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Abstract
Two-dimensional (2D) materials have dominated the fields of solid-state physics
and technology in recent years. With the experimental discovery of several
atomically thin ferromagnets in 2017, magnetism has also properly entered this
exciting domain. From a technological perspective, understanding the exact
thin-film magnetisation behaviour is essential in the ever-continuing down-scaling
of integrated circuit components, striving for cheaper, faster and more energy-
efficient devices. While today predominantly present in memory devices, thin
ferromagnets might also enter the realm of logic technologies, for example in the
form of spin wave majority gates. From a scientific perspective, the origin of two-
dimensional ferromagnetism is not well understood, as it seemingly contradicts the
(in)famous Mermin-Wagner theorem—excluding the possibility of two-dimensional
ferromagnetic ordering. To address this dissatisfying situation, we studied a
quantum Heisenberg model with beyond-nearest-neighbour, anisotropic exchange
interactions at non-zero temperatures. This model is believed to accurately describe
some of the experimentally discovered 2D ferromagnets, such as CrI3, CrBr3 and
MnSe2. We obtained results using Zubarev’s double-time temperature-dependent
Green functions with Tyablikov’s decoupling approximation, which are known to
give meaningful results for the entire temperature range. We compared results
for two- and three-dimensional materials, investigated the effect of an applied,
homogeneous field in arbitrary direction and extended the methodology to properly
account for magnetic dipolar interactions. This thesis reports on the calculated
Curie temperatures, excitation spectra, and magnetisation magnitudes and angles.

We managed to reproduce the predictions of the Mermin-Wagner theorem and find
that spontaneous magnetisation in 2D materials is still possible when an easy-axis
exchange anisotropy is present. Combining our results with ab initio calculations
allowed us to reproduce Curie temperatures in agreement with experiments. The
behaviour of magnetism in easy-axis two-dimensional materials turns out to be
similar to that of their bulk counterparts, while being distinct from easy-plane 2D
materials. Overall, the magnetisation aligns mostly with the internal anisotropy
at low temperatures and fields, while getting reoriented towards the homogeneous
external field direction otherwise. Dipolar interactions might lead to an additional
easy-plane anisotropy for thin films, but its corresponding long-range character
might stabilise the magnetisation. In conclusion, we found an effective way to
describe some recently discovered 2D ferromagnets, explaining their non-zero
Curie temperatures by the presence of easy-axis anisotropy. In such materials,
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our results allow predictions on the magnetisation at non-zero temperatures and
applied fields at arbitrary angles. To stimulate further computational discoveries
of monolayer ferromagnets, we made a computer program publicly available to
calculate Curie temperatures based on our formalism. This application only
requires ab initio calculated parameters as an input and can equally well be used to
study effects of stress, strain or electrical fields on the transition temperature. Our
methodology might further be extended to study multilayer materials, different
magnetic interactions or even dynamical effects.
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Samenvatting
De voorbije jaren waren tweedimensionale (2D) materialen niet weg te denken
uit de vastestoffysica en -technologie. Pas sinds 2017 is ferromagnetisme ook
experimenteel waargenomen in zulke materialen, die slechts één atoomlaag dik
zijn. Vanuit een technologisch standpunt is het begrijpen van magnetisme in
deze ultra-dunne limiet essentieel met het oog op de steeds verder doorgedreven
verkleining van geïntegreerde elektronische componenten, waarbij er gestreefd
wordt naar goedkopere, snellere en energiezuinigere apparaten. Hoewel dunne
ferromagneten vandaag vooral gebruikt worden voor geheugenelementen, kunnen
ze in de toekomst misschien ook een rol spelen bij de fabricatie van logische com-
ponenten, bijvoorbeeld in de vorm van spingolf-meerderheidspoorten. Vanuit een
wetenschappelijk standpunt is het bestaan van tweedimensionale ferromagneten
nog niet goed begrepen, aangezien het ogenschijnlijk in tegenspraak is met de
bekende stelling van Mermin en Wagner—die onder bepaalde voorwaarden de
ferromagnetische ordening in 2D materialen uitsluit. Om meer inzicht te krijgen
in dit probleem, hebben we het kwantummechanische Heisenberg-model bestu-
deerd voor positieve temperaturen en met een uitwisselingsinteractie (exchange)
die anisotroop is en tot voorbij de naaste buren reikt. Er wordt verwacht dat
dit een goed model is voor enkele recentelijk ontdekte 2D ferromagneten zoals
CrI3, CrBr3 en MnSe2. We hebben numerieke resultaten verkregen door Zubarevs
dubbeletijds- en temperatuursafhankelijke Greense functies met het Tyablikov
ontkoppelingsschema te berekenen, waarvan bekend is dat het goede voorspellingen
voor de magnetisatie oplevert over het volledige temperatuursinterval. De verkre-
gen resultaten hebben we vergeleken voor twee- en driedimensionale materialen.
Verder hebben we het effect onderzocht van een homogeen magneetveld dat in een
willekeurige richting wordt aangelegd, en we hebben het formalisme uitgebreid om
ook magnetische dipool-dipool-interacties mee in rekening te kunnen brengen. Dit
proefschrift beschrijft de berekende Curie-temperaturen, excitatiespectra, evenals
magnetisatiegroottes en -hoeken.

Met betrekking tot de voorspellingen van het Mermin-Wagner theorema hebben
we aangetoond dat spontane magnetisatie bij positieve temperaturen nog steeds
mogelijk is in 2D materialen die een easy-axis anisotropie vertonen. De combinatie
van de verkregen resultaten met die van een aantal ab initio berekeningen stelde
ons bovendien in staat om Curie-temperaturen te berekenen die overeenstemmen
met experimentele waarnemingen. In 2D easy-axis materialen is het gedrag van de
magnetisatie gelijklopend met dat van driedimensionale materialen, terwijl er een
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groot verschil bestaat met 2D materialen met een easy-plane anisotropie. Over het
algemeen is er een oplijning van de magnetisatie met de intrinsieke anisotropie bij
lage temperaturen en kleine magnetische velden, terwijl deze zich heoriënteert in de
richting van het aangelegde veld in de tegenovergestelde regimes. De dipool-dipool-
interactie kan een extra bijdrage leveren tot de easy-plane anisotropie in dunne
materialen, waarbij het bijbehorende langedrachtskarakter de magnetisatie wellicht
stabiliseert. We besluiten dat we een effectieve manier hebben gevonden om enkele
onlangs ontdekte 2D ferromagneten te beschrijven, waarbij de aanwezige easy-axis
anisotropie kan verklaren dat de Curie-temperaturen positief zijn. Onze resultaten
maken het mogelijk om de magnetisatie in 2D materialen te voorspellen bij eindige
temperaturen en ook in de aanwezigheid van een magneetveld dat onder een
willekeurige hoek kan worden aangelegd. Om verder computationeel onderzoek naar
monolaagferromagneten te stimuleren stelden we een computerprogramma publiek
beschikbaar om Curie-temperaturen te berekenen op basis van ons formalisme.
Aangezien dit programma enkel afhangt van ab initio berekende parameters, kan
het ook gebruikt worden om de effecten van druk- en trekspanning (strain) of
elektrische velden op de overgangstemperatuur te onderzoeken. Op de lange termijn
kan de beschreven methodologie uitgebreid worden naar materialen met meerdere
lagen, andere magnetische interacties evenals dynamische effecten.
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1 Introduction
1.1 Scientific motivation

Since The rise of graphene [1], the scientific interest in two-dimensional (2D)
materials—especially layered van der Waals (vdW) compounds—has been ever-
growing. These atomically thin substances are an ideal playground for new physical
phenomena, while often having enhanced properties compared to their bulky
counterparts, such as a higher electron mobility or an altered optical behaviour.
While a two-dimensional ferromagnetic material was still missing, some of its
properties, such as excitation spectra, could be probed through so-called semi-2D
materials [2, 3]. These layered van der Waals compounds, with a weak interlayer
coupling as compared to their intralayer interactions, are believed to have properties
resembling those of two-dimensional magnets.

Finding a truly two-dimensional ferromagnetic substance was considered unlikely
for a long time, because of the detrimental predictions of the Mermin-Wagner
theorem [4]. This theorem excludes the possibility of ferromagnetic or antiferro-
magnetic ordering at non-zero temperatures in one- or two-dimensional isotropic
materials in the absence of long-range magnetic interaction. The conditions to be
fulfilled for the rigorous Mermin-Wagner theorem to hold are often not strictly
valid in potential single-layered ferromagnets:

• The magnetic interaction Pij between atoms (magnetic moments) i and j in
the lattice should be of short range. Specifically,

∑
j Pijr

2
ij should be finite,

where the sum is over all atoms in the lattice and rij is the distance between
the atoms [5]. The magnetic dipole-dipole interaction is always present and
has Pij ∝ r−3

ij , such that the sum
∑

j Pijr
2
ij ∝

∫∞
0 dr → ∞ diverges.

• The continuous rotational SO(2) symmetry in the magnetisation direction
should not be broken. This condition is typically violated in practice. A
symmetry breaking can be induced through interfacial effects or by the
presence of an intrinsic anisotropy in the 2D material, caused by, for example,
spin-orbit coupling.

• The Mermin-Wagner theorem only holds in the limit of infinite lattices, and
it is known that finite size effects can play an important role [6]. Excitations
with the longest wave lengths—which are responsible for the absence of
magnetisation—are suppressed in samples of finite size. This might have a
stabilising effect for the magnetisation in thin ferromagnets [6]. However,
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Chapter 1. Introduction Scientific motivation

atoms at the sides of such samples have fewer neighbours to interact with
magnetically and might be more vulnerable for external disturbances [7].
These competing effects might tip the balance in either direction.

The Mermin-Wagner theorem is thus, in fact, inconclusive on the possibility of
ferromagnetic ordering in two-dimensional materials. Note that other types of
ordering, such as spin-spiral textures, are also not prohibited by the theorem.

In 2017, Huang et al. [8] and Gong et al. [9] reported [10] the experimental
discovery of ferromagnetism in monolayers of chromium triiodide (CrI3) and a
bilayer chromium germanium telluride (Cr2Ge2Te6), respectively. Both monolayers
were obtained through mechanical exfoliation and placed on a SiO2/Si substrate.
A single layer of CrI3 was found to be ferromagnetic up to the ferromagnetic
transition (Curie) temperature TC = 45 K. For multilayered samples, the authors
found that an even number of layers behaved antiferromagnetically, while an
odd number of layers was ferromagnetic. Later it was found that even-layered
samples can be switched from an antiferromagnetic to a ferromagnetic state by
applying voltages [11–13]. Huang et al. explained their results through an Ising
model (subsection 1.3.2) and antiferromagnetic coupling between different layers.
Cr2Ge2Te6, on the other hand, required a small external field of 0.075 T to exhibit
a ferromagnetic transition, which happens at a temperature that strongly depends
on the precise applied field strength. Gong et al. showed that a nearly ideal
two-dimensional isotropic Heisenberg ferromagnet (subsection 1.3.2), solved using
renormalised spin wave theory, could explain some of their observations. However,
they had to rescale their density functional theory (DFT) parameters to reproduce
the correct transition temperature.

The first 2D ferromagnets boosted the scientific interest [13, 14], leading to
more experimental discoveries. A non-zero Curie temperature was measured
for monolayers of CrBr3, another chromium trihalide, by Zhang et al. [15] and
later by Kim et al. [16]. O’Hara et al. [17] found single-layer MnSe2, grown
on GaSe and SnSe2 by molecular beam epitaxy, to exhibit room temperature
spontaneous magnetisation. Also two-dimensional VSe2 was found to have an
in-plane spontaneous magnetisation at room temperature by Bonilla et al. [18].
This magnetisation is believed to be closely linked to charge density waves.

Theoretically, many fundamental questions remain unanswered, since the mecha-
nism responsible for spontaneous magnetisation in two-dimensional ferromagnets
is not well understood. It is unclear which of the conditions in the Mermin-Wagner
theorem need to be violated and to which degree in order to get the observed
ferromagnetic behaviour. This relates to the question of which parameters should
be tweaked to effectively influence the magnetisation in thin films and how the
Curie temperature of new materials can be predicted. In addition to these problems
related to spontaneous magnetisation, it is also not clear how these single-layer
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Technological motivation Chapter 1. Introduction

materials behave in external magnetic fields, possibly applied in an arbitrary
direction. This understanding of basic properties is crucial to enable materials
engineering and technological development.

1.2 Technological motivation

Magnetic materials and effects have always been ubiquitous in computer technolo-
gies, especially for memory applications. This is especially true since the onset of
spintronics [19] in 1988 with the discovery of the giant magnetoresistance (GMR)
effect by Albert Fert [20] and Peter Grünberg [21]. Magnetic and spintronic techno-
logies (both using ferromagnets [19] and more recently also antiferromagnets [22–
25]) are especially prosperous because of the plethora of possible effects to take
advantage of: various spin Hall effects (SHE) [26], spin-orbit coupling (SOC) and
spin-orbit torque (SOT), band spin splitting, spin transfer torque (STT) [27], the
magnetoelectric effect (ME) [11, 12, 28, 29] and voltage control of magnetism [30,
31]… The emergence of two-dimensional magnetic materials in these technologies
is unavoidable when devices are scaled down to limit costs. Moreover, new or
enhanced effects exhibited by these thin magnetic compounds can open pathways
to novel or improved devices [32]. For example, today, an active field of research is
the engineering of magnetic tunnel junctions (MTJs) [33] for the use in spin trans-
fer torque magnetic random access memories (STT-MRAM) [27]. These devices
typically consist of a stack of many thin layers [13], one of which is a ferromagnet
storing the state of the memory as its magnetisation direction. This direction, and
thus the state of the memory, is switched by applying a spin-polarised current.
A thinner ferromagnet would allow for lower critical currents. Moreover, MTJs
that are entirely built from vdW materials could have a uniform barrier thickness,
allowing for all-area tunnelling [32].

Traditionally, most logic devices are based on electronic transport. Recently, there
have been a few proposals to use spin waves or magnetisation waves to perform
logic operations [34–40]. Typically, these devices try to benefit from the inherent
wave nature to calculate, for example, Fourier transforms in hardware. One of the
most promising devices is the spin wave majority gate (SWMAG) [41, 42], which
is schematically depicted in Figure 1.1. This device has multiple inputs and one
output. The majority of the input states determines the output state, which can be
used to create a reconfigurable AND/OR gate, for example. Internally, antennas
or magnetoelectric cells create spin waves at the inputs [28]. These waves travel
through thin ferromagnetic spin wave busses and generate the correct result at
the output through wave interference. Benchmarks [43] show that this device can
be two orders of magnitude more energy efficient than 10 nm CMOS technology,
in which moving charges lead to Joule heating [34]. Through functional scaling,
SWMAG circuits can decrease to less than half the size of their CMOS equivalent.
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Chapter 1. Introduction Magnetism and the Heisenberg model

I1

I2

I3

O

I1 I2 I3 O

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

OR

AND

SW
M

A
G

Figure 1.1 Schematic representation of a spin wave majority gate with three inputs (I)
and one output (O). Spin waves are generated below the inputs and travel through the
ferromagnetic spin wave busses (blue) towards the crossing point. They interfere and
travel to the output, where the state is detected. The truth table shows that switching
I1 makes the remainder of the device act as either an AND or an OR gate.

Since these devices will be slower compared to CMOS, they can be good candidates
for Internet of Things (IoT) applications [39]. The working principle of the spin
wave majority gate was demonstrated already in 2017 by Fischer et al. [44] with
spin wave busses of 1.5 mm wide and 5.4 µm thick and progress has been going on
to scale this device further down. The limit of this scaling endeavour will lead to
ultra-thin ferromagnetic spin wave busses.

1.3 Magnetism and the Heisenberg model

In this thesis, we are interested in materials where the magnetisation originates
from localised magnetic moments (spins). Their ferromagnetic interaction is
well-described by Heisenberg-like spin lattice models, that we introduce rather
extensively in this section. Note that these models are not a good fit for materials
where magnetism originates from itinerant (free) electrons [45]. Moreover, they
are also not well-suited to describe magnetisation domain dynamics, since they
typically only describe the magnetisation behaviour in a single domain.

1.3.1 Origin of spin lattice models

An effective spin Hamiltonian can emerge from just Coulombic interactions and
adherence to the Pauli exclusion principle. The di-hydrogen molecule H2 is the
most straightforward way to get some insight in the mechanisms at play. This
molecule consists of two hydrogen atoms, labelled 1 and 2, with each an electron
in its lowest energy orbital. These electrons are labelled A and B. Their momenta
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Magnetism and the Heisenberg model Chapter 1. Introduction

and Coulombic interactions are described by the Hamiltonian

Ĥ =
p̂2

A + p̂2
B

2me
+

e2

4πε0

[ 1

rAB
− 1

rA1
− 1

rA2
− 1

rB1
− 1

rB2

]
, (1.1)

where rαβ is the absolute distance between particles α and β, e is the electronic
charge, me the electronic mass, p̂α the momentum of electron α and ε0 the
permittivity of free space. The Hamiltonian is completely spin-independent and
thus commutes with all spin operators.

We denote the total two-electron wave function of this system as Ψ(rAσA, rBσB),
where rα denotes the location of electron α and σα the projection of its spin along
the Z-axis. Since the Hamiltonian commutes with any spin operator, the wave
function can be safely factorised into a part φ that only has spatial dependence
and a part χ that contains all the spin dependence. For the latter, a suitable
basis can be found in the eigenfunctions of operators Ŝ2 and ŜZ . The total wave
function is thus

Ψ(rAσA, rBσB) = φ(rA, rB)χ(σA, σB). (1.2)

Since the two electrons are identical fermions, they must obey the Pauli exclusion
principle. This implies that their total wave function must be anti-symmetric
when exchanging them, i.e. Ψ(rAσA, rBσB) = −Ψ(rBσB, rAσA). The spin part of
the wave function is anti-symmetric if it is in the spin singlet state

χS(σA, σB) =
1√
2
(|↑↓〉 − |↓↑〉) (1.3a)

which has total spin S = 0. It is symmetric if it is in one of the three possible
triplet states

χT(σA, σB) =


|↑↑〉 SZ = 1
1√
2
(|↑↓〉+ |↓↑〉) SZ = 0

|↓↓〉 SZ = −1

(1.3b)

which all have total spin S = 1, but different projections along the Z-axis. Since
the total wave function must be anti-symmetric, the spatial part φS must be
symmetric when the spins are in the singlet state. When the spins are in the triplet
state, the spatial part φT must be anti-symmetric. Through this we see that,
although φ is the solution to the Schrödinger equation with a spin-independent
Hamiltonian Ĥ, the spatial symmetry and total spin of the system are correlated
as a result of the Pauli exclusion principle.
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Chapter 1. Introduction Magnetism and the Heisenberg model

Since the Hamiltonian commutes with the spin-dependent part of the wave function,
the energies of the singlet and triplet wave functions are

ES(r12) =

∫∫
drA drB φS(rA, rB)ĤφS(rA, rB) (1.4a)

ET(r12) =

∫∫
drA drB φT(rA, rB)ĤφT(rA, rB). (1.4b)

They can depend on the relative position r12 of the atomic nuclei. When the
nuclei are far apart (and the electrons barely interacting), φS and φT can be
well approximated by the (anti-)symmetric combination of unperturbed H atomic
orbitals [46]. When the atoms are closer together, these atomic orbitals are
perturbed and the Heitler-London approximation [47] can be used for a better
description. While the details of those orbitals are not of interest here, we note
that their electron density decays exponentially as function of the distance to the
nucleus.

The spin value of each of the electron spins is Si = 1/2, such that the expectation
value of the squared spin operator is S2

i = Si · (Si + 1) = 3/4. Note that we use
the convention h̄ = 1 here and in the remainder of this thesis. For the system’s
total spin expectation value, this means

S2 = (SA + SB)
2 = (S2

A + S2
B + 2SA · SB) =

3

2
+ 2SA · SB, (1.5)

while on the other hand S2 = S · (S + 1). From these two relations, one can easily
determine that SA · SB = −3/4 for the singlet state (S = 0), while SA · SB = 1/4
for the triplet state (S = 1). For the system under consideration, the Hamiltonian

Ĥ =
1

4
[ES(r12)− 3ET(r12)] − [ES(r12)− ET(r12)] ŜA · ŜB (1.6)

thus gives the same eigenvalues for ΨS and ΨT as the Hamiltonian with Coulombic
interactions that we started from. Finally, with a shift in the zero-point energy
the Hamiltonian can be written effectively as

Ĥex = −J(r12)ŜA · ŜB. (1.7)

This is called an exchange Hamiltonian, since the exchange of electrons in the
Pauli principle leads to an effective energy, called the exchange energy or exchange
strength J(r12). When the exchange Hamiltonian originates from the mechanisms
described here, it is valid if the electrons are localised enough such that their
orbitals are disturbed only slightly, but there is still some overlap between the
orbitals as to yield a finite J(r12). Since the atomic orbitals fall off exponentially,
J(r12) rapidly becomes very small as r12 grows. Other exchange mechanisms
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Magnetism and the Heisenberg model Chapter 1. Introduction

may lead to exchange energies with a longer interaction range or other functional
dependencies of the exchange Hamiltonian on the spin operators. Examples are
super exchange, where an intermediate atom “carries” the exchange further; double
exchange; the Hubbard model, where strong Coulombic screening allows electrons
only to “hop” from one atom to another; or spin-orbit coupling in the starting
Hamiltonian, which can lead to anisotropic exchange couplings.

By studying the simple H2 molecule, we made it plausible that a magnetic material
can be described by effective spins Ŝi at the atom’s lattice positions, which are
indexed by i. Those spins interact through an exchange Hamiltonian

Ĥex = −1

2

∑
i,j

Jij Ŝi · Ŝj , (1.8)

with exchange strength Jij = J(rij) and a factor 1/2 to correct for double-counting.
It often suffices to consider only interactions between the nearest neighbours due to
the exchange interaction’s short-range nature. In practice, the exchange strength
can be obtained either by comparing model predictions with experimental results
or through DFT calculations.

It is only a small step to also add interactions with an externally applied magnetic
flux density B. The energy of a magnetic moment m in such a field is −m · B,
while the magnetic moment of a spin S is m = geµBS, with ge the landé g-factor
and µB the Bohr magneton. The Hamiltonian describing the interaction of an
external field B with a lattice of spins is thus

ĤB = −geµBB ·
∑
i

Ŝi. (1.9)

This Hamiltonian is typically referred to as the Zeeman Hamiltonian, after the
energy splitting of spin-1/2 particles (electrons around a nucleus) in a magnetic
field.

The combined Hamiltonian Ĥ = Ĥex + ĤB is typically referred to as the (quantum)
Heisenberg model [45, 48–51]. While this model looks deceptively simple, it has
only been solved exactly in one dimension by Bethe [52]. For all other situations
one must either further simplify the Hamiltonian or fall back to approximative
solution techniques.

1.3.2 Plethora of spin lattice models

Several variations on the quantum Heisenberg model are possible. They are
introduced either because they are better solvable or because they describe the
material more accurately. We give a brief overview of the most common ones.
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Chapter 1. Introduction Magnetism and the Heisenberg model

One of the most straightforward simplifications is to treat the spins in the Hamilto-
nian as classical spins with fixed length:

ĤHeis,CL = −1

2

∑
i,j

JijSi · Sj − geµBB ·
∑
i

Si. (1.10)

This is typically referred to as the classical Heisenberg model or 3-vector model.
It is easier to treat because one does not need to account for discrete quantum
mechanical states or quantum statistics.

Similar to the 3-vector model, there is also a 1-vector model. It is one of the most
studied systems in statistical mechanics and more commonly known as the Ising
system:

ĤIsing = −1

2

∑
i,j

JijS
Z
i S

Z
j − geµBB

∑
i

SZ
i (1.11a)

= −1

2
S2

∑
i,j

Jijσiσj − geµBSB
∑
i

σi (1.11b)

with σi = ±1. It only accounts for the Z-components of the spins, which have
fixed length and can only take values ±1. This Hamiltonian was proposed by
Lenz [53] and first solved in one dimension by Ising [54], whose name was given to
the model [55]. An extensive treatment of this model is given by Huang [56].

Apart from the description of ferromagnets, the Ising model can equally well be
used to describe gasses, binary alloys or even neural networks [56, 57]. Gasses can
sometimes be described by a lattice gas model, where atoms can move around
on a lattice. Whether or not a site is occupied by an atom is then represented
by σi being positive or negative [58]. Binary alloys are materials where atoms of
two types can switch places. The interaction between atoms depends on whether
they are of equal or different type. The occupation of a site by an atom of one
type or the other can be associated with the sign of σi [59]. More recently, neural
networks are being described by the Ising model. Each lattice site can represent a
neuron, which either “fires” or not. The interactions Jij then represent synapses
that couple the neurons [60].

Next to its wide variety of application domains, the Ising model is popular because
it can be solved exactly in some cases. The first solution in one dimension was
by Ising [54] in 1925. In 1944, Onsager [61] found the first solution for a two-
dimensional lattice of Ising spins. Although some progress has been made [62], an
exact solution for the three-dimensional case is still not known to date. Nevertheless,
such bulk systems have been studied extensively using Monte Carlo simulations,
typically by employing the Metropolis-Hastings [63, 64] algorithm.
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Magnetism and the Heisenberg model Chapter 1. Introduction

The classical Ising model can in turn be made slightly more complex by using
quantum mechanical spins again:

ĤIsing,Q = −1

2

∑
i,j

Jij ŜZ
i ŜZ

j − geµBB
∑
i

ŜZ
i . (1.12)

As far as the spin-1/2 system is concerned, the classical and quantum mechanical
model are equivalent. For S > 1/2, each of the spins in the classical model can
only take values SZ

i = ±S, while those in the quantum mechanical model can
yield the 2S + 1 distinct eigenstates SZ

i ∈ {−S,−S + 1, . . .+ S}.

Next to the 1- and 3-vector model, there is of course also a 2-vector model

ĤXY = −1

2

∑
i,j

Jij (S
X
i SX

j + SY
i SY

j ) − geµBB ·
∑
i

SZ
i , (1.13)

which is often called the XY-model and has an obvious quantum mechanical
extension. Here, it is customary to apply the magnetic field in the Z-direction.
This model does not exhibit a conventional transition to long-range (ferromagnetic)
order. Instead, its susceptibility diverges at temperatures below TKT, known
as the Berezinskii-Kosterlitz-Thouless [65, 66] temperature. It marks the onset
topological order due to bound pairs of vortex and antivortex spin arrangements,
leading to quasi-long range magnetic order [13].

Next to the simplifications and restrictions of the models above, the isotropic
Heisenberg model is often further generalised to account for different anisotropies.
One way to account for those is to consider an anisotropic exchange interaction

Ĥex = −1

2

∑
i,j

[
JX
ij ŜX

i ŜX
j + JY

ij ŜY
i ŜY

j + JZ
ij ŜZ

i ŜZ
j

]
. (1.14)

This is called the XYZ-model when all exchange components are distinct JX 6=
JY 6= JZ . When only two out of the three exchange components differ JX = JY 6=
JZ , it is referred to as the XXZ-model. The latter is exactly solvable for S = 1/2
with nearest-neighbour interaction in one dimension using the Bethe Ansatz [52,
67]. As an alternative solution method, the spins can be mapped to fermions using
the Jordan-Wigner transformation [68–70]. Some other physical phenomena, such
as superfluidity in liquid Helium-II [71] and specific types of superconductivity [72],
can also be mapped to—and thus understood in terms of—the XXZ-model. In
chapter 3, we will have a closer look at the XXZ Heisenberg model.

Apart from adding anisotropy through the exchange interaction, one can also add
it through a so-called single-ion anisotropy term

Ĥsingle-ion = −
∑
i

Ki

(
ŜZ
i

)2 (1.15)
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Chapter 1. Introduction Common solution methods

in the Hamiltonian. A term of this form can originate from spin-orbit coupling
and gets its name from the fact that the spin operator in each term of the sum
acts twice on the same lattice point. Typically, its effect on the system’s behaviour
is similar to that of the anisotropy in the XXZ Heisenberg model [73]. However,
for S = 1/2 systems, the single-ion anisotropy merely shifts the zero-point energy,
since

(
SZ
i

)2
= 1/4. Another term that is always present whenever magnetic dipoles

are involved is the dipolar interaction, which is long-range and anisotropic. It is
often neglected because the energy associated with its interaction between two
spins is typically a factor 10−2 smaller than that for exchange interactions. We
will study its effects in more detail in chapter 4.

1.4 Common solution methods

In this section, we will give an overview of a few common solution methods to
the introduced (quantum) models that are relevant for this work. In addition
to these models, micromagnetic simulations [35, 40, 74, 75] are often necessary
for the modelling of complex devices and their interaction with the environment.
These simulations are based on the Landau–Lifshitz–Gilbert (LLG) equation [76],
treating spins as classical moments and without reference to the discreteness of the
atomic lattice. Most interactions are replaced by their phenomenological effects
on the magnetisation.

1.4.1 Units and fields

We start with a brief overview of some of the conventions used in this thesis for
the units in the field of magnetism. As discussed at the end of subsection 1.3.1,
the energy E of a magnetic moment m in a magnetic field B is E = −m · B. We
will express energies E in units of milli-electronVolt [meV] and B, also called the
magnetic flux density, in units of Tesla [T]. As a result, the unit of the magnetic
moment m is [meV/T]. The magnetic moment of a spin S is given by m = geµBS/h̄,
where S has the units of the reduced Planck constant h̄ = 6.58 × 10−13 meV s, the
landé g-factor is dimensionless and approximately ge ≈ 2. The Bohr magneton is
defined by µB = eh̄/2me = 5.788 × 10−2 meV/T. As we did earlier, we will always
express S in terms of the number of reduced Planck constants h̄, i.e. S = 1/2, 1 . . .
The magnetic moment of a spin S is thus m = geµBS.

Typically, in electromagnetism [77], the B-field is expressed as B = µ0 (H + M),
where the H-field is yet another magnetic field with units ampere per meter
[A/m]. This means that the magnetisation M also has units [A/m]. The vacuum
permeability is µ0 = 1.257 × 10−6 T m/A. The magnetisation field M and H-field
are often related through M = χH, where χ is the volume magnetic susceptibility.

10



Common solution methods Chapter 1. Introduction

Since we will not deal with materials in the classical electromagnetic sense, but
rather treat them as a collection of spins, we will use the following, slightly different
conventions:

B External applied magnetic field, in units of Tesla [T];

M Magnetisation per spin in the lattice. This means that M is dimensionless with
maximal magnitude Ms = S;

χ Magnetic susceptibility, defined through χ = ∂M /∂B and consequently in units
of inverse Tesla [T−1];

σ normalised magnetisation σ = M/S = M/Ms.

1.4.2 Mean field theory

We will show the general scheme followed by mean field solutions. A good and
more extended overview can be found in ref. [57]. We will derive a mean field
solution for a general type of Heisenberg Hamiltonian

Ĥ = −1

2

∑
i,j

JijŜi · Ŝj − geµBB ·
∑
i

Ŝi, (1.16)

where the spins Ŝi can represent either quantum mechanical spin operators Ŝi,
Ising spins SZ

i = Sσ with σ = ±1, or classical spins Si. The exchange interaction
is taken to be Jij = J when i and j are nearest neighbours, and Jij = 0 otherwise.
We want to find the homogeneous magnetisation M = 〈Ŝi〉, where 〈· · ·〉 is the
Canonical ensemble average. The magnetisation is assumed to be independent of
the specific lattice point i in the homogeneous material.

The spins in the exchange term can be written as the sum of their average value
and the fluctuations around this average Ŝi = M + (Ŝi − M), which leads to the
identity

Ŝi · Ŝj = Ŝi · M + M · Ŝj −M2 + (Ŝi − M) · (Ŝj − M) . (1.17)

One of the basic assumptions of the mean field theory is that the fluctuations
Ŝi − M are small. They can thus be neglected when appearing in second order.
The Hamiltonian is then

Ĥ ≈ −1

2
M ·

∑
i,j

Jij (Ŝi + Ŝj) − geµBB ·
∑
i

Ŝi, (1.18)

where the term contributing to an overall energy shift was left out, as it will not
influence the final result. Relabelling the indices in the double sum and using
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Jji = Jij yields

Ĥ ≈ −M ·
∑
i,j

JijŜi − geµBB ·
∑
i

Ŝi. (1.19)

The mean-field Hamiltonian of a random spin Ŝi is thus

Ĥi
MF = −geµBBeff · Ŝi (1.20)

where we introduced the effective field

Beff =
M

geµB
Jtot + B, with Jtot =

∑
j

Jij = zJ. (1.21)

The coordination number z counts the number of nearest neighbours for a specific
spin. The interaction of the spin at location i with all the other spins in the
medium is thus represented by the interaction with the effective field they generate.
The Hamiltonian Ĥi

MF that is left, is the same as for a single spin Ŝi in an external
field Beff. Such a representation is also often referred to as a molecular field theory,
instead of mean field theory.

Since the exchange term in the original Hamiltonian is rotationally invariant, the
spins (and thus the magnetisation) will naturally align with B, which we will
assume to be applied in the Z-direction. When the Z-projection of Ŝi is SZ , its
mean field energy is

E(SZ) = −geµBSZBeff (1.22)

and its magnetisation M = SZ . The probability of the Z-projection of Ŝi being
SZ is

p(SZ) =
e−βE(SZ)

Z
, with Z = Tr

[
e−βE(SZ)

]
(1.23)

the canonical partition function. In the latter, the trace represents the sum or
integral over all possible discrete or continuous states SZ . We used the standard
notation β = kBT

−1 for the inverse temperature. Since the spin at i was chosen
arbitrarily, its average Z-projection equals the homogeneous magnetisation in the
system and is given by

M = 〈SZ〉 = Tr[SZp(SZ)] =
Tr

[
SZe−βE(SZ)

]
Z

. (1.24)

For the different lattice models, different quantities need to be substituted. We
introduce the variable a = βSgeµBBeff. For the classical Heisenberg model, which
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Common solution methods Chapter 1. Introduction

has spins of fixed length S that can rotate, the Z-projection is SZ = S cos θ, with
θ the angle of the spin relative to Z. The rotation of the spin is continuous, such
that the traces denote an integration over all possible spin directions. The formula
for the magnetisation is thus

M =

∫∫
S cos θ ea cos θ dΩ∫∫

ea cos θ dΩ
, (1.25)

with the solid angle differential dΩ = sin θ dθ dφ. For the Ising system, the spin
of fixed length S can only point up or down. The Z-projection is SZ = Sσ, with
σ = ±1. The traces denote just the sum over these two possibilities, such that the
magnetisation can be calculated as

M =
Se+a − Se−a

e+a + e−a
. (1.26)

The quantum Heisenberg model is after the mean field approximation equivalent
to the quantum Ising model: the X- and Y -components do not play a role and
only the component in the direction of the applied field is accounted for. The
Z-projection is SZ = mZ , where mZ can take the values −S,−S + 1, . . . S. As for
the Ising model, the traces denote a sum over these 2S + 1 possible states, leading
to the magnetisation

M =

S∑
mZ=−S

mZ eamZ/S

S∑
mZ=−S

eamZ/S

. (1.27)

Working out the above formulas, leads for all three models to the solution
M

S
= F(a), with a = βSgeµBBeff =

1

kBT

{
S2M

S
Jtot + SgeµBB

}
, (1.28)

which still needs to be solved for M/S. Only the function F(x) (see Figure 1.2)
to substitute depends on the specific model:

F(x) =


tanhx Ising
BS(x) quantum Ising/Heisenberg
L(x) classical Heisenberg,

(1.29)

where the Langevin function L(x) and Brillouin function BS(x) of order S are
defined by

L(x) = cothx− 1

x
(1.30a)

BS(x) =
2S + 1

2S
coth

(2S + 1

2S
x
)
− 1

2S
coth

( x

2S

)
. (1.30b)
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Figure 1.2 The behaviour of F(x) for the Ising model (red), the classical Heisenberg
model (blue) and the quantum Ising/Heisenberg model with S = 1, 3/2 and 3 (yellow).

The functions F(x) all have a linear dependence on x for small x. At this point
there are two important observations to make: (i) as required, the magnetisation
in the quantum Heisenberg model reduces to that of the Ising model for S = 1/2
and to that of the classical Heisenberg model for S → ∞, and (ii) the formulas do
not depend on the specific lattice structure or its dimensionality. Only the number
of nearest neighbours z plays a role. This is one of the problems of the mean field
theory.

When considering non-interacting spins, i.e. Jtot = 0, our solution corresponds to
Langevin’s theory of paramagnetism. At room temperature, even for strong fields,
the variable a = geµB

kB
SB

T � 1 since geµB
kB

≈ 1.343 K/T. The magnetisation thus
increases linear in the field. The zero-field magnetic susceptibility is in this case

χ = lim
B→0

∂M

∂B
=

C

T
, (1.31)

with C the Curie constant, given by

C =


S2 geµB

kB
Ising

1
3S (S + 1) geµB

kB
quantum Ising/Heisenberg

1
3S

2 geµB
kB

classical Heisenberg
. (1.32)

This is Curie’s law, which is typically observed in non-interacting, dilute collections
of atoms such as paramagnetic salts. Only at very low temperatures, the limit
a � 1 is reached and all the spins align approximately with the field, M ≈ 1.

14



Common solution methods Chapter 1. Introduction

Now let us consider the case where the spins do interact, but there is no applied
field B → 0. The equation (1.28) then becomes

M

S
= F(a), with a =

S2

kBT
Jtot

M

S
(1.33)

and always has the solution M = 0. However, another solution is possible if the
slope of F(a) exceeds 1 at M = 0, that is when

dF(a)

dM

∣∣∣
B=0,M=0

> 1. (1.34)

This condition is found to hold for temperatures below

TC =


S2 zJ

kB
Ising

1
3S (S + 1) zJ

kB
quantum Ising/Heisenberg

1
3S

2 zJ
kB

classical Heisenberg
, (1.35)

which we call the Curie temperature. This is the highest temperature below which
the spontaneous magnetisation is found to be non-zero. The material is then in
its ferromagnetic state. Three things should be noted about the mean field Curie
temperatures:

• they are independent of the lattice structure or dimensionality of the system.
For example, the mean field Curie temperature for the two-dimensional
Heisenberg model is non-zero, while it should vanish according to the Mermin-
Wagner theorem;

• the Ising and classical Heisenberg model scale with S as S2. The quantum
Ising and Heisenberg mode scale with S as S (S + 1), which is typical for
quantum systems; and

• the Curie temperatures predicted through the mean field theory are typically
too high compared to exact results or experiments. The overestimation is
particularly large for systems with reduced dimensionality.

The first and third point are well illustrated by comparing with the exact result
for the two-dimensional Ising model on a square (z = 4), hexagonal (z = 6) and
honeycomb (z = 3) lattice:

TC
Ising, exact =


2

ln(1+
√
2)
S2 J

kB
square [61]

4
ln(3)S

2 J
kB

hexagonal [78]
2

ln(2+
√
3)
S2 J

kB
honeycomb [78]

. (1.36)
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Finally, we can also consider the situation where a small field is applied and
internal interactions are present. The zero-field susceptibility can then be derived
from

χ = lim
B→0

∂M

∂B
= lim

B→0

∂M

∂Beff

∂Beff
∂B

=
C

T

(
1 +

Jtot
geµB

χ
)
, (1.37)

where we used the Curie law in the first factor and the expression for the effective
field in the second. The zero-field susceptibility

χ =
C

T −ΘC
(1.38)

follows from solving this equation. This is the famous Curie-Weiss law with
the Curie-Weiss temperature ΘC, which is sometimes also referred to as the
paramagnetic Curie temperature. For the mean field theory, the Curie-Weiss
temperature equals the Curie temperature. Experimentally, however, the Curie-
Weiss law is only found to be valid for large temperatures. At temperatures around
the Curie temperature, the susceptibility typically behaves as χ−1 ∝ |T − TC|−γ

with γ ≈ 4/3.

1.4.3 Spin wave theory

In this subsection, we derive some basic results of the linear spin wave theory. To
keep the derivation clean and simple, we will derive results for a one-dimensional
quantum Heisenberg chain in the absence of a magnetic field and at T = 0. This
is sufficient to derive basic magnons and their dispersion relation. The results are
then straightforward to extend to multiple dimensions and non-zero temperatures.

Consider

Ĥ = −J

N∑
i=1

Ŝi−1 · Ŝi, (1.39)

which is the isotropic Heisenberg Hamiltonian for N spins interacting ferromagnet-
ically only with their nearest neighbours. We assume periodic boundary conditions
with i = N+1 = 1. By introducing the spin operators Ŝ±

i = Ŝx
i ± iŜy

i that obey the
commutation relation [Ŝ+

i , Ŝ−
j ] = 2Ŝz

i δij and using the cyclic boundary condition,
the Hamiltonian can be written as

Ĥ = −J

N∑
i=1

[1
2
(Ŝ−

i+1Ŝ
+
i + Ŝ−

i−1Ŝ
+
i ) + Ŝz

i−1Ŝz
i

]
. (1.40)

When the spin at site i has z-component M , we write its state as |M〉i = |S,M〉i.
The ground state for the total spin chain is

|0〉 = · · · |S〉i−1|S〉i|S〉i+1 · · · (1.41)
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with all the spins aligned. The ground state with M = S − 1 at site i is written as

|φ〉i = · · · |S〉i−1|S − 1〉i|S〉i+1 · · · . (1.42)

For any site i, the relations Ŝ+
i |0〉 = 0, Ŝ−

i |0〉 =
√
2S|φ〉i and Ŝz

i |0〉 = S2|0〉 hold,
such that Ĥ|0〉 = −JNS2|0〉. The ground state |0〉 is thus indeed an eigenstate of
the Hamiltonian, with associated ground state energy

E0 = 〈0 | Ĥ | 0〉 = −JNS2. (1.43)

Thinking classically about this system, a state with a single spin’s z-projection
lowered by one, such as |φ〉i, would be assumed to be the lowest energy excitation.
Using the relations

Ŝ−
i±1Ŝ

+
i |φ〉j = δij

√
2SŜ−

i±1|0〉 = 2S|φ〉i±1 (1.44a)
Ŝz
i−1Ŝz

i |φ〉j = S (S − δij − δi−1,j) |φ〉j (1.44b)

for this state, one finds that the Hamiltonian acts on it as

Ĥ|φ〉j = −SJ
[
(|φ〉j−1 − 2|φ〉j + |φ〉j+1) +NS|φ〉j

]
. (1.45)

The first term indicates that the single-site spin reduction spreads out over time.
The state with a localised spin lowering is not an eigenstate of the Hamiltonian!

The true lowest energy excitations are the so-called Bloch magnons [79] or spin
waves

|Φ(k)〉 = 1√
N

N∑
j=1

eijk|φ〉j , (1.46)

which are collective excitations of the lattice. They spread the locally lowered spin-
state over the entire lattice, each with a different phase factor. Such an excitation
can exist with different wave vectors k = 2πn/N , where n = −N/2 + 1, . . . N/2
and we assumed the lattice constant to be 1. Applying the Hamiltonian to the
magnon state, confirms that it is an eigenstate of the system

Ĥ|Φ(k)〉 = 1√
N

N∑
j=1

eijkĤ|φ〉j

= − SJ√
N

N∑
j=1

eijk [(|φ〉j−1 − 2|φ〉j + |φ〉j+1) +NS|φ〉j
]

= − SJ√
N

N∑
j=1

eijk [eik + e−ik − 2 +NS] |φ〉j

= −SJ [2 cos k − 2 +NS] |Φ(k)〉,

(1.47)

17



Chapter 1. Introduction Common solution methods

with excitation energy

E1 = 〈Φ(k) | Ĥ |Φ(k)〉 = S2J [1− cos k]︸ ︷︷ ︸
ω(k)

−JNS2︸ ︷︷ ︸
E0

. (1.48)

A single magnon thus adds an energy ω(k) to the system. A few important points
need to be raised regarding these Bloch magnons:

• The spins in the system do not precess (which is anyway not possible in the
classical sense), since 〈Φ(k) | Ŝx

i |Φ(k)〉 = 〈Φ(k) | Ŝy
i |Φ(k)〉 = 0. This is in

contrast to the basic excitations in the classical Heisenberg model—which
are confusingly also called spin waves. There, the spins precess around the
z-direction with a time-dependent phase factor.

• The wave nature of the Bloch magnons is present in the phase factor eijk

and becomes more apparent when considering the spin correlation function
〈Φ(k) | Ŝj · Ŝl |Φ(k)〉 ∝ cos

(
k (j − l)

)
.

• The magnon excitation energy ω(k) vanishes in the limit of small k. This
means that very small excitations suffice for those long wave length magnons
to be excited. In the limit T → 0, the magnetisation dependence on tem-
perature is 1 −M/S ∝ T 3/2 and is known as Bloch’s T 3/2-law. This is in
contrast to the results obtained from the mean field theory, for which the
deviation from saturation magnetisation at low temperatures is exponentially
small in T .

• A Bloch magnon is a boson, since it carries a unit spin. Bloch’s non-
interacting boson approximation is only valid at the lowest temperatures.
Dyson took the calculations one step further,[80, 81] accounting for first-order
interactions. His results are known as Dyson spin waves.

1.4.4 Holstein-Primakoff approximation

The last approximation that we want to discuss is the Holstein-Primakoff approx-
imation [82], which is very popular in describing quantum spin systems [83–86].
Generally, it gives results of similar quality as Bloch or Dyson spin waves, but
can be applied more systematically, with less cumbersome calculations for higher
orders and for more general spin interactions.

The essential approximation made by Holstein and Primakoff was that the system is
in quasi-saturation, meaning that M ≈ Ms, or (Ms −M) /Ms � 1. This condition
is always valid at temperatures far below the Curie temperature, with an increasing
validity range for larger spin values S. In very strong magnetic fields, its usage
may be valid throughout a large temperature range.
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The basic procedure to follow for applying the Holstein-Primakoff approximation
consists of four steps.

1. First one has to write the operators Ŝ+
i , Ŝ−

i and n̂i = S − Ŝz
i in terms

of bosonic creation and annihilation operators â†i and âi for magnon-like
excitations, based on their effect on the total spin of the system:

Ŝ+
i =

√
2S

(
1− â†i âi/(2S)

)1/2 âi (1.49a)

Ŝ−
i =

√
2Sâ†i

(
1− â†i âi/(2S)

)1/2 (1.49b)

n̂i = â†i âi. (1.49c)

Each additionally created magnon-like excitation lowers the total spin value.
This is typically referred to as the Holstein-Primakoff transformation.

2. The next step is to apply the condition of quasi-saturation, which can be
translated into operator language as 〈n̂i〉/(2S) = 〈â†i âi〉/(2S) � 1. Gen-
erally, this boils down to replacing the terms

(
1− â†i âi/(2S)

)1/2 by their
approximate expectation value 1, in which case this approximation is also
referred to as the linear spin wave approximation. Magnon interactions can
be taken into account to higher order by keeping more terms in the Taylor
expansion of this square root, to which one often refers as the renormalised
spin wave approximation [87, 88]. Further, terms proportional to n̂in̂j may
be neglected, as they have a small expectation value. Also terms containing
a total of three creation or annihilation operators are to be neglected.

3. The third step is to transition to Fourier-transformed creation and anni-
hilation operators. These allow to more naturally describe spin wave-like
excitations. At this stage, the Hamiltonian is typically in diagonal form,
such that the excitation eigenvalues can be extracted.

4. The final step is to calculate the partition function Z, which allows to
determine the magnetisation as

M = kBT
∂

∂B
lnZ. (1.50)

In the proper regimes of validity, the Holstein-Primakoff approximation gives good
results. However, it is clear from its basic premise that the derived theory is not
valid up to, or even near, the ferromagnetic phase transition.

1.5 Outline
In the next chapter, we will introduce most of the necessary tools for the remainder
of the thesis. Section 2.1 introduces the notation that we use for referring to
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different lattice concepts. Next, in section 2.2, we extensively introduce our most
important tool: Zubarev’s double-time temperature-dependent Green functions.
The following section is closely related and deals with the specificities of applying
the Green function theory to ferromagnets.

We start chapter 3 with an extensive introduction of the main model in this
thesis, which is a quantum Heisenberg model extended with anisotropic exchange
interactions. This model is then transformed into a more generally useful form
through a rotation into a magnetisation coordinate system. The obtained general
equations are then partially solved in section 3.2, such that the obtained results
can be re-used in chapter 4. In section 3.3, we continue the solution specifically for
the extended Heisenberg model. The results comparing two- and three-dimensional
cubic lattices are presented in section 3.4, followed by our calculations for honey-
comb and hexagonal lattices (section 3.5). The latter two allow for comparison
with experiments.

Chapter 4 introduces dipolar interactions into the Heisenberg model. After a
coordinate rotation, the equations are brought into a similar form as before, such
that the results obtained in section 3.2 can be applied. The final equations contain
slowly converging lattice sums, which can be rewritten to converge faster by using
the Ewald summation technique (section 4.2) and can be expanded to study their
behaviour for low wave vectors (section 4.3).

In chapter 5, the main conclusions of this thesis are summarised, and we give some
proposals for future work.
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2 Formalism
2.1 Notation and lattice concepts

2.1.1 Direct and reciprocal lattice

Infinite and periodic crystals are conveniently described in two ways: through
their direct lattice and through the spatial Fourier transformed reciprocal lattice.

The direct lattice is provided by its Bravais lattice, possibly complemented by a
multiatomic basis (Figure 2.1). Given the crystal’s primitive lattice vectors ai, any
lattice position vector rl on a d-dimensional Bravais lattice is uniquely determined
by a d-tuple l through

rl =
d∑
i

liai, li ∈ Z. (2.1)

The volume of the primitive cell is

va =

{
‖a1 × a2‖ d = 2

|a1 · (a2 × a3)| d = 3
(2.2)

and can be calculated as the volume of the entire crystal divided by the number
of lattice sites for crystals with a monoatomic basis. Crystals that are not Bravais
lattices can be described as a Bravais lattice with multiatomic basis. This basis
is given by vectors dα that point from the Bravais lattice vectors rl towards the
atoms in the basis. The position of each atom in the crystal is then described
uniquely by a position vector

rlα = rl + dα. (2.3)

If the crystal is described by a Bravais lattice with a monoatomic basis, dα = 0 is
conventional and the index α of the position vector is dropped. The index is also
dropped if the specific atom in the basis referred to is not of importance. This
notation closely resembles that of Wallace [89].

The reciprocal lattice is given by the set of all vectors

Gm =
d∑

i=1

mibi, mi ∈ Z (2.4)
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a2

a
1

α

β

rl

rp

d α

dβ

rlα

rlβ

va

Figure 2.1 Direct lattice of a two-dimensional material with two atoms (α and β) in its
basis. The primitive lattice vectors a1 and a2 span a yellow-shaded primitive cell with
volume (area) va. Any Bravais lattice vector rl or rp can be constructed as an integer
combination of the primitive lattice vectors. The Bravais lattice vector rl together with
an atomic basis vectors dα gives the position rlα of an atom in the α-sublattice.

that can be expressed in terms of primitive reciprocal vectors bi, defined in turn
by

bi · aj = 2πδij . (2.5)

As a result, any reciprocal and direct lattice vector satisfy the relation

Gm · rl = 2πn, n ∈ Z. (2.6)

The reciprocal primitive cell—or first Brillouin zone (BZ)—has volume

vb =
(2π)d

va
. (2.7)

2.1.2 Spatial Fourier transform

Consider a general function f(rpα, rlβ), which depends on the lattice vectors rpα
and rlβ only through their difference rpα− rlβ and on their places dα and dβ in the
multiatomic basis. Such a function can be written as f(rpα−rlβ,dα,dβ). Moreover,
since the function has separate dα and dβ dependence, it can be rewritten such
that its first argument is a Bravais lattice difference vector rpl = rpα− rlα = rp − rl.
The function then becomes fpl,αβ = f(rpl,dα,dβ). When only a single first index
is given, this means that l = 0 was chosen as the origin, so fp,αβ = f(rp0,dα,dβ) =
f(rp,dα,dβ). If f is furthermore not longer dependent on the sublattice α, we
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drop this index and keep only the sublattice index to which the origin l belongs:
fp,β.

A function fpl,αβ can be expanded into its Fourier components fαβ(k) as

fpl,αβ =
1

N

∑
k∈BZ

e−ik·rplfαβ(k) (2.8)

to exploit the periodicity of the Bravais lattice. The sum is over the wave vectors
k = (kX , kY , kZ) in the first Brillouin zone and N is the number of primitive cells
in the Bravais lattice—also the number of wave vectors being summed over. This
sum is well approximated by the integral

fpl,αβ =
1

vb

∫
BZ

e−ik·rplfαβ(k)dk (2.9)

over the first Brillouin zone when the lattice is very large (N → ∞). The inverse
Fourier transform is given by

fαβ(k) =
∑
rpl

eik·rplfpl,αβ =
∑
rp

eik·rpfp,αβ, (2.10)

where rp runs over all Bravais lattice vectors. An identity which often proves
useful is the Fourier expansion of the spatial Kronecker delta function

δpl =
1

N

∑
k∈BZ

e−ik·rpl =
1

N

∑
k∈BZ

e−ik·rlp . (2.11)

The notation with subindices both for the Bravais lattice position and the atomic
basis position is rather heavy. Therefore, often only the Bravais lattice position
will be written to indicate a lattice position. This can mean one of three things: (i)
the lattice under consideration is monoatomic, (ii) the presented theory does not
directly depend on the atomic basis position, or (iii) the atomic basis position is
indicated in another manner. When the interpretation is not clear from notation
alone, it will be clearly indicated.

2.1.3 Neighbour functions

We will often deal with interactions, such as the exchange interaction, that are
isotropic with respect to the atoms spatial arrangement. Since these interactions
depend only on the distance between lattice points, they can be expanded in terms
of neighbour functions ζn which interact only with the nth nearest neighbours. Since
these interactions are significant only over a limited distance, such an expansion
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only needs to be carried out for one or at most a few nearest neighbours. There
are zn nearest neighbours that reside on lattice sites a distance an away. The
first nearest-neighbour z = z1 is called the coordination number. The neighbour
functions are then

ζn,pl = δ(‖rpl‖ − an), (2.12)

yielding non-zero values exactly for those atoms at rp which are a distance an from
rl. The Fourier transform of this function is

ζn(k) =
∑
rp

eik·rpζn,p =
∑

p∈Nn

eik·rp , (2.13)

where the set of nth nearest neighbours is denoted as

Nn = {p | ‖rp‖ = an}. (2.14)

2.1.4 Lattice types

Standard books on solid state physics (e.g., Kittel [50] and Ashcroft and Mer-
min [45]) provide properties for the lattice types encountered in this thesis. The
most important ones are summarised here, to avoid ambiguity in notation or
definition. For every case, crystallographic unit vectors (e1, e2, e3) = (X,Y,Z) will
be used, with Z perpendicular to the plane of atoms for two-dimensional crystals.
To keep the notation in this section compact, X,Y and Z will sometimes be denoted
as e1, e2 and e3, respectively. We will sometimes use the term cubic lattice to refer
to the collection of the two-dimensional square and the three-dimensional simple
cubic, face centred cubic and body centred cubic lattices.

Simple Cubic and Square

The simplest lattice structures are the three-dimensional (d = 3) Simple Cubic (SC)
lattice, and its two-dimensional(d = 2) variant, the SQuare (SQ) lattice. Their
primitive lattice vectors are simply

ai = aei, (2.15)

where the lattice constant a equals the nearest-neighbour distance a1. The Bravais
lattice vectors are

rl = al, with l =
d∑

i=1

liei, (2.16)

spanning a primitive cell volume va = ad. The primitive reciprocal vectors

bi =
2π

a
ei, (2.17)
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lead to the reciprocal lattice vectors

Gm =
2π

a
m, with m =

d∑
i=1

miei. (2.18)

The first Brillouin zone is defined by the inequalities |kX |, |kY |, |kZ | 6 π/a. The
z = 2× d nearest neighbours are

NSC
1 = {(±a, 0, 0), (0,±a, 0), (0, 0,±a)} (2.19a)

NSQ
1 = {(±a, 0), (0,±a)}, (2.19b)

leading to Fourier transformed neighbour functions

ζSC
1 (k) = 2

[
cos akX + cos akY + cos akZ

]
(2.20a)

ζSQ
1 (k) = 2

[
cos akX + cos akY

]
. (2.20b)

Body Centred Cubic

The Body Centred Cubic (BCC) lattice with lattice constant a has primitive lattice
vectors

ai =
a

2

3∑
j=1

(−1)δij ej . (2.21)

The Bravais lattice vectors are then

rl =
a

2

3∑
i=1

3∑
j=1

(−1)δij liej , (2.22)

spanning a primitive cell volume va = a3/2 with nearest-neighbour distance
a1 =

√
3a
2 . The primitive reciprocal vectors are

bi =
2π

a

3∑
j=1

(1− δij) ej , (2.23)

leading to reciprocal lattice vectors

Gm =
2π

a

3∑
i=1

3∑
j=1

(1− δij)miej . (2.24)
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A wave vector k belongs to the first Brillouin zone when it satisfies |ki|+|kj | 6 2π/a
for each combination of components i, j ∈ {X,Y, Z}. With the z = 8 nearest
neighbours

NBCC
1 =

{(
±a

2
,±a

2
,±a

2

)}
(2.25)

the Fourier transformed neighbour function becomes

ζBCC
1 (k) = 8 cos

(a
2
kX

)
cos

(a
2
kY

)
cos

(a
2
kZ

)
. (2.26)

Face Centred Cubic

The Face Centred Cubic (FCC) lattice is basically the same as the BCC lattice
in reciprocal space and vice versa. With a lattice constant a, its primitive lattice
vectors are

ai =
a

2

3∑
j=1

(1− δij) ej . (2.27)

The Bravais lattice vectors are

rl =
a

2

3∑
i=1

3∑
j=1

(1− δij) liej . (2.28)

spanning a primitive cell volume va = a3/4 with nearest-neighbour distance
a1 =

a√
2
. This leads to primitive reciprocal vectors

bi =
2π

a

3∑
j=1

(−1)δij ej , (2.29)

and reciprocal lattice vectors

Gm =
2π

a

3∑
i=1

3∑
j=1

(−1)δij miej , (2.30)

The first Brillouin zone reduces to the region |kX |, |kY |, |kZ | 6 2π/a with the
additional restriction |kX |+ |kY |+ |kZ | 6 3π/(2a). The coordination number for
the FCC lattice is z = 12. These nearest neighbours are located at the positions

NFCC
1 =

{(
±a

2
,±a

2
, 0
)
,
(
±a

2
, 0,±a

2

)
,
(
0,±a

2
,±a

2

)}
, (2.31)

leading to the Fourier transformed neighbour function

ζFCC
1 (k) = 4

[
cos

(a
2
kX

)
cos

(a
2
kY

)
+ cos

(a
2
kX

)
cos

(a
2
kZ

)
+ cos

(a
2
kY

)
cos

(a
2
kZ

)]
.

(2.32)
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Hexagonal

In two-dimensional crystals with a HEXagonal (HEX)—also called triangular—
Bravais lattice, each atom has z1 = 6 nearest neighbours at a distance a1 = a,
with a the lattice constant. The primitive lattice vectors

a1 =
√
3

2
aX +

1

2
aY and a2 =

√
3

2
aX − 1

2
aY (2.33)

have length ‖ai‖ = a and define the Bravais lattice

rl =
a

2
[
√
3 (l1 + l2) X + (l1 − l2) Y] (2.34)

with primitive cell volume va =
√
3a2/2. Turning to momentum space, the

primitive reciprocal vectors are

b1 =
2π

a

( 1√
3

X + Y
)

and b2 =
2π

a

( 1√
3

X − Y
)

(2.35)

and have length ‖bi‖ = 4π/(
√
3a). The reciprocal lattice vectors are

Gm =
2π

a

[ 1√
3
(m1 +m2) X + (m1 −m2) Y

]
. (2.36)

Just as the primitive cell, the first Brillouin zone is hexagonal with boundaries

|kX | 6 2π√
3a

and 1√
3
|kX |+ |kY | 6 4π

3a
. (2.37)

The nearest-neighbour locations are

NHEX
1 = {±a1,±a2,± (a1 − a2)}, (2.38)

yielding the Fourier transformed neighbour function

ζHEX
1 (k) = 4 cos

(√3

2
akX

)
cos

(a
2
kY

)
+ 2 cos akY . (2.39)

Honeycomb

The HONeycomb (HON) lattice (Figure 2.3) is a hexagonal Bravais lattice with two
atoms in its basis. This means that each of these two atomic basis positions form a
sublattice—which themselves are hexagonal Bravais lattices—that will be denoted
by A and B. The honeycomb lattice is thus described by the hexagonal primitive
lattice vectors, Bravais lattice vectors and primitive cell volume, supplemented
with the two atomic basis vectors

dA = 0 and dB =
a√
3

X, (2.40)
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BZ

K′

K

Γ
M

b 1
b
2

bBZ

X
Y

Z

Figure 2.2 Sketch of the reciprocal space, the primitive reciprocal vectors b1 and b2

that span this space, and first Brillouin zone (shaded region) of the hexagonal and
honeycomb lattice types. The red points highlight the symmetry points Γ, M, K and
K′ and bBZ indicates the Brillouin zones side length.

A B

a1

a
2

a
1a

2

a3

dBX
Y

Z

Figure 2.3 Sketch of the honeycomb lattice. The two sublattices—A (blue) and B
(red)—each form a hexagonal lattice with primitive lattice vectors a1 and a2, which
determine the primitive unit cell (shaded red). The atomic basis vector dB points from
the A towards the B sublattice. The nth neighbour distances an are also shown.
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which point from the Bravais lattice to either the atom on the A or B sublattice.
The identical Bravais lattice ensures identical reciprocal lattice properties. In
materials with a honeycomb lattice structure, not only interactions with the z1 = 3
first nearest neighbours, but also those with the z2 = 6 second and z3 = 3 third
nearest neighbours are often important. The positions of the nth nearest neighbours
depends on the sublattice of the reference atom. The first nearest neighbours of
an atom at sublattice A/B are located at positions

NHON
1,A/B = {±dB,± (dB − a1) ,± (dB − a2)}, (2.41)

such that the Fourier transformed neighbour function is

ζHON
1,A/B(k) = cos

( a√
3
kX

)
+ 2 cos

( a

2
√
3
kX

)
cos

(a
2
kY

)
± i

[
sin

( a√
3
kX

)
− 2 sin

( a

2
√
3
kX

)
cos

(a
2
kY

)]
.

(2.42)

The second nearest neighbours lie on the same sublattice as the reference atom.
Since each sublattice itself forms a hexagonal Bravais lattice, the second nearest
neighbours and their corresponding Fourier transformed neighbour function are
equivalent to that for the first nearest neighbours of the hexagonal lattice:

NHON
2,A/B = NHEX

1 and ζHON
2,A/B(k) = ζHEX

1 (k), (2.43)

independent of the reference lattice. Finally, the third nearest neighbours

NHON
1,A/B = {± (dB − a1 − a2) ,± (dB − a1 + a2) ,± (dB + a1 − a2)}, (2.44)

are similar to the first nearest neighbours, but mirrored over Y and elongated by
a factor 2. The corresponding Fourier transformed neighbour function is

ζHON
3,A/B(k) = cos

( 2a√
3
kX

)
+ 2 cos

( a√
3
kX

)
cos akY

± i
[
− sin

( 2a√
3
kX

)
+ 2 sin

( a√
3
kX

)
cos akY

]
.

(2.45)

2.2 Double-time temperature-dependent Green
functions

In this section, the general solution framework will be introduced. This heavily
relies on double-time temperature-dependent Green functions, which we will
introduce extensively, together with some of their relevant properties. We closely
follow a combination of the approaches given by Zubarev [90] and Callen [91]
and important remarks of Stevens and Toombs [92] that were further detailed by
Ramos and Gomes [93] and others [94–99].
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2.2.1 Time correlation functions

Many observable quantities can be expressed as a time correlation function

CB̂Â(t, t
′) = 〈B̂(t′)Â(t)〉, (2.46)

which is the canonical ensemble average of the product of operators Â(t) and
B̂(t′) in the Heisenberg representation evaluated at times t and t′. A Heisenberg
operator can be expressed in terms of a Schrödinger-type operator Â = Â(0) as

Â(t) = eiĤtÂe−iĤt (2.47)

and evolves according to the Heisenberg equation of motion

idÂ(t)

dt
= [Â(t), Ĥ(t)] = Â(t)Ĥ(t)− Ĥ(t)Â(t). (2.48)

The canonical ensemble average itself is

〈. . .〉 = Z−1 Tr
(
e−βĤ . . .

)
, where Z = Tr

(
e−βĤ). (2.49)

In the above, we use units with h̄ = 1 and introduce the systems Hamiltonian Ĥ
and inverse temperature β = 1/kBT , with kB the Boltzmann constant.

The correlation functions of a system in statistical equilibrium depend only on the
time difference t− t′:

CB̂Â(t− t′) = 〈B̂(0)Â(t− t′)〉. (2.50)

At equal times t = t′, these time correlation functions give the average values of
products of operators, i.e.

CB̂Â(0) = 〈B̂(0)Â(0)〉 = 〈B̂Â〉. (2.51)

It is often useful to consider the spectral density

S(ω) = 1

2π

∞∫
−∞

CB̂Â(t)eiωt dt (2.52)

which is the Fourier transform of the time correlation function CB̂Â(t). The
correlation function can in turn be expressed in terms of this spectral density
through the inverse Fourier transform

CB̂Â(t) = 〈B̂Â(t)〉 =
∞∫

−∞

S(ω)e−iωt dω . (2.53a)
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Now, by substituting t → t+ iβ and noting that 〈B̂Â(t+ iβ)〉 = 〈Â(t)B̂〉, also the
correlation function of the commuted operators can be expressed through the same
spectral density as

〈Â(t)B̂〉 =
∞∫

−∞

S(ω)eβωe−iωt dω . (2.53b)

The final goal of this all, is to calculate quantities related to the time corre-
lation functions. Using the Heisenberg equation of motion (2.48), we find the
corresponding identity

idCB̂Â(t)

dt
= 〈B̂[Â(t), Ĥ(t)]〉 = 〈B̂ {Â(t)Ĥ(t)− Ĥ(t)Â(t)}〉, (2.54)

from which the time correlation functions can in principle be obtained by direct
integration when supplemented with adequate boundary conditions. In practice,
these calculations are hard to perform. That is why we will introduce in the
remainder of this section a more indirect method for evaluating the time correlation
functions. That method, based on Green functions and their equation of motion,
has the advantage of making it easier to satisfy the boundary conditions using
spectral theorems.

2.2.2 Definition and properties

Zubarev’s [90] double-time temperature-dependent retarded and advanced Green
functions, involving two operators Â and B̂, are defined as

Gr
η(t, t

′) = ⟪Â(t); B̂(t′)⟫r
η = −iθ(t− t′)〈[Â(t), B̂(t′)]η〉 (2.55a)

Ga
η(t, t

′) = ⟪Â(t); B̂(t′)⟫a
η = iθ(t′ − t)〈[Â(t), B̂(t′)]η〉 (2.55b)

Both types come in two flavours: the commutator (η = −1) and anti-commutator
(η = +1) Green functions. The square brackets with subscript η = ∓ indeed
denote either a commutator or anti-commutator [Â, B̂]η = ÂB̂ + ηB̂Â. When no
such subscript is present, we are always referring to the commutator (η = −). In
the definition of the Green function, the Heaviside or step function

θ(t) =

{
1, t > 0

0, t < 0
(2.56)

makes the retarded Green function vanish for times t < t′ and the advanced Green
function when t > t′. Note that the Green functions take the averages over the
canonical ensemble and not just over the ground state of the system. As such,
they do not only depend on time, but also on temperature.
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Referring to thermal equilibrium, the Green functions only depend on the times t
and t′ through their difference t− t′, such that they can be written as Gr

η(t− t′)
and Ga

η(t − t′). This is an immediate consequence of the analogous property of
time correlation functions and the fact that the discontinuous factor θ(t− t′) only
depends on this difference.

The Fourier transform and its inverse of the retarded Green function are

Gr
η(E) =

1

2π

∞∫
−∞

Gr
η(t)eiEt dt (2.57a)

Gr
η(t) =

∞∫
−∞

Gr
η(E)e−iEt dE . (2.57b)

The Fourier component Gr
η(E) can be written more explicitly as

Gr
η(E) =

1

2πi

∞∫
−∞

eiEtθ(t)
{
〈Â(t)B̂〉+ η〈B̂Â(t)〉

}
dt (2.58)

using the definition of Gr
η(t) and the previously introduced time correlation func-

tions. Using the latter’s spectral representation (2.53), this becomes

Gr
η(E) =

∞∫
−∞

dω S(ω) (eβω + η)
1

2πi

∞∫
−∞

dt ei(E−ω)tθ(t). (2.59)

The integral representations of the step function and Dirac delta

θ(t) = lim
ε→0+

−1

2πi

∞∫
−∞

e−ixt

x+ iε
dx and δ(t) =

1

2π

∞∫
−∞

e−ixt dx (2.60)

allow to write the retarded Green function’s Fourier components in the form

Gr
η(E) =

1

2π
lim
ε→0+

∞∫
−∞

dω S(ω) (eβω + η)
1

E − ω + iε
. (2.61)

A similar calculation for the advanced Green function yields

Ga
η(E) =

1

2π
lim
ε→0+

∞∫
−∞

dω S(ω) (eβω + η)
1

E − ω − iε
. (2.62)
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Up to this point, we have considered E to be real. Removing this restriction, the
advanced and retarded Fourier transformed Green functions can be continued
analytically [90] in the complex plane. These two functions can be combined to
form

Gη(E) =
1

2π

∞∫
−∞

dω S(ω) (eβω + η)
1

E − ω
=

{
Gr

η(E) Im(E) > 0

Ga
η(E) Im(E) < 0

, (2.63)

representing a single analytical function in the complex plane with a singularity at
E = ω on the real axis. We now continue to work with this Green function.

2.2.3 Equation of motion

Up to now, there is still no feasible way to calculate the Green functions. Direct
calculation from their definition (2.55) is difficult, since it requires calculating
ensemble averages. As discussed before, this is typically impossible as the exact
eigenstates of the Hamiltonian Ĥ are generally unknown. The Green function
equation of motion, which we derive here, provides an alternative.

The derivative of the Green functions (2.55) with respect to time t is

idGη(t)

dt
=

dθ(t)
dt

〈[Â(t), B̂]η〉+ ⟪idÂ(t)

dt
; B̂⟫

η
. (2.64)

Because the Heaviside function has the property dθ(−t) /dt = −dθ(t) /dt, this
expression is the same for both the retarded and advanced Green function. As a
consequence, we can just as well use the analytically continued Green function.
The Heaviside function is related to the Dirac delta function through

θ(t) =

t∫
−∞

δ(x)dx . (2.65)

Together with the Heisenberg equation of motion (2.48), this leads to the Green
function equation of motion

idGη(t)

dt
= δ(t)〈[Â(t), B̂]η〉+ ⟪[Â(t), Ĥ(t)]; B̂⟫

η
. (2.66)

This equation of motion is similar to that for the time correlation functions (2.54),
except for the first singular term containing δ(t) and originating from the dis-
continuous term in the Green function definition. Most often, the equation of
motion is converted from a differential equation into an algebraic equation by
Fourier transforming both the Green functions (2.57) and the Dirac delta (2.60).
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By equating each Fourier component, the algebraic equation of motion in frequency
domain becomes

ωGη(ω) =
1

2π
〈[Â, B̂]η〉+ ⟪[Â, Ĥ]; B̂⟫η,ω . (2.67)

The Green function in the last term typically contains a product of more operators
than the original Green function, which is then called a higher order Green
function. These higher order Green functions have their own equation of motion,
which, in turn, contain even higher order Green functions. In this way, a chain
of coupled equations for the Green functions can be constructed. Together with
appropriate boundary conditions—which are facilitated by spectral theorems that
we discuss in the next section—such a chain of equations represents an exact
solution for the original Green function Gη(t). Because this exact solution is in
general extremely complicated, an approximation is needed in order to decouple
this chain of equations. By this, we mean that the approximation allows to reduce
the infinite chain into a finite set of equations, which can then be solved. When
more equations of the chain are taken into account, the approximate solution is
expected to get closer to the exact result.

2.2.4 Spectral theorem

We want to be able to express time correlation functions in terms of Green functions,
which we can calculate through their equations of motion. The tools that enable
us to do so, are spectral theorems. We will derive the spectral representations for
the time correlation functions and the Green functions separately, combining them
to get the desired result.

Spectral representation of time correlation functions

Consider a Hamiltonian Ĥ that has eigenstates |n〉 and eigenvalues En, that
is Ĥ|n〉 = En|n〉, such that the set of eigenstates {|n〉} forms a basis for the
complete Hilbert space under consideration. The statistical averaging operation
appearing (2.49) in the definition of the time correlation function (2.46) can then
be written explicitly as

CB̂Â(t) = 〈B̂(0)Â(t)〉 = Z−1
∑
n

〈n | B̂(0)Â(t) |n〉e−βEn . (2.68)

To obtain this expression, we used the cyclic permutation properties of the trace
together with the matrix property that if M = UDU−1 with D a diagonal matrix,
then eM = UeDU−1. The time correlation function can now further be expanded
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in the complete set of eigenstates {|n〉} to find

〈B̂(0)Â(t)〉 = Z−1
∑
n,m

〈n | B̂(0) |m〉〈m | Â(t) |n〉e−βEn

= Z−1
∑
n,m

〈n | B̂ |m〉〈m | Â |n〉e−βEne−i(En−Em)t,
(2.69)

where the second equality employs the Heisenberg representation of the operators
and the actions

e−iĤt|n〉 = e−iEnt|n〉 and 〈m|eiĤt = 〈m|eiEmt (2.70)

of the Hamiltonian on the eigenstates. Similarly, the time correlation function for
the commuted operators is

〈Â(t)B̂(0)〉 = Z−1
∑
n,m

〈n | B̂ |m〉〈m | Â |n〉e−βEme−i(En−Em)t. (2.71)

The spectral density S(ω) of CB̂Â(t) can be written as

S(ω) = Z−1
∑
n,m

〈n | B̂ |m〉〈m | Â |n〉e−βEnδ(ω − En + Em) (2.72)

by using the above time correlation function in its definition (2.52). This expression
for the spectral representation using the eigenstates of the Hamiltonian will prove
to be useful for the discussion of some subtle points that are often forgotten [92,
93] when applying the Green function method. For those Green functions, it is
important to calculate the (anti-)commutator averages

〈[Â(t), B̂]−〉 = Z−1
∑
n,m

En 6=Em

〈n | B̂ |m〉〈m | Â |n〉 (e−βEm − e−βEn) e−i(En−Em)t (2.73a)

〈[Â(t), B̂]+〉 = Z−1
∑
n,m

〈n | B̂ |m〉〈m | Â |n〉 (e−βEm + e−βEn) e−i(En−Em)t.

(2.73b)

All the diagonal (En = Em) contributions in the commutator expectation value
are cancelled out by the difference of exponentials, even in the case of degenerate
energy levels. To the contrary, these diagonal contribution are included in the
anti-commutator expectation value. This will have important implications for the
spectral representation of the Green functions.
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Spectral representation of Green functions

Using the Green function in terms of the corresponding spectral density (2.63),
we can use the spectral representation of that spectral density (2.72) to find

Gη(E) =
1

2πZ

∞∫
−∞

dω
∑
n,m

〈n | B̂ |m〉〈m | Â |n〉e−βEn (eβω + η)
δ(ω − En + Em)

E − ω
.

(2.74)

Performing the integral gives

G−(E) =
1

2πZ
∑
n,m

En 6=Em

〈n | B̂ |m〉〈m | Â |n〉 (e−βEm − e−βEn)
1

E + Em − En
(2.75a)

G+(E) =
1

2πZ
∑
n,m

〈n | B̂ |m〉〈m | Â |n〉 (e−βEm + e−βEn)
1

E + Em − En
. (2.75b)

The same overall structure as in the spectral representation of the time correlation
function of the (anti-)commutator (2.73)—which appear in the definition of the
Green functions—can be identified. Also here, the diagonal terms do not contribute
in the commutator case. As such, only off-diagonal (En 6= Em) matrix elements of
the operators Â and B̂ are involved for the commutator Green function, while all
matrix elements are present in the anti-commutator Green function.

In these explicit forms, the Green functions Gη(E) can again be seen to be analytic
functions for Im(E) 6= 0, with singularities on the real axis, corresponding to the
excitations of the system. From the explicit expression for the commutator Green
function, one can see that the limit for E → 0 (in the complex plane) exists. This
limit,

lim
E→0

G−(E) =
1

2πZ
∑
n,m

En 6=Em

〈n | B̂ |m〉〈m | Â |n〉 (e−βEm − e−βEn)
1

Em − En
, (2.76)

which is well-defined, can be used as the value for G−(0). We can write this
regularity at the origin of the commutator Green function also as

lim
E→0

{EG−(E)} = 0. (2.77)

Due to the presence of diagonal terms, the corresponding result for anti-commutator
Green functions is

lim
E→0

{EG+(E)} =
K

π
with K =

1

Z
∑
n,m

En=Em

〈n | B̂ |m〉〈m | Â |n〉e−βEn . (2.78)
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This means that if, and only if, the anti-commutator Green function G+(E) has
a pole at the origin, this pole has corresponding residue K/π, with K non-zero.
This different behaviour of the commutator and anti-commutator Green function
can be of fundamental importance when determining correlation functions based
on the Green function. For example, in a two-spin S = 1/2 system, incorrect
results are obtained for the longitudinal correlation function 〈ŜZ

1 ŜZ
2 〉 when K is not

accounted for [93, 100, 101]. This fact is often overlooked, and was first discussed
by Stevens and Toombs [92] and further detailed by Ramos and Gomes [93].

Time correlation functions in terms of Green functions

Now it is time to combine the spectral representations of time correlation functions
with those of Green functions, as to express the former in terms of the latter.

By direct comparison of K, Eq. (2.78), with the spectral density S(ω), Eq. (2.72),
the latter can be split in two parts as

S(ω) = S0(ω) + S ′(ω). (2.79)

The first term is defined by

S0(ω) = Kδ(ω) (2.80)

and corresponds to the excitations that do not require any energy. The second
term is the remaining part of the spectral density, namely

S ′(ω) = Z−1
∑
n,m

En 6=Em

〈n | B̂ |m〉〈m | Â |n〉e−βEnδ(ω − En + Em). (2.81)

Its definition implies that S ′(0) = 0, meaning that S ′(ω) represents only the
excitation spectrum. Substituting the split spectral density (2.79) in the time
correlation functions (2.53) gives

〈B̂Â(t)〉 = K +

∞∫
−∞

S ′(ω)e−iωt dω (2.82a)

〈Â(t)B̂〉 = K +

∞∫
−∞

S ′(ω)eβωe−iωt dω . (2.82b)
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Similarly, substituting the split spectral density (2.79) in the Green function
definition (2.63) yields

G−(E) =
1

2π

∞∫
−∞

dω S ′(ω) (eβω − 1)
1

E − ω
(2.83a)

G+(E) =
1

2π

∞∫
−∞

dω S(ω) (eβω + 1)
1

E − ω
. (2.83b)

The first term of the split spectral density is not present anymore in the commutator
Green function, as the term in brackets vanishes at ω = 0. Another way to
understand this, is that the diagonal terms are not present in the expectation
value of the commutator 〈[Â(t), B̂]−〉, Eq. (2.73). On the other hand, the anti-
commutator Green function contains the entire spectral density.

The just derived Green function representations allow us to write the spectral
densities S ′(ω) and S(ω) as

S ′(ω) =
1

eβω − 1
i lim
ε→0+

{
G−(ω + iε)−G−(ω − iε)

}
(2.84a)

S(ω) = 1

eβω + 1
i lim
ε→0+

{
G+(ω + iε)−G+(ω − iε)

}
, (2.84b)

which can be verified by direct substitution of the Green functions together with
the Dirac delta identity

δ(x) =
1

2πi
lim
ε→0+

{ 1

x− iε
− 1

x+ iε

}
. (2.85)

This expression for S ′(ω) puts restrictions on the decoupling schemes to break the
infinite chain of equations (2.67) when determining commutator Green functions.
Acceptable decoupling schemes ensure that G−(E) has no pole at E = 0 and that
S ′(0) = 0. If this is not verified, calculations based on the commutator Green
functions might be entirely misleading. Substituting S ′(ω) in the above equation
for 〈B̂Â(t)〉, finally gives

〈B̂Â(t)〉 = K + lim
ε→0+

i
∞∫

−∞

G−(ω + iε)−G−(ω − iε)
eβω − 1

e−iωt dω . (2.86)

Since the integrand is just S ′(ω)e−iωt, with S ′(ω) defined such that S ′(0) = 0
always holds, we are assured that it is well-defined at ω = 0.

Apart from a useful expression, the spectral theorem (2.86), this section shows that
the commutator Green function should be treated with care. While the commutator
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Green function only relates to the off-diagonal matrix elements (En 6= Em) of
operators Â and B̂, the time correlation function itself also involves the diagonal
ones. The constant K in the spectral theorem accounts for this missing part,
assuring the correct long-time value of the correlation function 〈B̂Â(t → ∞)〉 [94].
But how do we know the value of K? In general, its definition (2.78) does not
help, since the exact eigenstates are not known. A strategy that does work is
the following: The physical considerations behind the decoupling procedure that
is being followed, does not depend on the Green functions being of commutator
or anti-commutator type. We can thus determine the anti-commutator Green
function from the equation of motion (2.67) with the same decoupling procedure.
If this anti-commutator Green function has a pole at E = 0, the constant K is
given by π times the residue at this pole, see Eq. (2.78). If there is no pole at the
origin, the constant K is zero.

2.2.5 Generic calculation method

The goal, of calculating the time correlation functions in a different way then
directly integrating their equation of motion (2.54), is now achieved. Since it took
quite some effort to derive this calculation method, we summarise it here.

First, write down the Green function equation of motion (2.67) in frequency domain

ωGη(ω) =
1

2π
〈[Â, B̂]η〉+ ⟪[Â, Ĥ]; B̂⟫η,ω . (2.87)

The last term is in general a higher order Green function, for which again an
equation of motion can be written down. Repeating this procedure results in
an infinite chain of coupled equations. In order to find a solution, this chain
should be decoupled in one way or the other. Typically, some of the higher order
Green functions are approximated by the lower order ones. Often, this decoupling
approximation happens already in the first iteration. The decoupled equations of
motion yield a solution for the Green function Gη.

Subsequently, the obtained Green function can be used in the spectral theorem,
resulting in the time correlation function

〈B̂Â(t)〉 = K + lim
ε→0+

i
∞∫

−∞

G−(ω + iε)−G−(ω − iε)
eβω − 1

e−iωt dω, (2.88)

which is then usually evaluated at t = 0 to extract an expectation value. We
typically use the commutator Green functions, to ease calculations with spin
operators. To find the constant K, we need to look back at the equation of motion
for anti-commutator Green functions. If that equation does not admit a pole at
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E = 0, the constant K vanishes. Otherwise, it can be calculated as

K = π lim
E→0

{
EG+(E)

}
(2.89)

and one must check the regularity condition

lim
E→0

{
EG−(E)

}
= 0 (2.90)

for the decoupling approximation of the commutator Green function to be valid.

2.3 Magnetisation calculations

In this section, we will study in more detail the equations that typically appear
when calculating magnetisation vectors in anisotropic Heisenberg magnetic spin
systems. It will turn out that some specific difficulties are intrinsic to these systems.
A general, analytical framework will be useful in understanding those difficulties.
Analyzing them in their generality will ease the solution for specific systems in
the following chapters. Some of the notation and parts of the general technique in
this section are based on papers by Fröbrich and Knutz. A good overview of those
papers is given in their review [102].

2.3.1 Single Green functions in spin lattice systems

In a Heisenberg magnetic spin system, the Green function

Gη;p,j(ω) = ⟪Âp; B̂j⟫η,ω (2.91)

is typically used, where the operators Âp and B̂j are combinations of components
of spin-operators Ŝp and Ŝj acting at lattice positions rp and rj. For simplicity,
the multiatomic basis index is dropped here, but the complete derivation is
straightforward to generalise. This Green function has equation of motion (2.67)

ωGη;p,j(ω) =
1

2π
〈[Âp, B̂j]η〉+ ⟪[Âp, Ĥ]; B̂j⟫η,ω . (2.92)

In the simplest case, the higher order Green function can be approximated as being
proportional to a combination of Green functions Gη;l,j(ω) that are of the same
form as the original one, but possibly acting at a different lattice site l instead of
p. Such a decoupling approximation would have the form

⟪[Âp, Ĥ]; B̂j⟫η,ω →
∑

l
ΓplGη;l,j(ω) =

∑
l
Γpl ⟪Âl; B̂j⟫η,ω , (2.93)
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such that the equation of motion becomes∑
l
(ωδpl − Γpl)Gη;l,j(ω) =

1

2π
〈[Âp, B̂j]η〉. (2.94)

We will refer to the term on the right-hand side as the inhomogeneous term.
Since the spin operators—and by extension the Green functions—are tied to a
periodic lattice, the lattices translational symmetry should be exploited by Fourier
transforming the equation of motion into reciprocal space. We do so by expanding
the Green function and the inhomogeneous term in Fourier components (2.8) and
then recognising the part in parentheses as a Fourier component (2.10) itself. The
equality that results should hold for every wave vector k separately, such that the
equation of motion becomes

(ω − Γ(k))Gη(ω, k) =
1

2π
〈[Â, B̂]η(k)〉. (2.95)

This time- and space-Fourier transformed equation leads directly to the Green
function

Gη(ω, k) =
1

2π

〈[Â, B̂]η(k)〉
ω − Γ(k) , (2.96)

which can in turn be used in the spectral theorem (2.86) to find the desired
expectation value. For now, we assume that the approximation was not trivial, in
the sense that Γ(k) = 0 only for a finite number of wave vectors. The corresponding
expectation value with t = 0 (e.g., the magnetisation) is then

〈B̂Â〉(k) =
∞∫

−∞

δ
(
ω − Γ(k)

)
〈[Â, B̂]η(k)〉

eβω + η
dω =

〈[Â, B̂]η(k)〉
eβΓ(k) + η

, (2.97)

where the first equality uses the Dirac delta representation (2.85). Finally, we will
be mainly concerned with average local properties, such as the magnetisation, in a
translational invariant system. These properties are calculated as an expectation
value of operators acting on a single lattice point, which can be achieved by
summing all Fourier components in reciprocal space. In translational invariant
systems, the explicit lattice point dependence can be removed. In the result

〈B̂Â〉 = 〈B̂jÂj〉 =
1

N

∑
k∈BZ

〈B̂Â〉(k) = 1

N

∑
k∈BZ

〈[Â, B̂]η(k)〉
eβΓ(k) + η

, (2.98)

the sum over all wave vectors can be replaced by the integral (2.9)

〈B̂Â〉 = 1

vb

∫
BZ

〈[Â, B̂]η(k)〉
eβΓ(k) + η

dk (2.99)

over the first Brillouin zone for large enough systems.
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2.3.2 Multiple Green functions in spin lattice systems

The theory given in the previous subsection only works in the simplest cases.
There are two reasons calling for more than one type of Green function. The
first being that the desired properties require different operators Âp and B̂j in the
expectation value, and as a consequence also different Green functions. The second
reason is that the simple decoupling approximation (2.93) is insufficient to capture
the physics of the system. In that case, the higher order Green functions can be
decoupled as a combination of lower order ones, but possibly of different type than
the original Green function. Subsequently, one also needs to solve the equation of
motion for those Green functions of different types. While this might seem rather
abstract at this point, it will become more clear in the specific problem that we
deal with in later chapters.

We will now formalise the solution method when multiple Green functions are
involved. In analogy to the time- and space-Fourier transformed equation of
motion (2.95) when only a single type of Green function is evolved, the equation
of motion when N Green functions are involved is (we drop the explicit frequency
dependence to keep the notation readable)

(ω1− Γ(k)) · Gη(k) =
1

2π
Ψη(k). (2.100)

Here, Gη(k) denotes a column vector of dimensions N × 1, in which each element
Gτ

η is a single type of Fourier-transformed Green function ⟪Â; B̂⟫η (k). Likewise,
the inhomogeneity term is the N × 1 column vector Ψη(k), where the elements
Ψτ

η(k) are the corresponding expectation values 〈[Â, B̂]η(k)〉. The N ×N matrix
Γ(k) contains the space-Fourier transformed coefficients

Γτλ(k) =
∑
rpl

eik·rplΓτλ
pl (2.101)

of the generalised decoupling approximations

⟪[Âp, Ĥ]; B̂j⟫η →
∑
λ

∑
l
Γτλ

pl G
λ
η;l,j. (2.102)

Each row τ in the matrix equation of motion (2.100) corresponds to the equation of
motion of a single Green function ⟪Âp(t); B̂j(0)⟫η that can be used to calculate the
time correlation function CB̂jÂp(t) = 〈B̂j(0)Âp(t)〉. The time- and space-Fourier
transforms of each of these time correlation functions can be seen as the τ th

component of a time correlation vector C(k). Typically, only the expectation
values

cB̂jÂp =
1

vb

∫
BZ

CB̂jÂp(k)dk (2.103)
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will be of interest, which are the components of the expectation value vector

c =
1

vb

∫
BZ

C(k)dk . (2.104)

The goal of this subsection is now to solve the matrix equation of motion (2.100)
in order to calculate some components of this expectation value vector c and solve
problems that might arise while doing so.

An important part in the analysis of this problem will be the wave vector k
dependence of some of the elements. This dependence is present in the decoupling
coefficient matrix Γ(k) and the vector Gη(k). The commutator inhomogeneity
vector Ψ−(k) is k-independent because the commutator of spin operators is local
in the lattice site indices—spin operators are of Bose-type on different lattice
sites. This means that Ψ−(k) = Ψ−. On the other hand, the anti-commutator
inhomogeneity vector Ψ+(k) does in general depend on the momentum k. It can
be related to the commutator inhomogeneity by Ψ+(k) = Ψ− + 2C(k).

A final thing to note before we continue, is that Γ(k) and Ψ− depend in a numerical
calculation on (a previous estimate of) c, while Ψ+(k) depends also on C(k). But,
knowledge of Gη(k) allows for the calculation of C(k).

Solving the equation of motion

To solve the matrix equation of motion (2.100), we perform the transformation

L(k)Γ(k)R(k) = Ω(k) (2.105)

to the basis of eigenvectors of Γ(k), in the assumption that it is diagonalisable.
The matrix L(k) (R(k)) contains in its rows (columns) the left (right) eigenvectors
of Γ(k). The matrix Ω(k) is diagonal with as elements the eigenvalues ωτ (k)
corresponding to the left and right eigenvectors Lτ (k) and Rτ (k). We assume
that Ω(k) is a N ×N matrix, which has N0 eigenvalues with ωτ = 0. The other
N −N0 eigenvalues are assumed to be distinct.

We multiply the equation of motion (2.100) from the left by L(k) and insert
R(k) · L(k) = 1, such that it becomes

L(k) (ω1− Γ(k)) R(k)L(k)Gη(k) =
1

2π
L(k)Ψη(k) (2.106a)

(ω1−Ω(k)) Gη(k) =
1

2π
Ψη(k) (2.106b)
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with the transformed quantities

Gη(k) = L(k)Gη(k) (2.107a)
Ψη(k) = L(k)Ψη(k) (2.107b)
C(k) = L(k)C(k). (2.107c)

This new set of equations of motion for the transformed Green functions is now
decoupled, making it easy to solve. The τ th of N Green functions is given by

Gτ
η (k) =

1

2π

Ψ τ
η (k)

ω − ωτ
. (2.108)

Applying spectral theorem

To obtain the time correlation function, we apply the spectral theorem (2.86).
First, we do this separately for the Green functions corresponding to non-zero and
zero eigenvalues in the diagonalised decoupling matrix. Afterwards we combine
the results

For those eigenvalues where ωτ 6= 0, it suffices to use the commutator Green
functions and the simple form of the spectral theorem:

∀τ : ωτ (k) 6= 0 → Cτ (k) =
Ψ τ
−(k)

eβωτ (k) − 1
= ντ (k)Ψ τ

−(k), (2.109)

where we wrote the Bose occupation number as

ντ (k) = 1

eβωτ (k) − 1
. (2.110)

These results for the non-null space can be grouped again using vector notation.
The vectors belonging to the non-null space will be denoted with a superscript 1.
The solution is then

C1(k) = E1(k)Ψ1
−(k), (2.111)

where E1(k) is a diagonal matrix containing the Bose occupation factors

E1,λτ (k) = ντ (k)δλτ . (2.112)

In case of vanishing eigenvalues, ωτ = 0, we need to use (initially) the anti-
commutator Green function and its spectral theorem:

∀τ : ωτ (k) = 0 → Cτ (k) =
Ψ τ
+(k)

eβωτ (k) + 1

∣∣∣
ωτ=0

=
1

2
Ψ τ
+(k). (2.113)
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The regularity condition for the commutator Green function dictates that

lim
ω→0

{ωGτ
−(k)} = 0 (2.114)

must hold, where we also know that

Gτ
−(k) =

1

2π

Ψ τ
−(k)

ω − ωτ
. (2.115)

Since we are considering the null space, we know ωτ = 0, such that the regularity
condition becomes

lim
ω→0

{ 1

2π

ω

ω − 0
Ψ τ
−(k)

}
=

1

2π
Ψ τ
−(k) =

1

2π
Lτ (k)Ψ− = 0. (2.116)

As noted before, the commutator and anti-commutator inhomogeneity vectors
are related as Ψ+(k) = Ψ− + 2C(k), such that the transformed anti-commutator
inhomogeneity vector is

Ψ τ
+(k) = Lτ (k)Ψ+(k) = Lτ (k)

(
Ψ− + 2C(k)

)
. (2.117)

The regularity condition can thus equivalently be expressed as

Ψ τ
+(k) = 2Lτ (k)C(k) (2.118)

such that the expression for the correlation function becomes

∀τ : ωτ (k) = 0 → Cτ (k) = Lτ (k)C(k). (2.119)

Note that this identity is just the defining equation of C(k) for every component τ .
As a result, the equations of motion belonging to the null space do not contribute
any new information that helps in solving the problem. Any information contained
in them, is also present in the corresponding regularity condition. For formal
reasons, the results for the null space can still be grouped using vector notation,
denoting them with a superscript 0:

C0(k) = L0(k)C(k). (2.120)

The results for the null and non-null space can be combined by grouping the vectors
and matrices belonging to both spaces. The general rule is that the components
belonging to the null space are written last in all vectors or matrices. This is
possible by choosing the order of the eigenvectors in the transformation matrices

L(k) =
[
L1(k)
L0(k)

]
and R(k) =

[
R1(k) R0(k)

]
(2.121)
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appropriately. The transformed correlation and commutator inhomogeneous vec-
tors are then

C(k) =
[
C1(k)
C0(k)

]
and Ψ−(k) =

[
Ψ1
−(k)
Ψ0
−

]
=

[
Ψ1
−(k)
0

]
. (2.122)

We also define the N ×N matrix

E(k) =
[
E1(k) 0
0 0

]
, (2.123)

with E1(k) the (N −N0) × (N −N0) sub-matrix containing Bose factors on the
diagonal. The full transformed time correlation function is then

C(k) = E(k) · Ψ−(k) +
[

0
C0(k)

]
. (2.124)

Transforming back to original variables

The above correlation function in untransformed variables is

L(k)C(k) =
[
E1(k) 0

0 0

]
·
[
L1(k)

0

]
·Ψ−(k) +

[
0

L0(k)

]
· C(k). (2.125)

Multiplying from the left by R(k) gives

R(k)L(k)︸ ︷︷ ︸
1

C(k) =
[
R1(k) · E1(k) · L1(k)

0

]
·Ψ−(k) +

[
0

R0(k) · L0(k)

]
· C(k)

(2.126)

and rearranging terms leads to[
R1(k) · L1(k)

0

]
︸ ︷︷ ︸

P1(k)

·C(k) =
[
R1(k) · E1(k) · L1(k)

0

]
·Ψ−(k). (2.127)

the projector onto the non-null space, P1(k), is singular whenever the null space
has a dimension different from zero, i.e. whenever ∃τ : ωτ = 0.

Problem in obtaining solution

As indicated before, we are interested in calculating (some components of) c =
1
vb

∫
BZ

C(k)dk. However, we can not just calculate

C(k) = (P1(k))−1 R1(k)E1(k)L1(k)Ψ−(k) (2.128)
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and integrate over the first Brillouin zone, since the projector P1(k) is singular in
general (as we will see in the next chapters). This problem can be overcome in
most cases however. Note that if the projector P1(k) = P1 is independent of k, it
can be pulled out of the integral, such that∫

BZ

P1C(k)dk = P1
∫

BZ

C(k)dk = vbP1c = P1
∫

BZ

R1(k)E1(k)L1(k)Ψ−(k)dk .

(2.129)

In this way, one can calculate N−N0 components of c by inverting the non-singular
part of P1. The remaining components can then be found from the N0 regularity
conditions

L0(k)Ψ− = 0. (2.130)

As an extension, Fröbrich and Knutz [102] developed a technique for which it is
sufficient if one of the eigenvectors is k-independent. Another possibility that is
often exploited, is to choose the Green functions or expectation values to calculate
in advance, in such a way that there is no null space. In terms of magnetisation
calculations, this typically means choosing a fixed direction of magnetisation in
advance, even though it is not known in advance that this is right direction. In
this work, we will employ a combination of this last approach with the technique
developed by Fröbrich and Knutz and we will see that this will allow calculations
in some cases, even when none of the eigenvectors is k-independent.

2.3.3 Simple example

To make the theory presented in the previous subsections more tangible, we will
here demonstrate the use of single Green functions on spin lattice systems. This
will help to see the main steps of the solution, and is a good reference to make
comparisons with more advanced results later on. Specifically, we will study a spin
lattice model on a cubic lattice with spins S = 1/2 in a magnetic field applied
along the Z-direction with only nearest-neighbour exchange interaction.

In the Heisenberg model [45, 48–51], the Hamiltonian describing a ferromagnetic
crystal is

Ĥ = −geµBB
∑

d
ŜZ

d − 1

2

∑
d,l

JldŜd · Ŝl. (2.131)

The vector operator Ŝd acts on the atomic spin at lattice site rd and has crystallo-
graphic components (ŜX

d , ŜY
d , ŜZ

d ). The external magnetic field B is applied parallel
to the Z-axis. The second term represents the exchange interaction between
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the lattice spins. The positive exchange interaction Jld = Jζ1,ld represents the
interaction between neighbouring spins and has strength J . An additional factor
1/2 arises from the double-counting of lattice sites d and l.

For easier comparison with the following chapters we introduce a magnetisation
coordinate system {x, y, z} where the z-direction is defined to be in the average
spin direction. The expectation value for the spin component in that direction
〈Ŝz

d〉 is what we will call the magnetisation of the system M . Since the system
is homogeneous, the magnetisation does not depend on the lattice site. The
expectation values of the spin components transverse to the magnetisation direction
vanish 〈Ŝx

d〉 = 〈Ŝy
d〉 = 0 because of the specific choice of z. From the Hamiltonian

itself, it is already clear that the spins will preferentially align in the Z-direction.
The magnetisation coordinate system is thus the same as the crystallographic
coordinate system. The spin components can thus be written as (Ŝx

d, Ŝ
y
d, Ŝ

z
d) and

can be combined to form the operators Ŝ±
d = Ŝx

d ± iŜy
d. Using the spin commutation

relations for S = 1/2, the magnetisation can be expressed as

M = 〈Ŝz
d〉 =

1

2
− 〈Ŝ−

d Ŝ+
d 〉, (2.132)

where the operator combination Ŝ−
d Ŝ+

d counts the number of down spins at lattice
site rd. This means that it returns 0 if the state is spin-up and 1 if it is spin-down.

An important observation is that the average z-component of the spin (and as a
consequence also the magnetisation) does not evolve in time,〈dŜz

d
dt

〉
=

d〈Ŝz〉
dt

= 0. (2.133)

This stationarity arises because the same Hamiltonian Ĥ that appears in the
average expectation value 〈. . .〉 of Eq. (2.49) is the same as the one appearing in
the time-evolution (2.48) of the operator Ŝz

d(t). In the calculation of the time-
evolution of the average, this makes it possible to use the identity ĤecĤ = ecĤĤ,
where c is a complex number An identical reasoning shows that any observable
Â(t) under these conditions has to be stationary.

To calculate an expectation value 〈Ŝ−
j Ŝ+

p 〉 with the Green function formalism that
we presented, we first need to determine the Green function

G+
−;p,j = ⟪Ŝ+

p ; Ŝ−
j ⟫− (2.134)

from its equation of motion

ωG+
−;p,j =

1

2π
〈[Ŝ+

p , Ŝ−
j ]〉+ ⟪[Ŝ+

p , Ĥ]; Ŝ−
j ⟫− . (2.135)
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For the particular system under consideration, Bloomfield and Nafari [94] showed
that the commutator Green functions are sufficient and well-defined. The com-
mutators in the equation of motion are

[Ŝ+
p , Ŝ−

j ] = 2Ŝz
pδpj (2.136)

[Ŝ+
p , Ĥ] = geµBBŜ+

p − J
∑

l
ζ1,lp (Ŝ+

l Ŝz
p − Ŝ+

p Ŝz
l ) , (2.137)

where we made use of basic spin commutation relations. The above equation of
motion is thus equivalent to

ωG+
−;p,j =

2M

2π
δpj + geµBBG+

−;p,j − J
∑

l
ζ1,lp (G

+z
−;lp,j −G+z

−;pl,j) , (2.138)

where the higher order Green functions are written as

G+z
−;lp,j = ⟪Ŝ+

l Ŝz
p; Ŝ−

j ⟫− . (2.139)

To solve the equation of motion, these higher order Green functions need to be
decoupled.

The most straightforward and most commonly used lowest order decoupling
scheme was independently proposed by Tyablikov [103, 104] and Englert [105].
This scheme—commonly known as the Tyablikov decoupling or random phase
approximation (RPA) [106]—is given by

G+z
−;lp,j → 〈Ŝ+

l 〉G
z
−;p,j + 〈Ŝz

p〉G+
−;l,j = MG+

−;l,j (2.140)

and corresponds to neglecting part of the correlation between spins at different
lattice sites. The expectation value in the first term vanishes because the mag-
netisation is in the z-direction. This decoupling reduces the equation of motion to

∑
l
(ωδpl − Γpl)G

+
−;l,j =

1

2π
2Mδpj (2.141a)

with

Γpl =
(
geµBB +MJζ1(0)

)
δpl −MJζ1,lp. (2.141b)

This equation of motion can now be Fourier transformed into reciprocal space,
such that it is cast in a form similar to Eq. (2.95):(

ω − Γ(k)
)
G+

−(k) =
1

2π
2M (2.142a)

51



Chapter 2. Formalism Magnetisation calculations

with the Fourier-transformed decoupling matrix elements

Γ(k) = geµBB +MJ
(
ζ1(0)− ζ1(k)

)
. (2.142b)

These decoupling matrix elements correspond to the characteristic excitation
energies (or energy spectrum) ω(k) of the elementary excitations in the system.
In contrast to the usual linear spin wave theory, the elementary excitations (spin
waves) depend on the temperature through the magnetisation M . In higher order
approximations, the pole of the equation disappears and there is damping of the
spin waves. The solution for the Green function

G+
−(k) =

1

2π

2M

ω − Γ(k)
(2.143)

can be read off immediately from the algebraic equation of motion, which leads to
the expectation value

〈Ŝ−Ŝ+〉(k) = 2M

eβΓ(k) − 1
. (2.144)

Transforming back to real space and evaluating both operators in the expectation
value at the same lattice point yields

〈Ŝ−
d Ŝ+

d 〉 =
1

vb

∫
BZ

2M

eβΓ(k) − 1
dk =

1

2
−M. (2.145)

Finally, using the identity
∫

BZ 1dk = vb and the relation coth(x/2) = 1+2/(ex − 1),
the magnetisation in the Heisenberg spin system is given by

M−1 =
2

vb

∫
BZ

coth
(1
2
βΓ(k)

)
dk . (2.146)

Due to the smart factoring out of lattice-structure dependent terms in the neighbour
functions, the above result holds for any two- or three-dimensional lattice with
single atomic basis. Notice that this relation still needs to be solved self-consistently,
since the magnetisation also appears in the system’s excitation energy Γ(k).

Depending on the specific form of Γ(k), the integration can be challenging and
requires specific numerical integration techniques to be computed efficiently. Typ-
ically, the integrand will have a singularity or near-singularity at the origin.
Through symmetry properties, such an integrand can be transformed to have the
singularity at one of the end-points of the integration domain. These integrands
can be handled using Gauss-Legendere quadrature, which does not sample points
at the boundary of the integration domains, but convergence will generally be
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slow. To overcome such problems, we resorted to the little-known tanh-sinh—or
double exponential (DE)—quadrature [107–111]. This quadrature is known to be
particularly fast at handling integrands with end-point singularities. We wrote
a manuscript [112] on the best-practices for implementing this quadrature in a
limited-precision floating point environment and on its performance for multiple
integration, as little information was available on those topics. The content of this
manuscript is reproduced (except for the layout) in appendix A.
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3 Anisotropy in ferromagnets
3.1 Extended Heisenberg model
As was the case for the simple model, the extended Heisenberg Hamiltonian

Ĥ = ĤB + Ĥex (3.1)

has two contributing terms, the exchange term Ĥex and the Zeeman term ĤB.
It differs in four ways from the simple model: (i) the exchange interaction is
anisotropic, (ii) the crystal can have a multiatomic basis, (iii) general spins
S > 1/2 are allowed, and (iv) the magnetic field can be applied in an arbitrary
direction. We will describe these differences in more detail now, adding a few
further restrictions along the way to get specific results.

The exchange interaction

Ĥex = −1

2

∑
d,l

Jld
[
(1−∆ld) (ŜX

d ŜX
l + ŜY

d ŜY
l ) + (1 + ∆ld) ŜZ

d ŜZ
l
]

(3.2)

is now anisotropic in spin space, meaning that it has a different strength between
different spin components. The exchange interaction takes the form of a diagonal
tensor. It differentiates between the in-plane spin components, interacting with
strengths JX

ld = JY
ld = Jld (1−∆ld), and the out-of-plane spin component, inter-

acting with strength JZ
ld = Jld (1 + ∆ld). The minus sign in the definition ensures

that ferromagnetic interaction corresponds to a positive exchange strength Jld > 0
and the factor 1/2 corrects for double-counting of interactions. The anisotropy
parameter ∆ld can vary from −1 over 0 to 1, corresponding to respectively the
XY-model, isotropic Heisenberg model and quantum Ising model and everything
in between (see subsection 1.3.2 and Figure 3.1). The sum should be interpreted
as being over all lattice points in a possibly multiatomic crystal. We will only
start writing the atomic basis index when the distinction of sublattices becomes
important.

The Zeeman term

ĤB = −geµBB ·
∑

d
Ŝd (3.3)

describes the interactions of all the spins on the lattice with the externally applied
magnetic flux density B, which is now allowed to be in any direction. Since
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easy-plane easy-axis ∆
XY

−1

Ising

1

isotropic

0

Figure 3.1 At the anisotropy minimum, the Hamiltonian is equivalent to the XY-model,
with only in-plane spin components interacting. Increasing the anisotropy from there,
the interaction becomes easy-plane anisotropic. At ∆ld = 0, isotropic exchange is
recovered. Further increasing the anisotropy leads to an effective easy-axis exchange.
At its maximum, the interaction corresponds to an Ising model. Notice, however, that
the classical Ising model corresponds to S = 1/2 (or classically scaled version thereof),
while our model employs quantum spins S > 1/2.

X
Y = y

Z

θ

z = M/M

θ

x

Figure 3.2 Rotation from the crystallographic coordinate system {X,Y,Z} (black) towards
the magnetisation coordinate system {x, y, z} (blue) by rotating over an angle θ in
counter-clockwise direction around the Y-axis.

Ĥex is invariant in spin space under rotation in the XY -plane and reflection
over the XY -plane, it is sufficiently general to consider B = BXX + BZZ with
BX = B sin θB and BZ = B cos θB . The angle θB of the applied field with respect
to the out-of-plane direction Z can moreover be restricted to 0 6 θB 6 π/2.

Before we start applying the general scheme as set out in Sec. 2.3, we will perform
a rotation of the reference coordinate system, from the crystallographic {X,Y,Z}
to the so-called magnetisation coordinate system {x, y, z}, where z is chosen along
the magnetisation direction. While the latter is still unknown, this choice of
coordinate system ensures that the magnetisation will only have a z-component.
The impact of this will become more apparent during the calculations. Several
authors [102, 113–115] pointed out that performing such a rotation before any
decoupling approximations are made, is also beneficial for the quality of those
decoupling schemes. The system’s symmetry ensures that its magnetisation lies
in the XZ-plane. This means that the magnetisation coordinate system can
be obtained from the crystallographic coordinate system by counter-clockwise
rotating over an angle θ around Y = y (Fig. 3.2). Such a rotation is mathematically
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described byx
y
z

 = RY(θ) ·

X
Y
Z

 with RY(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 . (3.4)

By introducing a single magnetisation angle θ—which is independent of the
referenced lattice point—we assume that the magnetisation is homogeneous, taking
equal values on arbitrary (sub)lattice points. This is a reasonable assumption
when the described material is homogeneous itself. It is in contrast with anti-
ferromagnets or multilayer materials, where different canting angles on different
sublattices or layers are very common [115–117]. In those cases, the magnetisation
angle and magnitude must be allowed to depend on the sublattice or layer.

Using the above rotation matrix, the extended Heisenberg Hamiltonian can be
expressed in the magnetisation coordinate system. The Zeeman term retains its
previous form, as it is a scalar product, invariant under rotation. Both Ŝ and

B = Bxx +Bzz, with Bx = B sin(θB − θ) and Bz = B cos(θB − θ), (3.5)

are now written in the new coordinate system. The exchange term changes more
drastically to

Ĥex = −1

2

∑
d,l

[
Jxx

ld Ŝx
dŜx

l + Jyy
ld Ŝy

dŜy
l + Jzz

ld Ŝz
dŜz

l + Jzx
ld Ŝz

dŜx
l + Jxz

ld Ŝx
dŜz

l
]
, (3.6a)

where the exchange interaction tensor gained symmetric off-diagonal components

Jxx
ld = Jld [1−∆ld cos 2θ]

Jyy
ld = Jld (1−∆ld)

Jzz
ld = Jld [1 + ∆ld cos 2θ]

Jxz
ld = Jzx

ld = −Jld∆ld sin 2θ.

(3.6b)

3.2 General results

For further calculations, it will be more convenient to work with the spin operators
Ŝ± = Ŝx ± iŜy. In terms of those operators, the Zeeman Hamiltonian is

ĤB = −geµB
∑

d
[B+Ŝ+

d +B−Ŝ−
d +BzŜz

d] , with B+ = B− =
Bx

2
(3.7)
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and the exchange Hamiltonian becomes

Ĥex = −1

2

∑
d,l

[
J++

ld Ŝ+
d Ŝ+

l + J−−
ld Ŝ−

d Ŝ−
l + Jzz

ld Ŝz
dŜz

l

+J+z
ld Ŝ+

d Ŝz
l + J−z

ld Ŝ−
d Ŝz

l + J+−
ld Ŝ+

d Ŝ−
l
]
,

(3.8a)

with exchange tensor components

J++
ld = J−−

ld =
1

2
Jld∆ld sin2 θ

Jzz
ld = Jld [1 + ∆ld cos 2θ]

J+−
ld = Jld − Jld∆ld cos2 θ

J+z
ld = J−z

ld = −Jld∆ld sin 2θ.

(3.8b)

To obtain the latter, we relabelled some lattice position indices, used the bosonic
commutator relation for spins at different lattice sites, and used the property that
exchange interactions are typically symmetric, such that Jld = Jdl and ∆ld = ∆dl.
The calculations in this section will be performed for the general Hamiltonians
ĤB and Ĥex, as given in equations (3.7) and (3.8a). Since we will not make any
reference to exchange-specific properties of Jτυ

ld or magnetic field-specific properties
of Bτ , we will be able to reuse the derived results when treating the dipolar
interaction in the next chapter.

3.2.1 Green functions and their equation of motion

We will now apply the Green function theory as outlined in Sec. 2.3, supplemented
with the technique of Callen [91] to account for S > 1

2 . The Green functions of
interest are the commutator Green functions

Gα,τ
p,j (ω, λ) = ⟪Ŝτ

p; eλŜz
j Ŝ−

j ⟫ , with τ ∈ {+,−, z} and p ∈ α. (3.9)

Here and in the future, the comma-separated subscripts (in this case p and j)
always indicate the lattice position indices of the first, respectively second operator
in the Green function. The superscripts are always related to the first operator:
the first, if present, indicates the sublattice of the multiatomic basis to which
the first operator belongs (i.e. p ∈ α in this case), while the last indicates the
vector component of the first operator (which can be any of the components
τ ∈ {+,−, z}). The real-valued parameter λ is necessary to treat higher spin
values S > 1/2 and its usefulness will become apparent in subsection 3.2.4. We
will not continue to write the frequency dependence ω. The Green function obeys
the equation of motion

ωGα,τ
p,j (λ) =

1

2π
〈[Ŝτ

p, eλŜz
j Ŝ−

j ]〉δpj + ⟪[Ŝτ
p, Ĥ]; eλŜz

j Ŝ−
j ⟫ , p ∈ α. (3.10)
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We write the inhomogeneous term as

Ψα,τ (λ) = 〈[Ŝτ
p, eλŜz

p Ŝ−
p ]〉, p ∈ α. (3.11)

The commutators [Ŝτ
p, Ĥ] require some work, but are further easily calculated

using standard spin-commutator relations. They are

[Ŝ±
p , Ĥ] = ±geµB [BzŜ±

p − 2B∓Ŝz
p]

± 1

2

∑
l

{
−4J∓∓

lp Ŝz
pŜ∓

l + 2Jzz
lp Ŝ±

p Ŝz
l − 2J+−

lp Ŝz
pŜ±

l

−2J∓z
lp Ŝz

pŜz
l + J±z

lp Ŝ±
p Ŝ±

l + J∓z
lp Ŝ±

p Ŝ∓
l
} (3.12a)

and

[Ŝz
p, Ĥ] = −geµB [B+Ŝ+

p −B−Ŝ−
p ]

− 1

2

∑
l

{
+2J++

lp Ŝ+
p Ŝ+

l − 2J−−
lp Ŝ−

p Ŝ−
l + J+−

lp Ŝ+
p Ŝ−

l

−J+−
lp Ŝ−

p Ŝ+
l + J+z

lp Ŝ+
p Ŝz

l − J−z
lp Ŝ−

p Ŝz
l
}. (3.12b)

3.2.2 Decoupling higher order Green functions

Substituting these commutators in the equation of motion, they introduce higher
order Green functions ⟪Ŝτ

pŜυ
l ; eλŜz

j Ŝ−
j ⟫ with p belonging to sublattice α and l to a

possibly different sublattice β. The two spin operators in the first argument never
act on the exact same lattice point, i.e. the same Bravais lattice point and sublattice.
As in subsection 2.3.3, the higher order Green functions can be decoupled in terms
of lower order Green functions by neglecting a part of the correlation between
spins at different lattice sites. This Tyablikov decoupling [103–105] now comes
down to

⟪Ŝτ
pŜυ

l ; eλŜz
j Ŝ−

j ⟫ → 〈Ŝτ
p〉G

β,υ
l,j (λ) + 〈Ŝυ

l 〉G
α,τ
p,j (λ), p ∈ α, l ∈ β. (3.13)

Performing the decoupling in the magnetisation coordinate system gives higher
quality results and more straightforward calculations [102, 113–115]. This can be
understood by looking at the expectation values for the different spin components.
In the magnetisation coordinate system, the expectation values of the x- and
y-components vanish, implying that

〈Ŝ+
j 〉 = 〈Ŝ−

j 〉 = 0. (3.14)

Moreover, it is defined such that the magnetisation is completely in the z-direction.
The homogeneous magnetisation Mα on sublattice α is thus Mα = 〈Ŝz

j 〉 with j ∈ α.
While it is possible to continue working with distinct magnetisation magnitudes on
the different sublattices, we already assumed during the coordinate transformation
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that the magnetisation direction θ is the same for each lattice point. Immediately
assuming equal magnetisation magnitudes Mα = Mβ on each sublattice is thus
reasonable at this point. We define the homogeneous magnetisation magnitude

M = 〈Ŝz
j 〉, (3.15)

which ranges from 0 to its saturation value Ms = S. A normalised magnetisation
can be defined as σ = M/Ms. Similar to the magnetisation and its angle, we also
assume the inhomogeneity term Ψτ (λ) = Ψα,τ (λ) to be sublattice-independent.

Utilising all of the above—the notation for the inhomogeneous term, the commuta-
tor relations of spin components with the Hamiltonian, the Tyablikov decoupling
approximation and the spin component expectation values—the Green function
equation of motion becomes

ωGα,±
p,j =

1

2π
Ψ±(λ)δpj +

[
±geµBB

z ±M
∑

l
Jzz

lp

]
Gα,±

p,j

+
[
∓geµB2B

∓ ∓M
∑

l
J∓z

lp

]
Gα,z

p,j

+
[
∓2M

∑
l
J∓∓

lp Gβ,∓
l,j

]
+
[
∓M

∑
l
J+−

lp Gβ,±
l,j

]
+
[
∓M

∑
l
J∓z

lp Gβ,z
l,j

]
, p ∈ α, l ∈ β

(3.16a)

ωGα,z
p,j =

1

2π
Ψz(λ)δpj −

[
geµBB

+ +
1

2
M

∑
l
J+z

lp

]
Gα,+

p,j

+
[
geµBB

− +
1

2
M

∑
l
J−z

lp

]
Gα,−

p,j , p ∈ α, l ∈ β

(3.16b)

where l sums over all lattice points. In each term of the sum, β is the specific
sublattice to which l belongs. Due to the different commutator relations [Ŝτ

p, Ĥ]
for the different spin components τ , there are now 3 equations of motion for each
sublattice α. Continuing to follow the steps set out in Section 2.3, we perform a
spatial Fourier transform (2.8) to exploit the lattice translational symmetry. The
Green functions can be expanded into their Fourier components as

Gα,τ
p,j =

1

N

∑
k∈BZ

e−ik·rjpGα,τ (k), (3.17)

while the Fourier transformed exchange tensor components are

Jτυ
βα(k) =

∑
rl

eik·rlpJτυ
lp , p ∈ α, l ∈ β and τ, υ ∈ {+,−, z}, (3.18)
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where the sum is over the Bravais lattice points, not over the sublattices. Addi-
tionally, we define

Jτυ
α (0) =

∑
β

Jτυ
βα(0), (3.19)

where we sum over all sublattices. The equations of motion now become

ωGα,±(k) = 1

2π
Ψ±(λ) +

[
±geµBB

z ±MJzz
α (0)

]
Gα,±(k)

+
[
∓geµB2B

∓ ∓MJ∓z
α (0)

]
Gα,z(k)

∓ 2M
∑
β

J∓∓
βα (k)Gβ,∓(k)∓M

∑
β

J+−
βα (k)Gβ,±(k)

∓M
∑
β

J∓z
βα (k)G

β,z(k)

(3.20a)

ωGα,z(k) = 1

2π
Ψz(λ)−

[
geµBB

+ +
1

2
MJ+z

α (0)
]
Gα,+(k)

+
[
geµBB

− +
1

2
MJ−z

α (0)
]
Gα,−(k).

(3.20b)

The equations of motion for Green functions related to different sublattices are
coupled through the inter-lattice exchange interactions.

Te inhomogeneity term Ψτ (λ) can be split in two terms as

Ψτ (λ) = 〈[Ŝτ
p, eλŜz

p ]Ŝ−
p + eλŜz

p [Ŝτ
p, Ŝ−

p ]〉, (3.21)

by using the general commutator relation [Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]. Further,
we use the spin commutators

[Ŝ±
p , eλŜz

p ] = (e∓λ − 1) eλŜz
p Ŝ±

p (3.22)

that were also used by Callen [91], and some more generally known spin relations.
The different inhomogeneity terms can then be written as

Ψ+(λ) = 〈[Ŝ+
p , eλŜz

p ]Ŝ−
p + eλŜz

p [Ŝ+
p , Ŝ−

p ]〉
= 〈(e−λ − 1) eλŜz

p Ŝ+
p Ŝ−

p + 2eλŜz
p Ŝz

p〉
= 〈(e−λ − 1) eλŜz

p
(
S (S + 1) + Ŝz

p − (Ŝz
p)

2) + 2eλŜz
p Ŝz

p〉
= S (S + 1) (e−λ − 1) 〈eλŜz

p 〉+ (e−λ + 1) 〈eλŜz
p Ŝz

p〉
− (e−λ − 1) 〈eλŜz

p (Ŝz
p)

2〉

(3.23a)

Ψ−(λ) = 〈[Ŝ−
p , eλŜz

p ]Ŝ−
p 〉 = (e+λ − 1) 〈eλŜz

p Ŝ−
p Ŝ−

p 〉 = 0 (3.23b)
Ψz(λ) = 〈eλŜz

p [Ŝz
p, Ŝ−

p ]〉 = −〈eλŜz
p Ŝ−

p 〉 = 0, (3.23c)

where the expectation values of the operator combinations in last two quantities
vanish. These operator combinations alter the z spin component, such that their
expectation values are bound to vanish.
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3.2.3 Vectorised equation of motion

The equations of motion can be cast in the vector form of Eq. (2.100),

(ω1− Γ(k)) · G(k) = 1

2π
Ψ(k), (3.24)

where the Green function vector G(k) and the inhomogeneity vector Ψ(k),

G(k) =

Gα(k)
Gβ(k)

...

 and Ψ(k) =

Ψ
α(λ)

Ψα(λ)
...

 , (3.25)

are composed of the sublattice-specific component vectors

Gα(k) =

Gα,+(k)
Gα,−(k)
Gα,z(k)

 and Ψα(k) =

Ψ+(λ)
Ψ−(λ)
Ψz(λ)

 =

Ψ+(λ)
0
0

 . (3.26)

These different Green functions are coupled through the matrix

Γ(k) =

Γ
αα(k) Γαβ(k) · · ·

Γβα(k) Γββ(k) · · ·
...

... . . .

 (3.27)

with block matrices

Γαβ(k) =

Γαβ,++(k) Γαβ,+−(k) Γαβ,+z(k)
Γαβ,−+(k) Γαβ,−−(k) Γαβ,−z(k)
Γαβ,z+(k) Γαβ,z−(k) Γαβ,zz(k)

 , (3.28)

containing the elements

Γαβ,++(k) =
[
+geµBB

z +MJzz
α (0)

]
δαβ −MJ+−

βα (k) (3.29a)

Γαβ,+−(k) = −2MJ−−
βα (k) (3.29b)

Γαβ,+z(k) =
[
−2geµBB

− −MJ−z
α (0)

]
δαβ −MJ−z

βα (k) (3.29c)

Γαβ,−+(k) = +2MJ++
βα (k) (3.29d)

Γαβ,−−(k) =
[
−geµBB

z −MJzz
α (0)

]
δαβ +MJ+−

βα (k) (3.29e)

Γαβ,−z(k) =
[
+2geµBB

+ +MJ+z
α (0)

]
δαβ +MJ+z

βα (k) (3.29f)

Γαβ,z+(k) = −
[
geµBB

+ +MJ+z
α (0)/2

]
δαβ (3.29g)

Γαβ,z−(k) =
[
geµBB

− +MJ−z
α (0)/2

]
δαβ (3.29h)

Γαβ,zz(k) = 0. (3.29i)

62



General results Chapter 3. Anisotropy in ferromagnets

If Jld = Jdl and ∆ld = ∆dl for the diagonal submatrices Γαα(k) (coupling the
Green function components of a given sublattice, β = α), these components are
all real-valued because the sum in the Fourier transform of Jτυ

βα(k) is over all
lattice points in the same Bravais lattice as the reference point. The off-diagonal
submatrix Γαβ(k) (coupling Green functions related to different sublattices, β 6= α)
elements typically have both a real and complex component. We will reuse the
general result above, later when dealing with the dipolar interactions.

3.2.4 Larger spin values

Before we continue the calculation of Green functions from the vector equation of
motion, we will disclose why we are specifically interested in the Green function
Gα,+

p,j (λ) = ⟪Ŝ+
p ; eλŜz

j Ŝ−
j ⟫ , as we defined it. This Green function can be used to

find the expectation value c+(λ) = 〈eλŜz
p Ŝ−

p Ŝ+
p 〉 by using the spectral theorem.

Since we are calculating homogeneous quantities, the expectation value must be
independent of the sublattice. Since it does not play any important role in this
subsection (and the calculation holds for each sublattice separately), we will not
write any sublattice indices anymore. Notice that for S = 1/2, the expectation
value evaluated at λ = 0 is c+(0) = 〈Ŝ−

p Ŝ+
p 〉 = 1/2 − 〈Ŝz

p〉, immediately giving
access to the magnetisation, as we showed in subsection 2.3.3. For higher spins,

Ŝ−
p Ŝ+

p = S (S + 1) − Ŝz
p − (Ŝz

p)
2 (3.30)

contains a term quadratic in Ŝz
p, which is also unknown, rendering a direct determi-

nation of the magnetisation from c+(0) impossible. To be able to calculation the
magnetisation for larger spin values S > 1/2, the factor containing λ was added
to the Green functions. In this subsection, we will see how it helps to pin down
the magnetisation This method was pioneered by Callen [91]. In his paper, he
combines it with a decoupling scheme different from the Tyablikov decoupling,
making it sometimes unclear which steps are a consequence of treating higher
spin values and which steps originate from the different decoupling scheme. To
make this distinction more clear, we will provide a full derivation of the necessary
framework here. Alternatively, Tahir-Kheli and ter Haar [118] proposed to use
Green functions of the form ⟪Ŝ+

p ; (Ŝ−
j )

n (Ŝ+
j )

n−1⟫ , which can also be used to do
the calculations for higher S. While the final results are identical, the method of
Tahir-Kheli and ter Haar requires to solve a non-trivial set of 2S + 1 equations for
each distinct value of S, whereas Callen’s method will give us a direct expression
for arbitrary S. Both methods are discussed in the excellent book on quantum
theory of ferromagnetism by Nolting and Ramakanth [119].

Using the spin relation (3.30), the expectation value definition is

c+(λ) = 〈eλŜz
p Ŝ−

p Ŝ+
p 〉 = S (S + 1) 〈eλŜz

p 〉 − 〈eλŜz
p Ŝz

p〉 − 〈eλŜz
p (Ŝz

p)
2〉

= S (S + 1) Ω(λ)− Ω′(λ)− Ω′′(λ),
(3.31)
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where we introduced the function

Ω(λ) = 〈eλŜz
p 〉 (3.32)

with its first and second derivatives Ω′(λ) and Ω′′(λ) with respect to λ. The first
derivative evaluated at λ = 0,

dΩ(λ)
dλ

∣∣∣
λ=0

= 〈Ŝz
p〉 = M (3.33)

is the magnetisation and thus the quantity that we try to determine. Later on, we
will see that the solution for the expectation value c+(λ) from the Green function
equation of motion and the spectral theorem can be written in the form

c+(λ) = Φ ·Ψ+(λ), (3.34)

where Φ depends among others on the magnetisation and temperature, but not on
λ. The inhomogeneity term (3.23) can further be written as

Ψ+(λ) = S (S + 1) (e−λ − 1) Ω(λ) + (e−λ + 1) Ω′(λ)− (e−λ − 1) Ω′′(λ) (3.35)

by using the notation with Ω(λ). Combining the above expressions for the expec-
tation value c+(λ) and rearranging terms, we find the differential equation

Ω′′(λ) +
(1 + Φ) eλ +Φ

(1 + Φ) eλ − Φ
Ω′(λ)− S (S + 1) Ω(λ) = 0 (3.36)

To solve this differential equation, the boundary conditions

Ω(0) = 1 (3.37a)
+S∏

r=−S

( d
dλ

− r
)
Ω(λ)

∣∣∣
λ=0

= 0 (3.37b)

should be used. The first immediately follows from the definition of Ω(λ). The
second is obtained by taking the average of the operator identity

+S∏
r=−S

(Ŝz
p − r) = 0, (3.38)

where r can take on integer or half-integer values depending on S.

A step-by-step solution of the differential equation with its boundary conditions is
given in appendix B and results through relation (3.33) in the expression [91]

M =
(S − Φ) (1 + Φ)2S+1 + (S +Φ+ 1) Φ2S+1

(1 + Φ)2S+1 − Φ2S+1
(3.39)

for the magnetisation in a system with spin S > 1/2. We now still need to find
the factor Φ, which we will do by determining c+(λ) from its corresponding Green
function.

64



Results for extended Heisenberg model Chapter 3. Anisotropy in ferromagnets

3.3 Results for extended Heisenberg model
From here on, the calculations are not valid for arbitrary interactions anymore.
They are specific for the extended Heisenberg model as specified in Sec. 3.1. We
can now continue the calculation of the Green functions from the vector equation
of motion. For our purposes here, only having an applied field and an anisotropic
exchange interaction, we may simplify these results. Because the applied field will
always be in the xz-plane, we can use B± = Bx/2. Moreover, we already know
from Eq. (3.8b) that the exchange tensor components J++

ld = J−−
ld and J+z

ld = J−z
ld

are equal, and so are their Fourier transforms. The block matrices then become

Γαβ(k) =

Γαβ,++(k) −Γαβ,−+(k) Γαβ,+z(k)
Γαβ,−+(k) −Γαβ,++(k) −Γαβ,+z(k)
Γαβ,z+ −Γαβ,z+ 0

 . (3.40)

with components

Γαβ,++(k) = −Γαβ,−−(k) =
[
geµBB

z +MJzz
α (0)

]
δαβ −MJ+−

βα (k) (3.41a)

Γαβ,−+(k) = −Γαβ,+−(k) = 2MJ++
βα (k) (3.41b)

Γαβ,+z(k) = −Γαβ,−z(k) = −
[
geµBB

x +MJ+z
α (0)

]
δαβ −MJ+z

βα (k) (3.41c)

Γαβ,z+ = −Γαβ,z− = −
[
geµBB

x +MJ+z
α (0)

]
δαβ/2 (3.41d)

Γαβ,zz(k) = 0. (3.41e)

With this simplification, one can directly check that for each sublattice α, there is
a vanishing eigenvalue with corresponding left eigenvector

Lα
0 =

[
· · · Lαβ

0 Lαα
0 Lαγ

0 · · ·
]

(3.42a)

which is built from the sub-blocks

Lαβ
0 =

[
−Γαβ,z+, −Γαβ,z+, Γαβ,++(k) + Γαβ,−+(k)

]
. (3.42b)

Since the equation of motion’s coefficient matrix has a null-space of size equal to
the number of sublattices, there are as many regularity conditions (2.130) that
need to be satisfied. For each sublattice α, the corresponding zero left eigenvector
Lα

0 and the inhomogeneity vector Ψ, cf. Eq. (3.25), yield

0 = Lα
0(k) ·Ψ

= −
∑
β

Γαβ,z+Ψ+(λ)

= −Γαα,z+Ψ+(λ)

(3.43)
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in the equation of the regularity condition. Since the inhomogeneity term Ψ+(λ)
is not identical zero, the above condition becomes Γαα,z+ = 0, which is more
explicitly

geµBB
x = −MJ+z

α (0) = M sin 2θ
∑

l
Jlp∆lp, p ∈ α. (3.44)

The sum is over all atoms in every sublattice.

The regularity condition relates the magnetisation angle θ with the magnetisation
magnitude M (which is determined by Eq. (3.39)) for given applied fields, exchange
interactions and lattice structures. That is why we call it the angular condition.
We will discuss the specific relationship later on. Here, one should note that the
regularity conditions originating from the different sublattices only differ through
the reference point of the summation. This summation itself does not depend on M
nor θ. The regularity conditions can thus only be satisfied consistently if the atomic
lattice and the exchange interaction between the atoms have sufficient symmetries,
such that the sum is independent of the reference point’s sublattice. This will
most often be the case. If not sufficient symmetry is present in the problem,
the magnetisation magnitude and angle will not be the same on each sublattice.
In that case, the regularity conditions would relate those sublattice-dependent
magnitudes and angles.

If the regularity condition is satisfied, the third row in Γαβ(k) consists of all-zeroes.
Consequently, every third row in the overall coefficient matrix Γ(k) only contains
zeroes. This renders it particular straightforward to find the solution Gα,z(k) = 0
for the z-component of every sublattice α to the equation of motion (3.24). Since
those components vanish identically, we can eliminate every third row and column
of Γ(k), G(k) and Ψ(k) in the vector equation of motion (3.24). The block matrices
forming Γ(k) are then

Γαβ(k) =
[
Γαβ,++(k) −Γαβ,−+(k)
Γαβ,−+(k) −Γαβ,++(k)

]
. (3.45)

To make further progress, we limit the calculations further to having only two
atomic sublattices, A and B. It is certainly possible to repeat a similar calculation
for crystals with more atoms in the atomic basis. Further, we make a few reasonable
assumptions on the form of the exchange interaction:

• We assume that the exchange strength Jlp = Jpl and anisotropy ∆lp = ∆pl
are symmetric. This is a natural consequence of the exchange interaction
being an interaction between two atoms, without preferential reference to
one or the other.
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• We assume that the exchange strength Jlp and anisotropy ∆lp with l,p ∈ A
are equal to those with l,p ∈ B. This assumption holds in general, because
the exchange interaction typically only depends on the distance between the
lattice points under consideration.

Under these assumptions, one can check from Eq. (3.18) that Jτυ
βα(k) = Jτυ

αβ(k) and
Jτυ

AA(k) = Jτυ
BB(k). This also guarantees a single solution of θ for a given M from

the regularity condition.

With only two sublattices and these assumptions, the coefficient matrix Γ reduces
to having the form

Γ = MJtot


a −h f −g
h −a g −f

f −g a −h

g −f h −a

 (3.46a)

with the shorthands

a = ΓAA,++(k)/(MJtot) (3.46b)
h = ΓAA,−+(k)/(MJtot) (3.46c)
f = ΓAB,++(k)/(MJtot) = fR + ifI (3.46d)
g = ΓAB,−+(k)/(MJtot) = gR + igI, (3.46e)

where a, h, fR, fI, gR and gI are all real values. The quantity Jtot =
∑

n znJn is
introduced as a measure for the total exchange strength. The four eigenvalues of
the coefficient matrix Γ are

ω±± = ±MJtot

√
a2 + f2

R + f2
I − (h2 + g2R + g2I ) ± 2

√
F (3.47)

with

F = a2 (f2
R + f2

I ) − 2ah (fRgR + fIgI) + h2 (g2R + g2I ) − (fRgI − fIgR)
2 . (3.48)

The circled ± sign has the same meaning as a normal ± sign. Since the ±-
and ±-signs also function to label the four distinct eigenvalues, the circle was
added to know which sign comes where in the equation. When the labelling itself
is unimportant, we will often use the simpler notation ω± = ±ω±±. For each
eigenvalue, there is a corresponding left and right eigenvector

L±± =
[
L
(1)
±±, L

(2)
±±, L

(3)
±±, L

(4)
±±

]
and R±± =


R

(1)
±±

R
(2)
±±

R
(3)
±±

R
(4)
±±

 , (3.49)
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which we choose such that the matrices

L =


L	−
L⊕−
L	+

L⊕+

 and R =
[
R	−, R⊕−, R	+, R⊕+

]
(3.50)

are orthonormal, L · R = R · L = 1, while they obviously transform the transfor-
mation matrix into its diagonal form through

L · Γ · R = Ω =


ω	− 0 0 0
0 ω⊕− 0 0
0 0 ω	+ 0
0 0 0 ω⊕+

 . (3.51)

Finally, we also define the vectors

L(n) =


L
(n)
	−

L
(n)
⊕−

L
(n)
	+

L
(n)
⊕+

 and R(n) =
[
R

(n)
	−, R

(n)
⊕−, R

(n)
	+, R

(n)
⊕+

]
(3.52)

containing the nth component of the eigenvectors. For the calculations later on,
we only need to know the components

L
(1)
±± = a (f2

R + f2
I ) − h (fRgR + fIgI) ±

(
a+

ω±±
MJtot

)√
F (3.53)

L
(3)
±± = −

(
a+

ω±±
MJtot

)
(afR − hgR) ∓ fR

√
F + gI (fRgI − fIgR) (3.54)

+ i
{
−
(
a+

ω±±
MJtot

)
(afI − hgI) ∓ fI

√
F − gR (fRgI − fIgR)

}
of the left eigenvectors. The corresponding components of the right eigenvectors
turn out to be related as

R
(n)
±± =

MJtotκ±±L
(n)
±±

±4
√
Fω±±

, where κ−1
±± = L

(1)
±±. (3.55)

This immediately implies that κ±±L
(1)
±± = κ±±L

(1)
±± = 1.

Using these eigenvectors, the Green function equation of motion transforms into

(ω1−Ω) G =
1

2π
LΨ (3.56)
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with G = L · G, as we anticipated in Eq. (2.106b). We do not write any k
dependence for conciseness. Since we eliminated the null-space of Γ beforehand,
the solution of the equation of motion for the transformed Green functions is

G =


G	−
G⊕−
G	+

G⊕+

 , with G±± =
1

2π

L±± ·Ψ
ω − ω±±

. (3.57)

With the appropriate spectral theorem, the corresponding transformed expectation
values become

C =


C	−

C⊕−

C	+

C⊕+

 , where C±± = L±± · C = ν±±L±± ·Ψ (3.58)

with the Bose occupation numbers

ν±± =
1

eβω±± − 1
. (3.59)

The spatial Fourier transforms C of the original expectation values

Cpj =


CA,+

pj
CA,−

pj
CB,+

pj
CB,−

pj

 with Cα,τ
pj = 〈eλŜz

j Ŝ−
j Ŝτ

p〉,p ∈ α (3.60)

can be obtained as C = RC. We are particularly interested in the components
CA,+ or CB,+ as these will lead us to finding the magnetisation.

Combining the chain of expressions above, we find (with CA,+ = C1 and CB,+ =
C3)

Cn = R(n)C, n=1,3

= R
(n)
	−C	− +R

(n)
⊕−C⊕− +R

(n)
	+C	+ +R

(n)
⊕+C⊕+

=
[
R

(n)
	−ν	−L	− +R

(n)
⊕−ν⊕−L⊕−

+R
(n)
	+ν	+L	+ +R

(n)
⊕+ν⊕+L⊕+

]
·Ψ

=
[
R

(n)
	−ν	− (L

(1)
	− + L

(3)
	−) +R

(n)
⊕−ν⊕− (L

(1)
⊕− + L

(3)
⊕−)

+R
(n)
	+ν	+ (L

(1)
	+ + L

(3)
	+) +R

(n)
⊕+ν⊕+ (L

(1)
⊕+ + L

(3)
⊕+)

]
Ψ+(λ)

= φ(n)Ψ+(λ).

(3.61)
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The homogeneous expectation value in real space is then (2.103)

c(n) =
1

vb

∫
BZ

Cn(k)dk = Φ(n) ·Ψ+(λ), with Φ(n) =
1

vb

∫
BZ

φ(n)(k)dk . (3.62)

This already confirms the functional form of Eq. (3.34) that we assumed in our
analysis for higher spin values. We now still need to determine Φ(n) through φ(n) .

Filling in the expressions for the right eigenvector components, φ(n) becomes

φ(n) =
MJtot

4
√
F

{ 1

ω+
[ν⊕+P

(n)
⊕+ − ν	+P

(n)
	+ ] −

1

ω−
[ν⊕−P

(n)
⊕− − ν	−P

(n)
	− ]

}
(3.63)

with

P
(n)
±± = κ±±L

(n)
±± (L

(1)
±± + L

(3)
±±) . (3.64)

Now we can use ax − by = (a+ b) (x− y) /2 + (a− b) (x+ y) /2 in both terms
and then the relations

ν⊕± + ν	± = −1 (3.65a)

ν⊕± − ν	± = coth
(1
2
βω±

)
(3.65b)

to subsequently obtain

φ(n) =
MJtot

8
√
F

{P
(n)
⊕+ + P

(n)
	+

ω+
coth

(1
2
βω+

)
−

P
(n)
⊕− + P

(n)
	−

ω−
coth

(1
2
βω−

)
+
P

(n)
	+ − P

(n)
⊕+

ω+
−

P
(n)
	− − P

(n)
⊕−

ω−

}
. (3.66)

Now, let’s first focus on n = 1, for which the terms P
(1)
±± simplify to

P
(1)
±± = L

(1)
±± + L

(3)
±±, (3.67)

as κ±±L
(n)
±± = 1. A straightforward calculation gives

φ =
A+

ω+
coth

(1
2
βω+

)
− A−

ω−
coth

(1
2
βω−

)
− 1

2
(3.68)

with

A± =
MJtot

4
√
F

{
(gR + gI) (fRgI − fIgR)

+ (a− fR − fI)
(
±
√
F − a (fR + fI) + h (gR + gI)

)}
.

(3.69)
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Notice that we wrote φ instead of φ(1) , where φ is equal to φ(1) modulus the
addition and removal of terms with an odd number of factors of fI or gI. The
factors fI and gI are odd in k, while a, h, fR and gR are all even in k, as can be
directly corroborated from the Fourier transform (3.18) and all Jτυ

lp being real.
Therefore, terms with an odd number of factors fI or gI do not change Φ, which
corresponds to the average value of φ in the first Brillouin zone. The same result for
φ can equivalently be obtained by calculating φ(3) , which confirms that under the
applied conditions, the magnetisation is the same on both the A and B sublattice.

In summary, the magnetisation M in the extended Heisenberg model is given by
the expression (3.39) for larger spin values, with

Φ =
1

vb

∫
BZ

φ(k)dk, φ =
A+

ω+
coth

(1
2
βω+

)
− A−

ω−
coth

(1
2
βω−

)
− 1

2
(3.70)

and

A± =
MJtot

4
√
F

{
(gR + gI) (fRgI − fIgR)

+ (a− fR − fI)
(
±
√
F − a (fR + fI) + h (gR + gI)

)}
.

(3.71)

The dispersion relations for the system’s excitations are

ω± = MJtot

√
a2 + f2

R + f2
I − (h2 + g2R + g2I ) ± 2

√
F (3.72)

with

F = a2 (f2
R + f2

I ) − 2ah (fRgR + fIgI) + h2 (g2R + g2I ) − (fRgI − fIgR)
2 . (3.73)

The angle of the magnetisation is related to its magnitude through the angular
condition

geµBB
x = M sin 2θ

∑
l
Jlp∆lp, p ∈ α. (3.74)

The other quantities in use are

a = ΓAA,++(k)/(MJtot) = bz +
(
Jzz

A (0)− J+−
AA (k)

)
/Jtot (3.75a)

h = ΓAA,−+(k)/(MJtot) = 2J++
AA (k)/Jtot (3.75b)

fR = ReΓAB,++(k)/(MJtot) = −Re J+−
BA (k)/Jtot (3.75c)

fI = ImΓAB,++(k)/(MJtot) = − Im J+−
BA (k)/Jtot (3.75d)

gR = ReΓAB,−+(k)/(MJtot) = 2Re J++
BA (k)/Jtot (3.75e)

gI = ImΓAB,−+(k)/(MJtot) = 2 Im J++
BA (k)/Jtot. (3.75f)
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For later convenience, we introduced the normalised magnetic field (components)

b =
geµBB

MJtot
and bx = b sin(θB − θ), bz = b cos(θB − θ). (3.76)

From these very general expressions for the magnetisation, it is possible to deduce
expressions for the Curie temperature. In the absence of a magnetic field, the
angular condition (3.74) only allows the solution θ = 0 and θ = π/2. Which
solution to choose depends on the overall anisotropy of the system: the former
should be chosen if the anisotropy is out-of-plane, while the latter holds when there
is in-plane anisotropy. From Eq. (3.39), it can be seen that when the magnetisation
M vanishes, the value of Φ becomes arbitrarily large. Expansion of that equation
in this regime leads to the relation

M =
S (S + 1)

3

1

Φ
. (3.77)

The expression (3.70) for φ can also be reduced in the regime relevant for the
Curie temperature. When no magnetic field is present, the system’s characteristic
frequencies ω± are linear in the magnetisation M . The expansion

cothx
x→0
≈ 1

x
+

x

3
− · · · = 1

x
+O(x) (3.78)

can thus be used in the region of small magnetisation to write φ as

φ =
2

β

(A+

ω2
+

− A−
ω2
−

)
− 1

2
=

1

M

2

β

( A+/M

ω2
+/M

2
− A−/M

ω2
−/M

2

)
. (3.79)

In the second equality, all magnetisation dependence is in the first factor and we
noticed that the last constant term is negligible when M becomes small. We can
plug this into Eq. (3.77), eliminate a factor M and find for the Curie temperature

kBTC =
S (S + 1)

3

1

ΦC
, (3.80a)

with

ΦC =
1

vb

∫
BZ

φC(k)dk, φC(k) = 2
( A+/M

ω2
+/M

2
− A−/M

ω2
−/M

2

)
. (3.80b)

This formula for the Curie temperature looks rather complex, especially considering
the various substitutions that still need to be made. However, it is important
to stress that its complexity is for a large part related to its generality. It is
valid for any lattice type with one or two atoms in the atomic basis, with any
spatial dimensionality and with a general exchange interaction. The latter can
be anisotropic in spin-space and can be taken into account for as many nearest
neighbours as desired. The interaction does not even need to be of exchange type,
it just needs to satisfy a few conditions that we specified just below Eq. (3.45).
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3.4 Cubic materials
In the previous section we ended up with complex-looking, but very generally
applicable results. In this and the following section, we will demonstrate the
usefulness of those formulas and analyse the results. This section specifically
focuses on materials with cubic lattice structures and exchange interactions that
act only on the nearest neighbours (NN). Focussing on NN-only interactions makes
it possible to limit the size of the parameter space, while capturing the essential
physics. The choice for studying cubic lattices is obvious: they can be described by
a Bravais lattice, which considerably simplifies the formulae. Moreover, they allow
for a direct comparison between different dimensions. Specifically, the magnetic
properties of the two-dimensional square lattice will be compared extensively
with the simple cubic lattice, its three-dimensional analogue. In 3D, we will also
show results for the body- and face-centred cubic lattices, which describe common
materials such as Ni, Co and Fe. We published most of these results in [120]
and presented them at several conferences [121–128], but provide some additional
analysis here.

3.4.1 Reduction of the formulae

Since each atom only interacts with its NN, the exchange interaction and its
anisotropy have the functional form

Jld = Jζ1,ld and ∆ld = ∆ζ1,ld, (3.81)

where ζ1,ld is the nearest-neighbour function (see Sec. 2.1.3) for the considered
lattice type. The spatial Fourier transforms of these functions are

J(k) = Jζ1(k) and ∆(k) = ∆ζ1(k) (3.82)

with ζ1(k) given by ζSC
1 (k), ζBCC

1 (k), ζFCC
1 (k) or ζSQ

1 (k) as derived in Sec. 2.1.4.
The relevant Fourier transformed exchange tensor components [cf. Eqs. (3.8b)
and (3.18)] are

J++(k) = 1

2
∆ sin2 θJ(k)

Jzz(k) = [1 + ∆ cos 2θ] J(k)
J+−(k) = [1−∆ cos2 θ] J(k),

(3.83)

where we denoted Jτυ(k) = Jτυ
AA(k). There are no separate sublattices, so all

quantities interlinking them vanish. Similar to the normalised magnetic field (3.76),
we introduce the normalized exchange interaction

η(k) = J(k)
Jtot

= η1ζ1(k), with η1 =
J

Jtot
=

1

z
, (3.84)
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where the total exchange strength as felt by an atom is now Jtot = J(0) = zJ . The
complete set of formulas to determine the magnetisation M reduces to substituting

Φ =
1

vb

∫
BZ

φ(k)dk, φ =
MJtota

2ω
coth

(1
2
βω

)
− 1

2
(3.85a)

in the expression (3.39) for larger spin values. Compared to Eq. (3.70), the terms
related to ω+ and ω− contribute exactly the same, since A− = −A+ and ω+ = ω−.
Indeed, since the crystals only have a single atom in their atomic basis, there is
only a single dispersion relation

ω = ω± = MJtot
√
a2 − h2. (3.85b)

The angle of the magnetisation can be determined from the angular condition

bx = ∆ sin 2θ, (3.85c)

where the magnetisation magnitude and exchange strength are hidden in the
normalised magnetic field. The solution to this relation is visualised in Figure 3.3.
The other quantities in use are

a = bz + 1 +∆ cos 2θ − [1−∆ cos2 θ] η(k) (3.85d)
h = ∆ sin2 θη(k). (3.85e)

For an isotropic material with the magnetic field applied in the Z-direction and
S = 1/2, this reduces further to the formulae obtained in section 2.3.3.

3.4.2 Curie temperature

Formula (3.80) to calculate the Curie temperature for cubic materials becomes

kBTC =
S (S + 1)

3

1

ΦC
, (3.86a)

with

ΦC =
1

vb

∫
BZ

φC(k)dk, φC(k) =
1

Jtot

a

a2 − h2
. (3.86b)

From these expressions, it is already possible to derive some properties of the Curie
temperature. It scales with spin as TC ∝ S (S + 1), which is a general feature of
quantum models and related to the fact that 〈Ŝ2〉 = S (S + 1). This should be
contrasted to classical models, where the TC scales as S2 (subsection 1.4.2). The
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∆

b sin(θB − θ)

∆ sin(2θ)

θ
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θ

Figure 3.3 Graphical solution of the angular condition (3.85c), useful to get an intuition
and to understand later results. The magnetisation angle θ is determined by the
intersection of the two curves within the domain [0, π/2] (yellow background). The
normalised magnetic field b is always positive. When it is zero, either M = 0 and
the magnetisation angle is not well-defined, or no external field is present and the
correct solution (θ = 0 or π/2) should be chosen in agreement with the anisotropy.
This anisotropy ∆ can be either positive or negative, which would turn the blue curve
upside-down. There will always be a single intersection point in the given domain,
except possibly when ∆ > 0 and θB = π/2 or ∆ < 0 and θB = 0. When there is
a choice, θ = θB is never the correct solution, as it leads to imaginary energies in
the dispersion relation (3.85b). Note that the same solution for θ can be found by
substituting ∆ → MzJ∆ and b → geµBB. It is sometimes easier to reason using those
substituted quantities.
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Figure 3.4 The Curie temperature as function of anisotropy for the different cubic lattice
types. All three-dimensional lattices have the lowest TC for the isotropic system, as
all spins have the most freedom in this case. When the magnitude of the anisotropy
increases, the spins have an inherent preference to align in one (∆ > 0) or two (∆ < 0)
directions. The Curie temperature is relatively speaking larger for easy-axis materials
as compared to easy-plane materials since the spins are already confined to a lower-
dimensional space. While the curves for the SC, BCC and FCC lattice types are almost
the same, their actual Curie temperatures vary due to their different coordination
numbers z. The two-dimensional cubic, i.e. square, lattice type has a similar dependence
as the three-dimensional types for positive anisotropies. However, as the anisotropy
decreases and the material becomes isotropic, the Curie temperature vanishes. Also
for negative anisotropies, no spontaneous magnetisation is possible in square lattices.

Curie temperature is also directly proportional to the total exchange strength Jtot
and thus scales linearly with the strength of the exchange interaction J and the
number of neighbours z that each atom interacts with.

Since an external field is absent, any spontaneous magnetisation must have an
angle θ = 0 or θ = π/2 according to the angular condition (3.85c). The former is
the solution for easy-axis anisotropic (∆ > 0) materials, while the latter should
be chosen for materials with easy-plane anisotropy (∆ < 0). The corresponding
integrands

φC(k) =


1

Jtot

1

1 + ∆− (1−∆) η(k) ∆ > 0

1

Jtot

1−∆− η(k)
(1−∆− η(k))2 − (∆η(k))2

∆ < 0
(3.87)

can be used to calculate the Curie temperature as function of the anisotropy for
the different lattice structure (Figure 3.4). Apart from the dependencies of TC
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described above, it also strongly depends on the anisotropy—a larger magnitude of
which leads to a higher Curie temperature—and dimensionality of the material. In
contrast, it does not depend that much on the specific lattice type. Two dimensional
materials need an easy-axis anisotropy to exhibit spontaneous magnetisation at
non-zero temperatures. An easy-plane anisotropy is insufficient to get a non-
zero Curie temperature. Such an anisotropy does not break the in-plane SO(2)
symmetry, causing detrimental quantum fluctuations that destroy any in-plane
spontaneous magnetisation at temperatures different from absolute zero. Our
results are thus in agreement with the Mermin-Wagner theorem [4]. This can
also be analysed analytically. Since each of the neighbour functions ζ1(k) under
consideration expands for small k as (where k is actually ak)

ζ1(k)
k→0
≈ z − k2 +O(k4), (3.88)

the behaviour of the integrand φC(k) around the origin of the first Brillouin zone
is

φC(k)
k→0
≈


1

Jtot

1

2∆ + (1−∆) k2/z
∆ > 0

1

Jtot

z

2 (1−∆) k2 ∆ < 0.

(3.89)

The integrand thus remains finite at k = 0 for easy-axis anisotropies. On the
other hand, the integrand is singular at the origin for easy-plane anisotropies.
While this singularity is integrable in three-dimensions, it becomes a non-integrable
singularity when the spatial dimensionality is reduced.

In the Ising limit (∆ = 1), the Curie temperature can be calculated exactly from
Eq. (3.86) to be kBTC = 2S (S + 1) zJ/3, which agrees with the result for the
quantum Ising model as obtained from molecular field theory (subsection 1.4.2, with
exchange strength (1 + ∆) J = 2J). This is not entirely unexpected. The exchange
Hamiltonian (3.8a) only contains the term with exchange tensor component Jzz

ld in
this Ising limit. After performing the Tyablikov decoupling, this term only has a
dispersionless contribution in the equation of motion (3.24). Most materials only
have an anisotropy of the order of 0.01, where our theory outperforms the mean
field approximation by including dispersive contributions. A more complicated
decoupling scheme—either of first order, such as that of Callen [91], or of higher
order, e.g., [129] or [130]—could lead to an improvement over the mean field
approximation in these extreme cases.

3.4.3 Dispersion relation

The dispersion relation ω(k), Eq. (3.85b), gives the energy of a quasiparticle
excitation with a given momentum k. For the lattices with a single atomic basis
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considered here, there is only a single branch to the dispersion relation. The energy
spectra allow us to better understand the Curie temperature results.

Similar as for the Curie temperature, we consider a possible magnetisation that is
out-of-plane (θ=0) for easy-axis anisotropic systems and in-plane (θ=π /2) for easy-
plane anisotropic systems. To allow for a more extended discussion, we furthermore
allow for a magnetic field applied parallel with that natural magnetisation direction
(i.e. the applied field does not have an influence on the angle of magnetisation).
The excitation spectrum then becomes

ω(k) =

MJtot
∣∣bZ + 1 +∆− (1−∆) η(k)

∣∣ ∆ > 0

MJtot

√
(bX + 1−∆− η(k))2 − (∆η(k))2 ∆ < 0.

(3.90)

Notice that the excitation spectrum gets renormalised by the magnetisation, which
is itself temperature-dependent. This temperature dependence of the excitation
spectrum is a distinguishing feature as compared to the mean field theory or
results based on the Holstein-Primakoff approximation. The precise value of the
magnetisation depends on the entire excitation spectrum, since all excited states are
sampled with a certain temperature-dependent magnitude by the Bose distribution
function. On the contrary, whether a non-zero magnetisation is possible at all
depends only on the behaviour of the excitation spectrum around its minimum
energy, that is around k = 0. Around this centre of the first Brillouin zone (the Γ
point), ω(k) can again be expanded using Eq. (3.88) to become

ω(k) k→0
≈

MJtot
(
bZ + 2∆+ (1−∆) k2/z

)
+O(k4) ∆ > 0

MJtot

√
bX (bX − 2∆) + 2

(
bX −∆(1−∆)

)
k2/z +O(k4) ∆ < 0.

(3.91)

The condition relevant to extract the Curie Temperature corresponds to zero
magnetic field. The dispersion relation (3.90) for that case is shown along the
high symmetry lines of the first Brillouin zone for the simple cubic and square
lattices in Figure 3.5. A non-zero Curie temperature is only possible when the
number of possible excitations is low, such that they do not destroy the magnetised
ground state. For an easy-axis ferromagnet, the dispersion is parabolic around
Γ with an excitation gap of size 2∆MJtot. Due to the excitation gap, one may
find a temperature low enough to suppress detrimental quantum fluctuations. The
highest such temperature is the Curie temperature. For easy-plane ferromagnets,
the situation is more complicated. The excitation spectrum in the absence of an
external field around the Γ point is ω(k → 0) ≈ 2

√
|∆| (1− |∆|) /z|k| + O(k3),

where the important feature is its linearity in k. Since excitations with energies
all the way down to zero are allowed, it is not always possible to find a non-
zero temperature at which sufficient excitations are suppressed. The linearity
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Figure 3.5 Dispersion relation ω(k) for the three-dimensional simple cubic (blue) and
two-dimensional square (red) lattice types below their Curie temperature in the absence
of an externally applied field. The dispersion is shown along the high symmetry lines
in the kXkY -plane of the first Brillouin zone. The centre of the first Brillouin zone is Γ,
while X and M are the middle of an edge and a corner in the kXkY -plane, respectively.
For easy-axis materials, the dispersion is parabolic around Γ with an energy gap.
Easy-plane materials have a linear dispersion around their minimum. For this figure,
|∆| = 0.1 was used.

of the dispersion relation makes it possible to find such a temperature in three
dimensions, but not in two dimensions. This explains the distinct behaviour of
two- and three-dimensional easy-plane Curie temperatures (Fig. 3.4).

When a magnetic field that assists the anisotropy is present, the situation changes.
The energy gap of the easy-axis ferromagnet becomes (bZ + 2∆)MJtot. It grows
linearly with the applied field. Notice that the energy gap never entirely vanishes
when a field is applied. In contrast to the gap without applied field, this even holds
when M → 0 since bZ ∝ 1/M . The dispersion relation for easy-plane anisotropic
materials with an in-plane magnetic field applied also becomes parabolic with an
excitation gap of size MJtot

√
bX (bX − 2∆). It is thus sufficient to apply a small

field to get a non-zero magnetisation in an in-plane anisotropic material.

3.4.4 Temperature and field dependence

The temperature dependence of the magnetisation is shown in Figure 3.6 in
the absence of a magnetic field and in fields of varying strengths applied along
the natural magnetisation direction. This natural magnetisation direction is the
direction preferred by the anisotropy, i.e. out-of-plane when ∆ > 0 and in-plane
when ∆ < 0. Such a field applied collinear with the natural magnetisation allows
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Figure 3.6 Normalised magnetisation as function of temperature for an easy-axis (blue)
and easy-plane (red) two-dimensional material with square lattice structure and S = 1/2.
The magnetisation behaviour of three-dimensional materials (either easy-axis or easy-
plane) is qualitatively the same as the easy-axis curves that are shown here. All
results were obtained for |∆| = 0.1, resulting in a Curie temperature of 0.57 zJ/kB
for the easy-axis material (indicated TC) and a vanishing Curie temperature for the
easy-plane material. The magnetisation is calculated for several values (from light to
dark: geµBB/zJ = 0.05, 0.04, 0.03, 0.02, 0.01 and B ' 0) of a magnetic field that is
applied parallel to the direction preferred by the anisotropy. The darkest curve for
the easy-axis ferromagnet shows the spontaneous magnetisation curve (B = 0). Since
spontaneous magnetisation is not possible in the easy-plane case, the darkest red curve
corresponds to a very small magnetic field of geµBB/zJ = 10−5.

us to study the magnetisation magnitude separately, without the need to consider
the magnetisation angle.

When a material’s Curie temperature is zero (two-dimensional with no easy-axis
anisotropy), the magnetisation vanishes by definition for all temperatures in the
absence of an applied field. For all other situations with a Curie temperature
that does not vanish, our results are qualitatively the same. In the absence of
an external field, the magnetisation is reduced from its saturated value as soon
as the temperature is raised above 0 K. This is the correct low-temperature
behaviour, which includes magnons as predicted by Bloch [79] and Dyson [80]. As
the temperature increases, the magnetisation drops further, vanishing exactly at
the Curie temperature calculated before (Fig. 3.4). At temperatures above the
TC the magnetisation remains identically zero. When the collinear magnetic field
is applied, there is a finite magnetisation at all temperatures. It only drops to
zero in the limit of infinite temperature. The magnetic susceptibility is largest
at the Curie temperature, as it should. The magnetisation increases further for
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larger applied field strengths. For large magnetic fields, the magnetisation curve
for two-dimensional easy-plane systems is very similar, although the magnetisation
is typically lower (for a comparable anisotropy strength). The situation is different
in the limit of a vanishing applied field. Since the Curie temperature vanishes, the
steepest drop of magnetisation does not happen around TC. Instead, it happens
at a magnetic field-dependent temperature, which slowly decreases to zero as the
magnetic field vanishes. This is similar to the observations of Gong et al. [9] in
the nearly ideal bilayer isotropic Heisenberg ferromagnet Cr2Ge2Te6.

It is insightful to look at the above results from a different perspective: Figure 3.7
shows the magnetisation as function of the applied collinear field for several
temperatures. For all materials and temperatures, the magnetisation increases
as the applied field increases, with the largest increase at B = 0. The precise
behaviour in that low-field regime depends strongly on whether the temperature
is above or below the Curie temperature. For T < TC, the magnetisation increases
gently with the applied field, starting from the spontaneous magnetisation at that
specific temperature. At the Curie temperature, the magnetisation is zero to start
with and the magnetic susceptibility is infinite, leading to a strong increase in
magnetisation as soon as a field is applied. At even higher temperatures, the
magnetisation becomes again less susceptible to the magnetic field, increasing more
slowly with increasing field strength. Two-dimensional easy-plane materials are
always in this last regime since they have a vanishing TC.

A great benefit of the theoretical framework as presented in this thesis, is that
it allows to calculate the direction of the magnetisation through the angle θ
that it makes with the Z-axis. Indicative results of such calculations are shown
in Figure 3.8. The magnetisation direction θ does not automatically coincide
with the applied field angle θB because of the competition with the magnet’s
anisotropy ∆. For a given magnetisation magnitude M , this competition is fully
described by the angular condition (3.85c), which was visualised in Figure 3.3. At
the lowest temperatures, there is a competition between the relative strengths of
the applied field B and the anisotropy zJM∆, which get weighted by the total
exchange strength Jtot and the magnetisation M . The magnetisation decreases
with increasing temperature. As the temperature raises, the influence of the
applied field thus slowly takes the overhand, such that the (small) magnetisation
approximately aligns with the applied field direction at high temperatures. This
dynamics can also be understood in terms of fluctuations: within Ĥex, the thermal
or quantum fluctuations of Ŝ grow quadratically and, thus, faster than the linear
growth in ĤB. The magnetisation is always lower when the applied field angle
deviates further from the natural magnetisation direction. It takes some effort
from the applied field to turn the spins in its direction and there is less (or no)
cooperation from the anisotropic exchange interaction.
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Figure 3.7 Normalised magnetisation as function of applied field for an easy-axis (blue,
left panel) and easy-plane (red, right panel) two-dimensional material with square
lattice structure, |∆| = 0.1 and S = 1/2. The two-dimensional easy-axis results are
representative for three-dimensional materials regardless of their anisotropy. The
results are shown for temperatures kBT/zJ = 0.05, 0.4, 0.5, 0.57, 0.6, 0.8 (top to
bottom, dark to light), where kBT/zJ = 0.57 was chosen because it is the Curie
temperature of the easy-axis material. There is a distinct behaviour in the low-field
regime for temperatures above and below the Curie temperature. For the easy-axis
material, all temperatures are above the vanishing Curie temperature.
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Figure 3.8 Magnetisation magnitude M (blue, left axis) and angle θ (red, right axis)
as function of temperature (left panels) and applied field strength (right panels) at
different angles θB. All results are for two-dimensional square-lattice materials. The
panels at the top are for an easy-axis anisotropic material with ∆ = 0.1, while those at
the bottom are for an easy-plane anisotropic material with ∆ = −0.1. Results for three-
dimensional materials are in qualitative agreement with the top panels. The dashed
yellow lines indicate the value at which the temperature and magnetic field were held
constant when making the M(B), respectively M(T ) plots. The same overall trends as
for the collinear applied field can be seen. Notice that at low temperatures, the figures
are in the regime b � ∆, such that the magnetisation aligns predominantly along the
direction preferred by the anisotropy as dictated by the angular condition (3.85c). As
the temperature increases, the magnetisation reduces such that at high temperatures
b � ∆ and thus θ ≈ θB. The magnetisation angle is slowly pulled in the direction of
the applied field as this field becomes stronger. The susceptibility for the applied fields
decreases as its angle with the natural magnetisation angle of the material increases.
Some of the work done by the applied field goes into turning the magnetisation away
from its preferred direction.
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Figure 3.9 Visual representation of self-consistent solution to the set of equations (3.85)
for an S = 1, easy-axis square (2D) material in a transverse field (θB = π/2) at
different strengths B. The temperature is kBT/zJ = 0.5. The solution Mout to
Eq. (3.39) when Min is given as input, is shown by the blue lines. A self-consistent
solution is achieved at the intersections of the red Min = Mout line with the blue lines.
For some blue lines, there are multiple intersections due to the downward spike that
occurs at MC = geµBB/(2zJ∆). This situation is representative for other parameters,
although the downward spike does not reach entirely to Mout = 0 in three dimensions.

3.4.5 Limitations of the theory

As shown above, the theory is applicable for anisotropic materials in magnetic
fields applied at arbitrary angles. In this subsection, we demonstrate that accurate
results cannot be guaranteed when the applied field is (almost) perpendicular to
the natural magnetisation direction. We will call this direction, which is θB = 90°
for ∆ ≥ 0 and θB = 0° for ∆ < 0, the transverse direction. The attentive reader
might have seen small signs of such inaccuracies in the M(T ) graphs at 5° deviation
from the transverse direction in Figure 3.8.

To demonstrate the problem that occurs in the calculation, we evaluated Eq. (3.39)
with Min as the input magnetisation for the various substitutions (e.g., the angular
condition (3.85c) and φ (3.85a)) and we call its result the output magnetisation
Mout. The self-consistent solution M of the set of equations (3.85) should then
be given by the point where the input and output magnetisation are the same
Min = Mout. It turns out that this condition can sometimes be satisfied by multiple
magnetisations when the external field is applied transversely (Figure 3.9).

A natural question to ask is which of those multiple solutions is correct. However,
the more pertinent question is whether any of those magnetisations is correct
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Figure 3.10 Visual representation of self-consistent solution for the same situation as in
Figure 3.9. Now, however, the magnetic field strength is fixed at B = 0.1zJ/geµB while
the applied field angle θB is changed such that it deviates slightly from the transverse
θB = 90° direction. The downward spike quickly disappears with increasing deviations.

in this case. It turns out that the multiple solutions are caused by a downward
spike around Min = MC = geµBB/(2zJ∆), where Mout(MC) = 0. At this very
point, the zero wave vector excitation energy ω(0) = 0 vanishes. Moreover, it
corresponds with the point where the solution to the angular condition (3.85c)
switches between two regimes: θ = arcsin

(
geµBB/(2zJ∆M)

)
when M > MC and

θ = π/2 when M ≤ MC. The multiple solutions thus seem to be caused by a
depression of Mout(Min) in the cross-over regime of the dominating interaction—
which changes from being the anisotropic exchange to being the Zeeman interaction.
There is maximal frustration at this point in the system when the field is applied
transversely. Together with the vanishing excitation energy, this might indicate
that some other non-homogeneous excitations are present or a phase transition
takes place. Some exotic type of ordering might even be present. The Tyablikov
decoupling scheme, which neglects higher-order correlations between different
spins, might not be suited well for such highly frustrated regimes. Moreover, a
homogeneous magnetisation (direction) is not very plausible in those cases, either.

We emphasise that such a strong effect only occurs in a strictly transverse field.
Figure 3.10 shows that the downward spike quickly disappears as soon as there
is some deviation in the applied field angle θB. Even for transverse fields, good
approximative solutions might still be obtained when magnetisations are far away
from MC.

85



Chapter 3. Anisotropy in ferromagnets Honeycomb and hexagonal materials

This limitation was not yet observed at the time of publication of [120]. However,
there we calculated 〈Ŝ−

p Ŝ−
p 〉 concurrently with M from the Green function formalism

for the spin S = 1/2 system under consideration. This quantity gave a good
indication of the error in our calculations, since it should vanish in an exact
solution. In agreement with the observations in this section, the error estimate
could be seen to grow significantly in the region where M = MC, indicating less
accurate results in that region.

3.5 Honeycomb and hexagonal materials

The cubic and square lattices studied in the previous section are ideal for com-
paring two- and three-dimensional systems. Considering only nearest-neighbour
interactions further helped to reduce the parameter space. This allowed us to
significantly reduce the complexity of the equations to solve and get some intuition
for the various effects at play. However, many two-dimensional materials are not
of square, but rather hexagonal or honeycomb lattice structure, the most famous
one being graphene. Most two-dimensional ferromagnets, with the most famous
group being the chromium trihalides such as CrI3, CrBr3 and CrCl3, are also of
hexagonal or honeycomb structure. Changing from square to hexagonal Bravais
lattices will not impact the results qualitatively. This is similar to a change from
simple cubic to body centred or face centred cubic. More significant is the change
from the hexagonal lattice with a monoatomic basis to the honeycomb lattice
with a multiatomic basis. Honeycomb materials have the additional feature that
interactions with second and third nearest neighbours are still significant compared
to the first-nearest-neighbour interaction. These further neighbours thus need to
be accounted for, together with their exchange anisotropies. We will focus on
the results that are qualitatively different from those for square lattices and on
the comparison to available experimental data. First we write down the explicit
equations for the honeycomb and hexagonal material, as we did in section 3.4.1
for cubic lattices.

3.5.1 Reduction of the formulae

We will first give the specific formulae for the honeycomb lattice structure. To find
the equations for the hexagonal lattice structure, either use the expressions for
square lattices from section 3.4.1 with Eq. (2.39) for the neighbour function ζ1(k),
or use the expressions that we derive below, with only second NN interaction.

In the honeycomb lattice structure, the exchange interaction is considered to be
significant for all atoms that are in direct view of each other. This means that
interactions up to third nearest neighbours are important (Figure 2.3). Due to
symmetry, both the exchange strength and anisotropy are considered equal for
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equally-distant spins. The exchange interactions and anisotropy are thus

Jld = J1ζ1,ld + J2ζ2,ld + J3ζ3,ld and ∆ld = ∆1ζ1,ld +∆2ζ2,ld +∆3ζ3,ld (3.92)

with ζn,ld the neighbour functions as defined in subsection 2.1.3 and where l and
p can be either part of sublattice A or B. Since the anisotropy always appears
in combination with the exchange strength, we also introduce the anisotropic
exchange as

Kld = K1ζ1,ld +K2ζ2,ld +K3ζ3,ld with Kn = ∆nJn. (3.93)

For the equations that follow, it is more convenient to express the (anisotropic)
exchange interaction in a normalised form with respect to the total exchange
strength

Jtot = J(0) = z1J1 + z2J2 + z3J3 = 3J1 + 6J2 + 3J3, (3.94)

which is the Fourier transform J(k) evaluated at k = 0. The normalised (aniso-
tropic) exchange strengths are then

ηn =
Jn
Jtot

and κn =
Kn

Jtot
(3.95)

and the normalised (anisotropic) exchange functions

ηld = η1ζ1,ld + η2ζ2,ld + η3ζ3,ld and κld = κ1ζ1,ld + κ2ζ2,ld + κ3ζ3,ld. (3.96)

Analogous to the total exchange strength, we also define the total weighted
anisotropy

δ = κ(0) =
K(0)

Jtot
= 3η1∆1 + 6η2∆2 + 3η3∆3. (3.97)

Notice that all (normalised) (anisotropic) exchange functions above are of the form

Pld = P1ζ1,ld + P2ζ2,ld + P3ζ3,ld (3.98)

where P can be either J,K, η or κ. The parts of these functions that act on the
same (second NN) or different (first and third NN) sublattices appear distinctly
in the equations that we derive. It is thus instructive to split the function in two
parts: (i) the odd part PO,ld = P1ζ1,ld+P3ζ3,ld contains only the contribution from
interactions between distinct sublattices, and (ii) the even part PE,ld = P2ζ2,ld
contains those interactions acting only on the same sublattice. The Fourier
transform of this function with respect to an atom located in sublattice A is
P(k) = PE(k) + PO(k), where

PE(k) = P2ζ2(k) and PO(k) = P1ζ1(k) + P3ζ3(k). (3.99)
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We used the simplified notation ζn(k) to represent the Fourier transformed neigh-
bour functions ζHON

n,A (k) of the honeycomb lattice, as given in section 2.1.4. The
function PO(k) is complex-valued and taking its complex conjugate gives the
Fourier transform with respect to an atom located in sublattice B. We introduce
additional notation for the real and imaginary parts of PO(k):

PR(k) = RePO(k) = P1ζ1,R(k) + P3ζ3,R(k) and
PI(k) = ImPO(k) = P1ζ1,I(k) + P3ζ3,I(k),

(3.100)

where ζn,R(k) = Re ζn(k) and ζn,I(k) = Im ζn(k).

With all these definitions at hand, only some straightforward substitutions in the
expressions derived in section 3.3 are left in obtaining our final solution. The
Fourier transformed exchange tensor components [cf. Eqs. (3.8b) and (3.18)] that
are necessary for Eq. (3.75) are

Jzz
A (0) = Jtot +K(0) cos 2θ (3.101a)

J+−
AA (k) = JE(k)−KE(k) cos2 θ (3.101b)

J++
AA (k) = 1

2
KE(k) sin2 θ (3.101c)

Re J+−
BA (k) = JR(k)−KR(k) cos2 θ (3.101d)

Im J+−
BA (k) = JI(k)−KI(k) cos2 θ (3.101e)

Re J++
BA (k) = 1

2
KR(k) sin2 θ (3.101f)

Im J++
BA (k) = 1

2
KI(k) sin2 θ. (3.101g)

Using the quantities

fα = ηα(k)− κα(k) cos2 θ, α ∈ {R, I,E} (3.102a)
gα = κα(k) sin2 θ, α ∈ {R, I,E} (3.102b)
a = bz + 1 + δ cos 2θ − fE, (3.102c)

with the normalised magnetic field component bz given by Eq. (3.76), the full
solution can be written as follows. The magnetisation is still given by Eq. (3.39)
for systems with spin S > 1/2, but now

Φ =
1

vb

∫
BZ

φ(k)dk, φ =
A+

ω+
coth

(1
2
βω+

)
− A−

ω−
coth

(1
2
βω−

)
− 1

2
. (3.103)

The amplitudes are

A± =
MJtot

4
√
F

{
(gR + gI) (fRgI − fIgR)

+ (a− fR − fI)
(
±
√
F − a (fR + fI) + h (gR + gI)

)} (3.104)
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and

F = (afR − gEgR)
2 + (afI − gEgI)

2 − (fRgI − fIgR)
2 . (3.105)

The quasi-particle excitation energies are

ω± = MJtot

√
a2 + f2

R + f2
I − (g2E + g2R + g2I ) ± 2

√
F (3.106)

and the angular condition is

bx = δ sin 2θ. (3.107)

The visual representation of this angular condition is the same as for the cubic
material (Figure 3.3) after making the identification δ → ∆.

3.5.2 Curie temperature

The equation (3.80) to calculate the Curie temperature of honeycomb materials
becomes

kBTC =
S (S + 1)

3

1

ΦC
, with ΦC =

1

vb

∫
BZ

φC(k)dk, (3.108a)

where now

φC(k) =
1

Jtot

a+ ηR(k)− κR(k)
a2 − (ηR(k)− κR(k))2 − (ηI(k)− κI(k))2

, (3.108b)

with a = 1 + δ − ηE(k) + κE(k). This result was obtained by setting θ = 0. The
other possible choice, θ = π/2, results in a vanishing Curie temperature due
to the divergence of the two-dimensional integral in a similar fashion as for the
square lattice types (see section 3.4.2). Equation (3.108) yields non-zero Curie
temperatures for positive weighted anisotropies δ > 0. The Curie temperature is
zero when the weighted anisotropy is negative.

While there are too many parameters to show results for the entire parameter
space, as we did in section 3.4.2, we can show results for some specific materials.
Apart from being of experimental relevance, this also helps to understand the
magnitude of the various quantities that are involved. Specifically, we will focus on
CrI3, CrBr3 and MnSe2 that we discussed thoroughly in [131]. We reproduce some
of those results here. The parameters ∆n and Jn for these materials were obtained
through DFT by Cihan Bacaksiz (Table 3.1). Both CrI3 and CrBr3 have their
magnetically active Cr atoms placed in a honeycomb structure (Figure 2.3), while
MnSe2 is represented by spins at the Mn atom positions arranged in a hexagonal
lattice. The atomic spins of Cr and Mn are S = 3/2.
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Table 3.1 Values for the parameters obtained from DFT [131]. The ab initio calculations
to obtain these values were performed by Cihan Bacaksiz [132, 133]. Next to the
calculated exchange strengths Jn and anisotropies ∆n, also the total exchange strength
Jtot and weighted anisotropy δ are given.

exchange strength (meV) anisotropy

J1 J2 J3 Jtot ∆1 ∆2 ∆3 δ

CrI3 3.06 0.92 −0.01 14.67 0.08 −0.05 −0.92 0.033
CrBr3 2.72 0.41 −0.10 10.32 0.01 −0.02 0.05 0.0017
MnSe2 5.34 32.04 0.01 0.01

The Curie temperatures obtained using the parameters of Table 3.1 are given in
Table 3.2. Overall, the results agree well with the limited available experimental
values and they are a significant improvement over the commonly used Ising
models. The calculated Curie temperature for CrBr3 is in quantitative agreement
with experiment. Also, the high value of TC for MnSe2 is successfully reproduced
after the report of room temperature (RT) spontaneous magnetisation by O’Hara
et al. [17]. The small remaining deviation between the experiments and our theory
might have several sources. There is only little experimental data available, making
it difficult to judge the error in experimental results. For instance, an important
source of deviations might be interactions between the two-dimensional sample
and its substrate [134, 135]. For DFT results it is also well-known that they can
vary significantly depending on the used method, which consequently also changes
the predicted Curie temperatures. Additional terms in the Hamiltonian, such
as a single-ion anisotropy term or dipolar interaction terms, might be needed to
accurately describe the materials at hand. Finally, it is also known that finite-size
effect might play a significant role. While only little information is available in
this regard, a study by Imry [6] implies that finite-size effects might increase the
predicted Curie temperature.

For materials with a honeycomb lattice structure it is important to account for
interactions beyond first neighbours. To illustrate this, we show in Figure 3.11 the
influence on the Curie temperature when scaling the second and third neighbour
interaction strengths of CrBr3 and CrI3 relative to their values in Table 3.1.
Turning those interactions on or off leads to significant changes in the predicted
Curie temperatures. Particular combinations of farther neighbour interactions can
even lead to a vanishing TC if overall in-plane anisotropy or anti-ferromagnetic
interactions take the overhand.

To allow other researchers to easily use our results, we released together with [131]
a Python program, which can be found at reference [136]. This tool can be
used to calculate Curie temperatures based on the formalism derived here, cf.
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Table 3.2 Comparison of the Curie temperature TC between our theoretical results
(Green), the existing experimental data and other solution methods. The Monte Carlo
Ising TC results [131] are obtained by Cihan Bacaksiz with the exchange strengths
Jn as given in Table 3.1 but with full anisotropy ∆n = 1. The Ising NN results are
obtained with only nearest-neighbour interactions and Ising anisotropy, using the exact
relations (1.36).

TC (K)

Green Ising MC Ising NN experiment

CrI3 108 241 118 45[8]
CrBr3 37 157 108 34[15], 27[16]
MnSe2 264 510 506 >RT[17]
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Figure 3.11 The influence of farther neighbour interactions on the Curie temperature for
(a) CrBr3 and (b) CrI3. The Curie temperature is shown for different combinations of
the second (horizontal axis) and third (vertical axis) neighbour exchange strength. The
results that correspond to having only nearest-neighbour interactions are indicated by
NN. Those corresponding to the parameters of Table 3.1 are labeled by the chemical
formula of the material. The apparent independence of TC on J3 in CrI3 can be
explained by its small value of JDFT

3 in absolute terms.
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equation (3.108). It only requires the spin value S, the exchange strengths Jn
and the corresponding anisotropies ∆n up to third nearest neighbours. These
parameters can be obtained through DFT calculations. The tool is very flexible
in the sense that it only depends on these general parameters and not on their
exact physical origin. Indeed, our results remain valid as long as the lattice keeps
its honeycomb or hexagonal structure. We thus effectively reduced the problem
of calculating Curie temperatures to the determination of DFT parameters. As
such, the tool can be used for follow-up studies focusing on the engineering of
materials with high TC. One effect that could be studied is the influence of stress or
strain on a sample, which can change the distance between the magnetically active
atoms. On the one hand, this can alter the exchange strength, since the orbital
overlap of these atoms changes. We expect that the exchange strength becomes
stronger when the atoms are brought closer together, which would increase the
Curie temperature. On the other hand, the modification of the interatomic spacing
can lead to a deformation of the orbitals themselves, which can in turn influence
both the exchange strengths and anisotropies. The latter effect might also take
place when an external electric field is applied. We conclude that, together with
DFT calculations, our tool can help both in the computational screening of new
materials for potentially high Curie temperatures, and in the assessment of the
optimal physical environment.

3.5.3 Excitation spectrum

The results for the Curie temperature can be understood to some the degree
in terms of the quasi-particle excitation spectrum ω±(k), Eq. (3.106), which is
shown in Figure 3.12. As described in section 3.4.3, higher Curie temperatures are
possible when less quasi-particles get excited. The non-zero Curie temperatures of
the discussed materials can be explained by the fact that they all have a parabolic
dispersion around their minimum with an excitation energy gap of 2MδJtot, for
which the values can be found in Table 3.3. The gap for CrI3 is larger than that
for CrBr3, resulting in its higher TC. The lowest energy excitation of MnSe2 is
lower than that of CrI3, so one would naively think that its Curie temperature
would be larger. However, as we also discussed in section 3.4.3, the precise value of
the TC is not only determined by the excitation gap, but by the entire excitation
spectrum. The steeper increasing dispersion of MnSe2 can thus account for its
higher Curie temperature.

Because the honeycomb lattice structure contains two atoms per Bravais lattice
point, its quasi-particle dispersion has two branches. These Branches meet at
the K-points in Dirac cones—best known from the electronic band structure of
graphene—that are typical for honeycomb lattice types [87]. It has been theorised
that breaking the lattice inversion symmetry, for example when Dzyaloshinskii-
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Figure 3.12 Quasi-particle excitation spectrum for CrI3, CrBr3 and MnSe2 along the
reciprocal cell’s high symmetry lines (Figure 2.2) at a temperature below the Curie
temperature in the absence of an external field. The spectrum is renormalised by
temperature through the spontaneous magnetisation M . To compare the different
materials, the excitation energies are shown in units of Jtot.

Table 3.3 Comparison of our theoretical results (Green) to the existing experimental
data for excitation energies at the Γ-point (assuming M = Ms). Both energies for the
lower band E−(Γ) and higher band E+(Γ) are given when available.

E−(Γ) (meV) E+(Γ) (meV)

Green experiment Green experiment

CrI3 1.46 2.4[137] 26.6 19[137]
CrBr3 0.052 0.1–0.2[2, 3] 23 15.5[3]
MnSe2 0.96 -
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Moriya interactions are present, might allow for topological magnon edge states [137,
138] by opening up the Dirac cones.

For CrI3 and CrBr3 there are some experimental results available for the first and
second excitation energy at the Γ-point (Table 3.3). These are typically obtained
from a bulk sample of the material with loosely coupled van der Waals layers [2,
3]. As such, they should only be considered to be approximations to the values of
an atomically thin layer. Our results agree qualitatively with those experiments.

The results for these materials in the presence of a magnetic field (at arbitrary
angle) are similar to those of the square materials studied in subsection 3.4.4. We
refer to that section or the paper [131] for the details. To convert the dimensionless
quantities into real physical units, one can use the Curie temperature TC as
reference point. For the applied field strengths, we note that B = Jtot/geµB
corresponds to 127 T, 89 T and 277 T for CrI3, CrBr3 and MnSe2, respectively.
While these values might seem high, they are typically multiplied by a factor of
the order 10−2 for the results shown in subsection 3.4.4, resulting in fields of the
same order of magnitude as often found in experiments [9].
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4 Dipolar interaction

In this chapter, we introduce the magnetic dipole-dipole interaction as an extension
to the anisotropic Heisenberg Hamiltonian (3.1) that we discussed extensively
in Chapter 3. The dipolar interaction is important with respect to the Mermin-
Wagner theorem [4], since the corresponding spin-spin interactions are intrinsically
anisotropic while having a longer range than exchange interactions. In view of
the latter, a treatment with Monte Carlo is challenging. With our technique,
this problem is circumvented since the long-range behaviour can be sufficiently
described using a spatial Fourier transform. Nevertheless, the sums that arise are
slowly converging and need to be treated by Ewald summations (see Section 4.2).
Even more challenging, however, is the dipolar interaction’s intrinsic anisotropy.
The intuition and solution scheme that we built in Chapter 3 will be useful in this
regard.

In contrast to exchange interactions, which give rise to a pure quantum mechan-
ical and indirect spin-spin interaction of electrostatic nature, the dipole-dipole
interaction is of direct magnetostatic nature and manifests itself even in a classical
context. While it is always present in experiments, it is often completely neglected
in literature related to spin systems. This is commonly justified by its pairwise
energy contribution that is typically a factor 10 to 100 smaller compared to the
exchange—or for that matter, Zeeman—interaction, while forgetting the fact that
it is long-range and might change the system’s anisotropy. When it is being
taken into account, it is often replaced by its mean-field contribution. Only a few
studies, generally using the Holstein-Primakoff approximation, account for the
dipolar interaction to the same level of approximation as the other interactions [82,
139, 140]. All of those consider the magnetic field to be along a crystal direction.
More crude approximations are sometimes justified because they allows calculating
more properties or states of the system. De’Bell, MacIsaac and Whitehead [141]
reviewed some of those considerations and results in more detail. Here, we will
treat the dipolar interaction at the same level of approximation as the other terms
in the Hamiltonian and again allow the magnetic field to be in arbitrary directions.
While most of the calculations are valid for general lattice types, we limit ourselves
here to simple cubic and square crystal structures. Parts of these results were
presented in ref. [142].
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4.1 Full Heisenberg model

The dipolar interaction is included by further extending the Hamiltonian (3.1)
with the dipolar contribution ĤD. The full Hamiltonian is thus

Ĥ = ĤB + Ĥex + ĤD, (4.1)

with ĤB and Ĥex given by equation (3.3) respectively (3.2). Only nearest-neighbour
interactions are considered and we write J = J1 and ∆ = ∆1.

A magnetic moment m generates at a position r relative to itself a magnetic
field [77]

B =
µ0

4π

(
3

r (m · r)
r5

− m
r3

)
, (4.2)

where µ0 is the vacuum permeability and r = ‖r‖. The magnetic moment of a
spin S is m = geµBS, such that it creates a field

B =
geµBµ0

4π

(
3

r (S · r)
r5

− S
r3

)
. (4.3)

The energy of a magnetic moment m in a field B is −m·B. As such, the Hamiltonian
of the newly added dipolar interaction is

ĤD =
g

2

∑
d,l

1

r3dl
Ŝd · Ŝl −

3g

2

∑
d,l

1

r5dl
(Ŝd · rdl) (Ŝl · rdl) , (4.4)

with rdl the vector connecting lattice points d and l, and rdl = ‖rdl‖ its length. The
strength of the dipolar coupling is given by the parameter g = (geµB)

2 µ0/4π =
2.147 × 10−28 meV · m3 = 0.2147 meV · nm3, which should still be divided by a
factor r3dl to get an actual energy. This is a small coupling constant as compared
to exchange interactions, which can easily be several meV. Notice that the second
term in Eq. (4.4) introduces an anisotropy by coupling the spin’s direction in spin
space to the lattice space direction connecting the two spins. The factors in this
sum are explicitly given by (Ŝd · rdl) = ŜX

d rXdl + ŜY
d r

Y
dl + ŜZ

d r
Z
dl, where we used the

components of rdl = (rXdl , r
Y
dl , r

Z
dl). It is implied that the sums do not include d = l.

To continue, the frame of reference is again changed from the crystallographic to
the magnetisation coordinate system through transformation (3.4) (Figure 3.2).
This assumes that the dipole-dipole interaction does not induce a rotation in
the XY -plane. This turns out to be a reasonable assumption since we will find
that it does not induce a rotation in the XZ-plane when there was none present
yet due to the exchange anisotropy or the applied magnetic field in the absence
of dipolar interaction. It is therefore reasonable to assume that the magnetic
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dipole-dipole interaction does not induce a homogeneous magnetisation rotation
in the XY -plane in the absence of other interactions inducing such a rotation.
This, however, does not mean that such a rotation might not be introduced on
the single-spin (inhomogeneous) level [141] that we do not intend to describe here.
After the rotation to the magnetisation coordinate system, the Hamiltonian is

ĤD = −1

2

∑
d,l

[
P++

ld Ŝ+
d Ŝ+

l + P−−
ld Ŝ−

d Ŝ−
l + P zz

ld Ŝz
dŜz

l

+P+z
ld Ŝ+

d Ŝz
l + P−z

ld Ŝ−
d Ŝz

l + P+−
ld Ŝ+

d Ŝ−
l
]
,

(4.5a)

where

P++
ld = P−−

ld = +3g
1

r5dl
P+

dl P
+
dl (4.5b)

P zz
ld = −g

1

r3dl
+ 3g

1

r5dl
P z

dlP
z
dl (4.5c)

P+z
ld = P−z

ld = +3g
1

r5dl
2P+

dl P
z
dl (4.5d)

P+−
ld = −g

1

r3dl
+ 3g

1

r5dl
2P+

dl P
−
dl (4.5e)

with

P+
dl = P−

dl =
1

2
(rXdl cos θ − irYdl − rZdl sin θ) (4.5f)

P z
dl = (rXdl sin θ + rZdl cos θ) . (4.5g)

To obtain this result, we used the identity Pα
dlP

β
dl = Pα

ldP
β
ld. Notice that Eq. (4.5a) is

identical in form to Eq. (3.8a) but now with dipolar tensor coefficients Pαβ instead
of the exchange tensor coefficients Jαβ

ld . Since we did not use any specific properties
of Jαβ

ld back in section 3.2 that do not apply here as well, we can directly reuse
all the results from that section. Specifically, we use the same Green functions,
commutator relations and Tyablikov decoupling approximation. Furthermore, we
again perform a spatial Fourier transform, calculate the same inhomogeneity term
and write the equation of motion in vectorised form. Since we are dealing only
with simple cubic and square lattices here, it is sufficient to have a single atomic
basis, such that the equation of motion consists of three coupled equations. The
treatment of higher spin values is also identical. The Fourier-transformed dipolar
tensor components are defined as

P τυ(k) =
∑

rl

eik·rlpP τυ
lp , τ, υ ∈ {+,−, z}. (4.6)
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Notice that the Fourier transforms of terms linear in rXdl , rYdl or rZdl vanish when
evaluated at k = 0 for two- and three-dimensional lattices with sufficient symmetry.
Here, this implies that ImP++(0) = 0 and ImP+z(0) = 0. The coefficient matrix
for the equation of motion is

Γ(k) =

Γ++(k) Γ+−(k) Γ+z(k)
Γ−+(k) Γ−−(k) Γ−z(k)
Γz+(k) Γz−(k) Γzz(k)

 =

Γ++(k) −Γ−+(k) Γ+z(k)
Γ−+(k) −Γ++(k) −Γ+z(k)
Γz+ −Γz+ 0

 , (4.7)

containing the elements

Γ++(k) = geµBB
z +M [Jzz(0)− J+−(k) + P zz(0)− P+−(k)] (4.8a)

Γ+z(k) = −geµBB
x −M [J−z(0) + J−z(k) + P−z(0) + P−z(k)] (4.8b)

Γ−+(k) = 2M [J++(k) + P++(k)] (4.8c)
Γz+ = −(geµBB

x +M [J+z(0) + P+z(0)]) /2. (4.8d)

This resembles one of the diagonal block matrices in section 3.3, with the only
structural difference being that Γ+z(k) and Γ−+(k) have an imaginary component
for general k now. The determinant det(Γ(k)) of the coefficient matrix is

−2Γz+
[
ImΓ−+(k)ReΓ+z(k) +

(
ReΓ−+(k)− Γ++(k)

)
ImΓ+z(k)

]
i. (4.9)

Since proper excitation energies (eigenvalues of coefficient matrix) must be real,
their product (i.e. the above determinant) must also be real. This can only be true
for all k if Γz+ = 0, which is the exact same condition as the regularity condition
used in section 3.3. The angular condition is thus

geµBB
x = −M [J+z(0) + P+z(0)] , (4.10a)

where

J+z(0) = − sin 2θ∆Jtot (4.10b)

and

P+z(0) = 3g
∑

rl

1

r5dl
(rXdl cos θ − irYdl − rZdl sin θ) (rXdl sin θ + rZdl cos θ)

=
3g

2
sin 2θ

∑
rl

rXdl r
X
dl − rZdlr

Z
dl

r5dl
.

(4.10c)

With the angular condition satisfied, the entire third row of the coefficient matrix
Γ(k) vanishes. Therefore, Gz(k) = 0 is a solution for the third component of
the Green function vector G(k). For the remainder of the solution, this implies
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that the third row and column of Γ(k), G(k) and Ψ(k) in the vector equation of
motion (3.24) can be discarded. The remaining coefficient matrix is

Γ(k) = MJtot

[
a −h+ ip

h+ ip −a

]
, (4.11)

with the real-valued quantities

a = Γ++(k)/(MJtot) (4.12)
h = ReΓ−+(k)/(MJtot) (4.13)
p = ImΓ−+(k)/(MJtot). (4.14)

The eigenvalues are

ω1,2(k) = ±E, with E = MJtot
√
a2 − h2 − p2 (4.15)

and the corresponding left and right eigenvectors

L1 = MJtot
[
a+ E/(MJtot) −h+ ip

]
(4.16)

L2 = MJtot
[
a− E/(MJtot) −h+ ip

]
(4.17)

R1 =
1

2 (−h+ pi)E

[
−h+ ip

−a+ E/(MJtot)

]
(4.18)

R2 =
1

2 (−h+ pi)E

[
h− ip

a+ E/(MJtot)

]
. (4.19)

These eigenvectors can be combined into the matrices

L =

[
L1

L2

]
and R =

[
R1 R2

]
, (4.20)

which are orthonormal L · R = R · L = 1 and diagonalise the coefficient matrix as

L · Γ · R = Ω =

[
ω1 0
0 ω2

]
. (4.21)

We define the diagonal matrix

E =

[
ν1 0
0 ν2

]
(4.22)

containing the Bose occupation numbers ν1,2 = (eβω1,2(k) − 1)−1. We can now
directly apply the solution presented in subsection 2.3.2 for the non-null space
(the null space was eliminated through the angular condition). We find

C(k) = R(k)E(k)L(k)Ψ(k), (4.23)
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which has the first component

C+(k) = R(1)(k)E(k)L(k)Ψ(k)

=
1

2E

[
(ν1 − ν2) aMJtot + (ν1 + ν2)E

]
Ψ+(λ)

= φ(k)Ψ+(λ), with φ(k) = MJtota

2E
coth

(1
2
βE

)
− 1

2
,

(4.24)

where we used relations similar to (3.65) to rewrite the sum and difference of the
Bose occupation factors. Finally, using Eq. (2.103), the homogeneous expectation
value in real space is

c+ =
1

vb

∫
BZ

C+(k)dk = ΦΨ+(λ), with Φ =
1

vb

∫
BZ

C+(k)dk . (4.25)

This equation is of the form of Eq. (3.34), such that we can use our solution for
higher spin values as presented in subsection (3.2.4) to find the homogeneous
magnetisation.

Altogether, the magnetisation in the presence of dipolar interaction is given by
the expression (3.39) for larger spin values, where

Φ =
1

vb

∫
BZ

φ(k)dk, φ =
MJtota

2ω
coth

(1
2
βω

)
− 1

2
(4.26a)

is to be substituted. So far, these equations are the same as those in the absence
of dipolar interaction (3.85). However, the dispersion relation

ω = MJtot
√
a2 − h2 − p2 (4.26b)

has an additional term under the square root and the constituents

a = bz + 1 +∆ cos 2θ − (1−∆ cos2 θ) η(k)

+
g

2Jtot

[
−2 sin2 θDXX(0)− 2 cos2 θDZZ(0) (4.26c)

+ cos2 θDXX(k) + sin2 θDZZ(k) +DY Y (k)− 2 cos θ sin θDXZ(k)
]

h = ∆ sin2 θη(k) (4.26d)

+
g

2Jtot

[
DY Y (k)− cos2 θDXX(k)− sin2 θDZZ(k) + 2 cos θ sin θDXZ(k)

]
p =

g

Jtot
[cos θDXY (k)− sin θDY Z(k)] (4.26e)
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now contain terms related to the dipolar interaction. We again used the nor-
malised exchange interaction η(k) and applied field b components as introduced in
respectively Eqs. (3.84) and (3.76). We also used the dipolar lattice sums

Dαβ(k) = S3(k)δαβ − 3Sαβ
5 (k), where α, β ∈ {X,Y, Z}, (4.26f)

defined in terms of the isotropic, respectively anisotropic, sums

Sn(k) =
∑

rl

eik·rlp

rnpl
(4.26g)

Sαβ
n (k) =

∑
rl

eik·rlprαplr
β
pl

rnpl
. (4.26h)

The angular condition can similarly be written as

bx = sin 2θ
[
∆− g

2Jtot
(DZZ(0)−DXX(0))

]
, (4.26i)

It can immediately be seen that the dipolar interaction does not contribute
anything to the angular condition for a three-dimensional material: the term
DZZ(0)−DXX(0) cancels. The magnetisation angle can however still be influenced
because the size of the magnetisation itself might change through the dipolar
interaction. In two dimensions, DZZ(0) = 0 and the dipolar interaction has the
same net effect as lowering the anisotropy in the angular condition. Further results
require the evaluation of the dipolar lattice sums (4.26f).

4.2 Dipolar sums rewritten

The sums that need to be evaluated for the dipolar lattice sums (4.26f) are slowly
converging. Since several of these sums need to be calculated for every k-point
evaluation in the integral (4.26a), it is important to speed up their calculation. An
efficient way to compute such lattice sums is the Ewald summation technique [143].
The main idea of this technique is to split the slowly convergent series into two
separate sums. One of those sums contains most of the short-range contributions
and is easily summed in real space. The other sum mainly contains long-range
contributions. This part is slow to compute in real space, but often converges fast
in reciprocal space.

Since the available derivations and applications of the Ewald summation technique
are often difficult to comprehend, we give a derivation in appendix C. The specific
Ewald transformation formula that we will use, is given by∑

l
e−r2l u/2+irl·k =

vb

(2πu)d/2

∑
l

e−(k+Gl)
2
/2u, (4.27)
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where the real-valued u can be chosen freely.

In this section, we will rewrite the dipolar lattice sums (4.26f) using this Ewald
transformation formula. We will do so in a few steps. First we transform the
isotropic sums Sn(k). While doing so, we will encounter the so-called Misra
functions, for which we will list a few properties and relations. From the rewritten
isotropic sum S5(k), expressions for the anisotropic sums Sαβ

5 (k) can be derived.
Combining those results will give an expression for the dipolar lattice sums Dαβ(k).

4.2.1 Isotropic sum

The isotropic lattice sum is

Sn(k) =
∑′

l

eik·rl

‖rl‖n
=

∑′

l

eik·rl

(r2l )
n
2

, (4.28)

as defined in Eq. (4.26g), with l a vector of integers, such that the entire lattice is
covered by rl. In this section, a prime next to the summation symbol explicitly
indicates that the origin l = 0 is left out of the sum.

Our derivation is strongly based on that of Born and Bradburn [144], with addi-
tional clarifications and a clearer notation. We start from equation (3.326.2) from
Gradshteyn and Ryzhik [145]:

+∞∫
0

xme−βxn dx =
Γ(γ)

nβγ
, γ =

m+ 1

n
, (4.29)

holding for Re(β) > 0, Re(n) > 0 and Re(m) > 0. Next we make the substitutions

n → 1, β → r2, m → n

2
− 1, x → u

2
, and thus γ =

n

2
. (4.30)

The conditions given before are satisfied as long as n > 2 and the relation becomes

2−n/2

+∞∫
0

un/2−1e−r2u/2 du =
Γ(n2 )

(r2)
n
2

. (4.31)

The denominator of the isotropic sum (4.28) can thus be rewritten, such that

Sn(k) =
2−n/2

Γ(n2 )

+∞∫
0

∑′

l
un/2−1e−r2l u/2+ik·rl du, (4.32)
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and splitting the integral in two parts at some τ ∈ [0, +∞[ yields

Sn(k) =
2−n/2

Γ(n2 )

{ τ∫
0

un/2−1
∑

l
e−r2l u/2+ik·rl du−2τn/2

n

+

+∞∫
τ

un/2−1
∑′

l
e−r2l u/2+ik·rl du

}
.

(4.33)

The prime in the first sum was removed and the corresponding term with l = 0,∫ τ
0 un/2−1 du = 2τn/2/n, was subsequently subtracted again.

The first sum is now exactly of the form needed to apply the Ewald transformation
formula (4.27), such that te first term in the curly brackets becomes

τ∫
0

un/2−1
∑

l
e−r2l u/2+ik·rl du =

vb

(2π)d/2

τ∫
0

u
1
2
(n−d)−1

∑
l

e−(k+Gl)
2
/2u du . (4.34)

Next, we substitute u = τ/β in this result and u = τβ in the primed sum, such
that both integrals have the integration limits 1 to +∞:

Sn(k) =
(τ
2

)n
2 1

Γ(n2 )

{
vb

(2πτ)d/2

+∞∫
1

β− 1
2
(n−d)−1

∑
l

e−β(k+Gl)
2
/2τ dβ

− 2

n
+

+∞∫
1

(β)n/2−1
∑′

l
e−r2l τβ/2+ik·rl dβ

}
.

(4.35)

Using the Misra functions [146]

φm(x) =

+∞∫
1

βme−βx dβ (4.36)

the isotropic sum can be written as

Sn(k) =
(τ
2

)n
2 1

Γ(n2 )

{
vb

(2πτ)d/2

∑
l
φ− 1

2
(n−d)−1

((k + Gl)
2

2τ

)
− 2

n
+

∑′

l
eik·rlφn/2−1(r

2
l τ/2)

}
.

(4.37)

Finally, this result can be specialised for simple cubic or square lattices. Such
lattices with lattice constant a have reciprocal primitive cell volume vb = (2π/a)d,
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Bravais lattice vectors rl = al and reciprocal lattice vectors Gl = 2πl/a. The
parameter τ can be chosen freely as to balance convergence speed of both sums.
We choose it as τ = π/(2a2). The isotropic lattice sum is then

Sn(k) = a−n (π/4)
n
2

Γ(n2 )

{∑′

l
eiak·lφn/2−1

(πl2
4

)
− 2

n

+2d
∑

l
φ− 1

2
(n−d)−1

((ak + 2πl)2

π

)}
.

(4.38)

from which both the expression for S3(k) and S5(k) can be deduced.

4.2.2 Misra functions

The Misra functions, as defined in Eq. (4.36), are related to the upper incomplete
Gamma function (see Gradshteyn and Ryzhik [145], Eq. (3.351.2)) by

φm(x) = x−m−1Γ(m+ 1, x) (4.39)

and to the generalised exponential integral (see Abramowitz and Stegun [147]
Eqs. (6.5.9) and (6.5.10)) by

φm(x) = E−m(x) = αm(x). (4.40)

A few special orders of the Misra functions are [148]

φ0(x) =
e−x

x
(4.41a)

φ−1(x) = −Ei(−x) (4.41b)

φ− 1
2
(x) =

(π
x

) 1
2 [

1− Φ
(
x

1
2
)]

, (4.41c)

with Ei(x) an exponential integral and Φ(x) Gauss’ error function. Other orders
m can be related through the recursion relation

φm(x) = φ0(x) +
m

x
φm−1(x)

=
1

x
[e−x +mφm−1(x)] .

(4.42)

From the definition (4.36) it is also easy to find the relation

d
dx

φm(x) = −φm+1(x). (4.43)
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for taking the derivative of a Misra function. When studying limiting behaviour,
it is also useful to have the series expansions around x ≈ 0 and x → ∞ at hand:

φm(x)
x≈0
= Γ(m+ 1)x−m−1 +

[
− 1

m+ 1
+

x

m+ 2
− x2

2m+ 6
+O(x3)

]
(4.44a)

φm(x)
x→∞
= e−x

{1

x
+

m

x2
+

m (m− 1)

x3
+O

( 1

x4

)}
(4.44b)

4.2.3 Anisotropic sum

From the expression (4.38) for isotropic sums Sn(k), a similar expression for the
anisotropic sums

Sαβ
n (k) =

∑′

l

eik·rlrαl r
β
l

‖rl‖n
= − ∂

∂kα
∂

∂kβ
Sn(k) (4.45)

can be found through direct differentiation. A first derivative of Sn(k) with respect
to kβ gives

∂

∂kβ
Sn(k) = a1−n (π/4)

n
2

Γ(n2 )

{∑′

l

[
ilβeiak·lφn/2−1

(πl2
4

)]
+ 2d

∑
l

[
− 2

π
(akβ + 2πlβ) φ− 1

2
(n−d)

((ak + 2πl)2

π

)]}
.

(4.46)

Taking the derivative with respect to kα and negating yields the final result for
the anisotropic sum

Sαβ
n (k) = a2−n (π/4)

n
2

Γ(n2 )

{∑′

l

[
lαlβeiak·lφn/2−1

(πl2
4

)]
(4.47)

− 2d
∑

l

[ 4

π2
(akα + 2πlα) (akβ + 2πlβ) φ− 1

2
(n−d)+1

((ak + 2πl)2

π

)]
+ δαβ2

d
∑

l

[ 2
π
φ− 1

2
(n−d)

((ak + 2πl)2

π

)]}
.

4.2.4 Dipolar lattice sum

The dipolar lattice sum (4.26f) is obtained by combining the isotropic sum (4.38)
with n = 3 and the anisotropic sum (4.38) with n = 5. To rewrite the final
expression, we use the Gamma function evaluations Γ(3/2) =

√
π/2 and Γ(5/2) =
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3
√
π/4, and notice that the last term of Sαβ

5 (k) cancels with the last term of S3(k)
in the dipolar lattice sum (4.26f). The result is

Dαβ(k) = π

4a3

{
δαβ

[∑′

l
eiak·lφ1/2

(πl2
4

)
− 2

3

]
− π

2

[∑′

l
lαlβeiak·lφ3/2

(πl2
4

)
(4.48)

−2d
4

π2

∑
l
(akα + 2πlα) (akβ + 2πlβ) φ 1

2
(d−3)

((ak + 2πl)2

π

)]}
.

4.3 Dipolar sums for small k
In this section we will find the low-k behaviour of the dipolar lattice sums. As we
have seen in chapter 3, the behaviour around the Brillouin zone’s Γ-point crucially
determines the occurrence of a non-zero Curie temperature. We will discuss the
two- and three-dimensional dipolar lattice sums separately as they behave very
differently around k = 0.

4.3.1 Two-dimensional lattice

The first term in the expansion of Dαβ(k) for d = 2 is the zeroth order term,
i.e. Dαβ(0). Direct evaluation of Eq. (4.48) gives

Dαβ(0) =
π

4a3

{
δαβ

[∑′

l
φ1/2

(πl2
4

)
− 2

3

]
−π

2

[∑′

l
lαlβφ3/2

(πl2
4

)
− 64

∑
l
lαlβφ−1/2(4πl

2)
]}

.

(4.49)

This quantity vanishes when α 6= β because the summands are odd in lα. For
equal β = α on the other hand, the result is

Dαα(0) = − 1

2a3
ξ0, with ξ0 = 9.03362168, (4.50)

where the numerical factor ξ0 is defined by the fast converging series

−π

2

∑′

l

[
φ1/2

(πl2
4

)
− π

2
(lα)2 φ3/2

(πl2
4

)
+ 32π (lα)2 φ−1/2(4πl

2)
]
+

π

3
(4.51)

Other techniques for obtaining this value are discussed by Topping [149], and Hoff
and Benson [150].
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We can now consider the lowest non-constant and non-vanishing term of Eq. (4.48)
in k. For the first two lines, the lowest contributing non-zero order in k is quadratic
due to the lattice symmetries. With the help of expansion (4.44a) for the Misra
function φ−1/2(x), the sum in the last line of Eq. (4.48) is

∑′

l

(
4π2lαlβ + 2πa (lβkα + lαkβ) + a2kαkβ

)
×
( π

|ak + 2πl| − 2 +
2

3π
(ak + 2πl)2

) (4.52)

for small k. The lowest order contribution of the factor on the last line is π/|ak|
and happens in the term for which l = 0. Together with the factor on the first
line in that term, this leads to a linear dependence on k. All other terms can be
checked to either vanish or to be of higher order in k. The linear term in k is thus
the most important one for k → 0. Combining this linear term with the constant
term found before yields

Dαβ(k) k→0
≈ − ξ0

2a3
δαβ +

2π

a3
akαakβ

a|k| . (4.53)

This result was derived in a similar manner by Lee and Begchi [151] in the context
of Frenkel excitons.

4.3.2 Three-dimensional lattice

The constant term in the small-k expansion of Dαβ(k) for d = 3 is best calculated
directly from the definition (4.26f). The isotropic and anisotropic sums are

S3(0) =
∑′

rl

1

r3pl
=

1

a3

+∞∑′

m,n,j=−∞

1

(m2 + n2 + j2)
3
2

=
1

a3
ξ3 (4.54)

Sαβ
5 (0) =

∑′

rl

rαplr
β
pl

r5pl
=

δα,β
a3

+∞∑′

m,n,j=−∞

m2

(m2 + n2 + j2)
5
2

=
δα,β
3a3

ξ3. (4.55)

The sum defining ξ3 does not converge, but it cancels out in the dipolar lattice
sum. The constant term in the low-k expansion is thus

Dαβ(0) = S3(0)δαβ − 3Sαβ
5 (0) = 0. (4.56)
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The lowest order contribution in k of Dαβ(k) can be found by expanding Eq. (4.48)
and eliminating some terms by using the lattice symmetries:

2a3Dαβ(k) k→0
≈

∑′

l

[
δαβ

π

2

(
1−

a2 (k · l)2

2

) [
φ1/2

(πl2
4

)
− π

2
(lα)2 φ3/2

(πl2
4

)]
+ 8

(
4π2lαlβ + 2πa (lβkα + lαkβ) + a2kαkβ

)
× φ0

((ak + 2πl)2

π

)]
(4.57)

+ 8a2kαkβφ0

(a2k2
π

)
− δαβ

π

3
.

The recursive relation (4.42) allows us to rewrite the combination

φ1/2

(πl2
4

)
− π

2
(lα)2 φ3/2

(πl2
4

)
=

l2 − 3 (lα)2

l2
φ1/2

(πl2
4

)
− π

2
(lα)2 φ0

(πl2
4

)
,

(4.58)

the first term of which vanishes when summed with constant factors over the
three-dimensional cubic lattice. The expansion is then

2a3Dαβ(k) k→0
≈

∑′

l

[
−δαβ

π2

4
(lα)2 φ0

(πl2
4

)
− δαβ

π

2

a2 (k · l)2

2

[ l2 − 3 (lα)2

l2
φ1/2

(πl2
4

)
− π

2
(lα)2 φ0

(πl2
4

)]
+ 8

(
4π2lαlβ + 2πa (lβkα + lαkβ) + a2kαkβ

)
(4.59)

× φ0

((ak + 2πl)2

π

)]
+ 8a2kαkβφ0

(a2k2
π

)
− δαβ

π

3
.

It remains to find expansions for the k dependence in the Misra functions of order
zero. The general expansion relation (4.44a) directly yields

φ0

(a2k2
π

)
k→0
≈ π

a2k2
− 1 +

a2k2

2π
. (4.60)

A more extensive expansion effort also makes it possible to expand the other Misra
function with k-dependent argument as

φ0

((ak + 2πl)2

π

) k→0
≈ φ0(4πl

2)
{
1− 4πl2 + 1

πl2
ak · l

+
8π2l4 + 4πl2 + 1

π2l4
(ak · l)2 − 4πl2 + 1

4π2l2
(ak)2

}
.

(4.61)
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Grouping terms of different order in k and eliminating third order contributions
yields for the dipolar lattice sum

2a3Dαβ(k) k→0
≈ 8π

3

(
3
kαkβ

k2
− δαβ

)
− 8a2kαkβ (4.62)

+ a2
∑′

l

[
8kαkβφ0(4πl

2)

− 8φ0(4πl
2)
4πl2 + 1

l2
(
2 ((lβ)2 + (lα)2) kαkβ + δαβ (l

α)2 k2
)

+ 32lαlβφ0(4πl
2)
8π2l4 + 4πl2 + 1

l4

3∑
j=1

3∑
i=1

liljkikj

−δαβ
π

4
l2k2

( 1

l2
(l2 − 3 (lα)2) φ1/2

(πl2
4

)
− π

2
(lα)2 φ0

(πl2
4

))]

where, once again, some terms have been eliminated due to the symmetry of the
lattice, and we used the fact that

∑′

l

[
8e−4πl2 − e−πl2/4

]
= −7. (4.63)

Now, we use

lαlβ
3∑

j=1

3∑
i=1

liljkikj =

{
2 (lα)2 (l1l2k1k2 + l1l3k1k3 + l2l3k2k3) α = β

lαlβ
(
2lαlβkαkβ + (l)2 (k)2

)
α 6= β

(4.64)

and

∑′

l

(
(l)2 − 3 (lα)2

)
= 0 (4.65)
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on a simple cubic lattice, such that we finally find the result

Dαβ(k) k→0
≈ 4π

3a3
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kαkβ
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− δαβ
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+
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α)2 (lβ)2
)
l2

+8 (1− δαβ) (l
α)2 (lβ)2
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+
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l4φ0

(πl2
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32δαβ
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∑′

l

(lα)2

l4
A(k, l)

(4.66)

where

A(k, l) = φ0(4πl
2)
(
8π2 (l)4 + 4π (l)2 + 1

)
(l1l2k1k2 + l1l3k1k3 + l2l3k2k3) (4.67)

This type of expansion was first found by Cohen and Keffer [148]. The second
order terms are however difficult to compare due to the different notation and
because their results are more generally applicable (they are also valid for BCC
and FCC lattices). For a more elaborate discussion of the behaviour at and around
k = 0 and in finite lattices, we also refer to their paper.

Having found fast-converging expressions for the dipolar sums, and their low-k
expansions, we collected all necessary ingredients for obtaining numerical results
from the set of equation (4.26). This should allow the calculation of magnetisation
and Curie temperature in the presence of dipolar interactions.

4.4 Discussion
Up to this point, the effect of the dipolar interaction was discussed in samples
with infinite size, allowing for a direct extension of the methodology from previous
chapters. In this context, we found that the dipole-dipole interaction contributes
dispersive terms to both the integral (4.26a) that calculates Φ, and the excitation
spectrum (4.26b). Moreover, it has by large the same effect as lowering the
anisotropy ∆ in the angular condition (4.26i) for 2D materials, the decrease being
inversely proportional to the total exchange strength Jtot. For easy-axis anisotropic
materials, the lowered effective anisotropy will lead to a smaller excitation energy
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gap which will probably slightly lower the Curie temperature and magnetisation.
For easy-plane anisotropic materials, the stronger in-plane anisotropy will not open
an energy gap. However, the in-plane magnetisation is expected to be stabilised
by the additional dispersive contributions [139, 140]. These expectations are in
line with the work of Bruno [84], where he studies a similar system—containing an
anisotropy term with a different form—within the Holstein-Primakoff framework.
Moreover, Bruno finds a narrow regime where the original anisotropy ∆ is positive,
but the effective anisotropy is lowered to become negative. He indicates that,
in this case, the original anisotropy is not strong enough to pull a homogeneous
magnetisation out of the plane, and he finds a ripple-like fluctuation of the
magnetisation direction.

Apart from these universal effects that are present, regardless of the exact size
or shape of the sample, the dipolar interaction has additional impact on samples
with finite sizes. The long-range magnetostatic interaction is more strongly
affected by the exact size and shape of samples than the exchange interaction,
because it has a direct influence on all spins. Indeed, as known from classical
theory, one needs to consider the presence of a demagnetisation field in finite-sized
samples, associated with the fact that the ferromagnetic sample generates its own
magnetic field throughout space. However, we avoid going into the details here,
as the corresponding macroscopic description of magnetism may look confusing
when it comes to embed it in the microscopic quantum theory. Moreover, the
corresponding notation could be hardly reconciled with the one we decided to
use, cf. subsection 1.4.1. It suffices to know that the energy associated with
the demagnetisation field is large when the entire ferromagnet is homogeneously
magnetised, i.e. consists of a single domain. This energy can be lowered by splitting
the magnet into several domains, each having a uniform magnetisation within
the domain, but possibly in different directions with respect to each other. Such
a lowering of the demagnetization energy is accompanied by an increase of the
exchange energy at the domain boundaries. The balance of these effects determines
the final domain structure in the ferromagnet [45, 77].

These finite-size effects, including inhomogeneous magnetisations and domain wall
formation, are difficult—if not impossible—to describe in full detail using the Green
function method presented in this thesis, judging by the lack of literature. Therefore,
we would recommend to use better suited techniques, such as micromagnetic
simulations [75], for calculations that fundamentally depend on the system’s shape.
Those techniques can still use results, such as the excitation spectra, that were
extensively discussed in this thesis. Nonetheless, we would like to suggest a few
pathways—ordered from high-risk and very novel to low-risk and less novel—that
could give some estimates for the effects of the dipolar interactions in finite-sized
samples:
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• In the Green function formalism as discussed in this thesis, we fundamentally
exploited the system’s translational invariance by taking the spatial Fourier
transform. This invariance is lost in finite-sized systems. As an alternative,
the Fourier transform might be replaced by a Fourier cosine or sine expansion
when supplementing the system with Neumann, Dirichlet, or other boundary
conditions. This choice should be assessed based on its physical implications
on the magnetisation behaviour at the boundaries, which is expected to be
reduced compared to the interior of the sample.

• The calculation of the magnetisation involves an integration over the first
Brillouin zone in the reciprocal space. A first estimation of finite-size effects
could involve ignoring excitations with wavelengths longer than the sample
size. Practically, this can be implemented by neglecting—or partially damp-
ing through a weight function—contributions to the integral of wave vectors
smaller than those limiting wavelengths. It is, however, not a priori clear
whether the excitation spectrum renormalisation is still valid in this case.

• Some of the finite-size effects can be described by including the demagnetisa-
tion field as an additional effective magnetic field. This could be particularly
effective if the sample can be approximated by an ellipsoid, for which the
demagnetisation field is uniform throughout the entire sample [152].
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5 Conclusion

5.1 Conclusion

We solved the quantum mechanical Heisenberg model at non-zero temperatures
for S > 1/2 with anisotropic exchange interactions that can reach beyond nearest
neighbours. The anisotropy is allowed to be of either easy-axis or easy-plane type
and the model can describe both two- and three-dimensional materials. Further-
more, we allow for a homogeneous magnetic field in arbitrary directions. Our
presented solution method is based on Zubarev’s Green functions, supplemented
with a necessary regularity condition, all applied after a suitable coordinate rota-
tion. We showed that the method can further be extended to incorporate dipolar
interactions.

We demonstrated our general solution technique in three ways: (i) studying the
difference between ferromagnets in two- and three-dimensional cubic materials
and the effect of anisotropy on them, (ii) investigating a few recently discovered
single-layer materials with hexagonal and honeycomb lattices, and (iii) working
out the relations for taking into account dipolar interactions at the same level of
approximation as the other magnetic effect.

In accordance with the Mermin-Wagner theorem, we found that an easy-axis
anisotropy is necessary for spontaneous magnetisation to be possible in two-
dimensional materials. This can be understood from the opening of an excitation
gap by the easy-axis anisotropy. In contrast, the easy-plane anisotropy leaves the
excitation spectrum linear and gapless around its minimum, such that magnons—
detrimental for the spontaneous magnetisation—get too easily excited at finite
temperatures. At very small magnetic fields, easy-plane materials have a substantial
magnetisation up to some non-zero temperature. This temperature is strongly field-
dependent and is in experiments sometimes considered as a Curie temperature. For
bulk materials, the Curie temperature was found to be non-zero for any anisotropy,
but with lower values for easy-plane than easy-axis anisotropies of comparable size.
In general, bulk materials are found to have similar properties as monolayers with
easy-axis anisotropy. When a magnetic field is applied at an angle, the anisotropy
is mostly decisive for the magnetisation direction at low temperatures and small
fields. On the contrary, at high temperatures or large fields the magnetisation is
mostly parallel to the applied field.
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Most recently discovered two-dimensional ferromagnets are of hexagonal or hon-
eycomb lattice type, the latter being more challenging to study because it has a
multiatomic basis and exchange interactions beyond nearest-neighbours become
important. Using parameters obtained from ab initio calculations, we found that
or model is well-suited to describe CrI3, CrBr3 and MnSe2, which all have a total
weighted easy-axis anisotropy and thus non-vanishing Curie temperature. Overall,
our calculated Curie temperatures and excitation gaps agree well—and better
than other methods, such as Monte Carlo simulations and the Ising model—with
available experiments. For honeycomb materials in particular, we found that
farther neighbours can have a large effect on the predicted Curie temperature.
To enable further computational discoveries of new two-dimensional ferromagnets
and predict their Curie temperatures—with or without additional strain, stress or
electric fields—we made a computer program publicly available to calculate TC
just from DFT parameters, all based on the solutions presented here. In general,
we expect the highest Curie temperatures for materials with both a large total
exchange strength Jtot—which can also be achieved through the interaction with
further neighbours—and a large total weighted easy-axis anisotropy δ > 0.

Finally, we also worked out the formulas to account for dipolar interaction, at the
same level of approximation as the other interactions, using our formalism. The
computational challenge of slow-converging dipolar lattice sums was alleviated by
converting them into fast-converging ones applying Ewald summation techniques.
For two-dimensional materials specifically, we expect the dipolar interaction to
have a stabilising effect and turn materials with a small easy-axis anisotropy into
materials with an effective easy-plane anisotropy.

5.2 Future work

Clearly, we made a lot of progress in understanding and computing properties
of magnetism in two-dimensional materials. On the other hand, it is also clear
that there is still room for improvements and extensions of the applicability. For
instance, within the framework presented in this thesis, it should be possible to
treat multiatomic lattices with less symmetry, such that each sublattice can have
a different magnetisation (angle). Similarly, an extension to multilayer materials
should be possible. The model to be solved could also be extended to incorporate
different types of interactions and anisotropies. Finally, this thesis focused on
static properties, while also the dynamics of quantum Heisenberg systems are not
well understood. Below, we give a brief description of possible continuations for
the presented work.
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5.2.1 Multilayers

Although it is nowadays possible to create single layers of given materials, most
integrated circuit devices will use multilayers rather than monolayer. Our method
should be extensible to such cases. However, one should take into account that the
different layers might—and probably will—have distinct magnetisation magnitudes
and angles [102, 116, 153, 154]. Due to their exposed surfaces, the outermost
layers might moreover have different interactions than the inner layers [134, 135].

So far, there is consensus in the available literature that the Curie temperature
rises with the number of layers N , approaching the 3D limit as the number of layers
becomes very large. As a side note, this increasing Curie temperature is observed
when using fixed interaction parameters. Those parameters might however also be
different for the 2D and 3D versions of a given material [134]. In the ferromagnetic
state, the magnetisation in the inner layers is generally larger than that of the outer
layers, but the difference is still fairly small for very thin films of a few layers [116,
154]. There is no clear consensus on the exact variation of the Curie temperature
TN

C for N layers, relative to that for fully 2D (T 2D
C ) or 3D (T 3D

C ) systems. For
example, Fisher and Barber [155] claim that TN

C /T 3D
C = 1− (C/N)1/ν for large N ,

with C a material-dependent constant and ν the 3D critical exponent. For a small
number of layers, Zhang and Willis [156] claim a linear dependence of the Curie
temperature on the number of layers. Some other results are available, but do not
give a functional relation for TN

C . The general trend in those results is that the
Curie temperature increases fairly rapidly for small N , flattening as the number
of layers increases [102, 154, 157].

5.2.2 Other interactions

Other interactions than those discussed in this thesis, could be included as effective
spin interactions or lattice distortions. For example, one could include the effect
of an external electric field as a combination of shifted sublattices and distorted
atomic orbitals that lead to different DFT parameters.

The Dzyaloshinskii-Moriya interaction (DMI) [158–160]—also called anti-symmetric
exchange interaction—originates from a combination of superexchange and strong
spin-orbit interactions. It adds a term

ĤDMI =
∑
〈i,j〉

Dij ·
(
Ŝi × Ŝj

)
(5.1)

to the spin Hamiltonian, where the sum is over all pairs of spins 〈i, j〉. It favours
spin configurations that make a clockwise or counter-clockwise rotation from spin
Ŝi to spin Ŝj , depending on the direction of the DMI vector Dij . In principle, it can
be accounted for through the same formalism as we used in this thesis. However, for
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general DMI vectors and spin configurations, its anti-symmetric nature prohibits a
conversion into the form of the general spin Hamiltonian (3.8a), as we did for the
dipolar interaction. This means that the results from section 3.7 cannot be reused
and must be derived again to include DMI. In turn, this might lead to a decoupling
matrix Γ with different symmetry properties, which can result in additional
technical difficulties and heavier computational burden. Furthermore, we note that
DMI is often studied in the context of magnetic skyrmions—topologically protected,
vortex-like excitations [161]. However, the excitations characterising skyrmions
and also spin profiles arising from DMI are topologically distinct from those related
to single or multiple spin flips acting on the ferromagnetic ground state1. In
particular, the quantum mechanical operator equivalent of a skyrmionic or DMI
magnetisation profile—the eigenvalues of which correspond to measurable values
of the vorticity or any relevant observable—has, to the best of our knowledge, not
yet been constructed so far. Hence, a meaningful quantum mechanical treatment is
not attainable yet, regardless whether it would invoke the present Green function
formalism or any other approach.

A single-ion anisotropy

Ĥsingle-ion = −K
∑
i

(
ŜZ
i

)2 (5.2)

is often considered instead of an anisotropic exchange interaction. One should,
however, be very careful with its treatment as it is a localised interaction. Many
studies use a Tyablikov decoupling to handle it [162], while it is known that such a
decoupling is not well-suited. A few other decoupling schemes have been proposed,
which give more satisfying results [88, 102, 113, 114, 154, 163]. Qualitatively, it
is generally agreed upon that the single-ion anisotropy has the same effect on
ferromagnets as the exchange anisotropy that we considered in this work [73],
except for S = 1/2, in which case it merely leads to a shift in the zero-point energy.
Apart from DFT studies, Bander and Mills [164] found that the 3D and 2D Curie
temperatures when including single-ion anisotropy are related by

T 2D
C =

T 3D
C

ln
(
3πkBT 3D

C
4K

) (5.3)

using renormalization group theory. This is indeed a similar behaviour as we
observed as function of ∆, with non-zero T 2D

C for positive K.

5.2.3 Dynamics

There have not been many studies on spin wave-like dynamics in quantum Heisen-
berg systems, most of them having limited results or being restricted to one

1Adding DMI may even lower the ground-state energy below that of the ferromagnetic state.
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spatial dimension [165–170]. On the contrary, in classical spin systems, a lot of
results are available through the use of micromagnetic simulations. To tackle the
quantum mechanical problem, our technique using Zubarev’s Green functions is
not directly applicable because it does not, for instance, give any insight in the
specific excitations leading to the dispersion relations. For known excitations,
such as the Bloch magnons, the derived dispersion relations might be a starting
point for further investigations. Furthermore, the presented theory assumes in,
for instance, Eq. (2.50) that the Hamiltonian generating the time-evolution of the
Heisenberg operators is the same as that appearing in the initial density matrix.

Related to the present research, we propose to directly solve the Heisenberg
equation of motion for the relevant spin operators, making use of a Tyablikov-
like decoupling along the way to make the resulting set of equations solvable.
The Heisenberg equation of motion for a spin Ŝj evolving in time according to
interactions given by a Hamiltonian Ĥ is

idŜj

dt
= [Ŝj , Ĥ]. (5.4)

When the Hamiltonian is the isotropic Heisenberg exchange Hamiltonian, this can
further be worked out to be

dŜj

dt
=

∂Ĥ
∂Ŝj

× Ŝj , where ∂Ĥ
∂Ŝj

=
∂Ĥ
∂Ŝx

j

x +
∂Ĥ
∂Ŝy

j

y +
∂Ĥ
∂Ŝz

j

z. (5.5)

In the classical analogue, this last quantity can be seen as an effective magnetic field
and the derived equation of motion is equivalent to the Landau–Lifshitz–Gilbert
(LLG) equation [76]. The right-hand side of the equation of motion already contains
products of spin operators that can be decoupled at this stage using a Tyablikov-
like decoupling scheme. Doing so would, however, neglect all quantum mechanical
correlations and results in essentially classical spin waves. Instead, one should write
similar Heisenberg equations of motion for the different spin combinations and
close the spin algebra at that level. From the equation of motion, it should then be
possible to calculate time-dependent expectation values, such as the time evolution
of the local magnetisation. In order to average the operator equations, one has to
choose appropriate initial density matrices. Initial studies could focus on localised
spin inversions in an otherwise uniformly magnetised lattice, as could be achieved
by applying a large, localised field in a low-temperature environment. If this should
fail, one could try to do the same thing after applying the Holstein-Primakoff
approximation, up to first or second order.
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A Tanh-sinh quadrature
In this appendix, we exactly repdroduce the contents of the manuscript Tanh-sinh
quadrature for single and multiple integration using floating-point arithmetic by
Vanherck, Sorée and Magnus [112] (except for a few layout changes) that has been
submitted for publication.

Abstract

The problem of estimating single- and multi-dimensional integrals, with or without
end-point singularities, is prevalent in all fields of scientific research, and in
particular in physics. Although tanh-sinh quadrature is known to handle most of
these cases excellently, its use is not widely spread among physicists. Moreover,
while most calculations are limited by the use of finite-precision floating-point
arithmetic, similar considerations for tanh-sinh quadrature are mostly lacking
in literature, where infinite-precision floating-point numbers are often assumed.
Also, little information is available on the application of tanh-sinh quadrature to
multiple integration. We have investigated the risks and limitations associated
with limited-precision floating-point numbers when using tanh-sinh quadrature
for both single and multiple integration, while obtaining excellent convergence
rates. In addition, this paper provides recommendations for a straightforward
implementation using limited-precision floating-point numbers and for avoiding
numerical instabilities.

A.1 Introduction

While many automatic integration routines yield excellent results in general, they
often fail in specific circumstances, such as the occurrence of end-point singularities.
In these situations, it is paramount to account for the limitations of a specific routine
in order to exploit its full potential. Tanh-sinh quadrature for numerical integration
already exists about half a century [107], but is not well-known in the physics
community, though being adopted in some recent publications [120, 171, 172]. The
corresponding scheme can be invoked as an almost general purpose quadrature,
which is especially efficient for divergent integrands. Due to its exponential
convergence rate and its good behaviour in general, tanh-sinh quadrature has
become rather popular in the field of experimental mathematics. It even has been
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coined to be the best scheme for integrands typically encountered in that field,
which focuses on high-precision integral calculations [110, 111, 173].

We describe the quadrature in an accessible manner in Sec. A.2 while elaborating
on its implementation with limited-precision floating-point numbers in Sec. A.3.
Specifically, we explain how numerical instabilities can be avoided, while showing
how to extend the quadrature to multiple integration, which is indispensable in
computational physics. Examples of integrals calculated with the tanh-sinh rule
are given in Sec. A.4, whereas the conclusions and final remarks are presented in
Section A.5.

A.2 Tanh-sinh quadrature

Tanh-sinh quadrature computes integrals of the form1

I =

1∫
−1

f(x)dx . (A.1)

The quadrature is based on a variable substitution x = Ψ(t), mapping the original,
finite domain x ∈ ]−1, 1[ onto the entire real axis t ∈ ]−∞, +∞[:

I =

∞∫
−∞

g(t)dt, g(t) := f
(
Ψ(t)

)
Ψ′(t). (A.2)

For integration over the entire real axis of exponentially decaying integrands
as |t| → ∞, the trapezoidal rule (also known as Sinc quadrature [171]) is the
most efficient [108, 109, 174–176] among quadratures with equidistant abscissae.
Applying this rule with a step size h between the evaluation points yields the
approximate integral

Ih = lim
m→∞

+m∑
i=−m

hΨ′(ti)f
(
Ψ(ti)

)
, (A.3)

the transformed evaluation points being

ti := ih, i = 0,±1,±2, . . . (A.4)

while introducing a discretization error ∆Ih. Keeping only N := 2n+ 1 function
evaluations, we are left with

Qn
h =

+n∑
i=−n

hΨ′(ti)f
(
Ψ(ti)

)
, (A.5)

1Any integral
∫ b

a
f(y) dy with a and b finite can be cast in this form by the linear substitution

2y = (b− a) x+ (b+ a).
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thereby introducing a truncation error εt, since the transformed integration domain
is now limited to the window [t−n, tn]. The total error of the resulting approx-
imation as compared to the original integral is limited by

∣∣I − Qn
h

∣∣ 6 ∆Qn
h :=

|∆Ih|+ |εt|.

As to the mapping Ψ(t), Takahasi and Mori [107] proposed a tanh-sinh transfor-
mation

Ψ(t) = tanh
(
λ sinh(t)

)
(A.6a)

Ψ′(t) =
λ cosh(t)

cosh2
(
λ sinh(t)

) , (A.6b)

where λ = π/2. With this choice, which is illustrated in Fig. A.1, the behaviour
of g(t) as |t| → ∞ is optimal in the sense that a faster decay leads to a higher
discretization error for a given h, while a slower decay causes a larger truncation
error because Ψ′(t)f

(
Ψ(t)

)
remains significant for large values of |t|. An extended

error analysis in the complex plane indeed shows that, for a large number of
evaluation points, the above transformation often yields an optimal error [107,
108] as compared to other quadratures based on a variable transformation. This
error is of the order [107–109, 176]

|∆Qn
h| = O

(
exp

(
− πdN

ln(2dN)

))
, with N = 2n+ 1 (A.7)

when h is chosen optimally. The parameter d has to be chosen such that the
analytical continuation of the integrand g(z) = Ψ′(z)f

(
Ψ(z)

)
in the complex plane

is regular in the strip around the real axis defined by |Im z| < d, meaning that
the integrand lies within the Hardy space [108, 177]. The choice of d and h will
be detailed in Sec. A.3.3, the latter being of particular importance in avoiding
numerical instabilities.

The tanh-sinh quadrature scheme has several advantages worth pointing out expli-
citly. (i) The error estimate (A.7) shows that doubling the number of evaluation
points also roughly doubles the number of significant digits, which makes the qua-
drature especially suited for high precision calculations [110, 111]. (ii) Even when
not all conditions for the error estimate (A.7) are strictly fulfilled by the integrand,
convergence is still rather fast. (iii) For integrands with end-point singularities
tanh-sinh quadrature converges especially fast as compared to other schemes,
thanks to its double-exponential suppression of these divergences (Fig. A.1). (iv)
The abscissae and weights can be directly extracted from the transformation for-
mulas (A.6a) and (A.6b), in contrast to some other quadrature schemes leaning on
iterative processes. (v) Finally, the transformed integral has equidistant abscissae
(trapezoidal rule, Fig. A.1), which can straightforwardly be reused together with
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Figure A.1 Tanh-sinh transformation applied to the integral
∫ 1

0
1√
x

dx, brought to the
standard domain ]−1, 1[ (top left). The tanh-sinh transformation transforms the
integration domain from x ∈ ]−1, 1[ to t ∈ ]−∞, ∞[, while the integrands magnitude
is strongly suppressed as t → ∞ (e.g., g(t)|t=−2.5 ≈ 10−7 and g(t)|t=−4.5 ≈ 10−59).
The trapezoidal rule is then applied to this transformed integrand within the window
t ∈ [−tn, tn], for n = 2 (5 evaluation points) as an illustration (top right). The
abscissa xi of the original integration domain to which the equidistant points ti in the
transformed domain correspond, can be recovered as xi = Ψ(ti) (bottom right and
dotted connection lines). Notice that most of the abscissae xi end up very close to the
domain boundaries. At those points, the effect of the original integrand is strongly
suppressed because it is multiplied by Ψ′(t) (bottom right, grey). This results in the
excellent convergence properties of the tanh-sinh quadrature, especially for integrands
with singularities near the end-points.
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the weights and the function evaluations when doubling the quadrature order is
required.

In the present paper we focus on the quadrature scheme as presented above
and its generalization to multiple integration, although several extensions are
possible. In general, the transformation function Ψ(t) should be chosen such that
the transformed integrand g(t) behaves like

|g(t)| ∝ exp
(
−π

2
exp(|t|)

)
as t → ±∞ (A.8)

for the quadrature to be optimal [107]. This observation underlies various trans-
formations involving (semi-)infinite domains and integrands with peculiar behavior
near the integration boundaries [107]. Quadratures based on such transformations
are called double exponential (DE) quadratures for obvious reasons. A second
extension is possible when the function g(t) has very different decay-rates for
t → +∞ and t → −∞. In that case, it can be beneficial to use an unequal number
of evaluation points for t > 0 and t < 0 when truncating the series of the trapezoid
rule (A.3). The details, including error estimates with explicit constants, have
been worked out by Okayama et al. [171] and more information on asymmetric
ranges can be found in Chapter 2 of the book on Sinc methods by Lund and
Bowers [178]. Finally, specific modifications for handling oscillatory [179, 180] or
indefinite integrals are discussed in refs. [181, 182].

A.3 Discussion

The above mentioned favorable properties of tanh-sinh quadrature can only be
achieved if numerical instabilities are avoided, especially when dealing with finite-
precision floating-point numbers. Related caveats will be treated and resolved in
the following subsection, together with the extension of tanh-sinh quadrature to
multi-dimensional integration domains.

A.3.1 Avoiding numerical instabilities

The above presented N -point quadrature scheme can be summarized as

Qn
h = h(n)

+n∑
i=−n

wif(xi), (A.9)

the weights and abscissae respectively being wi = Ψ′(ti) and xi = Ψ(ti). It depends
crucially on evaluations very close to the end-points of the integration domain,
where the density of abscissae xi is very high (Fig. A.1). Correspondingly, one
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should be careful not to lose significant figures and therefore it is a good practice
to store the array [107]

yi = 1± xi =
exp

(
±π

2 sinh ti

)
cosh

(
π
2 sinh ti

) for i ≶ 0, (A.10)

containing the distances from the respective abscissae xi to the closest interval
bound.

In the context of tanh-sinh quadrature, the most important cause of numerical
instability is numerical underflow, occurring when numerical values become smaller
than the underflow level (UFL). This smallest positive normalized floating-point
number is Fmin = 2L, where L is the smallest exponent representable in a given
floating-point model. Specifically, we need to pay attention to the weights, the
abscissae, and the function evaluations at these abscissae. Both the smallest weight
wn = min{wi} and the smallest stored abscissa value yn = min{yi} are determined
by window size tn, which bounds the transformed integration window ti ∈ [−tn, tn].
We will determine a window limit tmax and choose tn 6 tmax to avoid numerical
underflow in a given floating-point model.

For the weights, numerical underflow is avoided if wn = Ψ′(tn) > Fmin, such that
the corresponding window limit is

twmax = max{t |Ψ′(t) > Fmin} (A.11)
Similarly, the smallest stored abscissa should exceed the UFL, yn = 1 − xn =
1−Ψ(tn) > Fmin, such that we can define

txmax = max
{
t
∣∣ t 6 Ψ−1(1− Fmin)

}
(A.12)

as the window limit, where

Ψ−1(1− Fmin) = sinh−1

( ln
(

2
Fmin

− 1
)

π

)
. (A.13)

Both window limits twmax and txmax are intrinsic to the used floating-point model as
well as to the dimensionality of the integral, as will be discussed in subsection A.3.2.
Since both conditions always apply simultaneously, it is convenient to introduce
the intrinsic window limit txwmax = min{txmax, t

w
max}. All above mentioned intrinsic

quantities are listed in Table A.1 for a few common floating-point models.

Besides the calculation of the abscissae and weights, also the integrand evaluations
need to be carefully inspected in view of the numerical stability, which can be
accomplished by a proper choice of another window limit teval

max. Examples will be
discussed in section Sec. A.4.

Finally, we take tmax = min{txwmax, t
eval
max} as the window limit, imposing the max-

imum on the transformed abscissae values ti as to avoid numerical instabilities.
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Table A.1 This table shows the smallest representable exponent L, the corresponding
underflow level Fmin, the window limits txmax, twmax and txwmax, and the corresponding
intrinsic maximal optimal order nxw

max for various floating-point (fp) models (IEEE
754–2008).

fp model L Fmin D txmax twmax txwmax nxw
max

single -126 1.175 · 10−38 1,2 4.026 4.076 4.026 37
3 4.026 3.425 3.425 18

double -1022 2.225 · 10−308 1,2 6.112 6.121 6.112 442
3 6.112 5.437 5.437 201

extended -16382 3.362 · 10−4932 1,2 8.885 8.886 8.885 10228
3 8.885 8.194 8.194 4725

A.3.2 Multiple integration

Whereas higher dimensional integrals (D > 1) are commonplace in physics [111,
173], we restrict ourselves to integration domains that are Cartesian products of
lower dimensional domains, or that can be transformed to such a region by variable
substitutions or coordinate transformations. In these cases, it is possible to apply
the one-dimensional quadrature rules repeatedly in each dimension, but, once
again, caution is in order to avoid numerical underflow. Slightly more complex
multiple integrals, having boundaries that are integration variables in an exterior
loop, are accessible through the use of indefinite integration [183].

As an example in two dimensions, consider the integration of a function f(x, y)
over the domain −1 6 x, y 6 1, which is typically approximated as

1∫
−1

1∫
−1

f(x, y)dy dx ≈ Qn1,n2

h1,h2
= h1h2

+n1∑
i=−n1

+n2∑
j=−n2

wiwjf(xi, xj), (A.14)

where n1 6= n2 in general, although n1 = n2 is often a very convenient choice.
While it is clear from Eq. (A.14) how to extend the quadrature rule to even
higher dimensions, it is recommended to calculate the weights wi = Ψ′(ti) in
each dimension separately, and multiply them with the function evaluation on the
fly, as underflow problems may quickly arise otherwise. It is reasonable to limit
the weight-specific window limit twmax, for which we take the same value in each
direction, even more in higher dimensions (multiplying many very small weight
quickly renders all the weights effectively zero). A good value for twmax was found
to be such that

twmax = max
{
t
∣∣ (Ψ′(t))D > Fmin

}
, where D = max

{
1, D − 1

}
, (A.15)
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since then wD
n > Fmin. This ensures that each weight separately exceeds the UFL.

For higher dimensions, the product of all but one weight should also be higher
than the UFL in order that the corresponding term contribute to the sum. In
the latter case, one weight can be disregarded, because it can be compensated
by a large value from the function evaluation. Examples for one, two and three
dimensions are given in Table A.1.

A.3.3 Abscissae spacing

For most quadrature schemes, the choice of the quadrature order n, together with
a window size that is fixed by the integration bounds, determines the abscissae
spacing h. In the tanh-sinh quadrature schemes, the window size [−tn, tn] is not
fixed a priori, with bounds tn = n · h that depend themselves on the abscissae
spacing. A smart choice for h(n) is indispensable. We will discuss two alternatives:
(i) the optimal hopt(n) and (ii) the maximal hmax(n).

The optimal spacing

h(n) = hopt(n) :=
2

N
W(2dN), with N = 2n+ 1 (A.16)

leads to the optimal error bounds (A.7) by making the discretization error ∆Ih and
the truncation error εt contribute equally [107–109, 176]. The Lambert W-function
W(z) is implicitly defined as the solution of z = wew for w. One should note here
that, in most of literature, the optimal width is given by h = 2/N ln(2dN), which
is only correct in the limit of large N [176]. The optimal abscissae spacing (A.16)
depends on the strip width d of regularity of the transformed integrand around the
real axis. Strictly speaking, this strip width needs to be specifically determined
for each integral to achieve optimal convergence. However, when the integrand is
the result of a complex numerical routine, such a determination of d is not always
possible, let alone desirable when a large range of integrals needs to be calculated.
In practice, d = π/2 often leads to reasonable convergence rates. The optimal
transformed abscissae spacing then becomes

hopt(n) =
2

N
W(πN), with N = 2n+ 1. (A.17)

While hopt(n) is theoretically optimal in an infinite-precision context, its outstand-
ing results cannot always be achieved due to the limitations of floating-point types.
The main problem is the window size tn = nhopt(n) that can quickly reach beyond
the window limit tmax, sometimes before full convergence is reached. In order
to avoid numerical instabilities, the optimal spacing should never be used for
orders higher than nmax = max{n | nhopt(n) 6 tmax} at which this happens. This
maximal order can depend on numerical difficulties in the integrand evaluation
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through tmax and must therefore be determined on a per-case basis. The maximal
order itself is always limited by the intrinsic maximal order nxw

max which is fully
determined by the floating-point type and dimension (Table A.1).

As an alternative to the optimal spacing, we propose to use the maximal spacing

h(n) = hmax(n) :=
tmax
n

(A.18)

instead. Here, the window size tn is fixed, independent of the order n, to tmax so
as to avoid numerical underflow. Besides the obvious simplicity of the hmax(n),
also the reusability of function evaluations obtained from lower order estimates, is
an advantage when it comes to doubling the order index n.

A.4 Worked examples
In this section, we demonstrate the use of the tanh-sinh quadrature as described
above, specifically comparing results using optimal and maximal spacing for
different floating-point types. For each example integral, possible pitfalls and
noteworthy features are discussed, while showing the relative error as a function
of the quadrature order. This relative error is intrinsically limited from below
by the machine precision εm, which is indicated by dashed lines for each floating-
point models. The results for optimal spacing can only be obtained up to the
maximum quadrature order nmax, which is shown as a larger data point if it falls
within the shown domain. Results obtained using double-precision Gauss-Legendre
quadrature with the same number of evaluation points are always shown for
comparison. We focus on integrands with a singularity near the origin of the
original integration domain, as may be relevant to solve numerous problems in
physics. For benchmarking purposes, it is not the intent to evaluate the specific
integral, but rather to demonstrate how the quadrature behaves for different types
of limiting behavior.

A.4.1 Integrands with a non-integrable singularity

Sometimes, one needs to integrate a function with a non-integrable singularity
located close to one of the integration limits. A straightforward example of this
type is the integral

Iδ =
1∫

δ

1

x
dx = − ln δ, (A.19)

where δ is an arbitrarily small positive number. In spite of ln δ quickly diverging
when δ tends to zero, tanh-sinh quadrature quickly yields remarkably high precision
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Figure A.2 The relative error decreases exponentially with quadrature order n. Both
optimal and maximal spacing yield similar convergence rates. However, whereas
the maximal spacing reaches full precision for all floating-point types, the optimal
spacing can barely converge because nmax is very small. The fluctuations as a function
of n decrease upon increasing a. No convergence can be distinguished when using
Gauss-Legendre quadrature.

integrals when the integrand is sampled with many points near x = δ (Fig. A.2).
This can, however, also be a source of errors: if the sampling points are closer to
x = δ than machine precision permits, the function evaluations will be inaccurate.
To prevent this, teval

max should be chosen such that the abscissae x = x−n remains
distinguishable from x = δ. For the errors shown in Fig. A.2, we chose teval

max such
that (x−n − δ) /δ > a · εm, with a = 100. Increasing the value of a diminishes
the fluctuations of the resulting error, but increases the achieved minimal relative
error.

Notice in Fig. A.2 that nmax is very small and the corresponding error using
optimal spacing is still far above the achievable error. The use of the proposed
maximal spacing does allow for a steady and fast decrease of the relative error up
to full precision. Gauss-Legendre quadrature fails completely in this test. It lacks
the fine-grained sampling around x = δ.

A.4.2 Multiple integration with singular integrands

Next, we consider D-dimensional integrals

ID =

∫
]0, 1]D

dDr fD(r), (A.20)
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where the integrands are chosen to be

f1(x) =
1√
x

f2(x, y) =
1√

x2 + y2

f3(x, y, z) =
1

x2 + y2 + z2
,

all containing a integrable singularity at r = 0. Integrals of the type ID are typically
encountered in solid state physics, where integration over the first Brillouin zone is
very common. For example, in a recent study of anisotropic quantum Heisenberg
ferromagnets [120], one of the integrands that determines the Curie temperature
falls of in the same way as f3(r). The results2 for each of these integrals are
shown in Fig. A.3. The convergence rate is especially large for the one-dimensional
integral, but also for higher dimensions the convergence is fast and steady up to
maximum precision. While no special numerical concerns apply to f1, numerical
underflow in the calculation of the denominator of f2 and f3 needs to be avoided
by choosing teval such that x−n >

√
Fmin.

In the latter two cases, the maximal order nmax was reached in the single precision
optimal scheme before convergence up to full precision was achieved. In the
double-precision equivalent, full precision is reached at an order just below nmax.
All convergence rates seem to become lower when the dimensionality of the integral
is increased. This might be due to the fact that the choice of d = π/2 in Eq. (A.16)
is not optimal for the outer integrals. The scheme using maximal spacing always
reaches full precision. Even though its convergence rate is somewhat slower than
the optimal (especially for the extended-precision calculation), it still has a decent
performance. In every case, Gauss-Legendre quadrature converges, be it at a much
lower rate than the tanh-sinh quadratures.

A.5 Conclusion
We have reviewed tanh-sinh quadrature, which is very efficient for integrands with
end-point singularities, that are often encountered in physics. We demonstrated
that even limited-precision floating-point arithmetic facilitates fast convergence at
machine precision levels. Extending the scheme to higher dimensions turns out to
be straightforward, although the convergence rate is typically lower as a function
of the quadrature order.

2Elementary integration of the function class fD(r) leads to I1 = 2, I2 = 2 ln(1 +
√
2) and

I3 = 3 (Ti2(3− 2
√
2)− C) + 3π

4
tanh−1( 2

√
2

3
), where Ti2(x) and C are respectively the inverse

tangent integral and the Catalan constant.
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Figure A.3 The relative error as compared to the exact result for one-dimensional quadrature order n for functions with an
integrable singularity at the origin in one, two and three dimensions. The total number of sampling points in D dimensions is
(2n+ 1)D. The quadrature with optimal spacing always converges slightly faster than the maximal spacing variant. However, it
does not reach full precision for the single-precision floating-point type in the two- and three-dimensional examples, whereas
the quadrature with hmax(n) does. While still being fast, the convergence is more slow in higher dimensions. Gauss-Legendre
quadrature converges, but only very slowly.
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We showed that care has to be taken to avoid numerical underflow in the abscissae
and the weights, as well as to avoid other numerical instabilities related to integrand
evaluations. These problems can typically be resolved straightaway by choosing
a suitable window limit tmax. For the optimal spacing hopt(n), this implies a
maximum usable quadrature order nmax, sometimes hampering convergence. The
proposed maximal spacing rule hmax(n) alleviates this limitation. Despite having
slightly slower convergence rates, this rule achieves full machine precision accuracy
more consistently. Moreover, its implementation is even more straightforward and
it allows for the reuse of abscissae, weights, and function evaluations when it comes
to recompute a particular integral for increasing quadrature orders, as is often
convenient to monitor convergence.
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B Solution differential
equation for larger spin
values

In this appendix, we give a step-by-step solution of the differential equation (3.36)

Ω′′(λ) +
(1 + Φ) eλ +Φ

(1 + Φ) eλ − Φ
Ω′(λ)− S (S + 1) Ω(λ) = 0, (B.1)

with the boundary conditions

Ω(0) = 1 (B.2a)

DΩ(0) =

+S∏
r=−S

( d
dλ

− r
)
Ω(λ)

∣∣∣
λ=0

= 0. (B.2b)

Finding a solution to this differential equation is not trivial and the original work
by Callen omits many steps.

We assume that the solution consist of functions of the form of the ansatz

ω(x, λ) =
exλ

ζ
, with the shorthand ζ = (1 + Φ) eλ − Φ. (B.3)

The first two derivatives of this function with respect to λ are

ζ2
dω
dλ

= ζxexλ − (1 + Φ) e(1+x)λ (B.4)

and

ζ3
d2 ω

dλ2
= ζexλ

{
(1 + Φ) eλx+ ζx2 − (x+ 1) (1 + Φ) eλ

}
−
{
ζx− (1 + Φ) eλ

}
e(x+1)λ2 (1 + Φ) .

(B.5)

Substituting the ansatz and its derivatives into the differential equation, multiplying
by ζe−xλ and grouping the terms by their power of x quickly reduces to the
characteristic equation

x2 − x− S (S + 1) = 0 (B.6)
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which determines the values

x = S + 1 and x = −S (B.7)

for which the ansatz is a valid solution. The functions ω(−S, λ) and ω(S + 1, λ)
are thus particular solutions of the differential equation.

The general solution of the differential equation is then

Ω(λ) = K1ω(−S, λ) +K2ω(S + 1, λ). (B.8)

To find a particular solution, we use the boundary conditions

Ω(0) = 1, so K1 +K2 = 1 (B.9)

and

DΩ(0) = 0, so K1Dω(−S, 0) +K2Dω(S + 1, 0) = 0 (B.10)

to fix K1 and K2. The solution is thus given by

Ω(λ) =
[Dω(S + 1, 0)] ω(−S, λ)− [Dω(−S, 0)] ω(S + 1, λ)

Dω(S + 1, 0)− Dω(−S, 0)
. (B.11)

The task that remains is to calculate the quantities Dω(S + 1, 0) and Dω(−S, 0).
To do so, first we use the substitution y = eλ:

Dω(x, 0) =
S∏

r=−S

( d
dλ

− r
) exλ

(1 + Φ) eλ − Φ

∣∣∣
λ=0

=

S∏
r=−S

(dy
dλ

d
dy

− r
) yx

(1 + Φ) y − Φ

∣∣∣
y=1

= − 1

Φ

S∏
r=−S

(
y

d
dy

− r
) yx

1− 1+Φ
Φ y

∣∣∣∣
y=1

.

(B.12)

Now we use a series expansion for the fraction. Note that, since in general
y(1 + Φ) /Φ lies in the range [1, +∞[, we cannot use the typical Taylor series
expansion of 1/(1− x) around x = 0. Instead, we need the Laurent series around
1/x → 0: 1/(1− x) = −

∑∞
n=1 1/x

n. In the specific case here, we have

1

1− 1+Φ
Φ y

= −
∞∑
n=1

( Φ

1 + Φ

)n
y−n. (B.13)
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As such, we calculate further:

Dω(x, 0) =
1

Φ

S∏
r=−S

(
y

d
dy

− r
) ∞∑

n=1

( Φ

1 + Φ

)n
yx−n

∣∣∣
y=1

=
1

Φ

∞∑
n=1

( Φ

1 + Φ

)n
S∏

r=−S

(x− n− r) yx−n
∣∣∣
y=1

= − 1

Φ

∞∑
n=1

( Φ

1 + Φ

)n
S∏

r=−S

(n− x+ r)

= − 1

Φ

(1 + Φ

Φ

)−x
∞∑

n=1−x

( Φ

1 + Φ

)n
S∏

r=−S

(n+ r) .

(B.14)

Now, for x = S + 1, the first 2S + 1 terms vanish because r takes all values in
[−S, S], such that one of the factors in the product vanishes:

Dω(S + 1, 0) = − 1

Φ

(1 + Φ

Φ

)−S+1
∞∑

n=S+1

( Φ

1 + Φ

)n
S∏

r=−S

(n+ r) . (B.15)

On the other hand, for x = −S, we have

Dω(−S, 0) = − 1

Φ

(1 + Φ

Φ

)S
∞∑

n=S+1

( Φ

1 + Φ

)n
S∏

r=−S

(n+ r) . (B.16)

Combining the two results gives

Dω(−S, 0) =
(1 + Φ

Φ

)2S+1
Dω(S + 1, 0). (B.17)

The final solution for the differential equation with boundary conditions is thus

Ω(λ) =
ω(−S, λ)Φ2S+1 − ω(S + 1, λ) (1 + Φ)2S+1

Φ2S+1 − (1 + Φ)2S+1

=
(1 + Φ)2S+1 e(S+1)λ − Φ2S+1e−Sλ[

(1 + Φ)2S+1 − Φ2S+1
]
·
[
(1 + Φ) eλ − Φ

] , (B.18)

which immediately leads to the expression (3.39).
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C Ewald transformation
formula

We give a derivation of the Ewald transformation formula here, as the available
derivations are often difficult to comprehend. We start with a derivation of the
formula in one dimension, following the derivation in A brief introduction to θ
functions by Bellman [184], and extend the result to higher dimensions afterwards.

During the derivation of the Ewald summation formula, we define a Fourier
expansion of a periodic function g(y) with period L as

g(y) =

+∞∑
j=−∞

aje2πijy/L, (C.1)

with aj determined by

aj =
1

L

L∫
0

g(y)e−2πijy/L dy . (C.2)

Given a continuous function f(y) with y ∈ R, a periodic function g(y) with period
L can be constructed as

g(y) =

+∞∑
n=−∞

f(y + nL), (C.3)

assuming the series converges uniformly in every non-zero interval of y. This newly
constructed function clearly has the property

g(y + L) = g(y). (C.4)

Since g(y) is periodic, it is useful to expand it in a Fourier series. The Fourier
coefficients can be calculated by direct substitution of the definition (C.3) in
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Eq. (C.2). By using the property (C.4), the coefficients become

aj =
1

L

+∞∑
n=−∞

L∫
0

f(y + nL)e−2πijy/L dy

=
1

L

+∞∑
n=−∞

(n+1)L∫
nL

f(y)e−2πijy/L dy

=
1

L

+∞∫
−∞

f(y)e−2πijy/L dy,

(C.5)

where
∫ +∞
−∞ |f(y)|dy is assumed to converge. Substituting these coefficients in the

definition of the Fourier transform (C.1) and using the definition (C.3) of g(y)
results in the important identity

+∞∑
n=−∞

f(y + nL) =
1

L

+∞∑
j=−∞

e2πijy/L
+∞∫

−∞

f(y1)e−2πijy1/L dy1, (C.6)

provided that
∑+∞

j=−∞|aj | converges. When using y = 0 in this general relation,
the Poisson summation formula

+∞∑
n=−∞

f(nL) =
1

L

+∞∑
j=−∞

+∞∫
−∞

f(y1)e−2πijy1/L dy1 (C.7)

is obtained, which is more commonly known.

Next to the extended form of the Poisson summation formula (C.6), we also need
the integral relation

+∞∫
−∞

e−ty2+2πijy/L dy =

√
π

t
e−(πj)2/(tL2) (C.8)

that holds for all j and Re(t) > 0 to derive the Ewald transformation formula. The
Ewald transformation formula is now obtained by using the function f(y) = e−ty2

(with Re(t) > 0) in the general Poisson summation formula (C.6) and applying
the integral identity (C.8):

∞∑
n=−∞

e−t(y+nL)2 =
1

L

+∞∑
j=−∞

e2πijy/L
+∞∫

−∞

e−ty21−2πijy1/L dy1

=
1

L

√
π

t

+∞∑
j=−∞

e2πijy/L−(πj)2/(tL2) .

(C.9)
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This powerful identity is also known as the Poisson-Jacobi formula or Ewald theta
transformation. Moreover, it can be shown to be equivalent to the transformation
formula

ϑ3(j, t) = (−it)−1/2 ej2/(πit)ϑ3

(j
t
,−1

t

)
, (C.10)

where

ϑ3(j, t) :=
+∞∑

n=−∞
qn

2
ηn, with q = eπit, η = e2πij (C.11)

for the theta-function ϑ3(j, t).

To demonstrate the strength of the Ewald transformation formula (C.9), consider
the relation with y = 0 and L = 1:

∞∑
n=−∞

e−tn2
=

√
π

t

+∞∑
n=−∞

e−π2n2/t, (C.12)

which can be written with one final substitution as

g(t) =
∞∑

n=−∞
e−πn2t =

√
1

t

+∞∑
n=−∞

e−πn2/t =

√
1

t
g
(1
t

)
. (C.13)

We can estimate the achieved accuracy and convergence behaviour at t = 0.01
by looking the magnitude of the nth term. In the sum g(t), the term n = 25
is 3.0 × 10−9, such that achieved accuracy after summing about fifty terms is
approximately 10−10. This should be contrasted to a value of 3.7 × 10−136 for
the n = 1 term when using the right-hand side sum

√
1/tg(1/t). Since the next

term is as small as 1.8 × 10−545, summing just a few terms suffices to achieve
an extraordinary accuracy. The Ewald summation formula can thus significantly
speed up the calculation of slowly converging sums.

The Ewald theta transformation formula (C.9) can be extended to higher dimen-
sions. The terms in the summation are then typically interpreted as (reciprocal)
lattice points. As indicated at the beginning of this chapter, we limit ourselves
to the simple cubic and square lattice types. Substituting L = 2π/a in Eq. (C.9)
gives

∞∑
n=−∞

e−t(y+n 2π
a
)
2

=
a

2π

√
π

t

+∞∑
j=−∞

eijay−(ja)2/(4t) . (C.14)

If a is the lattice constant, n2π
a can be identified as one component of the reciprocal

lattice vector Gn (see subsection 2.1.4). Similarly, ja can be interpreted as a
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component of the direct lattice vector rj and y as the corresponding component
of k. Applying the above formula to all d components of the d-dimensional cubic
lattice and multiplying those results gives

∑
n

e−t(k+Gn)
2

=
πd/2

vbtd/2

∑
j

eirj·k−r2j /(4t) . (C.15)

Finally, we substitute t = 1/(2u), rename both summation indices to be l and
rearrange the equation. The multidimensional Ewald transformation formula then
becomes ∑

l
e−r2l u/2+irl·k =

vb

(2π)d/2 ud/2

∑
l

e−(k+Gl)
2
/2u. (C.16)
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