

Yunnan University

The optoelectronic properties of monolayer MoS₂ in the presence of Rashba spin-orbit coupling

Yiming Xiao^{1,2}

CMT Group, University of Antwerp Yunnan University, Kunming, China

September 14th 2016

Universiteit Antwerpen

- Low energy band structure of monolayer MoS₂
- The role of Rashba effect
- Optical conductivity of ML-MoS₂ in the presence of Rashba spin-orbit coupling
- The infrared to terahertz optical absorption
- Conclusion

Universiteit Antwerpen

Band structure of monolayer MoS₂

Fig. 1 Schematic of MoS₂ monolayer structure

Universiteit Antwerpen

Fig. 2 Band structures of monolayer MoS₂ Phys. Rev. B 85, 205302 (2012)

Г

Effective low energy k · p hamiltonian

Phys. Rev. Lett. 108, 196802 (2012).

Massive Dirac fermions

$$\hat{H}_{j}^{\varsigma} = [at(\varsigma k_{x}\hat{\sigma}_{x} + k_{y}\hat{\sigma}_{y}) + \frac{\Delta}{2}\hat{\sigma}_{z}]$$

$$\bigvee$$
Valley
$$+\varsigma\gamma_{v}\frac{\hat{I} - \hat{\sigma}_{z}}{2}\hat{s}_{z} \implies \text{Intrinsic SOC}$$

$$\bigvee$$

$$\hat{H}_{0}^{\varsigma} = \begin{pmatrix} \Delta/2 & \varsigma atk_{-\varsigma} \\ \varsigma atk_{\varsigma} & -\Delta/2 + \varsigma s\gamma_{v} \end{pmatrix}$$

$$E_{\lambda \mathbf{k}}^{\varsigma s} = \varsigma s \gamma / 2 + \lambda [a^2 t^2 k^2 + \Delta_{\varsigma s}^2]^{1/2}$$

Parabolic band behavior:

Taylor expansion around k=0

$$\tilde{E}_{\lambda \mathbf{k}}^{\varsigma s} = \lambda \frac{a^2 t^2 \mathbf{k}^2}{2\Delta_{\varsigma s}} + \lambda \Delta_{\varsigma s} + \frac{\varsigma s \gamma}{2}$$

Universiteit Antwerpen

Fig. 3 Low energy band structures of monolayer MoS_2

Spin is decoupled \hat{s}_z is good quantum number Transition between blue and red band: forbidden

How to make the optical response in this regime?

6

The Rashba effect

Rashba effect mixes the spin states Spin index is not good a quantum number

Phys. Rev. Lett. 108, 196802 (2012). Phys. Rev. B 87, 245421 (2013). Universiteit Antwerpen Fig. 3 band structures in the presence of Rashba SOC

Transition between blue and red band: possible Optical matrix elements

Optical conductivity: theoretical approach

Kubo-Greenwood formula:

$$\sigma_{\alpha\beta}^{\varsigma}(\omega) = \frac{ie^2}{\omega} \sum_{\lambda's',\lambda s'\mathbf{k}',\mathbf{k}} \langle \mathbf{k},\xi | \hat{v}_{\alpha}^{\varsigma} | \mathbf{k}',\xi' \rangle \langle \mathbf{k}',\xi' | \hat{v}_{\beta}^{\varsigma} | \mathbf{k},\xi \rangle \quad \text{Optical matrix elements}$$

$$\text{Large gap} \longrightarrow \lambda' = \lambda \qquad \times \frac{f(\varepsilon_{\mathbf{k},\xi}) - f(\varepsilon_{\mathbf{k}',\xi'})}{\varepsilon_{\mathbf{k},\xi} - \varepsilon_{\mathbf{k}',\xi'} + \hbar(\omega + i\eta)},$$

the velocity operator $\hat{v}^{\varsigma}_{\alpha} = \hbar^{-1} \partial \hat{H}^{\varsigma} / \partial k_{\alpha}$

- Total optical conductivity: $\sigma_{\alpha\beta}(\omega) = \sum_{\varsigma=\pm} \sigma_{\alpha\beta}^{\varsigma}(\omega)$
- Real part of longitudinal conductivity:
- 1. Intra-band and inter-band transitions
- 2. Independent on valley index → <u>Valley degenerate</u>

Imaginary of transverse conductivity 1. Intra-band transitions: is zero 2. Inter-band transitions: none zero valley index dependent Condensed Matter Physics (Wiley, New York, 2000) Phys. Rev. B 87, 125425 (2013). Universiteit Antwerpen

Universiteit Antwerpen

Valley selective circular light absorption

Valley dependent Hall conductivity: Im $\sigma_{xy}^+(\omega) = -\text{Im } \sigma_{xy}^-(\omega)$

Absorption under circular polarized light:

Re
$$\sigma_{\rm L}^{\varsigma}(\omega) = {\rm Re} \ \sigma_{xx}^{\varsigma}(\omega) + {\rm Im} \ \sigma_{xy}^{\varsigma}(\omega)$$

Universiteit Antwerpen

Re
$$\sigma_{\rm R}^{\varsigma}(\omega)$$
 = Re $\sigma_{xx}^{\varsigma}(\omega)$ – Im $\sigma_{xy}^{\varsigma}(\omega)$

The effect of temperature on absorption

Universiteit Antwerpen

The Rashba effect tuned band structure

Universiteit Antwerpen

CMT Group, Condensed matter Theory, University of Antwerp

The absorption window can be tuned by carrier density and Rashba parameter

Universiteit Antwerpen

Conclusions

- Rashba effect induced spin-flip transitions have wide absorption peaks or absorption windows which range from infrared to THz.
- Under circularly polarized radiation, the spin-flip transitions have a valley selective absorption.
- The position and width of the absorption peak and absorption window can be effectively tuned by carrier density and Rashba strength.
- Monolayer MoS₂ can be a promising tunable optical and optoelectronic material that is active in the infrared to terahertz spectral range.

Universiteit Antwerpen

Thanks for your attention!

Universiteit Antwerpen