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because I lack the time to make it short. ”
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CHAPTER 1

Introduction

The field of microelectronics has been advancing at an incredible pace for
more than half a century. Its evolution has always been driven by scaling
down device sizes. Smaller sizes mean that more components can fit in the
same area which permits the design of ever more complex circuits. Every
couple of years, advancements in semiconductor manufacturing technology
enable the creation of smaller transistors thereby doubling the number of
logical circuits which can fit on a chip.

Intel co-founder Gordon Moore noticed this trend as early as 1965 and made
predictions which would later become known as Moore’s Law [1]. His original
prediction held that the number of transistors on a chip would double yearly
for at least the next 10 years. In the 1970’s, the forecast was revised to
doubling every 2 years and it has held steady for the following 40 years [2].
Like clockwork, it has fueled the exponential growth of the semiconductor
industry. Along with the growth rate, Moore speculated about the impact on
everyday life: in a very short time span advanced computing devices would
be transformed from rare luxuries into common items.

The exponential growth curve is extremely powerful. Figure 1.0.1 shows the
raw silicon chip (also known as a die) of a modern processor (typically found
in personal computers), with transistors numbering in billions, compared
to the Intel 4004, the first monolithic CPU which consisted of just 2300
transistors. Over the last 45 years the transistor count has increased by
6 orders of magnitude which has enabled the design of far more intricate
circuits. While the downward scaling of transistor dimensions is the main

1
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Fig. 1.0.1: Semiconductor transistor scaling over time. Images of a modern
quad-core Intel “Skylake” chip (surface area 122 mm2) and Intel 4004, the first
monolithic CPU (12 mm2). If the i4004 were produced on newer process nodes,
it would shrink as presented here (assuming perfect scaling). The images were
adapted from www.intel.com.

driving force, it is interesting to note that chip sizes have also increased over
the years. The Intel “Skylake” chip presented here has a surface area of
122 mm2 which is considerably larger than the 12 mm2 of the i4004 (the
chip images presented in Fig. 1.0.1 are to scale). The i4004 was produced
on a 10 µm process node. The length number typically indicates the size of
the smallest feature which can be created by a given manufacturing process.
When a new process node is introduced, new chip architectures typically take
advantage by increasing the number of transistors while keeping roughly the
same surface area. However, if the i4004 had been continually shrunk without
any circuit changes, the scaling over the years would look approximately like
Fig. 1.0.1. Notice that the i4004 practically disappears from view by the
65 nm node. At 14 nm, it is truly insignificant compared to a modern chip.
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Fig. 1.0.2: A silicon chip wafer in sand [3]. An individual chip is also referred to
as a die because it is obtained by dicing (cutting) the wafer into square pieces.

Scaling down from micrometer to nanometer length has been both advanta-
geous and challenging. The nanometer range brings with it new quantum
effects which must be taken into account for devices to function correctly.
Even without considering the electronic properties, a quick visual inspection
reveals some interesting small-size effects. As seen in Fig. 1.0.1, the old mi-
crometer scale chip has a color which is mostly due to the reflection of its
material. On the other hand, the modern chip has surface features in the
nanometer range which bring it below the diffraction limit. In combination
with refraction, the effect gives the modern chip a far more colorful appear-
ance. It is even more apparent for an entire wafer of chips, as in Fig. 1.0.2,
where a wide color spectrum is visible.

In the past, Moore’s Law was maintained through a combination of smaller
transistors and bigger chips. Viable surface area dimensions have since
topped out at a few hundred mm2, which made transistor scaling the only
diving force. The introduction of Intel’s Tick-Tock production model 10 years
ago marked the start of an especially strict two year cycle [4]. This model
called for the introduction of a new manufacturing process every other year
(a “tick”). At that time an existing chip would be shrunk to a new process
node, thus reducing chip size and power consumption. The year in between
(a “tock”) would be used to introduce a new chip architecture using the
existing manufacturing process.
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The Tick-Tock model was implemented on the 65 nm process node. Ten
years and five process shrinks later, the strategy has begun to falter at the
14 nm node. The Tick-Tock model has now been retired, replaced by the
new Process-Architecture-Optimization model [5]. It extends the time be-
tween new process shrinks to 3 years (the “process” stage of the new model).
The intermediate years are used for the introduction of a new architecture
and its later refinement on the same process node (the “architecture” and
“optimization” stages). The prolonged cycle is a result of the ever-increasing
complexity of developing smaller nodes.

To start with, difficulties arise from the manufacturing process itself: pho-
tolithography. Light is used to transfer the chip circuit design from masks
onto the substrate. Reducing the size of the features requires light sources
with ever-smaller wavelengths. Currently, excimer lasers in the deep ultravi-
olet range (193 nm) are common. In order to continue the drive to smaller
feature sizes, photolithography will need to tap into the extreme ultraviolet
range of the spectrum (13.5 nm) but finding a reliable light source has proven
difficult.

Even after the manufacturing process has been perfected, the produced de-
vices will run into more fundamental obstacles. Shrinking transistors from
micrometer to nanometer dimensions introduces new challenges as quantum-
mechanical effects become more apparent. Even after overcoming that, inter-
atomic distances themselves become a barrier to continued scaling. Transis-
tors are already at the limit where certain features have the thickness of only
a handful of atoms [6]. With that, leakage current becomes a more prominent
problem: electrons are harder to confine due to quantum tunnelling.

The present semiconductor roadmap is set to continue the march of Moore’s
Law for at least another ten years, up to the 5 nm process node. Meanwhile,
the search for an alternative approach to electronics is well underway. Instead
of trying to overcome quantum effects and atomically thin structures, they
are being embraced. New materials also bring new approaches for electron
confinement.

1.1 Carbon flatland

The simplest and most abundant chemical elements have often proven to
be incredibly versatile. Silicon is the eighth most common element in the
universe. On Earth, it’s readily available in dust and sand. It’s not the best
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Fig. 1.1.1: Carbon allotropes: (a) graphene, (b) fullerene, (c) nanotube and (d)
graphite. Adapted from [7].

semiconductor, but its abundance has made it the cornerstone of the rise of
large-scale integrated circuits. Carbon is another very common element with
many allotropes which are being considered to augment or completely replace
the role of silicon. One could say that modern silicon-based semiconductor
technology is made out of sand. Then perhaps it would not be too bizarre
to imagine a future where technology is built out of pencil shavings.

The core of a pencil is made up of graphite, a material which consists of
stacked layers of carbon. Within a single layer, carbon atoms are held in
place by strong covalent bonds arranged in a hexagonal lattice. Multiple
layers are held together by relatively weak van der Waals forces which makes
layer separation easy. This is exactly why pencils work so well: friction
between the tip and a paper sheet causes flakes of graphite to break off and
leave marks on the paper.

The fact that layers of graphite can be pealed off easily has been known for
a long time, however the idea to isolate just a single layer, effectively a 2D
material, remained just a theoretical curiosity for decades. The consensus
was that strictly 2D crystals could not exist. Peierls and Landau pointed out
that thermal fluctuations of atoms in low-dimensional lattices would be com-
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parable to interatomic distances, thus rendering 2D crystals unstable at any
finite temperature [8, 9]. The argument was further backed by experimental
observations which showed the melting temperature of thin films rapidly de-
creases with thickness [10]. Given the solid evidence that 2D materials should
not exist, it was a bit of a surprise when a stable single-layer of graphite was
successfully extracted in 2004 at Manchester University [11].

Graphene is the name given to a one-atom-thick layer of carbon atoms ar-
ranged in a hexagonal lattice. It was theoretically considered to be a purely
two-dimensional material, but as it turned out, graphene is not completely
flat. While it is a single-layer of atoms, a free standing graphene sheet is
actually slightly rippled instead of flat [12]. This ensures enough stability to
overcome thermal fluctuations and reconciles with the earlier theories about
the instability of thin films [13]. The simplicity of the original method of ex-
tracting graphene further outlines its stability. A single layer can be isolated
using micromechanical exfoliation, more commonly know as the “Scotch tape
method”. It involves repeated peeling of graphite layers with an adhesive and
deposition on a silicon substrate. This is made possible by the weak van der
Waals bonds which connect graphite layers. In fact, it is quite possible that
a look under the microscope of some pencil shavings, left over from writing,
would reveal a few small sheets of single-layer graphene.

Although it was the last to be discovered, graphene represents the base build-
ing block for most other carbon allotropes (see Fig. 1.1.1). As such, it has
been studied theoretically for a long time, mainly as the starting point for the
further study of the 3D allotropes. Even the name “graphene” was coined
before the material itself was experimentally observed [14]. The band struc-
ture was calculated in 1947 [15], while the Landau level spectrum was studied
in the 1950’s [16]. The peculiar nature of the zero Landau level was explored
theoretically in the 1980’s [17] and proved to be responsible for the later ex-
perimental observation of the anomalous integer quantum Hall effect [18, 19].

Having access to the actual material confirmed many of the theoretical pre-
dictions, including some very interesting electrical properties. At low energy
the charge carriers in graphene behave like massless Dirac fermions [18] which
move with a Fermi velocity of about 1/300 the speed of light with a linear
spectrum [20]. Apart from the confirmation of earlier theories, the experi-
ments produced continuous graphene flakes of high quality which give rise
to room-temperature ballistic transport [21, 22]. Electrons in graphene can
travel distances on the order of micrometer without scattering. Combined
with excellent mechanical strength [23], this makes graphene a very promising
material for future electronic devices.
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Fig. 1.2.1: The electronic, thermal and mechanical properties of graphene
compared to other materials at room temperature. Note the logarithmic scale.
Adapted from [24].

1.2 Graphene nanoelectronics

Graphene has many properties which make it favorable for use in electronic
devices. Figure 1.2.1 shows a comparison of the electronic, thermal and
mechanical properties of graphene and other materials. Charge carriers in
graphene show very high mobility with no backscattering which could make
it suitable for extremely fast devices. In this regard, it’s similar to carbon
nanotubes, but its 2D structure makes it more compatible with existing de-
vices. Graphene absorbs only 2.3% of visible light. Combined with its great
mechanical properties, this makes it a good candidate for transparent flexible
electronics like screens or solar cells.

Because it lacks a band gap, graphene is not a semiconductor in the classical
sense. It is sometimes also referred to as a semimetal. While it has excellent
electronic properties, its gapless band structure has a downside: it makes
the confinement of electrons a difficult proposition. Klein tunneling allows
electrons to pass right through conventional barriers [25, 26], thus making it
difficult to switch off electric current. This is a problem for traditional elec-
tronic devices, like transistors, which must be equally good at suppressing
current as they are at conducting it. This makes the study of electron con-
finement in graphene an interesting topic. One way of changing the electronic
properties of a material is through the application of mechanical deforma-
tions: strain engineering.



8 CHAPTER 1. INTRODUCTION

Fig. 1.2.2: Illustration of strained silicon. Two materials with mismatched lattice
spacings are grown on top of one another. The interface strains the crystal lattice,
increasing the inter-atomic distance, thus improving carrier mobility [27].

Strain has long been used to enhance the electrical properties of semicon-
ductors. It is an integral part of modern silicon-based field-effect transistors.
Germanium generally has superior electronic properties compared to silicon,
especially when it comes to carrier mobility. However, silicon is the pre-
ferred material due to its abundance and established manufacturing facilities.
Nevertheless, it’s still possible to augment silicon with a bit of germanium.
The goal is to stretch out the silicon lattice (increase the inter-atomic spac-
ing), which leads to improvement in carrier mobility. This is illustrated in
Fig. 1.2.2. The lattice mismatch between silicon and germanium is actually
too large to simply grow one material on top of the other. Instead, a silicon
substrate is doped with germanium. The resulting SiGe has a lattice spacing
which is 1% larger than regular Si. Pure silicon is then grown on top of the
SiGe substrate matching the underlying lattice as it is being deposited, thus
creating strained silicon.

Strained silicon may be created in ways other than the one just described,
but the goal is usually the same: the improvement of carrier mobility. The
process is extremely beneficial which is why it is used in the manufacturing
of nearly all semiconductor processors today, from supercomputers to mobile
devices. Most modern processes apply so called “dual-stress liners” which
apply both tensile and compressive strain specifically targeting n-type or p-
type transistors to boost electron or hole mobility. Overall, the benefits of
strain engineering are significant: silicon strain of less than 1% results in 20-
40% improvement of transistor performance [28]. Silicon itself is quite elastic
and able to sustain strain up to 5%. However, this pales in comparison to
graphene which has been shown to sustain elastic strain up to a maximum
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Fig. 1.2.3: “It would take an elephant, balanced on a pencil, to break through a
sheet of graphene the thickness of Saran Wrap.” [29]

of 25% [23]. This presents significant leeway for strain engineering.

Of course, the goal for graphene would be different than traditional semicon-
ductors. Instead of improving the already excellent charge mobility, the main
motivation for strain in graphene is finding new ways of confining electrons.
It has been shown that strain can be used to open a band gap in graphene
[30]. This would enable the use of traditional electric barriers. However,
the amount of strain required to achieve this is near the limits of graphene’s
elastic range which makes this impractical, if not impossible. Fortunately,
even without opening a band gap, strain in graphene offers interesting ways
of controlling the behavior of electrons.

It is well established that magnetic fields can control the motion of elec-
trons in a material, but the realization of strong non-homogeneous magnetic
fields can be difficult. Graphene offers an interesting alternative which will
be explored in this thesis: in the presence of mechanical strain, electrons
in graphene behave as if they are inside a magnetic field [31]. This strain-
induced effect, called the pseudo-magnetic field, can be used to great effect
thanks to the very high strain-tolerance of graphene. Achievable pseudo-
magnetic fields were measured on the order of hundreds of Tesla [32–34],
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which is significantly higher than real magnetic fields achievable in the labo-
ratory. This pseudo-magnetic field also leads to a pseudo-quantum Hall effect
[35]. Landau quantization of the electronic spectrum was observed by scan-
ning tunneling microscopy. With such large strain-induced pseudo-magnetic
fields, strain engineering becomes a favorable technique of controlling the
electronic properties of graphene [36].

The two-dimensional nature of graphene also enables alternative ways of
applying strain. As described earlier for classical semiconductors, lattice
mismatches may be used to apply strain along the graphene plain. However,
the atomically thin structure makes out-of-plane deformations an interesting
approach. This can be achieved by applying a force perpendicular to the
graphene plane, either mechanically using a tip or gas pressure [37, 38]. It
was shown experimentally that an external nonuniform electric field is able
to induce local deformations [39], thus a pseudo-magnetic field could even be
induced through an electric field.

1.3 Small-scale relativity

From the point of view of fundamental physics, graphene is quite interesting
because of the peculiar nature of its electrons. The band structure does not
resemble that of massive particles usually governed by the Schrödinger equa-
tion. Conventional semiconductors host electrons which can be described by
a quadratic dispersion relation tied to an effective mass. In contrast, the
low-energy excitations in graphene obey a linear energy-momentum relation
governed by the Dirac equation.

The linear dispersion is analogous to photons with the difference that Dirac
fermions in graphene move at Fermi velocity which is about 300 times slower
than the speed of light. Effectively, electrons in graphene behave like ultra-
relativistic massless particles. This brings it into an interesting realm where
quantum mechanics intersect with special relativity. Experiments in this field
have usually been difficult due to very high energy requirements. However,
the exotic behavior of electrons in graphene has presented an opportunity to
test out some fundamental theories at a smaller scale. Essentially, graphene
serves as a condensed matter emulator of relativistic quantum mechanics.

Even before it was experimentally isolated, graphene was considered as an
analog of (2 + 1) dimensional electrodynamics [17, 41, 42]. Examples of rela-
tivistic properties include the Klein paradox [25, 26] and Zitterbewegung [43].
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Fig. 1.3.1: Experimental signature of atomic collapse in graphene. (left) STM
measurements and (right) calculations of the differential conductance 𝑑𝐼/𝑑𝑉 (local
density of states) for graphene with 1 and 5 charge centers: 𝐶𝑎 dimers as shown
in the inset. The various curves correspond to different distances from the center
of the charge. Adapted from Wang et al. [40]

The detection of the anomalous integer quantum Hall effect served as the
definitive demonstration of the relativistic nature of carriers as well as the
signature of single-layer graphene [18, 19].

This thesis studies the effect of strong electric fields in graphene and their
ability to localize electrons. While regular electric potentials only have a
marginal effect due to Klein tunneling, the situation changes in the presence
of strong charge centers which can tap into the supercritical regime. When
the critical value is exceeded, quasi-bound states are formed. This effect is
analogous to a longstanding prediction of quantum electrodynamics (QED)
which states that extremely heavy atoms (with charge 𝑍 > 170) will undergo
a process called atomic collapse. Electronic states sink into the positron
continuum triggering the spontaneous creation of electron-positron pairs [44–
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46]. The extremely high charge requirements have prevented the observation
of this phenomenon notwithstanding several attempts based on collisions of
heavy ions [47, 48].

Graphene has enabled the same physics to be observed at a much lower
scale (𝑍 ≈ 1) by depositing impurities on the surface of graphene [40]. This
artificial nucleus had enough charge to trigger collapse, therefore trapping
electrons in a sequence of quasi-bound states. Experimentally, the super-
critical state was observed as a resonance in the local density of states close
to the charge center (see Fig. 1.3.1). While interesting from a fundamental
point of view, the collapse states also present an alternative way to localize
electrons in graphene. In addition, graphene experiments allow for further
study by varying other parameters such as the back-gate voltage, defects or
the number of layers. The results of this exploration have an effect on more
than just theoretical QED, but also the understanding of confinement and
transport in graphene.

1.4 Simulating physics

The principal job of theoretical physics is to faithfully model natural phe-
nomena. A good model is able to explain previously observed behavior and
make predictions which can be verified by future observations. Using the
knowledge of fundamental particle interactions and equations of motion, the
behavior of a system can be predicted with great accuracy. However, actu-
ally solving these fundamental equations for a realistically large number of
particles becomes extremely complicated. A workaround can be found by de-
signing a sufficiently simplified model, which can be solved analytically while
still retaining the desired behavior. However, that approach may fail when
studying the interplay of phenomena which compete on similar energy scales
or when the interaction of many degrees of freedom must be considered. In
such cases, numerical methods present the only solution.

In the field of condensed matter theory, analytical methods can easily model
infinitely large systems by approximating bulk properties. If the description
of only a handful of atoms is required, first principal methods offer very
good accuracy. A middle ground is found in the form of the tight-binding
method which approximates some features but still gives a very detailed
description of the system. It can be used to model systems on the order of
millions of atoms. This presents a large scale numeric problem. Over the
last few decades, Moore’s Law has ensured that computer performance has
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increased up to the point that such problems can be solved. Moreover, new
computing devices such as GPUs help greatly in cases where the problem can
be decomposed into many parallel tasks. Nevertheless, algorithm efficiency is
still incredibly important. Fast computational hardware is wasted if the code
being executed does not take full advantage of all the available resources.

Code reusability is another important requirement. Instead of writing (or
copy/pasting) code for each new problem, the approach can be generic and
applicable to a whole class of problems. Specializations can be made as
needed while still maintaining a generic core. Part of the problem of writ-
ing generic algorithms for physics simulations is how to effectively translate
the language of physics into computer code. Pure computation is usually
straightforward, but sometimes setting up the problem can be the more chal-
lenging part, especially when many potentially interacting parameters are in
play. The abstractions that work for physics on paper may not map nicely
to code on the screen. In order to produce good generic code for physics, we
must develop new abstractions specifically tuned for the computer.

In the course of this thesis, a software framework was developed in order to
aid the numerical work. While it started as specialized code for graphene,
it has since evolved into a versatile numerical package for arbitrary tight-
binding models. It is now available as an open-source project∗. The frame-
work greatly simplifies the process of constructing models while still being
generic and applicable to any tight-binding system. By taking care of the
numerical details, the framework frees the user to concentrate on the physics:
the quantum properties of the model. The code package also contains multi-
ple computational tools with an accent on performance. In order to visualize
and make sense of the results, data post-processing and plotting functions
are also included.

1.5 Outline

Graphene has many superior properties compared to traditional semiconduc-
tors, however the lack of a band gap makes electron confinement a challenge.
Good conductivity does not matter if the current cannot be turned off as
needed. Klein tunneling renders traditional electric barriers ineffective, thus
an alternative approach is needed. To that end, this thesis explores ways of
controlling the electronic properties of graphene using mechanical strain as

∗https://github.com/dean0x7d/pybinding
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well as supercritical electric fields. The properties are investigated mainly
using the numerical tight-binding approach for which a code framework was
developed.

Chapter 1 introduces the main topics of interest in this thesis.

Chapter 2 reviews the tight-binding model and its application to graphene.
The low energy approximation of graphene is examined in order to derive
the effective Dirac Hamiltonian which governs the behavior of relativistic
massless fermions.

Chapter 3 is devoted to the kernel polynomial method. Based on Chebyshev
polynomial expansion, it is a very efficient numerical tool which we shall use
for computation throughout this thesis.

Chapter 4 presents the main ideas behind the code framework which was
developed to aid the numerical work in this thesis. We also develop spe-
cific tweaks which can be made to improve the performance of the kernel
polynomial method both for CPUs and GPUs.

Chapter 5 is devoted to the pseudo-magnetic field which arises in graphene
as a result of mechanical strain. We investigate several models of the strain-
induced field and suggest corrections which should be applied depending on
the strain intensity and geometry.

In Chapter 6 we study the specific case of out-of-plain strain due to a
Gaussian-shaped bump in a graphene flake. This geometry generates a very
distinct pseudo-magnetic field with six-fold symmetry. The shape confines
electrons along the armchair directions of graphene, while the zigzag direc-
tions carry valley-polarized current.

Chapter 7 examines in-plane triaxial strain in bilayer graphene. The gen-
erated pseudo-magnetic field is uniform with a peculiar side-effect: the zero
Landau level is missing in only one of the layers. Effectively, this means that
low-energy electrons are localizes to a single layer. The affected layer can be
switched by rotating the strain direction by 60°.

Chapter 8 introduces the phenomena of atomic collapse in graphene. We
study the effect in the presence of supercritically charged artificial nuclei
which can be constructed using external impurities or charged vacancies.
The vacancy is of particular interest due to the persistence of the induced
charge and additional effects introduced by broken sublattice symmetry.

Chapter 9 studies the atomic-collapse effect induced solely by the sharp tip
of a scanning tunneling microscope. By adjusting the backgate voltage, the
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induced charge can be continuously tuned from the subcritical to the super-
critical regime. The transition is accompanied by whispering-gallery modes,
a phenomena originating in optics, which presents an alternate confinement
mechanism compared to collapse.

In Chapter 10 we investigate supercritical charge centers in the presence
of a magnetic field. We show that the atomic collapse effect persists even
after the field is activated. The previously observed collapse resonances are
replaced with a series of Landau level anti-crossings as the new signature of
collapse. The Landau levels also display anomalous scaling with regard to
magnetic field strength in the region of the collapse.

Chapter 11 considers the creation of artificial “collapsing” molecules made
up of supercritical nuclei.

Finally, in Chapter 12 we briefly summarize the results of this thesis and
discuss future outlook.

Appendix A contains a brief overview of the most important features of the
tight-binding code framework, called Pybinding, which was developed along
with this thesis. A user guide is presented with general workflow information
and several code examples.
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Part I

Theoretical framework and
numerical methods
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CHAPTER 2

The tight-binding model of
graphene

The tight-binding model is an approximate approach of calculating the elec-
tronic band structure of solids using a basis of localized atomic orbitals.
Historically, it has also been referred to as the linear combination of atomic
orbitals (LCAO) or Bloch method. Slater and Koster provided a system-
atic procedure for the formulation of tight-binding Hamiltonians using the
famous Slater-Koster table of hopping integrals [49].

The approach does not require first principals calculations, but instead sim-
ply uses parameterized matrix elements, whose values are chosen such that it
reproduces the experimental results or the outcome of first-principles calcu-
lations. In contrast to ab initio calculations which are restricted to relatively
small computational unit cells, the tight-binding model can scale to large
system sizes on the order of millions of atoms.

In the simple empirical scheme, a tight-binding Hamiltonian is constructed
by closely matching the physical system [50]. Atomic orbitals are bound to
lattice sites and electrons are allowed to hop between them as determined
by the hopping integrals. Alternatively, the tight-binding model can also be
produced as a rigorous approximation of density functional theory [51, 52].
It can also provide the basis for the construction of many-body theories such
as the Hubbard model and the Anderson impurity model [53, 54].

Even withing the single-particle approximation, the tight-binding model is
applicable to a wide variety of systems and phenomena in quantum physics
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(classical semiconductors, superconductivity, topological insulators, etc.). In
the current work, we shall use this model to describe the 𝜋 bands of carbon
atoms in graphene.

2.1 The tight-binding model

If we consider electrons to be tightly localized around each atomic position,
the probability to find an electron on a neighboring atom is very small.
Therefore we can expand the Bloch wave function of the crystal by a linear
combination of local functions,

Ψ𝑘,𝑛(⃗𝑟) =
1√
𝑁

∑︁
�⃗�

Φ𝑛(�⃗�, �⃗�)e𝑖�⃗�·⃗𝑟, (2.1.1)

where �⃗� is the real-space lattice vector. The functions Φ𝑛(�⃗�, �⃗�) are called
Wannier functions and 𝑁 is the number of unit cells in the crystal. In general
a unit cell may consist of multiple atoms where the sublattices are labeled
by 𝜇, and each atom may have several orbital degrees of freedom 𝛼 and
spins 𝑠. The individual wavefunction are then 𝜑𝛼,𝑠(⃗𝑟 − �⃗�𝜇 − �⃗�), where �⃗�𝜇 is

the offset of sublattice 𝜇 within the unit cell �⃗�. The resulting on-site Bloch
wave function is,

Ψ𝑘,𝑛(⃗𝑟) =
1√
𝑁

∑︁
�⃗�

∑︁
𝜇,𝛼,𝑠

𝜑𝛼,𝑠(⃗𝑟 − �⃗�𝜇 − �⃗�)e𝑖�⃗�·⃗𝑟, (2.1.2)

which obeys the Bloch theorem

Ψ𝑘,𝑛(⃗𝑟 + �⃗�′) = e𝑖�⃗�·�⃗�
′
Ψ𝑘,𝑛(⃗𝑟). (2.1.3)

In order to find the Hamiltonian matrix element we start with the Schrödinger
equation,

𝐻Ψ𝑘,𝑛(⃗𝑟) = 𝐸Ψ𝑘,𝑛(⃗𝑟). (2.1.4)

The crystal wave function Ψ𝑘 (⃗𝑟) can be expanded in the basis of the on-site
Bloch wave functions,

Ψ𝑘 (⃗𝑟) =
∑︁
𝑖

𝑐𝑘,𝑖Ψ𝑘,𝑖(⃗𝑟). (2.1.5)

Plugging this expansion into the Schrödinger equation and using the orthog-
onality of the Bloch wave functions we obtain,∑︁

𝑖,𝑗

𝑐*𝑘,𝑗𝑐𝑘,𝑖

[︂
Ψ*

𝑘,𝑗 (⃗𝑟)𝐻Ψ𝑘,𝑖(⃗𝑟)− 𝐸𝑘Ψ*
𝑘,𝑗 (⃗𝑟)Ψ𝑘,𝑖(⃗𝑟)

]︂
= 0. (2.1.6)
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The Hamiltonian matrix element can be defined as,

𝐻𝑖,𝑗(�⃗�) =
1

𝑁

∑︁
�⃗�,�⃗�′

e𝑖�⃗�·(�⃗�−�⃗�′)

∫︁
𝑑�⃗�𝜑*

𝑗 (⃗𝑟 − �⃗�)𝐻𝜑𝑖(⃗𝑟 − �⃗�) (2.1.7)

and the overlap matrix elements are defined as,

𝑆𝑖,𝑗(�⃗�) =
1

𝑁

∑︁
�⃗�,�⃗�′

e𝑖�⃗�·(�⃗�−�⃗�′)

∫︁
𝑑�⃗�𝜑*

𝑗 (⃗𝑟 − �⃗�)𝜑𝑖(⃗𝑟 − �⃗�). (2.1.8)

In general, atomic orbitals centered at different sites do not have to be or-
thogonal, thus the overlap integral may not be zero. However, this is usually
a very small value which can be discarded in most cases. Here, we shall
consider the purely orthogonal tight-binding model.

Substituting Eqs. (2.1.7) and (2.1.8) in Eq. (2.1.6), we find the energy spec-

trum for fixed �⃗� as

𝐸𝑘 =

∑︀
𝑖,𝑗 𝐻𝑖,𝑗(�⃗�)𝑐*𝑘,𝑗𝑐𝑘,𝑖∑︀
𝑖,𝑗 𝑆𝑖,𝑗(�⃗�)𝑐*𝑘,𝑗𝑐𝑘,𝑖

. (2.1.9)

Minimizing the energy using 𝜕𝐸𝑘/𝜕𝑐
*
𝑘,𝑖, we obtain the secular equation as∑︁

𝑖

[︁
𝐻𝑖,𝑗(�⃗�)− 𝐸𝑘𝑆𝑖,𝑗(�⃗�)

]︁
𝑐𝑘,𝑖 = 0. (2.1.10)

2.2 Graphene and the continuum limit

Graphene is a single layer of 𝑠𝑝2 hybridized carbon atoms arranged in a
honeycomb lattice, as illustrated in Fig 2.2.1(a). A unit cell consists of two
atoms, denoted A and B. The positions of all sites of sublattice 𝜇 = 𝐴,𝐵 is
described by the discrete translation:

�⃗�𝜇(𝑛1, 𝑛2) = 𝑛1 �⃗�1 + 𝑛2 �⃗�2 + �⃗�𝜇. (2.2.1)

where 𝑛1 and 𝑛2 are integers. The lattice vectors of a triangular Bravais
lattice are

�⃗�1 = 𝑎

[︂
1
0

]︂
, �⃗�2 =

𝑎

2

[︂
1√
3

]︂
, (2.2.2)

where 𝑎 =
√

3𝑎𝑐𝑐 is the unit length and 𝑎𝑐𝑐 = 0.142 nm is the carbon-carbon
distance. The vectors �⃗�𝐴 = [0, 0]𝑇 and �⃗�𝐵 = [0,−𝑎𝑐𝑐]𝑇 define the offset of a
carbon atom within the unit cell.
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Fig. 2.2.1: (a) Illustration of monolayer graphene with sublattices A and B,
lattice vectors �⃗�𝑖 and nearest neighbor vectors �⃗�𝑖. (b) The Brillouin zone with
reciprocal lattice vectors �⃗�𝑖 .

The reciprocal lattice vectors satisfy the relation �⃗�𝑖 · �⃗�𝑗 = 2𝜋𝛿𝑖,𝑗 and are given
by

�⃗�1 =
2𝜋

3𝑎𝑐𝑐

[︂
0
2

]︂
, �⃗�2 =

2𝜋

3𝑎𝑐𝑐

[︂√
3
−1

]︂
. (2.2.3)

The Brillouin zone is hexagonal with vertices in the K-points, as can be seen
in Fig. 2.2.1(b). We can distinguish two sets of inequivalent points, 𝐾 and
𝐾 ′, because they cannot be connected by reciprocal lattice vectors. Two of
the points are located on the 𝑘𝑥-axis with positions

�⃗� =
2𝜋

3𝑎𝑐𝑐

[︂
1
0

]︂
, �⃗� ′ =

2𝜋

3𝑎𝑐𝑐

[︂
−1
0

]︂
. (2.2.4)

The electron states around high-symmetry K and K’ points, which represents
the valley degeneracy of graphene. The two points are connected by time
reversal symmetry.

The carbon atoms in graphene are 𝑠𝑝2 hybridized. Three of the four elec-
trons in the outer-shell form strong 𝜎 bonds. These in-plane covalent bonds
responsible for the structural properties of graphene, in particular its stiff-
ness. The remaining electrons occupy the 𝑝𝑧 orbital perpendicular to the
graphene plane. They are free to hop between neighboring sites, giving rise
to the low-energy 𝜋 bands. Since there is only one electron per 𝑝𝑧 orbital for
each carbon atom, the Fermi level lies at zero energy. Therefore, to model the
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Fig. 2.2.2: Energy dispersion of graphene, as obtained by the next-nearest neigh-
bor tight-binding method with 𝑡 = −2.8 eV and 𝑡𝑛𝑛 = 0.1 eV. The black hexagon
in the bottom projection indicates the outline of the first Brillouin zone. The
valence and conduction bands touch at the vertices of the hexagon (K points). A
close-up view of the linear dispersion around a K point is shown on the right.

electrical properties, it is enough to consider the nearest-neighbor interaction
of 𝑝𝑧 orbitals.

Given the normalized wavefunction 𝜙(�⃗�𝐴,𝐵) for an isolated 𝑝𝑧 orbital at
carbon atoms A and B, the tight-binding Hamiltonian can be written down
as,

𝐻 = 𝑡
∑︁
�⃗�𝐴,𝐵

|𝜙(�⃗�𝐴)⟩ ⟨𝜙(�⃗�𝐵)|+𝐻.𝑐., (2.2.5)

where 𝑡 = −⟨𝜙𝐴|𝐻|𝜙𝐵⟩ ≈ −2.8 eV is the hopping integral between nearest
neighbors. In graphene, the overlap matrix is small and usually neglected
𝑆 = ⟨𝜙𝐴|𝜙𝐵⟩ ≈ 0. Because both sublattices A and B host carbon atoms their
onsite energy is equal, and it is convenient to set it to zero: ⟨𝜙𝐴|𝐻|𝜙𝐴⟩ =
⟨𝜙𝐵|𝐻|𝜙𝐵⟩ = 0. The Bloch wavefunction or sublattice 𝑐 = 𝐴,𝐵 is given by

Ψ𝜇(�⃗�) =
1√
𝑁

∑︁
�⃗�𝜇

e𝑖�⃗�·�⃗�𝜇𝜙𝜇(�⃗�𝜇), (2.2.6)

where 𝑁 is the total number of unit cells. In terms of the two-component
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wave function Ψ = [Ψ𝐴,Ψ𝐵]𝑇 , the Hamiltonian can be expressed as,

𝐻(�⃗�) =

[︃
0 ℎ(�⃗�)

ℎ*(�⃗�) 0

]︃
, (2.2.7)

where
ℎ(�⃗�) = 𝑡

∑︁
𝑖

e𝑖�⃗�·⃗𝛿𝑖 . (2.2.8)

Solving the Schrödinger equation 𝐻Ψ = 𝐸Ψ as det(𝐻−𝐸𝐼) = 0, one obtains
the dispersion relation, as was deduced by Wallace in 1947 [15]:

𝐸(�⃗�) = ±𝑡
√︁

3 + 2 cos(𝑘𝑥𝑎) + 4 cos(𝑘𝑥𝑎/2) cos(
√

3𝑘𝑦𝑎/2). (2.2.9)

Taking the limit close to a K-points of the Brillouin zone, �⃗� = �⃗� + �⃗� with
|𝑞| << |𝐾|, Eq. (2.2.8) can be simplified to ℎ(⃗𝑞) = ~𝑣𝐹 (𝑞𝑥 ± 𝑖𝑞𝑦) and thus
the effective low energy Hamiltonian is

𝐻𝐾,𝐾′ (⃗𝑞) = ~𝑣𝐹
[︂

0 𝑞𝑥 ± 𝑖𝑞𝑦
𝑞𝑥 ∓ 𝑖𝑞𝑦 0

]︂
, (2.2.10)

where 𝑣𝐹 = 3𝑎𝑐𝑐𝑡/(2~) is the Fermi velocity. The dispersion relation now
reveals the photon-like linear spectrum of low energy excitations in graphene,

𝐸 (⃗𝑞) = ±~𝑣𝐹 |⃗𝑞|. (2.2.11)

Using terser notation, Eq. (2.2.10) can be expressed as

𝐻 (⃗𝑞) = 𝜂~𝑣𝐹 (𝑞𝑥𝜎𝑥 + 𝜂𝑞𝑦𝜎𝑦), (2.2.12)

where 𝜎𝑥 and 𝜎𝑦 are Pauli matrices and 𝜂 = ±1 corresponds to the 𝐾 and
𝐾 ′ points.

An object is said to have chirality if it cannot be mapped to its mirror image
using only rotations and translations. This is quite common for everyday
objects like gloves, shoes, etc.

In graphene we can define the helicity operator as the projection of the
momentum operator along the pseudo-spin direction,

ℎ�⃗� = �⃗�
�⃗�

|⃗𝑞|
. (2.2.13)

The helicity eigenvalue ℎ = ±1 is a good quantum number for energy close
to the K and K’ points. For massless particles chirality is the same as he-
licity. Electrons in graphene due to the linear spectrum close to the Dirac
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points have well defined chirality. Since the helicity operator commutes with
the Hamiltonian, it’s possible to find a common basis of eigenstates, where
helicity is a conserved quantity. It is possible to present the Hamiltonian
using the helicity operator,

𝐻 = 𝜂~𝑣𝐹 |⃗𝑞|ℎ�⃗�. (2.2.14)

Here the dispersion relation becomes 𝐸 (⃗𝑞) = 𝜂ℎ~𝑣𝐹 |⃗𝑞|. From here it’s clear
that the band index 𝛼 = ±1 can be determined as 𝛼 = 𝜂ℎ.

The Klein paradox represents the perfect tunneling of a relativistic elec-
tron through wide barriers. It is a well-known phenomenon originating from
quantum electrodynamics [25]. It also applies to the low-energy excitation
in graphene where it was first observed experimentally [55].

If an electron travels along the x-direction it will have 𝑘𝑦 = 0. The velocity
operator is given by the Heisenberg equation 𝑣𝑥 ≈ −𝑖[𝑥,𝐻]/~ = 𝜎𝑥 and the
change in velocity is 𝑑𝑣𝑥/𝑑𝑡 = −𝑖[𝜎𝑥, 𝐻]/~ = 2𝜎𝑧𝑘𝑦. Because 𝑘𝑦 = 0, the
velocity is a constant and therefore backscattering is not possible.
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CHAPTER 3

The kernel polynomial method

Exactly solving a tight-binding problem implies the diagonalization of the
Hamiltonian matrix. This produces eigenvalues and eigenvectors required
to calculate the desired physical properties. However, the computational
resources used by diagonalization algorithms scale up rapidly with system
size which makes it challenging to model realistically large systems. This
has placed great importance on the development of more efficient exact al-
gorithms as well as novel approximative methods.

When a Hamiltonian is represented by a dense matrix of dimension D, mem-
ory requirements scale as 𝐷2 while the computation time required to solve
for all the eigenvalues scales as 𝐷3. This cubic scaling blows up quickly,
even for moderately sized systems on the order of tens of thousands of lat-
tice sites. In an effort to solve larger problems, the first obvious step is to
switch to a sparse matrix representation of the Hamiltonian. Sparse ma-
trices can be stored in various formats, but the common trait is that the
memory requirements scale linearly with the number of non-zero elements
𝑁𝑛𝑧. Tight-binding models are very well suited for this because 𝑁𝑛𝑧 ≈ 𝑚𝐷,
where 𝑚≪ 𝐷, thus making a substantial improvements over the 𝐷2 scaling
of dense matrices. The number 𝑚 is proportional to the average number of
hoppings per lattice site.

Along with the storage format, the strategy of solving large matrices must
also change. A good choice for sparse Hermitian matrices is the Lanczos
algorithm [56]. Instead of solving for all the eigenvalues and eigenvectors,
sparse diagonalization targets a small subset of size 𝑘. The Lanczos algorithm
strictly requires that 𝑘 < 𝐷 but for best performance 𝑘 ≪ 𝐷 is preferred.

27
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The problem complexity scales with 𝑘𝑁𝑛𝑧, but the procedure suffers from
numerical instabilities which require additional computational effort to over-
come. All practical implementations must take this into account. One of the
most widely used variations is the implicitly restarted Lanczos method [57]
which is implemented in ARPACK [58].

An alternative sparse diagonalization scheme is offered by the FEAST algo-
rithm [59]. It differs significantly from traditional techniques like the Lanczos
procedure, instead taking its inspiration from the density-matrix representa-
tion and contour integration in quantum mechanics. When solving a series
of eigenvalue problems which are close to one another, as is the case for
band structure calculations, the results of the previous calculation can be
used as the starting point for the next. The algorithm also features natural
parallelism where different eigenvalues can be computed separately without
overlap.

No matter which sparse diagonalization algorithm is used, they all produce
exact solutions in the form of a small set of eigenvalues and eigenvectors.
These are used to calculate the desired physical properties. A fundamentally
different approach is to set aside the requirement for exact solutions (avoid
diagonalization altogether) and instead use approximative methods to calcu-
late the properties of interest. This chapter will present one such approach
in the form of the kernel polynomial method (KPM) based on Chebyshev
expansion.

One of the most desirable properties of KPM is computation time which
scales linearly with sparse matrix size 𝑁𝑛𝑧. The procedure is numerically
very stable so no additional computation is wasted [60]. The approximative
nature of the method presents an opportunity for additional performance
tuning. Results may be computed very quickly at low accuracy to get an
initial estimate for the problem at hand. Once final results are required, the
accuracy can be increased at the cost of longer computation time.

KPM has been successfully applied to large quantum problems in solid-state
physics [61, 62]. It can be used to approximate the local density of states
within a tight-binding framework [63, 64]. Green’s function can be efficiently
expanded in a series of Chebyshev polynomials [65, 66]. It also allows for
easy coupling to baths which are also described by Chebyshev expansions [67].
One of the great benefits of this method is that spatially dependent prop-
erties such as the local density of states or Green’s function are calculated
separately for each spatial position. This means that localized properties can
be computed extremely quickly, but it also allows a trivial parallel implemen-
tation when the area of interest is large.
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The domain of KPM can be seen as orthogonal to traditional diagonalization
algorithms. Sparse diagonalization produces results for a very small energy
range (eigenvalues) but does so for all positions simultaneously (eigenvec-
tors). KPM computes only a single position at a time, but produces results
for the entire energy spectrum at once. In this way, the two approaches
complement each other nicely. For example, KPM may be used to quickly
compute the local density of states for the entire energy spectrum. Once
interesting features are identified in the LDOS, sparse diagonalization can
be used to get the full spatial picture only at the energy positions of in-
terest. This scheme is extremely beneficial since all sparse diagonalization
algorithms function much more efficiently when only a small, highly targeted,
set of eigenstates is required.

This orthogonal relationship of diagonalization and KPM just goes to demon-
strate that there are no ultimate one-size-fits-all tools. Numerical tools
should be picked specifically for the job at hand and it’s even better if differ-
ent approaches can be combined. Of course, that does require having a well
stocked toolbox, where KPM has an important place.

3.1 Chebyshev expansion

In general, the expansion of a given function 𝑓(𝑥) in terms of a polynomial
set 𝑝𝑛(𝑥) can be introduced as

𝑓(𝑥) =
∞∑︁
𝑛=0

𝛼𝑛𝑝𝑛(𝑥), (3.1.1)

where the expansion coefficients 𝛼𝑛 are proportional to the scalar product of
𝑓 and 𝑝𝑛,

𝛼𝑛 = ⟨𝑓 |𝑝𝑛⟩ℎ𝑛, (3.1.2)

and ℎ𝑛 = 1/ ⟨𝑝𝑛|𝑝𝑛⟩ denotes the inverse squared norm. The polynomial set
𝑝𝑛(𝑥) must fulfill the orthogonality relations

⟨𝑝𝑛|𝑝𝑚⟩ =
𝛿𝑛,𝑚
ℎ𝑛

. (3.1.3)

The scalar product ⟨𝑓 |𝑔⟩ between functions 𝑓(𝑥) and 𝑔(𝑥) is defined on the
interval [𝑎, 𝑏] with a positive weight 𝑤(𝑥),

⟨𝑓 |𝑔⟩ =

∫︁ 𝑏

𝑎

𝑤(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥. (3.1.4)
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An expansion can be used to approximately reconstruct the desired function.
It shifts the problem from the direct solution of 𝑓(𝑥) to the computation of
expansion moments 𝛼𝑛. Given a good choice of the polynomial set 𝑝𝑛(𝑥), the
moment computation can be implemented in a very efficient way.

All types of orthogonal polynomials can be used for the expansion, but
Chebyshev polynomials stand out as a very good choice for numerical appli-
cations. They have good convergence properties and a close relation to the
Fourier transform which allows the partial reuse of existing numerical tools.
Furthermore, the recursive relationship between Chebyshev polynomials en-
able the development of a very efficient iterative routine for computing the
expanded function.

Chebyshev polynomials

Chebyshev polynomials of the first kind are denoted by 𝑇𝑛, while the second
kind are 𝑈𝑛. They can be expressed in terms of trigonometric functions as

𝑇𝑛(𝑥) = cos[𝑛 arccos(𝑥)], (3.1.5)

𝑈𝑛(𝑥) =
sin[(𝑛+ 1) arccos(𝑥)]

sin[arccos(𝑥)]
. (3.1.6)

From here it is quite apparent that they are only defined on the interval
[𝑎, 𝑏] = [−1, 1]. The two kinds of Chebyshev polynomials are distinguished
by their weight functions, 𝑤(𝑥) = (𝜋

√
1− 𝑥2)−1 and 𝑤(𝑥) = 𝜋

√
1− 𝑥2, for

the first and second kind, respectively. Plugging the weight function into the
scalar product (3.1.4) yields,

⟨𝑓 |𝑔⟩1 =

∫︁ 1

−1

𝑓(𝑥)𝑔(𝑥)

𝜋
√

1− 𝑥2
𝑑𝑥, (3.1.7)

⟨𝑓 |𝑔⟩2 =

∫︁ 1

−1

𝜋
√

1− 𝑥2𝑓(𝑥)𝑔(𝑥)𝑑𝑥, (3.1.8)

and from there the orthogonality relations read,

⟨𝑇𝑛|𝑇𝑚⟩1 =
1 + 𝛿𝑛,0

2
𝛿𝑛,𝑚, (3.1.9)

⟨𝑈𝑛|𝑈𝑚⟩2 =
𝜋2

2
𝛿𝑛,𝑚. (3.1.10)
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Fig. 3.1.1: Line plot of the Chebyshev polynomials of (a) the first kind 𝑇𝑛(𝑥)
and (b) the second kind 𝑈𝑛(𝑥) for the first few values of the integer 𝑛. Note that
they are only defined for 𝑥 ∈ [−1, 1].

The most interesting aspect of these polynomials are the recursive relations,
which are the key to an efficient iterative numerical implementation of KPM,

𝑇0(𝑥) = 1, 𝑇−1(𝑥) = 𝑇1(𝑥) = 𝑥,

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥)− 𝑇𝑛−1(𝑥),
(3.1.11)

and
𝑈0(𝑥) = 1, 𝑈−1(𝑥) = 0,

𝑈𝑛+1(𝑥) = 2𝑥𝑈𝑛(𝑥)− 𝑈𝑛−1(𝑥).
(3.1.12)

The product relations will also prove to be useful,

2𝑇𝑚(𝑥)𝑇𝑛(𝑥) = 𝑇𝑚+𝑛(𝑥) + 𝑇𝑚−𝑛(𝑥), (3.1.13)

2(𝑥2 − 1)𝑈𝑚−1(𝑥)𝑈𝑛−1(𝑥) = 𝑇𝑚+𝑛(𝑥)− 𝑇𝑚−𝑛(𝑥). (3.1.14)

The polynomials are related by the Hilbert transformations,

𝒫
∫︁ 1

−1

𝑇𝑛(𝑦)𝑑𝑦

(𝑦 − 𝑥)
√︀

1− 𝑦2
= 𝜋𝑈𝑛−1(𝑥), (3.1.15)

𝒫
∫︁ 1

−1

√︀
1− 𝑦2𝑈𝑛−1(𝑦)𝑑𝑦

𝑦 − 𝑥
= −𝜋𝑇𝑛(𝑥), (3.1.16)

where 𝒫 denotes the principal value.
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Expansion moments

With knowledge of Chebyshev polynomials, we can proceed to plug 𝑇𝑛 into
expansion (3.1.1) and determine the coefficients. The expansion reads

𝑓(𝑥) =
∞∑︁
𝑛=0

⟨𝑓 |𝑇𝑛⟩1
⟨𝑇𝑛|𝑇𝑛⟩1

𝑇𝑛(𝑥) = 𝛼0 + 2
∞∑︁
𝑛=1

𝛼𝑛𝑇𝑛(𝑥), (3.1.17)

where the coefficients are

𝛼𝑛 = ⟨𝑓 |𝑇𝑛⟩1 =

∫︁ 1

−1

𝑓(𝑥)𝑇𝑛(𝑥)

𝜋
√

1− 𝑥2
𝑑𝑥. (3.1.18)

Note that the form of expansion (3.1.17) takes into account the special nature
of 𝛼0 according to Eq. (3.1.9).

The problem of reconstructing the function 𝑓(𝑥) relies entirely on calculating
the moments 𝛼𝑛. It is preferable to avoid the integration in Eq. (3.1.18) and
instead take advantage of the recursive relations (3.1.11). To this end, the
basic Chebyshev expansion (3.1.17) is rearranged slightly,

𝑓(𝑥) =
∞∑︁
𝑛=0

⟨𝑓 |𝜑𝑛⟩2
⟨𝜑𝑛|𝜑𝑛⟩2

𝑇𝑛(𝑥) =
1

𝜋
√

1− 𝑥2

(︃
𝜇0 + 2

∞∑︁
𝑛=1

𝜇𝑛𝑇𝑛(𝑥)

)︃
(3.1.19)

where the coefficients are now

𝜇𝑛 = ⟨𝑓 |𝜑𝑛⟩2 =

∫︁ 1

−1

𝑓(𝑥)𝑇𝑛(𝑥)𝑑𝑥, (3.1.20)

and the orthogonal functions are

𝜑𝑛 =
𝑇𝑛(𝑥)

𝜋
√

1− 𝑥2
. (3.1.21)

Note that this rearrangement uses the second scalar product (3.1.8) instead
of the first (3.1.7), with orthogonality relations

⟨𝜑𝑛|𝜑𝑚⟩2 =
1 + 𝛿𝑛,0

2
𝛿𝑛,𝑚. (3.1.22)

The set of modified moments 𝜇𝑛 defined in Eq. (3.1.20) are the core of this
expansion method. They are directly tied to Chebyshev polynomials of the
first kind which allows the recursive relations (3.1.11) to apply equivalently
to 𝜇𝑛. For the numerical implementation this means that only the first two
moments need to be constructed from scratch, while the rest can be computed
iteratively.
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Rescaling the problem

Chebyshev polynomials are only defined on the interval [−1, 1] and in turn
so are the expansion moments (3.1.20). In order to apply the expansion to
tight-binding problems, the Hamiltonian matrix and energy will need to be
rescaled to the same [−1, 1] interval, according to

�̃� =
𝐻 − 𝑏𝐼
𝑎

, �̃� =
𝐸 − 𝑏
𝑎

, (3.1.23)

where the scaling factors 𝑎 and 𝑏 are determined from the extremal eigenval-
ues of the Hamiltonian,

𝑎 =
𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

2− 𝜖
, 𝑏 =

𝐸𝑚𝑎𝑥 + 𝐸𝑚𝑖𝑛

2
. (3.1.24)

The parameter 𝜖 is a small number used to avoid instabilities which arise
if the spectrum exceeds the boundaries [−1, 1]. This also means that the
minimum and maximum eigenvalues do not need to be determined exactly.

A good way to determine the bounds for a Hermitian matrix is using the
Lanczos iterative algorithm [56]. Since accuracy is not essential, the com-
putation requires a small number of iterations. The Lanczos procedure nat-
urally seeks the extremal eigenvalues first and since only two are required,
the implementation does not need to take into account loss of orthogonality
issues which would usually apply for longer-running procedures of this type.
The parameter 𝜖 can be adjusted according to the accuracy of the eigenvalue
computation. Typically, 𝜖 is on the order of 0.01 for bounds determined using
around 100 Lanczos iterations.

Local density of states

An example of the application of the Chebyshev expansion is the calculation
of the local density of states. For a Hamiltonian matrix of dimension 𝐷 and
eigenvalues 𝐸𝑘, the local density of states at lattice site 𝑖 is determined by

𝜌𝑖(𝐸) =
1

𝐷

𝐷−1∑︁
𝑘=0

| ⟨𝑖|𝑘⟩ |2𝛿(𝐸 − 𝐸𝑘). (3.1.25)

Before expanding this function in terms of Chebyshev polynomials, the prob-
lem must first be rescaled using substitutions 𝐻 → �̃�, 𝐸 → �̃�, as introduced
earlier. We adopt the notation where all rescaled quantities are shown with
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a tilde. Using the rescaled Eq. (3.1.25) as the function for the Chebyshev
moments (3.1.20) gives:

𝜇𝑛 =

∫︁ 1

−1

𝜌𝑖(�̃�)𝑇𝑛(�̃�)𝑑�̃�

=
1

𝐷

𝐷−1∑︁
𝑘=0

| ⟨𝑖|𝑘⟩ |2𝑇𝑛(�̃�𝑘)

=
1

𝐷

𝐷−1∑︁
𝑘=0

⟨𝑖|𝑇𝑛(�̃�)|𝑘⟩ ⟨𝑘|𝑖⟩

=
1

𝐷
⟨𝑖|𝑇𝑛(�̃�)|𝑖⟩ . (3.1.26)

The 𝜌𝑖(𝐸) function can be reconstructed by using these moments in Eq. (3.1.19).
However, there is still the task of calculating the expectation values ⟨𝑖|𝑇𝑛(�̃�)|𝑖⟩.

Moments as expectation values

Moments in the form of expectation values of Chebyshev polynomials of �̃�
are quite common for various calculations, not just the local density of states.
In the general from, this set of moments can be expressed as

𝜇𝑛 = ⟨𝛽|𝑇𝑛(�̃�)|𝛼⟩ , (3.1.27)

where |𝛼⟩ and |𝛽⟩ are certain states of the system. In terms of the imple-
mentation for a real-space Hamiltonian matrix, the state |𝛼⟩ is a unit vector
with a single non-zero element at lattice site 𝛼.

Starting from |𝛼⟩ an iterative process constructs states |𝛼𝑛⟩ = 𝑇𝑛(�̃�) |𝛼⟩
using the recursion relations (3.1.11):

|𝛼0⟩ = |𝛼⟩ , (3.1.28)

|𝛼1⟩ = �̃� |𝛼0⟩ , (3.1.29)

|𝛼𝑛+1⟩ = 2�̃� |𝛼𝑛⟩ − |𝛼𝑛−1⟩ . (3.1.30)

The final moment is calculated from the scalar product

𝜇𝑛 = ⟨𝛽|𝛼𝑛⟩ . (3.1.31)

In terms of implementation, a tight-binding Hamiltonian is usually a sparse
matrix, while states |𝛼𝑛⟩ are dense vectors. The repeated application of �̃�
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to states |𝛼𝑛⟩ consists of sparse matrix-vector multiplications which scale
linearly with problem size.

If the condition |𝛽⟩ = |𝛼⟩ is met, as is the case for the local density of states
Eq. (3.1.26), the required number of iterations can be cut in half. By taking
advantage of the product relations (3.1.13) two moments can be computed
based on each new |𝛼𝑛⟩,

𝜇2𝑛 = 2 ⟨𝛼𝑛|𝛼𝑛⟩ − 𝜇0, (3.1.32)

𝜇2𝑛+1 = 2 ⟨𝛼𝑛+1|𝛼𝑛⟩ − 𝜇1. (3.1.33)

This simplifies the computation from 𝑁 to 𝑁/2 sparse matrix-vector multi-
plications. However, it does also add 𝑁/2 dot products for ⟨𝛼𝑚|𝛼𝑛⟩, which
brings the total number of operations back to 𝑁 . Fortunately, a dot prod-
uct is computationally cheaper than a matrix-vector multiplication, so even
though the computation time is not halved, the improvement is still quite
significant.

The iterative procedure described here forms the core of the Chebyshev ex-
pansion method and it is the most computationally intensive part. Sparse
matrix-vector multiplication can be implemented in many different ways de-
pending on the sparse matrix format and the target computing device (CPU
or GPU). Each implementation has different performance implications. In
addition, for very large systems, the sparsity of the starting vector 𝛼0 can be
exploited for additional performance improvements.

3.2 Kernel polynomials

The expansion Eq. (3.1.19) exactly replicates function 𝑓(𝑥) by using an in-
finite series of polynomials. However, if a finite series is used instead, the
expansion is only an approximation of 𝑓(𝑥). This is the case for numerical
implementations where the order cannot possibly be infinite. For an efficient
numerical solution, the key is to find a finite set of moments 𝜇𝑛 which gives
the best estimate of the desired function.

The simplest approximation is to just truncate the infinite series, limiting
the expansion to the first 𝑁 moments,

𝑓(𝑥) ≈ 𝑓𝑡𝑟𝑢𝑛𝑐(𝑥) =
1

𝜋
√

1− 𝑥2

(︃
𝜇0 + 2

𝑁−1∑︁
𝑛=1

𝜇𝑛𝑇𝑛(𝑥)

)︃
. (3.2.1)
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This approach has poor precision and is prone to fluctuations, known as
Gibbs oscillations, especially for discontinuities or singularities of 𝑓(𝑥) and
near points where the function is not continuously differentiable.

Gibbs oscillations can be mitigated by convolving the approximate func-
tion (3.2.1) with kernel polynomials 𝐾𝑁(𝑥, 𝑦),

𝑓𝐾𝑃𝑀(𝑥) = ⟨𝐾𝑁(𝑥, 𝑦)|𝑓𝑡𝑟𝑢𝑛𝑐(𝑦)⟩2 =

∫︁ 1

−1

𝜋
√

1− 𝑥2𝐾𝑁(𝑥, 𝑦)𝑓𝑡𝑟𝑢𝑛𝑐(𝑦)𝑑𝑦.

(3.2.2)
This is the key concept behind the kernel polynomial method. The resulting
𝑓𝐾𝑃𝑀(𝑥) function is a more accurate approximation of the original function
compared to the ordinary truncated expansion 𝑓𝑡𝑟𝑢𝑛𝑐(𝑥). The optimal kernel
function 𝐾𝑁(𝑥, 𝑦) depends on the desired application, but the general form
should match the Chebyshev expansion,

𝐾𝑁(𝑥, 𝑦) = 𝑔0𝜑0(𝑥)𝜑0(𝑦) + 2
𝑁−1∑︁
𝑛=1

𝑔𝑛𝜑𝑛(𝑥)𝜑𝑛(𝑦). (3.2.3)

Here 𝑔𝑛 are damping coefficients which depend on the order 𝑁 of the approx-
imation. Plugging this form of the kernel function into Eq. (3.2.2) gives a
convenient form of 𝑓𝐾𝑃𝑀(𝑥) where the transformation 𝑓𝑡𝑟𝑢𝑛𝑐(𝑥)→ 𝑓𝐾𝑃𝑀(𝑥)
can be performed simply by introducing the substitution 𝜇𝑛 → 𝑔𝑛𝜇𝑛,

𝑓𝐾𝑃𝑀(𝑥) =
1

𝜋
√

1− 𝑥2

(︃
𝑔0𝜇0 + 2

𝑁−1∑︁
𝑛=1

𝑔𝑛𝜇𝑛𝑇𝑛(𝑥)

)︃
. (3.2.4)

Thus the entire procedure comes down to picking the right form of the damp-
ing coefficients 𝑔𝑛, i.e. the kernel function.

The general condition which all kernel functions must satisfy is that in the
limit 𝑁 →∞ the absolute difference ||𝑓−𝑓𝐾𝑃𝑀 || → 0. A good kernel should
ensure this converges as quickly as possible, thus requiring a smaller number
of moments 𝑁 to be computed. For specific applications such as the LDOS or
Green’s function, additional conditions should be imposed: the kernel should
be positive 𝐾𝑁(𝑥, 𝑦) > 0 and normalized

∫︀ 1

−1
𝐾𝑁(𝑥, 𝑦)𝑑𝑥 = 𝜑0(𝑦). Based

on these criteria, the kernel functions may be derived either analytically or
empirically. The derivation procedure and a comparison of different kernels
can found in Ref. [68]. For most practical applications, the most important
ones are the Jackson and Lorentz kernel.
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For the Jackson kernel 𝐾𝐽
𝑁(𝑥, 𝑦) the damping factors are given as,

𝑔𝐽𝑛 =
(𝑁 − 𝑛+ 1) cos(𝜋𝑛/(𝑁 + 1)) + sin(𝜋𝑛/(𝑁 + 1)) cot(𝜋/(𝑁 + 1))

𝑁 + 1
.

(3.2.5)
Convolving a kernel with the Chebyshev expansion of the delta function re-
veals the kernel-imposed broadening. For the Jackson kernel this is a Gaus-
sian function of width 𝜎 = 𝜋/𝑁 . Therefore, the resolution of the recon-
structed function will improve directly with the number of moments 𝑁 .

An alternative is the Lorentz kernel,

𝑔𝐿𝑛 =
sinh[𝜆(1− 𝑛/𝑁)]

sinh(𝜆)
, (3.2.6)

where 𝜆 is a free parameter which can be used to control the resolution of the
approximation. The Lorentzian broadening is given by 𝜖 = 𝜆/𝑁 . This kernel
is most appropriate for the expansion of the Green’s function because it most
closely mimics the divergences near the true eigenvalues of the Hamiltonian.
The 𝜆 value is found empirically to be between 3 and 5, and it may be used to
fine-tune the smoothness of the convergence. The calculations in this thesis
use the Lorentz kernel precisely because of this additional flexibility.

In the case of direct diagonalization, the LDOS would be calculated based
on the eigenvalues and eigenvectors according to Eq. (3.1.25). However, an
additional broadening is usually applied to account for the discrete nature of
the eigenstates. For the Chebyshev expansion of the LDOS, the Gaussian or
Lorentzian kernels play a similar role with the notable difference that they are
an essential part of the computation procedure: increasing the broadening
width will result in lower computation time because of the direct relation with
𝑁 . This enables additional fine-tuning of the performance based on desired
precision. The broadening widths 𝜎 or 𝜖 correspond well to their exactly
diagonalized counterparts, but if given in energy units, they must undergo
a rescaling as �̃� = 𝜎/𝑎 and 𝜖 = 𝜖/𝑎. For the numerical implementation of
the Lorentz kernel, it is convenient to set the desired broadening 𝜖 and then
compute the required number of moments 𝑁 = 𝑎𝜆/𝜖.

3.3 Chebyshev particle view

At first glance, it seems like the Chebyshev expansion (3.1.19) introduces a
mathematical formalism which is able to solve the given problem, but at the
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cost of obscuring the physical interpretation. However, further examination
reveals an interesting particle-like view with a connection to the real-space
crystal lattice.

The key part of the LDOS expansion (3.1.26) is the Chebyshev iteration
scheme Eqs. (3.1.28)-(3.1.30) used to compute the expansion moments. The
moments have the form of expectation values ⟨𝛽|𝑇𝑛(�̃�)|𝛼⟩, not of the Hamil-
tonian �̃�, but of the Chebyshev polynomials of �̃�. Thus the vectors |𝛼⟩ and
|𝛽⟩ represent Chebyshev states instead of real Hamiltonian states. Still, the
Chebyshev states do have a physical interpretation where the iterative proce-
dure of computing states |𝛼𝑛⟩ = 𝑇𝑛(�̃�) |𝛼⟩ may be viewed as the propagation
of a particle defined by the starting state |𝛼⟩.

To demonstrate this, we take a simple square quantum dot of graphene and
compute the LDOS near its center. In the course of this computation the
iterative procedure (3.1.28)-(3.1.30) generates Chebyshev states |𝛼𝑛⟩, some
of which are shown in Fig. 3.3.1. The starting state |𝛼0⟩ is a unit vector with
a single non-zero value which is set to correspond to the lattice site where the
LDOS is to be computed. The real-space view of |𝛼0⟩ is presented in the first
panel of Fig. 3.3.1, where the single colored circle is the single non-zero value
of the starting vector. The white circles represent lattice sites of the graphene
quantum dot where the magnitude is zero. The next step produces the state
|𝛼1⟩ = �̃� |𝛼0⟩. It is clear from matrix-vector multiplication that |𝛼1⟩ will
have more non-zero values than |𝛼0⟩, which in a real-space view represents
the immediate neighbors of the starting site, as seen in the next figure panel.
All further iterations are computed from |𝛼𝑛+1⟩ = 2�̃� |𝛼𝑛⟩ − |𝛼𝑛−1⟩, where
the matrix-vector multiplication again produces new non-zeros only on the
neighbors of the existing non-zero sites. Thus, this iterative procedure is
equivalent to the propagation of a Chebyshev particle in real space.

We refer only to zero and non-zero values of |𝛼𝑛⟩ since this is information
which can be obtained even without full knowledge of the Hamiltonian. Cal-
culating the values of the vectors |𝛼𝑛⟩ requires actually computing the matrix-
vector multiplication with full knowledge of the onsite and hopping energy
values. However, as demonstrated here, the very simple on-off state at each
site can be determined with just structural information. This is because the
state propagates strictly to neighboring sites at each iteration step. This is
visible in Fig. 3.3.1 for starting states |𝛼0⟩ to |𝛼2⟩, as well for later iterations
|𝛼7⟩ to |𝛼9⟩. Such a predictable pattern which can be determined purely
from structural information can be quite useful.

The state |𝛼7⟩ in Fig. 3.3.1 is spread to most of the system, but it doesn’t
reach any of the edges. The next one does: state |𝛼8⟩ touches the edge of
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0 1 2

7 8 9

Fig. 3.3.1: Real space representation of the Chebyshev states |𝛼𝑛⟩ at various
steps of the iteration. The example system is a square quantum dot of graphene
(side width 2.2 nm). The blue circles represent lattice sites where state |𝛼𝑛⟩ has
non-zero magnitude.

the system on the left and right side. Since we know that changes propagate
by only one neighbor per iteration, a reflection from an edge at iteration
𝑛𝑒𝑑𝑔𝑒 = 8 will take the same number of iterations to travel back, reaching
the original site at 𝑁𝑐 = 2𝑛𝑒𝑑𝑔𝑒. This information allows us to determine the
quality of the LDOS result, based on the total number of iteration steps 𝑁
used in the calculation. If 𝑁 < 𝑁𝑐, it means the resulting LDOS will not
contain any features caused by the reflection from the edges of the system.
On the other hand, the LDOS calculated using 𝑁 ≥ 𝑁𝑐 moments will surely
present edge effects. Which outcome is desirable depends on the goals of
the specific study: bulk or finite size properties. Either way, determining
the critical number of moments 𝑁𝑐 is very useful. Modeling systems with
pronounced inhomogeneities (impurities, defects or edges) requires a larger
number of moments to be computed in order for those effects to be visible.

The critical 𝑁𝑐 can be determined purely from the lattice structure as the
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Fig. 3.3.2: KPM computed local density of states at the center of a square
quantum dot of graphene (side width 20 nm and 𝑁𝑐 = 256). The blue line shows
the results of the expansion with a number of moments 𝑁 below the critical value
𝑁𝑐. In that case the reflections from the edges are not captured. The red line
shows lots of oscillations due to reflections which feature in the LDOS for 𝑁 > 𝑁𝑐.

shortest hopping distance from the originating site to the closest edge. For
a simple system as presented in Fig. 3.3.1 this can be determined trivially as
the number of atomic positions at the edge. Note that, if the next-nearest
neighbor model of graphene were used, the Chebyshev state propagation
would hop two sites for each iteration step. Thus it would reach the edge
twice as fast, at 𝑁𝑛𝑛

𝑐 = 𝑁𝑐/2, making the effect of the edge reflection more
apparent in the next-nearest neighbor model.

The influence of the number of expansion moments 𝑁 is shown in Fig. 3.3.2.
The example computes the LDOS at the center of a square quantum dot of
graphene. For 𝑁 < 𝑁𝑐 the LDOS is smooth since it only captures bulk-like
features without any reflections from the edges. When the number of mo-
ments is increased to 𝑁 > 𝑁𝑐, the effect of the edges is visible as oscillations
in the LDOS. Note that the 𝑁 > 𝑁𝑐 curve does also enhance bulk features:
the V-shape of the LDOS at the Dirac point and the Van Hove singulari-
ties both appear sharper. As mentioned earlier, Chebyshev expansion is in
some ways analogous to the Fourier transform. In this way, the higher-order
Chebyshev moments can be seen to contribute as high frequency components
which improve sharpness or bring out small fluctuations.
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3.4 Green’s function

Green’s function describes the impulse response at any point in a system
due to an excitation at any other. From this description, physical properties
may be extracted by applying additional calculations. For example, eigen-
values will appear as poles of the Green’s function while the wave-function
amplitudes will appear as weights of the poles.

Given an excitation 𝑆, the response 𝑅 is related to it by some differential
operator 𝐷𝑜𝑝 as

𝐷𝑜𝑝𝑅 = 𝑆. (3.4.1)

The corresponding Green’s function expresses the response in the form,

𝑅 = 𝐷−1
𝑜𝑝 𝑆 = 𝐺𝑆, (3.4.2)

where 𝐺 ≡ 𝐷−1
𝑜𝑝 is Green’s function. For quantum-mechanical problems, the

differential operator can be expressed as 𝐷𝑜𝑝 = 𝐸−𝐻, where 𝐸 is the energy
and 𝐻 the Hamiltonian, while 𝑅 = Ψ is the wavefunction,

[𝐸 −𝐻]Ψ = 𝑆. (3.4.3)

For a closed system 𝑆 = 0, and the last equation turns into the familiar
eigenvalue problem. But for an open system, such as a scattering region
connected to leads, 𝑆 represents the excitation from one of the leads. Owing
to 𝐺 ≡ 𝐷−1

𝑜𝑝 , Green’s function for our problem is found in the form,

𝐺 = [𝐸 −𝐻 + 𝑖𝜂]−1, (3.4.4)

where the infinitesimally small term 𝜂 is added in order to avoid singularities
at energies close to the solutions of𝐻. Strictly speaking Eq. (3.4.4) represents
the retarded Green’s function, but here we shall refer to it simply as “Green’s
function”.

For tight-binding systems, the Hamiltonian is a large sparse matrix, therefore
Eq. (3.4.4) represents a sparse matrix inversion. Computationally, this is a
very time consuming problem which we would like to avoid by using the kernel
polynomial method. Individual elements of the Green’s function matrix 𝐺
can be expressed via the correlation function,

𝐺𝑖𝑗(𝐸) = ⟨𝑖| 1

𝐸 −𝐻 + 𝑖𝜂
|𝑗⟩ ,

=
𝐷−1∑︁
𝑘=0

⟨𝑖|𝑘⟩ ⟨𝑘|𝑗⟩
𝐸 − 𝐸𝑘 + 𝑖𝜂

,

(3.4.5)
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where 𝑖 and 𝑗 are site indices, 𝐸𝑘 are the eigenstates of the Hamiltonian 𝐻
in the basis extended by eigenstates |𝑘⟩. Using the Plemelj-Dirac formula,

lim
𝜂→0

1

𝑥+ 𝑖𝜂
= 𝒫 1

𝑥
− 𝑖𝜋𝛿(𝑥), (3.4.6)

the imaginary part of the Green’s function is,

Im𝐺𝑖𝑗(𝐸) = −𝜋
𝐷−1∑︁
𝑘=0

⟨𝑖|𝑘⟩ ⟨𝑘|𝑗⟩ 𝛿(𝐸 − 𝐸𝑘). (3.4.7)

In order to expand this function in terms of Chebyshev polynomials, the
problem must first be rescaled using substitutions 𝐻 → �̃�, 𝐸 → �̃�, as intro-
duced earlier. The expansion of the imaginary part of the Green’s function
is performed according to Eq. (3.1.19) and given by,

Im𝐺𝑖𝑗(�̃�) = − 1√︀
1− �̃�2

(︃
𝜇0 + 2

∞∑︁
𝑛=1

𝜇𝑛𝑇𝑛(�̃�)

)︃
, (3.4.8)

where the moments 𝜇𝑛 are computed according to Eq. (3.1.20),

𝜇𝑛 =
1

𝜋

∫︁ 1

−1

Im𝐺𝑖𝑗(�̃�)𝑇𝑛(�̃�)𝑑�̃�

=
𝐷−1∑︁
𝑘=0

⟨𝑖|𝑘⟩ ⟨𝑘|𝑗⟩𝑇𝑛(𝐸𝑘)

=
𝐷−1∑︁
𝑘=0

⟨𝑖|𝑇𝑛(�̃�)|𝑘⟩ ⟨𝑘|𝑗⟩

= ⟨𝑖|𝑇𝑛(�̃�)|𝑗⟩ .

(3.4.9)

The real part is fully determined by the imaginary part. From Eq. (3.4.6)
and the Hilbert transformation (3.1.15) it follows that

Re𝐺𝑖𝑗(�̃�) = − 1

𝜋
𝒫
∫︁ 1

−1

Im𝐺𝑖𝑗(𝐸)

�̃� − �̃� ′
𝑑�̃� ′

= −2
∞∑︁
𝑛=1

𝜇𝑛𝑈𝑛−1(�̃�)

(3.4.10)

Combining the real and imaginary parts, the full Green’s function becomes,

𝐺𝑖𝑗(�̃�) =
−𝑖√︀

1− �̃�2

(︃
𝜇0 + 2

∞∑︁
𝑛=1

𝜇𝑛e−𝑖𝑛 arccos(�̃�)

)︃
. (3.4.11)
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Note that this represents a single element of the Green’s function matrix and
that the calculation does not depend on any neighboring matrix elements.

The entire computational effort is tied up in the calculation of the expansion
moments 𝜇𝑛 (3.4.9). They appear as expectation values which are computed
iteratively according to the scheme outlined in Eqs. (3.1.28)-(3.1.31). The
procedure is replicated here in terms of |𝑖⟩ and |𝑗⟩ for convenience:

|𝑗0⟩ = |𝑗⟩ , (3.4.12)

|𝑗1⟩ = �̃� |𝑗0⟩ , (3.4.13)

|𝑗𝑛+1⟩ = 2�̃� |𝑗𝑛⟩ − |𝑗𝑛−1⟩ , (3.4.14)

𝜇𝑛 = ⟨𝑖|𝑗𝑛⟩ . (3.4.15)

Note that moments of diagonal elements 𝐺𝑖𝑖 may be computed according to
the faster procedure given by Eqs. (3.1.32) and (3.1.33),

𝜇2𝑛 = 2 ⟨𝑗𝑛|𝑗𝑛⟩ − 𝜇0, (3.4.16)

𝜇2𝑛+1 = 2 ⟨𝑗𝑛+1|𝑗𝑛⟩ − 𝜇1. (3.4.17)

Since the moments 𝜇𝑛 do not depend on energy, they need to be computed
only once and can be reused to determine the Green’s function for any en-
ergy. The final equation (3.4.11) is computationally cheap compared to the
effort needed for the moments. It can even be implemented in terms of
the fast Fourier transform (FFT) thereby further improving efficiency [68].
Practically, the KPM-based Green’s function is computationally “free” as a
function of energy.

In the real-space tight-binding representation, a matrix element is tied to a
spatial position. A single computation of 𝐺𝑖𝑗 will return the entire energy
spectrum for a single position, so the effort scales up with the desired spatial
area. This is very convenient when studying localized properties: only the
very small set of elements needs to be computed. If a larger area is needed,
the computation can be parallelized naturally since a single element 𝐺𝑖𝑗 does
not depend on any other. In addition, performance can be improved by
computing an entire column of the Green’s function matrix at once. Following
the iterative scheme Eqs. (3.4.12)-(3.4.14) it is clear that the vector |𝑗𝑛⟩ only
depends on the column index 𝑗, while the row index 𝑖 comes in only in the
final stage Eq. (3.4.15). This enables the computation of an entire column of
the Green’s function matrix at minimal extra cost compared to computing a
single element. Parallelization can then be applied over columns instead of
individual elements.
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After the Green’s function is computed, physical properties may be extracted
by applying additional calculations, e.g. the eigenvalues can be found as its
zeros. The local density of states corresponds to the imaginary part of the
local spectral function,

𝜌𝑖(𝐸) = − 1

𝜋
Im𝐺𝑖𝑖(𝐸). (3.4.18)

The current density between lattice sites 𝑖 and 𝑗 is,

𝐽𝑖𝑗 = − 1

𝜋

∫︁
Im[𝑖𝑡𝑖𝑗𝐺𝑖𝑗(𝐸)− 𝑖𝑡*𝑖𝑗𝐺*

𝑖𝑗(𝐸)]𝑓(𝐸)𝑑𝐸. (3.4.19)



CHAPTER 4

Simulating tight-binding
systems with computer code

Analytical methods can frequently be used to design a sufficiently simplified
model of a physical system while still retaining and predicting real-world
behavior. They can easily be applied to infinitely large systems where they
can present the whole picture in the form of an elegant analytical expression.
However, the conditions imposed to derive such models can fail for particu-
lar fields of interest. We encounter several such cases in this thesis. When
parameters become too large they invalidate certain approximations (strain
up to the full limits of graphene). Continuum models cannot consider fea-
tures smaller than the wavelength (vacancies and other structural defects).
Phenomena which compete on similar energy scales cannot be treated per-
turbatively (supercritical impurities and magnetic fields). Such cases can
only be considered numerically, hence our interest in using and developing
new numerical tools.

If the description of only a handful of atoms is required, first principal meth-
ods offer very good accuracy, but they also come with an inherent limitation
of the size of the system which can be considered. A middle ground is found
in the form of the tight-binding method which approximates some features
but still gives a very detailed description of the system. It can be used to
model systems on the order of millions of atoms.

The tight-binding method also represents a middle ground in terms of how
difficult it is to implement using computer code. First principal calculations

45
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present a high enough degree of difficulty that few would consider writing
their own single-purpose code which would be discarded after one use. In-
stead, attention is given to building reusable code libraries which greatly
simplify usage. A quick online search reveals a large number of ab initio soft-
ware packages [69], which present good reusable resources and allow more
work to be done without having to first “reinvent the wheel”. On the other
hand, tight-binding is just simple enough that individuals may write semi-
complex code which solves a single problem and will later be discarded. A
better solution is to write code which can be applied to a whole class of
problems. Although it does require more initial effort, development time is
actually reduced in the long run thanks to code reusability. This also im-
proves the overall code quality and reduces errors because more time is spend
on less code.

While nowhere near as abundant as ab initio software, the domain of tight-
binding does feature packages of note: PythTB [70] and Kwant [71]. PythTB
is able to construct both finite size and periodic tight-binding systems of
arbitrary dimensionality and it specifically includes rich tools for comput-
ing Berry phases. It was primarily intended as a teaching tool and is not
optimized for large tight-binding problems. Kwant specializes in transport
calculations where semi-infinite leads are attached to a finite scattering re-
gion. It targets realistically large systems and has a very efficient solver for
computing the scattering matrix. It can also be used to construct arbitrary
finite-sized systems.

In the course of this thesis, a new tight-binding code package was developed,
called Pybinding. Although it was initially conceived to aid the numerical
work specifically for this thesis, it is sufficiently general purpose that it can be
applied to a wide range of tight-binding systems. It is available as an open
source project∗ for anyone to use. Appendix A contains a usage tutorial
with some concrete code examples. This chapter presents the theoretical
framework and ideas behind the code. We examine how the abstractions
used in physics need to be modified in order to develop an effective code
framework for the tight-binding model. We also present specific tweaks which
can be made to improve the performance of the kernel polynomial method
both for CPUs and GPUs.

This chapter is presented in general mathematical terms with some language-
independent pseudo-code, thus making a concrete implementation possible
in any programming language. The actual Pybinding code is written in a
combination of Python and C++11. The source code is available online∗.

∗https://github.com/dean0x7d/pybinding
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4.1 Constructing a tight-binding system

An introduction to the tight-binding model was presented in Chapter 2.
There, we were mainly concerned with the bulk properties of a material
where it is sufficient to describe just the unit cell and apply periodic bound-
ary conditions. In order to consider finite-sized systems and related effects
(edges, defects, etc.) we must further develop the real-space representation
of the tight-binding model. The size of the Hamiltonian matrix in this rep-
resentation is equal to the number of atoms (and orbitals/spins) which are
contained in the system. Here, we shall discuss ways of constructing such
large-scale systems.

For an N-dimensional Bravais lattice, unit cell positions are described by the
infinite set,

�⃗� =
𝑁∑︁
𝑖=1

𝑛𝑖 �⃗�𝑖, (4.1.1)

where �⃗�𝑖 are lattice vectors in real space and 𝑛𝑖 are integers. While �⃗� describes
the real space coordinates of a unit cell, we can also define the compound
index 𝑛 = {𝑛1, 𝑛2, 𝑛3, ...} which describes the position of a unit cell in lattice
coordinates. A unit cell may contain multiple atoms with distinct positions,

�⃗�𝜇 = �⃗� + �⃗�𝜇, (4.1.2)

where �⃗�𝜇 is the position of sublattice 𝜇 within the unit cell.

In general, the tight-binding Hamiltonian can be written down as,

𝐻 =
∑︁
𝑖,𝑗

𝐻𝑖𝑗 |𝑖⟩ ⟨𝑗| , (4.1.3)

where 𝑖 and 𝑗 are Hamiltonian indices which refer to the degrees of freedom
of the system. For real-space tight-binding models, the integer index 𝑖 refers
to state |𝑖⟩ = |⃗𝑟𝜇𝛼⟩, where �⃗�𝜇 is the position and 𝛼 may label any additional
degrees of freedom (e.g. orbitals and spins). Note that the sublattice degree
of freedom is coupled directly with the position �⃗�𝜇 because we chose this
convention in Eq. (4.1.2).

The Hamiltonian indices 𝑖 and 𝑗 are strictly integers which index the scalar
matrix elements 𝐻𝑖𝑗. Matrix elements where 𝑖 ̸= 𝑗 contain values of the
hopping parameters which connect indices 𝑖 and 𝑗. Diagonal elements 𝐻𝑖𝑖

are the onsite energy terms. Alternatively, the hoppings can also be defined
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as matrices,

𝐻�⃗�𝜇 �⃗� ′
𝜇

=
∑︁
𝛼,𝛼′

𝐻�⃗�𝜇𝛼�⃗� ′
𝜇𝛼

′ |⃗𝑟𝜇𝛼⟩ ⟨⃗𝑟 ′
𝜇𝛼

′| , (4.1.4)

where 𝐻�⃗�𝜇 �⃗� ′
𝜇

is a submatrix of the full Hamiltonian. It has the dimensions
𝑁𝛼×𝑁𝛼′ which correspond to the number of degrees of freedom of 𝛼 and 𝛼′,
respectively. In the simplest case of a single-orbital, spinless model, 𝐻�⃗�𝜇 �⃗� ′

𝜇

would be a scalar value just like 𝐻𝑖𝑗 and index 𝑖 would refer to position �⃗�𝜇.
When the additional degrees of freedom 𝛼 are added, 𝐻�⃗�𝜇 �⃗� ′

𝜇
becomes a ma-

trix but it retains the direct correspondence to positions in real space. This is
in contrast to 𝐻𝑖𝑗 where we may find multiple different indices corresponding
to the same position (e.g. multiple orbital on the same atom). For a con-
crete implementation in code, the 𝐻�⃗�𝜇 �⃗� ′

𝜇
approach has the distinct advantage

both in terms of algorithmic complexity (it’s easier to reason about direct
connections in real space) as well as memory requirements (there is a smaller
number of unique hoppings to keep track of).

For a pristine material, the hoppings 𝐻�⃗�𝜇 �⃗� ′
𝜇

will be constants, but in general
they may be position dependent, e.g. in the presence of an external field.
Thus, it is useful to separate the system construction process into two distinct
parts. The pristine material is constructed first with predefined onsite and
hopping parameters. The energy values can later be modified by introducing
appropriate transformations. Similarly, the definition of the geometry of the
system can be separated into two parts, where a highly ordered Bravais lattice
is considered first and any disorder is added in a later construction step.

The entire construction procedure consists of the following steps:

1. Define the unit cell of the Bravais lattice.
2. Create a finite-sized pristine system by translating the unit cell.
3. Introduce structural defects and disorder.
4. Apply fields or any effects which modify the onsite and hopping terms.

The initial step merely collects information about the pristine material. This
includes the lattice vectors �⃗�𝑖, sublattice offsets �⃗�𝜇, and the onsite and hop-
ping terms𝐻�⃗�𝜇 �⃗� ′

𝜇
which are constants at this point, thus reflecting the pristine

and infinitely periodic lattice.

Building a finite-sized pristine system

The geometry of a tight-binding system can be defined by supplying the
coordinates of specific cells, i.e. supplying a set of indices 𝑛𝑖 as per Eq. (4.1.1).
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However, doing so by hand can be very tedious for humans. It is preferable
to define the geometry using more natural ways such as simple polygons or
freeform shapes which are defined by a mathematical relation. The computer
can then translate from that high-level concept into raw lattice indices.

The problem of filling in a shape with discrete points can be solved from
two different directions: bottom-up or top-down. The bottom-up approach
involves the use of the flood-fill algorithm [72]. It starts from a single point
which is known to be inside the desired shape and then recursively visits
all neighbors. Points which are found to be inside the shape are kept and
the recursive procedure continues until no more points can be added. The
downside of this procedure is that it’s inherently serial: a new point cannot be
added before its previous neighbor is checked. Thus, for performance reasons,
we choose to adopt the alternative top-down method using a bounding box
and scanning fill.

To demonstrate the bounding box approach, we shall first consider a simple
2D polygon shape defined by a set of vertices �⃗�𝑖 (see Fig 4.1.1(a)). We need to
determine a minimum box which can hold the given shape. This is a box, not
in Cartesian coordinates, but in lattice coordinates, i.e. the sides of the box
are aligned with the unit vectors of the lattice. For user convenience, polygon
vertices �⃗�𝑖 are given in Cartesian coordinates, so we must first translate then
into lattice coordinates.

Let us assume that a polygon vertex �⃗� can be expressed in terms of the lattice
vectors similar to Eq. (4.1.1),

�⃗� =
𝑁∑︁
𝑖=1

𝜂𝑖 �⃗�𝑖, (4.1.5)

with the difference that the terms 𝜂𝑖 are real numbers, unlike the integers
𝑛𝑖 which index unit cells. This change is perfectly natural as the freely
positioned vertex �⃗� does not need to conform perfectly to lattice unit cells.
The terms 𝜂𝑖 can also be thought of as the components of vector �⃗�. We
already know the value of �⃗� as well as all of the lattice vectors �⃗�𝑖, but we must
determine �⃗�. Notice that Eq. (4.1.5) defines a system of linear equations. In
3 dimensions the system reads,⎛⎝𝑎1𝑥 𝑎2𝑥 𝑎3𝑥

𝑎1𝑦 𝑎2𝑦 𝑎3𝑦
𝑎1𝑧 𝑎2𝑧 𝑎3𝑧

⎞⎠ ·
⎛⎝𝜂1𝜂2
𝜂3

⎞⎠ =

⎛⎝𝑟𝑥𝑟𝑦
𝑟𝑧

⎞⎠ . (4.1.6)

For a small number of dimensions, this system is easy to solve by hand. For
the general N-dimensional case, it can be easily solved numerically using any
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Fig. 4.1.1: Example of the construction procedure for a specific geometry of
a graphene system. (a) The desired shape, expressed as a collection of polygon
vertices. (b) The lattice-aligned bounding box encompasses the desired shape.
(c) All positions are checked and only the ones inside the shape are kept. (d) Final
system including dangling bonds. (e) After clearing the dangling bonds.

linear algebra package. After computing the 𝜂𝑖 values for each vertex of the
polygon, the values are rounded to the nearest integers which aligns them to
the unit cells. The extremal values represent the farthest points of the shape
which must be contained inside the bounding box. An illustration of this is
given in Fig. 4.1.1(b).

The advantage of the lattice-aligned box is that it can be represented as an
N-dimensional array in code. All elements of this array can then be processed
in parallel to check which points are actually located inside the shape. For
shapes given as a list of vertices, this can be resolved quickly using the well
known point-in-polygon algorithm [73]. In the most general N-dimensional
case of a freeform shape, the mathematical function which describes the shape
also defines which points will be kept. A small inconvenience for freeform
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shapes is that the bounding box cannot be determined automatically, so
an extra N-dimensional width parameter needs to be supplied to limit the
extent of the shape. Fortunately, this can be a simple Cartesian box and the
computer will translate into lattice coordinates as before.

Figures 4.1.1(c) and (d) illustrate the geometry of a graphene system after
filling in the desired polygon. Note that there are a number of atoms with
only a single neighbor. In the most general case, we can define a dangling
atom as one which has less than some minimum number of neighbors. For
example, in the nearest neighbor model of graphene, the minimum neighbor
count is 2, but for the next-nearest neighbor model all atoms which have less
that 4 neighbors are considered dangling. The number itself will depend on
the material and specific model. Removing the dangling atoms is a simple
case of counting the neighbors of all atoms and eliminating the ones that
don’t satisfy the minimum.

Adding disorder

After the regular part of the system is constructed, we can add various de-
fects or strain the system. Defects can be expressed as position-dependent
functions which can add or remove an atom from the existing system. Sim-
ilarly bond reconstruction is achieved by designating position pairs where
to add or remove a hopping term. Strain is included by defining a position
displacement function, as expected.

In general, a tight-binding system does not need to have any kind of reg-
ular structure. A collection of randomly positioned sites connected by ran-
domly distributed hoppings would still constitute a tight-binding system. By
making the construction of a regular Bravais lattice the first step of our con-
struction procedure, we are biasing our implementation towards more regular
structures where disorder is added only in the second stage. This is not the
most general purpose approach, however it is a pragmatic choice as most
systems in solid state physics are like this. The regular structure also allows
for better performance, as we shall see later.

Adding external fields

Up to this point, all onsite and hopping energy terms 𝐻�⃗�𝜇 �⃗� ′
𝜇

have been con-
sidered constants, reflecting the pristine material. At this stage we can in-
troduce transformations which apply external fields or any other kinds of
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Fig. 4.1.2: Tight-binding Hamiltonian construction performance and memory
usage. The results were measured for Pybinding v0.8.0 and Kwant v1.2.2 using:
Intel Core i7-4960HQ CPU, 16 GiB RAM, Python 3.5, macOS 10.11. The RAM
usage was measured using memory profiler v0.41.

effects which modify the onsite and hopping terms. For the onsite energy, a
function of the form 𝑣(𝑣0, �⃗�𝜇) takes the existing onsite value 𝑣0 and position
�⃗�𝜇 as parameters and returns the new onsite energy values, e.g. representing
an electric field. For the hoppings, function 𝑡(𝑡0, �⃗�𝜇, �⃗�

′
𝜇) would define the

value of the hopping energy between positions �⃗�𝜇 and �⃗� ′
𝜇, where 𝑡0 is the

pristine value. For example, a magnetic field can be added using the Peierls
substitution in this form.

The Hamiltonian matrix is the final product of the construction procedure.
It fully describes the model system, including the structural relationships
between atoms and the concrete onsite and hopping energy parameters. Be-
cause of the large scale of tight-binding systems, the Hamiltonian is stored
as a sparse matrix, specifically, in the CSR format [74]. This is a commonly
used format which is compatible with many solver routines. The next step
is to apply computations to the matrix to obtain the values of the desired
quantum properties. This can be done either using exact diagonalization or
approximative methods, like the kernel polynomial method.

System construction performance

The procedure outlined in this chapter is implemented in the Pybinding code
package. The benefits of this specific approach are high performance and low
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memory usage of the tight-binding system builder.

In order to quantify the performance, we compare the built time and memory
usage of Pybinding with the Kwant package. Both packages can be used to
construct the same tight-binding systems. For this comparison, we construct
a circular graphene flake with a pn-junction and a constant magnetic field
(for more details, see Appendix A). The system build time is measured from
the start of the definition to the point where the Hamiltonian matrix is fully
constructed (a sparse matrix is used in both cases).

Pybinding builds the Hamiltonian much faster than Kwant: by two orders
of magnitude. The main reason for this is in the way the system shape
and fields are implemented. Both Kwant and Pybinding take user-defined
functions as parameters for model construction. Kwant calls these functions
individually for each atom and hopping which is quite slow. Pybinding stores
all atoms and hoppings in contiguous arrays and then calls the user-defined
functions just once for the entire dataset. This takes advantage of vector-
ization and drastically improves performance. Similarly, the lower memory
usage is achieved by using arrays and CSR matrices rather than linked lists
and trees.

Please note that at the time of writing Pybinding v0.8 does lack certain sys-
tem construction features compared to Kwant. Specifically, it is currently
not possible to build heterostructures in Pybinding, but this will be resolved
in future versions. New features will be added while maintaining good per-
formance.

4.2 Optimizing the KPM algorithm

The kernel polynomial method (KPM) was described in detail in Chapter 3.
There, we noted that almost all of the computational effort of this method
is tied up in the calculation of the Chebyshev expansion moments 𝜇𝑛. The
entire KPM procedure consists of many additional steps which both precede
the moments calculation (e.g. finding the energy bounds and rescaling the
Hamiltonian) and follow it (e.g. applying the damping kernel and recon-
structing the function of interest). Although some of those other steps are
conceptually more difficult, computationally by far the most expensive part
of the KPM procedure is the calculation of the moments. Here, we shall take
a look at the implementation of this algorithm and present specific tweaks
which can be made to improve the performance both for CPUs and GPUs.
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The expansion moments may have different forms depending on the function
which is being approximated, however, it is very common for them to appear
as expectation values 𝜇𝑛 = ⟨𝛽|𝑇𝑛(�̃�)|𝛼⟩, where |𝛼⟩ and |𝛽⟩ are certain states
of the system, �̃� is the rescaled Hamiltonian and 𝑇𝑛 are Chebyshev polyno-
mials of the first kind (see Chapter 3 for details). For the first optimization
step presented here, we shall assume that |𝛼⟩ and |𝛽⟩ are unit vectors, how-
ever, the later optimizations are equally beneficial for the random starting
vector KPM procedure.

The full iterative scheme for computing 𝜇𝑛 = ⟨𝛽|𝑇𝑛(�̃�)|𝛼⟩ is outlined in
detain in Eqs. (3.1.28)-(3.1.31). A summary of the procedure is replicated
here for convenience:

|𝛼0⟩ = |𝛼⟩ , (4.2.1)

|𝛼1⟩ = �̃� |𝛼0⟩ , (4.2.2)

|𝛼𝑛+1⟩ = 2�̃� |𝛼𝑛⟩ − |𝛼𝑛−1⟩ , (4.2.3)

𝜇𝑛 = ⟨𝛽|𝛼𝑛⟩ . (4.2.4)

The corresponding pseudo-code function is presented in Algorithm 1. The
function parameters include the sparse matrix �̃�, vectors �⃗� and �⃗� and the
total number of moments 𝑁 which are to be calculated. The result of the
function are the expansion moments 𝜇𝑛.

Algorithm 1 Calculation of expansion moments

1: function calculate_moments(�̃�, �⃗�, �⃗�, 𝑁)
2: �⃗�0 ← �⃗�
3: 𝜇0 ← �⃗� · �⃗�0

4: �⃗�1 ← �̃� �⃗�0

5: 𝜇1 ← �⃗� · �⃗�1

6: �̃�2 ← 2�̃�
7: for 𝑛← 2, 3, . . . 𝑁 − 1 do
8: �⃗�0 ← �̃�2 �⃗�1 − �⃗�0 ◁ most compute-intensive line
9: 𝜇𝑛 ← �⃗� · �⃗�0

10: swap(�⃗�0, �⃗�1)
11: end for
12: return 𝜇0, 𝜇1, 𝜇2, ... 𝜇𝑁

13: end function

At this stage, a few obvious optimizations are already taken into account.
Only the two latest vectors (𝛼𝑛 and 𝛼𝑛−1) are kept in memory at any given
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Fig. 4.2.1: Illustration of Hamiltonian reordering and its impact on KPM itera-
tion. (Top) The original Hamiltonian. (Bottom) Reordered Hamiltonian. (Left)
Illustration of a small graphene quantum dot. The numbers indicate the Hamil-
tonian index 𝑖 of an atom. The bright green atom near the center is the target
of the calculation, i.e. the starting unit vector |𝛼0⟩ is set to 1 at that index. The
subsequent colors distinguish atoms by their distance from the target (i.e. nearest,
next nearest, etc.). (Right) Each column represent a vector |𝛼𝑛⟩ at each iteration
step 𝑛. The white blocks indicate a zero values at a particular atom 𝑖. Colored
blocks indicate non-zero values, but the color itself corresponds to distance from
the target atom.
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time. The constant product 2�̃� is lifted outside the loop and executed only
once. In case �⃗� is a unit vector, the dot product �⃗� · �⃗�0 simplifies to array
indexing. We assume these simple tweaks are applied and we consider this
the base “unoptimized” version of the algorithm.

Algorithm 1 is actually extremely simple and there is not much that can
be done to further simplify the algorithm itself. Instead, we shall focus on
the structure of the data which is used in the computation. Line 8 contains
the most expensive part of the procedure: the sparse matrix-vector multi-
plication (SpMV). The rescaled Hamiltonian �̃� must be a sparse matrix,
but the specific sparse format does not matter for the following optimization
procedure.

Hamiltonian matrix reordering and slicing

To better understand the data structure of the KPM iteration procedure, we
use an example of a small graphene quantum dot, as shown in Fig. 4.2.1(a).
Each atom is labeled with its Hamiltonian index. The order in which the
atoms are numbered does not matter physically (all permutations are equiv-
alent), so this just represents an implementation detail which can be tweaked
as needed.

Figure 4.2.1(b) presents vectors |𝛼𝑛⟩ as columns and shows the progression
with iteration step 𝑛. For illustration, we arbitrarily take 𝑁 = 15 as the total
number of KPM iterations. Each block 𝑖 of a vector |𝛼𝑛⟩ corresponds to an
atom. White blocks contain zeros and colored blocks non-zeros. The KPM
iteration uses the unit vector |𝛼0⟩ as the starting point, where only atom 𝑖 =
13 is set to 1 since this is the target of the calculation. At iteration step 𝑛 = 1,
vector |𝛼1⟩ contains 4 non-zero values corresponding to its nearest neighbors.
Iteration 𝑛 = 2 contains more non-zeros and so on. This progression is due
to SpMV and the non-zeros spread strictly according to their neighbors (this
was explained in more detail in Section 3.3). After iteration step 𝑛 = 5 all
vectors |𝛼𝑛⟩ are densely populated.

The optimization opportunity here lies in the starting region 𝑛 < 5 which in-
volves only partially populated vectors (which contain mostly zero elements).
Note that this region becomes more significant as the size of the system grows,
however, we keep the system small for the example. When the Hamiltonian
matrix is multiplied by a partially populated vector, computational resources
are wasted with lots of multiplications by zero. The solution is, of course, to
skip the useless operations, but this is not as simple as it might seem. The
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Fig. 4.2.2: Sliced view and dependencies of KPM iteration. (a) Vectors |𝛼𝑛⟩
where each row represents a region with the same color from Fig. 4.2.1(d), i.e.
each row in this figure is a slice of the system containing atoms with the same
distance from the target. A colored slice contains non-zero values while the white
slices contain only zeros and will not be involved in any calculation. (b) In order
to calculate the values in the red slice (𝑛, 𝑠), we must first know the values of the
orange and yellow slices (and so on as we move backward with the 𝑛 index).

progression of zero/non-zero elements, as shown in Figs. 4.2.1(a) and (b), is
very simple to map out ahead of time using just the structural information
and following the neighbors starting from the target. Therefore, a mask could
be created for each step 𝑛 of the KPM iteration which would select just the
non-zero elements for multiplication. Unfortunately, such masks would use
extra memory and a performance penalty would be incurred for the condi-
tional operation of selecting elements for multiplication (which would need to
be checked for each element). The overhead of this selection logic is actually
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Fig. 4.2.3: Tail end optimization. The gray slices contain non-zero values but
they need not be computed. The red block corresponds to the ultimate calculation
target defined by the vector |𝛽⟩. For the case when (a) |𝛽⟩ = |𝛼⟩ and (b) |𝛽⟩ ≠ |𝛼⟩.
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greater than the multiplication by zero which we wish to eliminate, thus this
approach is counterproductive.

The main issue is that each vector |𝛼𝑛⟩ has a non-contiguous distribution of
non-zero values. We can resolve this by reordering the Hamiltonian indices
of the atoms as shown in Fig. 4.2.1(c). The target atom is repositioned to
coincide with 𝑖 = 0, its nearest neighbors take the subsequent numbers, and
so on. The vectors of the KPM iteration are now nicely sorted, Fig. 4.2.1(d).
The sorting itself does not have any impact on performance, but it does
enable the following optimization. Because the non-zero values are all located
in a contiguous region at the start, we don’t need any masks but just a single
number to indicate the size of the non-zero region. This size can be know
ahead of time just based on the structural information and a single size value
can be assigned to each KPM iteration. We can then do only a partial matrix-
vector multiplication, involving only elements up to the given size (no need
for any selection logic). Because only a single size number is involved, there
is practically no optimization overhead and the final performance gains are
directly proportionally to the number of zero-element multiplications which
have been eliminated.

Now that the Hamiltonian indices have been sorted, a new way to view
KPM iteration is revealed: as slices of the system. We define a slice as
containing all the atoms which have the same distance from the target atom,
i.e. each color in Fig. 4.2.1(d) represents a different slice. Note that this
means that the number of atoms inside a slice is variable. We can now
rework the representation of the KPM iteration into its equivalent slice view
and present it in Fig. 4.2.2(a). The iterations are indexed with 𝑛 as before,
and 𝑠 indexes the slices. White slices contain only zero values and will never
be part of any calculation as per the previous optimization.

The benefit of the sliced view is that each new KPM iteration will involve
exactly one more slice, which makes it easier to reason about. This also
makes it easier to notice the dependence relation between slices. As per
the KPM iteration procedure (4.2.3) each new vector is produced from the
matrix-vector multiplication |𝛼𝑛⟩ = 2�̃� |𝛼𝑛−1⟩ − |𝛼𝑛−2⟩. To calculate only a
contiguous slice 𝑠 of vector |𝛼𝑛⟩ we need only slices 𝑠−1 to 𝑠+ 1 from vector
|𝛼𝑛−1⟩ and slice 𝑠 from vector |𝛼𝑛−2⟩, as depicted in Fig. 4.2.2(b). We must
take 3 slices from |𝛼𝑛−1⟩ because of the matrix-vector multiplication. Only
those 3 are required because they are nearest neighbors∗ and no other slices

∗The nearest neighbor relationship of the slices is orthogonal to the nearest neighbor
hoppings of the atoms in our example model. This sliced view can be applied completely
generally to any model with any level of neighbors taken into account.
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Fig. 4.2.4: Performance benefits of the slicing optimization. (Top) Running on
a single CPU core and (bottom) on the GPU. (Left) Computation time of 3.4
thousand KPM moments for a circular graphene flake with a varying number of
atoms. |𝛽⟩ = |𝛼⟩ and taken in the center. (Right) Speedup factor obtained with
the optimization. The results were gathered from Pybinding v0.8.0. The CPU
code was execute using Intel Core i7-4960HQ with 16 GiB RAM, and the GPU
code using Nvidia GeForce GT 750M with 2 GiB RAM.

will have any influence on the product. Only the single slice 𝑠 is required
from |𝛼𝑛−2⟩ because of the simple subtraction.

With the slice dependence relation worked out as presented in Fig. 4.2.2(b),
we can eliminate additional unneeded calculations from the tail of the iter-
ation. Specifically, because the final moment is determined by 𝜇𝑛 = ⟨𝛽|𝛼𝑛⟩,
we may not actually need to compute the full vector |𝛼𝑛⟩, but only the slice
corresponding to non-zero values in |𝛽⟩. Examples are presented in Fig. 4.2.3.
The gray slices of the tail end iterations represent non-zero values, but they
need not be computed because their contribution will not affect the final
result.

The optimized procedure for KPM iteration involves the same Algorithm 1,
where the full SpMV from Line 8 is just replaced with a partial SpMV which
takes very simple start and end indices to identify the contiguous region which
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Fig. 4.2.5: KPM iteration sliced view for different system sizes. 𝑆 is the number
of slices which is proportional to system size and 𝑁 is the total number of KPM
iterations. 𝑁 = 15 is constant while (a, d) 𝑆 = 6, (b, e) 𝑆 = 8 and (c, f) 𝑆 = 12.
(Top) For |𝛽⟩ = |𝛼⟩, e.g. for LDOS calculations. (Bottom) For |𝛽⟩ ̸= |𝛼⟩ which is
taken on the edge of the system, e.g. for Green’s function. White slices contain
only zeros and are not computed. Gray slices contain non-zeros but will not affect
the final result and are not computed. Only blue slices contain useful values and
are computed.

is to be computed. The values which are skipped during the SpMV would
not have any effect on the calculation anyway, so the results are identical to
the unoptimized version.

The performance gains are directly proportional to the amount of removed
work which is naturally going to be more significant for larger systems. In
order to quantify this, we model a circular graphene flake and calculate 3400
KPM moments while increasing the system size. The results are presented
in Fig. 4.2.4 both for code executed on a single CPU core, as well as a GPU.
The slicing optimization offers speedup factor which increases with system
size. Note that the speedup is more significant on the GPU.

The optimized calculation time actually saturates for large systems. This
behavior is explained in Fig. 4.2.5. When the system size is small, we can
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remove a small amount of work at the head and tail of the iteration procedure.
As the size is increased, more useful work can be done (the blue slices).
However, when the system becomes very large, the amount of useful work
saturates for the |𝛽⟩ = |𝛼⟩ case. This is applicable to calculations such as the
local density of states (LDOS). On the other hand, when |𝛽⟩ ≠ |𝛼⟩ there is
no saturation, but the optimization scales very well, with a large amount of
work being removed at both head and tail. This greatly benefits calculation
such as Green’s function.

Interleaving moments

So far, we have achieved a significant speedup by identifying and removing
unnecessary work. The only modification to Algorithm 1 was the replacement
of the full SpMV with a partial one. That optimization benefits only the
“local” variant of KPM where |𝛼⟩ and |𝛽⟩ are unit vectors, but does not
improve the “global” variant of KPM which uses random vectors (which start
with all non-zero values). This second optimization benefits both variants
by improving the efficiency of the iteration procedure.

Algorithm 2 Interleaved calculation of expansion moments

1: function calculate_moments(�̃�, �⃗�, �⃗�, 𝑁, 𝑆)
2: �⃗�0 ← �⃗�
3: 𝜇0 ← �⃗� · �⃗�0

4: �⃗�1 ← �̃� �⃗�0

5: 𝜇1 ← �⃗� · �⃗�1

6: �̃�2 ← 2�̃�
7: for 𝑛← 2, 4, 6, . . . 𝑁 − 1 do ◁ 𝑁 must be a multiple of 2
8: for 𝑠← 1, 2, 3, . . . 𝑆 − 1 do ◁ calculate vectors slice by slice
9: �⃗�0[𝑠+ 1]←partial_spmv(�̃�2, �⃗�1, �⃗�0, 𝑠+ 1)
10: �⃗�1[𝑠]←partial_spmv(�̃�2, �⃗�0, �⃗�1, 𝑠)
11: end for
12: 𝜇𝑛 ← �⃗� · �⃗�0

13: 𝜇𝑛+1 ← �⃗� · �⃗�1

14: end for
15: return 𝜇0, 𝜇1, 𝜇2, ... 𝜇𝑁

16: end function

It is well know that the primary performance limitation for sparse matrix-
vector multiplication is the memory bandwidth available to the processor [74,



62 CHAPTER 4. CODE

n, s

n - 1,
s + 1

n - 1,
s - 1

n - 1,
s

n - 2,
s + 1

n - 2,
s + 2

n - 2,
s

n - 3,
s + 1

n

s
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slices are shared between the two calculations.

75]. The computational resources of the processor (CPU or GPU) are wasted
while it’s waiting for data (matrix and vector elements) to arrive from main
memory. This is why processors have a small amount of very fast cache
memory built in. Performance is significantly improved if calculations can
run directly from cache, thus bypassing main memory bandwidth concerns.
In the case of KPM iteration, the |𝛼𝑛⟩ vectors are very large and do not fit
into the cache. Therefore, iteration 𝑛 + 1 cannot benefit from the cache of
iteration 𝑛 and must reload all data from main memory.

Normally, KPM iterations are strictly ordered: iteration 𝑛 must be fully com-
pleted before 𝑛+ 1 can begin. However, our analysis of the slice dependence
from the previous section presents an opportunity for some improvements.
We present a modified KPM iteration in Algorithm 2. The notable difference
here is that we calculate two KPM vectors simultaneously. This is possible
because one vector runs one slice ahead of the other, therefore providing the
dependent data. We refer to this as “interleaving” the iterations. This can
be better understood by examining Fig. 4.2.6. Slice (𝑛−1, 𝑠+1) is calculated
first, followed by (𝑛, 𝑠). This order satisfies all slice dependencies as seen in
the figure. A great benefit of this arrangement is that the result of one step,
(𝑛 − 1, 𝑠 + 1), is immediately used as the input for the next step, therefore
bypassing main memory entirely (as long as the slice is small enough to fit
into cache). Slice (𝑛− 2, 𝑠) is similarly reused as input for both steps. As a
result the required memory bandwidth is reduced significantly.
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Fig. 4.2.7: Performance benefits of the interleaving optimization. (Top) Running
on a single CPU core and (bottom) on multiple CPU cores. (Left) Computation
time of 3.4 thousand KPM moments for a circular graphene flake with a varying
number of atoms. (Right) Speedup factor obtained with the optimization. The
results were gathered from Pybinding v0.8.0. The code was execute using Intel
Core i7-4960HQ with 16 GiB RAM.

To measure the performance, we use the same configuration as the previous
section. The results are presented in Fig. 4.2.7. This new interleaving op-
timization works in addition to the previous slicing optimization which we
use as the baseline for comparison. When using just 1 CPU core, this shows
a nice speedup factor of 1.2 to 1.3, however, a much more significant im-
provement is achieved when multiple cores are working simultaneously: the
performance nearly doubles. The significantly better speedup for multiple
cores is easily explained by memory bandwidth. No matter if 1 or 4 cores
are working, they all access the same memory. A single core has a plentiful
supply of bandwidth so the optimization is not as helpful. Multiple cores
must compete for the same memory channel, thus any optimization which
relieves memory contention is going to have a much greater impact.

This optimization is also applicable to KPM iterations which start with ran-
dom vectors. Note that the speedup presented in Fig. 4.2.7 is for the unit
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vector variant and it is relative to the already optimized “sliced” KPM it-
eration described in the previous section. Overall, compared to the baseline
unoptimized case, the speedup factor is about 3 to 4 times.

One downside of the interleaving optimization is that the speedup is inversely
proportional to system size. As the system becomes larger so does the aver-
age size of a slice. Larger slices cannot fit into cache memory, thus limiting
the performance improvement. Currently, a slice contains all atoms which
have the same distance from the target atom. This makes the slice depen-
dencies easy to determine. A possible way to further improve performance is
to make even smaller sub-slices, however, this would require a more compli-
cated dependency relation to be worked out. Nevertheless, it would be worth
pursuing in the future as it could offer another speedup factor of 2 or more,
especially for large systems.

The interleaving optimization as presented here does not benefit GPUs,
mainly because GPUs are made to be as parallel as possible, so working only
on one small slice at a time is counterproductive. However, in the future it
would be possible to adapt the optimization for GPUs by better distributing
the work, which would actually require first working out the aforementioned
sub-slice division.
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CHAPTER 5

The strain-induced
pseudo-magnetic field in
graphene

The effect of mechanical strain in graphene is quite peculiar. Mathematically,
in the low-energy effective Hamiltonian, strain can be described by a vector
quantity analogous to a magnetic vector potential. The effect is similar to an
externally applied magnetic field and thus is often referred to as the pseudo-
magnetic field. Graphene’s high strain tolerance permits the realization of
very strong fields, in the range of hundreds of Tesla. With such high values,
the linear expansion of the strain field offers only a partial description of
the behavior. We investigate several models of the strain-induced field and
suggest corrections which should be applied depending on the strain intensity.

5.1 Introduction

Graphene has many superior properties compared to traditional semiconduc-
tors, however the lack of a band gap makes electron confinement a challenge.
Good conductivity does not matter if the current cannot be turned off as
needed. Klein tunneling renders traditional electric barriers ineffective, thus

∗The results of this chapter were published as:
M. Ramezani Masir, D. Moldovan, and F. M. Peeters, Solid State Commun. 175-176,
76–82 (2013).
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an alternative approach is needed. It is well established that magnetic fields
can control the motion of electrons in a material, but the realization of strong
non-homogeneous magnetic fields can be difficult. An interesting alternative
for graphene is found in the application of geometric deformations which
cause electrons to behave as if they are in a magnetic field. Thus, strain
engineering has become a new way to control the electronic properties of
graphene [76, 77].

The two-dimensional nature of graphene enables a large number of ways to
apply strain. The thin membrane can be made to conform to a substrate [78–
80]. It can be pushed or pulled by atomic probes [23, 37], stretched using
micromechanical beams [81], inflated with gas [82] or crumpled [83, 84]. The
deformations can be used to tailor the electronic properties, i.e. to create
large pseudo-magnetic fields of different shapes. To that end, some strain
geometries are more useful than others. It has been predicted that applying
strain with triangular symmetry results in a uniform pseudo-magnetic field
of the order of 10 T [31]. Bending a graphene nanoribbon would have a
similar effect [33]. A method for producing such strain structures has recently
been demonstrated by using differential thermal contraction in suspended
graphene [85]. The homogeneous pseudo-magnetic field will be accompanied
by Landau quantization and a pseudo-quantum Hall effect [20].

Real-space geometric deformation of atoms in graphene changes the hopping
amplitudes and shifts the position of the Dirac cones [36]. This shift in
𝑘-space is analogous to a magnetic vector potential. The effective vector
potential was first derived in Refs. [86, 87] and was based on a tight-binding
approach with the important approximation that the local strain does not
alter the lattice vectors. The importance of the lattice vector deformation
has been a matter of some debate. In Ref. [88], it was shown that including
the deformation of the lattice vectors leads to an extra term for the effective
magnetic field which is of the same order of magnitude and which differ in the
different 𝐾 points. But later it was shown that this extra term in the effective
vector potential does not contribute to the induced pseudo-magnetic field and
that subsequently there is no difference in the 𝐾-points [89]. Furthermore,
in Refs. [90, 91] it was shown that in the presence of strain the Fermi velocity
becomes spatial dependent.

In this chapter we examine the pseudo-magnetic field in graphene and present
a systematic study of the different corrections to the vector potential and
compare them with the numerically obtained full pseudo-magnetic field. We
present the effective Hamiltonian that includes different contributions of
strain. The previous result for the vector potential and the Fermi veloc-
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ity is reobtained in our systematic expansion, along with new terms which
we introduce here to accurately model higher levels of strain. As an exam-
ple we present explicit analytical results for strained graphene as induced by
uniaxial and triaxial strain. We find the magnetic field induced by the in-
plane deformation and compared the different terms for the vector potential
[86–88] with the exact numerical results for the pseudo-magnetic field.

5.2 Theoretical model

The tight-binding Hamiltonian up to the first nearest neighbor is given by

𝐻 =
∑︁
𝑖,𝑗

𝑡0𝑎
†
𝑖𝑏𝑗 +𝐻.𝑐., (5.2.1)

where 𝑡0 is the unstrained hopping parameter and 𝑎𝑖 and 𝑎†𝑖 (𝑏𝑖 and 𝑏†𝑖 ) are the
annihilation and creation operators for an electron on sublattice A (B). In the
presence of lattice deformation the hopping parameter 𝑡 changes due to the
strained interatomic distance. The modification of the hopping parameter
due to strain is given by [36],

𝑡𝑛 = 𝑡0𝑒
−𝛽(𝑑𝑛/𝑎𝑐𝑐−1), (5.2.2)

where 𝛽 = 3.37 is the strain modulation factor, 𝑑𝑛 is the length of the strained
nearest neighbor distance and 𝑎𝑐𝑐 is the unstrained carbon-carbon distance.
The index 𝑛 refers to the 3 nearest neighbors of graphene which can have
different strained lengths.

The strain field

Using the Fourier transform of the creation and annihilation operators we
obtain the strained Hamiltonian as

𝐻 =
∑︁
𝑛,𝑘

𝑡𝑛𝑒
−𝑖�⃗�·�⃗�𝑛𝑎†𝑘𝑏𝑘 +𝐻.𝑐. (5.2.3)

where the strained nearest neighbor vectors are given by

�⃗�𝑛 = (𝐼 + �̄�)⃗𝛿𝑛. (5.2.4)

Here �⃗�𝑛 are the unstrained nearest vectors, as illustrated in Fig. 5.2.1(a), 𝐼 is
the unity matrix and �̄� is the strain tensor. This tensor can be decomposed
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Fig. 5.2.1: (a) A monolayer graphene lattice with unit vectors �⃗�1 = (3,
√
3)𝑎𝑐𝑐/2

and �⃗�2 = (3,−
√
3)𝑎𝑐𝑐/2, and nearest neighbor vectors �⃗�1 = (1,

√
3)𝑎𝑐𝑐/2,

�⃗�2 = (1,−
√
3)𝑎𝑐𝑐/2 and �⃗�3 = (−1, 0)𝑎𝑐𝑐. (b) The black line indicates the nor-

mal unstrained Brillouin zone with �⃗� points given by �⃗�1 = (0, 1)4𝜋/(3
√
3𝑎𝑐𝑐),

�⃗�2 = (
√
3,−1)2𝜋/(3

√
3𝑎𝑐𝑐) and �⃗�3 = (−

√
3,−1)2𝜋/(3

√
3𝑎𝑐𝑐). The blue dotted

line indicates the deformed Brillouin zone for the first-order in strain approxima-
tion, while the yellow dashed line represents a full numerical result.

into two parts, �̄� = 𝜖 + �̄�, which correspond to linear and rotational strain,
respectively [89, 91].

We derive the effective Hamiltonian by expanding Eq. (5.2.3) close to the �⃗�

points of graphene, where �⃗� = �⃗� + �⃗� and considering the expansion of 𝑡𝑛
Eq. (5.2.2) only up to the first order in strain,

𝐻 = −
3∑︁

𝑛=1

𝑡𝑛

(︃
0 𝑒−𝑖(�⃗�+�⃗�)·�⃗�𝑛

𝑒𝑖(�⃗�+�⃗�)·�⃗�𝑛 0

)︃

≈ −
3∑︁

𝑛=1

𝑡𝑛

(︃
0 𝑒−𝑖�⃗�·�⃗�𝑛

𝑒𝑖�⃗�·�⃗�𝑛 0

)︃
(1 + 𝑖𝜎𝑧 �⃗� · �̄��⃗�𝑛)(1 + 𝑖𝜎𝑧 �⃗� · �⃗�𝑛)

= −
3∑︁

𝑛=1

𝑡0

(︂
1− 𝛽

𝑎2𝑐𝑐
�⃗�𝑛 · �̄� · �⃗�𝑛

)︂(︂
𝑖

𝑎𝑐𝑐
(�⃗� · �⃗�𝑛)𝜎𝑧

)︂
(1 + 𝑖𝜎𝑧 �⃗� · �̄��⃗�𝑛)

· (1 + 𝑖𝜎𝑧 �⃗� · �⃗�𝑛 + 𝑖𝜎𝑧 �⃗� · �̄��⃗�𝑛).

(5.2.5)

The second order terms are included in the subsequent discussion but are
not listed in the expansion of the Hamiltonian because those expressions are
rather involved. The different terms of the effective Hamiltonian are shown
in Table. 1. The first term is the famous Dirac-Weyl equation which governs
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the behavior of electrons in unstrained graphene,

𝐻0 = −
3∑︁

𝑛=1

𝑡0

(︂
𝑖

𝑎𝑐𝑐
(�⃗� · �⃗�𝑛)𝜎𝑧

)︂
(𝑖𝜎𝑧 �⃗� · �⃗�𝑛) = 𝑣0𝐹 �⃗� · �⃗� (5.2.6)

Here 𝑣0𝐹 = 3𝑡0𝑎𝑐𝑐/(2~) is the Fermi velocity in pristine graphene and �⃗� =
(𝜎𝑥, 𝜎𝑦) are the Pauli matrices. Next, we have three first order terms induced
by strain. The first one reads,

𝐻1 =
3∑︁

𝑛=1

𝑡0

(︂
1

𝑎
(�⃗� · �⃗�𝑛)𝜎𝑧

)︂
(𝜎𝑧 �⃗� · �̄��⃗�𝑛) = 𝑣0𝐹 �⃗� · �̄� · �⃗� (5.2.7)

The second term is 𝛽-dependent and given by

𝐻2 =
3∑︁

𝑛=1

𝑡0

(︂
𝛽

𝑎2𝑐𝑐
�⃗�𝑛 · �̄� · �⃗�𝑛

)︂(︂
1

𝑎
(�⃗� · �⃗�𝑛)𝜎𝑧

)︂
(𝜎𝑧 �⃗� · �⃗�𝑛)

=
𝛽𝑣0𝐹

4
�⃗� · (2�̄�+ 𝑇𝑟(𝑢)𝐼) · �⃗�

(5.2.8)

This is the same term as introduced in Refs. [90, 91]. The third and last
term is 𝛽-independent and is given by

𝐻3 = −
3∑︁

𝑛=1

𝑡0

(︂
𝑖

𝑎
(�⃗� · �⃗�𝑛)𝜎𝑧

)︂(︁
𝑖𝜎𝑧 �⃗� · �̄��⃗�𝑛

)︁
(𝑖𝜎𝑧 �⃗� · �⃗�𝑛)

= 𝑖
𝑣0𝐹𝑎

2
�⃗� · (�⃗� · �̄� · �⃗�) · �⃗�

(5.2.9)

where �⃗� = (−𝜎𝑧, 𝜎𝑥). In summary, considering both the 𝛽-dependent and
𝛽-independent terms, we can write the full effective Hamiltonian up to the
first order in strain as

𝐻𝑒𝑓𝑓 = 𝐻0 +𝐻1 +𝐻2 +𝐻3. (5.2.10)

With strain, Fermi velocity is replaced by a tensor,

𝑣𝐹 = 𝑣0𝐹

(︂
𝐼 +

𝛽

4
[2�̄�+ 𝑇𝑟(𝑢)𝐼]

)︂
, (5.2.11)

which is space-dependent. Note that only the 𝛽-dependent 𝐻2 term influ-
ences the Fermi velocity. The 𝛽 value directly influences hopping energy, as
per Eq. (5.2.2). The 𝛽-independent 𝐻1 and 𝐻3 terms only contribute as de-
formations of the vectors in reciprocal space, but this contribution averages
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to zero when considering the different �⃗� points in graphene, as we shall see
shortly.

Next we derive the pseudo-magnetic field. The strain-induced vector poten-
tial 𝐴𝑝𝑠 = 𝐴𝑥 + 𝑖𝐴𝑦 is given by [36],

𝐴𝑝𝑠 =
1

𝑒𝑣𝐹

3∑︁
𝑛

𝑡𝑛𝑒
−𝑖�⃗�·�⃗�𝑛 , (5.2.12)

where 𝑡𝑛 are the strained nearest-neighbor hopping parameters as given by
Eq. (5.2.2) for strained nearest vectors �⃗�𝑛 as given by Eq. (5.2.4). Note that
𝐴𝑝𝑠 is imaginary because strain breaks inversion symmetry in the nearest
neighbor hopping. The effective pseudo-magnetic field induced by strain will
shift the �⃗�-points as �⃗�𝑛 → �⃗�𝑛 + �⃗�𝑛 (see Fig. 5.2.1(b)). Writing the wave

vector �⃗� with respect to the Dirac cone using �⃗� = �⃗� + �⃗� and expanding the
exponent and hopping parameter 𝑡𝑛 up to second order we find:

𝑡𝑛 ≈ 𝑡0

(︂
1 + 𝛿𝑡𝑛 +

1

2
𝛿𝑡2𝑛

)︂(︂
1− 𝑖�⃗� · �̄� · �⃗�𝑛 −

1

2
(�⃗� · �̄� · �⃗�𝑛)2

)︂
· (1− 𝑖𝑞 · �⃗�𝑛 − 𝑖𝑞 · �̄� · �⃗�𝑛)𝑒−𝑖�⃗� ·⃗𝛿𝑛 ,

(5.2.13)

where 𝛿𝑡 = −𝛽/𝑎2𝑐𝑐 �⃗�𝑛 · �̄� · �⃗�𝑛. The effective vector potential is given by �⃗�
independent terms. Keeping the hopping parameters up to second order and

expanding 𝑒−𝑖�⃗�·�⃗�𝑛 we find

𝑡𝑛𝑒
−𝑖�⃗�·�⃗�𝑛 ≈ 𝑡0𝑒

−𝑖�⃗� ·⃗𝛿𝑛

⎛⎝1 + 𝛿𝑡𝑛⏟ ⏞ 
1

− 𝑖�⃗� · �̄� · �⃗�𝑛⏟  ⏞  
2

− 𝑖𝛿𝑡𝑛�⃗� · �̄� · �⃗�𝑛 −
1

2
(�⃗� · �̄� · �⃗�𝑛)2 +

1

2
𝛿𝑡2𝑛⏟  ⏞  

3

⎞⎟⎠ .

(5.2.14)

The first correction term is the one obtained in Refs. [86, 87] and the second
correction term was added by Kitt et al. [88]. The third term is the new
higher order correction term which we will add.

Considering only the first term, we take constant lattice vectors �⃗�𝑛 = �⃗�𝑛.
Using the three nearest neighbors vectors in real space, as shown in Fig. 5.2.1,
we obtain the vector potential in terms of the strain tensor elements,

�⃗�1 =
𝜑0𝛽

4𝜋𝑎𝑐𝑐

(︂
𝑢𝑥𝑥 − 𝑢𝑦𝑦

2𝑢𝑥𝑦

)︂
, (5.2.15)
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N Expansion terms

1 𝑒−𝑖�⃗� ·⃗𝛿𝑛 no effect

2 −𝑖𝑞 · �⃗�𝑛𝑒−𝑖�⃗� ·⃗𝛿𝑛 base Dirac equation

3 −𝑖𝑞 · �̄� · �⃗�𝑛𝑒−𝑖�⃗� ·⃗𝛿𝑛 modifies 𝑣𝐹 as 𝑂(𝑢)

4 − 𝛽
𝑎2𝑐𝑐

(︁
�⃗�𝑛 · �̄� · �⃗�𝑛

)︁
𝑒−𝑖�⃗� ·⃗𝛿𝑛 𝛽-dependent �⃗� 𝑂(𝑢)

5 𝑖𝛽
𝑎2𝑐𝑐

(︁
�⃗�𝑛 · �̄� · �⃗�𝑛

)︁
(⃗𝑞 · �⃗�𝑛) 𝑒−𝑖�⃗� ·⃗𝛿𝑛 𝛽-dependent 𝑣𝐹 𝑂(𝑢)

6 𝑖𝛽
𝑎2𝑐𝑐

(︁
�⃗�𝑛 · �̄� · �⃗�𝑛

)︁(︁
�⃗� · �̄� · �⃗�𝑛

)︁
𝑒−𝑖�⃗� ·⃗𝛿𝑛 𝛽-dependent 𝑣𝐹 𝑂(𝑢2)

7 -𝑖
(︁
�⃗� · �̄� · �⃗�𝑛

)︁
𝑒−𝑖�⃗� ·⃗𝛿𝑛 �⃗� 𝑂(𝑢)

8 𝑖𝛽
𝑎2𝑐𝑐

(︁
�⃗�𝑛 · �̄� · �⃗�𝑛

)︁(︁
�⃗� · �̄� · �⃗�𝑛

)︁
𝑒−𝑖�⃗� ·⃗𝛿𝑛 𝛽-dependent �⃗� 𝑂(𝑢2)

9 𝛽2

2𝑎4

(︁
�⃗�𝑛 · �̄� · �⃗�𝑛

)︁2
𝑒−𝑖�⃗� ·⃗𝛿𝑛 𝛽-dependent �⃗� 𝑂(𝑢2)

10 −1
2
(�⃗� · �̄� · �⃗�𝑛)2𝑒−𝑖�⃗� ·⃗𝛿𝑛 �⃗� 𝑂(𝑢2)

11 −
(︁
�⃗� · �̄� · �⃗�𝑛

)︁
(⃗𝑞 · �⃗�𝑛)𝑒−𝑖�⃗� ·⃗𝛿𝑛 𝑣𝐹 𝑂(𝑢)

12 −
(︁
�⃗� · �̄� · �⃗�𝑛

)︁
(⃗𝑞 · �̄� · �⃗�𝑛)𝑒−𝑖�⃗�·�⃗�𝑛 𝑣𝐹 𝑂(𝑢2)

13 𝛽
𝑎2𝑐𝑐

(⃗𝛿𝑛 · �̄� · �⃗�𝑛)
(︁
�⃗� · �̄� · �⃗�𝑛

)︁
(⃗𝑞 · �⃗�𝑛)𝑒−𝑖�⃗� ·⃗𝛿𝑛 𝛽-dependent 𝑣𝐹 𝑂(𝑢2)

14 − 𝛽2

2𝑎4𝑐𝑐
(⃗𝛿𝑛 · �̄� · �⃗�𝑛)2(⃗𝑞 · �⃗�𝑛)𝑒−𝑖�⃗� ·⃗𝛿𝑛 𝛽-dependent 𝑣𝐹 𝑂(𝑢2)

Table 5.1: Different terms induced by strain in the expansion of the vector
potential. Right column indicates the order of these terms in the strain, i.e. 𝑂(𝑢2),
and their effect on the different properties.

where 𝜑0 = ℎ/𝑒 is the flux quantum. From here, we can obtain the pseudo-

magnetic field as �⃗�𝑝𝑠 = ∇⃗ × �⃗�𝑝𝑠. We have derived the pseudo-magnetic
vector potential Eq. (5.2.15) starting from an expansion around the 𝐾 point.
Repeating the same derivation around the 𝐾 ′ point yields the same pseudo-
magnetic vector potential, just with the opposite sign. Thus, the electrons
around in the 𝐾 ′ valley of graphene feel the opposite pseudo-magnetic field
of the electrons in the 𝐾 valley. This is the primary difference between
the real and strain-induced magnetic fields. The real field acts the same in
both valleys and breaks time reversal symmetry. The pseudo-magnetic field
preserves global time reversal symmetry by acting with opposite sign in the
different valleys.

Next, we consider the second term from Eq. (5.2.14). This correction includes
the lattice vector deformation and gives the following extra term of the vector
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potential,
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(5.2.16)

Unlike �⃗�1, the �⃗�2 term has different values in the three 𝐾-points, as illus-
trated in Fig. 5.2.1(b). The three 𝐾 ′-points behave the same, just with the
opposite sign of the vector potential. However, this second term of the vec-
tor potential does not actually contribute to the pseudo-magnetic field. It is
possible to show that this effective vector potential has the form of a gradient
a scalar field ∇𝜑. We start with

𝐴2 = −3𝑡0𝑎𝑐𝑐
2

(︁
�⃗� · �̄� · �⃗�

)︁
= −3𝑡0𝑎𝑐𝑐

2

∑︁
𝑖,𝑗

𝐾𝑖�̄�𝑖𝑗𝑠𝑗

= −3𝑡0𝑎𝑐𝑐
2

∑︁
𝑖,𝑗

𝐾𝑖

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

)︂
𝑠𝑗

= −3𝑡0𝑎𝑐𝑐
2
∇⃗(�⃗� · �⃗�) · �⃗�,

(5.2.17)

and the two components of the vector potential are given by the real and
complex part of 𝐴2 as

𝐴𝑥 ∝ 𝜕𝑥

(︁
�⃗� · �⃗�

)︁
,

𝐴𝑦 ∝ 𝜕𝑦

(︁
�⃗� · �⃗�

)︁
.

(5.2.18)

Thus, because the curl of the gradient of any scalar field is ∇×(∇𝜑) = 0, the

�⃗�2 term will never contribute to the pseudo-magnetic field, �⃗�2 = ∇⃗×�⃗�2 = 0.

Next, we consider the third term from Eq. (5.2.14). The effective vector
potential correction here includes strain up to the second order. We find

�⃗�
�⃗�

3 = −𝑖𝛿𝑡𝑛�⃗� · �̄� · �⃗�𝑛⏟  ⏞  
𝐼1

+
1

2
𝛿𝑡2𝑛⏟ ⏞ 
𝐼2

− 𝑡0
2

(�⃗� · �̄� · �⃗�𝑛)2⏟  ⏞  
𝐼3

, (5.2.19)

where the vector potential consists of three parts.
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The first part of this vector potential term is the different in each �⃗� point.
It is given by
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(5.2.20)
The correction corresponding to second part is

𝐼 �⃗�2 =
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, (5.2.21)

and for the third part,
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(5.2.22)

This �⃗�3 correction is of second order in the strain and is thus important for
large strains and the corresponding effective field is position dependent. The
most important term is 𝐼2 = 1

2
𝛿𝑡2 which is �⃗�-independent and it is possible

to show that the two other terms 𝐼1 and 𝐼3 have a non-zero contribution to
the vector potential but have zero contribution to the pseudo-magnetic field.

Here we have shown that the 𝛽-dependent terms �⃗�1 and �⃗�3 contribute to the
pseudo-magnetic field, while the 𝛽-independent �⃗�2 does not affect the field
and can be neglected. Even thought the pseudo-magnetic vector potential
can be different for all six 𝐾-points of the first Brillouin zone, the resulting
pseudo-magnetic field will always have just a single value, with opposite signs
in 𝐾 and 𝐾 ′. The �⃗�3 term becomes important for the larger strains as we
shall show next.
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(a) zigzag (b) armchair

Fig. 5.3.1: Illustration of 10% uniaxial strain applied in the (a) zigzag and
(b) armchair direction of graphene. The blue lattice represents unstrained
graphene while the red is strained in the directions indicated by the arrows.

5.3 Uniaxial strain and direction-dependent

Fermi velocity

A general strain tensor for uniaxial strain in graphene can be expressed as,

�̄� = 𝑢0

(︂
cos2 𝜃 − 𝜈 sin2 𝜃 (1 + 𝜈) cos 𝜃 sin 𝜃

(1 + 𝜈) cos 𝜃 sin 𝜃 sin2 𝜃 − 𝜈 cos2 𝜃

)︂
, (5.3.1)

where 𝑢0 is the tensile strain, 𝜃 is the angle of the strain relative to the zigzag
direction and 𝜈 = 0.165 is Poisson’s ratio [92]. Experimentally, this kind of
strain can be applied by mechanically acting on the substrate to which the
graphene sheet is adhered [93].

The tight-binding Hamiltonian for an infinite sheet of graphene is given by,

𝐻(�⃗�) =

(︃
0 𝑓(�⃗�)

𝑓 *(�⃗�) 0

)︃
, (5.3.2)

where,

𝑓(�⃗�) =
3∑︁

𝑛=1

𝑡𝑛𝑒
𝑖�⃗�·�⃗�𝑛 . (5.3.3)
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Fig. 5.3.2: Top: Contour plots of the ratio 𝑣𝑡𝑏/𝑣𝐹 near the Dirac point, comparing
the �⃗�-dependent tight-binding Fermi velocity 𝑣𝑡𝑏(�⃗�) with the constant 𝑣𝐹 from the
continuum limit. For (a) 𝑣0 unstrained graphene, (b) 𝑣𝑧𝑧 uniaxial zigzag strain
and (c) 𝑣𝑎𝑐 uniaxial armchair strain. The strain intensity is 𝑢0 = 10%. Bottom:
Fermi velocity along the cuts where (d) 𝑘𝑦 = 0 and (e) 𝑘𝑥 = 0.

Here, 𝑡𝑛 is the strained hopping parameter which was previously given in
Eq. (5.2.2) and �⃗�𝑛 is the nearest neighbor vector which is deformed by the

strain tensor as per Eq. (5.2.4). We calculate the energy spectrum 𝐸(�⃗�) of a
graphene sheet using the tight-binding Hamiltonian. The velocity can then
be obtained as �⃗�𝑡𝑏(�⃗�) = ∇⃗𝑘𝐸(�⃗�).

We compute the velocity for three cases: 1) unstrained graphene, 2) graphene
strained in the zigzag (zz) direction and 3) strained in the armchair (ac)
direction. The strain directions are illustrated in Fig. 5.3.1. In terms of the
strain tensor (5.3.1), the zigzag direction corresponds to 𝜃 = 0 and armchair
to 𝜃 = 𝜋/2.

The results are presented in Fig. 5.3.2. Note that we only consider the part
of the spectrum that is close to the Dirac point where the continuum limit
may be applied (up to 300 meV). The �⃗�-dependent Fermi velocity 𝑣𝑡𝑏(�⃗�)
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(a) armchair (b) zigzag

Fig. 5.4.1: Illustration of triaxial strain with 𝑐 = 0.1nm−1 applied in the (a)
zigzag and (b) armchair directions of a hexagonal graphene flake. The blue lattice
represents unstrained graphene while the red is strained in the directions indicated
by the arrows.

obtained from tight-biding is scaled by the constant Fermi velocity 𝑣𝐹 =
3𝑡0𝑎𝑐𝑐/(2~) from the continuum limit. In the case of unstrained graphene
from Fig. 5.3.2(a), the deviation of 𝑣𝑡𝑏 from 𝑣𝐹 is generally smaller than 3%.
Once strain is applied, as in Figs. 5.3.2(b,c), the velocity becomes anisotropic
in k-space and deviates from the baseline 𝑣𝐹 value by as much as 25%.

5.4 Triaxial strain and the uniform pseudo-

magnetic field

Triaxial strain is produced by pulling a graphene flake from three sides, as
illustrated in Fig. 5.4.1. This kind of deformation can be realized using differ-
ential thermal contraction in suspended graphene [85]. Although both strain
in the armchair and zigzag directions is possible, the zigzag case does not
induce a field since it preserves sublattice symmetry [35]. Here we shall only
consider armchair triaxial strain which breaks sublattice symmetry and pro-
duces a uniform pseudo-magnetic field. Note that the strain in Fig. 5.4.1(a)
can be rotated by 60° to produce strain in the opposite armchair directions,
which results in the reveral of the induced effect, as we shall see.
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Fig. 5.4.2: Contour plots of: (a) the displacement profile |�⃗�(⃗𝑟)| of triaxial strain;
(b) strain distribution, (c) pseudo-magnetic field calculated using the full value of
the hopping parameter. The constant of the triaxial strain is: 𝑐 = 0.015 nm−1.

In polar coordinates the displacement is given by,

𝑢𝑟 = 𝑐𝑟2 sin 3𝜃,

𝑢𝜃 = 𝑐𝑟2 cos 3𝜃,
(5.4.1)

where 𝑐 is a constant. Translated into Cartesian coordinates, the displace-
ment of armchair triaxial strain is given by �⃗�(⃗𝑟) = (𝑢𝑥, 𝑢𝑦),

𝑢𝑥 = 2𝑐𝑥𝑦,
𝑢𝑦 = 𝑐(𝑥2 − 𝑦2), (5.4.2)

and the corresponding strain tensor 𝑢𝑖𝑗 (⃗𝑟) = 𝜕𝑗𝑢𝑖 is,

�̄�(⃗𝑟) = 𝑐

(︂
𝑦 𝑥
𝑥 −𝑦

)︂
. (5.4.3)

The pseudo-magnetic vector potential induced by strain in graphene is given
by Eq. (5.2.14), and the pseudo-magnetic field is then found as �⃗�𝑝𝑠 =

∇⃗ × �⃗�𝑝𝑠. The vector potential depends on the strained hopping parame-
ter Eq. (5.2.2), which can be expanded as,

𝑡𝑛/𝑡0 = 1 + 𝛿𝑡(1)𝑛 + 𝛿𝑡(2)𝑛 + 𝛿𝑡(3)𝑛 . . . , (5.4.4)

𝑡𝑛 = 𝑡0

(︂
1− 𝛽𝑤𝑛 +

1

2
𝛽2𝑤2

𝑛 −
1

6
𝛽3𝑤3

𝑛 . . .

)︂
, (5.4.5)
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Fig. 5.4.3: Top: Contour plots of the pseudo-magnetic field generated from
different approximations of the hopping parameter up to: (a) first, (b) second,
(c) third and (d) fourth order. Bottom: (e,f,g,h) Difference plots between the
respective approximations (a,b,c,d) and the field calculated using the full value of
the hopping parameter, as in Fig. 5.4.2(d). The parameters of the triaxial strain
is the same as in Fig. 5.4.2.

where 𝑤𝑛 = 𝑑𝑛/𝑎𝑐𝑐−1. Usually, only the first order term 𝛿𝑡
(1)
𝑛 is taken, where

plugging in the triaxial displacement (5.4.1) and taking �⃗�𝑝𝑠 = ∇⃗× �⃗�𝑝𝑠 yields
a uniform field perpendicular to the graphene plane,

𝐵𝑝𝑠 =
4~𝛽𝑐
𝑎𝑐𝑐𝑒

. (5.4.6)

The direction of the pseudo-magnetic field can be reversed by rotating the
angle of the strain by 60°. If we substitute 𝜃 → 𝜃 + 𝜋/3 in Eq. (5.4.1), the
displacement will have the opposite sign and so will the pseudo-magnetic
field Eq. (5.4.6). This first order approximation is only valid near the center
and only for small strain. Here, we will evaluate the effect of the inclusion
of the higher order terms.
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Fig. 5.4.4: (a) Contour plot of the triaxial strain with three test points marked
as A, B and C. The arrows indicate the strain directions. The parameters of the
triaxial strain are the same as in Fig. 5.4.2. (b,c,d) The pseudo-magnetic field as
a function of strain at the three test points: (b) A, (c) B and (d) C. The field is
calculated for different approximations of the hopping parameter from first to third
order (𝐵1 to 𝐵3 corresponds to 𝛿𝑡(1) to 𝛿𝑡(3)), as well as the full solution (𝐵𝑓𝑢𝑙𝑙

for 𝛿𝑡(𝑓𝑢𝑙𝑙)). (e,f,g) The differences of the pseudo-magnetic field approximations
compared to the full expression (Δ𝐵𝑖 = 𝐵𝑖−𝐵𝑓𝑢𝑙𝑙) at the three test points: (e) A,
(f) B and (g) C. In all cases the stain constant 𝑐 is scaled from 0 to 0.025 nm−1,
as shown on the top 𝑥-axis. The resulting strain at the test point is shown on the
bottom 𝑥-axis.

A contour plot of the displacement profile of the triaxial strain is shown in
Fig. 5.4.2(a). The pseudo-magnetic field in Fig. 5.4.2(c) is calculated us-
ing the full hopping parameter from Eq. (5.2.2). The pseudo-magnetic field
is mostly homogeneous in the center. Away from the center, the magni-
tude of the field follows the triangular shape of the displacement with high
magnitudes of the pseudo-magnetic field corresponding to locations of large
displacement.

In Fig. 5.4.3 we plot the pseudo-magnetic field for different approximations of
the hopping parameter Eq. (5.4.4). The figures are shown in pairs, with the
top ones presenting the magnitude of the field and the bottom ones presenting
the difference between the approximate and the full pseudo-magnetic field
calculated without approximations (as presented in Fig. 5.4.2(d)).
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Taking only the first order approximation, Figs. 5.4.3(a) and (e), results in
an almost completely homogeneous pseudo-magnetic field. However, this
approximation is only valid in the center and it quickly deviates from the full
solution as soon as we move away from the center.

With the second order approximation, Figs. 5.4.3(b) and (f), the field is less
homogeneous and shows a circular symmetry. While this position-dependent
intensity is an improvement, it still strongly deviates from the full field which
exhibits triangular symmetry.

Calculating the pseudo-magnetic field using the third order approximation
finally shows the same triangular shape as the exact pseudo-magnetic field.
Adding the fourth order term further improves the accuracy, but the correct
shape is already achieved with the third order approximation.

In Fig. 5.4.4 we compare the pseudo-magnetic field approximations at three
points as function of applied strain. We varied the 𝑐 parameter of the triaxial
strain from 0 to 0.025 nm−1. The first point (A) is located in the center where
the strain remains very low (below 0.5%) even for high values of 𝑐. Because
of the low strain, all approximations are able to accurately estimate the field.

Next, we considered point B, where the strain reaches up to 25%. Because
of the higher strain, the different approximations start to diverge, although
the differences aren’t very large. The different approximations diverge above
15% strain but the differences remain small even above 20%.

Finally, point C shows the most significant differences. The approximations
diverge already for 6% strain. At high strain, the first order approximation
significantly underestimates the field (by as much as 350 T). Adding the
second order term actually results in an even larger underestimation of the
field. The third order term corrects the field magnitude so that it is in good
agreement with the full solution.

From these results we see that a correct estimation of the field in point C is
more difficult than in point B even though the maximum strain is actually
lower in point C. This is because the pseudo-magnetic field depends not only
on the intensity of the strain, but also on the direction. The strain in point
B is mostly uniaxial, as it lies exactly along one of the three strain directions
(see Fig. 5.4.4(a)). On the other hand, point C feels a strong influence from
both of the top strain directions, thus it is strongly non-uniaxial.
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5.5 Conclusions

We investigated the pseudo-magnetic field generated by strain using the tight-
binding approach. A systematic expansion of the hopping parameter and the
deformation of the lattice vectors up to second order in strain was presented.
From there we reobtained the previously known �⃗�1 and �⃗�2 terms of the
pseudo-magnetic vector potential for low energy electrons. Those term only
consider strain up to first order. Here we introduced a new �⃗�3 term which
takes strain up to second order and is required for high strains.

We have shown that the 𝛽-dependent terms �⃗�1 and �⃗�3 contribute to the
pseudo-magnetic field, while the 𝛽-independent �⃗�2 does not affect the field
and can be neglected. Even thought the pseudo-magnetic vector potential
can be different for all six 𝐾-points of the first Brillouin zone, the resulting
pseudo-magnetic field will always have just a single value, with opposite signs
in 𝐾 and 𝐾 ′.

We have also shown that the Fermi velocity becomes a tensor when strain
is introduced. This direction-dependent behavior was demonstrated with a
simple uniaxial strain model.

Using a numerical tight-binding model, we have also considered strain terms
beyond second order and compared those contributions with the full numeri-
cal solution for the pseudo-magnetic field induced by triaxial strain. The first
order term was found to be valid only in the center. Otherwise it deviated
from the exact solution above 5% strain. In order to go up to graphene’s full
strain limit of 25%, at least the third order term was required.
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CHAPTER 6

Graphene flake strained by a
Gaussian bump

The effect of strain in graphene is usually modeled by a pseudo-magnetic
vector potential which is, however, derived in the limit of small strain. In
realistic cases deviations are expected in view of graphene’s very high strain
tolerance, which can be up to 25%. Here we investigate the pseudo-magnetic
field generated by a Gaussian bump and we show that it exhibits significant
differences as compared to numerical tight-binding results. Furthermore, we
calculate the electronic states in the strained region for a hexagon shaped
flake with armchair edges. We find that the six-fold symmetry of the wave
functions inside the Gaussian bump is directly related to the different effects
of strain along the fundamental directions of graphene: zigzag versus arm-
chair. Low energy electrons are strongly confined in the armchair directions
and are localized on the carbon atoms of a single sublattice.

6.1 Introduction

Deformations due to elastic strain in graphene change the hopping amplitude
of the carbon atoms and induce an effective vector potential that shifts the
Dirac points [33]. With a proper geometrical deformation it is possible to

∗The results of this chapter were published as:
D. Moldovan, M. Ramezani Masir, and F. M. Peeters, Phys. Rev. B 88, 035446 (2013).
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Fig. 6.1.1: (a) Hexagonal graphene flake with armchair edges. Strained is induced
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zigzag directions in the radial direction of the bump. (b) The bump-generated
pseudo-magnetic field, as calculated from the traditional form of the pseudo-vector
potential. The red (blue) color corresponds to positive (negative) magnetic field.

create large pseudo-magnetic fields which can reach up to several hundreds
of Tesla [20, 32]. Over the last few years much effort has been devoted to
find ways of controlling graphene’s electronic properties by strain [79, 80].
Applying in-plane strain with triangular symmetry has been shown theoret-
ically to result in an uniform pseudo-magnetic field [31]. It was reported
experimentally that nanobubbles grown on a Pt(111) surface induce pseudo-
magnetic fields of more than 300 T [34]. Landau quantization of the electronic
spectrum was observed by scanning tunneling microscopy. Thus, with such
large strain-induced pseudo-magnetic fields, one can control the electronic
properties of graphene through strain engineering [36]. It was shown exper-
imentally that an external nonuniform electric field is able to induce local
deformations in graphene with different curved shapes and thus one should
be able to induce a pseudo-magnetic field through an electric field [39].

In this chapter we investigate the effect of inhomogeneous, out-of-plane strain
in graphene. We consider a hexagonal graphene flake that is strained by a
Gaussian bump placed in its center. The effects of strain in graphene can be
modeled using a pseudo-magnetic vector potential. In the case of a Gaussian
bump, the traditional form of this vector potential [86] results in a three-fold
symmetric pseudo-magnetic field, as illustrated in Fig. 6.1.1(b). Recently, it
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was shown in Ref. [88] that additional lattice corrections are required in order
to accurately calculate the pseudo-magnetic vector potential. However, these
strain-induced lattice vector corrections do not contribute to the pseudo-
magnetic field and may be neglected [89, 91]. Only the strain induced hopping
parameter changes will affect the intensity of the pseudo-magnetic field, but
this is generally derived only up to first order in strain. Given graphene’s
excellent mechanical properties, it can sustain strain up to 25%[23]. At
that point strain can no longer be considered to be small. For this reason,
we investigate additional corrections to the vector potential to higher order
in the strain and we compare this pseudo-magnetic field model to results
obtained with the full tight-binding result.

Furthermore, we investigate the confinement of electrons inside the strained
region. It was shown earlier, using the Dirac equation formalism, that such
a Gaussian bump results in low energy localized states [94, 95]. However,
those models do not fully explain the origin of the six-fold symmetry of
the localized states. Here we investigate the system using the tight-binding
model and show that the influence of strain in the zigzag (zz) and armchair
(ac) directions of graphene result in different pseudo-magnetic fields and
consequently to different localization properties for the electrons. Finally, we
examine the energy levels and wave functions in order to show the different
confinement regimes.

6.2 Theoretical model

We consider the tight-binding model of graphene with the nearest-neighbor
Hamiltonian,

𝐻 =
∑︁
𝑚,𝑛

𝑡𝑚𝑛𝑎
†
𝑚𝑏𝑛 + ℎ.𝑐. (6.2.1)

Here 𝑡𝑚𝑛 is the strained hopping energy between nearest-neighbor atoms
at lattice positions 𝑚 and 𝑛, while 𝑎𝑚 and 𝑏𝑛 are field operators acting
respectively on sublattices A and B at their given positions. Previously, it
has been shown that the strained hopping parameter is given by [30],

𝑡𝑚𝑛 = 𝑡0e
−𝛽𝜔𝑚𝑛 , (6.2.2)

where 𝜔𝑚𝑛 = 𝑙𝑚𝑛/𝑎𝑐𝑐 − 1. Here 𝑡0 = −2.8 eV is the unstrained hopping
parameter, 𝑙𝑚𝑛 is the strained distance between atoms 𝑚 and 𝑛, 𝑎𝑐𝑐 = 0.142
nm is the unstrained carbon-carbon distance and 𝛽 = 3.37 is the strained
hopping energy modulation factor. The nearest-neighbor vectors are �⃗�1 =
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Fig. 6.2.1: (a) The unstrained nearest-neighbor vectors �⃗�𝑛0. (b) The six 𝐾 points
in the unstrained Brillouin zone (black, solid). The zone is also shown for 20%
armchair uniaxial strain, as calculated from the first approximation of the pseudo-
magnetic vector potential (blue, dotted) and from the full solution of the vector
potential (orange, dashed).

𝑎𝑐𝑐(0, 1), �⃗�2 = 𝑎𝑐𝑐/2(
√

3,−1) and �⃗�3 = 𝑎𝑐𝑐/2(−
√

3,−1) as shown in Fig.
6.2.1(a). The corresponding Brillouin zone and the six 𝐾-points are shown
in Fig. 6.2.1(b).

In the present paper we consider a finite size system which is taken as a
hexagon with armchair edges. There are 𝑁𝑆 atoms on the hexagon edge,
which corresponds to an edge width of 𝑊𝑆 = 𝑎𝑐𝑐(3𝑁𝑆/2 − 1). The total
number of atoms in this hexagonal system is 𝑁 = 9𝑁𝑆 (𝑁𝑆/2− 1) + 6. We
limit ourselves to a hexagonal system that consists only of armchair edges in
order to avoid the presence of zigzag edge states which would draw attention
away from the bump-induced states. In the following calculations we take an
edge width of 𝑊𝑆 = 9 nm, which corresponds with a flake consisting of 8322
carbon atoms. The 𝑥-axis of the system is aligned with the zigzag direction
in graphene.

In our model we strain the graphene flake by using a Gaussian bump located
at the center of this system as illustrated in Fig. 6.1.1(a). Such a strain
profile can be induced with an STM tip [37]. The bump’s height profile is
given by ℎ(𝑟) = ℎ0e

−𝑟2/𝑏2 , where 𝑟 is the distance from the center of the
system, and ℎ0 and 𝑏 are parameters that characterize the Gaussian bump.
The Gaussian function is defined to infinity (𝑟 →∞), which is inconvenient
because increasing the system size would also change the total area of the
bump. For that reason we add a cut-off radius 𝑅 after which the height of
the bump will be zero. With this cut-off the bump height profile is expressed
as,

ℎ(𝑟) = ℎ0e
−𝑟2/𝑏2Θ(𝑅− 𝑟), (6.2.3)
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where Θ is the Heaviside step function. It is important to choose the cut-
off radius 𝑅 correctly in relation to the width parameter 𝑏 so that the most
significant part of the bump is included before the cut-off. Taking 𝑅 = 3𝑏/

√
2

will ensure that 99.7% of the Gaussian is inside the radius 𝑅. In the following
calculations we take 𝑅 = 6.2 nm as typically realized in experiments [34].

6.3 Corrections to the pseudo-magnetic field

The pseudo-magnetic vector potential in graphene �⃗�𝑝𝑠 = (Re𝐴𝑝𝑠, Im𝐴𝑝𝑠) is
given by [20],

𝐴𝑝𝑠 =
1

𝑒𝑣𝐹

3∑︁
𝑛=1

𝑡𝑛e−𝑖�⃗�·�⃗�𝑛 , (6.3.1)

where �⃗�𝑛 and 𝑡𝑛 are the strained nearest-neighbor vectors and hopping pa-
rameters, respectively, and �⃗� is the location of a 𝐾 point. The pseudo-
magnetic field is found as �⃗�𝑝𝑠 = ∇⃗ × �⃗�𝑝𝑠.

The strained hopping parameter from Eq. (6.2.2) can be expanded to third
order as,

𝑡𝑛 ≈ 𝑡0 + 𝛿𝑡(1)𝑛 + 𝛿𝑡(2)𝑛 + 𝛿𝑡(3)𝑛 , (6.3.2)

𝑡𝑛 ≈ 𝑡0

(︂
1− 𝛽𝜔𝑛 +

1

2
𝛽2𝜔2

𝑛 −
1

6
𝛽3𝜔3

𝑛

)︂
. (6.3.3)

The nearest-neighbor vectors �⃗�𝑛 are also strained, but their total contribu-
tion to the pseudo-magnetic field is zero for any strain, so they may be safely
neglected [89, 91]. While their inclusion would change the value of the vec-
tor potential, the resulting field would not be affected. As we are mainly
interested in the pseudo-magnetic field, we will use the unstrained values
of the vectors which are constant. Because of the out-of-plane deformation,
the hopping will also be affected by curvature (hybridization between 𝜋 and
𝜎 bands), but this contribution may be omitted as it is 100 to 1000 times
smaller than the changes induced by the bond length modulation [20].

Plugging the expansion (6.3.2) into Eq. (6.3.1), we can expand the pseudo-
magnetic vector potential to third order as,

𝐴𝑝𝑠 ≈
1

𝑒𝑣𝐹

3∑︁
𝑛=1

(︂
𝛿𝑡(1)𝑛⏟ ⏞ 
𝐴1

+ 𝛿𝑡(2)𝑛⏟ ⏞ 
𝐴2

+ 𝛿𝑡(3)𝑛⏟ ⏞ 
𝐴3

)︂
e−𝑖�⃗� �⃗�𝑛 , (6.3.4)
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Fig. 6.3.1: Top: Contour plots of the pseudo-magnetic field generated by a
Gaussian bump. The field is calculated (a) using the 𝐴1 approximation of Eq.
(6.3.4) and (b) using the full form of the vector potential Eq. (6.3.1). The dashed
lines show cuts at 𝑥 = 0, along the armchair direction of graphene. Bottom: (c)
Plot of the field calculated using successively higher order terms of the vector
potential approximation (𝐴1, 𝐴2 and 𝐴3) as well as the full form 𝐴𝑓𝑢𝑙𝑙 from Eq.

(6.3.1). (d) The difference between the approximations and full solution as 𝐴
(𝑖)
𝑑𝑖𝑓𝑓 =

𝐴𝑖 −𝐴𝑓𝑢𝑙𝑙. In all cases the height of the bump is ℎ0 = 2.2 nm, which corresponds
to a peak strain of 20%.

which we subdivided into three parts 𝐴𝑖. 𝐴1 is a first order term that was
originally derived in Ref. [86]. 𝐴2 and 𝐴3 are second and third order terms
which turn out to be important for large strain.

Figure 6.3.1(a) shows the pseudo-magnetic field calculated from the first
approximation (𝐴1) of the vector potential. It exhibits three-fold symmetry
with positive and negative peaks along the armchair directions of graphene
and zero field along the zigzag directions. The pseudo-magnetic field based on
the full vector potential, Eq. (6.3.1), without any approximations, is shown
in Fig. 6.3.1(b). To better see the difference in field magnitude between
the different approximations, we take a cut along the armchair direction of
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Fig. 6.3.2: (a) Pseudo-magnetic field at the location of maximum strain along
the cut (𝑥 = 0, 𝑦 = 2.2 nm). (b) The difference between the approximations and

full solution as 𝐴
(𝑖)
𝑑𝑖𝑓𝑓 = 𝐴𝑖 − 𝐴𝑓𝑢𝑙𝑙. The bump height ℎ0 is increased from 0 to

2.5 nm, as indicated on the top 𝑥-axis, which generates the strain shown on the
bottom 𝑥-axis.

graphene, as show in Fig. 6.3.1(c). We compare the pseudo-magnetic field
resulting from the vector potential approximations with successively higher
terms included (𝐴1, 𝐴2 and 𝐴3) with the full form 𝐴𝑓𝑢𝑙𝑙 from Eq. (6.3.1).

The differences are shown in Fig. 6.3.1(d) as 𝐴
(𝑖)
𝑑𝑖𝑓𝑓 = 𝐴𝑖 − 𝐴𝑓𝑢𝑙𝑙. The first

order approximation 𝐴1 overestimates the magnitude by as much as 800 T.
Adding the second order corrections (𝐴2) will give better agreement, but
there are still large deviations in the region around 𝑦 = 2.2 nm where the
strain is maximum, as well as near the center of the bump. Finally, including
the third order term 𝐴3 will result in generally good agreement.

In order to better evaluate the accuracy of the different vector potential
approximations as a function of the strain, we plot the field at a fixed point
while changing the bump height. As can be seen in Figs. 6.3.2(a) and (b),
approximation 𝐴1 diverges from the full solution at values as low as 5%
strain. Adding 𝐴2, we find good agreement up to about 15%, after which
the field is increasingly underestimated. Finally, adding term 𝐴3 yields good
agreement up to 25% strain.

These results bring up two issues. First, even the second order term 𝐴2 is
not enough to sufficiently approximate the pseudo-magnetic field for strain
above 15%. Expanding the approximation to third order would improve the
results, but that would just needlessly complicate matters. Second, even if
the second order term were sufficiently accurate, its form is too complicated
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Fig. 6.4.1: Contour plot of the LDOS (in log-scale) for sublattice (a) A and
(b) B as a function of bump height and energy, at the location of maximum
strain (𝑥 = 0, 𝑦 = 2.2 nm). The dashed curves are the Landau levels based on
the pseudo-magnetic field model, calculated using unstrained (white curves) and
strained (black curves) Fermi velocity.

for analytical results. On the other hand, using the numerical approach,
there is no need for this, as the full vector potential Eq. (6.3.1) can easily be
calculated. Thus, we find that numerical methods are best suited to correctly
calculate the pseudo-magnetic field at graphene’s high tolerance of strain up
to 25%.

6.4 Electronic states

We derive the energy levels 𝐸𝑛 and wave functions Ψ(𝑥, 𝑦) of the bump
strained graphene flake using the tight-binding Hamiltonian Eq. (6.2.1) with
the effect of strain included via the modulation of the hopping parameter
given by Eq. (6.2.2). We shall compare the results from the tight-binding
approach with the pseudo-magnetic field model from the previous section.

The local density of states (LDOS) is given by,

𝜌(𝐸, 𝑥, 𝑦) =
∑︁
𝑛

|Ψ(𝑥, 𝑦)|2𝛿(𝐸 − 𝐸𝑛). (6.4.1)

To calculate the LDOS numerically we introduce a Gaussian broadening,

𝛿(𝐸 − 𝐸𝑛)→ 1

𝜎
√
𝜋

exp

[︂
−(𝐸 − 𝐸𝑛)2

𝜎2

]︂
. (6.4.2)
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Fig. 6.4.2: Energy spectrum of a hexagonal armchair graphene flake strained
by a Gaussian bump. Left: Energy levels as a function of bump height. Right:
Spatial probability at the split levels marked with 𝐿 and 𝐻.

As we did previously in Fig. 6.3.2, we select the location of highest strain
along the armchair direction and we calculate the LDOS at that point in
space as a function of bump height and energy. The results are shown in
Fig. 6.4.1. At large bump heights, the LDOS shows Landau levels up to the
second Landau level.

For comparison, we calculate the Landau levels using the pseudo-magnetic
field model from the previous section and we overlay them on the LDOS
as dashed curves in Fig. 6.4.1. In this case the pseudo-magnetic field is
calculated according to the full vector potential Eq. (6.3.1). Note that the
Landau levels do not follow the usual square root function. This is because
the plot is a function of bump height. The Landau levels still behave as a
square root of the pseudo-magnetic field.

In the first case (white dashed curves), the Landau levels are plotted for a
constant unstrained Fermi velocity 𝑣𝐹 = 3𝑎𝑐𝑐𝑡0/2~. This does not give good
agreement with the LDOS when the bump height is large. In the second
case (black dashed curves), the Landau levels are fitted to the LDOS with

an adjusted strained Fermi velocity 𝑣
(𝑠)
𝐹 = 3(𝑎𝑐𝑐𝑡0 + 𝛼𝑙𝑚𝑛𝛿𝑡𝑚𝑛)/2~, where

𝛿𝑡𝑚𝑛 = 𝑡𝑚𝑛 − 𝑡0, and 𝛼 = 0.28 is a fitting constant.

Next, we are interested in finding the spatial localization of the different elec-
tron states. We plot the energy levels as a function of bump height in Fig.
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Fig. 6.4.3: Electron probability for different sublattices at the points 𝐿 (bottom
figures) and 𝐻 (top figures) from Fig. 6.4.2.

6.4.2. The levels split into two groups: some energy levels decrease toward
zero as the height of the bump increases, while the other group has the oppo-
site behavior and increases slowly in energy with ℎ0. To better understand
these two types of levels, we examine their wave functions. A point on a
rising energy level is marked as 𝐻 in Fig. 6.4.2. The spatial probability for
this state (see the right panel in Fig. 6.4.2) shows an electron state localized
away from the center of the system, i.e. it is localized outside the bump. As
the height of the bump is increased, the confinement area between the bump
and the system edge is reduced. This reduction in confinement area results
in an increase of the energy.

On the other hand, we have point 𝐿 which marks the level that splits down-
ward, away from level 𝐻. The spatial probability in point 𝐿 is plotted in
the right bottom panel of Fig. 6.4.2. These decreasing levels are confined
inside the bump, in contrast to the previous case. The probability peaks
are found in the armchair directions which coincides with the peaks of the
pseudo-magnetic field from Fig. 6.3.1. These levels converge toward zero
energy, thus forming the zero Landau level. Because the pseudo-magnetic
field is nonhomogeneous in this system, higher Landau levels are not clearly
visible in the global energy spectrum.

The wave functions on the individual sublattices A and B are shown in Fig.
6.4.3 for both the 𝐿 and 𝐻 branches. Each sublattice contributes to three
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of the six probability peaks. The peak heights for each sublattice are the
same, but the peaks are positioned opposite to one another. The areas of
high probability for sublattice A are positioned at the positive peaks of the
pseudo-magnetic field, while those localized on sublattice B coincides with
the negative peaks of the pseudo-magnetic field. Note that for the 𝐻 level,
the probability peaks are rotated by 60∘ in the two sublattices as compared
to the 𝐿 level. This also points to the different origin of these levels.

Another interesting feature of the energy levels are anti-crossing points that
switch the two types of energy levels. We examine one of these anti-crossing
points in detail in Fig. 6.4.4. We mark points 𝐻1, 𝐻2 (𝐿1, 𝐿2) on the higher
(lower) level before and after the anti-crossing, respectively. Following the
higher level from 𝐻1 to 𝐻2, we can see a transition from confinement inside
the bump to confinement outside the bump. This is consistent with the
previously discussed confinement types for decreasing and increasing energy
levels with ℎ0. Following the lower level from 𝐿1 to 𝐿2 reveals the opposite
behavior, with the confinement switching from outside to inside. Note also
that when we go from 𝐻1 (𝐿1) to 𝐿2 (𝐻2) the position of the peaks are
rotated by 60∘. The direction of the appearance of the peaks in the lower
(higher) branch does not change when passing the anti-crossing point.
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Fig. 6.4.5: Electron probability for different sublattices before and after the anti-
crossing point from Fig. 6.4.4.

The probability plots around the anti-crossing point do not show perfect
six-fold symmetry as we have seen in previous cases. Instead, we have two
sets of three probability peaks with different magnitudes. We examine this
asymmetry in Fig. 6.4.5 by plotting the separate probabilities for the two
sublattices. At point 𝐻1, sublattice A has larger probability, but at point
𝐻2 (after the anti-crossing) this is reversed. Thus, following an energy level
through an anti-crossing point from 𝐻1 to 𝐻2 (or 𝐿1 to 𝐿2) will result in
two transitions: both the confinement type (inside or outside the bump) and
the sublattice dominance are switched.

For completeness, we plot the probability distribution at the extrema of the
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anti-crossing shown in Fig. 6.4.4.
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Fig. 6.4.7: Left: (a) Radial and (b) angular electron probability at low energy
as a function of the bump height. The dashed line labeled 𝑅 marks the radius of
the bump and 𝑅𝐵 is the spatial position of the maximum of the pseudo-magnetic
field. In figure (b) the dashed lines indicate the armchair and zigzag directions in
graphene. Right: Cuts of the probability at ℎ0 = 0 and ℎ0 = 2 nm. The energy is
fixed at 𝐸 = 0.05 eV.

anti-crossing in Fig. 6.4.6. Notice that they exhibit appreciable probability
both inside and outside the bump. Both points are three-fold symmetric but
rotated by 60∘ relative to one another.

Since the bump is radial, it is natural to express the electron probability in
polar coordinates as 𝑃 (𝑟, 𝜃). We are specifically interested in finding electron
states that are confined inside the bump and that are not influenced by the
finite size of the simulated system. We can take an integral over the angle
and only leave the radius dependent part of the probability

𝑃 (𝑟) =

∫︁ 2𝜋

0

𝑃 (𝑟, 𝜃)𝑑𝜃. (6.4.3)
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Alternatively, we can do the opposite and take the integral over the radius,
which leaves just the dependence on the angle.

The radial probability of low energy electrons as a function of bump height
is shown in the left part of Fig. 6.4.7(a). As expected, the probability near
zero bump height is practically uniform across the full radius of the system.
As the height of the bump increases, we start seeing confinement inside the
bump. More specifically, the probability peak is close to the position of the
maximum of the pseudo-magnetic field, marked as 𝑅𝐵.

Fig. 6.4.7(b) shows the angular probability. The dashed lines indicate the
armchair (black) and zigzag (white) directions of graphene, which alternate
every 𝜋/6 radians. For low bump height, the angular distribution is prac-
tically uniform. As the height of the Gaussian bump increases, probability
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Fig. 6.4.9: Probability current for the 𝐿 point electron state from Fig. 6.4.2,
for sublattices (a) A and (b) B. (c) An enlarged region around snake states. The
dashed line indicates the zigzag direction.

maxima start to form in the armchair directions and minima appear in the
zigzag directions.

Next, we fix the bump height at ℎ0 = 2 nm and we present the probability
as a function of energy in Fig. 6.4.8(a). For low energy, we find that the
state is mostly confined inside the bump near the strain maximum. But for
energies above 0.3 eV, we find substantial probability outside the bump and
thus weaker confinement.

Looking at the angular plot in Fig. 6.4.8(b), we find probability peaks in
the armchair directions and minima in the zigzag directions. As the energy
increases the peaks disappear around 0.3 eV, which is the same energy where
we started seeing substantial probability outside the bump in the radial plot.
Once the probability outside the bump becomes substantial (above 0.4 eV),
the highest probability shifts to the zigzag directions. As we will see later, the
zigzag directions are associated with directions along which the probability
current flows, connecting the center and the outside of the bump.
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The single valley probability current at carbon atom 𝑚 is given by,

�⃗�𝑚 =
𝑖

~

3∑︁
𝑛=1

Ψ*
𝑚𝐻𝑚,𝑚+𝑛Ψ𝑚+𝑛 �⃗�𝑛, (6.4.4)

where 𝐻𝑚,𝑚+𝑛 = −𝑡𝑚,𝑚+𝑛 is the tight-biding Hamiltonian matrix element.
We plot the current inside the hexagonal flake in Fig. 6.4.9 for the same
𝐿 state as in Fig. 6.4.2. For clarity, the current is plotted separately for
sublattices A and B. Circular orbits coincide with the positions of the six
probability peaks in the armchair directions. The current is very low at
the exact positions of the probability peaks, but there is an appreciable
circular current flowing around the peaks. Each sublattice contributes three
circular orbits, where the sublattice A orbits have a clockwise direction and
sublattice B is counterclockwise. This coincides with the probability peaks
of the individual sublattices, as well as with the positive and negative peaks
of the pseudo-magnetic field. Lines where the pseudo-magnetic field is zero
lie along the zigzag directions. Fig. 6.4.9(c) shows the current along this
line, where we find the current flowing successively across the line in both
directions. These are snake orbits which are present because of the interface
between the positive and negative pseudo-magnetic field.

6.5 Conclusions

We showed that a circular symmetric straining of a hexagonal graphene flake
induces a non-circular symmetric pseudo-magnetic field. The average in-
duced pseudo-magnetic field is zero and the field changes sign when we cross
a zigzag direction. The pseudo-magnetic field was calculated up to third or-
der in the strain. The first order term was found to be valid only up to 5%
strain. The second order term extends the validity of the pseudo-magnetic
field expression for a Gaussian bump up to 15%, while the third order is
needed to go up to graphene’s full strain limit (25%).

Next, we investigated the confinement of the electronic states in the same
system. We found that non-uniform strain has a significantly different ef-
fect in the two fundamental directions of graphene. The six-fold symmetry
of the confinement is directly related to the armchair and zigzag directions.
Electrons are well confined in the armchair directions, while the zigzag di-
rections allow the flow of probability current between the inside and outside
of the strained region. This mirrors the form of the strain-generated pseudo-
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magnetic field, which has peaks in the armchair direction and zero magnitude
in the zigzag directions.

The energy levels of the Gaussian bump system show splitting and anti-
crossing states that correspond to different regions of localization of the elec-
tron. The levels that increase in energy with increasing bump height are
confined between the bump and the edges of the graphene flake, while the
decreasing levels correspond to states confined inside the bump. We also
identified several anti-crossing points which switch the confinement type (in-
side or outside the bump) as well as the sublattice dominance.

We examined the probability of finding the electron at a particular posi-
tion as a function of the radius and angle. At low energy there is strong
confinement inside the bump near the strain maximum. At higher energy,
confinement is weaker and more states are found outside the bump. As for
directional confinement, we found that low energy states are well confined in
the armchair directions, where we see closed circular electron orbits. Higher
energy states are more likely to be found in the zigzag directions, where the
probability current shows channels (i.e. snake states) to and from the center
of the bump.
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CHAPTER 7

Strain engineering of bilayer
graphene flakes

We study the effect of mechanical deformations on the electronic properties
of hexagonal flakes of bilayer graphene. The behavior of electrons induced by
triaxial strain can be described by an effective pseudo-magnetic field which is
homogeneous in the center of the flake. We find that in-plane strain, applied
to both layers equally, can break the layer symmetry leading to different
behavior in the top and bottom layers of graphene. At low energy, just one
of the layers feels the pseudo-magnetic field: the zero-energy pseudo-Landau
level is missing in the second layer, thus creating a gap between the lowest
non-zero levels. While the layer asymmetry is most significant at zero energy,
interaction with the edges of the flake extends the effect to higher pseudo-
Landau levels. The behavior of the top and bottom layers may be reversed
by rotating the triaxial strain by 60°.

7.1 Introduction

The possibility of stacking multiple graphene layers has led to new inves-
tigations, in particular of bilayer graphene which shares the same excellent
electrical properties as found in the monolayer. Although it does not possess

∗The results of this chapter were published as:
D. Moldovan and F.M. Peeters, Phys. Status Solidi - Rapid Res. Lett. 10, 39 (2015).
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Fig. 7.1.1: Illustration of AB stacked bilayer graphene (a) from top-down (xy
plane) and (b) from the side (yz plane). The arrows indicate the direction along
which strain is applied. The strain is nonuniform: the intensity is zero in the
center and increases in the direction of the arrows.

the monolayer’s linear spectrum, pristine bilayer is still gapless with prop-
erties which make it unique among 2D electron gas systems. A gap can be
opened and even tuned by applying a bias voltage between the two layers
[96]. The integer quantum Hall effect in bilayer graphene introduces new
physics in the form of massive chiral quasiparticles which makes it distinct
from monolayer graphene [97, 98].

Bilayer graphene maintains the excellent mechanical properties of the mono-
layer and adds additional possibilities for applying strain, such as controlling
the interlayer distance and offset to open a band gap [99, 100], changing the
topology of the low-energy band structure [101] and the creation of in-plane
pseudo-magnetic fields [102].

In this chapter, we study the effect of in-plane triaxial strain on hexago-
nal flakes of bilayer graphene. In the two-band approximation, the Landau
level spectrum of bilayer graphene is expected to behave as a linear function
of the magnitude of the field. While this holds for weak magnetic fields,
pseudo-magnetic fields of tens or hundreds of Tesla are common which sig-
nificantly alters this behavior. We show that, as function of the strain, the
pseudo-Landau levels quickly deviate from a linear function, trying instead
to restore a square root function reminiscent of monolayer graphene. It has
been shown previously that applying in-plane strain with triangular symme-
try results in a uniform pseudo-magnetic field in monolayer graphene [35].
In addition to this, we find that in bilayer graphene triaxial strain breaks the
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layer symmetry, leading to different top and bottom layer behavior. One of
the layers is missing the zero-energy pseudo-Landau level. The majority of
the low-energy states are located only on the second layer, thus polarizing
the bilayer flake. The dominant layer may be chosen by changing the angle
at which the triaxial strain is applied, with a full reversal every 𝜋/3 radians.
We also consider finite size effects and find that the interaction of the zero-
energy level with the edges of the flake extends the layer differences to higher
pseudo-Landau levels.

7.2 Theoretical Model

The unit cell of bilayer graphene consists of four atoms labeled A1, B1 for the
lower layer and A2, B2 for the upper layer (see Fig. 7.1.1). We consider the
AB (Bernal) stacking variant of bilayer graphene where atom A2 is positioned
directly on top of atom B1. Because of the strong interlayer coupling these
sites are referred to as dimer sites. In contrast, A1 and B2 are non-dimer
sites which don’t have a direct counterpart in the other layer.

The tight-binding Hamiltonian for this structure can be written as

𝐻 =
∑︁
𝑚

∑︁
⟨𝑖,𝑗⟩

(︁
𝛾0,𝑖,𝑗𝑎

†
𝑚,𝑖𝑏𝑚,𝑗 +𝐻.𝑐.

)︁
+𝛾1

∑︁
𝑖

(︁
𝑏†1,𝑖𝑎2,𝑖 +𝐻.𝑐.

)︁
+
∑︁
⟨𝑖,𝑗⟩

(︁
𝛾3,𝑖,𝑗𝑎

†
1,𝑖𝑏2,𝑗 +𝐻.𝑐.

)︁
,

(7.2.1)

where 𝑎𝑚,𝑖 (𝑏𝑚,𝑖) annihilates an electron at site Ri of sublattice 𝐴 (𝐵), in
layer 𝑚 = 1, 2. Here 𝛾0 = −2.8 eV is the in-plane hopping parameter,
𝛾1 = −0.4 eV is the interlayer hopping between the dimer sites B1 and A2,
and 𝛾3 = −0.3 eV describes the interlayer coupling between the non-dimer
sites A1 and B2. Note that the effect of skew coupling 𝛾3 is most significant
at very low energy for magnetic fields smaller than 1 Tesla [101]. In the
context of the current work, the pseudo-magnetic fields are strong enough
that the effect of 𝛾3 may be safely neglected.

Strain is included in the hopping amplitudes according to the relation [30]

𝛾0,𝑖,𝑗 = 𝛾0e
−𝛽(|⃗𝛿𝑖𝑗 |/𝑎𝑐𝑐−1), where 𝛽 = 3.37, �⃗�𝑖𝑗 is the vector which connects

two neighboring atoms in the strained lattice and 𝑎𝑐𝑐 = 0.142 nm is the
unstrained carbon-carbon distance. Since we are considering pure in-plane
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strain, the interlayer hopping 𝛾1 will remain constant. Changes of the in-
plane hopping amplitudes shift the Dirac points in reciprocal space, thus
inducing an effective vector potential [86, 87]

𝐴𝑥 + 𝑖𝐴𝑦 =
1

𝑒𝑣𝐹

∑︁
�⃗�𝑖𝑗

𝛿𝑡𝑖𝑗e
−𝑖�⃗� ·⃗𝛿𝑖𝑗 , (7.2.2)

where 𝛿𝑡𝑖𝑗 = 𝛾0,𝑖,𝑗 − 𝛾0 is the difference between the strained and unstrained

in-plane hopping amplitudes. The position of the �⃗� valley is taken in the
reciprocal space of the original unstrained lattice. The pseudo-magnetic field
is found as �⃗�𝑝𝑠 = ∇⃗ × �⃗�𝑝𝑠. Equation (7.2.2) may be evaluated at either
the 𝐾 or 𝐾 ′ point which shows that the resulting pseudo-magnetic fields will
have opposite signs in different valleys: 𝐵𝐾

𝑝𝑠 = −𝐵𝐾′
𝑝𝑠 .

Considering states close to the 𝐾 point, in the two-band approximation of
bilayer graphene, the Landau level (LL) spectrum is given by [98]

𝐸𝑛 = ±~𝜔𝑐

√︀
𝑛(𝑛− 1), 𝑛 ≥ 2, (7.2.3)

where 𝜔𝑐 = 𝑒𝐵/𝑚 and 𝑚 = |𝛾1|/2𝑣2𝐹 ≈ 0.04𝑚𝑒. There are two additional
states fixed at zero energy: 𝐸1 = 𝐸0 = 0. Note that the LL energy is a linear
function of the magnetic field 𝐵. The levels are approximately equidistant
for high values of the index (𝑛≫ 1). The wavefunctions in the K valley are,

𝜓𝑛 =
1√
2

(︂
𝜑𝑛

±𝜑𝑛−2

)︂
, 𝑛 ≥ 2,

𝜓1 =

(︂
𝜑1

0

)︂
, 𝜓0 =

(︂
𝜑0

0

)︂
,

(7.2.4)

where the wavefunction components describe the amplitudes on the A1 and
B2 sites. Note that the zero-energy states (𝑛 = 0, 1) have a finite amplitude
only on a single sublattice. In the K’ valley the role of the two sublattices is
reversed,

𝜓𝑛 =
1√
2

(︂
𝜑𝑛−2

±𝜑𝑛

)︂
, 𝑛 ≥ 2,

𝜓1 =

(︂
0
𝜑1

)︂
, 𝜓0 =

(︂
0
𝜑0

)︂
.

(7.2.5)

We apply in-plane triaxial strain in the armchair directions of a hexagonal
bilayer flake as shown in Fig. 7.1.1. The strain is purely in-plane and applied
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simultaneously to both layers. In polar coordinates the displacement is given
by,

𝑢𝑟 = 𝑐𝑟2 sin 3𝜃,

𝑢𝜃 = 𝑐𝑟2 cos 3𝜃,
(7.2.6)

where 𝑐 is a constant. The induced pseudo-magnetic field may be found by
plugging the displacement into Eq. (7.2.2) and expanding up to the first
order term, which results in a uniform field perpendicular to the graphene
plane,

𝐵𝑝𝑠 =
4~𝛽𝑐
𝑎𝑐𝑐𝑒

. (7.2.7)

The direction of the pseudo-magnetic field can be reversed by rotating the
angle of the strain by 60°. If we substitute 𝜃 → 𝜃 + 𝜋/3 in Eq. (7.2.6),
the displacement will have the opposite sign and so will the pseudo-magnetic
field Eq. (7.2.7).

The pseudo-magnetic field has the same single valley behavior as a real mag-
netic field, so Eqs. (7.2.3) and (7.2.4) still hold, but because of the opposite
sign of the field in the 𝐾 ′ valley, Eq. (7.2.5) is modified such that the sub-
lattice components are reversed,

𝜓(𝑝𝑠)
𝑛 =

1√
2

(︂
𝜑𝑛

±𝜑𝑛−2

)︂
, 𝑛 ≥ 2,

𝜓
(𝑝𝑠)
1 =

(︂
𝜑1

0

)︂
, 𝜓

(𝑝𝑠)
0 =

(︂
𝜑0

0

)︂
.

(7.2.8)

We consider the tight-binding Hamiltonian (7.2.1) with the strain included
directly in the hopping amplitudes according to the displacement created by
the triaxial strain. The pseudo-magnetic field relation Eq. (7.2.7) is valid
close to the center of the system, where the strain is low. Moving away from
the center, higher strain requires higher order terms of the pseudo-vector po-
tential to be taken into account [103], thus deviating from uniform field. Ad-
ditionally, at very high strain (above 15%) the elasticity theory displacement
relation loses accuracy and molecular dynamics simulations are required to
obtain relaxed atomic positions [104]. The numerical tight-binding model we
implement here takes into account the full non-uniform spatial dependence
of the strain, but we shall keep the strain low enough to stay in the validity
range of elasticity theory.

We shall compare the numeric solutions of the tight-binding Hamiltonian to
the two-band approximation of the Landau level spectrum Eq. (7.2.3). In
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Fig. 7.3.1: Local density of states (LDOS) as a function of energy at the sublat-
tices A1, B1, A2, and B2 of bilayer graphene with real and pseudo-magnetic fields
of 𝐵 = 𝐵𝑝𝑠 = 4 T applied. The LDOS is calculated in the center of the strained
bilayer flake. A Lorentzian broadening of 2 meV is applied.

the following calculations we take a hexagonal flake with armchair edges 70
nm in width, which corresponds to a system consisting of about 3.5 million
carbon atoms. The two layers consist of an equal number of atoms and have
the same edges. The edge type does not influence the results in the center
of the system, but we choose a system with only armchair edges in order to
avoid low-energy zigzag edge states.

7.3 Numerical results

We compare the LDOS for bilayer graphene for three different situations:
(1) pristine bilayer graphene, (2) in the presence of a real external magnetic
field, and (3) with a strain-induced magnetic field of the same magnitude.
The results are shown in Fig. 7.3.1 individually for each layer and sublattice.
The low-energy bands of bilayer graphene arise from the non-dimer sites
(A1, B2) which is reflected in the finite zero-energy LDOS on those sites
of the pristine bilayer. The dimer sites (B1, A2) mainly contribute to the
top band so their low-energy LDOS is about an order of magnitude lower
than the non-dimer sites. Within the same layer, A-B sublattice symmetry
is broken because of the interlayer hopping on the dimer sites. However, the
A-B relationship is reversed in the second layer, thus restoring the overall
symmetry.

Turning our attention to the real magnetic field case, the Landau levels ap-
pear as sharp peaks in the LDOS. The zero-energy peak on the non-dimer
sites has twice the intensity as compared to the rest. This is due to the
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Fig. 7.3.2: Colormap of the LDOS intensity as a function of the pseudo-magnetic
field and the energy for the individual sublattices. The pseudo-Landau level spec-
trum of bilayer graphene is visible. The horizontal dotted lines at ±0.4 eV indicate
the bottom of the second band. The dashed lines in panel A1 indicate the expected
LL energy based on the two-band Hamiltonian for 𝑛 = 2, 3, 4. The LDOS is calcu-
lated in the center of the system, where the pseudo-magnetic field is approximately
uniform and may be estimated by Eq. (7.2.7). The LDOS broadening is 4 meV.

twofold orbital degeneracy of the zero-energy Landau level of the bilayer.
The layer symmetry is preserved with just an A-B reversal in the second
layer, just like for the pristine case.

Next, we look at the strain-induced pseudo-magnetic field of the same mag-
nitude. On the non-dimer sites, the pseudo-Landau levels coincide very well
with the real ones, except for the zero-energy level, which is missing on A1,
but double the magnitude on B2. This is a consequence of the pseudo-
magnetic field having the opposite sign in the K and K’ valleys. Normally,
the zero LL only has a finite contribution from the K valley in the top layer:
𝜓𝐾 = (𝜑, 0)𝑇 , and in K’ only for the bottom layer: 𝜓𝐾′ = (0, 𝜑)𝑇 . How-
ever, the pseudo-magnetic field has opposite signs in K and K’, thus both
valleys will contribute to just a single layer: 𝜓𝐾 = (𝜑, 0)𝑇 , 𝜓𝐾′ = (𝜑, 0)𝑇 .
This leads to a broken layer symmetry. Effectively, at low energy only the
electrons of a single layer will behave as though they are exposed to the
pseudo-magnetic field. The dominant layer may be flipped by changing the
sign of the pseudo-magnetic field, i.e. by rotating the triaxial strain by 60°.

The breaking of the layer symmetry may also be seen from the point of view
of a single unit cell as illustrated in Fig. 7.1.1(b). The strain is nonuniform
and changes in the direction indicated by the arrow. This means that the
amplitudes of the in-plane hoppings A1-B1 and A2-B2 will be different, thus
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Fig. 7.3.3: Landau level energy as a function of level number 𝑛 for pseudo-
magnetic fields of 4, 20 and 80 T calculated numerically using the tight-binding
method (TBM) and using the two-band approximation Eq. (7.2.3). Levels 𝑛 = 0
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breaking the symmetry between the bottom and top layers. In the case
illustrated in Fig. 7.1.1, the top layer will feel higher strain, i.e. have a
lower hopping amplitude as compared to the bottom layer. The zero-energy
pseudo-Landau level will form on the layer with the lower hopping amplitude.
For a single unit cell, the effect is reversed with the direction of the applied
nonuniform strain. For the total system this is achieved by rotating the three
strain directions by 𝜋/3.

In Fig. 7.3.2 we plot the LDOS as function of the pseudo-magnetic field and
energy for the individual sublattices. It’s quite clear that the dimer sites
(B1, A2) only have a large contribution in the second band which is offset
by ±|𝛾1| = ±0.4 eV from the Dirac point. Below that energy, the LDOS is
at least an order of magnitude lower than the non-dimer sites. Note that
site B2 actually does have a zero-energy Landau level which contributes to
the top layer. However, its intensity is almost two orders of magnitude lower
than the zero LL at site B2 in the bottom layer, which makes it negligible.
The small low-energy contribution of the dimer sites is also clearly visible
in Fig. 7.3.1. Effectively, the low energy spectrum of the top layer is well
described by considering the non-dimer sites. In the following analysis we
shall only consider the A1 and B2 sites as representing the top and bottom
layers, respectively.
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Fig. 7.3.4: Colormap of the LDOS as a function of the pseudo-magnetic field 𝐵𝑝𝑠

and energy for the (a) bottom and (b) top layer of bilayer graphene. The LDOS
broadening is 5 meV.

The Landau level spectrum Eq. (7.2.3) is derived from the two-band Hamil-
tonian and is only valid under the condition 𝑛~𝜔𝑐 ≪ 𝛾1 which means that
even the lowest levels are only accurate up to at most 10 Tesla. However, the
pseudo-magnetic field may easily reach hundreds of Tesla. The dashed lines
in Fig. 7.3.2 A1 show the two-band estimate of the LL energy for 𝑛 = 2, 3, 4
and for high 𝐵𝑝𝑠 they are clearly very different compared to the LLs deter-
mined by the tight-binding calculation. In Fig. 7.3.3 we compare the Landau
level energy for the first 10 levels calculated using the tight-binding method
and the two-band approximation. For 4 T the two methods agree closely,
while at 20 T the results start to diverge. For high values of 𝑛, the two-band
LL spectrum follows approximately a linear function of 𝑛 (with equidistant
level spacing ~𝜔𝑐), while the tight-binding spectrum tends to restore to a
monolayer-like square root function of 𝑛 at high energy. The non-linear
function of the LL energy with 𝐵𝑝𝑠 is especially visible in Fig. 7.3.4, where
the tight-binding Hamiltonian is used to calculate the LL spectrum for strong
pseudo-magnetic fields up to 300 T.

We present a spatial map of the LDOS at zero energy for a hexagonal bilayer
flake in Figs. 7.3.5(a) and (b) for the individual layers. A large part of
the bottom layer has zero LDOS intensity due to the missing zero-energy
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Fig. 7.3.5: Spatial map of the LDOS of a hexagonal bilayer flake with a side
width of 70 nm. (a,b) At zero energy (LL 𝑛 = 0, 1) in the bottom and top layer.
(c,d) At finite energy (LL 𝑛 = 2) in the bottom and top layer. The flake is strained
to achieve 𝐵𝑝𝑠 = 20 T in the center.

LL states. In contrast, the top layer has high intensity in the center of the
flake. The pseudo-magnetic field is not completely homogeneous due to the
outwardly increasing strain, but there is still a large area (about half the
total diameter) where the LDOS is nearly constant, as shown by the values
of the two inner most contour lines in Fig. 7.3.5(b). The central contour is
circular which is indicative of the pseudo-magnetic field, but moving outward
the shape of the next contour line changes to hexagonal and the LDOS loses
intensity because of the influence of the flake edges. Even though both layers
are terminated with the same armchair edges, only the bottom layer has
edge states with high LDOS intensity. Because of the hexagonal shape of
the flake, all the edges are positioned at an angle of 60° with respect to the
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Fig. 7.3.6: Color plot of the LDOS as a function of distance from the center of the
bilayer graphene flake, at a fixed angle along the armchair direction of graphene
(coinciding with the direction of strain). The pseudo-magnetic field is 𝐵𝑝𝑠 = 20
T. The LDOS broadening is 2 meV.

strain direction and the edge atoms will only feel the angle component of the
non-uniform strain. As established earlier, rotating the strain in such a way
will flip the sign of the pseudo-magnetic field, thus creating the edge effect
only in a single layer opposite the one which is dominant in the center of the
flake.

The LDOS map at the first finite energy Landau level (𝑛 = 2) is shown in
Figs. 7.3.5(c) and (d). In this case, Landau level states exist on both layers,
but the top has an additional resonance pattern close to the edges. This is
caused by the reflection of the zero-energy LL on the edges. This is visible in
Fig. 7.3.6 where we plot the LDOS as a function of radial position at a fixed
angle along the armchair direction of graphene (coinciding with the direction
of strain). The center of the flake supports well formed pseudo-Landau levels,
but they break apart at the edges. The higher energy LLs consist of states
with larger orbital numbers which makes them more susceptible to finite size
effects than the low energy LLs. Note that the interaction of the zero-energy
LL with the edges in the top layer produces an additional resonance which
is picked up in the higher energy levels. This is responsible for the LDOS
pattern along the edges in Fig. 7.3.5(d).
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7.4 Conclusions

We studied the effect of triaxial strain on the electronic properties of hexago-
nal flakes of bilayer graphene. We used the numerical tight-binding approach
to obtain the Landau level spectrum of the strain-induced pseudo-magnetic
field. Compared to results obtained from an effective two-band Hamiltonian,
we found a good match only at relatively low magnetic fields, on the order of
1 Tesla. The strain-induced pseudo-magnetic fields are easily achievable in
the range from tens to hundreds of Tesla, which requires our more accurate
tight-binding calculations. In strong fields, the pseudo-Landau levels transit
from a linear function of the field magnitude to a square root, as in monolayer
graphene.

The triaxial strain creates a homogeneous pseudo-magnetic field in the cen-
ter of the strained bilayer flake, similar to monolayer graphene. However,
we found that in bilayer graphene the pseudo-magnetic field breaks the sym-
metry between the top and bottom layers of graphene. At low energy, the
difference between the layers is so large that effectively only one layer feels
the effects of the pseudo-magnetic field. The second layer is missing the
zero-energy pseudo-Landau level, thus it features a large gap between the
first positive and negative levels. In principle, the layer symmetry is restored
for the non-zero-energy LLs, however in finite systems like graphene flakes,
the interaction of the zero LL with the edges creates additional resonances
which extend the layer asymmetry to higher Landau levels. The behavior of
the two layers may be flipped by changing the sign of the pseudo-magnetic
field, i.e. by rotating the triaxial strain by 60°.



Part III

Atomic collapse in graphene
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CHAPTER 8

Atomic collapse with artificial
nuclei

The relativistic wave equation for the electron, derived by Paul Dirac in
1928, predicts that heavy atoms will undergo a process called atomic collapse.
Electronic states sink into the positron continuum triggering the spontaneous
creation of electron-positron pairs. The extremely high charge requirements
have prevented the observation of this phenomenon. However, thanks to
the relativistic nature of the carriers and no energy gap in graphene, the
same physics can be observed at a much lower scale. We discuss the atomic
collapse analogue in graphene and its realization using artificial nuclei. The
required supercritical charge may be created via the deposition of impurities
on the surface of graphene or using charged vacancies. These artificial nuclei
trap electrons in a sequence of quasi-bound states. Experimentally, these
supercritical states can be observed as resonances in the local density of
states close to the charge center.

8.1 Introduction

In 1928, Paul Dirac proposed a relativistic formulation of the quantum me-
chanics of the electron [105], which predicted that relativistic quantum effects
can tip the delicate balance of stable atomic orbitals. When the charge of
the nucleus exceeds a certain critical value, atomic states are rendered un-
stable: the energy levels of bound states dive into the lower continuum and
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the spontaneous generation of positrons is expected [44–46]. The semiclas-
sical trajectories of these unstable states spiral into the nucleus, hence the
name atomic collapse. This is a long sought-after phenomenon in quantum
electrodynamics (QED). The critical charge requires extremely heavy nuclei
with 𝑍 > 170, which has prevented the observation of this phenomenon
notwithstanding several attempts using collisions of heavy ions [47, 48].

The topic of Coulomb interactions in graphene has long been of significant
interest, especially its impact on the electrical properties in the presence
of charged impurities [106–108]. The unusually high carrier mobility in
graphene is attributed to the fact that the Dirac quasiparticles cannot be con-
fined by electrostatic potentials or bound by stray impurities [20, 109, 110].
However, when the impurity charge exceeds a critical value it triggers a fun-
damental change in the electronic properties, manifest by the emergence of
quasi-bound localized states in its vicinity [111–113]. This effect is analogous
to the atomic collapse as predicted almost a century ago. In graphene, where
the fine structure constant is much larger, the critical Coulomb coupling can
be reached for relatively modest charge Z, on the order of unity [111–114].
Still, even in graphene this regime has been elusive because screening reduces
the effective coupling rendering the charge subcritical [40, 115].

Atomic collapse with heavy nuclei

Classical physics cannot properly explain the structure of an atom. Because
the energy is unbounded, an electron in orbit around a nucleus would con-
tinually lose energy, assume a spiraling orbit and eventually collide with the
nucleus. Quantum mechanics solves this problem and naturally explains sta-
ble atomic orbits. Given a nucleus with the atomic number 𝑍, an orbiting
electron feels the Coulomb potential 𝑈 = −𝑍𝑒2/𝑟. Its kinetic energy is de-
scribed by 𝐾 = 𝑝2/2𝑚 where we can substitute the uncertainty principle
to find 𝐾 ≈ ~2/𝑚𝑟2 ∝ 1/𝑟2, while the potential part is 𝑈 ∝ −1/𝑟. Being
interested in conditions around the nucleus, we take the limit 𝑟 → 0 to find
that |𝐾| ≫ |𝑈 | and thus the total energy 𝐸 = 𝐾 + 𝑈 → ∞. An electron
would need an infinite amount of energy to find itself at the position of the
nucleus. By this fact a collision with the nucleus is made impossible and
quantum mechanics leaves only one possible outcome: electron orbitals must
be stable.

However, when heavy nuclei (with large 𝑍) are considered, quantum me-
chanics alone does not give an accurate description and relativity must be
taken into account. The relativistic electron will find itself inside the same
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Fig. 8.1.1: Schematic drawing of the atomic bounding energies as function of the
atomic number 𝑍 and the level diving process in the supercritical regime. The
dotted curves indicate the solutions for a point charge while the solid curves take
into account the finite size of the nucleus.

Coulomb potential as before, but now its kinetic energy must be described
as 𝐾 = 𝑐

√︀
𝑝2 +𝑚2

0𝑐
2, where 𝑐 is the speed of light and 𝑚0 is rest mass.

Considering 𝑚0 to be small and substituting the uncertainty principle, we
find that 𝐾 ∝ 1/𝑟 which is the same as the potential energy but with the
opposite sign. Taking the limit 𝑟 → 0 will not yield a definitive result this
time, because both the potential and kinetic parts are of the same order.
This opens the possibility of a finite energy electron state at the nucleus
with disruptive results: atomic collapse.

Solving the Dirac equation for an atomic nucleus modeled as a point charge
reveals the energy of the 1S atomic bound state, 𝐸1𝑆 = 𝑚𝑒

√︀
1− (𝑍𝛼)2 [46],

where 𝑚𝑒 ≈ 511 keV is the electron rest mass and 𝛼 ≈ 1/137 is the fine
structure constant. Beyond the value of 𝑍𝑐𝛼 = 1, i.e. 𝑍𝑐 ≈ 137, the energy
becomes complex. This “collapses” the wave function and the bound state
ceases to exist. However, this outcome is reached by assuming the nucleus
is a point charge, which is quite unrealistic especially since it is expected to
house more that a hundred protons. Taking into account the finite size of
the nucleus will truncate the Coulomb potential thereby removing the di-
vergence. This correction extends the stability beyond 𝑍 ≈ 137 [44, 46].
The 1S state continues to exist up to the new critical value of 𝑍𝑐 ≈ 170
(see Fig. 8.1.1). This region of stability where 𝑍 < 𝑍𝑐 is referred to as
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the subcritical regime. When 𝑍𝑐 is exceeded (the supercritical regime), the
electron state leaves the discrete spectrum and dives into the positron contin-
uum. There, the bound state acquires a finite lifetime, transforming it into
a narrow resonance [45, 46]. The electron state is coupled to the positron
continuum via tunneling which gives rise to spontaneous positron emission
which is the expected measurable signature of atomic collapse.

Because of the extreme requirements, a stable nucleus with supercritical
charge cannot be found in nature, but it is possible to create one, at least for
a short time. Artificial nuclei with charge values 𝑍 > 170 can be realized in
high-energy collisions of very heavy ions. While such experiments with Ura-
nium atoms did confirm several features of the near-collapse regime, direct
proof of supercritical positron emission was not found [47, 48].

Atomic collapse analogue in graphene

The relativistic nature of the charge carriers in graphene allows it to display
the same atomic collapse physics of QED but at a much smaller energy scale.
The speed of light is substituted with the much smaller Fermi velocity 𝑣𝐹 ≈
𝑐/300, which has a profound effect on the effective fine structure constant:

𝛼𝐺 =
𝑐

𝑣𝐹

1

𝜅
𝛼 ≈ 2.2

𝜅
≈ 1. (8.1.1)

Here 𝜅 ≈ 2.5 is the dielectric constant of graphene. Because the effective fine
structure constant 𝛼𝐺 is much larger than 𝛼, the value of the critical charge
𝑍𝐶 is expected to be much smaller, on the order of unity. This means that
modest charged impurities in graphene could play the role of supercritical
nuclei.

It is important to keep in mind that the effect in QED concerns real particles
while the Dirac-like band structure of graphene refers to quasiparticle excita-
tion in an effective low-energy approximation. Graphene is two-dimensional
and massless while QED is three-dimensional and massive. The switch to
graphene also changes the energy scale from MeV to sub-eV. Nevertheless,
the physical analogue is undeniable and graphene has the key advantage: ex-
perimental accessibility. In addition, graphene experiments allow for further
study by varying other parameters such as the back-gate voltage, defects or
the number of layers. The results of this exploration have an effect on more
than just theoretical QED, but also the understanding of confinement and
transport in graphene.
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8.2 Theoretical model

The tight-binding description for the 𝜋𝑧 orbitals of carbon in graphene is
given by the Hamiltonian

𝐻0 = 𝑡
∑︁
⟨𝑖,𝑗⟩

(︁
𝑎†𝑖𝑏𝑗 +𝐻.𝑐.

)︁
+ 𝑡′

∑︁
⟨⟨𝑖,𝑗⟩⟩

(︁
𝑎†𝑖𝑏𝑗 + 𝑏†𝑖𝑏𝑗 +𝐻.𝑐.

)︁
, (8.2.1)

where operators 𝑎†𝑖 (𝑎𝑖) and 𝑏†𝑖 (𝑏𝑖) create (annihilate) an electron on site �⃗�𝑖

of sublattice 𝐴 and 𝐵, respectively. Here 𝑡 ≈ −2.8 eV is the nearest neigh-
bor (⟨𝑖, 𝑗⟩) hopping energy and 𝑡′ ≈ 0.1 eV is the next-nearest neighbor
(⟨⟨𝑖, 𝑗⟩⟩) hopping energy. It is sometimes assumed that the contribution of
the next-nearest hopping term is negligible, especially in the low energy ap-
proximation. However, it plays an important role in graphene since it breaks
electron-hole symmetry which is responsible for various effects which can be
observed experimentally, especially in the presence of localized defects, as we
shall see.

Considering only low-energy states close to the 𝐾 point and nearest neighbor
interactions (𝑡′ = 0), the tight-binding Hamiltonian Eq. (8.2.1) may be sim-
plified so that the equation 𝐻Ψ = 𝐸Ψ reduces to the massless Dirac-Weyl
equation

− i~𝑣𝐹 �⃗� · ∇⃗Ψ(⃗𝑟) = 𝐸Ψ(⃗𝑟), (8.2.2)

where 𝜎𝑖 are the Pauli matrices, 𝑣𝐹 = 3𝑎𝑐𝑐𝑡/2 ≈ 106 m/s is the Fermi ve-
locity, 𝑎𝑐𝑐 ≈ 0.142 nm is the carbon-carbon distance. The wave functions
Ψ(⃗𝑟) = [𝐴(⃗𝑟), 𝐵(⃗𝑟)]𝑇 are two-component spinors where the localization of
the electron on sublattices A and B plays the role of a pseudospin.

Solving the problem for pristine graphene yields the linear dispersion relation:
𝐸(𝑘) = ±~𝑣𝐹 |𝑘|. This corresponds to the dispersion relation of ultrarelativis-
tic particles 𝐸 = 𝑐|𝑝| but with the much smaller Fermi velocity 𝑣𝐹 instead
of the speed of light 𝑐. Furthermore, graphene’s band structure describes
electron and hole states which are an analogue of the relativistic electrons
and positrons (particle and antiparticle states of QED).

Coulomb impurity

In the presence of a charged impurity, a local energy term must be added to
the tight-binding Hamiltonian (8.2.1),

𝐻𝑖𝑚𝑝 =
∑︁
𝑖

𝑉 𝐴
𝑖 𝑎

†
𝑖𝑎𝑖 +

∑︁
𝑖

𝑉 𝐵
𝑖 𝑏

†
𝑖𝑏𝑖, (8.2.3)
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where 𝑉 𝐴,𝐵
𝑖 is the impurity potential at site �⃗�𝑖. A Coulomb center of charge

𝑍 generates the potential 𝑉 (𝑟) = −~𝑣𝐹𝛽/𝑟 where 𝛽 ≡ 𝑍𝑒2/𝜅~𝑣𝐹 is the
dimensionless coupling constant.

The total tight-binding Hamiltonian for a Coulomb impurity in graphene is
thus,

𝐻 = 𝐻0 +𝐻𝑖𝑚𝑝. (8.2.4)

As before, considering the effective low-energy approximation, we find that
the system is governed by the wave equation

~𝑣𝐹
(︂
−i�⃗� · ∇⃗ − 𝛽

𝑟

)︂
Ψ(⃗𝑟) = 𝐸Ψ(⃗𝑟). (8.2.5)

The equation describes the behavior of Dirac fermions in a single valley of
graphene’s Brillouin zone. Because of the long-range nature of the Coulomb
field, intervalley processes are not relevant and the problem may be solved
independently within each valley.

Due to the axial symmetry of the potential, Eq. (8.2.5) is separable in cylin-
drical coordinates. The total angular momentum is conserved which allows
us to use the eigenstates of the momentum operator 𝐽𝑧 = 𝐿𝑧 + 𝜎𝑧/2, where
𝐿𝑧 is the orbital angular momentum [41],

Ψ𝑗(𝑟) =
1√
𝑟

(︂
ei(𝑗−1/2)𝜙𝑎𝑗(𝑟)
ıei(𝑗+1/2)𝜙𝑏𝑗(𝑟)

)︂
. (8.2.6)

Here 𝑗 = ±1/2,±3/2, ... are the eigenvalues of 𝐽𝑧. Equation (8.2.5) therefore
reduces to, [︂

𝜀+ 𝛽/𝑟 −(𝜕𝑟 + 𝑗/𝑟)
(𝜕𝑟 − 𝑗/𝑟) 𝜀+ 𝛽/𝑟

]︂ [︂
𝑎𝑗(𝑟)
𝑏𝑗(𝑟)

]︂
= 0, (8.2.7)

where 𝜀 = 𝐸/~𝑣𝐹 . This coupled pair of first order differential equations can
be reduced to two decoupled second order equations. In the limit 𝑟 → 0 the
solution behaves as

𝜙𝑗(𝑟) ∼ 𝑟𝛾, (8.2.8)

where
𝛾 =

√︀
𝑗2 − 𝛽2. (8.2.9)

This reveals a problem for the lowest angular momentum (𝑗 = ±1/2), be-
cause 𝛾 becomes imaginary if 𝛽 > 𝛽𝑐 = 1/2. In this case the solution
oscillates endlessly towards the center as e𝑖 log 𝑟. From a classical perspective
(see Fig. 8.2.1) this can be understood as a critical angular momentum above
which the orbits spiral and fall into the potential origin [113]. Thus, a charge
in graphene which exceeds the critical value 𝛽𝑐 is seen as a supercritical
nucleus which triggers the analogue of the atomic collapse phenomena.
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Fig. 8.2.1: Quasiclassical electron trajectory of atomic collapse in graphene. Col-
lapsing electron coupled to escaping hole trajectory.

Supercritical regime

As we have just shown, the quantum-mechanical problem is ill-defined for a
point charge in the supercritical regime (𝛽 > 1/2). An additional boundary
condition must be introduced to cut off the potential at short distances. This
is analogous to the introduction of the finite size of the nucleus in QED [45].
The modified potential reads

𝑉 (𝑟) =

{︃
−~𝑣𝐹 𝛽

𝑟0
, if 𝑟 ≤ 𝑟0

−~𝑣𝐹 𝛽
𝑟
, if 𝑟 > 𝑟0

, (8.2.10)

where 𝑟0 is the cutoff. For graphene the natural minimal cutoff length orig-
inates from the lattice structure, i.e. 𝑟0 = 𝑎𝑐𝑐, the distance between two
nearest carbon atoms. A larger cutoff may be taken (depending on the na-
ture of the charge center) but the lattice cutoff is a natural minimum distance
required to regularize the potential and permit the solution to extend into
the supercritical regime.

The charge may also be located a significant distance away from the graphene
plane in which case the Coulomb potential may be regularized in the alter-
native form of 𝑉 (𝑟) = −~𝑣𝐹𝛽/

√
𝑟2 + 𝑑2, which corresponds to a charge 𝛽

located a distance 𝑑 from the graphene plane [116].

With the potential regularized with cutoff 𝑟0, the spectrum of the supercrit-
ical states behaves as [113]

𝐸𝑛𝑚 ≈ −~𝑣𝐹
𝛽

𝑟0
e−𝜋𝑛/

√
𝛽2−𝛽2

𝑚 . (8.2.11)

The energy scale is set by the regularization cutoff 𝑟0. Because there is no gap
in the energy spectrum, true bound states are not possible so these are quasi-
bound states (resonances). Note that there is a singularity at the critical
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Fig. 8.2.2: Colormap of the LDOS as a function of position and energy. The
charge is located in the center (𝑟 = 0). The coupling 𝛽 varies from 0 to 1.2 as
labeled in the panels. The dotted line in the first panel indicated the Dirac point
(DP). In the following panels the dotted line presents the shape of the Coulomb
potential. The 𝑅1 and 𝑅2 labels indicate the collapse resonances which appear in
the supercritical regime 𝛽 > 0.5.

value 𝛽 = 𝛽𝑚 and the states are only defined for 𝛽 > 𝛽𝑚. The critical value
is defined by the zeros of Eq. (8.2.9), i.e. 𝛽𝑚 = |𝑗| which can be rewritten as
𝛽𝑚 = 𝑚+ 1/2 where 𝑚 = 0, 1, 2... is the angular momentum number. Thus,
there are multiple sets of collapse resonances with the principal quantum
number 𝑛 and angular number 𝑚, akin to regular atomic states. The lowest
angular momentum value of 𝑚 = 0 gives us the critical minimum charge
𝛽𝑐 = 𝛽0 = 1/2. These energy levels are plotted as black curves in Fig. 8.3.3
where 𝑟0 = 0.5 nm. They will be discussed in more detail later in the text.

For a measurable feature of the supercritical states, we turn to the local
density of states (LDOS). We calculate the LDOS numerically using the
kernel polynomial method (KPM) taking the full form of the tight-binding
Hamiltonian (8.2.4). The results are presented in Fig. 8.2.2. Without any
charge (𝛽 = 0), the LDOS is position-independent and V-shaped as expected
for pristine graphene. With a subcritical charge (𝛽 = 0.4), we see a higher
LDOS intensity above the Dirac point (DP) directly at the impurity (𝑟 = 0).
This is associated with resonances above the quantum well which consist
purely of electron states. However, there are no states inside the Coulomb
potential at this subcritical charge.

Once the charge becomes supercritical (𝛽 = 0.8), a resonance is visible in



8.3. SUPERCRITICALLY CHARGED VACANCY 125

the LDOS below the Dirac point. This supercritical resonance is labeled
𝑅1 in Fig. 8.2.2 and it corresponds with the 𝑛 = 1 state of the supercritical
spectrum Eq. (8.2.11). The resonance consists of coupled electron-hole states
as illustrated with the quasiclassical trajectory in Fig. 8.2.1. The electron
state inside the Coulomb potential can tunnel out as a hole, thus it is only
quasi-bound.

As the charge 𝛽 is increased further (𝛽 = 1.2), resonance 𝑅1 moves down
to lower energy and a second resonance emerges just below the DP. It is
labeled 𝑅2 and corresponds with the 𝑛 = 2 state of Eq. (8.2.11). As deter-
mined previously in Ref. [113], the resonance broadening in energy is directly
proportional to |𝐸| (its energy relative to the Dirac point), while its spatial
extent is inversely proportional to the same value.

The 𝑅1 and 𝑅2 resonances in the LDOS are features which can be observed
experimentally. They correspond to the inner electron part of the collapse
wave function. This is in contrast to the QED heavy ion experiments which
look for the outer part of the wavefunction: the outgoing positron.

8.3 Supercritically charged vacancy

The resonance peak which appears in the LDOS of a supercritical charge is
a clear, experimentally observable signature of atomic collapse in graphene.
The LDOS can be measured with scanning tunneling microscopy (STM). An
atomically sharp tip scans over a sample of graphene and measures the elec-
tric current 𝐼 which flows between the tip and the surface as a consequence of
the tunnelling effect. The current depends on the relative voltage 𝑉 between
the tip and the sample. The derivative of 𝐼 with respect to 𝑉 (differential
conductance) is proportional to the local density of states,

𝜌(𝐸, 𝑟) ∝ 𝑑𝐼

𝑑𝑉
. (8.3.1)

Even though the critical value is relatively modest in graphene, introducing
a sufficiently large impurity charge on graphene’s surface is still challeng-
ing [115]. Because graphene is a good conductor, it is difficult to deposit
and maintain a charge on its surface. It is common to find impurities in
graphene samples, but the charge of a single impurity atom turned out to be
insufficient. Thus it is necessary to create more intense charge centers which
can serve the role of artificial nuclei for atomic collapse in graphene.
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In order to successfully create a supercritical charge, the experiment con-
ducted by Wang et al. [40] involved depositing multiple Calcium dimers on
the surface of a graphene sheet. Individual dimers have subcritical charge,
but in the experiment an STM tip is used to move these charge centers and
assemble a cluster of supercritical charge. For the theoretical model, the
previously introduced potential cutoff 𝑟0 is modified in order to match the
size of the cluster (≈ 1 nm). The results of the experiment are shown in
Fig. 1.3.1. The insets show the positions of the Calcium dimers as seen by
STM. The curves depict the differential conductance 𝑑𝑉/𝑑𝐼, i.e. LDOS, as
a function of the bias voltage 𝑉 for different positions of the STM tip. A
change of 𝑉 corresponds to changing the energy and thus allows to scan the
band structure. The gap in the LDOS is caused by phonon-assisted inelas-
tic tunneling and is not of interest here. Instead, the main feature is the
appearance of a clear narrow maximum in the vicinity of the charge center
in the case of 5 dimers. This is the expected evidence of an atomic collapse
state in graphene with a supercritical impurity charge. In observing this, the
experiment confirmed the longstanding prediction of QED.

In order to produce sufficient charge, a large number of charge centers must
be placed in a small area which is difficult due to strong Coulomb repulsion.
Alternatively, it has been shown that a vacancy in graphene can stably host
a positive charge [117, 118]. The charge can be made supercritical, allowing
the vacancy to take on the role of an artificial nucleus for atomic collapse in
graphene. Its effectiveness is further enhanced because it is located directly
in the plane of graphene instead of on top of the surface.

Vacancies in graphene

A vacancy is the absence of an atom at a given site in graphene. Vacancies can
be created by sputtering graphene with He+ ions [119]. The bombardment
of ions physically removes carbon atoms from the graphene sheet. This has
an effect both on the conduction band electrons as well as on the structural
bonds. We shall first consider the effect of removing the 𝜋𝑧 orbital at a lattice
site, i.e. a charge-neutral vacancy.

Graphene with vacancies can still be described by the tight-binding Hamil-
tonian (8.2.1) where the hoppings to vacant sites are forbidden. A vacancy
may consist of 𝑁𝑣 = 𝑁𝐴 + 𝑁𝐵 missing carbon atoms, where 𝑁𝐴 and 𝑁𝐵

correspond to the number of atoms removed from sublattices A and B, re-
spectively. In the presence of electron-hole symmetry (𝑡′ = 0), introducing a
vacancy with 𝑁𝐴 ̸= 𝑁𝐵 will break the sublattice symmetry and create a zero
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Fig. 8.3.1: (a) Illustration of vacancies with 1 to 4 missing atoms. (b) Simulated
LDOS at 1 nm from the center of each type of vacancy including only the first
nearest neighbor hopping. (c) The same results including the next-nearest hopping
term 𝑡′ = 0.1 eV resulting in broken electron-hole symmetry. The LDOS is com-
puted using the tight-binding model where each case considers a single vacancy on
an otherwise pristine sheet of graphene.

energy state which is quasilocalized near the vacancy. In addition, this state
exists only on a single sublattice, corresponding to the one with the lowest
number of removed atoms [120].

Figure 8.3.1(a) illustrates four types of vacancies labeled 1 to 4 according to
the number of missing carbon atoms. The LDOS in Fig. 8.3.1(b) is shown for
each vacancy as well as for pristine graphene (0 missing atoms). Vacancies
with 1, 3 and 4 missing atoms exhibit a very high intensity peak in the LDOS
at the Dirac point which corresponds to the quasilocalized zero energy state.
The vacancy with 2 missing atoms retains a V-shaped LDOS with only a
slightly increased slope compared to pristine graphene. This is because it
preserves the sublattice symmetry with one missing atom from each sublat-
tice. The other vacancies have a sublattice difference 𝑁𝐵 − 𝑁𝐴 of 1, 1 and
-2 for vacancies 1, 3 and 4, respectively.

It is possible to write down an analytical wave function of the zero energy
mode introduced by a single-atom vacancy in the continuum limit [121]

Ψ(𝑥, 𝑦) ≃ ei�⃗�
′ ·⃗𝑟

𝑥+ i𝑦
+

ei�⃗� ·⃗𝑟

𝑥− i𝑦
. (8.3.2)

The state is quasilocalized around the vacancy in the center and its ampli-
tude decays with distance as 1/𝑟. However, this vacancy state exists in this
form only in the presence of electron-hole symmetry. This is also the rea-
son why the vacancy peaks in Fig. 8.3.1(b) are sharp and symmetric. Once
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Fig. 8.3.2: Colormap of the LDOS calculated at the edge of a single-atom vacancy
as a function of energy and the size of the next-nearest hopping term 𝑡′. The
vacancy-induced LDOS peak moves up in energy with increasing 𝑡′, as indicated
by the arrow.

electron-hole symmetry is broken, the quasilocalized vacancy state turns into
a resonance and the solution can no longer be obtained analytically. Instead,
a numerical solution of the tight-binding Hamiltonian is required.

We compute the LDOS of a single-atom vacancy as a function of the next-
nearest neighbor hopping energy 𝑡′ and present the results in Fig. 8.3.2.
Including the next-nearest neighbor hopping term (𝑡′ > 0) breaks electron-
hole symmetry. The transformation from a zero energy state to a resonance
means that the resulting LDOS peak will broaden and shift in energy, away
from the Dirac point. Both the linewidth and the displacement are directly
proportional to the degree of induced electron-hole asymmetry, i.e. the value
of the next-nearest neighbor parameter. The energy shifts toward the posi-
tive energy part of the spectrum in response to the higher density of holes
introduced by the 𝑡′ term.

As show in Fig. 8.3.2, high values of 𝑡′ can significantly broaden the vacancy
peak, thus greatly diminishing its contribution to the LDOS. In the literature,
the values of the next-nearest neighbor term vary quite substantially in the
range between 𝑡′ = 0.02|𝑡| to 𝑡′ = 0.2|𝑡| [20]. Here, we shall take 𝑡′ = 0.1
eV for all further simulations. This value is chosen as a good match with
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Fig. 8.3.3: Colormap of the LDOS as a function of charge 𝛽 and energy 𝐸 for (a)
no vacancy and (b) a single-atom vacancy. The LDOS is calculated at the center of
the charge. The collapse resonances are labeled R1 to R3 and the vacancy-induced
peak is VP. The solid black curves indicate quasiclassical states of the collapse as
given by Eq. (8.2.11) for states with angular number 𝑚 = 0, while the dashed black
curve indicates the first state with 𝑚 = 1 (note that it originates at 𝛽 = 3/2). The
vertical dotted lines indicate critical values 𝛽 = 1/2 and 3/2.

experiments [118, 122]. The computed LDOS for several vacancies with this
𝑡′ value is presented in Fig. 8.3.1(c).

Charging the vacancy

So far, we have only considered a charge-neutral vacancy. Apart from the
effect on the conduction band, as described in the previous section, the re-
moval of a carbon atom also affects the structural bonds. One possible out-
come is that the lattice will locally undergo a bond reconstruction thereby
transforming the usual hexagonal lattice to pentagon/heptagon structures
or other similar local reconstructions in the vicinity of the vacancy [123].
On the other had, the disrupted bonds may remain as dangling bonds. The
structure around the vacancy retains the general hexagonal shape, but the
carbon atoms on the edge of the vacancy are allowed to relax. Subsequently,
this lattice relaxation produces a positively charged vacancy with effective
charge 𝑍/𝜅 ≈ +1|e|, where |𝑒| is the elementary charge [117].
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Fig. 8.3.4: LDOS for a charge of 𝛽 = 1.05 in
pristine graphene and the same charge hosted by
a single-atom vacancy. The LDOS lines are offset
for clarity.

Experimentally, bombarding a graphene sheet with an ion beam will create
mostly charge-neutral vacancies. The charge can then be induced by applying
voltage pulses with an STM tip [118]. It is well known that such pulses can
functionalize atoms, tailor the local structure or change the charge state [124,
125]. Both positive and negative voltage pulses cause a gradual buildup of a
positive charge at the vacancy. The sign of the STM voltage pulses does not
matter because the pulses help the vacancy structure to relax, thus indirectly
exposing the positive charge which is intrinsic to the dangling bonds of the
edge atoms.

In the theoretical model, the charge comes in as a Coulomb potential given by
Eq. (8.2.10). We choose the cutoff radius 𝑟0 = 0.5 nm based on experimental
data. The choice of this parameter will be discussed in more detail in a later
section. Here, we use this potential function in combination with several
types of vacancies modeled using the tight-binding approach. As a reference
point we include the case of pristine graphene with the same kind of potential.
This lets us see the effect of the vacancy charge, but without the structural
defect itself.

We start with the reference case: pristine graphene with charge 𝛽. The LDOS
is computed at the center of the potential and presented in Fig. 8.3.3(a).
High-intensity peaks are clearly visible in the LDOS. They form lines de-
scending in energy as the charge 𝛽 is increased. These resonances, labeled 𝑅1
to 𝑅3, correspond to the central part of the quasiclassical spiraling orbitals
of atomic collapse (see Fig. 8.2.1). Note that all of the collapse resonances
only exist in the domain 𝛽 > 𝛽𝑐 = 1/2.

The colormap indicates the LDOS intensity as computed using the tight-
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Fig. 8.3.5: Colormap of the LDOS as a function of charge 𝛽 and energy 𝐸 for
(a) divacancy (two-atom) and (b) a three-atom vacancy. The LDOS is computed
at the edge of the vacancy.

binding model. We compare these results to the quasiclassically determined
energy 𝐸𝑛𝑚, as calculated from Eq. (8.2.11) and give them by the solid and
dashed black curves for 𝑚 = 0 and 𝑚 = 1 angular momentum states, re-
spectively. The LDOS resonances 𝑅1 to 𝑅3 correspond to 𝑚 = 0 states with
𝑛 = 1 to 3. The quasiclassical calculation slightly underestimates the binding
energy of the collapse states, but the general characteristic and appearance
of multiple resonances is captured by both models. The differences are due
to the continuum limit approximation used in the derivation of the quasi-
classical energy. The continuum limit is not well defined far away from the
Dirac point, thus the approximation becomes more inaccurate as the energy
or charge is increased. Note that the charge does have a significant effect due
to the depth of the Coulomb potential which sinks the local Dirac point to
very low energy (down to −1 eV). Even though the collapse states form just
below zero energy, due to the deep Coulomb well, the electron states will ac-
tually originate from the nonlinear part of the spectrum. This is responsible
for the disparity between the different models.

One more feature are the thinner lines which can be seen crossing resonance
𝑅2 in Fig. 8.3.3(a). These narrower resonances are labeled 𝑚 = 1 since
they belong to collapse states with higher angular momentum. Resonances
𝑅1 to 𝑅3 correspond to the base set of collapse states with 𝑚 = 0 which
are analogous to atomic s orbitals. The thinner resonances belong to a new
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Fig. 8.3.6: LDOS for vacancies with 0 to 4 missing atoms for (a) 𝛽 = 1 and
(b) 𝛽 = 1.5. The LDOS lines are shifted in the y-axis for clarity. Note that the
positions of the atomic collapse peaks 𝑅1 and 𝑅2 are the same in all cases. The
peaks originating from the vacancies are labeled VP.

set with 𝑚 = 1 which are analogous to p orbitals. Note that states with a
particular 𝑚 number appear only for 𝛽 > 𝛽𝑚 = 𝑚+ 1/2, thus there are two
characteristic values 𝛽 = 1/2 and 𝛽 = 3/2, indicated by the dotted white
lines in Fig. 8.3.3(a).

We include a single-atom vacancy and follow the evolution of the LDOS as
the charge is increased according to the same potential Eq. (8.2.10) as earlier.
The results are shown in Fig. 8.3.3(b). Close to 𝛽 = 0 we see the neutral
vacancy peak (VP) as seen previously in Fig. 8.3.1(c). Its position decreases
rapidly in energy with increasing 𝛽 and by the time 𝑅1 appears it is well
out of range (for 𝛽 = 1 it appears around −1 eV). As a consequence of the
broken sublattice symmetry of the single-atom vacancy, collapse resonance
𝑅1 splits into two peaks which behave similarly as a function of 𝛽. The
higher-intensity 𝑅1 peak is a feature of the collapse as shown in Fig. 8.3.4.
The lower-intensity 𝑅1′ peak is unique to the single-atom vacancy. Note
that the quasiclassically determined collapse energy cannot account for the
presence of the vacancy, thus only a single black curve is present for the first
resonance.

Of the different types of vacancies, the single-atom vacancy is of most inter-
est. We shall just quickly mention the properties of the two and three-atom
variants. The divacancy (two-atom) changes the picture in the low 𝛽 region,
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as shown in Fig. 8.3.5(a). As mentioned previously, the divacancy lacks the
LDOS peak near the Dirac point for 𝛽 = 0 because it preserves sublattice
symmetry. However, as seen in Fig. 8.3.1, it induces a higher LDOS intensity
around ±0.4 eV instead. This is responsible for the offset peak labeled VP
in Fig. 8.3.5(a). The three-atom vacancy, Fig. 8.3.5(b), restores behavior
similar to the single-atom case due to a similar kind of sublattice symmetry
breaking.

It’s important to point out that the vacancies doesn’t interfere with the col-
lapse, i.e. they have no effect on the energy of the collapse peaks. Figure 8.3.6
shows the LDOS for vacancies with 0 to 4 missing atoms. While the various
vacancy-induced peaks (labeled VP) change position depending on the num-
ber of missing atoms, the atomic collapse peaks 𝑅1 and 𝑅2 remain at the
same energy in all cases, including pristine graphene (red line).

In the following sections we shall focus on the single-atom vacancy, since it is
easy to realize experimentally and can be distinguished from the divacancy
based on the presence of the vacancy peak near the Dirac point. The trian-
gular structure of the single-atom variant is very distinct and easy to identify
using STM topography.

Spatial extent

From the previous section, it is clear that the vacancy peak will quickly
dive to very low energy as the charge is increased. When the first collapse
resonance appears (𝛽 > 1/2) and gathers significant LDOS intensity (𝛽 ≈ 1),
the vacancy peak will be below −1 eV. This large energy distance between
the vacancy and collapse peaks make them easy to distinguish. However, for

Fig. 8.3.7: Illustration of graphene with a
single-atom vacancy indicated by the shaded
area. An atom of sublattice B was removed.
The atoms highlighted in green form a path
along the zigzag (x-axis) and armchair (y-
axis) directions moving away from the va-
cancy. Both paths alternate A and B sub-
lattice atoms.
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Fig. 8.3.8: (a) The LDOS at a single-atom vacancy as a function of position
and energy for zero charge (𝛽 = 0). (b) Cut of the LDOS at the vacancy peak
(𝐸 = 0) as indicated by the arrow in panel (a). (c) Convolution of the LDOS with
a Gaussian with 𝜎 = 0.25 nm.

most experimental setups, the distance is actually too large to capture both
peaks in the same measurement range. For this reason we must also consider
distinguishing the two kinds of peaks based on their spatial properties.

A single-atom vacancy is illustrated in Fig. 8.3.7. Calculations of the LDOS
as a function of position conform to the discrete positions of atoms in the
tight-binding model. As indicated by the green highlighted atoms, the path
of the LDOS calculation (in both zigzag and armchair directions) passes over
a pattern of A-B sublattice atoms. This is important to keep in mind as we
look at the spatial behavior.

We start by looking at the LDOS as a function of position and energy for zero
charge 𝛽 = 0 in Fig. 8.3.8(a). The vacancy peak is indicated at zero energy.
Note that the LDOS oscillates rapidly as a function of position which gives
the appearance of vertical lines in the figure. This is caused by the broken
sublattice symmetry of the single-atom vacancy. This is more easily visible
on the cut at 𝐸 = 0 in Fig. 8.3.8(b). The vacancy is formed by removing
an atom of sublattice B, thus the vacancy state is localized on atoms of
sublattice A, i.e. the LDOS is zero at positions corresponding to sublattice
B. This creates the high-frequency pattern. The LDOS is computed at atomic
positions which follow an A-B sublattice pattern (see Fig. 8.3.7).

In order to smooth out the raw data we do a convolution with a Gaussian
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Fig. 8.3.9: Same as Fig. 8.3.8, but including a charge of 𝛽 = 0.9. The dashed
black line in panel (a) indicates the profile of the Coulomb potential. The inset in
panel (b) shows a zoomed in view of the high-frequency pattern.

function with broadening 𝜎 = 0.25 nm in Fig. 8.3.9(c). This smooths out
the large A-B oscillations. The LDOS intensity drops very quickly: at just
2.8 nm away from the center, it has lost two orders of magnitude (from 10
to 10−1). Going farther out to 13.5 nm, the intensity is reduced by 3 orders
of magnitude compared to the center.

Next, we include a charge of 𝛽 = 0.9 along with the vacancy in Fig. 8.3.9.
The main collapse peak is marked 𝑅1 and the satellite peak 𝑅1′. The vacancy
peak has dropped to very low energy (≈ −1 eV), far below the limits of the
figure. Panel (b) shows cuts of the LDOS at the collapse peaks. Both appear
as high-frequency patterns similar to the vacancy peak from Fig. 8.3.8(b).
However, in this case both sublattices have a finite contribution to the col-
lapse LDOS, while the vacancy LDOS was zero for sublattice B. The LDOS
patterns of 𝑅1 and 𝑅1′ are inverted with regard to the sublattices: a maxi-
mum on 𝑅1 is accompanied by a minimum on 𝑅1′ and vice versa. This can
be seen more clearly in the inset of Fig. 8.3.9(b) which shows a zoomed in
view.

Once again, a convolution of the LDOS with a Gaussian results in smooth
lines presented in Fig. 8.3.9(c). The LDOS of the two collapse states drops
by two orders of magnitude at 15.8 nm away from the center. This is in
contrast to the vacancy peak where this happens at just 2.8 nm. Note that
𝑅1 has higher intensity than 𝑅1′ close to the center, but this is reversed
on the outside. State 𝑅1 has a lower minimum radius and therefore lower
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Fig. 8.3.10: Spatial map of the LDOS for collapse resonance 𝑅1 and an illustra-
tion of the corresponding quasiclassical electron and hole trajectories. The LDOS
is calculated for 𝛽 = 1.25 and 𝐸 = −0.15 eV. The dashed circle indicates the
radius of the Coulomb potential at this energy.

energy than 𝑅1′. This is explored further in the next section.

Figure 8.3.10 shows the spatial colormap of the LDOS for the 𝑅1 collapse
resonance. Good agreement can be seen by comparing the spatial map with
the quasiclassical orbits. The high LDOS intensity central region (red) corre-
sponds to quasi-bound electron states inside the Coulomb potential (dashed
line). Hole states are found on the outside, but there is a distinct low inten-
sity ring (blue) which is the tunneling barrier, followed by a slightly higher
intensity region (light blue) which is the hole continuum. The spatial map

Fig. 8.3.11: Spatial LDOS for resonance 𝑅1′ (𝛽 = 1.25, 𝐸 = −0.07 eV) and the
sublattice components. The dashed circle is a cut of the Coulomb potential.
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Fig. 8.3.12: Spatial LDOS for resonance 𝑅2 (𝛽 = 1.25, 𝐸 = −0.01 eV) with (a)
a wide view and (b) a zoomed in view of the center. The dashed circle is a cut of
the Coulomb potential.

presents with what looks like grain noise. This is a consequence of the broken
sublattice symmetry, as shown previously in Figs. 8.3.8 and 8.3.9.

Next, we take a look at the LDOS spatial map of the 𝑅1′ resonance in
Fig. 8.3.11. The situation here is similar to𝑅1, but the sublattice-asymmetry-
induced grain noise is more apparent. When we separate the individual sub-
lattice components, we see the influence of the vacancy. Since the vacancy is
formed by removing a sublattice B atom, electrons are localized on A atoms

Fig. 8.3.13: The higher angular momentum collapse resonance 𝑚 = 1 (𝛽 = 1.7,
𝐸 = −0.03 eV) with (a) a wide view and (b) a zoomed in view of the center.
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around the vacancy and spread out in the zigzag directions of graphene,
which accounts for the six-fold symmetry of the A-only LDOS contribution.
The atoms on sublattice B are not affected, thus the B-only LDOS contribu-
tion is only affected by the circular Coulomb potential and we see separate
inner (electron) and outer (hole) regions, just like the 𝑅1 resonance.

The 𝑅2 resonance is presented in Fig. 8.3.12. This state is located just below
the Dirac point (𝐸 = −0.01 eV) near the top of the Coulomb potential, thus
it has a large radius so the outer hole region is outside the limits of the figure.
We zoom in closer to the center of 𝑅2 in Fig. 8.3.12(b). Note that there is a
lower intensity node which splits the electron state into two regions. This is
exactly analogous to the atomic 2𝑠 state which is the stable counterpart of
the 𝑅2 collapse resonance.

All of the collapse resonances that we have looked at so far have been at the
lowest angular momentum 𝑚 = 0 which is analogous to atomic 𝑠 states. In
Fig. 8.3.13 we present the spatial map of a higher angular momentum (𝑚 = 1)
collapse resonance. Notice that this state has a low LDOS intensity node at
the center and a lobe structure reminiscent of atomic 𝑝 orbitals which are its
stable counterparts. A significant difference compared to real atoms is that
all states in graphene are confined to a 2D plane, thus the usual 𝑝𝑥, 𝑝𝑦 and 𝑝𝑧
orbitals are not directly transferable, but the collapse resonance does exhibit
6-fold symmetry. Unlike the lower angular momentum 𝑅1′ resonance, the
spatial map of the 𝑚 = 1 collapse resonance is not affected by the presence
of the vacancy - an identical spatial structure is present in pristine graphene.
The only visible effect of the vacancy is the slight sublattice-asymmetry-
induced noise seen in Fig. 8.3.13(b).

Influence of the potential cutoff

The form of the truncated potential from Eq. (8.2.10) takes the finite size
of the charge into account via the cutoff parameter 𝑟0. In all the previous
calculations we set the value to 𝑟0 = 0.5 nm. In order to investigate the
effect of this parameter we varied it as shown in Fig. 8.3.14(a). Reducing the
length of 𝑟0 increases the strength of the potential and in the limit 𝑟0 → 0
it corresponds to a point charge. As we move closer to this limit, the energy
levels of 𝑅1 and 𝑅1′ diverge relative to each other.

As mentioned in the previous section, 𝑅1 and 𝑅1′ are mostly made up of
opposite sublattice states. As shown in Fig. 8.3.14(b), sublattice A is closer
to the center with a radius of 𝑎𝑐𝑐 = 0.142 nm (carbon-carbon distance), while
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Fig. 8.3.14: (a) LDOS as function of the 𝑟0 parameter for 𝛽 = 1.15. (b) Illustra-
tion of the model system around the vacancy. The circles indicate minimum radii
of sublattices A and B. (c) Zoomed in view of panel (a) close to the center. The
vertical lines correspond to the radii from panel (b).

the minimum radius of sublattice B is farther away at 𝑎 = 0.246 nm (lattice
constant). This defines the minimum radii of the 𝑅1 and 𝑅1′ resonances.

Figure 8.3.14(c) shows a zoomed in view at small 𝑟0 and the vertical lines
correspond to the radii from Fig. 8.3.14(b). Resonance 𝑅1′ loses most of its
intensity in the 𝑎𝑐𝑐 < 𝑟0 < 𝑎 region, while 𝑅1 does the opposite and intensifies
until the saturation point at 𝑎𝑐𝑐. In the region 𝑟0 < 𝑎𝑐𝑐, the potential radius
becomes smaller than the vacancy and is therefore non-physical. Notice
that there is also a small buildup of LDOS above the Dirac point in the
𝑎𝑐𝑐 < 𝑟0 < 𝑎 region. This is the positive resonance associated with 𝑅2 (see
Fig. 8.2.2).

The 𝑟0 cutoff is mostly a fitting parameter for the simulation which should
roughly correspond to the finite size of the charge. In Ref. [40], where the
experiment was conducted with a cluster of charges, this parameter was fit-
ted to about 1 nm which was appropriate to the type of charge used there.
Additionally, they did not see large variations when 𝑟0 was changed up to
±0.5 nm. However, in the case of the vacancy, the 𝑟0 parameter becomes
much more important because of its influence on the satellite peak 𝑅1′. The
LDOS intensity and energy difference between the 𝑅1 and 𝑅1′ peaks is in-
versely proportional to 𝑟0, as seen in Fig. 8.3.14(c). This difference can be
used to estimate the value of 𝑟0.
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Fig. 8.3.15: (a) Simulated map of the evolution of the spectra with 𝛽. The data
presented here is the same as Fig. 8.3.3(b). The intensity scale in the vacancy peak
(VP) regime is divided by 2 to facilitate the comparison with the atomic collapse
(AC) regime. The symbols represent the energies of the VP and AC peaks from
panel C. (b) Simulated spectra for the 𝛽 values in (c). The curves are vertically
offset for clarity. (c) Evolution of STS with charge (increasing from bottom to
top). Each curve is marked with its corresponding 𝛽 value. The horizontal dashed
line separates between spectra in the subcritical and supercritical regimes. The
vertical dashed line represents the bulk DP measured far from any vacancy. From
Mao et al. [118]

Comparison with experiment ∗

This work was conducted in collaboration with the experimental group of Eva
Andrei from Rutgers University and the results were published in Ref. [118].
Experimentally, the vacancy was created using He-ion bombardment. A
single-atom vacancy was identified in the sample based on its distinct tri-
angular symmetry which shows up on topographical images of graphene. In
order to create charged artificial nuclei, the vacancy must not be passivated
by trapped ions. Strong voltage pulses were applied using the STM tip which
caused the vacancy structure to relax, revealing the charge on the dangling

∗The results of this section were published as:
J. Mao, Y. Jiang, D. Moldovan, G. Li, K. Watanabe, T. Taniguchi, M.R. Masir, F.M.
Peeters, and E.Y. Andrei, Nat. Phys. 12, 545 (2016).
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𝜎 bonds. Repeating the pulses increased the charge in discrete intervals.
Once the vacancy was saturated, the charge remained constant as long as
the experiment was kept cold. The gradual charge buildup was monitored
with scanning tunneling spectroscopy and Landau level spectroscopy.

The simulated evolution of the LDOS with 𝛽 is presented in Fig. 8.3.15(a),
as calculated from the tight-binding model up to the next-nearest neighbor
hopping. The theoretical results were compared to the experimentally ob-
served curves in Fig. 8.3.15(c). The STM tip pulses increase the vacancy
charge in discrete intervals, so only certain 𝛽 values are available for compar-
ison with theory. Cuts of the simulated LDOS are taken and compared with
the experiment. The experimental values of the 𝛽 parameter are determined
by matching the energy positions of the vacancy peak (VP) and collapse
resonances (𝑅1, 𝑅1′ and 𝑅2).

The theoretical and experimental data show excellent agreement with regard
to the evolution of the LDOS as a function of the charge. At low 𝛽 the
spectrum consists of a single peak which results from the uncharged vacancy.
With increasing 𝛽 the vacancy peak (VP) broadens and its energy becomes
more negative, all the while remaining tightly localized on the vacancy site.
Upon exceeding the critical value, 𝛽 > 0.5, a new branch, labeled 𝑅1, emerges
below the Dirac point. This is the counterpart of the 1𝑠 collapse state in
atoms. The 𝑅1 collapse resonance is clearly distinguishable from the VP
by its significantly larger spatial extent. With increasing 𝛽, 𝑅1 develops
a satellite, 𝑅1′, which tracks its evolution with 𝛽. While 𝑅1 is a universal
feature of AC states, 𝑅1′ is due to the locally broken sublattice symmetry and
is peculiar to the supercritically charged single-atom vacancy. As 𝛽 further
increases more branches emerge, starting with 𝑅2 which is the equivalent of
the 2𝑠 AC state.

8.4 Conclusions

Atomic collapse is a long sought-after phenomenon in quantum electrody-
namics which is not observable with real atomic nuclei because of the ex-
tremely large charge requirements. Graphene offers the opportunity to ob-
serve the same physics at a much smaller charge and energy scale. As the
charge is increased, the interaction undergoes a transition into a supercritical
regime where electrons are trapped in a sequence of quasi-bound states which
resemble an artificial atom. In order to reach the supercritical regime an ar-
tificial nucleus with sufficient charge must be constructed. This can be done
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by assembling a cluster of charged impurities. Alternatively a single-atom
vacancy can stably host a local charge that is built up by applying voltage
pulses with the tip of a scanning tunneling microscope. The quasi-bound
electron states are detected as a strong enhancement of the local density of
states within a disc centered on the charge.

We modeled the effect of a supercritically charged vacancy in graphene us-
ing the tight-binding model. Special consideration was required to accurately
model the behavior of the vacancy by taking into account the second nearest-
neighbor hopping term. The results reveal the expected collapse resonances,
but also a new branch of collapse states related to the locally broken sub-
lattice symmetry of a single-atom vacancy. The results were compared with
experimental observations and good agreement was found.



CHAPTER 9

Supercritical charge controlled
by the STM-gating effect

Apart from just measuring sample properties, an STM tip may also be used
as a secondary gate which offers an additional knob for experiments. We
study this STM-gating effect theoretically for a graphene sample. The tip-
induced electric potential forms a circular pn-junction and we calculate its
profile for different tip geometries as well as different values of the tip-sample
work function difference (which may be changed by coating the tip with var-
ious materials). We follow the evolution of the circular junction with back-
gate voltage and find that it makes a transition from a wide-area potential,
which exhibits electron optics effects such as whispering-gallery modes, to a
point-charge-like potential which gives rise to the relativistic atomic collapse
phenomena. Both regimes result in electron quasi-confinement in graphene.

9.1 Introduction

Scanning tunneling microscopy (STM) and spectroscopy (STS) are two im-
portant techniques which can be used to probe the topography and electronic
properties of materials. They both employ the same hardware: an atomi-
cally sharp metallic tip which is brought within a nanometer of the surface
of a conducting sample. Due to the close range, the tip can measure tun-
nelling current induced by a bias difference with the sample. In STM, the
tip scans the surface while a fast piezoelectric motor controls the tip height,
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Fig. 9.1.1: Illustration of an STM/STS ex-
perimental setup. The graphene sample sits
on top of an isolating layer. The voltage 𝑉𝑔

is applied between the graphene and the con-
ducting backgate layer. The tip hovers over
the sample at minimal distance 𝑑0 and a bias
voltage 𝑉𝑏 is applied to produce a tunneling
current between the tip and graphene.

thus keeping the current constant. The spatially varying height represents
a topographic map of the material with possible sub-atomic resolution. On
the other hand, in STS, the tip position is kept constant while the bias volt-
age varies. The result of the measurement is effectively the local density
of states (LDOS) as a function of energy, usually with very good resolution
≈ 0.1 meV [126].

An ideal measurement would return information from the system without
interfering with it, although practically such effects cannot be avoided. The
voltage difference between the tip and sample can slightly disturb the area
below the tip. Effectively, a potential well is formed in the sample which
leads to a local band bending effect [127]. While not always desirable, the
effect can also be quite useful, opening the door for some interesting new
experiments based on local gating [128, 129]. In an STM/STS setup (see
Fig. 9.1.1), the planar back gate controls the overall bulk carrier density in
the sample. The tip influences the carrier density only locally underneath
itself and thus behaves like a small movable circular gate. This dual-gate
configuration permits the creation of pn-junctions that can be tuned using
two independent knobs: the backgate voltage 𝑉𝑔 and tip-sample bias 𝑉𝑏.

In this chapter we investigate the effect of STM-tip-induced electric potentials
in graphene. We find electronic states quasi-confined in circular pn-junctions.
The radius of such a junction varies depending on the geometry of the STM
tip (sharp or blunt), the work function difference between the tip and sample,
as well as backgate voltage. As the dimensions of the induced quantum well
shrink, the nature of this confinement changes [130, 131]. For wide circular
pn-junctions, the effects can be understood in terms of electron optics as ray
reflections and lensing. When the size is reduced enough to resemble a point-
charge, the effect is better described via the atomic collapse phenomena.
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9.2 Theoretical model

The tunnelling current between an STM tip and the sample is given by [132],

𝐼 =
4𝜋𝑒

~

∫︁ ∞

−∞

(︂
𝑓(𝐸𝐹 − 𝑒𝑉𝑏 + 𝐸)− 𝑓(𝐸𝐹 + 𝐸)

)︂
|𝑇 |2

· 𝜌𝑆(𝐸𝐹 − 𝑒𝑉𝑏 + 𝐸)𝜌𝑇 (𝐸𝐹 + 𝐸)𝑑𝐸,

(9.2.1)

where 𝑓(𝑥) is the Fermi-Dirac distribution, 𝐸𝐹 the Fermi energy, 𝑉𝑏 the
sample bias voltage, 𝜌𝑆 and 𝜌𝑇 are the density of states of the sample and tip,
respectively. The tunnelling coefficient 𝑇 depends strongly on the tip-sample
distance which is kept constant in STS measurements. In addition, it is
usually assumed that the tip density of states 𝜌𝑇 is constant for a given range
of bias voltage 𝑉𝑏. For experiments conducted at sufficiently low temperature,
the Fermi-Dirac distribution can be replaced by a step function. Taking all
this into consideration, the last equation can be significantly simplified,

𝐼 (⃗𝑟, 𝑉 ) ∝
∫︁ 𝑒𝑉𝑏

−∞
𝜌𝑆 (⃗𝑟, 𝐸)𝑑𝐸. (9.2.2)

Therefore, the local density of states is proportional to the differential con-
ductance measured by the STM tip,

𝜌𝑆 (⃗𝑟, 𝐸 = 𝑒𝑉𝑏) ∝
𝑑𝐼

𝑑𝑉𝑏
(⃗𝑟, 𝑉𝑏), (9.2.3)

where the bias voltage 𝑉𝑏 determines the excitation energy 𝐸 of the electron
in the sample. For positive bias voltages, electrons tunnel from the tip and
populate empty states in the sample. For negative voltages, occupied sample
states tunnel out to the tip.

The STM tip simultaneously measures the LDOS and influences the carrier
density in the sample. Because the tip is radially symmetric, the problem
simplifies to one dimension in space determined by position 𝑟. Based on the
Thomas-Fermi model, the carrier density is [110, 133],

𝑛(𝑟) = − sgn[𝑉 (𝑟)]
𝑉 (𝑟)2

𝜋~2𝑣2𝐹
, (9.2.4)

where 𝑉 (𝑟) is the electric potential. In our case 𝑉 (𝑟) is induced by the STM
tip. The total carrier density 𝑛(𝑟) = 𝑛∞ + ∆𝑛(𝑟) consists of the bulk density
𝑛∞ (as present far away from the STM tip) and the local carrier density
∆𝑛(𝑟) which is induced by the tip.
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Fig. 9.2.1: The evolution of the tip-induced potential with backgate voltage 𝑉𝑔

for a blunt STM tip with 𝑅 = 500 nm. The tip-sample work function difference
is (a) Δ𝑉𝑤𝑓 = 0 and (b) Δ𝑉𝑤𝑓 = −0.3 eV. The tip bias voltage is kept constant
𝑉𝑏 = 0, while the backgate voltage 𝑉𝑔 varies from -30 V to 30 V in 5 V increments.

The bulk carrier density is determined from the parallel capacitor model
as 𝑛∞ = 𝑘𝑒(𝑉𝑔 − 𝑉𝑔0)/(4𝜋𝑒

2𝑑𝑔), where 𝑘 is the dielectric constant, 𝑑𝑔 is
the thickness of the substrate and 𝑉𝑔0 accounts for residual doping in the
substrate. In this work we take the value 𝑘/𝑑𝑔 = 5 𝜇m−1 and we set 𝑉𝑔0 = 0
so that the charge neutrality point coincides with 𝑉𝑔 = 0.

The STM tip acts like a secondary gate in the experiment. Because of the
shape of the tip, the distance between the sample and a point on the tip
is described by a position dependent function 𝑑𝑇 (𝑟). We shall consider two
geometries. A blunt tip described by 𝑑𝑇 (𝑟) = 𝑑0 + 𝑟2/(2𝑅), where 𝑑0 is the
minimal distance from the tip and the sample, and 𝑅 is a large radius of the
spherically shaped tip (see the illustration in Fig. 9.2.1). The other geometry
describes a sharp STM tip as a cone with 𝑑𝑇 (𝑟) = 𝑑0 + 𝑟 cot (𝜃/2), where
𝜃 is the angle of the cone (see the illustration in Fig. 9.2.2). Based on the
capacitor model, a small segment of the tip at position 𝑟 will induce a small
change directly below it,

∆𝑛(𝑟) = −𝑒𝑉𝑏 −∆𝑉𝑊𝐹 − 𝑉 (𝑟)

4𝜋𝑒2𝑑𝑇 (𝑟)
, (9.2.5)

where 𝑉𝑏 is the tip bias voltage and ∆𝑉𝑊𝐹 is the work function difference
between the tip and graphene.
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Fig. 9.2.2: Like Fig. 9.2.1, but for a sharp STM tip with 𝜃 = 80°. The tip-sample
work function difference is (a) Δ𝑉𝑤𝑓 = 0 and (b) Δ𝑉𝑤𝑓 = 0.7 eV. The tip bias
voltage is kept constant 𝑉𝑏 = 0, while the backgate voltage 𝑉𝑔 varies from -30 V
to 30 V in 5 V increments.

We can now match the tip-induced carrier density ∆𝑛(𝑟) as given by Eqs. (9.2.4)
and (9.2.5),

− sgn[𝑉 (𝑟)]
𝑉 (𝑟)2

𝜋~2𝑣2𝐹
− 𝑛∞ = −𝑒𝑉𝑏 −∆𝑉𝑊𝐹 − 𝑉 (𝑟)

4𝜋𝑒2𝑑𝑇 (𝑟)
. (9.2.6)

From here we obtain the effective electric potential induced by the STM tip
for given values of 𝑉𝑏 and 𝑉𝑔,

𝑉 (𝑟, 𝑉𝑔, 𝑉𝑏) =
−𝑎(𝑟) +

√︀
𝑎(𝑟)2 + 4|𝑏(𝑟, 𝑉𝑔, 𝑉𝑏)|

2 sgn[𝑏(𝑟, 𝑉𝑔, 𝑉𝑏)]
, (9.2.7)

where,

𝑎(𝑟) =
~2𝑣2𝐹

4𝑒2𝑑𝑇 (𝑟)
, (9.2.8)

𝑏(𝑟, 𝑉𝑔, 𝑉𝑏) = 𝑒𝑎(𝑟)

(︂
(𝑉𝑏 −∆𝑉𝑤𝑓 )− 𝜅𝑑𝑇 (𝑟)

𝑑𝑔
(𝑉𝑔 − 𝑉𝑔0)

)︂
. (9.2.9)

A sample of the resulting STM potential is presented in Fig. 9.2.1 for the
blunt tip shape. When the tip-sample work function difference ∆𝑉𝑤𝑓 is equal
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Fig. 9.2.3: The evolution of the tip-induced potential with bias voltage 𝑉𝑏 for (a)
a blunt tip with 𝑅 = 500 nm and Δ𝑉𝑤𝑓 = 0, and (b) a sharp tip with 𝜃 = 80° and
Δ𝑉𝑤𝑓 = 0.7 eV. The backgate voltage is kept constant 𝑉𝑔 = −10 V, while the tip
bias voltage 𝑉𝑏 varies from -200 mV to 200 mV in 50 mV increments.

to zero, the profile of the tip-induced potential is symmetric around the
charge neutrality point (𝑉𝑔 = 0) with a potential well forming in the p-
doped regime (𝑉𝑔 < 0) and a barrier in the n-doped regime (𝑉𝑔 > 0). The
work function can be changed by exposing the tip to other materials, e.g. in
Ref. [134] deuterium absorption was used to realize ∆𝑉𝑤𝑓 = −0.3. As seen
in Fig. 9.2.1(b), with this ∆𝑉𝑤𝑓 , the tip generates a strong potential barrier
on both sides of the charge neutrality point.

Next, we take a look at the potential generate by a sharp tip, as presented in
Fig. 9.2.2. For ∆𝑉𝑤𝑓 = 0, the evolution of the potential with 𝑉𝑔 is symmetric
with regard to the charge neutrality point. In this regard, the blunt and
sharp tips are very similar (compare Figs. 9.2.1(a) and 9.2.2(a)). The only
significant difference is the area of effect: the sharp tip generates a narrow
potential profile, as expected. This time we set a positive tip-sample work
function difference, ∆𝑉𝑤𝑓 = 0.7 eV, which can be achieved by coating the
tip with gold [135]. As seen in Fig. 9.2.2(b), this creates a point-charge-like
potential which is deep and narrow. Notice that the transition from the p-
to n-doped regime is accompanied by a sudden broadening of the top part
of the potential well – see the central red line in Fig. 9.2.2(b), just above
the blue 𝑉𝑔 = 0 line. This transition takes place near the charge neutrality
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point and it is of particular interest (to be discussed in more detail in a later
section).

So far we have looked at the evolution of the potential with backgate voltage
𝑉𝑔 while keeping the tip bias 𝑉𝑏 constant. The bias voltage determines the
excitation energy of the electrons for the measurement, but it also affects the
induced potential. As shown in Fig. 9.2.3(a) for a neutral blunt tip, varying
𝑉𝑏 can completely change the potential profile. This effect is significantly
diminished in the case of a large work function and sharp tip, as see in
Fig. 9.2.3(b). However, for good model accuracy, the influence of 𝑉𝑏 must be
taken into account.

We model the effect of the STM tip on the sample by including the previously
derived potential function 𝑉 (𝑟, 𝑉𝑔, 𝑉𝑏) from Eq. (9.2.7) in the tight-binding
Hamiltonian of graphene 𝐻(𝑉𝑔, 𝑉𝑏) within the first-nearest neighbor approx-
imation,

𝐻0 = 𝑡
∑︁
⟨𝑖,𝑗⟩

(︁
𝑎†𝑖𝑏𝑗 +𝐻.𝑐.

)︁
, (9.2.10)

𝐻𝑆𝑇𝑀(𝑉𝑔, 𝑉𝑏) =
∑︁
𝑖

𝑉 (𝑅𝐴
𝑖 , 𝑉𝑔, 𝑉𝑏)𝑎

†
𝑖𝑎𝑖 +

∑︁
𝑖

𝑉 (𝑅𝐵
𝑖 , 𝑉𝑔, 𝑉𝑏)𝑏

†
𝑖𝑏𝑖, (9.2.11)

𝐻(𝑉𝑔, 𝑉𝑏) = 𝐻0 +𝐻𝑆𝑇𝑀(𝑉𝑔, 𝑉𝑏), (9.2.12)

where operators 𝑎†𝑖 (𝑎𝑖) and 𝑏†𝑖 (𝑏𝑖) create (annihilate) an electron on site 𝑅𝑖 of
sublattice 𝐴 and 𝐵, respectively. Here 𝑡 = −2.8 eV is the nearest neighbor
hopping energy. We compute the LDOS numerically using the kernel poly-
nomial method. Note that the local density of states 𝜌(𝑟, 𝐸, 𝑉𝑔, 𝑉𝑏) becomes
a function of 4 parameters. Since we wish to compute the same LDOS as
would be measured by an STM tip, we match its position at the center of our
radially symmetric system, i.e. 𝑟 = 0. As per Eq. (9.2.3), the measured en-
ergy matches the bias voltage 𝐸 = 𝑒𝑉𝑏. Thus, the simulated LDOS 𝜌(𝑉𝑔, 𝑉𝑏)
is directly related only to the experimental knobs 𝑉𝑏 and 𝑉𝑏. We may still
free the spatial position 𝑟 to compute a spatial map of the LDOS, although
that would not be possible in experiments with a single STM tip.

9.3 Whispering gallery modes

The linear spectrum of electrons in graphene resembles that of light. Adding
to the similarities, it has been shown that the ballistic regime persists even
at room temperature over distances on the order of a micrometer [21, 22].
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Fig. 9.3.1: (a) Transmission probability through a monolayer graphene pn-
junction with potential 𝑉 for electrons with energy 𝐸 = 𝑉/2. (b) Contour plot of
the angle and energy dependence of the transmission. Adapted from [146].

This makes ray optics a particularly interesting and accurate description of
electrons in graphene [136–138]. It gives rise to effects such as electron focus-
ing [139, 140] and waveguides [141]. It also enables the creation of electronic
Fabry-Perot interferometers [55, 142]. Whispering-gallery mode (WGM) res-
onators represent another class of very high quality optical devices [143]. The
name originates from the acoustic resonances found in large structures like
cathedrals. It was shown that these kinds of resonators can be realized in
graphene using circular pn-junctions [134, 144, 145]. Moreover, realizations
in the form of STM-tip-induced pn-junctions enable the cavity radius of these
WGM resonators to be tuned using the backgate voltage.

A WGM resonator cavity in graphene is defined by a circular pn-junction
where the reflection of electrons is governed by Klein scattering. At first
glance, it may seem strange that Klein scattering is the main mechanism
behind this phenomena. After all, it’s best known for perfect transmission
in graphene. However, this only applies to incidence normal to a barrier.
As seen in Fig. 9.3.1, at oblique angles, Klein scattering at a pn-junction
actually gives rise to perfect reflection and this is exactly the mechanism of
confinement of whispering-gallery modes: the ray skips around the perimeter
of the circular pn-junction being reflected at oblique angles. When the length
of this closed loop is equal to an integer multiple of the wavelength, a WGM
resonance is formed which partially confines the electron. Because of the ra-
dial symmetry, the wavefunction can be decomposed in polar coordinates as
Ψ𝑛,𝑚(𝑟, 𝜑) = 𝜓𝑛(𝑟)e𝑖𝑚𝜑, where 𝑛 and 𝑚 are integers which denote the princi-
pal and angular quantum number, respectively. Higher angular momentum
modes 𝑚 are reflected at more oblique angles and therefore feature better
confinement compared to lower 𝑚 modes.
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Fig. 9.3.2: (a) A circular pn-junction potential induced by a blunt STM tip with
the same parameters as presented in Fig. 9.2.1(b) but with the backgate voltage
fixed at 𝑉𝑔 = 20 V. The energy positions of the local and bulk Dirac points (DP)
and the Fermi energy are indicated. (b) The corresponding LDOS with WGM
resonances.

Whispering-gallery modes require cavity sizes much larger than the wave-
length in order for the electrons to behave like classical light rays. For this
reason, we model a blunt tip with a large radius 𝑅 = 500 nm. The work
function difference is set to ∆𝑉𝑤𝑓 = −0.3 eV as is the case for some experi-
ments [134]. The resulting potential at a fixed backgate voltage 𝑉𝑔 = 20 V
is presented in Fig. 9.3.2(a). The corresponding LDOS is computed in
Fig. 9.3.2(b). The peaks in the LDOS can be attributed to WGM reso-
nances as we will see shortly. The local and bulk Dirac points (DP) are
indicated in the figures. The local DP is defined as the potential energy at
the position of the STM tip (𝑟 = 0), while the bulk DP reflects the behavior
far away from the tip, where the material is not affected by tip-gating. The
bulk DP depends only on the backgate voltage 𝑉𝑔.

Figure 9.3.3 shows the spatial map of the wavefunction |Ψ| for a strongly
confined WGM resonance. The given state is calculated for 𝐸 = −50 meV,
which corresponds to a circular pn-junction with radius 𝑟 = 90 nm. Be-
cause of the large angular momentum number 𝑚 = 15 presented here, the
wavefunction contains a large number of resonances distributed around the
circumference of the pn-junction. This is more clearly visible for the in-
dividual sublattice components |Ψ𝐴| and |Ψ𝐵| which more closely resemble
the traditional picture of WGM. These resonances form due to electrons re-
flecting at the circular pn-junction. Higher angular momentum modes are
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Fig. 9.3.3: The wavefunction |Ψ| for a strongly confined WGM resonance for
𝐸 = −50 meV (with large angular momentum 𝑚 = 15). The individual sublattice
components |Ψ𝐴| and |Ψ𝐵| each contain half the resonances shifted radially with
regard to one another. The last panel presents the LDOS calculated with 4 meV
broadening around the same energy as the presented state |Ψ|.

reflected at more oblique angles thus forming a higher number of resonances
with stronger confinement.

The last panel of Fig. 9.3.3 shows the spatial LDOS for the same energy as the
wavefunction in the previous panels. Note that the LDOS is calculated with
a small broadening of 4 meV, thus it captures multiple WGM modes with
different confinements strengths while the wavefunction figure represents just
a single WGM mode. Higher angular momentum modes will be confined
closer to the circumference, while lower 𝑚 modes are closer to the center.
The LDOS captures multiple modes in a small energy range which gives the
multiple concentric ring structure.
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Fig. 9.4.1: (a) Colormap of the LDOS as a function of backgate (𝑉𝑔) and tip
bias voltage (𝑉𝑏). The dashed curve indicates the bulk Dirac point (DP) and the
vertical dotted line at 𝑉𝑔 = 0 indicates the charge neutrality point which separates
the p- and n-doped regimes. (b) Line cuts of the LDOS colormap taken in 5 V
increments of 𝑉𝑔 (lines are offset for clarity).

9.4 Tip-induced collapse

We turn our attention to the sharp STM tip model. The effective tip-induced
potential was already presented in Fig. 9.2.2(b) for a cone-like tip shape
with ∆𝑉𝑤𝑓 = 0.7 eV. Note that the potential is very narrow, resembling the
Coulomb potential function. We compute the LDOS for a full range of gate
voltages 𝑉𝑔 and 𝑉𝑏. The results are presented as a colormap in Fig. 9.4.1(a).
A single high-intensity resonance is clearly visible in the LDOS. It corre-
sponds to the atomic collapse (AC) state which forms in the point-charge-like
potential of the sharp STM tip.

In the p-doped regime, at about 𝑉𝑔 = −30 V, the resonance forms below the
bulk Dirac point and moves down as 𝑉𝑔 is increased. The resonance reaches
its maximum distance from the DP at the charge neutrality point (𝑉𝑔 = 0)
but then disappears abruptly after crossing it. This sudden disappearance
matches the behavior of AC resonances at the transition between the p- and
n-doped regimes which was previously observed experimentally in Refs. [40,
118]. Comparing the LDOS in the p-doped and n-doped regimes directly,
as shown in Fig. 9.4.2, it is clear that the AC state is only present in the
p-doped region and disappears completely in the n-doped regime. Our model
does not define any special conditions for the charge neutrality point and the
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and (b) n-doped regime (𝑉𝑔 = 10 V).

simulation evolves smoothly as function of 𝑉𝑔, thus the abrupt disappearance
is purely due to the change of the tip-induced potential profile.

The behavior around the charge neutrality point and the transition that hap-
pens here deserves a closer look. We examine it in Fig. 9.4.3. The potential
in the p-doped regime (𝑉𝑔 = −10 V) is sharp and Coulomb-like. The point-
charge-like behavior produces a single peak in the LDOS corresponding to
the AC state. As 𝑉𝑔 is increased to the near-neutral range (-5 to -2 V), the
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LDOS.
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top of the potential opens up which produces additional smaller LDOS peaks.
These are WGM resonances which form in the newly widened cavity. After
crossing the charge neutrality point (𝑉𝑔 = 5 V), the top part of the potential
completely flattens out. The WGM states cannot be maintained without
the resonator cavity, thus the LDOS also flattens out. At this point the AC
peak is also gone. Notice that the bottom of the potential in Fig. 9.4.3(a)
is constant with 𝑉𝑔, but the top descends steadily. This lowers the strength
of the potential back towards to the subcritical regime and thus the collapse
cannot be sustained.

We have now identified three distinct regimes which arise as the backgate
voltage changes the sample doping. To better characterize these regimes, we
compute the LDOS as a function of position in Fig. 9.4.4.

While the sample is heavily p-doped, Fig. 9.4.4(a), a high intensity resonance,
associated with atomic collapse, is present in the narrow part of the potential.
Figure 9.4.5(a) presents a wavefunction computed at this energy. Because of
the quasi-bound nature of AC states, multiple wavefunctions are caught in
the narrow energy range of this resonance. This is only one of several very
similar wavefunctions present there, which all feature central confinement,
indicative of zero angular momentum. The narrow potential well does not
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Fig. 9.4.5: Wavefunction |Ψ|2 for (a) an 𝑚 = 0 state in the AC regime and (b)
an 𝑚 > 0 state in the WGM regime, as indicated by the arrows in Figs. 9.4.4(a)
and (b), respectively. The white dashed circle indicates the circumference of the
pn-juncion at the energy of each state (≈ 27 meV and ≈ −5 meV, respectively).
Note that the radius is much larger for the (b) state, as expected by the wide
potential seen in Fig. 9.4.4.

support any higher angular momentum modes.

When the backgate voltage brings the sample close to the charge neutrality
point, Fig. 9.4.4(b), the WGM regime takes over: all the states are located
in the large resonator cavity. Two distinct features are visible: the “pillar”
and the “whispering gallery”. The high-intensity LDOS region in the center
resembles a pillar and consists of 𝑚 = 0 states. These states have a max-
imum in the center and they look identical to the states found in the AC
regime, as shown in 9.4.5(a). On the other hand, 𝑚 > 0 states have a node
in the center, as seen in 9.4.5(b). Another example of an even higher angular
momentum WGM state is presented in Fig. 9.3.3. These high angular mo-
mentum states feature confinement away from the center, thus they populate
the “whispering gallery”.

Comparing the AC and WGM regimes, the main difference is due to the size
of the resonator cavity. Unlike the AC regime, the wide potential profile of
the WGM regime allows it to supports both low and high angular momentum
modes. The states with high angular momentum are easy to distinguish as
they are confined closer to the circumference of the pn-junction.

When the sample becomes n-doped, Fig. 9.4.4(c), the WGM resonator cavity
is gone and the lower narrow potential is also too weak to support any states.
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Fig. 9.4.6: Influence of the work function difference between the STM tip and
graphene sample for 𝑉𝑔 = −10 V and 𝑉𝑏 = 0. (a) The tip-induced potential. (b)
The simulated LDOS. The label indicates the atomic collapse peak (AC) which
appears just below the bulk Dirac point (DP) after Δ𝑉𝑤𝑓 crosses into the super-
critical regime.

Influence of the work function difference

The work function difference between the STM tip and graphene is very
important for the formation of the AC state. As can be seen in Fig. 9.4.6,
only high values of ∆𝑉𝑤𝑓 > 0.4 eV support the formation of resonances in the
LDOS. Smaller values present a featureless LDOS and the collapse resonance
appears abruptly below the Dirac point, just like for external impurities
with supercritical charge. Although the tip-induced effect resembles a small
supercritical charge, the potential is not exactly the Coulomb function. Thus,
quantitative differences are expected when comparing the evolution of the
tip-induced AC with ∆𝑉𝑤𝑓 to the evolution of the impurity-induced AC with
𝛽 (see the supercritical vacancy for example).

It has been shown experimentally that ∆𝑉𝑤𝑓 can be changed by functionaliz-
ing the tip with different materials [134]. The commonly used Pt-Ir tip has a
work function very close to that of graphene and thus presents a non-invasive
probe which has been used in many experiments [126]. On the other hand,
covering the tip with Au coating would produce a very high ∆𝑉𝑤𝑓 = 0.7 eV
[135]. The induced charge could then tap into the supercritical regime. This
enables the experimental observation of the first atomic collapse resonance,
as shown in Fig. 9.4.6(b).
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Fig. 9.4.7: (a) Backgate dependence of the 𝑑𝐼/𝑑𝑉 spectrum as measured by
the STM tip (𝑉𝑏 = -50meV, 𝐼 = 0.1nA). (b) Simulated LDOS. The black arrows
indicate the position of the Dirac point (DP) for each backgate voltage. R1 and
R2 label the resonance peaks of the atomic collapse states. (c) Simulated evolution
of the LDOS with the backgate voltage. The black dashed curve labels the Dirac
point far away from the pn-junction. The vertical lines indicate the position of the
cuts plotted in panel (b). The experimental results are taken from [147].

Comparison with experiment

This work was conducted in collaboration with the experimental group of
Eva Andrei from Rutgers University. The experiment consists of a dual-gate
setup. The graphene sheet sits on top of a 300 nm SiO2 dielectric layer
and a highly n-doped silicon substrate which acts as the backgate electrode
(see Fig. 9.1.1 for an illustration). The STM tip acts as the top gate which
controls local sample doping and allows for the creation of pn-junctions, as
described earlier. A non-invasive Pt-Ir is first used to characterize the neutral
gate dependence of the graphene sample. The tip is then gently pushed into
a gold electrode. The Au coating which remains on the tip changes the work
function difference to 0.7 eV. The 𝑑𝐼/𝑑𝑉 spectra is measured at different
values of the backgate voltage. The experimental results are presented in
Fig. 9.4.7(a).

For the simulation, we use the theoretical model as outlined in the previous
section. The model has several parameters which can be tuned to more
closely match the experimental setup. These include the shape of the STM
tip 𝑑𝑇 (𝑟), the tip-sample work function difference ∆𝑉𝑤𝑓 and the ratio of the
dielectric constant and thickness of the gate insulator 𝑘/𝑑𝑔. The values of
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Fig. 9.4.8: Comparison of the AC (top) and WGM (bottom) regimes. (a) Profile
of the tip-induced potential. Inset shows a schematic drawing of the junction.
(b) Simulated LDOS for the potential profile on the left. (c) Experimental 𝑑𝐼/𝑑𝑉
curves for the same doping level. The experimental results are taken from [147].

these parameters, as specified in the theoretical model section, have already
been adjusted according to the experiment. The only additional change we
shall make here is to set 𝑉𝑔0 = 4 V instead of 0. This parameter accounts for
the residual doping of the substrate, i.e. it indicates the backgate voltage of
the charge neutrality point, which is 4 V for this experimental setup. This
change does not make any qualitative difference for the results but merely
acts as an offset value (e.g. Fig. 9.4.1 would be identical, just shifted by +4
V in 𝑉𝑔).

With this experimental fit taken into account, the simulated LDOS is pre-
sented in Figs. 9.4.7(b) and (c). We see good agreement with the experimen-
tal data. The highly p-doped regime (𝑉𝑔 = −50 V) is rather featureless, but
as 𝑉𝑔 is increased a sharp peak appears below the Dirac point. This feature
is consistent with the atomic collapse phenomena.

Increasing the backgate voltage up to the charge neutrality point results
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in a transition to the WGM regime, as discussed previously. Figure 9.4.8
compares the theoretical and experimental results. The agreement is good,
as both theory and experiment show a clear distinction between the AC and
WGM regimes.

9.5 Conclusions

We studied the effect of STM-tip-induced circular pn-junctions in graphene.
We computed the effective potential profile induced by the STM tip based
on the shape, bias voltage and work function of the STM tip. We used the
kernel polynomial method to compute the LDOS as measured by the tip. It
was shown that a sharp tip can trigger the atomic collapse phenomena. In
contrast to previously considered deposited impurities or charged vacancies,
the point-like charge is produced solely by STM gating which allows for a
high degree of control. In order to reach the supercritical charge regime, the
tip needs to be coated in gold which creates a large work function difference
relative to graphene.

As graphene becomes increasingly p-doped (higher backgate voltage) the
profile of the induced potential widens. The increased radius of the pn-
junction means that it can also support very high angular momentum states:
whispering-gallery modes. Thanks to the large resonator cavity, electrons
can reflect from the interface at oblique angles. Klein scattering ensures that
such reflections are near perfect thus resonances form at energies where the
wavelength matches an integer multiple of the circumference.

By tuning the backgate and tip bias voltages the system was continuously
transformed from the quantum-relativistic phenomena of atomic collapse to
the electron optics effect of whispering-gallery modes. Both phenomena con-
fine electrons, but the underlying mechanism is quite different. The su-
percritical charge traps low-angular momentum electrons in spiraling orbits
where the probability of finding the electron increases sharply toward the
center. On the other hand, WGM confinement is ring-like and presents a
high-angular momentum electron skipping along the circumference.



CHAPTER 10

Atomic collapse in the presence
of a magnetic field

10.1 Introduction

It was shown that graphene exhibits the analogue of atomic collapse [112,
113], a fundamental phenomena in quantum electrodynamics (QED). Thanks
to graphene’s very large fine structure constant, the critical charge required
to trigger collapse is much smaller than for real atomic nuclei. This has
made it possible to realize this phenomena experimentally, with observations
closely matching the predictions of QED [40, 118].

Another longstanding prediction from QED is that a magnetic field should
be able to enhance the effect [148]. A magnetic field confines the motion of
the electron, therefore bringing it closer to the nucleus. As a result, the re-
quired value of the critical charge decreases as a function of the field strength.
However, this is where the graphene analogue may diverge from the origi-
nal. QED considers (3 + 1) dimensions where the magnetic field acts on the
electron in a plane, but not on the other degree of freedom. Due to its flat
nature, the electrons in graphene are confined to (2 + 1) dimensions, which
results in a different problem.

161
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It was shown experimentally that a charged impurity lifts the orbital degener-
acy of Landau levels, thus splitting them into discrete states [116]. However,
the experiment only considered a charge in the subcritical regime. Previous
theoretical studies have had conflicting conclusions about the influence of
the magnetic field on the value of the critical charge. In Ref. [149], it was
predicted that the critical charge vanishes for massless carriers at any finite
magnetic field. On the other hand, Refs. [150–152] showed that the critical
charge will not change. The problem itself cannot be solved exactly in ana-
lytic form. Some approaches for solving the problem, such as perturbation
theory, can have great difficulty due to the strong effect of both electric and
magnetic fields. In this chapter, we examine the problem using the numerical
tight-binding approach in an effort to gain more accurate results and to solve
the above issue.

We investigate the problem of a supercritically charged impurity in graphene
in the presence of a magnetic field. The Landau levels split into individ-
ual orbital states in the presence of the impurity, where the lowest energy
states are of special interest. They are closely related to the atomic collapse
resonances which appear without a magnetic field.

10.2 Theoretical model

The tight-binding Hamiltonian for graphene in the presence of a charged
impurity is given by

𝐻 =
∑︁
⟨𝑖,𝑗⟩

(︁
𝑡𝑖𝑗𝑎

†
𝑖𝑏𝑗 +𝐻.𝑐.

)︁
+
∑︁
𝑖

𝑉 (⃗𝑟 𝐴
𝑖 )𝑎†𝑖𝑎𝑖 +

∑︁
𝑖

𝑉 (⃗𝑟 𝐵
𝑖 )𝑏†𝑖𝑏𝑖, (10.2.1)

where 𝑡𝑖𝑗 = −2.8 eV is the hopping energy, operators 𝑎𝑖(𝑎
†
𝑖 ) and 𝑏𝑖(𝑏

†
𝑖 ) create

(annihilate) an electron at site �⃗�𝑖 of sublattice 𝐴 and 𝐵, respectively, and �⃗�𝐴,𝐵
𝑖

is the distance between the carbon atoms and the impurity. In the presence
of a uniform magnetic field, of strength 𝐵, perpendicular to the graphene
plane, the hopping parameters are replaced by the Peierls substitution, 𝑡𝑖𝑗 →
𝑡𝑖𝑗e

𝑖2𝜋Φ𝑖𝑗 , where Φ𝑖𝑗 = (1/Φ0)
∫︀ 𝑅𝑗

�⃗�𝑖
�⃗� · 𝑑𝑙 is the Peierls phase, with Φ0 =

ℎ/𝑒 the magnetic quantum and �⃗� = 𝐵/2(𝑦,−𝑥) the vector potential in the
symmetric gauge.

The electric potential of the impurity 𝑉 (𝑟) has the form of the Coulomb
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potential with cutoff radius 𝑟0 which accounts for the finite size of the charge,

𝑉 (𝑟) =

{︃
−~𝑣𝐹 𝛽

𝑟0
, if 𝑟 ≤ 𝑟0

−~𝑣𝐹 𝛽
𝑟
, if 𝑟 > 𝑟0

, (10.2.2)

where we take 𝑟0 = 0.5 nm as in the previous chapter. Here we only con-
sider a pure charge impurity, without a vacancy. The dimensionless coupling
constant 𝛽 ≡ 𝑍𝑒2/𝜅~𝑣𝐹 gives the raw impurity charge 𝑍 scaled by the rel-
ative permittivity 𝜅 and the Fermi velocity 𝑣𝐹 . In the theoretical model
we change the charge coupling through the parameter 𝛽. In experiments,
a constant charge 𝑍 may be present, while the relevant coupling 𝛽 may be
tuned by applying a gate voltage which controls the relative permittivity 𝜅
via Landau level occupancy [116] (i.e. screening of the charge 𝑍𝑒).

Considering only states close to the 𝐾 point, the Hamiltonian Eq. (10.2.1)

reduces to 𝐻 = 𝑣𝐹 �⃗� · Π⃗ + 𝑉 (⃗𝑟), where 𝜎𝑖 are the Pauli matrices and Π⃗ =

−𝑖~∇⃗ + 𝑒�⃗� is the canonical momentum operator. Solving the eigenvalue
problem in the absence of the impurity and neglecting the spin yields the
unperturbed Landau level (LL) sequence 𝐸𝑁 = ±~𝑣𝐹/𝑙𝐵

√︀
2|𝑁 |, where 𝑙𝐵 =√︀

~/(𝑒𝐵) is the magnetic length, 𝑁 = 0,±1,±2, ... the level index, and +(-)
refers to electron (hole) states. The wavefunctions Ψ𝑁𝑚(⃗𝑟) depend on the
level index 𝑁 and the orbital number 𝑚 ≥ −|𝑁 | [153]. Without a charge,
the problem is translationally invariant so 𝐸𝑁 is independent of 𝑚 and the
LLs are infinity degenerate. The impurity lifts the degeneracy, splitting the
energy into sublevels. The lowest orbital states are centered around the
impurity, while higher order states form concentric orbits around it.

Here, we solve the tight-binding Hamiltonian (10.2.1) numerically for a finite
size system in the shape of a hexagonal flake with armchair edges. The
impurity is positioned in the center of the flake. In the following calculations
we take an edge width of 200 nm, which corresponds with a flake consisting
of about four million carbon atoms. The flake is taken sufficiently large such
that its finite size does not influence the physics we are interested in.

10.3 Numerical results

Before turning on the magnetic field, we shall briefly review the real-space
picture of the atomic collapse resonances in the local density of states (LDOS)
in graphene. Figure 10.3.1 presents the space-energy map of the LDOS in the
subcritical and supercritical regimes. A subcritical charge (𝛽 = 0.4) enhances
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Fig. 10.3.1: Colormap of the LDOS as a function of position and energy in the
absence of a magnetic field. The impurity is located in the center (𝑟 = 0). The
charge 𝛽 varies from 0 to 1.2 as indicated. The dotted line shows the position
of the Dirac point (DP) in the first panel and the spatial profile of the Coulomb
potential in the following panels. The collapse resonances are labeled 𝑅1 and 𝑅2.

the LDOS in the positive part of the spectrum in proximity of the impurity
(𝑟 = 0). Note that it does not cross below the Dirac point. Once the charge
becomes supercritical (𝛽 = 0.8 > 𝛽𝑐) the high intensity LDOS region crosses
below zero energy. The atomic collapse states can only be found at negative
energy since they represent coupled states, where an electron from the center
can tunnel out and escape as a hole. The collapse resonance in the LDOS
is labeled 𝑅1 as the first of such states to appear with increasing charge 𝛽.
The LDOS intensity is highest at the center, but disappears quickly at about
10 nm away from the impurity.

Level splitting

The result of the LDOS computation for a magnetic field of 𝐵 = 12 T are
presented in Fig. 10.3.2. Without the impurity (𝛽 = 0), the Landau levels
appear constant in space, as expected. When a small charge is introduced
(𝛽 = 0.4) the Landau levels start to bend and split into individual orbital
states near the impurity (𝑟 = 0). When the charge is increased (𝛽 = 0.8),
multiple split levels are clearly visible. States with smaller orbital numbers
have lower energy and sink down with the Coulomb potential. At LL 𝑁 = 0,
the orbital state 𝑚 = 0 is clearly separated. Similarly, at LL 𝑁 = 1 states
𝑚 = −1 and 𝑚 = 0 have moved lower and separate from the rest of the LL.
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Fig. 10.3.2: Colormap of the LDOS as a function of position and energy with a
magnetic field of 𝐵 = 12 T. The Landau levels are labeled as 𝑁 = 0,±1,±2, while
𝑚 labels indicate orbital states of their corresponding levels.

Notice that the LDOS at the impurity is an order of magnitude higher than
the surrounding area, similar to the case without a magnetic field. After
further increasing the charge to 𝛽 = 1.2, it becomes difficult to keep track of
the split states since they start mixing as we shall see next.

Anticrossing series

The resonances associated with atomic collapse in graphene have high inten-
sity only in close proximity to the charge. They disappear quickly, only a
few nanometers away from the impurity. For this reason, we will be focusing
mainly on the properties at the point of the impurity (𝑟 = 0). We calculated
the LDOS as a function of energy 𝐸 and the charge of the impurity 𝛽 in
Fig. 10.3.3 for various magnetic fields 𝐵.

Without a magnetic field, the signature of collapse is easy to spot as high
intensity resonances at negative energy (labeled 𝑅1-𝑅3 in Fig. 10.3.3). As 𝛽
is increased the 𝑅1 resonance moves down and broadens, while a second (𝑅2)
resonance appears just below the Dirac point. Both resonances are clearly
set apart from the rest of the (mostly homogeneous) local density of states.

When a magnetic field is applied (𝐵 = 2 and 12 T in Fig. 10.3.3) we can
see a mix of Landau levels and collapse resonances. Landau levels are clearly
formed at low 𝛽. As the charge 𝛽 is increased, we can see Landau level
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Fig. 10.3.3: Colormap of the LDOS at the impurity (𝑟 = 0) as a function of
charge 𝛽 and energy 𝐸. The magnetic field 𝐵 varies as indicated in the panels.
The labels 𝑅1 to 𝑅3 indicate the collapse resonances in the order in which they
appear. The 𝑁 = 0,±1 labels indicate Landau levels.

𝑁 = 1 splitting into individual orbital states 𝑚 = −1 and 𝑚 = 0. At higher
𝛽, Landau level 𝑁 = 2 splits, then 𝑁 = 3 and so on.

The lower split state (𝑚 = −1) of each positive LL is of special interest.
These lines correspond exactly with the lines of the collapse resonance at
𝐵 = 0. Once the lower orbital state of LL 𝑁 = 1 intersects with 𝑁 = 0, a
series of anticrossings is formed which continues to follow the same line as
the 𝑅1 collapse resonance at 𝐵 = 0. This line of anticrossings also retains
a very high LDOS intensity which is at least an order of magnitude higher
than the regular Landau levels.

The inter-level spacing of the LLs is generally preserved while 𝛽 changes. It
is only disturbed while crossing a collapse resonance. After crossing the 𝑅1
resonance, the LLs with 𝑁 < 1 shift down by one, e.g. 𝑁 = 0 moves lower
to take the place of 𝑁 = −1 while 𝑁 = −1 shifts to 𝑁 = −2, etc. The
positive LLs behave differently. As described earlier, the lower energy state
LL (𝑁 = 1, 𝑚 = −1) follows the collapse resonance until it crosses 𝑁 = 0.
The higher orbital state (𝑁 = 1, 𝑚 = 0) continues to the second resonance.
Only levels up to 𝑁 = 1 are affected by the 𝑅1 resonance. After crossing
the 𝑅2 resonance, 𝑁 = 2 is included and the pattern repeats: the 𝑁 < 2
Landau levels shift down by one, while 𝑁 = 2 splits so that the lower state
follows resonance 𝑅2, while the higher states continues to 𝑅3.
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Fig. 10.3.4: Colormap of the LDOS at the impurity (𝑟 = 0) as a function of
energy 𝐸 and the square root of the magnetic field

√
𝐵. The charge 𝛽 varies as

labeled in the panels.

Landau level bending

The Landau levels in graphene feature a linear dependence on the square
root of the magnetic field

√
𝐵. Computing the LDOS as a function of

√
𝐵

without any charge (𝛽 = 0) reveals the expected linear LL lines of high LDOS
intensity in Fig. 10.3.4. When a small charge is added (𝛽 = 0.4), the LLs
remain generally linear, but they are slightly tilted downwards. At this point
LL 𝑁 = 1 is split into individual orbital states (𝑚 = −1 and 𝑚 = 0). As the
charge is increased into the supercritical regime (𝛽 = 0.8) the levels become
non-linear. The collapse resonance 𝑅1 is visible near

√
𝐵 = 0.

The curvature of the Landau levels becomes especially visible for 𝛽 = 1.2.
The 𝑅1 resonance is quite apparent at low values of

√
𝐵. Without a magnetic
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field, this peak appears as a broad LDOS resonance which is an indicator of
the supercritical regime. Note that the 𝑅1 resonance (low

√
𝐵) is located

at the same energy as the 𝑚 = −1 state of Landau level 𝑁 = 1 (high
√
𝐵).

At 𝛽 = 1.6, the second resonance starts to appear just below zero energy, as
indicated by label 𝑅2 in Fig. 10.3.4. Further increasing the charge (𝛽 = 2)
moves the 𝑅2 resonance lower and with it the 𝑁 = 2, 𝑚 = −2 state.

Note that the Landau levels in the energy range of a resonance (𝑅1 or 𝑅2)
have a larger LDOS intensity than their neighboring levels, which further
supports the connection of the collapse resonance and the lowest orbital
states. The LLs also appear to bend slightly in this region, while the levels
that are not influenced by the resonance remain linear as function of

√
𝐵.

The collapse resonance looks to be directly connected to non-linear scaling
of Landau levels.

Scaling anomaly

The energy of the Landau levels can be written as,

𝐸𝑁(𝐵) = 𝑣𝐹
√︀

2|𝑁 |~
√
𝐵 = 𝜈𝑁

√
𝐵, (10.3.1)

where 𝜈𝑁 is the level scaling factor. When there is no impurity in the system,
this factor is constant and independent of the magnetic field, i.e.

𝜕𝜈𝑁
𝜕𝐵

= 0. (10.3.2)
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Fig. 10.3.5: (a) Scaling factor 𝜈1 for different values of the charge 𝛽. (b) The
derivative of the scaling factor for Landau level 𝑁 = 1.
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Fig. 10.3.6: The derivative of the scaling factor for Landau level 𝑁 = 1. This
is the same as Fig. 10.3.5, but this time as a function of energy instead of the
magnetic field.

On the other hand, when Eq. (10.3.2) is non-zero, it means that the level has
a scaling anomaly, which should be the case for a supercritical charge.

We used the LDOS data to calculate the scaling factor 𝜈𝑁 for LL 𝑁 = 1. The
results are shown in Fig. 10.3.5(a). However, the more interesting results are
for the derivative 𝜕𝜈1/𝜕𝐵, presented in Fig. 10.3.5(b). The derivative is close
to zero for 𝛽 up to 𝛽𝑐 = 0.5, independent of the magnetic field. For 𝛽 > 0.5
there is a clear non-zero derivative at small values of the magnetic field. As
the magnetic field is increased, the derivative approaches zero asymptotically.
Note that this does not indicate that the scaling anomaly disappears at very
high values of the magnetic field. The scaling anomaly is mainly a function
of energy.

To show the strong dependence of the derivative to energy, we replotted
Fig. 10.3.5(a) as function of energy in Fig. 10.3.6. Notice that the 𝛽 values
up to 0.5 (that have zero derivative, i.e. normal scaling) are located in the
region of positive energy. Once the LL starts crossing into negative energy
(𝛽 = 0.6 and higher), the derivative becomes finite indicating anomalous
scaling. This mirrors the appearance of the collapse resonance below the
Dirac point without a magnetic field. As 𝛽 is increased the LL moves lower
in energy (just like the resonance) and the derivative increases indicating
stronger anomalous scaling as a function of increasing 𝛽.
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10.4 Conclusions

We used the tight-binding method to model a charged impurity in graphene
in the presence of a magnetic field. Without the field, atomic collapse in
graphene appears as a resonance that forms just below zero energy. When
the magnetic field is activated, the resonances are replaced by a Landau level
anticrossing series at the same energy.

A Coulomb-like charge causes Landau levels to split into individual orbital
states. The lowest orbitals of the positive Landau levels have special behav-
ior. They are directly related to the collapse resonance. When expressed as
a function of the charge, the lowest orbital states follow the exact line of the
resonance until they cross LL 𝑁 = 0. At that point a series of anticrossings
is formed which continues along the line of the collapse resonance.

Landau levels that are caught in the collapse resonance exhibit anomalous
scaling as a function of the magnetic field. The scaling is mainly a function of
the energy and it closely mirrors the collapse resonance: anomalous scaling
appears just as a Landau level crosses below the Dirac point.

We find that the critical charge for atomic collapse does not change in the
presence of a magnetic field. The two main indicators of supercritical charge
that have been shown, the anticrossing series and anomalous scaling, both
appear in a broad energy range and closely mirror the zero field collapse
resonance.



CHAPTER 11

Molecular collapse

11.1 Introduction

Supercritical charge centers in graphene exhibit the atomic collapse phenom-
ena, i.e. they represent the analogue of the collapsing artificial atoms. The
collapse resonances R1 and R2 are the analogues of the 1S and 2S atomic
states. With real atoms, molecules form thanks to the overlap of atomic
orbitals. The overlap can be modeled using the linear combination of atomic
orbitals method. As the two atomic nuclei are brought closer to each other,
a single atomic states splits into a lower and higher energy branch: the bond-
ing and anti-bonding states. The bonding states is characterized by a finite
probability of finding the electron at the midpoint between two atoms. The
anti-bonding states has higher energy and zero-probability at the midpoint,
thus it works against the molecular bond. Because of the atomic collapse
analogue in graphene, it is expected that two supercritical charges should
exhibit the same kind of states.

11.2 Results

We model two identical Coulomb charges with 𝛽 = 0.95 located at a distance
𝑑 from each other. For simplicity we consider a standalone charge in pristine
graphene (no vacancy). The LDOS is calculated as a function of the distance
between the artificial nuclei and shown in Fig. 11.2.1(a). When the charges
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Fig. 11.2.1: Colormap of the LDOS as a function of energy and the distance
between charge centers. (a) For two identical charged vacancies with 𝛽 = 0.95.
The LDOS is computed at the position of one of the charges. (b) Two different
charges. One is a charged vacancy with 𝛽 = 0.95 and the other is the STM tip
with 𝑉𝑔 = −5 V. The LDOS is computed at the position of the STM tip.

are far apart they behave as two independent supercritical nuclei. This is
visible in Fig. 11.2.1(a) at 𝑑 ≈ 30 nm where only a single collapse resonance
𝑅1 is present. As the distance is reduced, the resonance splits into a lower-
energy bonding and higher-energy anti-bonding state. This is analogous to
molecule consisting of two identical atoms (homonuclear). When the distance
goes to zero, the two nuclei have completely merged and behave like one
nucleus with double the charge. The bonding state transits into the 𝑅1
collapse state of the new nucleus, while the anti-bonding state transits into
𝑅2.

The LDOS spatial maps at 𝑑 = 8 nm, Fig. 11.2.2, reveals the opposite nature
of the split states. As its name implies, the lower energy bonding state has
significant LDOS intensity in the bonding region between the nuclei. On the
other hand, the anti-bonding states has low LDOS intensity at the midpoint.

Next, we model a heteronuclear molecule consisting of two different artifi-
cial nuclei. Experimentally, this can be realized as a supercritically charged
vacancy with 𝛽 = 0.95 and collapse-inducing STM. The STM tip-induced
charge is significantly weaker compared to the charged vacancy: it would be
close to 𝛽 = 0.6, although we cannot speak in terms of 𝛽 for the tip-induced
charge since it does not have a Coulomb barrier shape. Still, the charge
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Fig. 11.2.2: Spatial LDOS colormap for two identical charges 𝛽 = 0.95 at distance
𝑑 = 8 nm. (a) The bonding state with 𝐸 = −135 meV. (a) The anti-bonding state
with 𝐸 = −77 meV. The LDOS is calculated with a broadening of 8 meV.

mismatch between the nuclei is significant which makes this case analogous
to a heteronuclear molecule (e.g. 𝐻𝐶𝑙 as opposed to mononuclear 𝐻2). The
LDOS as a function of distance is presented in Fig. 11.2.1(b) where the
LDOS is computed following the position of the STM tip. As the distance
shrinks, the collapse resonance splits as before but in this case the bonding

Fig. 11.2.3: Spatial LDOS colormap for a charge 𝛽 = 0.95 and STM tip 𝑉𝑔 = −5
V at distance 𝑑 = 8 nm. (a) The bonding state with 𝐸 = −115 meV. (a) The
anti-bonding state with 𝐸 = −20 meV. The black dot indicates the position of the
STM tip. The LDOS is calculated with a broadening of 8 meV.
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state is much weaker than the anti-bonding state. Looking at the spatial
maps in Fig. 11.2.3, we can see a large imbalance between the nuclei due
to the charge mismatch. The stronger vacancy charge has a much greater
LDOS intensity, however signs of the bonding state are still there as a region
of high LDOS is extended from left to right across the nuclei. The anti-
bonding state shows a similarly pronounced asymmetry but retains a low
LDOS intensity in the bonding region between nuclei. The kind of asymme-
try exhibited here is analogous to real heteronuclear molecules. The bonding
state is weak because of the large mismatch between the energy levels of the
individual nuclei.

11.3 Conclusions

We considered the case of two supercritical charges placed close to each
other. It was shown that such artificial nuclei form molecular bonding and
anti-bonding states analogous to real molecules. The only difference is that
regular atomic orbitals are replaced with collapse resonances, i.e. spiraling
orbitals as seen from the quasiclassically point of view.



CHAPTER 12

Summary

In this thesis, we theoretically investigated ways of controlling the elec-
tronic properties of graphene using mechanical strain and supercritical elec-
tric fields. Klein tunneling renders traditional electric barriers ineffective in
graphene which is why these alternative approaches are needed. Strain has
long been used to enhance the electrical properties of semiconductors, but
the very high strain tolerance of graphene makes it especially well-suited
for strain engineering. Supercritical charge centers are a long-standing pre-
diction of quantum electrodynamics. Thanks to the relativistic behavior of
low-energy electrons in graphene, the same effect can be achieved at modest
charge which presents a new way of producing quasi-bound states.

These phenomena were investigated mainly using the numerical tight-binding
approach. The tight-binding model of graphene was described in Chapter
2 along with some of graphene’s important electronic features. In order to
investigate the physical properties of the outlined phenomena, the eigenvalue
problem was solved either using exact diagonalization of the Hamiltonian
matrix or using approximative methods. The kernel polynomial method, as
described in Chapter 3, was used extensively in this thesis. It is an extremely
fast method which can be used to compute the (local) density of states or the
Green’s function, approximately, with controllable precision. In order to aid
the numerical work, a code framework was developed which is available as an
open source project. The theoretical framework and ideas behind the code
are presented in Chapter 4 while a user guide and concrete code examples
are given in Appendix A.
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The results part began in Chapter 5 with the investigation of the strain-
induced pseudo-magnetic field in graphene. This field mimics many of the
properties of a real magnetic field, including the ability to confine electrons
in graphene. One key difference is that the pseudo-magnetic field does not
break time-reversal symmetry, since it has the opposite sign in the 𝐾 and
𝐾 ′ valleys of graphene. We investigated the model of the strain-induced field
derived with increasingly higher order terms in strain. The first order strain
term was found to be valid only for very low strains, up to 5%. In order to
go up to graphene’s full strain limit of 25%, at least the third order term was
required.

In Chapter 6 we studied the specific case of out-of-plain strain due to a
Gaussian-shaped bump in a graphene flake. Interestingly, even though the
bump has perfect circular symmetry, it generates a very distinct non-circular
pseudo-magnetic field with six-fold symmetry. Electrons are well-confined
in the armchair directions, while the zigzag directions carry valley-polarized
current between the inside and outside of the strained region.

Chapter 7 examined the effect of in-plane triaxial strain in bilayer graphene.
The generated pseudo-magnetic field was found to be uniform with a peculiar
side-effect: broken layer symmetry. At low energy, the difference between the
layers is so large that effectively only one layer feels the effects of the pseudo-
magnetic field. The second layer is missing the zero-energy pseudo-Landau
level, thus it features a large gap between the first positive and negative levels.
Effectively, this means that low-energy electrons are localizes to a single layer.
The affected layer can be switched by rotating the strain direction by 60°.

Chapter 8 introduced the phenomena of atomic collapse in graphene. The
effect was studied theoretically in the presence of supercritically charged
impurities and vacancies. The charged single-atom vacancy is of particular
interest due to experimental accessibility. A satellite 𝑅1′ peak emerged as
a new branch of collapse due to the locally broken sublattice symmetry of
the vacancy. The results were compared with experimental observations and
good agreement was found.

Chapter 9 studied the atomic-collapse effect induced solely by the sharp tip of
a scanning tunneling microscope (STM). By adjusting the backgate voltage,
the induced charge can be continuously tuned from the subcritical to the
supercritical regime. The transition is accompanied by whispering-gallery
modes, a phenomena originating in optics, which presents an alternate con-
finement mechanism compared to collapse. This model was derived based on
an experimental STM setup. The simulated results showed good agreement
with the experiment.
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In Chapter 10 we investigated supercritical charge centers in the presence
of a magnetic field. We show that the atomic collapse effect persists even
after the field is activated. The previously observed collapse resonances are
replaced with a series of Landau level anti-crossings as the new signature of
collapse. The Landau levels also display anomalous scaling with regard to
magnetic field strength in the region of the collapse.

Chapter 11 considered the creation of artificial “collapsing” molecules made
up of supercritical nuclei. We found that placing two supercritical charges
in close proximity will split the atomic collapse 𝑅1 state into a lower-energy
bonding and higher-energy anti-bonding state.

12.1 Outlook

Although the term “atomic collapse” comes from the analogue to the orig-
inal phenomena in quantum electrodynamics, these are actually persistent
resonances in graphene as seen in experiments. Given the correspondence
of collapse states to regular atomic states, supercritically charged impurities
can be viewed as artificial atoms in graphene. Therefore, a bonding of two
supercritical charges can be viewed as an artificial supercritical molecule as
found in Chapter 11. Expanding further on this, a superlattice of charged
impurities could produce a supercritical band structure. Studying such a
structure could yield new ways of controlling the electronic properties of
graphene. As we have seen in Chapter 9, a sharp gate can also act like a
supercritical charge. Thus, assembling a comb-like structure of such gates
could be used to realized the superlattice structure.

The tight-binding code used for the numerical calculations in this thesis is
available as an open source project, called Pybinding. While the code started
out as a specialized tool for graphene it has grown into a generalized frame-
work for constructing arbitrary tight-binding models in 1 to 3 dimensions.
The package has builtin solvers for finite size and periodic systems, but a
recent addition is the ability to interface with the Kwant package and also
make use of its solvers which are tailored for transport problems. In that
same vein, Pybinding could also be made interoperable with ab initio pack-
ages. The ab initio results can be used as input parameters for tight-binding
models. Compared to inputing parameters by hand, the ab initio interface
would allow for more complex models to be considered. On the other hand,
compared to ab initio simulations, the tight-binding approach would use sim-
plified parameters, thus enabling the construction of much larger systems.
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CHAPTER 13

Samenvatting

In deze thesis, maakten we een theoretische studie van de manier waarop de
elektronische eigenschappen van grafeen beheerst kunnen worden door mid-
del van mechanische rek en superkritische elektrische velden. Klein tunneling
maakt traditionele elektrische barrières nutteloos in grafeen, hierdoor zijn
deze alternatieve methodes noodzakelijk. Rek wordt sinds lang gebruikt om
de elektronische eigenschappen van halfgeleiders te verbeteren, maar de erg
hoge rek tolerantie van grafeen, maakt dit materiaal uitermate geschikt voor
deze manier van het beheersen van materiaaleigenschappen. Superkritische
ladingscenters zijn een reeds lang voorspeld fenomeen in kwantum elektro-
dynamica. Dankzij het relativistische karakter van de lage energie elektro-
nen in grafeen, kan hetzelfde effect gerealiseerd worden bij eerder bescheiden
ladingen, wat leidt tot een nieuwe manier om quasi-gebonden toestanden te
realiseren.

Deze fenomenen werden voornamelijk onderzocht met de numerieke methode
van de sterke binding (tight-binding). In Hoofdstuk 2 werd het tight-binding
model van grafeen beschreven, net zoals enkele van de meest belangrijke
elektronische eigenschappen van grafeen. Er werd in deze thesis uitgebreid
gebruik gemaakt van de kernel polynomiale methode, die beschreven wordt
in Hoofdstuk 3. Dit is een extreem snelle methode die gebruikt kan wor-
den om de (lokale) toestandsdichtheid of de Greense functie benaderend te
berekenen met een controleerbare precisie. Om het numerieke werk te vereen-
voudigen, werd een codebasis ontwikkeld die ook beschikbaar is als open
source project. Het theoretische kader en de ideeën achter de code worden
voorgesteld in Hoofdstuk 4, terwijl een handleiding en concrete voorbeelden
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voor het gebruik van de code worden getoond in Appendix A.

Het deel met resultaten begint in Hoofdstuk 5 met de studie van het door mid-
del van rek gëınduceerde pseudomagnetische veld, welks theoretische werd
afgeleid met steeds hogere orde termen in de rek. De eerste orde term bleek
enkel geldig voor erg lage waarden van de rek tot 5%. Om tot de volledige
limiet van rek in grafeen te gaan, is minstens de derde orde term nodig.

In Hoofdstuk 6, bestudeerden we het specifieke scenario van een rek loodrecht
op het vlak veroorzaakt door een Gaussisch gevormde bult. Opmerkelijk is
dat alhoewel de bult een perfect cirkelvormige symmetrie heeft, het resul-
terende pseudomagnetische veld zeer niet-cirkelvormig is en een rotatiesym-
metrie van orde 6 heeft. Elektronen zijn sterk opgesloten in de badkuip
richtingen, terwijl de zigzag richtingen een vallei-gepolariseerde stroom ver-
tonen tussen de binnenkant en buitenkant van de uitgerekte regio.

In Hoofdstuk 7 wordt het effect van een triaxiale rek in het vlak bij bilaag
grafeen onderzocht. Het gegenereerde pseudomagnetische veld bleek uniform,
maar met een opmerkelijk neveneffect: gebroken laag symmetrie. Bij lage
energieën, is het verschil tussen de lagen zo groot dat slechts één laag het
effect van het pseudomagnetische veld voelt.

Hoofdstuk 8 introduceert het fenomeen van atomaire instorting in grafeen.
Dit effect werd theoretisch bestudeerd in aanwezigheid van superkritisch
geladen onzuiverheden en vacatures. Het geval van een geladen vacature
van één atoom is bijzonder interessant vanwege de experimentele realiseer-
baarheid. Ten gevolge van de door de vacature lokaal verstoorde subrooster
symmetrie verschijnt er een 𝑅1′ nevenpiek, tekenend voor een nieuwe instort-
ingstak. Het resultaat werd vergeleken met experimentele waarnemingen en
bleek hiermee goed overeen te stemmen.

In Hoofdstuk 9 bestuderen we het effect van atomaire instorting gëınduceerd
door de scherpe tip van een scanning-tunnelingmicroscoop (STM). Door het
aanpassen van de achterdeur spanning, kan de gëınduceerde lading continu
geregeld worden van het subkritische naar het superkritische regime. De
overgang wordt gekenmerkt door fluisterende-galerij modes, een fenomeen
dat gekend is vanuit optica, dat een alternatief mechanisme voor opsluiting
voorstelt, vergelijkbaar met instorting.

In Hoofdstuk 10 onderzoeken we superkritische ladingscenters in de aan-
wezigheid van een magnetisch veld. We toonden aan dat het effect van atom-
aire instorting aanhoudt als het magnetisch veld wordt aangezet. De Landau
niveaus vertonen abnormale schaling met de sterkte van het magnetisch veld
in de regio van instorting.
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In Hoofdstuk 11 beschouwen we de creatie van een artificieel “instortend”
molecuul opgebouwd uit superkritische kernen. We vonden dat het dicht bij
elkaar plaatsen van twee superkritische ladingen de atomaire instorting 𝑅1
toestand doet opsplitsen in een lagere energie bindings- en hogere energie
anti-bindingstoestand.
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APPENDIX A

Code package: Pybinding

Pybinding is a Python package for tight-binding calculations which was developed along
with this thesis to aid the numerical work. It represent a general modeling approach
which can be used to for arbitrary tight-binding systems. This appendix contains a
brief overview of the features of the code framework. More details are available online:
http://docs.pybinding.site

As a very quick sample, the following code creates a triangular quantum dot of bilayer
graphene and then applies a custom asymmetric strain function:

import pybinding as pb

from pybinding.repository import graphene

def asymmetric_strain(c):

@pb.site_position_modifier

def displacement(x, y, z):

ux = -c/2 * x**2 + c/3 * x + 0.1

uy = -c*2 * x**2 + c/4 * x

return x + ux, y + uy, z

return displacement

model = pb.Model(

graphene.bilayer(),

pb.regular_polygon(num_sides=3, radius=1.1),

asymmetric_strain(c=0.42)

)

model.plot()
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Within the Pybinding framework, tight-binding models are assembled from logical parts
which can be mixed and matched in various ways. The package comes with a few prede-
fined components: crystal lattices, shapes, symmetries, defects, fields and more (like the
graphene.bilayer() lattice and the regular polygon() shape shown above). Users can
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also define new components (just like the asymmetric strain above). This modular ap-
proach enables the construction of arbitrary tight-binding models with clear, easy-to-use
code. Various solvers, computation routines and visualization tools are also part of the
package. See the Basic Tutorial for a walkthrough of the features.

The full user guide including installation instruction can be found online∗. The source
code repository is located on GitHub†.

A.1 Features and language

Pybinding is a Python package for numerical tight-binding calculations in solid state
physics. The main features include:

• Declarative model construction - The user just needs to describe what the
model should be, but not how to build it. Pybinding will take care of the numerical
details of building the Hamiltonian matrix so users can concentrate on the physics,
i.e. the quantum properties of the model.

• Fast compute - Pybinding’s implementation of the kernel polynomial method al-
lows for very fast calculation of the Green’s function of the Hamiltonian. Exact
diagonalization is also available through the use of scipy’s eigensolvers. The frame-
work is very flexible and allows the addition of user-defined computation routines.

• Result analysis and visualization - The package contains utility functions for
post-processing the raw result data. The included plotting functions are tailored
for tight-binding problems to help visualize the model structure and to make sense
of the results.

The main interface is written in Python with the aim to be as user-friendly and flexible
as possible. Python is a programming language which is easy to learn and a joy to use.
It has deep roots in the scientific community as evidenced by the rich scientific Python
library collection: SciPy. As such, Python is the ideal choice as the main interface for
Pybinding. Under the hood, C++11 is used to accelerate demanding tasks to deliver high
performance with low memory usage. This is done silently in the background.

A.2 General workflow

The general workflow starts with model definition. Three main parts are required to
describe a tight-binding model:

• The crystal lattice - This step includes the specification of the primitive lattice
vectors and the configuration of the unit cell (atoms, orbitals and spins). This

∗http://docs.pybinding.site
†https://github.com/dean0x7d/pybinding

http://www.scipy.org/
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can be user-defined, but the package also contains a repository of the pre-made
specifications for several materials.

• System geometry - The model system can be infinite through the use of trans-
lational symmetry or it can be finite by specifying a shape. The two approaches
can also be composed to create periodic systems with intricate structural patterns.
The structure can be controlled up to fine details, e.g. to form specific edge types
as well as various defects.

• Fields - Functions can be applied to the onsite and hopping energies of the model
system to simulate external fields or various effects. These functions are be defined
independently of any lattice or specific structure which makes them easily reusable
and mutually composable.

Once the model description is complete, Pybinding will build the tight-binding Hamilto-
nian matrix. The next step is to apply computations to the matrix to obtain the values
of the desired quantum properties. To that end, there are the following possibilities:

• Green’s function - Pybinding implements a fast Chebyshev polynomial routine
for calculating the Green’s function of the Hamiltonian. This can be applied to
quickly compute the local density of states or the transport characteristics of the
system.

• Exact diagonalization - Eigensolvers may be used to calculate the eigenvalues and
eigenvectors of the model system. Common dense and sparse matrix eigensolvers
are available via SciPy.

• User-defined compute - Pybinding constructs the Hamiltonian in the standard
sparse matrix CSR format which can be plugged into custom compute routines.

After the main computation is complete, various utility functions are available for post-
processing the raw result data. The included plotting functions are tailored for tight-
binding problems to help visualize the model structure and to make sense of the results.

A.3 Performance

One of the main features of Pybinding is an easy-to-use and fast model builder: it con-
structs the tight-binding Hamiltonian matrix. This can be a demanding task for large or
complicated systems (with many parameters). Great care was taken to make this process
fast.

We compare the performance of Pybinding with the Kwant package [71]. Both code pack-
ages are based on the numerical tight-binding method and can build identical Hamiltonian
matrices. For calculations involving these matrices, the packages specialize in different
ways: Kwant is intended for transport calculations with scattering systems while Pybind-
ing targets large finite-sized and periodic systems in 1 to 3 dimensions. Pybinding can
also be used to construct scattering systems, however it does not have a builtin solver for
transport problems. This is where the Kwant compatibility layer comes in: it’s possible

http://kwant-project.org/
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to build a system in Pybinding and use Kwant’s solvers for transport calculations. This
combination takes advantage of Pybinding’s much faster model builder.

The code used to obtain these results is available in the online documentation. You can
download it and try it on your own computer. Usage instructions are located at the top
of the script file.
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Fig. A.3.1: The results were measured for pybinding v0.8.0 and kwant v1.2.2
using: Intel Core i7-4960HQ CPU, 16 GiB RAM, Python 3.5, macOS 10.11. The
RAM usage was measured using memory profiler v0.41.

The benchmark constructs a circular graphene flake with a pn-junction and a constant
magnetic field. The system build time is measured from the start of the definition to the
point where the Hamiltonian matrix is fully constructed (a sparse matrix is used in both
cases).

Pybinding builds the Hamiltonian much faster than Kwant: by two orders of magnitude.
The main reason for this is in the way the system shape and fields are implemented. Both
Kwant and Pybinding take user-defined functions as parameters for model construction.
Kwant calls these functions individually for each atom and hopping which is quite slow.
Pybinding stores all atoms and hoppings in contiguous arrays and then calls the user-
defined functions just once for the entire dataset. This takes advantage of vectorization
and drastically improves performance. Similarly, the lower memory usage is achieved by
using arrays and CSR matrices rather than linked lists and trees.

Please note that at the time of writing Pybinding v0.8 does lack certain system con-
struction features compared to Kwant. Specifically, it is currently not possible to build
heterostructures in Pybinding, but this will be resolved in the near future. New features
will be added while maintaining good performance.

At first glance it may seem like system build time is not really relevant because it is
only done once and then multiple calculations can be applied to the constructed system.
However, every time a parameter is changed (like some field strength) the Hamiltonian
matrix will need to be rebuilt. Even though Kwant does take this into account and only
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does a partial rebuild, Pybinding is still much faster and this is very apparent in transport
calculations which sweep over some model parameter. Performance improvements of 3 to
4 times have been measured for such cases – more information and a direct comparison
are available in the Kwant compatibility section of the online documentation.

A.4 Tutorial

This section will present the essential features of Pybinding with example code to get
you started quickly. The tutorial assumes that you already have a basic understanding of
tight-binding theory, the Python 3 programming language and at least part of the scientific
Python stack (SciPy). But don’t worry: while this tutorial will not specifically explain
basic language and scientific Python concepts, they are presented in a straightforward way
and will be easy to pick up on the fly.

Imports

This tutorial includes code snippets directly within the text to illustrate features. In order
to save space and not distract from the main point, some common and repetitive code will
be omitted (like import statements). It is assumed that the following lines precede any
other code:

import pybinding as pb

import numpy as np

import matplotlib.pyplot as plt

pb.pltutils.use_style()

The pb alias is always used for importing Pybinding. This is similar to the common
scientific package aliases: np and plt. These import conventions are used consistently in
the tutorial.

The function pb.pltutils.use style() applies Pybinding’s default style settings for
matplotlib. This is completely optional and only affects the esthetics of the generated
figures.

Lattice

A Lattice object describes the unit cell of a crystal lattice. This includes the primitive
vectors, positions of sublattice sites and hopping parameters which connect those sites.
All of this structural information is used to build up a larger system by translation.

https://docs.python.org/3/tutorial/
http://www.scipy.org/docs.html
http://www.scipy.org/docs.html
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Square lattice

Starting from the basics, we’ll create a simple square lattice.

import pybinding as pb

d = 0.2 # [nm] unit cell length

t = 1 # [eV] hopping energy

# create a simple 2D lattice with vectors a1 and a2

lattice = pb.Lattice(a1=[d, 0], a2=[0, d])

lattice.add_sublattices(

('A', [0, 0]) # add an atom called 'A' at position [0, 0]

)

lattice.add_hoppings(

# (relative_index, from_sublattice, to_sublattice, energy)

([0, 1], 'A', 'A', t),

([1, 0], 'A', 'A', t)

)

It may not be immediately obvious what this code does. Fortunately, Lattice objects
have a convenient Lattice.plot() method to easily visualize the constructed lattice.

lattice.plot() # plot the lattice that was just constructed

plt.show() # standard matplotlib show() function
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In the figure we see lattice vectors 𝑎1 and 𝑎2 which were used to initialize Lattice. These
vectors describe a Bravais lattice with an infinite set of positions,

�⃗� = 𝑛1 �⃗�1 + 𝑛2 �⃗�2,

where 𝑛1 and 𝑛2 are integers. The blue circle labeled A represents the atom which was
created with the Lattice.add sublattices() method. The slightly faded out circles
represent translations of the lattice in the primitive vector directions, i.e. using the integer
index [𝑛1, 𝑛2].
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The hoppings are specified using the Lattice.add hoppings() method and each one
consists of (relative index, from sublattice, to sublattice, energy):

• The main cell always has the index [𝑛1, 𝑛2] = [0, 0]. The relative index represents
the number of integer steps needed to reach another cell starting from the main one.
Each cell is labeled with its relative index, as seen in the figure.

• A hopping is created between the main cell and a neighboring cell specified by
relative index. Two hoppings are added in the definition: [0, 1] and [1, 0]. The
opposite hoppings [0, -1] and [-1, 0] are added automatically to maintain hermiticity.

• This lattice consists of only one sublattice so the from and to sublattice fields are
trivial. Generally, from sublattice indicates the sublattice in the [0, 0] cell and
to sublattice in the neighboring cell. This will be explained further in the next
example.

• The last parameter is simply the value of the hopping energy.

It’s good practice to build the lattice inside a function to make it easily reusable. Here we
define the same lattice as before, but note that the unit cell length and hopping energy
are function arguments, which makes the lattice easily configurable.

def square_lattice(d, t):

lat = pb.Lattice(a1=[d, 0], a2=[0, d])

lat.add_sublattices(('A', [0, 0]))

lat.add_hoppings(([0, 1], 'A', 'A', t),

([1, 0], 'A', 'A', t))

return lat

# quickly set a shorter unit length `d`

lattice = square_lattice(d=0.1, t=1)

lattice.plot()

plt.show()
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Graphene

The next example shows a slightly more complicated two-atom lattice of graphene.

def monolayer_graphene():

a = 0.24595 # [nm] unit cell length

a_cc = 0.142 # [nm] carbon-carbon distance

t = -2.8 # [eV] nearest neighbour hopping

lat = pb.Lattice(a1=[a, 0],

a2=[a/2, a/2 * sqrt(3)])

lat.add_sublattices(('A', [0, -a_cc/2]),

('B', [0, a_cc/2]))

lat.add_hoppings(

# inside the main cell

([0, 0], 'A', 'B', t),

# between neighboring cells

([1, -1], 'A', 'B', t),

([0, -1], 'A', 'B', t)

)

return lat

lattice = monolayer_graphene()

lattice.plot()

plt.show()
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The Lattice.add sublattices() method creates atoms A and B (blue and orange) at
different offsets: [0,−𝑎𝑐𝑐/2] and [0, 𝑎𝑐𝑐/2]. Once again, the translated cells are given at

positions �⃗� = 𝑛1 �⃗�1 + 𝑛2 �⃗�2, however, this time the lattice vectors are not perpendicular
which makes the integer indices [𝑛1, 𝑛2] slightly more complicate (see the labels in the
figure).

The hoppings are defined as follows:

• ([0, 0], ’A’, ’B’, t) specifies the hopping inside the main cell, from atom A
to B. The main [0,0] cell is never labeled in the figure, but it is always the central
cell where the lattice vectors originate.

• ([1, -1], ’A’, ’B’, t) specifies the hopping between [0, 0] and [1, -1], from A to
B. The opposite hopping is added automatically: [-1, 1], from B to A. In the tight-
binding matrix representation, the opposite hopping is the Hermitian conjugate of
the first one. The lattice specification always requires explicitly mentioning only
one half of the hoppings while the other half is automatically added to guarantee
hermiticity.

• ([0, -1], ’A’, ’B’, t) is handled in the very same way.

The Lattice.plot() method will always faithfully draw any lattice that has been speci-
fied. It serves as a handy visual inspection tool.
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Brillouin zone

The method Lattice.plot brillouin zone() is another handy tool that does just as its
name implies.

lattice = monolayer_graphene()

lattice.plot_brillouin_zone()
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The reciprocal lattice vectors 𝑏1 and 𝑏2 are calculated automatically based on the real
space vectors. There is no need to specify them manually. The first Brillouin zone is
determined as the Wigner–Seitz cell in reciprocal space. By default, the plot method
labels the vertices of the Brillouin zone.

Material repository

A few common lattices are included in Pybinding’s Material Repository. More information
is avalable in the online documentation. You can get started quickly by importing one of
them. For example:

from pybinding.repository import graphene

lattice = graphene.bilayer()

lattice.plot()
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Further reading

Additional features of the Lattice class are explained in the Advanced Topics section
which is available online. It explains how to define supercells, add intrinsic onsite energy,
remove dangling bonds, etc. Lattice specification examples for various other materials are
also available in the online documentation.

Band structure

In order to calculate the band structure of a crystal lattice, this section introduces the
concepts of a Model and a Solver.

Model

A Model contains the full tight-binding description of the physical system that we wish to
solve. We’ll start by assigning a lattice to the model, and we’ll use a pre-made one from
the material repository.

from pybinding.repository import graphene

model = pb.Model(graphene.monolayer())

model.plot()
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The result is not very exciting: just a single graphene unit cell, with 2 atoms and a single
hopping between them. The model does not assume translational symmetry or any other
physical property. Given a lattice it will just create a single unit cell. The model has a
System attribute which keeps track of structural properties like the positions of lattice
sites and the way they are connected, as seen in the figure above. The raw data can be
accessed directly:

>>> model.system.x

[0, 0]

>>> model.system.y

[-0.071 0.071]

>>> model.system.sublattices

[0 1]

Each attribute is a 1D array where the number of elements is equal to the total number
of lattice sites in the system. The model also has a hamiltonian attribute:

>>> model.hamiltonian

(0, 1) -2.8

(1, 0) -2.8
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It’s a sparse matrix (see scipy.sparse.csr matrix) which corresponds to the tight-
binding Hamiltonian of our model. The output above shows the default sparse repre-
sentation of the data where each line corresponds to (row, col) value. Alternatively,
we can see the dense matrix output:

>>> model.hamiltonian.todense()

[[ 0.0 -2.8]

[-2.8 0.0]]

Next, we include translational symmetry() to create an infinite graphene sheet.

model = pb.Model(

graphene.monolayer(),

pb.translational_symmetry()

)

model.plot()
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The red lines indicate hoppings on periodic boundaries. The lighter colored circles repre-
sent the translations of the unit cell. The number of translations is infinite, but the plot
only presents the first one in each lattice vector direction.

Solver

A Solver can exactly calculate the eigenvalues and eigenvectors of a Hamiltonian matrix.
We’ll take a look at various Eigensolvers and their capabilities in a later section, but right
now we’ll just grab the lapack() solver which is the simplest and most appropriate for
small systems.

>>> model = pb.Model(graphene.monolayer())

>>> solver = pb.solver.lapack(model)

>>> solver.eigenvalues

[-2.8 2.8]

>>> solver.eigenvectors

[[-0.707 -0.707]

[-0.707 0.707]]

Beyond just the eigenvalues and eigenvectors properties, Solver has a convenient
calc bands() method which can be used to calculate the band structure of our model.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
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from math import sqrt, pi

model = pb.Model(

graphene.monolayer(),

pb.translational_symmetry()

)

solver = pb.solver.lapack(model)

a_cc = graphene.a_cc

Gamma = [0, 0]

K1 = [-4*pi / (3*sqrt(3)*a_cc), 0]

M = [0, 2*pi / (3*a_cc)]

K2 = [2*pi / (3*sqrt(3)*a_cc),

2*pi / (3*a_cc)]

bands = solver.calc_bands(K1, Gamma, M, K2)

bands.plot(point_labels=['K', r'$\Gamma$',
'M', 'K'])
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The points Γ,𝐾 and 𝑀 are used to draw a path in the reciprocal space of graphene’s
Brillouin zone and Solver.calc bands() calculates the band energy along that path.
The return value of the method is a Bands result object.

All result objects have built-in plotting methods. Aside from the basic plot() seen above,
Bands also has plot kpath() which presents the path in reciprocal space. Plots can easily
be composed, so to see the path in the context of the Brillouin zone, we can simply plot
both:

model.lattice.plot_brillouin_zone()

bands.plot_kpath(

point_labels=['K', r'$\Gamma$',
'M', 'K']

)
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Switching lattices

We can easily switch to a different material, just by passing a different lattice to the
model. For this example, we’ll use our pre-made graphene.bilayer() from the Material
Repository. But you can create any lattice as described in the previously in the Lattice
section.
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model = pb.Model(graphene.bilayer())

model.plot(axes='yx')
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Without translational symmetry(), the model is just a single unit cell with 4 atoms.
Our bilayer lattice uses AB-stacking where a pair of atoms are positioned one on top of
the another. By default, the Model.plot() method shows the xy-plane, so one of the
bottom atoms isn’t visible. We can pass an additional plot argument to see the yz-plane:

model = pb.Model(graphene.bilayer())

model.plot(axes='yz')

-0.1 0.0 0.1 0.2 0.3

y (nm)

-0.4

-0.3

-0.2

-0.1

0.0

0.1

z 
(n

m
)

To compute the band structure, we’ll need to include translational symmetry().

model = pb.Model(

graphene.bilayer(),

pb.translational_symmetry()

)

model.plot()
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As before, the red hoppings indicate periodic boundaries and the lighter colored circles
represent the first of an infinite number of translation units. We’ll compute the band
structure for the same Γ, 𝐾 and 𝑀 points as monolayer graphene:



196 APPENDIX A. CODE PACKAGE: PYBINDING

solver = pb.solver.lapack(model)

bands = solver.calc_bands(K1, Gamma, M, K2)

bands.plot(point_labels=['K', r'$\Gamma$',
'M', 'K'])
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More band structure calculation examples are available online. Eigensolvers will be covered
in more detail at a later point in the tutorial, but this is enough information to get started.
The next few sections are going to be dedicated to model building.

Finite size

This section introduces the concept of shapes with classes Polygon and FreeformShape

which are used to model systems of finite size. The simplest finite-sized system is just the
unit cell of the crystal lattice.

from pybinding.repository import graphene

model = pb.Model(graphene.monolayer())

model.plot()
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The unit cell can also be replicated a number of times to create a bigger system.

model = pb.Model(

graphene.monolayer(),

pb.primitive(a1=5, a2=3)

)

model.plot()

model.lattice.plot_vectors()
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The primitive() parameter tells the model to replicate the unit cell 5 times in the 𝑎1
vector direction and 3 times in the 𝑎2 direction. However, to model realistic systems we
need proper shapes.
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Polygon

The easiest way to create a 2D shape is with the Polygon class. For example, a simple
rectangle:

def rectangle(width, height):

x0 = width / 2

y0 = height / 2

return pb.Polygon([[ x0, y0],

[ x0, -y0],

[-x0, -y0],

[-x0, y0]])

shape = rectangle(1.6, 1.2)

shape.plot()
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A Polygon is initialized with a list of vertices which should be given in clockwise or
counterclockwise order. When added to a Model the lattice will expand to fill the shape.

model = pb.Model(

graphene.monolayer(),

rectangle(width=1.6, height=1.2)

)

model.plot()

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

x (nm)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

y
 (

n
m

)

To help visualize the shape and the expanded lattice, the polygon outline can be plotted
on top of the system by calling both plot methods one after another.

def trapezoid(a, b, h):

return pb.Polygon([[-a/2, 0],

[-b/2, h],

[ b/2, h],

[ a/2, 0]])

model = pb.Model(

graphene.monolayer(),

trapezoid(a=3.2, b=1.4, h=1.5)

)

model.plot()

model.shape.plot()
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In general, a shape does not depend on a specific material, so it can be easily reused. Here,
we shall switch to a graphene.bilayer() lattice, but we’ll keep the same trapezoid shape
as defined earlier:

model = pb.Model(

graphene.bilayer(),

trapezoid(a=3.2, b=1.4, h=1.5)

)

model.plot()
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Freeform shape

Unlike a Polygon which is defined by a list of vertices, a FreeformShape is defined by a
contains function which determines if a lattice site is inside the desired shape.

def circle(radius):

def contains(x, y, z):

return np.sqrt(x**2 + y**2) < radius

return pb.FreeformShape(contains, width=[2*radius, 2*radius])

model = pb.Model(

graphene.monolayer(),

circle(radius=2.5)

)

model.plot()
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The width parameter of FreeformShape specifies the bounding box width. Only sites
inside the bounding box will be considered for the shape. It’s like carving a sculpture
from a block of stone. The bounding box can be thought of as the stone block, while the
contains function is the carving tool that can give the fine detail of the shape.

As with Polygon, we can visualize the shape with the FreeformShape.plot() method.
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def ring(inner_radius, outer_radius):

def contains(x, y, z):

r = np.sqrt(x**2 + y**2)

return np.logical_and(inner_radius < r, r < outer_radius)

return pb.FreeformShape(contains, width=[2*outer_radius, 2*outer_radius])

shape = ring(inner_radius=1.4,

outer_radius=2)

shape.plot()
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The shaded area indicates the shape as determined by the contains function. Creating a
model will cause the lattice to fill in the shape.

model = pb.Model(

graphene.monolayer(),

ring(inner_radius=1.4, outer_radius=2)

)

model.plot()

model.shape.plot()
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Spatial LDOS

Now that we have a ring structure, we can exactly diagonalize its model.hamiltonian

using a Solver. We previously used the lapack() solver to find all the eigenvalues and
eigenvectors, but this is not efficient for larger systems. The sparse arpack() solver can
calculate a targeted subset of the eigenvalues, which is usually desired and much faster.
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In this case, we are interested only in the 20 lowest energy states.

model = pb.Model(

graphene.monolayer(),

ring(inner_radius=1.4, outer_radius=2)

)

# only the 20 lowest eigenstates

solver = pb.solver.arpack(model, k=20)

ldos = solver.calc_spatial_ldos(energy=0,

→˓broadening=0.05) # eV

ldos.plot(site_radius=(0.03, 0.12))

pb.pltutils.colorbar(label="LDOS")
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The convenient Solver.calc spatial ldos()method calculates the local density of states
(LDOS) at every site for the given energy with a Gaussian broadening. The returned ob-
ject is a StructureMap which holds the LDOS data. The StructureMap.plot() method
will produce a figure similar to Model.plot(), but with a colormap indicating the LDOS
value at each lattice site. In addition, the site radius argument specifies a range of sizes
which will cause the low intensity sites to appear as small circles while high intensity ones
become large. The states with a high LDOS are clearly visible on the outer and inner
edges of the graphene ring structure.

Shape and symmetry

The last two sections showed how to model shape and symmetry individually, but we can
be more creative and combine the two.

To create a graphene nanoribbon, we’ll need a shape to give the finite width of the ribbon
while the infinite length is achieved by imposing translational symmetry.

from pybinding.repository import graphene

model = pb.Model(

graphene.monolayer(),

pb.rectangle(1.2), # nm

pb.translational_symmetry(a1=True,

→˓a2=False)

)

model.plot()

model.lattice.plot_vectors(

position=[-0.6, 0.3] # nm

)
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As before, the central darker circles represent the main cell of the nanoribbon, the lighter
colored circles are the translations due to symmetry and the red lines are boundary hop-
pings. The two arrows in the upper left corner show the primitive lattice vectors of
graphene.

The translational symmetry() is applied only in the 𝑎1 lattice vector direction which
gives the ribbon its infinite length, but the symmetry is disabled in the 𝑎2 direction so
that the finite size of the shape is preserved. The builtin rectangle() shape gives the
nanoribbon its 1.2 nm width.

The band structure calculations work just as before.

from math import pi, sqrt

solver = pb.solver.lapack(model)

a = graphene.a_cc * sqrt(3)

bands = solver.calc_bands(-pi/a, pi/a)

bands.plot()
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This is the characteristic band structure for zigzag nanoribbons with zero-energy edge
states. If we change the direction of the translational symmetry to 𝑎2, the orientation will
change, but we will still have a zigzag nanoribbon.

model = pb.Model(

graphene.monolayer(),

pb.rectangle(1.2), # nm

pb.translational_symmetry(a1=False,

→˓a2=True)

)

model.plot()

model.lattice.plot_vectors(

position=[0.6, -0.25] # nm

)
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Because of the nature of graphene’s 2-atom unit cell and lattice vector, only zigzag edges
can be created. In order to create armchair edges, we must introduce a different unit cell
with 4 atoms.
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model = pb.Model(graphene.monolayer_4atom())

model.plot()

model.lattice.plot_vectors(position=[-0.13, -0.13])
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Note that the lattice vectors 𝑎1 and 𝑎2 are at a right angle, unlike the sharp angle of the
base 2-atom cell. The lattice properties are identical for the 2 and 4 atom cells, but the
new geometry helps to create armchair edges.

model = pb.Model(

graphene.monolayer_4atom(),

pb.primitive(a1=5),

pb.translational_symmetry(a1=False,

→˓a2=True)

)

model.plot()

model.lattice.plot_vectors(

position=[-0.59, -0.6]

)
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To calculate the band structure we must enter at least two points in k-space between which
the energy will be calculated. Note that because the periodicity is in the direction of the
second lattice vector 𝑎2, the points in k-space are given as [0, pi/d] instead of just pi/d
(which would be equivalent to [pi/d, 0]).

solver = pb.solver.lapack(model)

d = 3 * graphene.a_cc

bands = solver.calc_bands([0, -pi/d],

[0, pi/d])

bands.plot(point_labels=['$-\pi/3 a_{cc}$',
'$\ pi/3 a_{cc}$'])
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Fields and effects

This section will introduce @onsite energy modifier and @hopping energy modifier

which can be used to add various fields to the model. These functions can apply user-
defined modifications to the Hamiltonian matrix which is why we shall refer to them as
modifier functions.

Electric potential

We can define a simple potential function like the following:

@pb.onsite_energy_modifier

def potential(x, y):

return np.sin(x)**2 + np.cos(y)**2

Here potential is just a regular Python function, but we attached a pretty @ decorator
to it. The @onsite energy modifier decorator gives an ordinary function a few extra
properties which we’ll talk about later. For now, just keep in mind that this is required to
mark a function as a modifier for use with Pybinding models. The x and y arguments are
lattice site positions and the return value is the desired potential. Note the use of np.sin
instead of math.sin. The x and y coordinates are numpy arrays, not individual numbers.
This is true for all modifier arguments in Pybinding. When you write modifier functions,
make sure to always use numpy operations which work with arrays, unlike regular math.

To use the potential function, just place it in a Model parameter list. To visualize the
potential, there’s the handy Model.onsite map property which is a StructureMap of the
onsite energy of the Hamiltonian matrix.

from pybinding.repository import

→˓graphene

model = pb.Model(

graphene.monolayer(),

pb.rectangle(12),

potential

)

model.onsite_map.plot_contourf()

pb.pltutils.colorbar(label="U (eV)")
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The figure shows a 2D colormap representation of our wavy potential in a square system.
The StructureMap.plot contourf() method we just called is implemented in terms of
matplotlib’s contourf function with some slight adjustments for convenience.
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To make the potential more flexible, it’s a good idea to enclose it in an outer function,
just like this:

def wavy(a, b):

@pb.onsite_energy_modifier

def potential(x, y):

return np.sin(a * x)**2

+ np.cos(b * y)**2

return potential

model = pb.Model(

graphene.monolayer(),

pb.regular_polygon(num_sides=6,

radius=8),

wavy(a=0.6, b=0.9)

)

model.onsite_map.plot_contourf()

pb.pltutils.colorbar(label="U (eV)")
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Note that we are using a system with hexagonal shape this time (via regular polygon()).
The potential is only plotted inside the area of the actual system.

We can make one more improvement to our wavy function. We’ll add an energy argument:

def wavy2(a, b):

@pb.onsite_energy_modifier

def potential(energy, x, y):

v = np.sin(a * x)**2 + np.cos(b * y)**2

return energy + v

return potential

The energy argument contains the existing onsite energy in the system before the new
potential function is applied. By adding to the existing energy, instead of just setting it,
we can compose multiple functions. For example, let’s combine the improved wavy2 with
a linear potential.

def linear(k):

@pb.onsite_energy_modifier

def potential(energy, x):

return energy + k*x

return potential

model = pb.Model(

graphene.monolayer(),

pb.regular_polygon(num_sides=6,

radius=8),

wavy2(a=0.6, b=0.9),

linear(k=0.2)

)

model.onsite_map.plot_contourf()

pb.pltutils.colorbar(label="U (eV)")
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We see a similar wavy pattern as before, but the magnitude increases linearly along the
x-axis because of the contribution of the linear potential.

About the decorator

Now that you have a general idea of how to add and compose electric potentials in a model,
we should talk about the role of the @onsite energy modifier. The full signature of a
potential function looks like this:

@pb.onsite_energy_modifier

def potential(energy, x, y, z, sub_id):

return ... # some function of the arguments

This function uses all of the possible arguments of an onsite energy modifier: energy, x,
y, z and sub id. We have already explained the first three. The z argument is, obviously,
the z-axis coordinate of the lattice sites. The sub id argument tells us which sublattice a
site belongs to. Its usage will be explained below.

As we have seen before, we don’t actually need to define a function to take all the ar-
guments. They are optional. The @ decorator will recognize a function which takes any
of these arguments and it will adapt it for use in a Pybinding model. Previously, the
linear function accepted only the energy and x arguments, but wavy also included the
y argument. The order of arguments is not important, only their names are. Therefore,
this is also a valid modifier:

@pb.onsite_energy_modifier

def potential(x, y, energy, sub_id):

return ... # some function

But the argument names must be exact: a typo or an extra unknown argument will result
in an error. The decorator checks this at definition time and decides if the given function
is a valid modifier or not, so any errors will be caught early.

Opening a band gap

The last thing to explain about @onsite energy modifier is the use of the sub id argu-
ment. It tells us which sublattice a site belongs to. If you remember from early on in the
tutorial, in the process of specifying a lattice, we gave each sublattice a unique name. This
name can be used to filter out sites of a specific sublattice. For example, let’s add mass
to electrons in graphene:

def mass_term(delta):

"""Break sublattice symmetry with opposite A and B onsite energy"""

@pb.onsite_energy_modifier

def potential(energy, sub_id):

energy[sub_id == 'A'] += delta

energy[sub_id == 'B'] -= delta

return energy

return potential
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Note that we don’t need x, y or z arguments because this will be applied everywhere
evenly. The mass term function will add an energy delta to all sites on sublattice A

and subtract delta from all B sites. Note that we are indexing the energy array with
a condition on the sub id array of the same length. This is a standard numpy indexing
technique which you should be familiar with.

A simple way to demonstrate our new mass term is with a graphene nanoribbon.

model = pb.Model(

graphene.monolayer(),

pb.rectangle(1.2),

pb.translational_symmetry(a1=True,

→˓a2=False),

mass_term(delta=2.5) # eV

)

solver = pb.solver.lapack(model)

bands = solver.calc_bands(-pi/a, pi/a)

bands.plot()
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We set a very high delta value of 2.5 eV for illustration purposes. Indeed, a band gap of
5 eV (delta * 2) is quite clearly visible in the band structure.

PN junction

While we’re working with a nanoribbon, let’s add a PN junction along its main axis.

def pn_junction(y0, v1, v2):

@pb.onsite_energy_modifier

def potential(energy, y):

energy[y < y0] += v1

energy[y >= y0] += v2

return energy

return potential

The y0 argument is the position of the junction, while v1 and v2 are the values of the
potential (in eV) before and after the junction. Let’s add it to the nanoribbon:
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model = pb.Model(

graphene.monolayer(),

pb.rectangle(1.2),

pb.translational_symmetry(a1=True,

→˓a2=False),

pn_junction(y0=0, v1=-5, v2=5)

)

model.onsite_map.plot(cmap="coolwarm",

site_radius=0.04)

pb.pltutils.colorbar(label="U (eV)")
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Remember that the Model.onsite map property is a StructureMap, which has several
plotting methods. A contour plot would not look at all good for such a small nanoribbon,
but the method StructureMap.plot() is perfect. As before, the ribbon has infinite length
along the x-axis and the transparent sites represent the periodic boundaries. The PN
junction splits the ribbon in half along its main axis.

We can compute and plot the band structure:

solver = pb.solver.lapack(model)

bands = solver.calc_bands(-pi/a, pi/a)

bands.plot()
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Next, let’s create a square potential well. We could define a new modifier function, as
before. But lets take a different approach and create the well by composing two PN
junctions.
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model = pb.Model(

graphene.monolayer(),

pb.rectangle(1.2),

pb.translational_symmetry(a1=True,

→˓a2=False),

pn_junction(y0=-0.2, v1=5, v2=0),

pn_junction(y0=0.2, v1=0, v2=5)

)

model.onsite_map.plot(cmap="coolwarm",

site_radius=0.04)

pb.pltutils.colorbar(label="U (eV)")
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It works as expected. This can sometimes be a nice and quick way to extend a model.
The square well affects the band structure by breaking electron-hole symmetry:

solver = pb.solver.lapack(model)

bands = solver.calc_bands(-pi/a, pi/a)

bands.plot()
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Magnetic field

To model a magnetic field, we need to apply the Peierls substitution:

𝑡𝑛𝑚 → 𝑡𝑛𝑚e𝑖
2𝜋
Φ0

∫︀ 𝑚
𝑛

�⃗�𝑛𝑚·𝑑𝑙

Here 𝑡𝑛𝑚 is the hopping energy between two sites, Φ0 = ℎ/𝑒 is the magnetic quantum, ℎ

is the Planck constant and �⃗�𝑛𝑚 is the magnetic vector potential along the path between
sites 𝑛 and 𝑚. We want the magnetic field to be perpendicular to the graphene plane, so
we can take the gauge �⃗�(𝑥, 𝑦, 𝑧) = (𝐵𝑦, 0, 0).

This can all be expressed with a @hopping energy modifier:
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from pybinding.constants import phi0

def constant_magnetic_field(B):

@pb.hopping_energy_modifier

def function(energy, x1, y1, x2, y2):

# the midpoint between two sites

y = 0.5 * (y1 + y2)

# scale from nanometers to meters

y *= 1e-9

# vector potential along the x-axis

A_x = B * y

# integral of (A * dl) from position 1 to position 2

peierls = A_x * (x1 - x2)

# scale from nanometers to meters (because of x1 and x2)

peierls *= 1e-9

# the Peierls substitution

return energy * np.exp(1j * 2*pi/phi0 * peierls)

return function

The energy argument is the existing hopping energy between two sites at coordinates (x1,
y1) and (x2, y2). The function computes and returns the Peierls substitution as given by
the equation above.

The full signature of a @hopping energy modifier is actually:

@pb.hopping_energy_modifier

def function(energy, x1, y1, z1, x2, y2, z2, hop_id):

return ... # some function of the arguments

The hop id argument tells us which type of hopping it is. Hopping types can be specifically
named during the creation of a lattice. This can be used to apply functions only to specific
hoppings. However, as with all the modifier arguments, it’s optional, so we only take what
we need.

To test out our constant magnetic field, we’ll calculate the local density of states
(LDOS), where we expect to see peaks corresponding to Landau levels. The computa-
tion method used here is explained in detail in the Green’s function section of the tutorial.

model = pb.Model(

graphene.monolayer(),

pb.rectangle(20),

constant_magnetic_field(B=200) # Tesla

)

greens = pb.greens.kpm(model)

ldos = greens.calc_ldos(energy=np.linspace(-1, 1, 500), broadening=0.02, position=[0, 0])

ldos.plot()

plt.show()
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The values of the magnetic field is exaggerated here (200 Tesla), but that is done to keep
the computation time low for the tutorial (under 1 second for this LDOS calculation).

Defects and strain

This section will introduce @site state modifier and @site position modifier which
can be used to add defects and strain to the model. These modifiers are applied to the
structure of the system before the Hamiltonian matrix is created.

Vacancies

A @site state modifier can be used to create vacancies in a crystal lattice. The defini-
tion is very similar to the onsite and hopping modifiers explained in the previous section.

def vacancy(position, radius):

@pb.site_state_modifier

def modifier(state, x, y):

x0, y0 = position

state[(x-x0)**2 + (y-y0)**2 < radius**2] = False

return state

return modifier

The state argument indicates the current boolean state of a lattice site. Only valid sites
(True state) will be included in the final Hamiltonian matrix. Therefore, setting the state
of sites within a small radius to False will exclude them from the final system. The x

and y arguments are lattice site positions. As with the other modifiers, the arguments are
optional (z is not needed for this example) but the full signature of the site state modifier
can be found on its API reference page.

This is actually very similar to the way a FreeformShape works. In fact, it is possible to
create defects by defining them directly in the shape. However, such an approach would
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not be very flexible since we would need to create an entire new shape in order to change
either the vacancy type or the shape itself. By defining the vacancy as a modifier, we can
simply compose it with any existing shapes:

from pybinding.repository import graphene

model = pb.Model(

graphene.monolayer(),

pb.rectangle(2),

vacancy(position=[0, 0], radius=0.1)

)

model.plot()
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The resulting 2-atom vacancy is visible in the center of the system. The two vacant sites
are completely removed from the final Hamiltonian matrix. If we were to inspect the
number of rows and columns by looking up model.hamiltonian.shape, we would see
that the size of the matrix is reduced by 2.

Any number of modifiers can be included in the model and they will compose as expected.
We can take advantage of this and create four different vacancies, with 1 to 4 missing
atoms:

model = pb.Model(

graphene.monolayer(),

pb.rectangle(2),

vacancy([-0.50, 0.50], radius=0.1),

vacancy([ 0.50, 0.45], radius=0.15),

vacancy([-0.45, -0.45], radius=0.15),

vacancy([ 0.50, -0.50], radius=0.2),

)

model.plot()
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Layer defect

The site state modifier also has access to sublattice information. This can be used, for
example, with bilayer graphene to remove a single layer in a specific area. We’ll use
the bilayer lattice that’s included in the graphene.bilayer() lattice is laid out so that
sublattices A1 and B1 belong to the top layer, while A2 and B2 are on the bottom.

def scrape_top_layer(position, radius):

"""Remove the top layer of graphene in the area specified by position and radius"""

@pb.site_state_modifier

def modifier(state, x, y, sub_id):

x0, y0 = position

is_within_radius = (x-x0)**2 + (y-y0)**2 < radius**2

is_top_layer = np.logical_or(sub_id == 'A1', sub_id == 'B1')
final_condition = np.logical_and(is_within_radius, is_top_layer)

state[final_condition] = False

return state

return modifier

model = pb.Model(

graphene.bilayer(),

pb.rectangle(2),

scrape_top_layer(position=[0, 0],

radius=0.5)

)

model.plot()
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The central monolayer area is nicely visible in the figure. We can actually create the same
structure in a different way: by considering the z position of the lattice site to distinguish
the layers. An alternative modifier definition is given below. It would generate the same
figure. Which method is more convenient is up to the user.

def scrape_top_layer_alt(position, radius):

"""Alternative definition of `scrape_top_layer`"""

@pb.site_state_modifier

def modifier(state, x, y, z):

x0, y0 = position

is_within_radius = (x-x0)**2 + (y-y0)**2 < radius**2

is_top_layer = (z == 0)

final_condition = np.logical_and(is_within_radius, is_top_layer)

state[final_condition] = False

return state

return modifier
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Strain

A @site position modifier can be used to model the lattice site displacement caused
by strain. Let’s start with a simple triangular system:

from math import pi

model = pb.Model(

graphene.monolayer(),

pb.regular_polygon(num_sides=3,

→˓radius=2, angle=pi),

)

model.plot()
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We’re going to apply strain in three directions, as if we are pulling outward on the vertices
of the triangle. The displacement function for this kind of strain is given below. The c

parameter lets us control the intensity of the strain.

def triaxial_displacement(c):

@pb.site_position_modifier

def displacement(x, y, z):

ux = 2*c * x*y

uy = c * (x**2 - y**2)

return x + ux, y + uy, z

return displacement

The modifier function takes the x, y, z coordinates as arguments. The displacement ux,
uy is computed and the modified coordinates are returned.

model = pb.Model(

graphene.monolayer(),

pb.regular_polygon(num_sides=3,

→˓radius=2, angle=pi),

triaxial_displacement(c=0.15)

)

model.plot()
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As seen in the figure, the displacement has been applied to the lattice sites and the new
position data is saved in the system. However, the hopping energies have not been modified
yet. Every hopping element of the Hamiltonian matrix is equal to the hopping energy of
pristine graphene:

>>> np.all(model.hamiltonian.data == -2.8)

True

We now need to use the new position data to modify the hopping energy according to the

relation 𝑡 = 𝑡0𝑒
−𝛽( 𝑑

𝑎𝑐𝑐
−1), where 𝑡0 is the original unstrained hopping energy, 𝛽 controls

the strength of the strain-induced hopping modulation, 𝑑 is the strained distance between
two atoms and 𝑎𝑐𝑐 is the unstrained carbon-carbon distance. This can be implemented
using a @hopping energy modifier:

@pb.hopping_energy_modifier

def strained_hopping(energy, x1, y1, z1, x2, y2, z2):

d = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)

beta = 3.37

w = d / graphene.a_cc - 1

return energy * np.exp(-beta*w)

The structural modifiers (site state and position) are always automatically applied to the
model before energy modifiers (onsite and hopping). Thus, our strain hopping modifier
will get the new displaced coordinates as its arguments, from which it will calculate the
strained hopping energy.

model = pb.Model(

graphene.monolayer(),

pb.regular_polygon(num_sides=3, radius=2, angle=pi),

triaxial_displacement(c=0.15),

strained_hopping

)

Including the hopping modifier along with the displacement will yield position dependent
hopping energy, thus the elements of the Hamiltonian will no longer be all equal:

>>> np.all(model.hamiltonian.data == -2.8)

False

However, it isn’t convenient to keep track of the displacement and strained hoppings
separately. Instead, we can package them together in one function which is going to
return both modifiers:

def triaxial_strain(c, beta=3.37):

"""Produce both the displacement and hopping energy modifier"""

@pb.site_position_modifier

def displacement(x, y, z):

ux = 2*c * x*y

uy = c * (x**2 - y**2)

return x + ux, y + uy, z

@pb.hopping_energy_modifier

def strained_hopping(energy, x1, y1, z1, x2, y2, z2):

l = np.sqrt((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)
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w = l / graphene.a_cc - 1

return energy * np.exp(-beta*w)

return displacement, strained_hopping

The triaxial strain function now has everything we need. We’ll apply it to a slightly
larger system so that we can clearly calculate the local density of states (LDOS). For more
information about this computation method see the Green’s function section. Right now,
it’s enough to know that we will calculate the LDOS at the center of the strained system,
separately for sublattices A and B.

model = pb.Model(

graphene.monolayer(),

pb.regular_polygon(num_sides=3, radius=40, angle=pi),

triaxial_strain(c=0.0025)

)

greens = pb.greens.kpm(model)

for sub_name in ['A', 'B']:
ldos = greens.calc_ldos(energy=np.linspace(-1, 1, 500), broadening=0.03,

position=[0, 0], sublattice=sub_name)

ldos.plot(label=sub_name)

pb.pltutils.legend()
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Strain in graphene has an effect similar to a magnetic field. That’s why we see Landau-
level-like features in the LDOS. Note that the zero-energy peak has double intensity on
one sublattice but zero on the other: this is a unique feature of the strain-induced pseudo-
magnetic field.
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Eigensolvers

Solvers were first introduced in the Band structure section and then used throughout the
tutorial to present the results of the various models we constructed. This section will take
a more detailed look at the concrete lapack() and arpack() eigenvalue solvers and their
common Solver interface.

LAPACK

The Solver class establishes the interface of a solver within Pybinding, but it does not
contain a concrete diagonalization routine. For this reason we never instantiate the plain
solver, only its implementations such as solver.lapack().

The LAPACK implementation works on dense matrices which makes it well suited only
for small systems. However, a great advantage of this solver is that it always solves for all
eigenvalues and eigenvectors of a Hamiltonian matrix. This makes it perfect for calculating
the entire band structure of the bulk or nanoribbons, as has been shown several times in
this tutorial.

ARPACK

The solver.arpack() implementation works on sparse matrices which makes it suitable
for large systems. However, only a small subset of the total eigenvalues and eigenvectors
can be calculated. This tutorial already contains a few examples where the ARPACK
solver was used, and one more is presented below.

Solver interface

No matter which concrete solver is used, they all share a common Solver interface. The
two primary properties are eigenvalues and eigenvectors. These are the raw results of
the exact diagonalization of the Hamiltonian matrix.

>>> from pybinding.repository import graphene

>>> model = pb.Model(graphene.monolayer())

>>> model.hamiltonian.todense()

[[ 0.0 -2.8]

[-2.8 0.0]]

>>> solver = pb.solver.lapack(model)

>>> solver.eigenvalues

[-2.8 2.8]

>>> solver.eigenvectors

[[-0.707 -0.707]

[-0.707 0.707]]

The properties contain just the raw data. However, Solver also offers a few convenient
calculation methods. We’ll demonstrate these on a simple rectangular graphene system.
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model = pb.Model(

graphene.monolayer(),

pb.rectangle(x=3, y=1.2)

)

model.plot()
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First, we’ll take a look at the calc eigenvalues() method. While its job is essentially
the same as the eigenvalues property, there is one key difference: the property returns
a raw array, while the method returns an Eigenvalues result object. These objects have
convenient functions built in and they know how to plot their data:

# for the 20 lowest energy eigenvalues

solver = pb.solver.arpack(model, k=20)

eigenvalues = solver.calc_eigenvalues()

eigenvalues.plot()
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The basic plot just shows the state number and energy of each eigenstate, but we can also
do something more interesting. If we pass a position argument to calc eigenvalues() it
will calculate the probability density |Ψ(⃗𝑟)|2 at that position for each eigenstate and we
can view the result using Eigenvalues.plot heatmap():

eigenvalues = solver.calc_eigenvalues(

# position in [nm]

map_probability_at=[0.1, 0.6]

)

eigenvalues.plot_heatmap(

show_indices=True

)

pb.pltutils.colorbar()
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In this case we are interested in the probability density at [x, y] = [0.1, 0.6], i.e.
a lattice site at the top zigzag edge of our system. Note that the given position does
not need to be precise: the probability will be computed for the site closest to the given
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coordinates. From the figure we can see that the probability at the edge is highest for the
two zero-energy states: numbers 9 and 10. We can take a look at the spatial map of state
9 using the calc probability() method:

prob = solver.calc_probability(9)

prob.plot()

The result object in this case is a StructureMap with the probability density |Ψ(⃗𝑟)|2 as
its data attribute. As expected, the most prominent states are at the zigzag edges of the
system.

An alternative way to get a spatial map of the system is via the local density of states
(LDOS). The calc spatial ldos() method makes this easy. The LDOS map is requested
for a specific energy value instead of a state number and it considers multiple states within
a Gaussian function with the specified broadening:

ldos_map = solver.calc_spatial_ldos(

energy=0, broadening=0.05 # [eV]

)

ldos_map.plot()

The total density of states can be calculated with calc dos():

dos = solver.calc_dos(

energies=np.linspace(-1, 1, 200),

broadening=0.05 # [eV]

)

dos.plot()
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Our example system is quite small so the DOS does not resemble bulk graphene. The zero-
energy peak stands out as the signature of the zigzag edge states. For periodic systems,
the wave vector can be controlled using Solver.set wave vector(). This allows us to
compute the eigenvalues at various points in k-space. For example:

from math import pi

model = pb.Model(

graphene.monolayer(),

pb.translational_symmetry()

)

solver = pb.solver.lapack(model)

kx_lim = pi / graphene.a

kx_path = np.linspace(-kx_lim, kx_lim, 100)

ky_outer = 0

ky_inner = 2*pi / (3*graphene.a_cc)

outer_bands = []

for kx in kx_path:

solver.set_wave_vector([kx, ky_outer])

outer_bands.append(solver.eigenvalues)

inner_bands = []

for kx in kx_path:

solver.set_wave_vector([kx, ky_inner])

inner_bands.append(solver.eigenvalues)

for bands in [outer_bands, inner_bands]:

result = pb.results.Bands(kx_path,

→˓bands)

result.plot()
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This example shows the basic principle of iterating over a path in k-space in order to calcu-
late the band structure. However, this is made much easier with the Solver.calc bands()

method. This was already covered in the Band structure section and will not be re-
peated here. But keep in mind that this calculation does not need to be done manually,
Solver.calc bands() is the preferred way.

Green’s function

Green’s function methods were used briefly in the Fields and effects and Defects and
strain sections. As with the eigensolvers, there is one common Greens interface while the
underlying algorithm may be implemented in various ways. At this time, kpm() is the
only one that comes with the package.

KPM

The kpm() implementation is a very efficient way of calculating Green’s function, espe-
cially for large sparse Hamiltonian matrices. Based on the kernel polynomial method, the
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approach approximates the Green’s function by expanding it into a series of Chebyshev
polynomials.

A great advantage of this method is that memory usage and computation time scale
linearly with problem dimension. In addition, computation time can be tuned based on
the required accuracy which is conveniently expressed as a Lorentzian broadening width.
Finally, each spatial site can be computed separately which means local properties can be
calculated efficiently at a fraction of the time required for the entire system.

Greens interface

The interface is quite simple. A Greens function is created with the desired implementa-
tion:

model = pb.Model(graphene.monolayer())

greens = pb.greens.kpm(model)

It can then be used to calculate the Green’s function corresponding to Hamiltonian matrix
element i,j for the desired energy range and broadening:

g_ij = greens(i, j, energy=np.linspace(-9, 9, 100), broadening=0.1)

The result is the raw Green’s function data for the given matrix element. However, there
is also a convenient Greens.calc ldos() method which makes it very easy to calculate
the local density of states (LDOS). In the next example we’ll use a large square sheet of
pristine graphene:

model = pb.Model(

graphene.monolayer(),

pb.rectangle(60)

)

greens = pb.greens.kpm(model)

ldos = greens.calc_ldos(

energy=np.linspace(-9, 9, 200),

broadening=0.05,

position=[0, 0]

)

ldos.plot()
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The LDOS is calculated for energies between -9 and 9 eV with a Lorentzian broadening
of 50 meV. Since this is the local density of states, position is also a required argument.
We target the center of our square system where we expect to see the well-known LDOS
shape of pristine graphene. Indeed, that is what the resulting LDOS object shows after
invoking its plot() method.



Tight-binding systems have lattice sites at discrete positions, which in principle means
that we cannot freely choose just any position for LDOS calculations. However, as a
convenience the Greens.calc ldos() method will automatically find a valid site closest
to the given target position. We can optionally also choose a specific sublattice:

ldos = greens.calc_ldos(energy=np.linspace(-9, 9, 200), broadening=0.05,

position=[0, 0], sublattice='B')

In this case we would calculate the LDOS at a site of sublattice B closest to the center of
the system. We can try that on a graphene system with a mass term:

model = pb.Model(

graphene.monolayer(),

graphene.mass_term(1),

pb.rectangle(60)

)

greens = pb.greens.kpm(model)

for sub_name in ['A', 'B']:
ldos = greens.calc_ldos(

energy=np.linspace(-9, 9, 500),

broadening=0.05,

position=[0, 0],

sublattice=sub_name

)

ldos.plot(label=sub_name)

pb.pltutils.legend() -5 0 5
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Multiple plots compose nicely here. A large band gap is visible at zero energy due to
the inclusion of graphene.mass term(). It places an onsite potential with the opposite
sign in each sublattice. This is also why the LDOS lines for A and B sublattices are
antisymmetric around zero energy with respect to one another.
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