysts. (in preparation)
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form or very slowly varying densities and, hence, performs poorly for atoms
and molecules.

The generalized gradient approximation (gga) adds a dependence on the den-
sity gradient∇ρ and hence becomes “semilocal” as it also includes some infor-
mation on the curvature of ρ. The higher flexibility of the gga form drastically
improves its performance for atoms and molecules alike, but compromises still
have to bemade because not all desired properties of adfa can be achievedwith
only ρ and ∇ρ. In practice, this means that ggas can be designed to achieve
very good performance for certain properties or systems, at the cost of reduc-
ing their applicability to other problems. Meta-ggas include the kinetic energy
density τ, and can exhibit very good across the board performance for the en-
ergetics and structures of solids, surfaces, and molecules.243,244 Nevertheless,
the first three (semi)local rungs still have some clear deficiencies. Band gaps in
solids are consistently underestimated (sometimes by several eV), molecular
systems tend to be overbound, and reaction barrier heights are too low.

Hybrid functionals (sometimes referred to as hyper-gga) are on the fourth
rung, and introduce an explicit dependence on the occupied Kohn–Sham or-
bitals by replacing a part of the exchange energy by a Hartree–Fock-type “ex-
act” exchange term. Hybrids largely solve the issues of semilocal functionals
and have since the late 1990s become the standard in chemistry. The HF ex-
change term is however very expensive to evaluate in the solid state, hampering
the widespread adoption of hybrid functionals in materials science. A last rung,
populated by double hybrid functionals, holds dfas that also use unoccupied or-
bitals, in the form of a Møller–Plesset-type second order perturbation (mp2)
term or the random phase approximation (rpa) that replaces part of the dft
correlation energy. Unlike dfas on the other rungs, double hybrids are able to
capture long-range van der Waals (vdW) interactions. They are very expensive
to evaluate, while accurate treatments of the vdW interaction can just as well
be added on top of semilocal dfas or their hybrids in the form of an additional
energy term245 (as we have consistently done in the two previous chapters).

A specific point of interest to us in this discussion is the band gap problem
of semilocal dfas. Wide-gap materials are more difficult to charge up, and the
work of charging might be correlated to their chemical properties. If semilocal
dfas cannot get the gap right, can they still be trusted for other properties of
the charged material? In more general terms, to what extent does the choice of
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figure 7.1: Graphene/h-BN heterojunction used as narrow-gap derivative of h-BN.
Atom color codes: gray, carbon; blue, nitrogen; pink, boron.

any dfa matter, i.e., do functionals within the same rung perform similarly?
We therefore revisit CO2 adsorption on charged h-BN—a wide-gap material—
with different representative dfas, and compare it to the same process on a
graphene/h-BN heterojunction, which has the same surface chemistry but a
greatly reduced gap.

7.2 Methodology

As in the previous chapters, all calculations were carried out with cp2k in the
gpw formalism, and a Martyna-Tuckerman solver was used to impose mixed
boundary conditions. Dispersion corrections were not available for all tested
dfas and have therefore been omitted, unless they are an integral part of the
method. Tominimize basis set incompleteness errors, the Kohn–Sham orbitals
were expanded in a large doubly polarized triple-ζ (m-tzv2p)207 basis set,
while the cutoff for the density was 1000 Ry. Some functionals unavailable in
cp2k were evaluated through the libxc 3.0.1 library,246 and in those cases
the cutoff was increased to 1500 Ry. Computation of exact exchange was made
feasible by the auxiliary density matrix method (admm),247 employing a small
uncontracted polarized triple-ζ (pfit3) basis in most cases.

The h-BN sheet was the same as in Chapter 5, and both charges (2e−, excess
electron density of about 1.0× 1018 m2) and external fields (0.05 a.u.) were con-
sidered. The graphene/h-BN heterojunction consisted of a 6×6 graphene sheet
joined along the armchair edge with a same-sized h-BN counterpart,248 carry-
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ing a 6e− charge 191 (~1.5 × 1018e− m2, Figure 7.1). Energy gaps were calculated
as the difference between the homo and lumo Kohn–Sham orbitals, and all
systems were closed-shell.

Structures, gaps, and energies were evaluated using several approxima-
tions of the exchange-correlation energy. Some of the most widely used
workhorse semilocal functionals (pbe,208 revpbe,230 rpbe,232 blyp,249,250

hcth/407,251 tpss233) were selected and supplemented withmore recent de-
velopments that claim improved performance for solids (am05252, pbesol253,
sogga254), molecules (gam255), or both (revtpss256,n12257, beef-vdW258).
They are constructed with different application and principles in mind, and
either derived from fundamental constraint satisfaction (pbe, rpbe, tpss,
revtpss, am05, pbesol, sogga), minor empiricism (revpbe, blyp), or ex-
tensive fitting against reference energies and structures (hcth/407, n12,
beef-vdW, gam). Only a small set of meta-ggas (tpss and revtpss) is con-
sidered due to apparent difficulties of cp2k to handle numerically sensitive
τ-dependent modern functionals such as the Minnesota functionals259 (of the
mxy-l ormnxy-l type) or scan.260

Hybrid functionals were represented in the form of the pbe0261,262 and
hse06263,264 approaches. Both are based onpbe and include a theoretically jus-
tified 0.25 fraction of exact exchange.265 pbe0 is a global hybrid, i.e., a fraction
of the gga exchange energy is completely replaced by an equivalent quantity
of exact exchange. Such a functional form can be easily applied to molecular
systems, but is ill-defined in a periodic solid, which is why the HF term was
truncated for interelectronic distances beyond 6.5 Å (slightly shorter than half
of the cell edge of the h-BN sheet); long range corrections at thegga level were
included, an approach known as pbe0-tr-lrc.266 Thehse06 functional uses
a screened exact exchange term that interpolates from pbe0-like behavior for
short-range interactions, and standard pbe in the long range. The screening pa-
rameter ω controls the effect of the exact exchange term: a smaller ω makes its
effective range longer andmore expensive to evaluate. A value ofω = 0.11 a.u. is
recommended forhse06, mostly for practical reasons.264 We tested the effect
of ω in a range 0.11–0.25 a.u., which is known to be small for thermochemistry,
but large for gaps, and therefore an interesting complication to assess.264

Wealso tested two approaches that attempt to improve performance for band
gaps at the semilocal level. First, the dft+umethod267 applies a correction to
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the Coulomb and exchange integrals of selected subshells and can cure elec-
tron overdelocalization and underestimated band gaps in semilocal dft. Ap-
plication ofdft+u in the commonly used form of Dudarev et al.268 requires an
empirical selection of the relevant subshells and the value of the parameter U,
which is system- and property-dependent. Here, we followed Verma & Truh-
lar,269 and applied the +U correction to the p orbitals of B, using a general value
of U = 4 eV, on top of pbe (U = 2 eV gave very similar results). Second, in-
creasing the weight of the exchange term can also open up the calculated gap.
In this high local exchange (hle) method, the larger exchange term (scaled by
1.25) is balanced by a reduced correlation contribution (scaled by 0.5).270 We
have testedhle variants based on pbe (pbe-hle) and tpss (tpss-hle, pre-
viously published as hle17269).

It must be stressed that these tests are not benchmarking, because there is no
experimental (or high-level quantummechanical) reference to which any of the
computed adsorption energies can be compared. Instead of verifying whether
a method gives the right answer, it is even more important to gauge the consis-
tency and predictability of a method. If any systematic trends or general behav-
ioral patterns can be discerned, the underlying physics will be meaningful, and
it should be possible to establish good practices.

7.3 Results

7.3.1 Wide-gap material: h-BN
The computed gaps and adsorption energies for h-BN in Table 7.1 show how
all of these values have a rather large functional dependence. Some of these are
well-known and could be anticipated. For example, methods known to cure the
gap underestimation by semilocal functionals also predict larger gaps in our cal-
culations: pbe+u andhlemethods open the gap by ~0.5 eV, and hybrids even
up to 2 eV. Benchmarks have indicated that global hybrids tend to overcorrect,
and that the screened hse06 (with ω = 0.11) appears to give the most reliable
gaps.271 This seems to be case here, too. The direct band gap of h-BN has been
experimentally estimated to be 5.97 eV,272 most closely matched by the value
of 6.05 eV we obtained with the standardhse06 functional.

It is instructive to first discuss CO2 adsorption under influence of an exter-
nal electric field. Such a process concerns neutral systems and is an electroni-
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table 7.1: Computed gaps and charge- and field-enhanced CO2 adsorption energies on
the wide-gap h-BN sheet using different density functional approximations.
All energies are in eV.

energy gap Eads charged surface Eads external field
semilocal
PBE 4.65 −3.14 −1.45
revPBE 4.68 −2.96 −1.23
RPBE 4.68 −2.99 −1.25
BLYP 4.76 −2.99 −1.40
HCTH/407 4.78 −2.63 −0.98
AM05 4.56 −2.93 −1.47
PBEsol 4.57 −3.12 −1.61
SOGGA 4.53 −3.04 −1.63
N12 4.65 −2.94 −1.18
GAM 4.75 −2.63 −1.03
BEEF-vdW 4.82 −2.91 −1.38
TPSS 4.77 −3.28 −1.35
revTPSS 4.78 −3.33 −1.42
DFT+U
PBE+U 5.33 −3.26 −1.49
high local exchange
PBE-HLE 5.31 −3.45 −0.97
TPSS-HLE 5.49 −3.71 −0.87
hybrid PBE
HSE (ω = 0.25) 5.47 −3.37 −1.31
HSE (ω = 0.20) 5.64 −3.47 −1.31
HSE (ω = 0.15) 5.85 −3.61 −1.30
HSE (ω = 0.11) 6.05 −3.76 −1.30
PBE0 6.76 −4.08 −1.29
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cally simpler chemisorption problem that should hence expose the more obvi-
ous differences between methods. Most DFAs follow established trends, with
pbe and its derivatives behaving as expected: revpbe, rpbe and pbe’s hybrids
exhibit reduced binding energies, while these are increased by the dfas for
solids pbesol and sogga; as mentioned earlier, ggas cannot simultaneously
be highly accurate for molecules, surface chemistry, and solid structures (but
meta-ggas can243,256). The screening parameter ω, with its large impact on the
gap, has little bearing on thermochemistry and, as shown, adsorption on the
neutral surface. hcth/407 and gam, primarily fitted against molecular data,
and thehle functionals, designed for improved performance for gaps, show up
as relative outliers, both predicting smaller adsorption energies (up to ~0.5 eV
below pbe). In other words, “specialized” gga functionals give results that
are inconsistent with more broadly conceived methods. Without these outliers
(i.e., no DFAs specifically optimized for solids or molecules only), the spread
on the semilocal methods is only 0.27 eV. Including all of them bumps it to
0.65 eV (or even 0.76 eV if the hle functionals are also considered).

The spread between methods becomes even larger in the charged system,
with adsorption energies occupying a range of almost 1.5 eV. Here, a func-
tional’s performance for the gap and charge-enhanced adsorption behavior is
related, in the sense that bigger predicted gaps go hand in hand with stronger
adsorption. Indeed, Figure 7.2a depicts a rather striking linear correlation be-
tween the two quantities, irrespective of the actual underlying mathematics
and physics on which the functionals are based. Standard semilocal functionals
are all clustered within a narrow range of predicted gaps and adsorption ener-
gies, irrespective of rung, whereas results from hybrids are much more spread
out. Within the semilocal dfas, even the solid state functionals pbesol and
sogga are now indistinguishable from theirmore generally applicable siblings,
although hcth/407 and gam remain outliers. pbe+u and the hle function-
als are stranded halfway between semilocal and hybrid dfas with respect to
predicted gaps and charge-enhanced adsorption energies.

The predicted band gap is strongly influenced by the self-interaction error of
adfa, andmethods that correct for self-interaction (either through inclusion of
exact exchange or empirical approaches such asdft+u) tend to givemore real-
istic values for the band gap. Self-interaction leads to additional problems upon
charging: now, also adsorption energies are strongly affected. This is perhaps in-
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figure 7.2: Correlation between predicted gap and CO2 adsorption energies on a wide-
gap h-BN sheet. (a) Adsorption energies on the charged surface and (b)
surface subjected to an external electric field. Density functional approxi-
mations are grouped by type, and a linear fit from all data points is shown
as a dashed blue line. (c) Depiction of all relevant structures.
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direct effect, in the sense that an incorrect band gap also leads to an incorrect
energy of excess electrons that end up in the conduction band, explaining the
correlated neutral band gap and chemisorption energies on the charged mate-
rial.

Figure 7.2b shows that predicted properties for neutral surfaces are not cor-
related with the predicted gap: the fitted slope is only 0.07, with a similar-sized
standard deviation, as opposed to the slope of −0.54 ± 0.07 that we find for the
charged h-BN. The differences between pbe and any of its hybrids are much
smaller than those within the group of semilocal dfas, implying that the self-
interaction error has little impact on the chemistry of the neutral material.

7.3.2 Narrow-gap material: graphene/h-BN heterojunction
A very small band gap of 0.01 eV has been reported for the particular
graphene/h-BN heterojunction considered here, albeit at the pbe level.248

Rather than computing the gap from the band structure, we approximate it has
thehomo-lumo gap and obtain 0.16 eV as the pbe prediction, as given in Ta-
ble 7.2. Other semilocal functionals only differ by at most 0.06 eV, while even
hybrids do not add more than 0.3 eV to any of the (m)gga values. (We were
unable to converge anypbe0 calculation on this system.) The inclusion of exact
exchange already has little impact on gaps, and its effect on charge-enhanced
adsorption is even smaller. That is, the screening parameter of hse somewhat
influences the gap, but it does not change the adsorption energy. In that sense,
its behavior is more similar to that observed for neutral h-BN—hse also re-
duces the pbe binding energy, as one expects for neutral systems.

Figure 7.3 graphically corroborates these conclusions, and demonstrates that
the variability within the group of semilocal functionals is much larger than the
difference betweenpbe and its hybrid.Here, too,hcth/407 andgam are out-
liers, now joined by n12 (which is essentially an earlier version of gam); blyp
is also an outlier, but in a different direction. Interestingly, all of these function-
als are empirical—to some degree derived from fitting to reference data—and
donot respect thelda limit (i.e., reduce tolda for∇ρ → 0).This is also true of
beef-vdW, although its performance for this system (and also h-BN) is in line
with the variouslda limit-respecting semilocal and hybrid approaches (most of
them nonempirical). Unlike the other empirical methods, however, the fitting
procedure leading to beef-vdW recognizes the limitations of the gga form,
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table 7.2: Computed gaps and charge-enhanced CO2 adsorption energies on the
narrow-gap graphene/h-BN heterojunction using different density functional
approximations. All energies are in eV.

energy gap Eads charged surface
semilocal
PBE 0.16 −2.75
revPBE 0.16 −2.62
RPBE 0.15 −2.68
BLYP 0.10 −3.13
HCTH/407 0.14 −2.04
AM05 0.19 −2.60
PBEsol 0.18 −2.70
SOGGA 0.20 −2.63
N12 0.14 −2.14
GAM 0.15 −2.05
BEEF-vdW 0.11 −2.61
TPSS 0.17 −2.82
revTPSS 0.18 −2.83
DFT+U
PBE+U 0.03 −3.26
high local exchange
PBE-HLE 0.02 −1.71
TPSS-HLE 0.02 −1.75
hybrid PBE
HSE (ω = 0.25) 0.18 −2.48
HSE (ω = 0.20) 0.22 −2.48
HSE (ω = 0.15) 0.30 −2.48
HSE (ω = 0.11) 0.40 −2.49
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figure 7.3: Correlation between predicted gap and charge-enhanced CO2 adsorption
energies on a narrow-gap graphene/h-BN heterojunction. (a) Adsorption
energies on the charged surface and (b) depiction of all relevant structures.

and uses a consistent strategy to ensure that the final functional remains suit-
ably balanced in its description of molecules, solids, and surface chemistry.258

The explicit inclusion of a vdW-DF2-type nonlocal correlation component273

does not appear to have a major impact on any of the properties calculated in
this study.
pbe+u and the hle functionals have shown reasonably consistent behav-

ior on charged h-BN, but now they are not in line with any of trends followed
by the semilocal or hybrid methods. Like on neutral h-BN, the hle function-
als underbind (compared to plain pbe or tpss), while pbe+u overbinds. Re-
markably, both methods counterintuitively tighten the gap, rather than open it.
Functionals from both dfa classes show unpredictable behavior, and we can-
not recommend them for charge-enhanced adsorption. All in all, the effect of
self-interaction is minor in this system, as exemplified by the small difference
between the semilocalpbe and its hybridhse06 for both band gaps and charge-
enhanced adsorption. Deviations from the lda limit have a significantly larger
impact. It can be hypothesized that its narrow gap makes the graphene/h-BN
heterostructure more metal-like, and a good dft-based description of metals
is usually associated with lda-like dfas.253

In general, any lda limit-respecting performs very consistently for a given
system, as shown in Figure 7.4. Inclusion of exact exchange has a major impact
on the computed chemisorption energy only in the case of the charged wide-
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figure 7.4: Spread of predicted CO2 chemisorption energies (in eV) by various types
of dfas for the three different cases of charged and neutral materials con-
sidered in this work. The three groups of dfas are: all semilocal functionals,
only semilocal functionals that respect the lda limit, and the latter function-
als supplemented with the hybrids.

gap h-BN, where the effect closely tracks the predicted gap size. For all three
systems, lda limit-violating dfas can be quite different from their asymp-
totically correct counterparts, but especially for the electronically challenging
graphene/h-BN junction, where the tested semilocal dfas give results over a
range of 1.09 eV. In other words, the charged wide-gap h-BN sheet is a sys-
tem in which the self-interaction error of semilocal dfas has a decisive ef-
fect on chemisorption properties, whereas deviations from the lda limit are
the dominant potential source of error in the case of the charged narrow-gap
graphene/h-BN heterostructure. As a consistent procedure, we therefore rec-
ommend a semilocal functional that respects the lda limit, of which the pre-
dictions can be cross-checked against those of its hybrid in case of a wide-gap
material. In other systems, semilocal methods can already offer a reliable win-
dow of results.

One additional remark, tying back to Chapter 5, should be made on the
choice ofmaterial, charge state, and adsorption configuration,whichwere taken
from the literature. 191 There, as in other studies of similar nature, full periodic
boundary conditions were used instead of the appropriate partial periodicity.
Single-point pbe calculations with a periodic 20 Å vacuum length on pbe-
optimized geometries predict a charge-enhanced adsorption energy of only
−1.24 eV, not even half of the converged result. The importance of a correct
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table 7.3: Computed adsorption energies of CO2 on an Al2O3-supported Cu atom,
comparing the plain pbe gga and its hybrid hse06 in the case of neutral
and charged hydrated surfaces. All energies are in eV.

Eads neutral surface Eads charged surface
PBE −0.14 −1.23
HSE (ω = 0.11) −0.36 −1.35

treatment of periodicity is hereby again demonstrated.

7.3.3 Revisiting plasma catalysis
The fact that charge-enhanced adsorption is highly sensitive to the employed
dftmethod,makes it important to verify whether our study of plasma catalysis
in Chapter 6 is also affected. We can anticipate that the presence of transition
metals will mitigatemost of the potential issues: metal-containing systems have
very small energy gaps (as also depicted in Figure 6.3), and the results in this
chapter suggest that the impact of exact exchange will be small.

To test this assumption, we selected CO2 adsorption on hydrated Cu/Al2O3

as a sample to be reoptimized using both pbe and hse06 (ω = 0.11). Just like
the other systems in this study, a larger m-tzv2p basis set was used, but no
additional dispersion corrections. The admm basis set for the exact exchange
calculations was again pfit3 for H, C, and O, andfit9 andfit12 for Al and
Cu, respectively. Otherwise, the treatment of the surface charge was the same
as in Chapter 6, using a neutralizing gas phase counterion.

At the gga level, the gap of the supported catalyst model is only 0.24 eV
and, as supported by Table 7.3, the impact of exact exchange is minimal. On the
neutral surface, hse predicts slightly stronger binding (by about 0.2 eV), and
this difference is also found on the charged surface. It can therefore be inferred
that our conclusions of Chapter 6 were not affected by our (computationally
convenient) choice ofdftmethod, at least with respect to the presence of exact
exchange.

7.4 Conclusions

The rather young discipline of charge-controlled surface science has not yet
adopted a thoroughly verified set of standard practices, mostly due to the lack
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of good benchmarking. Following our efforts in the areas of appropriate bound-
ary conditions (Chapter 5) and charge distributions (Chapter 6), we have tack-
led the choice of density functional approximation. We find that computed ad-
sorption energies on charged electrocatalytic materials are very sensitive to the
level of theory employed, especially thewide-gap h-BN tested in this study.The
performance of a dfa for the electronic gap of the neutral material is directly
correlated with its predicted adsorption capabilities upon charging. However,
such trends are not found in a narrow-gap analogue of the same material.

Interestingly, the variance within a class of dft approximations can be very
large, especially for empirical functionals geared more towards molecular sys-
tems and do not enforce the lda limit. Furthermore, specialized semilocal ap-
proaches like dft+u and hle, which are intended to perform well for band
gaps, exhibit very erratic behavior in some cases. Hence, it can be hypothesized
that self-interaction is strong in charged wide-gap materials—explaining the
fairly consistent behavior of hybrid, dft+u, and evenhlemethods—whereas
consistent treatment of narrow-gap materials mostly benefits from correct en-
forcement of the lda limit.

Due to lack of appropriate reference values, we cannot determine the “best”
computational approach. However, the screened hybrid functional hse06 is
known to perform well for thermochemistry and solid state electronic struc-
ture alike, and its predictable and consistent improvements upon its semilocal
parent pbe—which cannot be said about pbe+u and pbe-hle—make it the
most reliable, transparent, and affordable benchmark method. For future stud-
ies of charge-controlled adsorption, we recommend application of hse06 as
a consistency check of gga calculations on any new system; the narrow-gap
systems of Chapter 6 were anticipated to be not very sensitive to the effect of
exact exchange, which was confirmed by a sample check with hse06. On a
broader note, we have demonstrated that the development of an appropriate
computational strategy to a novel class of systems is not straightforward, and
that the quality of well-worn standard approaches should never be simply taken
for granted.
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General conclusions

Atomistic models are inherently small in scale and narrow in focus, while most
practical scientific challenges are large andmultifaceted. Such amismatchmust
be addressed if a proper exchange between these two extremes is desired. A
small-scale atomistic model cannot be used to answer big questions, so either
the questions asked must be simplified to fit the model, or the model’s scale
must be somehow increased. The former approach is a core principle of sci-
entific research, but still requires an intimate understanding of the model’s
strengths and limitations. The latter approach requires development of new
modeling strategies, and is hence even more complicated. In this thesis, two
case studies were presented, each exploring a particular attempt to bridge the-
ory and experiment.

In the first part of this thesis, we introduce a new accelerated molecular dy-
namics method, dubbed collective variable-driven hyperdynamics (cvhd). MD
simulation can provide explicit atomistic insights in chemical reactions, but are
confined to microscopic length and time scales. Accelerated MD methods can
in principle ameliorate this problem, but existing approaches are unfortunately
limited to rather simple systems or specialized applications. These issues stem
from overly ambitious goals, that is, extending the model (to longer timescales)
while simultaneously “thinking big” (attempting to produce the full evolution
of the system).

Muchmore widespread are the so-called enhanced samplingmethods which
can be applied to almost any system, but are designed to study specific processes
which must be known beforehand, rather than entire reaction systems. In other
words, the scope of the model is extended, which is made feasible by a deliber-
ate simplification of the problem (in the form of a small set of CVs). cvhd is
an approach that significantly improves the flexibility and performance of the
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hyperdynamics acceleratedMDmethod by recognizing and exploiting its simi-
larities with the metadynamics enhanced sampling method. Frommetadynam-
ics, cvhd borrows the self-consistent automatic generation of a bias potential
and the generic representation of reaction coordinates in the form of collective
variables. When spliced in the hyperdynamics algorithm, these building blocks
form amethod that needs little a priori user input, but can be applied to reactive
process in different environments. That is,cvhd ends up following through on
the promises of accelerated MD, but only thanks to more thorough simplifica-
tion: complete reaction networks are obtained only by breaking up the complex
problem into sequence of much simpler metadynamics-like simulations.

Initial validations on simple test systems demonstrate the flexibility, accu-
racy, and promise of the method: for processes as diverse as surface diffusion,
conformational sampling and heterogeneous catalysis large accelerations—up
to 109, or macroscopic time scales of seconds—and excellent consistency with
MDor other acceleratedMDmethods.The unrivaled abilities ofcvhd are fur-
ther established by its successful application to the pyrolysis and combustion of
the n-dodecane model fuel: for the first time, an atomistic simulation is shown
to directly produce the chemical evolution of a complex reacting system over
macroscopic time scales in a fully self-consistent fashion. cvhd can efficiently
handle reaction networks involving thousands of atoms, and capture their de-
pendence on a wide range of process conditions, and has already found appli-
cations beyond the scope of this thesis, in fields as diverse as surface etching,
catalysis, polymer degradation, and rate calculations. Application of cvhd to
the simulation hence leads to amore balancedmodel, in which accurate models
of the interatomic potential can finally be applied in dynamic atomistic studies
that approach realistic reaction conditions.

All of the early applications of cvhd were based on empirical classical
force fields. Although a computationally cheap choice, the limited transferabil-
ity of these interaction models has somewhat hampered the full exploration
of cvhd’s application domain. For this reason, the method was also applied
to simulations based on quantum mechanical (QM) forces, i.e., CO2 splitting
on alumina-supported metal catalysts modeled by dft. These simulations re-
vealed that the inherent time scale limitation ofdft-basedMD simulations—a
few tens of ps—cannot be easily cured by cvhd, which has an overhead of at
least several ps taken up by bias growth and reset, and event detection. In the
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hope of further improving the performance, a different biasing strategy based
on variationally enhanced sampling was therefore tested—the integration of
which was made trivial by the flexible nature of cvhd. With this variational
version of cvhd, good performance was obtained within an even more flexible
biasing strategy but the fact that single events still took ~100 ps of MD time
remains problematic.

Thanks to the development of cvhd, the MD time scale has caught up
with the development of interatomic potentials for the study of reaction sys-
tems: efficient force fields can now be used in high-quality simulations of re-
alistic process conditions. Rather than directly attempting to further push the
research field towards more general but also more expensive ab initio dynam-
ics, it would make more sense to consider cheaper semi-empirical QMmodels.
Indeed, there is a new trend in computational chemistry to replace force field
approaches by novel “low cost”QMmethods that combine a solid physical ba-
sis with limited empiricism and which are readily applicable to most elements
of the periodic table. Only when more complex systems with more interest-
ing chemistry, such as reactions in solution and processes at interfaces become
more routinely accessible, further development of cvhd would make sense.

In the second part of this thesis, models of charged catalyst surfaces were
constructed. Plasma catalysis is made up of many intertwined phenomena
which are impossible to untangle experimentally. No atomistic model can rep-
resent the full plasma-catalyst interaction, and any modeling effort of this pro-
cess will necessarily be an exercise in “thinking small,”which is exactly what an
understanding of the experiment requires. A little-investigated effect, plasma-
induced negative charging (i.e., injection of excess electrons by the plasma) can
change the electronic structure of a catalyst and therefore also its reactivity. To
be able to capture these effects, QMmethods must be employed, in casu based
on dft.

A tightly focused computational foray into one specific plasma-catalytic phe-
nomenonmight appear straightforward, but looks are deceiving. The construc-
tion of an appropriate model of a plasma-charged catalyst has revealed four key
difficulties, which all were successfully addressed in this thesis:

Treatment of periodic boundaries is problematic. Prior computational investi-
gations demonstrating the potential of charge-tuned gas adsorption by
electrocatalytic materials show the promise of both the charge effects, as
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of QM modeling to study them. However, it was revealed that an incor-
rect periodicity of the simulation cell has a huge impact on predicted ad-
sorption energies, and the qualitative trends across materials can be off.
Such an error in the model is worse than a poor correspondence with ex-
periments: it leads to a model inconsistent with itself. Simple corrective
measures are available, though, and were shown to be sufficient.

A proper model of the charge distribution must be developed. A solid im-
mersed in a plasma can never be modeled as an isolated charged object.
Therefore, a simple atomistic model mimicking the interaction between
the plasma-charged surface and the plasma sheat was developed.

Supported catalysts are difficult to deal with. Plasma catalysis is typically car-
ried out with supported metal catalysts, which are very difficult to repre-
sent in an atomistic model. Our compromise to use single-atom catalysts
allowed to capture the effect of charging on different metals in a compar-
atively simple system.

Common QMmethods applied in catalysis are not good enough. dft func-
tionals give wildly different descriptions of charge-tuned gas adsorption
processes. The problem is the most pronounced for wide-gap materials,
for which a strong correlation between predicted band gaps and charge-
tuned adsorption energies are observed. Given the well-documented
problems of dft in its description of gaps, its performance for the sur-
face chemistry of charged materials should be vetted just as judiciously.
Narrow-gap materials (such as metal catalysts) are not as problematic in
this respect, but the choice ofdftmethod can still have an unreasonably
large impact on the results. Hence, consistency checks must always
be carried out to have an idea of the uncertainties associated with the
calculation, and one should not rely on rote methodologies simply out of
habit.

The ability of models to reduce real-life complexity does not mean the ac-
tual construction of these models is a simple task. However, when properly
accounting for all possible pitfalls, exciting new insights become accessible: the
importance of the plasma-induced surface charge has been made plausible. In
particular, the fact that relative activities of catalyst material can be changed
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through charging is a clear example of the speculated ability of plasma catal-
ysis to break the scaling laws of traditional catalysis. Further extension of the
model to larger chemistry sets will be useful to further assess the possible im-
pact of plasma catalysis on the field. Along similar lines, other plasma effects
could be incorporated, such as the presence of excited molecules. Such under-
takingswill not be straightforward, but aswe have shown, existingmethodology
infused with some creativity goes a long way.

All science is transient by nature, building on top of previous work and un-
knowingly paving the way for future inventions. This thesis has presented two
clear advances on the state of the art in computational chemistry and will hope-
fully inspire new developments. Possibilities are of course the extension of
cvhd to new systems and processes, and the further refinement of atomistic
models of plasma catalysis. No past, current, or future model will ever be per-
fect, and that’s OK: as long as new ideas keep coming—and they will—we’ll
be just fine.
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Summary

Over the last decades, computational chemistry has become a mature and
widely practiced discipline of the chemical sciences. Computational methods
run the gamut from molecular dynamics (MD) simulations with approximate
classical potentials to high-level quantum mechanical electronic structure cal-
culations. At their best, computational models provide a fundamental peek into
atomic-level properties ofmatter and greatly improve our understanding of pro-
cesses all across chemistry. It is sometimes even possible to predict the outcome
of an experiment, besides being able to give a rationalization of it afterward.
However, atomic-level models are naturally limited to microscopic time and
length scales. A key difficulty of computational investigations is hence their in-
ability to match the size and complexity of most experiments. This poses an
important challenge to computational chemists: how to achieve a useful inter-
play between model and experiment?

In this thesis, new ways to bridge theory and reality are investigated. In par-
ticular, two case studies are presented. In the first part of this thesis, a new gen-
eral method to extend the short time scale of atomistic simulations is developed:
the model is brought closer to the experiment. The second part of this thesis con-
cerns the construction of a new model for the interpretation of a specific exper-
iment: the model simplifies the experiment. These two approaches represent two
sides of the same coin. On one hand, the limited scale of the model can be per-
ceived as a weakness, and therefore approachesmust be developed that allow to
extrapolate simulated microscopic molecular dynamics to experimentally mea-
surable macroscopic observables. On the other hand, the former idea can also
be turned on its head: in this view, the model can be a “pure” representation
of a phenomenon, whilst macroscopic experiments are only the sum of many
different microscopic components, none of which can be studied on its own—
in that sense, the model is the bottom-up inverse of a top-down experimental
approach. This philosophy is applied to the interaction between a plasma and
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catalyst: a model is constructed to specifically investigate the plasma-induced
changes of the catalyst’s electronic structure, i.e., how a plasma can change the
chemical properties of a catalyst. Both cases, however, clearly show that model
and experiment can and should co-exist: precisely because of their vastly differ-
ing scales, they offer different but complementary views of the same problem.

Chapter 1 discusses the current literature on the MD time problem—with
its various solutions—and a discrepancy is pointed out. One class of long time
scale methods (accelerated MD) has the goal of accurately producing the time
evolution of a reactive process—so it can predict the outcome of an arbitrary
process—but is generally limited to a handful of simple phenomena in the solid
state. The other group of methods (enhanced sampling) is much more flexi-
ble, but can typically only be applied to specific processes rather than full re-
action systems. Strong similarities between hyperdynamics (an accelerated MD
method) and metadynamics (an enhanced sampling method) are pointed out,
and the possibilities of combining their respective strengths and application do-
mains is discussed.Hence, amissing element in the toolkit ofmolecular dynam-
ics techniques is identified.

Chapter 2 describes a newly developed acceleratedMDmethod, dubbed col-
lective variable-driven hyperdynamics (cvhd). Like hyperdynamics, cvhd uses
a bias potential to destabilize metastable states, and accelerate the occurrence
of activated reactions. Like metadynamics, the reaction coordinates of the ac-
celerated processes are represented in the form of a simple collective variable
(CV), and an appropriate bias potential is self-consistently generated during
simulation, requiring little a priori user input. Initial validations on simple test
systems demonstrate the flexibility, accuracy, and promise of the method: for
processes as diverse as surface diffusion, conformational sampling and hetero-
geneous catalysis large accelerations—up to 109, or macroscopic time scales of
seconds—and excellent consistency with MD or other accelerated MD meth-
ods. By reconciling metadynamics and hyperdynamics, a new generic acceler-
ated MDmethod can thus be created.

Chapter 3 takes cvhd further than any of its competitors. It is applied to
pyrolysis and combustion of the n-dodecane model fuel—unprecedented time
scales of several seconds could be reached, leading to simulations of which the
process conditions (temperature and pressure) closelymatch actual technologi-
cal combustion applications.Withcvhd realistic reaction networks andmech-
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anisms can be directly simulated, establishing a strong link between simulation
and experiment. Also, other applications of cvhd are summarized, demon-
strating the broad usefulness of cvhd in fields as diverse as surface etching,
catalysis, polymer degradation, and rate calculations. Application of cvhd can
hence greatly extend the range of established modeling tools and techniques,
and facilitate their validation against the experiment.

Chapter 4 further explores the flexibility of cvhd. A different bias strategy,
based on variationally enhanced sampling rather than metadynamics, is tested
in order to assesscvhd’s applicability to evenmore complex processes and ad-
vanced quantummechanical force fields.The performance of variationalcvhd
for rate calculations of a simple chemical reaction is found to be superior to
other recent methodologies. These results inspire confidence in the ability of
cvhd to be further adapted for new, challenging problems down the road.

Chapter 5 marks the start of this thesis’ second part, and first introduces
the complex reality of plasma catalysis. This combined application of heteroge-
neous catalysts with plasma technology holds great promise for greenhouse gas
conversion and fuel production in a modern electrified society, but its funda-
mental underpinnings remain poorly understood. The many different types of
plasma-catalyst interaction can be explicitly untangled through the construc-
tion of simplified models, each specifically dedicated to a much more limited
subset of phenomena. Catalyst charging by plasma-supplied electrons is per-
haps the most mysterious plasma-surface interaction, and it is decided to con-
struct a model for it at the density functional level of theory (dft). From
a review of the literature, several studies of gas adsorption on charged low-
dimensional nanomaterials are found. An attempt to reproduce these studies
however reveals large errors in all literature results, stemming from poorly
thought-out material models. It is shown that a correct treatment of the period-
icity of the system, which removes an unphysical interaction of the charged sur-
face with itself, is necessary to achieve internal consistency in the model. This
first step towards a high-quality model of the plasma-induced surface charge
hence already demonstrates the treacherous nature of atomistic models, and is
only one of the many pitfalls along the way.

Chapter 6 extends the surface chargemodel to actual plasma-catalytic condi-
tions. A simple atomisticmodel of the charge distribution around the surface—
the plasma sheat—is developed and validated for internal consistency. Further-
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more, the standard oxide-supported transition metal catalysts typically used in
plasma catalysis are included in the model in the form of single atom catalysts
rather than larger clusters: the precise structure of the catalyst is simplified in
the model while still being able to capture most of catalyst-surface interaction.
Thismodel is specifically applied to investigate plasma-catalytic CO2 activation
on supportedM/Al2O3 (M =Ti, Ni, Cu) catalysts. It is found that (1) the pres-
ence of a negative surface charge dramatically improves the reductive power of
the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and
(2) the relative activity of the investigated transition metals is also changed
upon charging, suggesting that controlled surface charging is a powerful addi-
tional parameter to tune catalyst activity and selectivity. These results strongly
point to plasma-induced surface charging of the catalyst as an important factor
contributing to the plasma-catalyst synergistic effects frequently reported for
plasma catalysis.

Chapter 7 delves deeper into the quality of the surface charge model. Here,
the choice of electronic structure method is investigated. It is found that the
choice of density functional approximation can have a very large impact on
the predicted adsorption characteristics on the charged material. In contrast
to standard adsorption chemistry on neutral surfaces, computed adsorption
energies on wide-gap materials are correlated with the predicted band gap of
the material. On the other hand, charge-enhanced adsorption on small-gapma-
terials is treated inconsistently by many standard approaches. A practical and
rather convenient validation of any standard density functional calculation is
comparison to other common methods, in particular hybrid functionals: one
can be fairly certain of a methodology if all these methods, although based on
different physical principles, give similar answers. Most importantly, it must
be stressed that the design of models for new problems cannot simply rely on
standard solutions that might have worked in the past: it is sensible to use an
existing approach as a starting point, but it should never be taken for granted,
and extensive cross-checks will always be needed.

The general conclusion of this work is that are plenty of possibilities to im-
prove the quality of molecular modeling approaches, and extend the range of
computational chemistry. New application domains and algorithmic innova-
tions can always be found, even for mature techniques, if there is a willingness
to look beyond established practices. This holds true for the investigations pre-
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sented in this thesis. The first part shows how lateral thinking can push the sim-
ulation closer to the experiment, while the second part demonstrates the many
complications arising from simplifying the experiment by translating it to an
atomistic model. In the end, the enormous possibilities of atomistic models will
continue to be explored. Research is inherently transient; this thesis draws from
many influences that came before and hopefully, it will provide useful building
blocks in future work.
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Samenvatting

Computationele chemie is geëvolueerd tot een volwassen en wijdbedreven sub-
discipline van de chemie die een groot aantal technieken omvat, elk met hun
eigen sterktes en toepassingsgebieden. Computationele modellen bieden een
fundamenteel inzicht in de eigenschappen van materie, en een beter begrip van
chemische processen. De uitkomst van een experiment kan in detail worden
verklaard, en soms is het zelfs mogelijk om het precieze verloop ervan te voor-
spellen. Modellen met een dergelijk atomair detail zijn echter ook beperkt tot
microscopische tijd- en lengteschalen. Er is dan ook vaak geen directe één-op-
éénrelatie mogelijk tussen computationele studies en experimenten. Het beko-
men van een goede wisselwerking tussen relatief eenvoudige microscopische
modellen enerzijds, en de complexe macroscopische realiteit anderzijds, is om
deze reden de grootste uitdaging voor de computationele chemie.

Deze thesis presenteert nieuwe manieren om de kloof tussen theorie en rea-
liteit te overbruggen. Twee casussen worden in detail uitgewerkt. In het eerste
deel van de thesis wordt een nieuwe algemene methode ontwikkeld om de tijd-
schaal van atomistische simulaties te verlengen: het model wordt dichter naar het
experiment gebracht. Het tweede deel betreft de constructie van een nieuw mo-
del om een specifiek experiment te interpreteren: het model vereenvoudigt het ex-
periment. Deze twee werkwijzen vertegenwoordigen twee kanten van dezelfde
medaille. Aan de ene kant kan de beperkte schaal van het model als een zwakte
worden gezien, zodat het noodzakelijk is om opmoleculair niveau gesimuleerde
dynamica met nieuwe technieken te extrapoleren naar experimenteel meetbare
macroscopische grootheden. Aan de andere kant kan deze redenering ook wor-
den omgedraaid: men kan stellen dat het model een meer “zuivere” voorstel-
ling is van een fenomeen, terwijl macroscopische experimenten daarentegen
steeds bestaan uit de som van zeer veel verschillende microscopische compo-
nenten, waarvan geen enkele kan worden geïsoleerd. In die zin is het model
dan ook de “bottom-up” inversie van het “top-down” experiment. Concreet
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wordt er in deze thesis een model ontwikkeld om te bestuderen hoe een plasma
de elektronische eigenschappen, en dus de reactiviteit, van een katalysator kan
modificeren: slechts een klein stukje van de totale plasma-katalysatorinteractie,
maar één waarover tot nu toe zeer weinig geweten is. Beide casussen tonen ech-
ter duidelijk aan dat model en experiment perfect naast elkaar kunnen bestaan:
precies omwille van hun sterk verschillende schaalgroottes geven beide dan ook
complementaire perspectieven op hetzelfde probleem.

Hoofdstuk 1 bespreekt de huidige literatuur over het MD-
tijdschaalprobleem—met de verschillende oplossingen ervoor—en een
discrepantie wordt opgemerkt. Eén klasse aan lange tijdschaalmethoden
(versnelde MD) kan de tijdsevolutie van een reactief systeem produceren—en
in principe de uitkomst van een arbitrair proces voorspellen—maar is in de
praktijk beperkt tot een handvol eenvoudige processen in de vaste stoffase. De
andere methodegroep (enhanced sampling) is veel flexibeler, maar kan alleen
worden toegepast op een enkel proces, in plaats van volledige reactiesystemen.
Markante gelijkenissen tussen hyperdynamics (een methode voor versnelde
MD) en metadynamics (voor enhanced sampling) worden onderlijnd, en de
mogelijkheden om hun respectieve sterktes en toepassingsgebieden te combi-
neren worden besproken. Aldus wordt een ontbrekend hulpmiddel binnen de
moleculaire dynamica geïdentificeerd.

Hoofdstuk 2 beschrijft een nieuwontwikkelde techniek voor versnelde MD,
collective variable-driven hyperdynamics (cvhd). Net als hyperdynamics ge-
bruikt cvhd een externe biaspotentiaal ommetastabiele toestanden te destabi-
liseren en zo geactiveerde processen te versnellen. Net als metadynamics wor-
den de reactiecoördinaten van de versnelde processen versimpeld in de vorm
van een eenvoudige collectieve variabele (CV), en wordt een geschikte bias op
een zelfconsistente wijze gegenereerd gedurende de simulatie. cvhd vereist
zeer weinig a priori input van de gebruiker en is hierdoor eenvoudig toe te pas-
sen. Initiële validatiestudies voor simpele testsystemen demonstreren de flexi-
biliteit, nauwkeurigheid en belofte van demethode: een brede waaier processen
zoals oppervlaktediffusie, conformationele analyse en heterogene katalyse kan
sterkworden versneld—tot 109, ofmacroscopische tijdschalen van seconden—
in uitstekende overeenkomstmetMDen anderemethoden voor versneldeMD.
De vereniging van metadynamics en hyperdynamics leidt dus tot een nieuwe,
breed toepasbare implementatie van versnelde MD.
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Hoofdstuk 3 toont dat cvhd verder kan gaan dan eender welke ander si-
mulatiemethode. Toegepast op pyrolyse en verbranding van n-dodecane wor-
den ongeëvenaarde tijdschalen van seconden bereikt: in dergelijke simulaties
kunnen experimentele condities (temperatuur en druk) worden gesimuleerd.
cvhd kan realistische reactienetwerken en -mechanismen rechtstreeks simule-
ren, en geeft zo een directe link tussen simulatie en experiment. Andere toepas-
singen van cvhd worden verder ook samengevat, en demonstreren de brede
toepasbaarheid vandecvhd in diverse onderzoeksgebieden zoals het etsen van
oppervlakken, katalyse, degradatie van polymeren, en bepaling van kinetische
parameters. Toepassing van cvhd kan het bereik van standaard simulatietech-
nieken dus sterk vergroten, en hun validatie tegen experimenten faciliteren.

Hoofdstuk 4 exploreert de flexibiliteit van cvhd. Om cvhd toe te kunnen
passen op nog complexere processen en geavanceerde kwantummechanische
krachtvelden wordt een andere biasstrategie getest, gebaseerd op variationally
enhanced sampling in plaats vanmetadynamics. Op een eenvoudige testreactie
blijkt deze “variationele cvhd” superieure prestaties te leveren, wat vertrou-
wen geeft in de mogelijkheden om cvhd verder aan te passen voor nieuwe,
uitdagende toepassingen.

Hoofdstuk 5, de start van het tweede thesisdeel, introduceert een nieuwe uit-
daging: de complexe realiteit van plasmakatalyse. Deze gecombineerde toepas-
sing van heterogene katalyse met plasmatechnologie is een veelbelovende me-
thode die een toekomst kan worden gebruikt om op duurzame wijze broeikas-
gassen om te zetten in hernieuwbare brandstoffen. Er is echter nog weinig ge-
weten over de fundamentele principes en processen die aan de basis liggen van
deze techniek. Modellen kunnen de verschillende factoren waaruit de plasma-
katalysatorinteractie bestaat ontrafelen en zo de complexiteit van het probleem
verlagen. Omdat het opladen van de katalysator door plasma-elektronen waar-
schijnlijk het meest mysterieuze plasma-effect is, werd het gekozen als onder-
werp van een model op basis van dichtheidsfunctionaaltheorie (dft). In de
literatuur worden verschillende studies gevonden van gasadsorptie op nano-
materialen, die als basis voor verder werk kunnen dienen. Een poging tot re-
productie van deze studies onthult echter grote systematische fouten in alle li-
teratuurresultaten, een resultaat van slecht geconstrueerde materiaalmodellen.
Hierop wordt aangetoond dat een correcte behandeling van de periodiciteit van
het systeem noodzakelijk is om een intern consistent model te verkrijgen, één

143



samenvatting

zonder fysisch onzinnige interacties van het geladen oppervlak met zichzelf.
Deze eerste stap richting een hoogwaardig model van de plasma-geïnduceerde
oppervlaktelading demonstreert dus al de verraderlijke aard van atomistische
modellen, en is slechts één van de vele mogelijke valkuilen onderweg.

Hoofdstuk 6 breidt het model voor oppervlakteladingen verder uit naar fei-
telijke plasmakatalytische condities. Een eenvoudig atomistisch model voor de
ladingsverdeling rond het oppervlak—de plasmasheat—wordt ontwikkeld en
gevalideerd. Verder worden standaard op oxides afgezette metaalkatalysatoren
in het model geïntegreerd, in de vorm van enkele atomen in plaats van gro-
tere clusters: de complexe structuur van de katalysator wordt vereenvoudigd
in het model, dat echter nog steeds de voornaamste interacties tussen katalysa-
tor en oppervlak omvat. Dit model wordt vervolgens gebruikt om plasmakata-
lytische CO2-activatie op afgezette M/Al2O3 (M = Ti, Ni, Cu) katalysatoren
te onderzoeken. Er wordt aangetoond dat de aanwezigheid van een negatieve
oppervlaktelading (1) de reductieve eigenschappen van de katalysator drama-
tisch versterkt en de splitsing van CO2 in CO en zuurstofgas promoot, en (2)
de relatieve activiteit van de verschillende metalen wijzigt, wat suggereert dat
via gecontroleerd opladen de activiteit en selectiviteit van een katalysator kan
worden gecontroleerd. Deze resultaten wijzen erop dat plasma-geïnduceerde
oppervlakteladingen een belangrijke rol kunnen spelen in het realiseren van syn-
ergie tussen plasma en katalysator.

Hoofdstuk 7 gaat dieper in op de kwaliteit van het model voor oppervlaktela-
dingen. De keuze van kwantumchemischemethodewordt onderzocht, en blijkt
een grote impact te hebben. Het is geweten dat verschillende dft-technieken
niet in staat zijn om accurate elektronische excitatie-energieën te berekenen,
maar dat deze zwakte geen impact heeft op hun vermogen om adsorptie te be-
schrijven. Echter, voor geladen oppervlakken wordt er in sommige omstandig-
heden wél een duidelijke correlatie tussen berekende excitatie- en adsorptie-
energie gevonden. Verder wordt er in het algemeen gevonden dat allerlei stan-
daardmethoden inconsistente resultaten leveren. Een praktische validatieme-
thode van eender welke dft-techniek is daarom de vergelijking met andere
methoden, in het bijzonder hybride functionalen: als al deze methoden, hoe-
wel gebaseerd op andere fysische principes, gelijkaardige voorspellingen geven
kan men tot op zekere hoogte vertrouwen hebben in hun kwaliteit. Het dient
vooral te worden benadrukt dat het ontwerp van methodologieën voor nieuwe
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problemenniet volledigmag vertrouwen op standaard oplossingen uit het verle-
den: het is zinvol om een bestaandemethodiek als uitgangspunt te nemen,maar
deze kan niet klakkeloos voor waar aangenomenworden. Uitgebreide validaties
zullen altijd nodig zijn.

De algemene conclusie van dit werk is dat er veel mogelijkheden bestaan om
de kwaliteit van moleculaire modellen te verbeteren, en zo de mogelijkheden
van computationele chemie uit te breiden. Nieuwe toepassingsdomeinen en al-
goritmische innovaties zijn steeds te vinden, zelfs voor volwassen technieken,
zolang er de wil is om voorbij gekende praktijken te kijken. Dit geldt ook voor
het onderzoek in deze thesis. Het eerste deel laat zien hoe lateraal denken de
simulatie dichter naar het experiment kan brengen; het tweede deel demon-
streert de vele complicaties die voortvloeien uit de vereenvoudigingen van het
experiment tot een atomistisch model. Hoe dan ook zullen de enorme moge-
lijkheden van atomistische modellen verder worden geëxploreerd. Elk inzicht
is tijdelijk, en wordt vervangen door iets beters; deze thesis baseert zich op vele
technieken en zal hopelijk een inspiratie zijn voor toekomstig werk.
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appendix a

Timings & time scales: a time
capsule

All calculations in this thesis were performed between 2015 and 2018 on the
Hopper and Leibniz vsc clusters at the University of Antwerp, equipped with
Intel processors of the Ivy Bridge and Broadwell generations, respectively. Var-
ious software tools and simulation methodologies were employed, each with
their own computational cost. Given that the first part of this thesis boils down
to the extension of the MD time scale, it is useful to re-stress the necessity of
such an undertaking. Even for the simplest of systems, time scales of millisec-
onds, let alone seconds, are simply inaccessible.

While these kinds of statements can be found all over the literature (and this
thesis), it is not always easy to find exact numbers: What is the accessible time
scale for a given simulation approach? How large can a system be? What kind
of hardware is required? For this reason, the hardware resources and timings
of representative calculations as carried out in this thesis are summarized here.
They again underline the need for long time scale simulation methods, but also
serve as a time capsule of sorts. Indeed, the performance of computer hard-
ware and algorithms is ever-improving, so it is useful to have a record of our
contemporary computational abilities for future reference.

As the data in Table A.1 show, the “fastest” MD simulation needs almost a
day to simulate a 1 µs proces, although it is for a very small system described
by a simple short-range classical potential. A similarly cheap manybody poten-
tial like eam can also not reach far beyond the µs time scale, and the problem
only becomes worse for more sophisticated classical force fields like ReaxFF or
the semi-empirical pm6 method. Evidently, ab initio methods are even more
limited, with a throughput that is six orders of magnitude smaller than that
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appendix a timings & time scales: a time capsule

table a.1: Time scales and computational parameters of the various MD simulation
studies undertaken in this thesis. The simulation speed is expressed as
throughput: MD time over wall time. Furthermore, used hardware resources
and system sizes are included for fair comparison.

process method # atoms # procs throughput (ns/day)
Cu surface diffusion EAM 300 1 1.84 × 102

Chain folding custom FF 50 1 1.64 × 103

CH4/Ni ReaxFF 384 4 0.15
n-C12H26 pyrolysis ReaxFF 912 8 0.79
CH3Cl +Cl– PM6 6 1 1.61
CO2 @Ti/Al2O3 GGA-DFT 256 40 1.42 × 10−3

table a.2: scf times and computational parameters of the various dft calculations car-
ried out in this thesis. The time to complete a single scf step is listed. Fur-
thermore, used hardware resources, basis set size, and level of theory are
included for fair comparison.

system rung basis # procs SCF time (s)
Cu/Al2O3 neutral GGA DZVP 28 19.5
Cu/Al2O3 charged GGA DZVP 56 23.3
Cu/Al2O3 neutral GGA TZV2P 28 22.7
Cu/Al2O3 neutral hybrid TZV2P 112 33.1
h-BN GGA DZVP 28 3.5
h-BN GGA TZV2P 28 3.2
h-BN hybrid TZV2P 56 6.5

of the simplest classical simulation in this study. Further parallelization will
not improve matters. The systems are fairly small: the parallel efficiency of
eam evaluations already drops below 50% for 500 atoms/proc274 and similar
scalings have been reported for ReaxFF.84 Similarly, dft calculations with
cp2k/quickstep do not scale well beyond ~5 atoms/proc. 125 In other words,
these calculations are a fair representation of the intrinsic throughput of the
computational techniques used in this thesis. Not only the evaluation speed of
a potential determines the throughput, but also the allowed time step. This fact
mostly affects ReaxFF, of which the rather rough pes requires time steps in the
order of 0.1 fs, while all other methods allow at least 0.5 fs.
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For completeness, ourdft-based structure optimizations are also discussed
here. A large issue, especially of the calculations onAl2O3 slabs, is memory: the
large vacuum spaces in the countercharge-based calculations are verymemory-
consuming. For computer nodes with fairly small memory, this means that not
the full number of processors can be used, as only large memory allocations
(~4 GB/proc) are guaranteed to work smoothly. Table A.2 shows thatgga cal-
culations can handle large systems quitewell: a calculation on the 72-atom h-BN
sheet is only about 3.5 times faster than on the 253-atom hydrated Cu/Al2O3

slab, even though the latter represents a spin-unrestricted calculation (which
should suffer from a ×2 performance penalty). In other words, the calculations
on the small h-BN system exceed the linear strong scaling abilities of cp2k.

Countercharge-based calculation can be expected to double the computa-
tional overhead, while basis set size does not have a particularly large impact.
However, calculations with many basis functions tend to be more difficult to
converge, and might end up requiring much longer optimization runs. Hybrid
calculations are significantly more costly, even with the many optimizations in
cp2k: to the dense Al2O3 slab a sixfold overhead is added, while it only in-
creases hardware demands by about four times for the two-dimensional h-BN.
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