
Faculteit Wetenschappen

Departement Fysica

Superconducting correlations in single and

multilayer graphene

Supergeleidende correlaties in enkel-en meerlaagse

grafeen

Proefschrift ingediend tot het behalen van de graad van

Doctor in de Wetenschappen

aan de Universiteit Antwerpen, te verdedigen door

William Armando MUÑOZ
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wallaz85@gmail.com



iii

Dedicated to the loving memory of my

grandma Adela





Acknowledgement

First and foremost I wish to express my sincere gratitude to Prof. dr. François

Peeters for giving me the great opportunity of being part of his group. I am

thankful for your encouragement, constructive criticism and corrections, but par-

ticularly for your patience and continues support along these years.

My deep thanks go to Dr. Lucian Covaci for the uncountable and fruitful

advises during the whole process, and for the patient and detailed review in the

preparation of the manuscripts and the thesis. I am extremely grateful for your

thoughtful guidance, the insightful discussions, and particularly for your friendly

support even during the hard times.

I would like to thank the members of the jury for all their valuable sugges-

tions and helpful comments to improve the quality of the final version of the

thesis. I must thank also to Ben and Mario for translating the summary of my

thesis in Flemish.

I am very grateful to Hilde, our secretary, for handling the paperwork with

such an incredible efficiency. I also thank Nikolas for helping me every time that

something went wrong with the GPU nodes.

I also would like to thank to my colleagues at the CMT and EMAT group for

their friendship. Particularly to my office mates: Hamilton, Lucia, Ben, Maluco

and Hasan whom during all this time made our workplace a very friendly envi-

ronment. Thanks also to all the guys of the midday Tuesday’s football. Surely,

I will miss that pretty much, despite of all the defeats in the university champi-

onship.

I am indebted to all my friends who have supported me over the last years:

Hamilton, Ricardo, Eduardo, Evelyn, Victor, Maluco, Silvia, Sebastian, Paulo,

Diego, Adorno, Belisa (...). Thank you guys for the fun that we had and all the

nice moments that we shared together. To my dear flatmates and close friends

Hamilton, Ricardo and Victor, thanks for all the good memories of our time at

the G199.

I warmly thank my family in Colombia whom in spite of the distance kept

supporting me along these years that I have been away from home.

Last, but by not means least, I own a very special thank to my lovely wife



vi

Evelyn. Your support, encouragement and kindness have been invaluable on both

academic and personal level, for which I am extremely grateful. These last lines,

and the rest of my life as well, are reserved for you my dear.

This work was supported by the Flemish Science Foundation (FWO-Vl) and the

Methusalem funding of the Flemish Government.



Table of Contents

1 Introduction 1

1.1 The marvelous graphene flatland . . . . . . . . . . . . . . . . . 1

1.2 Superconductivity in carbon structures . . . . . . . . . . . . . . 2

1.3 Graphene becomes a superconductor:

Proximity effect . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Motivation of this thesis . . . . . . . . . . . . . . . . . . . . . 9

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theoretical framework and numerical methods 11

2.1 Graphene basics . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Crystal lattice structure . . . . . . . . . . . . . . . . . 11

2.1.2 From tight-binding to Dirac equation . . . . . . . . . . 14

2.1.3 Bilayer graphene . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Multilayer graphene . . . . . . . . . . . . . . . . . . . 17

2.2 Superconductivity basics . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 BCS theory . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Inhomogenous superconductivity: The Bogoliubov de

Gennes equations . . . . . . . . . . . . . . . . . . . . . 22

2.3 The Chebyshev-Bogoliubov-de Gennes method . . . . . . . . . 24

2.3.1 Basic properties of Chebyshev polynomials . . . . . . . 26

2.3.2 Expansion of the Gor’kov-Green functions . . . . . . . 27

2.3.3 Implementation details . . . . . . . . . . . . . . . . . . 29

2.3.4 Complex absorbing potential . . . . . . . . . . . . . . . 31

2.4 GPU computing . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Tight-binding study of bilayer graphene Josephson junctions 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Model System . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Numerical Method: Chebyshev expansion of the Green’s function 40

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



viii

3.4.1 Proximity effect . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 LDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Josephson current . . . . . . . . . . . . . . . . . . . . . 45

3.4.3.1 Unbiased case . . . . . . . . . . . . . . . . . 45

3.4.3.2 Biased case . . . . . . . . . . . . . . . . . . 48

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Tight-binding description of intrinsic superconducting correlations

in multilayer graphene 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Model and calculation approach . . . . . . . . . . . . . . . . . 53

4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Superconducting current and proximity effect in ABA and ABC mul-

tilayer graphene Josephson junctions 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Model System . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Disordered graphene Josephson junctions 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Vacancies . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.2 Ripples: Gaussian bumps . . . . . . . . . . . . . . . . . 82

6.3.3 Charged impurities . . . . . . . . . . . . . . . . . . . . 86

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Summary 93

7.1 Concluding remarks of the thesis . . . . . . . . . . . . . . . . . 93

7.2 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Samenvatting 97

8.1 Overzicht van de thesis . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 101



1
Introduction

1.1 The marvelous graphene flatland

In 2004 a new fascinating playground for condensed matter physics came up
when Kostya Novoselov and Andre Geim from Manchester University reported
the observation of an isolated two-dimensional structure of carbon atoms ob-
tained in one of their “Friday experiments” [1]. Regarded as a virtual material for
decades, this promising material was predicted more than fifty years ago to ex-
hibit an unique electronic band structure with carriers at low energies obeying a
linear dispersion instead of the conventional quadratic one found for Schrödinger
particles [2]. In fact, the low-energy Hamiltonian for electrons in this structure
was shown to map onto a relativistic Dirac equation for massless fermions [3]. In
spite of this remarkable fact, earlier experiments of this carbon two-dimensional
structure failed to observed traces of its unusual electronic properties and hence
most of earlier experimental realizations fell into oblivion. Looking back in time,
oldest observations of this single-atom thick structure date back to 1859 with the
first oxide samples floating in a suspension obtained by Benjamin Brodie [4].
Unaware of the importance of his discovery, Brodie’s observation remained hid-
den for almost one century till Hans-Peter Boehm identified some not isolated
monolayer graphite samples for the first time and called them graphene [5].
Other experimental studies of graphene grown on insulating substrates [6] and
metals [7] appeared unnoticed before 2004 and further discoveries may also have
passed unperceived unless distinguishing electronic properties of graphene were
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unveiled in the samples obtained by Geim and co-workers [8]. Using the me-
chanical cleavage method to obtain samples by peeling graphite with a Scotch
tape (see Fig. 1.1(a)), Geim and co-workers succeeded to reveal an anomalous
quantum Hall effect from those samples identified to be one-atom thick in an
optical microscope (see Fig. 1.1(b)). This unconventional Hall effect with half-
integer plateaux (see Fig. 1.1(c)) was probably the most striking demonstration
of the relativistic nature of carriers therein [8]. An avenue of active theoret-
ical and experimental research followed Geim and co-workers novel discov-
ery [9, 10]. Just to name some of them: unconventional properties of Dirac
fermions in graphene, like the transparent transmission through high and wide
potential barriers named Klein tunneling; a half-integer quantum Hall effect fol-
lowed by an anomalous integer quantum Hall effect reported for bilayer graphene
samples (see inset in Fig. 1.1(c)); the absence of weak localization or the appear-
ance of large pseudo-magnetic fields owing to mesoscopic ripples among others
has been experimentally verified [8, 11–15].
Graphene has also risen as a promising material for technological purposes since
it is inert against oxidation in ambient environment and its carrier density is tun-
able under the electric field effect. In addition, graphene samples have shown
to support a high mobility of carriers of 2.42 × 104cm/Vs [10], which is sev-
eral orders of magnitude larger than the one measured in copper. Even if the
lack of confinement due to Klein tunneling of carriers is an obstacle to de-
velop graphene-based transistors, bilayer graphene offers an alternative for a
field-effect transistor based on graphene. Hence, while single layer graphene
is gapless, it is possible to induce a gap in bilayer graphene which is tunable by
a bias voltage applied between both layers [16]. These peculiarities open a wide
scenario for technological applications of graphene devices like transistors that
operated at high-frequencies and more efficient quantum interferometers. Fi-
nally, Andre Geim and Kostya Novoselov were awarded in 2010 with the Nobel
Prize in physics for their groundbreaking experiments.

1.2 Superconductivity in carbon structures

Although graphene exhibits many fascinating properties, intrinsic superconduc-
tivity has been not observed among them. Unfortunately not only graphene but
most of the carbon allotropes in their pure form are found not to sustain su-
perconductivity by themselves, with few exceptions like ropes of single-walled
carbon nanotubes where hints of superconductivity have been reported [18, 19].
Nonetheless, a wide number of indications pointing to superconductivity in oth-
ers compounds containing carbon as a fundamental component have been ob-
served since 1965 [20]. In spite of the low critical temperature found for the
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Figure 1.1: Mechanical exfoliation method as used by Geim and co-workers: (a) Rem-

nants of graphite after peeling a sample of highly ordered pyrolytic graphite with Scotch

tape. (b) Once some of peeled graphite samples are placed on top of silicon oxide wafer,

different thickness can be distinguished by means of optical contrast where some opti-

cally transparent fragments were identified having one-atom thick. (c) The resistivity

and the Hall conductivity as a function of charge-carrier concentration measured in

single-layer graphene samples. Half-integer filling factors found in conductivity is an

unambiguous evidence of the two-dimensional nature of the graphene samples and their

linear energy spectrum. The inset shown the integer conductivity and with the anoma-

lous step at the neutrality point measured in samples of bilayer graphene. Adapted from

Ref. [17] and [8]

superconducting transition of these materials, usually lower than 1K, interest for
superconducting phases in carbon-based structures has been renewed every time
that a new form of carbon is discovered, without success in most of the cases, but
with some remarkable progress like the discovery of relatively high Tc supercon-
ductivity for graphite intercalated compounds (GICs). In addition, the discovery
of the superconductor magnesium diboride with Tc=39K in 2001 [21], put in per-
spective the potential appearance of superconductivity for graphite layered struc-
tures due to the crystallographic and electronic analogy. In fact, intercalant atoms
are claimed to induce superconductivity between graphite layers below a critical
temperature, Tc, around 11K [22, 23]. Among GICs other carbon-based struc-
tures like Boron-doped diamond [24] and alkali-doped fullerenes [25] were also
reported to superconduct. Different studies have suggested that electron-phonon
mediated pairing is the most likely mechanism responsible for superconductiv-
ity in these structures [26, 27]. However, it is not clear whether the intercalant



4 INTRODUCTION

atom vibrations [27] or the graphene-derived phonons [28] play the dominant
role here. For instance, former case results in analogy with intercalated mangne-
sium diboride where high-frequency vibrations of boron atoms, which conform
a hexagonal lattice similar to carbon in graphene, are belived to be the respon-
sible for the electron-phonon coupling [29]. Despite of the many studies about
superconductivity in graphite, this is still not fully understood.

In turn to graphene, the occurrence of phonon-mediated superconductivity
was predicted to emerge by the same mechanism responsible for superconduc-
tivity in GICs when doped with lithium [30, 31]. While calcium is expected to
induce phonon-mediated superconductivity in graphene, according to recent ob-
servations performed by angle-resolved photoemission spectroscopy [32], more
progress has to be made in order to consider graphene as an inherent supercon-
ductor. In spite of that, theoretical descriptions concerning to superconductivity
in graphene have been triggered by the experimental observations in graphite
compounds. An example of this corresponds to the study of electronic corre-
lations in graphene [33] as a way to elucidate the superconducting behaviour
reported in graphite-sulfur composites [34, 35] even .
The experimental isolation of graphene sparked an increasing theoretical inter-

est about the possibility of superconducting states in graphene. For instance, it
is known now that superconductivity cannot appear by conventional mechanism
in pristine graphene as the density of states (DOS) vanishes at the neutrality
point [37,38]. Furthermore, superconducting transitions are predicted to emerge
above a quantum critical point where the pairing potential exceeds a minimum
value. Other exotic mechanisms like plasmon-electron coupling, Kohn-Luttinger
or electron-electron interactions have been predicted to lead to superconducting

Figure 1.2: (a) Scanning electron microscopy of a HOPG sample on Si/SiN subtrate. (b)

Transmission electron microscopy image of the cross section of the HOPG sample where

brightness corresponds to different orientations between adjacent graphene layers. (c)

Drop of the voltage measured for different samples of HOPG. Adapted from Ref. [36]
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instabilities in graphene at non-zero density carriers. In these cases, unconven-
tional superconducting states with p+ ip [37], f [39, 40] and d+ id-wave sym-
metry [33, 40–45] are expected to emerge. Chiral d + id superconductivity is
of particular interest due to its robustness against disorder and dominance over
other anisotropic states [46]. In addition, it has been demonstrated that Majorana
modes appear in chiral d + id superconducting states in graphene [47]. De-
spite of these encouraging theoretical predictions, no experimental evidence of
chiral superconductivity have been reported yet and multiple challenges are ex-
pected to appear in these experiments. For instance, in a heavily doped regime,
the dopants may introduce strong charge inhomogeneities or deform the band
structure, and therefore conventional phonon-mediated mechanism is expected
to induce s-wave superconducting states.

Beyond the lack of superconductivity in graphene, recent experimental re-
ports claim the observation of possible traces of superconducting behavior in
high-oriented pyrolytic graphite (HOPG) samples [48]. These graphite samples
consist of free-impurities identical graphene layers stacked in a highly ordered
configuration. However, the observed superconducting characteristics are likely
not related to bulk properties of graphite as the Josephson tunneling effect was
detected at some interfaces of the sample, evidencing the existence of granu-
lar superconductivity in graphite [36]. Misalignment between adjacent graphite
layers was identified to occur at these interfaces (see Fig. 1.2(a)-(b)), and there-
fore appearance of superconductivity is related to these imperfections since the
measured voltage between the electrodes is observed to fall at different temper-
atures for the samples with different concentrations of internal interfaces (see
Fig. 1.2(c)). Since authors dismiss the presence of impurities it is important to
realize that the mentioned experimental report pointed out the existence of su-
perconductivity in pristine multilayer graphene structure.

Other signs of superconducting behavior in graphite have been reported so
far. For instance, periodic oscillations of the magnetoresistance have been as-
signed to Andreev scattering between the Josephson-superconducting-grains in
HOPG samples. The same authors claim that percolative superconductivity is the
cause behind an anomalous hysteresis measured in the HOPG samples [49–51].
Even more intriguing is the indication of granular superconductivity occurring
at room-temperature in graphite powder samples after being treated with wa-
ter [52]. Most recent evidences have suggested the appearance of superconduc-
tivity in pure graphite under the application of gate voltages [53]. In spite of all
these experimental evidence, among other older observations [54, 55] the exis-
tence of superconductivity remains under debate since magnetism could be also
present in graphite samples.
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1.3 Graphene becomes a superconductor:

Proximity effect

Superconductivity can be induced in graphene by proximity effect of small sam-
ples in contact with another superconductors material. A similar procedure
was previously implemented in carbon nanotubes where supercurrent was ob-
served flowing through the nanotube between two superconductors contacts [56].
Few years after the discovery of graphene, a pioneering work by Morpugo and
co-workers succeeded to build the first graphene-based superconducting device
owing to the proximity effect. Having obtained single-layer graphene samples
through mechanical exfoliation, a superconducting Josephson device was build
by depositing through beam lithography techniques, two separate aluminum (Al)
electrodes on top of graphene in the configuration shown in Fig. 1.3(a). Desir-
able electric contacts are ensured by means of a titanium layer placed at the
interface between the superconductor and graphene. Ballistic regime can be as-
sumed since the phase coherence length in these graphene samples (Lφ >1µm)
is larger than the separation between Al electrodes, which is in the range of 100-
500nm. Thus, when cooling down below the Al critical temperature Tc around
1.3K, superconducting-like properties occur by proximity effect in the graphene
regions underneath the superconducting Al contacts. A direct evidence of the oc-
currence of these superconducting correlations is the observation of the Joseph-
son effect, where electrons and holes are transported coherently through the non-
superconducting graphene bridge between the Al electrodes. The mechanism be-
hind this proximity-induced current is the Andreev reflection taking place at the
interface between the superconductor and the normal graphene. This Andreev
conversion scatter a Cooper pair from the superconductor into an electron-hole
pair in the normal metal [57]. Since Cooper pairs are made of electrons with
opposite spin and momentum, elastic Andreev scattering injects electrons and
hole in opposite K-points (see Fig. 1.3(c)). By doping the graphene junction
with electron or holes, Morpugo and co-workers succeeded to measure a bipolar
supercurrent, observing no drop of voltage, as it can be seen Fig. 1.3(d), which is
a remarkable sign of proximity-induced superconductivity in the graphene sam-
ples [58]. Among this observation, a finite supercurrent flowing at zero charge
density puts in evidence some of the remarkable superconducting properties of
graphene (see Fig. 1.3(b)).
Theoretical models predicting a minimum value for the supercurrent at the Dirac

point show the unusual superconducting characteristics of graphene Josephson
junctions. One of these characteristics is related to the dependence of the criti-
cal current and the universal constant defined by the product between the critical
current and the normal resistance on the junction geometry [59]. These char-
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Figure 1.3: Atomic force microscope image of a graphene sample in contact with

two superconducting electrodes. (b) Bipolar current measured in the superconducting

graphene device of (a) showing a finite supercurrent at the Dirac point. The supercon-

ducting regime is shown in yellow in this color-scale plot where the differential resis-

tance is zero. (c) Schematic layout of electron-hole pair transport through graphene in

the different K and K ′ valleys. (d) Current-voltage I-V characteristics of graphene

superconducting junction for different values of the gate voltage (VG), which shift the

Fermi energy level, showing the proximity-induced supercurrent flowing at zero voltage.

Adapted from Ref. [58].

acteristics appear as a manifestation of the Dirac nature of carriers in graphene,
where instead of the conventional Andreev retro-reflection with electron and hole
retracing the same time-reversed path, Andreev scattering at superconductor-
normal interface in graphene follow a specular scattering of the reflected parti-
cle. In this specular Andreev reflection, the component of the velocity parallel
to the interface of the reflected hole is inverted, and therefore it does not retrace
any longer the path of the incoming electron. Inspecting the band dispersion of
graphene one can find the conditions needed to induce such specular Andreev
conversion. In normal metals where usually the Fermi energy is pinned far away
above the valence band, an intraband conversion is known to lead to a typical
Andreev retro-reflection. In contrast, the linear energy band of graphene with
the Fermi energy at Dirac point, where conduction and valence band touch each
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Figure 1.4: (Right) Andreev retro-reflection and specular Andreev reflection at the inter-

face superconductor-normal in graphene. (Left) Intra-band and inter-band conversion

mechanisms in the band excitation structure for retro and specular Andreev reflection

respectively. Adapted from Ref. [61].

other, allow an interband conversion. Specular Andreev reflection can be derived
from the analysis of the linear dispersion in this interband conversion [60, 61].
A similar analysis leads to a conventional retro-reflection in graphene once the
Fermi energy is shifted away from Dirac point such that conversion occur in the
same band (see Fig. 1.4).
After the experiment of Morpugo and co-workers, the Josephson effect for Dirac
fermions was later verified in diffusive regime with L ≈ 1µm [62, 63]. It was
just a matter of time before subsequent efforts were devoted to induce supercon-
ductivity in graphene in a more effective way. For instance, highly transparent in-
terfaces were achieved by growing electrodes with critical temperature Tc higher
than one found in Al electrodes. To cite some of them, Pt/Ta [64], Pb/In [65],
Pb/Pd [66], Nb/Pd2 [67] and NbN [68] electrodes with Tc lying between 2.5K
and 12K, were successfully implemented in superconducting graphene-based
junctions. Another challenge usually faced in graphene devices is the presence
of spatial inhomogeneities. While in some cases, an annealing current is ap-
plied in order to remove residues [64], signatures of diffusive supercurrent under
doping inhomogeneities have been also reported for long junction [67]. On the
contrary, excellent ballistic transport has been observed in graphene junctions
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suspended between superconducting electrodes [68]. Another advance aimed
at the control of the supercurrent in graphene Josephson junctions, claims the
possibility of switching off the current through a p-n potential barrier, thus, mak-
ing a graphene Josephson junction suitable for quantum-state engineering [69].
Nonetheless, since the sole application of a p-n gate voltage does not ensure the
presence of the observed supercurrent off state, the authors claim the presence
of ripples as the dephasing mechanism responsible for the suppression of the
Josephson current. The relevance of decoherence in the diffusion of the coher-
ent pair electron-hole between the graphene-superconductor interfaces has been
the subject of recent experimental investigation, where the microfabrication of
a graphene-based Andreev interferometer designed to tune the amplitude of the
dephasing, explored new features of the proximity effect in graphene [70].

1.4 Motivation of this thesis

The interplay between two-dimensional electronic aspects of graphene and su-
perconductivity represents a poorly-explored scenario with potential new physics.
Not only single layer, but multilayer graphene structures are also a very interest-
ing area to study superconducting characteristics of massive fermions. In most
of the cases, theoretical studies are complicated or require approximations pro-
viding a restricted description of the solution. For instance, the lack of transla-
tional invariance makes it difficult for any analytical procedures to solve these
problems. On the other hand, numerical solutions demand a large amount of
computational resources since the typical size of these systems involves hun-
dreds of thousands of atoms. The aim of this thesis is the development of a
highly-efficient numerical solution for the superconducting correlations in two-
dimensional graphene and graphene-layered structures related to some state-of-
art experimental advances. Within the Bogoliubov-de Gennes formalism, we im-
plemented an efficient numerical method based on the expansion of the Gor’kov-
Green functions in terms of Chebyshev polynomials. In addition, a large speed
up is achieved by developing algorithms using parallel computation on graphic
processing units (GPUs) which allowed us to solve efficiently systems involv-
ing hundreds of thousands atoms. In this way, we are allowed to deal with a
wide variety of problems, like the possibility of switching-off the supercurrent
in a biased bilayer graphene Josephson junction, or the influence of the stacking
order in the intrinsic superconducting properties of multilayer graphene, among
others.
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1.5 Outline of this thesis

In chapter 1 we have introduced briefly some historical facts about the discovery
of graphene and its relevance in condensed matter physics and new technolog-
ical applications. Next, we presented the most relevant experimental evidences
of superconductivity traces in carbon-based compounds reported till now with
particular focus on carbon layered structures. Finally, attention is payed to state-
of-the-art fabrication of superconducting graphene devices based on proximity
effect.

In chapter 2 we give a brief introduction of electronic properties of sin-
gle, bilayer and multilayer graphene. Attention is mainly focused on the tight-
binding description of these layered structures. Then, we give a description of
BCS theory arriving later to a general formulation of the Bogoliubov de-Gennes
equations. Next, the numerical method used here is described in detail.

In chapter 3 we present a self-consistent solution for the pair correlation in
a bilayer graphene Josephson junction as an extension of the single-layer case,
where both graphene layers are in contact with two superconducting leads. We
study in this chapter the proximity effect and the behavior of the dc Josephson
current in such junctions for different regimes. In addition, a bias potential dif-
ference between the layer is applied in order to create a gap. We address the
question of the possibility to switch-off the supercurrent through this induced
gap.

In chapter 4, inspired by recent experimental observations and other the-
oretical studies, we present a description of the intrinsic superconductivity in
multilayer graphene. Solving self-consistently for the order parameter, we study
the effect of different stacking configurations in the multilayer graphene. In ad-
dition, the effect of external factors like an electric field applied and a homoge-
neous doping are also investigated.

In chapter 5, motivated by the interesting results obtained in Chapter 4,
we made a study of multilayer graphene Josephson junctions. Different from
the methodology implemented in Chapter 2, we perform here a 3-dimensional
description of the proximity effect in multilayer graphene considering different
stacking orders.

In chapter 6 we investigate the effect of disorder on a single-layer graphene
Josephson junction. Inspired by different experimental advances, different types
of disorder like vacancies, the presence of lattice deformations like ripples, and
the presence of charged impurities are considered. The presence of these types of
disorder shown to be important for the Andreev states and the critical Josephson
current.



2
Theoretical framework and numerical

methods

2.1 Graphene basics

2.1.1 Crystal lattice structure

Graphene is a two-dimensional arrangement of carbon atoms in a honeycomb-
like lattice. Since a hexagonal lattice does not constitute a Bravais lattice, a
triangular lattice with two atoms A and B in the basis, or equivalently, two tri-
angular sublattices with different single atomic basis A and B, are considered
instead. The unitary vectors for the triangular sublattice with atoms A for in-
stance, are defined as ~a1,2 = (3,±

√
3)a/2 where a ≈ 0.142nm is the bond

length between carbon atoms (see Fig 2.1(a)). The reciprocal vectors satisfy-

ing the relation ~ai · ~bj = 2πδij are given by: ~b1,2 = (1,±
√
3)2π/3a. There-

fore the first Brillouin zone (1BZ) can be taken as the region delimited by the
hexagon with vertices at the six points K = (±1,

√
3)2π/3a, (0,±4π/3

√
3a)

and K ′ = (1,−
√
3)2π/3a, (0,±4π/3

√
3a) (see Fig. 2.1(b)). These inequivalent

high-symmetry points K and K ′ cannot be connected by reciprocal vectors ~b1
and~b2 and are time-reversal partners of each other.
A minimal model for the electronic structure of graphene involves the hopping
between sublattice A and the three atoms in the surrounding B sublattices along

the nearest-neighbors vectors ~δ1 = (1,
√
3)a/2, ~δ2 = (1,−

√
3)a/2 and ~δ3 =
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Figure 2.1: (a) Graphene lattice structure consistent of two sublattices A and B. Sublat-

tice A is defined by the lattice vectors (~a1,~a2). Vectors (~δ1, ~δ2, ~δ3) connect sublattices A

and B. (b) Reciprocal lattice defined by the vectors (~b1,~b2) and hexagonal first Brillouin

zone with highly symmetry points. (c) The band structure of graphene. (d) Canonical

dispersion around K or K ′ points. Adapted from Ref. [71].

(−1, 0)a.
Carbon atoms in graphene are connected by strong in-plane covalent bonds due
to sp2 orbitals, which follow from the sp hybridization of the isolated carbon
orbitals 2s, 2px and 2py. As a consequence, high-energy σ bands emerge, while
out-of-plane orbitals 2pz, which do not participate in the in-plane bond, give
rise to a low-energy π band. Since there is only one electron per pz orbital for
each carbon atom, the Fermi level lies at the zero energy axis and therefore low-
energy excitations are mainly carried out by π states [72]. Hence, an accurate
description can be made within a simple tight-binding model considering only
the interaction between 2pz-orbitals localized in nearest-neighbors atomic sites.
Lets consider the normalized wavefunction ϕ(rA,B) = 〈r|ϕA,B〉 for the 2pz-
orbitals at atomic sites in sublattices A and B defined by the vectors ~rA =

n1~a1 + n2~a2 and ~rB = m1~a1 + m2~a2 + ~δ3 with n1, n2, m1 and m2 being in-
teger numbers. The respective tight-binding Hamiltonian can be written down as
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follows:
H = −t

∑

rn

∑

l

|ϕB(rA + δl)〉〈ϕA(rA)|+ h.c., (2.1)

where t = 〈ϕB(rA + δl)|H|ϕA(rA)〉 ≈ 2.4eV is the transfer or hopping inte-
gral matrix between nearest-neighbors, whereas the overlap integral matrix is
neglected, i.e. 〈ϕB(rA + δl)|ϕA(rA)〉 = 0. In addition, atoms in the A and B

sublattices are considered equivalent and therefore their on-site energy is equal,
i.e. 〈ϕA|H|ϕA〉 = 〈ϕB|H|ϕB〉. For simplicity the former integral is assumed to
be null and one can consider the following Bloch wavefunctions for both single-
orbital ϕA and ϕB states:

ψi(~k) =
1√
N

∑

~ri

exp(i~k · ~ri)ϕi(~ri), (2.2)

where i = A,B and N is the total number of unit cells. The Hamiltonian can be
re-written in the basis of the two-component wavefunction ψ = (ψA, ψB), which
satisfies the Schrödinger equation Hψ = Eψ, in the following matrix form:

H(~k) =

(

0 h(~k)

h∗(~k) 0

)

, (2.3)

where

h(~k) = −t
∑

l

exp[i~k·~δl] = −t
[

2 exp

(

ikxa

2

)

cos

(

kya
√
3

2

)

+ exp(−ikxa)
]

.

(2.4)
A straightforward calculation of the eigenvalues through the secular equation,
det[H−EI] = 0 where I is the identity matrix, leads to the following dispersion
relation, as was deduced by Wallace in 1947 [2]:

E = ±t

√

√

√

√1 + 4 cos2

(√
3aky
2

)

+ 4 cos

(√
3aky
2

)

cos

(

3akx
2

)

. (2.5)

The corresponding energy bands described by the dispersion relation (2.5) are
shown in Fig. 2.1(c). One can see that the conduction (E > 0) and valence (E <
0) bands touch each other at the six K and K ′ corners points where E(K) =
E(K ′) = 0. Since only two of these valley points, K and K ′, are inequivalent,
there exists a two-fold degeneracy, called valley degeneracy, which is a direct
consequence of equivalence between atoms in sublattice A and B. Thus, besides
the pseudospin degree of freedom defined by the two equivalent sublattices, time-
reversal states of valleys K and K ′ give rise to an additional degree of freedom
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called isospin. An enlarged view around zero energy shows a linear form of the
energy dispersion around the K point, where the Fermi surface is reduced to a
singular point and separates the filled valence band with the empty conducting
band demonstrating the semi-metallic nature of graphene (see Fig. 2.1(d)).

2.1.2 From tight-binding to Dirac equation

The linear dependence of the dispersion relation in the two-dimensional wave-

vector ~k = (kx, ky) of Eq. (2.5) around each corner point K and K ′, can be

easily verified by expanding the non-diagonal element h(~k) in (2.4) around the
inequivalent points K(K ′) = (0,±4π/3

√
3a) for low values of the wavevector

δ~k = ~K−~k or (δ~k′ = ~K ′−~k) such that |δ~k|a≪ 1. A straightforward calculation
leads to the effective Hamiltonian with the following form for K and K ′ [73]:

Heff
~K, ~K ′

= α~vF

(

0 δkx ± iδky
δkx ∓ iδky 0

)

, (2.6)

where the phase α can be excluded by a unitary transformation of the basis func-
tion and the Fermi velocity vF = 3at/2~ ≈ 106m/s defines the speed of the
carriers in graphene at low-energy excitation. In a more compressed notation,
using the Pauli matrices, the Dirac Hamiltonian of relativistic particles results:

H ~K, ~K ′ = ~vF (δkxσx + δkyσy). (2.7)

The Hamiltonian (2.7) describes two-component independent states with wavevec-
tor centered at the K and K ′ valleys. A complete description involves a four-
component spinor ϕ = (ϕA, ϕB, ϕ

′
B, ϕ

′
A) containing both valleys.

2.1.3 Bilayer graphene

The tight-binding description performed for a single-layer graphene can be eas-
ily extended to the case of two coupled graphene layers, named bilayer graphene.
These layers are bonded by van der Waals forces, which are much weaker that
the in-plane covalent bonding in graphene. This weakness makes experimental
techniques, like mechanical exfoliation suitable for obtaining graphene and few-
layer graphene samples in the laboratory. In fact, together with the observation
of single layer graphene, bilayer graphene was also identified among the exfoli-
ated graphite samples [13]. Separated by a distance c = 0.3nm, much larger than
the in-plane interatomic distance, the layers are stacked in Bernal or AB config-
uration as shown in Fig. 2.2(a) where the upper layer is shifted with respect to
the lower one such that the atoms in the sublattice Ã in the upper layer and B
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in the lower layer lies exactly on top of one another. Whereas, the atomic posi-
tion of sublattices B̃ and A project at the center of hexagon in the adjacent layer.
A simple tight-binding model for bilayer graphene may therefore involve only
an interlayer coupling with a hopping parameter t⊥ ≈ 0.4eV [74, 75] between
atoms in sublattice Ã and those in B. Under this assumption, the tight-binding
Hamiltonian (2.1) is adapted to the bilayer graphene case as follows:

H = −t





∑

~rA,l

|ϕB(~rA + δl)〉〈ϕA(~rA)|+
∑

~r
Ã
,l̃

|ϕB̃(~rÃ + δ̃l̃)〉〈ϕÃ(~rÃ)|





−t⊥
∑

~r
Ã

|ϕB(~rÃ)〉〈ϕÃ(~rÃ)|+ h.c.,

(2.8)

where r̃n and ~δl̃ are the shifted in-plane coordinates and nearest-neighbors vec-
tors, respectively. Since there are four atoms per unit cell, Bloch states are de-

scribed according to the four-component wavefunctionψ(~k) = (ψA, ψB̃, ψÃ, ψB)
where the tight-binding Hamiltonian (2.8) has the following matrix form:

H(~k) =











0 0 0 h∗(~k)

0 0 h(~k) 0

0 h∗(~k) 0 t⊥
h(~k) 0 t⊥ 0











=

(

H11 H12

H21 H22

)

, (2.9)

with Hij being 2 × 2 matrix blocks. Neglecting all other interlayer interactions
betweeen carbons atoms other than those in the dimer sites (Ã,B), one can easily
derive an effective Hamiltionian for low-energies, E ≪ t⊥, considering in this
case H22 − EI → H22 such that [76]:

det[H− EI] = det[H11 −H12(H22 − EI)−1H12 − EI] det[H22 − EI]
≈ −t2⊥ det[H11 −H12H

−1
22 H12 − EI]. (2.10)

Approximating for low-lying bands around the K(K ′) points in the same way
as it was done for graphene, we arrive at the following form for the Hamiltonian
(2.9) [77]:

Heff
~K, ~K ′

=
~
2

2m∗

(

0 (δkx ∓ iδky)
2

(δkx ± iδky)
2 0

)

, (2.11)

where the solution of the secular equation (2.10) leads to a quadratic dispersion
E(k) = ±~

2δk2/2m∗ for both K and K ′, where δk2 = δk2x + δk2y and m∗ =
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Figure 2.2: (a) Bilayer graphene lattice made of two coupled graphene layers in Bernal

stacking where only atoms in sublattice Ã in the upper layer are connected to atoms in

sublattice B through an interlayer coupling t⊥. (b) Band structure for unbiased (dashed

curves) and biased bilayer graphene (solid curves). Adapted from Ref. [79].

t⊥/2v
2
F represents the effective mass of particles in bilayer graphene. Thus,

this reduced picture of the electronic band structure, which only includes non-
dimer orbitals (ψA, ψB̃) [77, 78], shows that massless particles in graphene be-
come massive particles by means of an interlayer interaction in bilayer graphene.
Again, K and K ′ valleys points remain degenerate at the Fermi energy preser-
ving the graphene semimetal character for the bilayer case. A more accurate
approximation involving a wider energy range can be obtained for the dispersion
relation of bilayer graphene around the valleys [77]:

E±
± = ±t⊥

2
±
√

t2⊥
4

+ (~vfk)2. (2.12)

Here, additional to the low-energy bands E+ touching at the Dirac point found
in (2.11), two high-energy bandsE− emerge as a consequence of direct coupling
between the dimer sites (see Fig. 2.2(b)). One of the most remarkable features of
electronic band structure in bilayer graphene is the possibility to control a tunable
gap through a bias potential Vg applied between the layers [16, 77, 80, 81]. This
switch-off ability of bilayer graphene has potential applications in field effect-
transistor technology. A theoretical description of bilayer graphene as having a
semiconductor gap can be achieved by introducing a symmetric energy potential
Vg between the layers, which can be done through the transformations: H11 →
H11 + U and H11 → H11 − U for the Hamiltonian blocks in (2.9), where U is
the 2× 2 matrix:

U =

(

Vg/2 0
0 −Vg/2

)

. (2.13)
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Considering that this bias potential is restricted to ~vFk ≪ Vg ≪ t⊥, the low-
lying energy bands are described by the following relation around the ungapped
K(K ′) valley points [82]:

E(k) = ±
(

Vg
2

− Vg~
2k2

t2⊥
k2 +

~
4v4F
t2⊥Vg

k4
)

. (2.14)

The gapped band structure appears in Fig. 2.2(b) resembling a “Mexican hat”.
Note that the minimum of the conduction band and the maximum of the valence
band are not at the symmetry points K and K ′ anymore, and the dependence

of the gap ∆g on the bias potential goes according to ∆g = Vg

√

t2⊥/(t
2
⊥ + V 2

g )

showing that this gap saturates to a value ∆g = t⊥ for values of Vg ≥ t⊥.

2.1.4 Multilayer graphene

So far we have described the electronic characteristics of single and bilayer
graphene within a tight-binding formalism. In order to draw up an effective
model for graphite we can expand the previous model to multiple layers. Cer-
tainly, graphite is composed of many graphene layers one above another linked
by van der Waals forces. Since van der Waals bonding is much weaker when
compared to the in-plane covalent carbon bonding, graphite is considered to
have a layered structure. Given the weakness of the interlayer interactions it
is expected that the electronic characteristics of graphite might resemble those
found in graphene single layer. However, as seen for bilayer graphene, impor-
tant changes to the linear graphene dispersion occurs as both layers are coupled,
allowing interlayer hopping. In multilayer graphene, for instance, the electronic
band has been found to depend on the number of layers and the relative ori-
entation of one layer with respect to its neighbors [83]. Despite the fact that
there is always in-plane azimutal disorder, even for graphite samples with the
highest degree of three-dimensional ordering like HOPG [84, 85], graphene lay-
ers stacked in a staggered or Bernal configuration are most commonly found in
natural graphite. This is the case for instance when a third layer is added on
top of bilayer graphene and the shift between the additional layer and the top
layer make it lies exactly on top of the bottom layer in an ABA configuration
(see Fig. 2.3). In another case, a more symmetric stacking configuration can be
achieved when all layers are shifted with respect to their neighbors such that in-
version symmetry is preserved for any number of layers. This rhombohedral, or
ABC stacking (see Fig. 2.3), is rarely found in natural graphite and was believed
for a long time to be a defect in the bulk structure until this could be induced
by mechanical treatment in Bernal graphite samples. Tight-binding description

can be performed by considering the basis wavefunctions ψn,A(~k) and ψn,B(~k)
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Figure 2.3: Schematic layout and side view of a multilayer graphene structure stacked in

two different configurations: Bernal or ABA (top) and Rhombohedral or ABC (bottom).

Sublattices A and B are coupled by t within the same layer, while interlayer coupling

is described by t⊥. Integer coordinate z corresponds to the index layer. Corresponding

energy band structure is shown also. Adapted from Ref. [86].

for n = 1, 2, .., N where N is the total number of graphene layers. The system
of Schrödinger equations for these wavefunction can be simplified and solved
under an infinite sequences of layers and the assumption of periodicity in the
vertical axis leading to the following expression for the energies in the bulk [2]:

E(~k, ξn) = t⊥ cos ξn ±
√

|h(~k)|2 + t2⊥ cos2(ξn), (2.15)

where ξn = πn/(N + 1) are discrete values with n = 1,2,...,N and h(~k) is
defined in Eq. (2.4). One can easily prove that the relation (2.15) is reduced to
the expressions (2.5) and (2.12) for the energy dispersion of single and bilayer
graphene for n =1,2, respectively. For those cases beyond two layers (N > 2),
solutions of the system of Eq. (2.15) show a remarkable different dependence on
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the parity of the total number of layers N [86]. For even N , an equal number
of conduction and valence parabolic bands appear touching at the Fermi energy
and resulting in valley degeneracy atK andK ′ points. Interestingly, for the cases
with odd N both linear and parabolic bands are present and the coexistence of
Dirac massive fermions is found (an example is shown in Fig. 2.3 ) [87, 88].
The evolution of the electronic structure for N-stacked graphene layers in the
rhombohedral configuration is even more particular [76,89]. For a finite number
of layers N all the dimer orbitals can be excluded in the first approximation as
it was done in order to arrive at the effective Hamiltonian (2.11). Thus, due
to the spatial inversion symmetry only one non-dimer site per surface remains.
Consequently the effective Hamiltonian for the low-lying band can be written
as [76]:

Heff
~K, ~K ′

= −(~vF )
N

tN−1

(

0 k∗N

kN 0

)

. (2.16)

Therefore we have a power-law dispersion for the low-energy spectrum accord-
ing to E(k) = ±(~NvNF /t

N−1
⊥ )kN as a function of the in-plane moment k around

the valleys K and K ′. This flat band shows another particular characteristic as
the corresponding density of states (DOS) is divergent at zero energy as this is
given by the following equation [89]:

ρ(E) ∝ E(k)(2−N)/N . (2.17)

This divergence is only present at non-dimer sites at the surface since the density
of states for all the dimer sites vanishes around zero energy. The same behavior
is presented for dimer sites in Bernal or ABA multilayer graphene. However, no
singularities are present in this case, only a finite density of states is observed for
non-dimer sites around the Fermi energy [89].

2.2 Superconductivity basics

2.2.1 BCS theory

Superconductivity is the phenomenon whereby the resistance of a metal sponta-
neously drops to zero upon cooling below a critical temperature. Discovered by
the Dutch physicist Heike Kamerlingh Onnes in 1911 [90] while measuring the
resistance of ultrapure mercury cooled by liquefied Helium. A satisfactory un-
derstanding of this phenomenon appeared decades later with the formulation of
the first microscopy theory of superconductivity proposed by Bardeen, Cooper
and Schrieffer [91]. The fundamental idea in the BCS theory is the creation of
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a many-particles bound-state from the formation of Cooper pairs [92]. Since
these Cooper pairs are made of two electrons with opposite spin (in an isotropic
superconductor) and their total spin is zero, they are considered as bosons and
therefore the condensation of all Cooper pairs occurs in the superconducting
ground-state. The absence of resistance at finite temperature is then explained
by the formation of this condensate since scattering of an electron by lattice
vibrations, which is the only mechanism of electron scattering in the absence of
impurities and lattice defects, requires a huge amount of energy, equivalent to the
change of momentum needed to scatter the collective excitation of all the Cooper
pairs involved in the coherent superconducting ground state. Thus, the coherent
propagation of paired electrons in a superconductor is given by this collective
excitation modes of the Cooper pairs with individual size corresponding to the
coherence length predicted by Pippard [93] as a characteristic distance of su-
perconductivity. At this length scale, despite their electrostatic strong repulsion,
paired electrons are indirectly attracted to each other by a weak electron-phonon
interaction [94] which was proven to be the key mechanism for superconduc-
tivity after the observation of the dependence of the superconducting transition
temperature on the Debye frequency in an isotope of mercury [95].
This pairing mechanism as suggested by BCS theory, might lead to an attractive
momentum-independent pairing potential, Vk,k′, which become zero for excita-
tion energies above the Debye energy, with respect to the Fermi level. In ad-
dition, the ground-state must be constructed of pairs according to the following
wavefunction:

ΨBCS =
∏

k

(uk + νkc
†
k↑c

†
−k↓)|0〉, (2.18)

where |0〉 is the ground state and c†k↑ creates an electron with momentum k and
spin ↑. The BCS Hamiltonian capturing this low-energy physics can be written
as follows:

HBCS =
∑

k,σ

ǫkc
†
kσckσ +

∑

k,k′

Vk,k′c
†
k↑c

†
−k↓c−k′↓ck′↑, (2.19)

where the effective interaction Vk,k′ has the form:

Vk,k′ =

{

−g0, for |ǫk| < ωD

0 otherwise
, (2.20)

and ωD is the Debye energy. The long-range aspect of this theory given by the
interaction range of order 1/∆k ∼ vF/ωD ∼ O(ǫF/ωD) × a where a is the
lattice spacing, allows us to obtain a solution of the BCS Hamiltonian (2.19)
through mean-field theory [96]. Defining the operator Λk = c−k′↓ck′↑, the BCS
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interaction term in (2.19) can be expanded in powers of the fluctuation operator
δΛ̂ = Λ̂− 〈Λ̂〉 in the following form:

Λ̂†Λ̂ = 〈Λ̂†〉Λ̂ + Λ̂†〈Λ〉+ 〈Λ̂†Λ̂〉 − δΛ̂δΛ̂. (2.21)

In the thermodynamic limit one can neglect the last term such that the resulting
mean-field Hamiltonian looks like:

HMFT =
∑

kσ

ǫkc
†
kσckσ +

∑

k

[

∆∗
kc

†
k↑c

†
−k↓ +∆kc−k′↓ck′↑

]

+ |∆|2/g0, (2.22)

where the imaginary expectation value ∆k = −g0
∑

k〈c−k↓ck↑〉 is defined as the
superconducting order parameter.
A more compact notation allows us to re-write the mean-field Hamiltonian (2.22)
unifying kinetic and and pairing terms in a single matrix by using Nambu spinors
ψ† = (c†k↑, c−k,↓) [97]:

HMFT = ψ†
k

(

ǫk ∆
∆∗ −ǫk

)

ψk +
|∆|2
g0

. (2.23)

Diagonalizing this Hamiltonian by using an unitary transformation of the Nambu
spinors according to the following Boguliubov-Valatin transfomations [98, 99]:

ck↑ =
∑

n

(uikγn↑ − νi∗k γ
†
k↓), (2.24)

ck↑ =
∑

n

(uikγn↓ + νi∗k γ
†
k↑), (2.25)

where electron and holes are mixed by the quasi-particle operators γk and γ†k,
leads to:

H = E0 +
∑

k

Ek(γ
†
k↑γk↑ + γ†k↓γk↓). (2.26)

E0 can be interpreted as a ground-state energy and the excitation spectrum is
given in terms of single-particle energy ǫk according to [100]:

Ek = (ǫ2k +∆2
k)

1/2. (2.27)

A minimum excitation energy, when ǫk = 0, evidences the gap energy character
of the order parameter ∆k. A clearer picture of this characteristic for isotropic
superconductor, where ∆k = ∆s is momentum-independent, can be observed
in the density of states which is defined as N(E) =

∑

k δ(E − Ek). In the
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continuum limit, the summation can be replaced by an integration over the k-
points and introducing the excitation energies (2.27) we obtain:

N(E) =

∫

dǫk
4π

δ(E − (ǫ2k +∆2
s)

1/2). (2.28)

Using the property of the Dirac function δ(f(x)) =
∑

i δ(x − xi)f
′(xi), where

xi are the roots of f(x), we have that the density of states has the form:

N(E) ∼
{

E/(E2 −∆2
s)

1/2, for E > ∆s

0, for E < ∆s
. (2.29)

Notice that the density of states (2.29) describes the absence of quase-particles
states in a superconducting gap of size 2∆s surrounded by squared-root singu-
larities named coherence peaks.

2.2.2 Inhomogenous superconductivity: The Bogoliubov de

Gennes equations

The lacking of the translational invariance induced by the presence of lattice de-
fects, impurities or interfaces, makes a k-space description, as it was done so far
in the Hamiltonian (2.21), not suitable. Instead, a description of the BCS Hamil-
tonian in the real space is required. For solving this issue, a reduced attractive
Hubbard model is assumed, where the main features of the BCS theory in (2.19)
are captured by the following Hamiltonian, written in second quantization for-
malism:

H =
∑

<i,j>,σ

[−tij − (µ− εi)δij]c
†
iσcjσ +

∑

i

Uic
†
i↑ci↑c

†
i↓ci↓, (2.30)

where tij is the hopping parameter between the nearest-neighbors 〈ij〉, εi is the
impurity on-site energy and µi is the chemical potential which shifts the Fermi
level. The on-site attractive potential, Ui, describes the attractive correlations
between electrons with opposite spin sitting on the same atomic site. In this way,
the Hubbard Hamiltonian models effectively the usual electron-phonon coupling
mechanism in conventional superconductors, where vibrations of the lattice cre-
ated by electrons, affect in turn other electrons, giving rise to an attractive inter-
action, which overcomes the repulsive Coulomb correlations.

The same approach as the one considered in (2.22) can be used to approxi-
mate the complex many-body problem with interactions to a single-particle one,
where an average potential replaces the interaction of all the other particles on
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an arbitrary particle. The following mean-field Hubbard Hamiltonian is deduced
from the mean-field approach:

H =
∑

<i,j>,σ

(−tij − µiδij)c
†
iσcjσ +

∑

i

(∆ic
†
i↑c

†
i↓ +∆∗

i ci↓ci↑), (2.31)

where ∆i = Ui〈ci↑ci↓〉 is the superconducting order parameter and we have ne-
glected the Hartree-shift in the last term of (2.22), which can be absorbed by the
chemical potential leaving the properties of the superconducting order parameter
unaffected.
Such a Hamiltonian, described by Eq. (2.31), can be diagonalized by an appro-
priate transformation of the fermionic operators as follows:

ci↑ =
∑

n

(uinγn↑ − νi∗n γ
†
n↓), (2.32)

ci↓ =
∑

n

(uinγn↓ + νi∗n γ
†
n↑). (2.33)

This canonical transformation was introduced independently by Bogoliubov [98]
and Valatin [99] in 1958. By replacing (2.32) and (2.33) in (2.31) it can be shown
that Hamiltonian matrix has a diagonal form, in analogy with the representation
of Eq. (2.26) in the k-space, for those values of uin and νin satisfying the following
Bogoliubov-de Gennes (BdG) equations:

(

Ĥ0 ∆̂

∆̂† −Ĥ0

)(

Un

Vn

)

= En

(

Un

Vn

)

(2.34)

with the vectorsU †
n = (u1n, u

2
n, ..., u

N
n ) and V †

n = (ν1n, ν
2
n, ..., ν

N
n ). TheN×N ma-

trix Ĥ0 in the BdG Hamiltonian (2.30) corresponds to the tight-binding Hamil-
tonian of the normal states for electrons, which involves the hopping parameter
t between nearest neighbors and the chemical potential µ of Hamiltonian (2.31).
Meanwhile, the elements of the diagonal matrix ∆̂ correspond to the on-site or-
der parameters of the N atomic sites of the lattice. On the other hand, −Ĥ0

represents the normal state Hamiltonian for holes while the entries of the diag-
onal matrix ∆̂† are the complex conjugated of the on-site order parameter. The
states (Un, Vn)

†, mixing electron and holes, together with En define a eigenvalue
problem from which physical properties can be calculated. For instance, using
the transformations from Eqs. (2.32) and (2.33) we have that:

∆i = Ui〈ci↑ci↓〉
= Ui〈

∑

n,n′

(uinγn↑ − νi∗n γ
†
n↓)(u

i
nγn↓ + νi∗n γ

†
n↑)〉

= Ui

∑

n

uinν
i∗
n (1 + 2fn), (2.35)
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where we have taken into account that the fermionic operator obeys the Fermi
statistic 〈γ†n↑γn↑〉 = fn = 1/[exp(βEn) + 1]. A self-consistent estimation of the
order parameter can be performed through Eq. (2.35).

2.3 The Chebyshev-Bogoliubov-de Gennes method

A self-consistent solution for the spatially-dependent order parameter is known
to provide a suitable way to solve the Bogoliubov de-Gennes equations (2.30) in
real space. To compute the order parameter, a numerical treatment of the BdG
equations (2.30) is usually needed. Nonetheless, according to the dimension of
the system, i.e., the number of atoms involved, the performance of these numer-
ical methods could demand considerable amount of computational resources.
For our particular case, the most immediate solution is the direct diagonalization
of the BdG Hamiltonian (2.30), providing the eigenvectors and eigenvalues re-
quired for the calculation of the order parameter. Diagonalizing this matrix is
appropriate in case of finite systems for low dimensions, D, of this matrix. For
large systems this method is almost intractable since numerical effort scales as
D3. This also corresponds to the case of Hermitian matrices as those described
by the BdG Hamiltonian (2.30), where the dimension D is twice the number
of atomic sites. Thus, a moderate number of atomic sites involving hundreds
or few thousands of atoms will imply an already large amount of memory and
a considerable number of computational operations. An alternative method for
studying large sparse matrices is the recursive Lanczos method [101]. Based on
a tri-diagonalization of the matrix in question, the new basis (where the matrix is
in fact tridiagonal) obtained through a recursive procedure allows the calculation
of the local spectral density or Green function:

Gij = 〈ci|[EI − H]−1|c†j〉, (2.36)

where |c†i〉 = c†i |0〉 creates an electron at the atomic site i where |0〉 is the ground
state Once the Green function is known, eigenvalues are extracted from its ze-
ros, or conversely physical properties can be directly calculated. The former
case holds, for instance, for the local density of states, which corresponds to the
imaginary part of the local spectral function according to:

Ni(E) = −1

π
ImGii(E + iη), (2.37)

where η is a small energy. The Lanczos method proved to be efficient for
the approximation of the Green functions and for solving self-consistently the
Boguliubov de-Gennes equations [102, 103]. In spite of this, instabilities in the
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numerical algorithm eventually appear, as the basis loses orthogonality during
the recursive procedure. A different approach for the computation of the Green
function (2.36) is achieved by using an expansion in terms of Chebyshev poly-
nomials. Implemented through the kernel polynomial method (KPM) [104],
computational resource consumption scales linearly with the dimension D of
the matrix since the most consuming operations consist of multiplications of
sparse matrices with vectors. The computational cost of the iterative procedure
is similar or slightly better if compared to the Lanczos method. However, it
has been demonstrated that the Chebyshev expansion offers certain advantages
in terms of precision and stability for matrices with dimension D larger than a
million [105]. In addition, this expansion allows us to calculate real and imag-
inary dynamical correlation functions and spectral functions over the whole en-
ergy range at once. Unlike the Lanczos method, where different calculations
of the continued fraction are needed in order to find the Green function for dif-
ferent energies. The Chebyshev expansion method has been successfully ap-
plied in different problems in solid-state physics [106–110]. In particular, this
method becomes very efficient when implemented for solving Boguliubov de-
Gennes equations in the case of inhomogeneous superconductivity [111]. In
order to implement the Chebyshev expansion technique, Covaci and co-workers
described normal-superconducting transition by using a method developed by
Gor’kov [112] which leads to two coupled “normal” and “anomalous” Green
functions. These Gor’kov-Green functions measure the different pair correla-
tions according to the following 2 × 2 matrix written within the Nambu formal-
ism [97]:

Ĝ(t− t′) = − i

~

(

〈T ci↑c†j↑〉 〈T ci↑cj↓〉
〈T c†i↓c

†
j↑〉 〈T ci↓c†j↓〉

)

, (2.38)

where the operator T denotes the time-ordering operator. Changing this expres-
sion under a temporal Fourier transform leads to:

Ĝ(ω) =
(

Gij(ω) Fij(ω)
F ∗
ij(ω) −Gij(ω)

)

, (2.39)

where ω is the energy. The upper left element, resembling the ordinary electron
correlation of Eq. (2.36), corresponds to the “normal” Green function, which is
defined by the following expectation value:

Gij(ω + iη) = 〈ci↑|
1

ω + iη −H|c†j↑〉, (2.40)



26 THEORETICAL FRAMEWORK AND NUMERICAL METHODS

while the upper right term, named “anomalous” Green function, accounting for
the spin-opposite pair correlation, is given by the expression:

Fij(ω + iη) = 〈ci↑|
1

ω + iη −H|cj↓〉. (2.41)

Gor’kov function (2.39) satisfies the equation (ωI − H)Ĝ(ω) = I and it is fea-
sible to find that the anomalous Green function determines the order parameter
function:

∆i = − iUi

2π

∫

Fii(ω + iη)(1− 2f(ω))dω, (2.42)

where Ui is the on-site pair potential and f(ω) corresponds to the Fermi dis-
tribution in analogy with expression (2.35). Thus, the normal and anomalous
Gor’kov-Green functions provide an useful tool for solving self-consistently the
BdG Hamiltonian of Eq. (2.30). As it can be observed from Eq. (2.42) solu-
tion is given separately for each lattice point. As was demonstrated by Covaci
and co-workers, the expansion of both spectral functions in terms of Chebyshev
polynomials offers a powerful alternative route for solving BdG equations in in-
homogeneous systems, since limitations imposed by the size of the system can
be avoided.

2.3.1 Basic properties of Chebyshev polynomials

Before giving an explicit expression of the Chebyshev expansion, it is worth
recalling some basic features of the Chebyshev polynomials. Chebyshev poly-
nomials are a particular set of polynomials satisfying orthogonality relations and
therefore an useful tool for the expansion of integrable functions. For this pur-
pose, Chebyshev polynomials are an optimal choice since their expanded series
has a good convergence and a close relation to Fourier transforms. Defined on
the interval [−1, 1], there are two types of Chebyshev polynomials distinguished
by their respective weight function. For instance, Chebyshev polynomials of the
first kind Tn with weight function w(x) = (π

√
1− x2)−1, define the following

orthogonality relation:

〈Tn|Tm〉 =
∫ 1

−1

Tn(x)Tm(x)

π
√
1− x2

dx =
1 + δn,0

2
δn,m. (2.43)

An explicit expression for these Chebyshev polynomials is deduced from the
latter orthogonality relation as follows :

Tn(x) = cos[n arccos(x)], (2.44)
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which satisfies the following recurssion relations:

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x). (2.45)

In the same way, the Chebyshev polynomial of second kind Un are defined ac-
cording to the weight function w(x) = π

√
1− x2 as follows:

Un(x) =
sin[(n + 1) arccos(x)]

sin[arccos(x)]
. (2.46)

Both sets of Chebyshev polynomials are related by the Hilbert transformation:

P
∫ 1

−1

Tn(y)dy

(y − x)
√

1− y2
= πUn−1(x). (2.47)

2.3.2 Expansion of the Gor’kov-Green functions

An integrable function f(x) defined within the interval [−1, 1] can be expanded
in terms of Chebyshev polynomials of the first kind as follows:

f(x) =
1

π
√
1− x2

[

a0 + 2

∞
∑

n=1

anTn(x)

]

, (2.48)

where the pre-factor 1/(π
√
1− x2) is included such that the integral which de-

fines the moments becomes independent of the weight function as follows:

an =

∫ 1

−1

f(x)Tn(x)dx. (2.49)

Hence, the form of the above integral allows us to use the relations (2.45) for the
recursive calculation of these modified moments.
To further expand normal and anomalous Green functions, a dynamical corre-
lation function for two arbitrary fermionic operators Â and B̂ is defined as fol-
lows [104]:

〈Â; B̂〉ω = lim
η→0

〈0|Â 1

ω + iη −HB̂|0〉

= lim
η→0

D−1
∑

k=0

〈0|Â|k〉〈k|B̂|0〉
ω + iη −Ek

, (2.50)
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where Ek corresponds to the eigenvalues of the Hamiltonian H in the basis ex-
tended by the eigenstates |k〉 and η is a small positive number. After decom-
posing the dynamical correlation function by using the Plemelj-Dirac formula:
limη→0 1/(x + iη) = P(1/x) − iπδ(x), an expansion in terms of Chebyshev
polynomials of the first kind is performed for the imaginary part of the func-
tion (2.48):

Im〈Â; B̂〉ω = π
D−1
∑

k=0

〈0|Â|k〉〈k|B̂|0〉δ(ω −Ek) (2.51)

= − 1√
1− ω2

(

a0 + 2
∞
∑

n=1

anTn(ω)

)

. (2.52)

By performing the integral (2.49) one can arrive at the following expectation
value for the calculation of the moments as follows:

an =
1

π

∫ 1

−1

Im〈Â; B̂〉Tn(ω)dω

=
D−1
∑

k=0

〈0|Â|k〉〈k|B̂|0〉Tn(Ek)

=

D−1
∑

k=0

〈0|ÂTn(H)|k〉〈k|B̂|0〉

= 〈0|ÂTn(H)B̂|0〉. (2.53)

On the other hand, a expression for the real part of Eq. (2.50) can be achieved
once the imaginary part is obtained. According to the Plemelj-Dirac formula and
the sifting property of the Dirac delta function we find that:

Re〈Â; B̂〉 = −1

π
P
∫ 1

−1

Im〈Â; B̂〉
ω − ω′

dω′

= −2

∞
∑

n=1

anUn−1(ω), (2.54)

where the expansion in Eq. (2.52) and the Hilbert transform of Eq. (2.47) have
been used. Mixing the expanded real and imaginary parts we obtain the full
correlation function in terms of Chebyshev polynomials [104]:

〈Â; B̂〉ω =
−i√
1− ω2

[

a0 − 2
∞
∑

n=1

an exp(−i arccosω)

]

. (2.55)
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This expansion of the dynamical correlation function can be used for the calcula-
tion of the different components of the full Green-Gor’kov functions. Replacing
Â = ci↑ and B̂ = c†j↑ we have that normal Green function in Eq. (2.40) is ex-
panded by the series of Eq. (2.55) where the moments are given according to the
following expecting values:

a11n = 〈ci↑|Tn(H)|c†j↑〉. (2.56)

Likewise, the anomalous Gor’kov-Green function can be reconstructed from the
moments:

a12n = 〈c†i↓|Tn(H)|c†j↑〉∗. (2.57)

2.3.3 Implementation details

Moments can be calculated by using Eqs. (2.56) and (2.57) once the Hamilto-
nian is rescaled such that the energy spectrum lies in the interval [−1, 1]. We
therefore have to normalize the Hamiltonian and all energy arguments through
the following linear transformations:

H̃ =
H− bI

a
, Ẽ =

E − b

a
, (2.58)

where the rescaling parameters are given by the maximum and minimum eigen-
values of the Hamiltonian according to:

a =
Emax − Emin

2− ǫ
, b =

Emax + Emin

2
. (2.59)

The Emax and Emin bounds of the spectrum could be obtained analytically or esti-
mated numerically through a Lanczos method since the accuracy is not essential.
Furthermore, whether the rescaled energies include or exceed the edges of the
interval [−1, 1] a small cut-off parameter ǫ is introduced in order to avoid insta-
bilities.
Once the Hamiltonian and its eigenvalues are properly rescaled, we proceed to
the calculation of the states |jn〉 = Tn(H)|c†j↑〉 in order to evaluate the expec-
tation values of Eqs. (2.56) and (2.57). This can be performed by successive
applications of the Hamiltonian, according to the recursive relations between the
Chebyshev polynomials of Eqs. (2.45):

|jn〉 = [2HTn−1(H)− Tn−2(H)] |c†j↑〉
= 2H|jn−1〉 − |jn−2〉, (2.60)

with the first two elements of the expansion given by |j0〉 = T0(H)|c†j↑〉 = |c†j↑〉
and |j1〉 = T1(H)|c†j↑〉 = H|c†j↑〉. Note that the calculation of these recursive
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Figure 2.4: Chebyshev expansion of the (left) imaginary part of the normal Green func-

tion and (right) real part of the anomalous Green function with N = 1024 expansion

coefficients based on different kernels functions.

states are at the core of the Chebyshev expansion method. Moments are finally
obtained from iterative states from internal products a11n (i, j) = 〈ci↑|jn〉 and

a12n (i, j) = 〈c†i↓|jn〉 for the normal and anomalous Gor’kov-Green functions re-
spectively.
However, a real numerical implementation of this method requires that the sum-
mation in Eq. (2.55) must be truncated at some finite order N . Keeping a finite
number N in the series (2.55) of terms might introduce some imprecisions in
the approximation and fluctuations around discontinuity points of the integrable
function. These fluctuations, named Gibbs oscillations, in fact increase with the
frequency or equivalently with the order of the expansion N . To avoid them, a
commonly used method consists in the introduction of a damping factor which
transform the expansion coefficients, µn → gnµn. In a more strictly sense, this
corresponds to the convolution of the expanded function f(x) with a kernel func-
tionKN(x, y) mapped into a function, fKPM, such that in the limit when N → ∞
we have the absolute difference ||f − fKPM|| → 0. The problem is then reduced
to the finding of the optimal kernel function K(x, y), i.e., the damping factors
gn. A summary of different integral kernels can be found in the literature related
to the Chebyshev expansion method [104]. For most of the practical applica-
tions an optimal kernel corresponds to the Jackson kernel KJ

N(x, y) where the
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damping factors are the following:

gJn =
(N − n+ 1) cos(πn/(N + 1)) + sin(πn/(N + 1)) cot(π/(N + 1))

N + 1
.

(2.61)

One way to quantify the error of this approximation is obtained by mapping the
delta function into δKPM with KJ

N(x, y). It can be demonstrated that δKPM can
be approximate by a Gaussian function of width σ = π/N , where N is the
order of the expansion. Recalling the Plemelj-Dirac relation, one can realize
a different approximation for the delta function which is given in terms of the
Lorentz function:

δ(x) = −1

π
lim
η→0

Im
1

x+ iη
= lim

η→0

η

π(x2 + η2)
. (2.62)

This introduce us to an alternative kernel, KL
N , called Lorentz kernel which is

more appropriated for the expansion of Gor’kov-Green function since the fea-
tures of Eq. (2.62) are perfectly mimicked by the divergences at energies close
to the true eigenvalues of the Hamiltonian. The damping factors defined by the
Lorentz kernel have the following form:

gJn =
sinh[λ(1− n/N)]

sinh(λ)
, (2.63)

where the free parameter λ allows us to control the resolution of the approxima-
tion since the broadening of the Lorentzian depends on this parameter according
to ǫ = λ/N .
The expansion of the imaginary and real component of normal and anomalous
Green function in Fig. 2.4 allows us to make a direct comparison between the
convergence of Jackson and Lorentz kernels. Under the same order N of expan-
sion we observed the strong presence of Gibbs oscillation and finite size effect
in the Jackson kernel compared to Lorentz where smooth convergence can be
achieved by adjusting the λ factor. While the Lorentz kernel is the best option
for the approximation of the LDOS obtained from Eq. (2.37), the smoothness
induced by the λ factor may introduce errors in the calculation of the order pa-
rameter through the integral of Eq. (2.42).

2.3.4 Complex absorbing potential

Conventional calculations of the real space electronic structure in solids use open
or periodic boundary conditions with a finite computational unit cell. While
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infinite dimensions are emulated through periodic boundary conditions, open
boundary conditions give rise to non-desired edges or surface states. Inconve-
nient for the calculation of bulk states, open boundary conditions lead to large
dimension systems in order to buffer interference coming from the edge. Peri-
odic boundary conditions are more suitable for bulk characteristics of the system,
where size dependence of the calculation are related to the number of momentum
values needed to achieve convergence. It is a common issue found in quantum
reactive scattering calculations where non-realistic reflections of a wave packet
from the finite grid should be avoided. An alternative to these conventional
boundary conditions is the implementation of an arbitrary absorbing potential.
This procedure has been optimized and applied and have shown a very low re-
flection probability when using small unit cells [113–117]. Following Ref. [114]
we consider an absorbing potential operator Γ̂ such that the normal Hamiltonian
is redefined according to:

Ĥ → Ĥ + Γ̂

where a proper choice requires ImΓ̂ to be negative and ReΓ̂ = 0. It is expected
that a well-behaved absorbing potential eliminates the so-called reflection ef-
fects effectively mimicking an infinite region. It has been shown that absorbing
boundary conditions could be incorporated easily in the Chebyshev expansion of
the Green functions [113] by considering an operator sequence Q̂n(Ĥ, γ) which
satisfies the following recursion formula:

Q̂n+1 = e−γ̂(2ĤnQ̂n − e−γ̂Q̂n−1), (2.64)

with the initial conditions Q̂0 = I and Q̂1 = e−̂γĤ and where e−̂γ is a damp-
ing factor with spatial-dependent operator phase γ̂(~r). Latter recursive proce-
dure corresponds to a more general case than represented in Eq. (2.60) where
the Chebyschev expansion of the Green function in terms of the Q̂n operator is
written as follows:

Ĝ =
1

i

∑

n=0

(2− δn0) e
−inφQ̂n(Ĥ, γ̂)× [sin(φ− iγ̂)]−1 , (2.65)

where φ = arccos(ω̃) being ω̃ the normalized eigenvalues of Ĥ. The relation

between the absorbing potential Γ̂ and the dimensionless damping potential γ̂ is
given by [114]:

Γ̂ = a [cosφ(1− cosh γ̂)− i sinφ sinh γ̂] , (2.66)

where a is the scale parameter from Eq. (2.58). If γ̂ does not depend on the
energy, which makes the operators Q̂n(Ĥ, γ̂) energy independent and which is

the most practical choice, the optical potential Γ̂ will be a function of the energy
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Figure 2.5: LDOS at one of the edges for graphene nanoribbon with width (a)

W =8.52nm and (b) W =85.2nm. (c) Profile of the absorbing potential described

by Eq. (2.71), (d) LDOS at x =0 for a graphene nanoribbon with width W =8.52nm

with the absorbing potential given in (c).

ω [114].
It is easy to demonstrated that under normal conditions, i.e. for Γ̂ = 0, the
Chebyshev expansion of the Green function is:

Ĝ =
1

i

∑

n=0

(2− δn0) e
−inφT̂n(Ĥ)× [sinφ]−1 , (2.67)

where according to the definition of φ the factor sinφ = (1− ω̃2)1/2 corresponds
to the weight function for the Chebyshev polynomials . Note that this factor be-
comes imaginary when the complex potential is taken into account and therefore
an imaginary phase is introduced by the argument of the damping factor:

sin(φ− iγ̂) = (1− ω̃2)1/2 cosh γ̂ − iω̃ sinh γ̂. (2.68)

Nevertheless, by performing calculations only over the region where the com-
plex potential, as well as the damping potential vanishes, this factor reduces ef-
fectively to the usual weight function of the Chebyshev polynomials in Eq. (2.67).
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On the other hand, under the assumption that Γ̂ is a pure negative imaginary op-
erator, we can deduce from a given absorbing potential, Γ̂ = −iV (x), with V (x)
being real, the following approximated x-dependence for the γ̂ operator using
the relation (2.66):

γ̂ = sinh−1(Ṽ (x)). (2.69)

A typical procedure consists in assuming a functional form for the absorbing
potential −iV (x) and then adjust its parameters in order to optimize the absorp-
tion [116].
A trivial example but not the most optimal form of the function V (x), is the
simple linear absorbing potential [118]. Other more complicated forms for the
absorbing potential have been proposed, some of which have a second-order sin-
gularity at the end of the absorbing regions, with exactly transmission free [115,
117].
An example of these functions correspond to the following relation suggested by
Kosloff et al. [119]:

Γ̂(x) = −iV (x) =
−iV

cosh2 [(x− x1)/α]
, (2.70)

where x1 is the end of the absorbing region and the parameter α is a decay fac-
tor. In a more recent calculation of the electrical transport a complex absorption
potential was added to the Hamiltonian of a semi-infinite lead. By solving an-
alytically for the respective a Schrödinger equation the following potential was
deduced [115]:

Γ̂(x) = −iV (x) = −i ~
2

2m

(

2π

∆x

)2

f(y), (2.71)

wherem is the electron mass and ∆x = x2−x1 is the absorbing region, c = 2.62
is a constant and

f(y) =
4

(c− y)2
+

4

(c+ y)2
− 8

c2
, y =

c(x− x1)

∆x
. (2.72)

Following we show some results for the surface local density of states (LDOS)
for a graphene nanoribbon of width W considering an absorbing potential along
the axis parallel to the width direction with spatial dependence given by Eq. (2.71).
Calculations are perfomed by using Eq. (2.37) where the normal Gor’kov-Green
function is obtained from Eq. (2.67). Since, we are including the absorbing
potential, expansion moments are calculated by using the recursive relations
given by Eq. (2.64). As observed in Fig. 2.5(a) for a graphene nanoribbon with
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W =8.52nm, LDOS at one of the edges shows a series of peaks which cor-
respond to the appearance of sub-bands. The same plot for a wider graphene
nanoribbon with W =85.2nm shows that these peaks tend to disappear as long
as the edge states are more separated (see Fig. 2.5(b)). Surprisingly, the effect
of a wider graphene nanoribbon can be achieved with a shorter width by in-
cluding an absorbing potential at the opposite edge in the way that is shown in
Fig. 2.5(c). We see that sub-bands peaks disappear as the absorbing potential at
one edge emulate effectively a semi-infinite lead.

2.4 GPU computing

The most demanding computing effort of Chebyshev-Bogoliubov-de Gennes
method relies on the iterative relation needed for the recursive calculation of the
moments. As it can be observe from Eq. (2.60), this iterative procedure mainly
involves successive multiplication of Hamiltonian matrix, defined from Eq. 2.34,
with the iterative vectors. Most of the entries in the BdG matrix Hamiltonian are
zero and therefore this can considered as a sparse matrix. The sparsity nature of
this matrices allows us to exploit the fine-grained parallelism in sparse matrix-
vector multiplication (SpMV). Realizing this potential, SpMV computation is
optimized by using hardware multithreading where sparse algebra is executed
in parallel through thousands or tens of thousands of threads. This through-
put optimization is expected to provide abundant parallelism different from the
latency-oriented CPU processors where the computing architecture is aimed at
improving transistor performance in order to minimize the running time of se-
quential tasks. A example of throughput-oriented many-core processors are the
graphic processors units (GPUs). The high-performance computing of GPUs
takes advantage of a large number of execution threads, sacrificing the single-
thread execution speed, in order to increase the total amount of work completed
for by the threads in a unit of time. It has been demonstrated that SpMV com-
putation can be successfully mapped onto the fine-grained parallel architecture
employed by the GPU [120]. In Fig. 2.6 we shown a comparison between the
performance of SpMV operations executed both in a GTX460 Nvidia GPU and
an Intel Pentium CPU. In this case, calculation is performed by 16384 iterations
for a graphene grid of size N ×N . As we can observe in Fig. 2.6, the execution
time increases dramatically with the size of the grid by performing the itera-
tive calculation using CPU. On the contrary, performance on GPU gets better as
size of the grid is increased, showing that a high speed-up can be achieved by
implementing parallel computation on GPU.
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3
Tight-binding study of bilayer

graphene Josephson junctions

In this chapter, we solve self-consistently for the pair correlation and the Joseph-
son current in a superconducting-bilayer graphene-superconducting Josephson
junction by using highly efficient simulations of the tight-binding Bogoliubov-
de Gennes model. Different doping levels for the non-superconducting link are
considered in the short and long junction regime. Self-consistent results for the
pair correlation and superconducting current resemble those reported previously
for single layer graphene [121] except at the Dirac point where remarkable dif-
ferences in the proximity effect are found as well as a suppression of the super-
conducting current in the long junction regime. Inversion symmetry is broken by
considering a potential difference between the layers and we found that the su-
percurrent can be switched if the junction length is larger than the Fermi length.

3.1 Introduction

When in contact to superconductors, graphene exhibits exotic superconducting
properties. Although graphene was not found to sustain intrinsic superconduc-
tivity itself, there is experimental evidence [58, 63, 64, 122, 123] that when in
proximity with a conventional superconductor it becomes superconducting. Be-
cause of the conventional superconducting proximity effect, which describes
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how Cooper pairs diffuse from the superconducting material into metals, su-
perconducting hybrid structures like superconducting-normal-superconducting
(SNS) Josephson junctions are interesting systems in which one can study elec-
tronic correlation of relativistic-like particles. In the ballistic regime, which
is realizable in SNS graphene Josephson junctions according to recent experi-
ments [62, 63], theoretical studies have shown the existence of a finite bipolar
superconducting current through the junction [59, 121, 124–126]. With a gap-
less parabolic, instead of linear, band structure, bilayer graphene (BLG) appears
at this point as a suitable alternative for investigating electronic correlations in
two dimensional systems. Also, as it is widely known theoretically and exper-
imentally, a tunable gap can be induced in BLG by an out-of-plane applied
electric field, which is very useful for transistor applications [9, 81]. We ex-
pect that the role of the gapless parabolic dispersion may be important since
the superconducting correlations depend strongly on the electronic properties
of the material. Moreover, the ability to open a gap in the spectrum by an
external electric field could be of interest in superconducting devices. Within
a tight-binding Bogoliubov-de Gennes formalism we calculate self-consistently
the pair correlation and the Josephson current through a Superconducting-BLG-
Superconducting Josephson junction.

3.2 Model System

We study the Josephson effect in a BLG-based junction by considering the hy-
brid nano-structure illustrated in Fig. 3.1. We consider a bilayer graphene in the
common AB (Bernal) stacking as it was described in Sub-section 2.1.3. The top
and bottom layers are both in contact with superconducting leads while a junc-
tion of size L is suspended. The influence of the superconducting contacts is
modeled by assuming an on-site attractive pairing potential, US < 0 and heavy
doping, µS > 0 in the contact regions, which are labeled by S, such that a s-wave
superconducting state is induced in the outermost regions of both layers. The
normal region labeled by N, which has a tunable Fermi level µN and zero pair-
ing potential, UN = 0, acts like a non-superconducting channel through which
Cooper pairs could tunnel. Similar models for graphene based Josephson junc-
tions were previously considered in the Dirac limit [59, 124–126] as well as in
the tight-binding formulation [121, 127, 128]. We solve self-consistently for the
order parameter along the junction following closely the self-consistent calcu-
lation performed in Ref. [121] for a ballistic single-layer graphene Josephson
junction. This is necessary in order to consider the possibility of Cooper pairs
being depleted close to the interface in the superconducting region due to the
existence of the normal region, i.e. the inverse proximity effect. As is usually
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Figure 3.1: Layout of the SNS-BLG Josephson junction where the superconducting leads

are modeled by assuming on-site attractive pairing potential US and a heavy doping µS

in the regions under the contacts labeled by S. For the non-superconducting link, with

length L and labeled by N, we took the pairing potential UN = 0 and a varying chemical

potential µN . Phases φL and φR are kept fixed during the self-consistently calculation.

assumed for SLG-based junctions we consider a clean and smooth interface such
that all physical quantities are homogeneous along the x̂-direction parallel to the
interface. In addition, we have considered a wide junction, with widthW >> L,
as well as periodic boundary conditions imposed along the ŷ-direction. The lat-
ter assumptions make it possible to reduce the self-consistent calculation of the
order parameter from a two-dimensional problem to a one-dimensional one since
we can restrict the calculation to only a unit cell along the ŷ-direction perpen-
dicular to the interface. It is worth mentioning that the pairing potential does
not distinguish between the sublattices defined on either layer. However, due to
the interlayer coupling, the self-consistent calculation should be performed sep-
arately for only two inequivalent sites A and B (or Ã and B̃) within the unit cell.
The breaking of the inversion symmetry, which is easily achieved by considering
a potential difference applied between the layers, makes it necessary to perform
the self-consistent calculation for all four sub-lattice types within the unit cell.

In order to describe the DC Josephson effect we fix the difference in the
phases of the order parameter, ∆φS = φR − φL, in the outermost parts of the S

regions (see Fig. 3.1). In a finite region near the interfaces, with size of the order
of the coherence length, the order parameter is allowed to relax self-consistently.
Therefore the phase gradient over the non-superconducting region ∆φN will be
restricted according to ∆φN ≤ ∆φS ≤ π, considering that the maximum value



40 TIGHT-BINDING STUDY OF BILAYER GRAPHENE JOSEPHSON JUNCTIONS

of ∆φS is π. This constraint for ∆φN was recently pointed out by Black-Shaffer
et al. [121] in a SLG-based ballistic junction.

3.3 Numerical Method: Chebyshev expansion of the

Green’s function

Superconducting correlations are described by using the tight-binding Hamilto-
nian with on-site attractive Hubbard interactions (2.30). Write in a convenient
form for BLG-based Josephson junction it has the following form:

H = −
∑

〈i,j〉σ

t
(

c†iσcjσ + c̃†iσ c̃jσ

)

− t⊥c
†
iσ c̃jσ

−
∑

iσ

(µi + ǫ1) c
†
iσciσ + (µi + ǫ2) c̃

†
iσc̃iσ (3.1)

+
∑

i

Ui

(

c†i↑ci↑c
†
i↓ci↓ + c̃†i↑c̃i↑c̃

†
i↓c̃i↓

)

,

where c̃†i↑|vac〉 creates a spin-up electron on the i-site in the top layer whereas
cj↓|vac〉 creates a spin-down hole on the j-site in the bottom layer. The hop-
ping parameter, t, describes the intra-layer hopping integral between next-nearest
neighbors in the same layers while t⊥ = 0.143t correspond to the interlayer
nearest-neighbors hopping which couples the dimer sites Ã and B. Other hop-
ping terms, like the interlayer coupling between the non-dimer B̃ and A sites, are
not considered in the present work, since they influence only very low-energy
excitations. The Fermi level is shifted from the charge neutrality point or Dirac
point by the chemical potential µi and Ui is the on-site attractive pairing potential
which is non vanishing only in the right and left superconducting regions. The
on-site energies ǫ1 and ǫ2 for atomic sites on the top and bottom layer, respec-
tively, have been introduced in order to simulate a potential difference or gate
voltage Vg = ǫ1 − ǫ2 between the layers.

By using the Hartree-Fock decomposition and keeping only terms relevant to
the superconducting order, one can transform the many-body Hamiltonian (3.1)
into a mean-field single-particle Hamiltonian, which within the Nambu formal-
ism can be written as follows:

H =
∑

〈i,j〉

(

c†i↑ c̃
†
i↑ ci↓ c̃i↓

)

(

Ĥ0 ∆̂

∆̂† −Ĥ†
0

)









ci↑
c̃i↑
c†i↓
c̃†i↓









, (3.2)
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where Ĥ0 and ∆̂ are the following 2× 2 matrices:

Ĥ0 =

(

ǫ1 + µi 0
0 ǫ2 + µi

)

(−δij)−
(

t t⊥
t∗⊥ t∗

)

(1− δij), (3.3)

∆̂ =

(

∆i 0

0 ∆̃i

)

δij , (3.4)

where the diagonal elements of the matrix (3.4) correspond to the on-site mean-
field superconducting order parameter ∆i = Ui〈ci↑ci↓〉.

Following methodology shown in Section 2.3 we have performed the self-
consistent mean-field calculation through a numerical approximation of the Gorkov
Green’s function by using the Chebyshev-Bogoliubov-de-Gennes method. Both,
the normal and anomalous Gorkov Green’s function, can be approximated by a
superposition of a finite number of Chebyshev polynomials as follows:

G1α
ij (ω̃) =

−2i√
1− ω̃2

[

N
∑

n=0

a1αn (i, j)e−in arccos(ω̃)

]

, (3.5)

where the expansion coefficients for the diagonal, or normal (α = 1), and the
off-diagonal, or anomalous (α = 2), components of the 2×2 Green function are
defined respectively as [111]:

a11ij (ω) = 〈ci↑ |Tn(H)| c†j↑〉, (3.6)

a12ij (ω) = 〈c†i↓ |Tn(H)| c†j↑〉∗, (3.7)

where Tn(x) = arccos(n cos(x)) is the Chebyshev polynomial of order n.
Physical quantities, like the local density of states, the pair correlation func-

tion and the Josephson current, can be easily determined once the Green’s func-
tions are known:

Ni(ω) = −2

π
ImG11

ii (ω), (3.8)

〈ci↑ci↓〉 =
i

2π

∫ Ec

−Ec

G12
ii (ω)(1− 2f(ω))dω, (3.9)

and

Jij = −1

π

∫

[

itijG
11
ij (ω)− it∗ijG

11∗
ij (ω)

]

f(ω)dω, (3.10)
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respectively [111]. Since most of the computational effort corresponds to sparse
matrix-vector and vector-vector multiplication, high speed-up can be achieved
by implementing parallel computation on graphical processing units (GPUs).
We are therefore able to solve efficiently systems described by matrices of sizes
2N×2N , whereN is the number total of lattice sites which lies between 44×103

and 160 × 103 atoms according to the junction size considered in this study.
Note that for system size of this order the direct diagonalization of the Hamilto-
nian matrix is not possible. Additional parallel computations can be implement
by considering that all physically quantities calculated here, such as density of
states, pair correlation or the Josephson current, can be obtained from the Green’s
function for each lattice point separately.

3.4 Results

It is well-known that the energy dispersion in SLG and BLG differ around the
neutrality point. Therefore, qualitative differences are expected in the proximity
effect as well as in the Josephson current in the two systems. For a quantitative
comparison between SLG and BLG Josephson junction we have set up the fol-
lowing values for the physical input parameters: US = −1.36t = −3.4eV and
µS = 0.6t = 1.5eV, similar to the values used in a previous self-consistent study
for ballistic SLG Josephson junctions [121]. These parameters lead to a finite
s-wave bulk superconducting order parameter, ∆0 = 0.041t, which corresponds
to a superconducting coherence length ξ = ~vF/∆0 ≈ 33a, where a is the C-C
inter-atomic distance, similar to the one considered in the SLG junction case.
Due to the difference in the local density of states between dimer and non-dimer
locations, the order parameter is slightly different for these two types of atoms.
Both junction length regimes are solved with the proposed self-consistent nu-
merical method, e.g. short junction for L < ξ and long junction for L > ξ. For
both cases the width of the samples has been chosen as the minimal value of the
ratio L/W for which no important variations of the pair correlation are observed
when increasing the width of the junction. For short and long junction it was
found that L/W = 0.05, 0.1, respectively, were necessary in order to avoid a
relevant width dependence of the results.
Previous analytical descriptions of BLG Josephson junctions based on the Dirac
equation [125, 129] requires smooth interfaces and a low energy regime, for
which ∆0 << t⊥ << µS . Here these restrictions are lifted but in order to
compare with relevant experimental scenarios we performed calculations only
for situations corresponding to ∆0 < t⊥ < µS.
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3.4.1 Proximity effect

We show in Fig. 3.2 the self-consistently calculated pair correlation 〈ci↑ci↓〉 for
both inequivalent sites, A (dimer) and B (non-dimer), in a unit cell defined along
the ŷ-direction perpendicular to the interface. As was previously mentioned,
both long and short junctions are considered here and plotted in Figs. 3.2(a) and
3.2(b), respectively. We present the pair correlation function for several dop-
ing levels in the non-superconducting region showing that the proximity effect
is strongly dependent on the relative Fermi level mismatch (FLM) between the
S and N regions. A significant difference between BLG and SLG can be seen
for the undoped case (µN = 0) while for other dopings the pair correlation ex-
hibits similar behavior in BLG and SLG. In particular, we can see that in the
undoped case dimer sites in BLG show a suppression of the pair correlation over
the N region compared to the SLG case. Opposite behavior is seen for non-dimer
sites where a larger pair leakage into N is found. This behavior is similar to the
proximity effect in strained graphene where a sublattice polarization of the local
density of states in the zeroth pseudo-Landau level induces sub-lattice dependent
leaking distances [128]. No relevant differences in the pair correlation profile are
found between dimer and non-dimer sites in BLG for the higher doping levels
considered here: moderately doped µN = 0.3t and highly doped µN = 0.6t.
Note also in Fig. 3.2(b) that the reported interlayer asymmetry in the pair corre-
lation in BLG is found to be not important for the short junction regime. In fact,
we can clearly see in Fig. 3.2(c) that the difference between the pair correlation
at sites A and B becomes larger as the junction length is increased, as large as a
few orders of magnitude.

3.4.2 LDOS

To further understand this peculiar behavior observed only in the undoped case
we plot the local density of states (LDOS) in the superconducting and non-
superconducting regions. The LDOS is plotted for dimer (A) and non-dimer (B)
lattice sites across the junction in the long junction limit where we have previ-
ously found differences in the proximity effect between SLG and BLG Josephson
junctions. Three particular cases have been chosen and shown in the top panels
of Fig. 3.3. Panel (a) shows the LDOS for two sites in the middle of the N region
for the undoped case, whereas, in panel Fig. 3.3(b) we have depicted the LDOS
for the same locations but when there is no-FLM, i.e. the doping is the same
throughout the graphene layer. Results shown in Fig. 3.3(a)-(b) are consistent
with the fact that the density of states at dimer sites vanishes linearly around the
Dirac point, while being finite at the non-dimer sites [9,89], as this can be clearly
seen in the inset of Fig. 3.3(b). Due to the differences in the LDOS for inequiv-
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Figure 3.2: Absolute value of the pair correlation in a long (a) and short (b) BLG

Josephson junction as a function of the position along the ŷ-direction perpendicular

to the SN interface. Each unit cell has a length equal to 3a/2 where a is the in-plane

interatomic distance. Both inequivalent sites, dimer at A and non-dimer at B, are plotted

separately for different doping levels considered for the non-superconducting region:

µN = 0, 0.3t and 0.6t. The first one corresponds to the case when the Fermi level is

pinned at the Dirac point while the last one corresponds to no-FLM at the interface.

(c) Pair correlation at L/2 in the N region as a function of the junction length L for

different values of µN . SLG self-consistent results are shown for comparison with the

BLG undoped case.

alent sites in BLG, the proximity effect will give different leaking distances in
different sub-lattices, as we show in Fig. 3.2(c) for the undoped case. In fact,
the inset of Fig. 3.3(d) shows a better appreciation of the LDOS of Fig. 3.3(d)
around the Dirac point where we notice the formation of Andreev states for a
non-dimer site in the middle of the undoped N region. For the cases of dimmer
sites and for SLG, where we have a vanishing density of states at the Dirac point,
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we find that the Andreev peaks are strongly suppressed. In addition, we show in
Fig. 3.3(d) the energy gap at the interface where the coherence peaks are more
pronounced at the non-dimer sites in comparison to the dimer sites and the SLG
junction.

Increasing the doping level in the normal region makes the LDOS more ho-
mogeneous. This result is consistent with the fact that no difference between
both kind of sites is observed for the other doped cases in the pair correlation
function shown in the previous section. Finally, Fig. 3.3(c) shows the LDOS
deep inside the superconducting region where we can clearly see the coherence
peaks on each side of the superconducting gap. Note that the LDOS becomes ho-
mogeneous in both sublattices and resembles the one of SLG one for the highly
doped case, and no difference is observed in the superconducting gap even in the
zoomed-in view shown in Fig. 3.3(e) for the N and S region.

3.4.3 Josephson current

3.4.3.1 Unbiased case

In the absence of applied bias voltage but in the presence of a finite phase differ-
ence between the two superconducting sides, a DC supercurrent will flow across
the junction [121, 130]. This is the usual DC Josephson effect. For this pur-
pose a phase bias is achieved by fixing a desired phase difference between the
outermost parts of the superconducting regions, φL and φR for the left and right
sides of the junction respectively (see Fig. 3.1). In order to numerically calculate
the Josephson current we solve self-consistently for both phase and amplitude
of the order parameter along the junction except in the extreme regions where
we keep the phases fixed. The current profile along the junctions in both layers
as well as the interlayer current are shown in Figs. 3.4(a)-(d) for an undoped
non-superconducting link for different values of the pairing potential. As we
can see, the supercurrent is found not to be constant within each layer sepa-
rately, contrary to what is usually expected to happen for self-consistent current
calculation in 2-dimensional systems [130]. Instead, one interesting feature in
BLG is the appearance of a weak interlayer current between Ã-B dimer sites as
a consequence of the current conservation law. We observe that the LDOS at
the left interface is asymmetric in top-bottom layers while for the right interface
the asymmetry is reversed. Because of this, the current is enhanced at the left
interface in the top layer while being suppressed in the bottom layer, therefore a
weak interlayer current appears. The reverse happens at the right interface, but
the average current remains flat across the whole junction, as expected. Next we
construct the current-phase relation (CPR) by performing self-consistent current
calculations for different phase differences between the superconducting con-
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Figure 3.3: LDOS for A (red) and B (black) sub-lattice sites in the N region with (a)

zero doping (at the Dirac point) and (b) heavy doping (or with no-FLM between the

superconducting and normal regions). (c) LDOS in the highly doped S region showing

the superconducting gap. The inset in panel (b) emphasizes the difference in the LDOS

between A and B sublattice: a vanishing and finite density of states around the Dirac

point. A magnification of (a) around the Dirac point is shown in panel (d) as well the

LDOS of atomic sites at the interface for both sublattices. A close up view of the panels

(b) and (c) around the zero energy is shown in (e) where the superconducting gap in the

S region and the Andreev states in the highly doped N are discernible. SLG analogous

cases (blue) have been included for comparison purposes. Note that the results presented

here correspond to the long junction limit.

tacts and doping levels in the non-superconducting region. We show in Fig. 3.5
the phase-dependence of the current for both SLG and BLG for no-FLM cases
with µN = 0.6t, panels (a,b), slightly doped with µN = 0.1t < t⊥, panels (b,c)
and undoped, panels (e,f). We consider both regimes, short junctions, panels
(a,c,e), and long junctions, panels (b,d,f). Note that, in most of the cases shown
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Figure 3.4: Self-consistent Josephson current as a function of position along the ŷ-

direction for top (a) and bottom (b) layer as well as the average current (c) in the system

for different values of the pairing potential, i.e. different coherence lengths. The inter-

layer current between the Ã-B dimer sites is plotted in (d).

in Fig. 3.5 a complete description of the current over the full [0,π] phase-range
is not possible. This restriction appears as a consequence of the relaxation of
the phase over the S region which becomes significant as the FLM is reduced
in the junction until S and N regions are equally doped and the phase drop goes
linearly through the self-consistent region. Therefore the phase difference over
the normal region will always be smaller than the applied phase difference in the
superconducting regions. A similar constraint is found for SLG-based junctions,
as is shown in Fig. 3.5 and which was previously pointed out by Black-Schaffer
et al. [121]. We find that for no-FLM situations the Josephson current density
and the CPR of the BLG is almost identical to the one in SLG for both short and
long junction. In contrast, for the undoped and slightly doped cases the short and
long junctions have different behavior. Short BLG junctions are similar to short
SLG ones, while for long BLG junctions the Josephson current is suppressed.
The origin of this suppression could be traced back to the sublattice polariza-
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Figure 3.5: Current-phase relation normalized to the critical current found in (e) for

SLG and BLG-based junctions considering different doping levels in the N region: (e),(f)

undoped µN=0, (c),(d) slightly doped µN=0.1t and (a),(b) no-FLM µN=µS=0.6t for

short (a),(c),(e) and long (b),(d),(f) junctions. The short and long junction lengths are

L = 10 and L = 50, respectively.

tion of the leaking distance which remains even for doping levels lower than
the interlayer hopping energy, t⊥. While one sublattice (non-dimer sites) has an
enhanced leaking distance, the other sublattice (dimer sites) behaves like an in-
sulator with a short leaking distance. The resulting combination corresponds to
a slightly suppressed Josephson current when compared to SLG.

3.4.3.2 Biased case

Inversion symmetry can be broken in the BLG nano-structure by considering a
potential difference, Vg = ǫ1 − ǫ2 with ǫ1 = Vg/2 and ǫ2 = −Vg/2, applied
between the layers. As a consequence, a tunable gap ∆0 is induced at the Dirac
point for the undoped case and therefore inversion symmetry breaking appears
as a good possibility to switch off the superconducting current when the voltage
induced gap overtakes the superconducting gap, ∆g > ∆0. At this point, we
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−1.2t, as a function of the gate voltage Vg at the Dirac point (a) and the chemical

potential µN (b). In the left figure two different regimes are considered: L < λF and

L > λF , showing an enhancement and suppression of the superconducting current,

respectively. On the right side µ-dependence is plotted for bias and unbias cases. SLG

is included for comparison.

only consider short junctions where such proposal might have potential techno-
logical applications. In Fig. 3.6(a) we show the dependence of the supercurrent
on the applied bias voltage, Vg, perpendicular to the BLG layer. We observe two
distinct regimes, according to the relation between the Fermi wave-length and
the junction length. In the case when ξ > λF = ~vF/(Vg/2) > L, we observe
an enhancement of the Josephson current. This is because the charge density
in the junction does not recover its bulk expected value when the BLG is under
bias (+n for one layer and −n in the other layer) but has a finite positive value.
In this regime the junction is effectively doped, thus showing an enhancement of
the current. A different dependence of the current is achieved when ξ > L > λF .
In this case for the center of the junction the charge density has the opposite po-
larity, and the expected suppression of the current with bias voltage is obtained.
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In Fig. 3.6(b) we show the µ-dependence of the current for the biased and
unbiased cases. A doping activation is found in the bias case for an energy value
around ∆g, in addition a slight increase in the current is observed at µN ≈ ∆g

due to the enhancement of the LDOS above the gap edge. SLG results are in-
cluded in order to compare directly with BLG and show that for the chosen
length the current density is slightly larger in SLG. In the inset of Fig. 3.6(b)
we focus on the low doping regime and observe that in BLG additional oscilla-
tions appear, reminiscent of what was previously found analytically in the Dirac
approximation [125].

3.5 Conclusions

In conclusion by using an efficient numerical procedure we have solved self-
consistently the Bogoliubov de Gennes equations for a tight-binding model of
the AB-stacked bilayer graphene Josephson junction. When compared to sin-
gle layer graphene Josepshon junctions we uncover several regimes. First, in
the short junction regime, the current density is similar for SLG and BLG for
any doping of the normal junction region. Second, in the long junction regime,
for undoped junctions, the BLG current density is suppressed while for doped
junctions (with doping larger than t⊥) the BLG and SLG junction behave in a
similar way. We attribute the peculiar behavior of the undoped BLG junctions to
the difference of the LDOS between the dimer and non-dimer sites, which give
suppressed or enhanced Cooper pair leaking distances depending on the sublat-
tice. We have calculated the current-phase relation and showed that similar to
SLG, even for short junctions there is a departure from conventional symmetric
current-phase relation. Finally, we have shown that by applying a gate voltage
perpendicular to the BLG a gap in the spectrum can be induced and a supercur-
rent switch can be achieved given that the junction length is larger than the Fermi
wave-length.

Publication The results of this chapter were published as:

• W. A. Muñoz, L. Covaci and F. M. Peeters, Tight-binding study of bilayer

graphene Josephson junctions, Phys. Rev. B 86, 184505 (2012) (7 pages).



4
Tight-binding description of intrinsic

superconducting correlations in

multilayer graphene

Superconducting pair correlation in rhombohedral (ABC) and Bernal (ABA)
multilayer graphene considering a finite intrinsic s-wave pairing potential are in-
vestigated. By using highly efficient GPU-based simulations of the tight-binding
Bogoliubov-de Gennes equations, we find that the two different stacking con-
figurations have opposite bulk/surface behavior for the order parameter. Surface
superconductivity is robust for ABC stacked multilayer graphene even at very
low pairing potentials for which the bulk order parameter vanishes, in agree-
ment with a recent analytical approach. In contrast, for Bernal stacked mul-
tilayer graphene, we find that the order parameter is always suppressed at the
surface and that there exists a critical value for the pairing potential below which
no superconducting order is achieved. We considered different doping scenar-
ios and find that homogeneous doping strongly suppresses surface superconduc-
tivity while non-homogeneous field-induced doping has a much weaker effect
on the superconducting order parameter. For multilayer structures with hybrid
stacking (ABC and ABA) we find that when the thickness of each region is small
(few layers), high-temperature surface superconductivity survives throughout the
bulk due to the proximity effect between ABC/ABA interfaces where the order
parameter is enhanced.
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4.1 Introduction

Superconducting correlations in graphene-based structures have been the fo-
cus of intensive theoretical and experimental research even before graphene be-
came one of the most important topics in condensed matter physics. Follow-
ing last decade experimental evidences reporting hints of superconductivity be-
havior in graphite [54] and graphite intercalated compounds [23, 34, 35, 131],
a considerable amount of theoretical studies have been devoted to provide a
clear understanding about possible mechanisms that could induce intrinsic su-
perconducting states in single and multilayer graphene [30, 33, 37, 42, 43, 132–
134]. More recently experimental investigations have reported intriguing traces
of high-temperature superconducting behavior in highly oriented pyrolytic gra-
phite (HOPG) samples [36, 52, 135], feeding speculations about the existence
of intrinsic superconducting correlations in graphite and graphite-based com-
pounds. Despite the fact that most of these experimental evidence suggests that
superconductivity in graphite compounds appears due to external causes, sev-
eral theoretical studies reveal the possibility of inducing superconductivity in
graphite by considering unconventional symmetry of the order parameter [33,
37, 43, 132, 133]. However, these calculations show that superconductivity be-
comes stable after considering disorder [132] or high doping in the graphene lay-
ers [33, 37] while surface superconductivity appears to be stable in clean rhom-
bohedral graphite in the absence of external doping [134]. Considering that most
of these calculations are based on a reduced Hamiltonian or are performed within
two-dimensional models, by ignoring the interplanar hopping, a numerical de-
scription of the superconducting correlation in multilayer graphene is urgently
needed.

In view of this, we provide in the following a numerical description of in-
trinsic superconductivity in multilayer graphene at the tight-binding level. Fol-
lowing Ref. [134], we consider a simple s-wave pairing symmetry in a ABC (or
rhombohedral) stacking multilayered graphene structure. Calculations are also
performed for ABA (or Bernal) stacking where its quadratic low-energy band
structure [83] shows a remarkable difference from the |p|N momentum depen-
dent band structure seen in ABC multilayer [89] structures. In particular we
are interested in the limit of large number of layers (N) where the lower-energy
band in the rhombohedral case is flat over a large region in k-space signaling
the suppression of the kinetic energy and therefore the strong effect of interac-
tions. In addition, because of the sensitive stacking dependent band structure
in multilayer graphene, we also considered hybrid stacking cases. It is known
that exfoliated few-layer graphite samples are usually found to exhibit very sta-
ble Bernal stacking but often also display rhombohedral structures in part of
the sample [136, 137]. It is worth mentioning that during the preparation of the
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manuscript, new experimental results revealed the existence of superconducting
correlations at two-dimensional interfaces that appear when angle misalignments
about the c-axis exist in HOPG [36].

By using highly efficient graphics card (GPU) simulations of the tight-binding
Bogoliubov-de-Gennes equations, we are able to solve self-consistently for the
pair correlation in multilayer graphene by considering both planar and inter-
planar coupling between nearest neighbors. Translational invariance is assumed
along the 2-dimensional direction within the graphene sheets. In this way, an
adequate description for the profile of superconducting correlations along the
direction perpendicular to the graphene layers is achieved.

Our results confirm the main features of recent analytical approaches for
ABC rhombohedral graphite where an enhancement of surface superconductiv-
ity, with respect to its bulk analog, was predicted [134].

The chapter is organized as follows. In Sec. 4.2 we introduce the model
and the numerical approach that we use. In Sec. 4.3 we present and discuss the
results of our numerical calculations. Finally, we briefly summarize our findings
in Sec. 3.5.

4.2 Model and calculation approach

Superconducting correlations in multilayered graphene structures are described
by the following mean-field single particle Hamiltonian written in Nambu space:

H =
∑

<l,m>
<i,j>

(

ci†l↑ c
i
l↓

)

(

Ĥij
lm ∆i

lδijδlm
∆i∗

l δijδlm −Ĥij†
lm

)

(

cjm↑

cj†m↓

)

(4.1)

where the summation, 〈i, j〉, is done over nearest neighbors within each layer
while the summation, 〈l, m〉, is done for adjacent layers. The non-diagonal
elements ∆i

l correspond to the s-wave superconducting order parameter at the

atomic site i in layer l while the diagonal elements Hij
lm are the normal state

components of the Hamiltonian:

Ĥij
lm = [−t0(1− δi,j)− µlδi,j ]δl,m − t(δl,m+1 + δl,m−1) (4.2)

where µl is the chemical potential and, following the schematic layout of Fig. 2.3,
nearest-neighbors sublattices A and B are coupled within the layers by the hop-
ping parameter t0 ≈2.8eV (instead of t) while t = 0.1t0 (instead of t⊥) describes
the hopping which couples A sites with the nearest B sites in the adjacent (up-
per and lower) layers. Bernal and rhombohedral stacking are defined accord-
ing to the vertical symmetry along the z-axis as shown in Fig. 2.3. Due to this
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symmetry, rhombohedral stacking allows us to reduce the description of the su-
perconducting parameter to one of the sublattices, whereas the other sublattice
can be deduced from a mirror reflection transformation. For Bernal stacking, we
consider a more practical way of sorting sites inside the supercell as dimer sites,
which correspond to the sublattices coupled by the interlayer hopping t, and
no-dimer sites or sublattices which does not participate in the coupling between
adjacent graphene sheets. As we previously pointed out in the previous Chap-
ter 3, the pair correlation behaves differently in these inequivalent sites because
at dimer sites the density of states vanishes around the Dirac point while being
finite at no-dimer sites where the formation of Andreev states is more feasible.

We will not specify the origin of superconductivity in the multilayer graphene
structure, but rather assume ∆i

l = U〈cil↑cil↓〉 to be a conventional s-wave symmet-
ric order parameter and the pairing potential U is fixed and homogeneous in the
whole structure. Under this assumption and considering translational invariance
along the transversal directions, we solve self-consistently for the amplitude of
the pair correlation |〈cil↑cil↓〉| for the sublattice A (or both in the case of N-Bernal
stacked layers for N odd), in the z direction. We have considered graphene
multi-layer supercells of size 42nm×25nm×N such that the order parameter
is converged and no additional momentum summations in the parallel direction
are needed. Thus, 4 × 103 × N atomic sites are distributed in N rectangular
graphene layers. Instead of a direct diagonalization of the Hamiltonian we per-
formed the self-consistent mean-field calculation through a numerical approxi-
mation of the Gorkov Green’s function by using the Chebyshev-Bogoliubov-de-
Gennes method.

Physical quantities, like the local density of states and the pair correlation
function, can be easily determined by using the Eqs 3.8, 3.9 and 3.10 presented
in the Chapter 3.

4.3 Numerical results

We solved self-consistently for the order parameter along the z-direction, and
show in Fig. 4.1(a) the different profiles of the order parameter (∆z) for different
values of the pairing potential (U < 0) in an ABC stacked graphene with N=20
layers. The order parameter is only shown for the A sublattice, while the B
sublattice value is achieved by a mirror reflexion symmetry along z, as can be
deduced from lattice structure in Fig. 2.3. Analog results are shown in the inset of
the Fig. 4.1(a) for the ABA stacking and different values of the pairing potential.

We notice in Fig. 4.1(a), that the superconducting order parameter at the
outermost layers is larger than the vanishing pair correlation in the bulk for all
the U-values considered here. The same surface enhancement is observed when
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Figure 4.1: (a) Order parameter profile (∆z) along the z-direction perpendicular to

the graphene sheets (see Fig. 6.1) for various values of the s-wave attractive pairing

potential U in ABC stacked multilayer graphene with N = 20 layers. The inset shows

the corresponding ∆z profile for the ABA case where dimer and non-dimer sites follow

different curves for higher values of U . U -dependence of the maximum (b) and minimum

(c) value of ∆z for both ABC and ABA stacking configuration. d = 0.335nm is the inter-

layer distance.

we decrease the pairing potential such that the penetration of the superconducting
order parameter into the bulk becomes strongly suppressed. In the limit of very
low pairing potential good agreement could be found with the analytical result
previously reported in Ref. [134]. On the other hand, an opposite surface-bulk
superconducting ratio is found for the Bernal stacking configuration (see inset
in Fig 4.1(a)). Self-consistent calculations performed for ABA show that the
bulk value of the order parameter is dominant while surface superconducting
correlations are suppressed. Also, we can observe a sublattice polarization in the
∆z profile where pair correlation is found be higher in non-dimer sites compare
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Figure 4.2: (a) Order parameter profile (∆z) for a rhombohedral multilayer graphene

consisting of various total number of layers N=10, 12, 16 and 20. (b) Order parameter

profile for N=10 and 20 for different values of the interlayer hopping t/t0=0.1, 0.092,

0.084, 0.076, in decreasing order as this is indicated by the arrows. (c) Dependence of

the surface pair correlation, max{∆z}, as a function of t. Here we used U = −1.76t0.

to dimer sites with an energy difference which become smaller as the pairing
potential is decreased. We return to this issue in a later discussion about density
of states.

A direct comparison between surface and bulk value of the pair correlation
is given in Figs. 4.1(b) and 4.1(c) for both stacking configurations. Fig. 4.1(b)
shows the maximum values of the superconducting correlation for both ABC
and ABA cases for different values of U . According to the profiles observed in
Fig. 4.1(a), the maximum value of the order parameter, max{∆z}, corresponds
to the surface for ABC stacking while for the ABA stacking the maximum value
corresponds to the bulk non-dimer sites. In contrast, the log-linear representation
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Figure 4.3: Local density of states (LDOS) showing the formation of the s-wave super-

conducting gap for U = −2.0t0 at both sublattices A and B in different layers around

the Fermi energy. Left and center panel show the LDOS at the surface and its adja-

cent layer while right panels show the LDOS at the bulk. The dashed line represent the

corresponding normal state LDOS which shows the localized flat band at the outermost

layers. The inset of the central panel shows the surface LDOS in ABC stacked graphene

over a wider range of energies.

presented in Fig. 4.1(c) shows the U-dependence of the minimum value of the
superconducting order parameter, min{∆z}, which corresponds to the bulk and
surface locations for ABC and ABA respectively. Two different regimes can be
inferred from Figs. 4.1(b) and 4.1(c), depending whether the pairing potential U
is larger or smaller than a critical value, |Uc|/t0 ∼ 2.14. This value is also very
close to the critical pairing for the ABA stacking, below which superconduct-
ing correlations vanish. As |U | decreases, but is still larger than |Uc|, the order
parameter decays exponentially for both ABC and ABA stacking, as the main
contribution comes from the bulk. When |U | < |Uc|, for ABC stacking, the bulk
order parameter vanishes exponentially but the surface one is still finite. Even
more interesting is the fact that the surface order parameter decays only linearly
and is non-zero for all the values of |U | that we considered in the simulation,
down to |U |/t0 = 1.76 giving a surface order parameter ∆max/t0 = 0.002. The
self-consistent calculation becomes increasingly intensive as the order parame-
ter decreases since more Chebyshev moments are needed to resolve the Green’s
function at higher and higher resolutions.
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Figure 4.4: Effect of homogeneous doping on the intrinsic s-wave superconducting

order parameter in a multilayer rhombohedral graphene with U = −2.0t0. We shown

here half of the profile for different doping values, µ/t0 × 10−3=0, 0.8, 1.6, 2.4 and 3.1,

in decreasing order indicates by the arrow. Inset: Evolution of surface superconductivity

(max{∆z}) as a function of doping (µ) showing that an increase in µ leads to a strong

suppression of the order parameter at the surface.

The bulk behavior resembles the superconducting critical point reported for
graphene, where in the undoped case it was found that critical the temperature
vanishes below a finite value of an s-wave pairing interaction [38]. In contrast,
the |U | dependence of the surface order parameter in the ABC stacking config-
uration suggests that the surface states, which form a flat band with suppressed
kinetic energy, are strongly influenced by any exponentially small interactions.
Since the pair correlation at the surface is always enhanced for ABC stacking
and survives even for lower values of the pairing potential, we will further only
also report numerical results for this stacking. The dependence of the order pa-
rameter on the total number of graphene layers, N , and the interlayer coupling,
t, is shown in Fig. 4.2 for U=-1.76t0. An asymptotic enhancement of the surface
superconductivity is observed in Fig. 4.2(a) as the Fermi surface size, defined by
the flat band localized at the surfaces, increases with the number of layers. On
the other hand, the decrease of the interlayer coupling leads to the suppression
of the order parameter as this is seen in Fig. 4.2(b). The evolution of the surface
pair correlation as a function of t is shown in Fig. 4.2(c) and indicates an al-
most linear suppression as a consequence of the linear dependence of the Fermi
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surface size on t. [134]

In order to provide a better understanding of the peculiar behavior of the or-
der parameter profile observed in Fig. 4.1 for the rhombohedral case, we next
present the local density of states (LDOS). Fig. 4.3 shows the LDOS in different
layers for both sublattices, A and B, within a small energy interval near the Fermi
energy. The left panel of Fig. 4.3 represents the LDOS at the surface where the
superconducting order parameter is enhanced for sublattice A. There, the normal
state LDOS shows a sharp peak due to the existence of flat bands with dispersion
E ∼ |p|N . The corresponding wave function of these states is localized at the
surface and only on sublattice A. A zoomed-out view of the LDOS, over a wider
range of energies, is shown in the inset of Fig. 4.3. This is very different for the
B sublattice where the density of states vanishes around the Fermi energy and
the superconducting coherence peaks are not visible. Despite this, a non-zero
solution for the order parameter is obtained for atomic sites belonging to this
sublattice as we can see in Figs. 4.1(a) and 4.2. This non-zero solution appears
as a consequence of the proximity effect between the intra-layer neighbors A
and B sites at the surface. We also observe less pronounced coherence peaks
appearing in the LDOS of sublattice A in the layer adjacent to the surface (see
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Figure 4.6: Effect of inhomogeneous field-induced doping along the z-direction on the

order parameter in a rhombohedral multilayer graphene. Some cases previously shown

in Fig. 4.4 are included for comparison. Inset: Doping profile along the z-direction

perpendicular to the graphene sheets.

central panel of Fig. 4.3) while the LDOS vanishes for both sublattices in the
bulk (see right panel of Fig. 4.3). According to this behavior of the LDOS for
rhombohedral stacking, we expect that superconducting correlation will be more
stable on the surface and on few adjacent layers rather than in the bulk where the
LDOS vanishes around the Fermi energy.
With respect to the LDOS in the Bernal case, it is well known that a sublattice
polarization appears around the Fermi energy. A finite density of states is found
for non-dimer sites while the density of states vanishes at the dimer sites [89].
Such a polarization allows a finite order parameter to be induced only by large
s-wave pairing potentials and therefore bulk superconductivity will not be stable
for values of U for which surface superconductivity in ABC is still finite (see
Fig. 4.1(b)). In this way, the suppression of surface superconductivity seen in
Fig. 4.1(c) for ABA appears as a consequence of the lower density of states for
surface non-dimer sites when compared to its bulk value. In order to see the
effect of external factors we have considered homogeneous doping, as well as
an inhomogeneous field-induced charge distribution, along the z-direction. The
first case corresponds to graphite-intercalated compounds where dopant atoms
are placed between the graphene layers while the inhomogeneous case can be
easily realized in an experimental set-up where top and bottom electrodes have
opposite gate voltages. Fig. 4.4 shows the evolution of the order parameter pro-
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file as a function of the homogeneous doping µz = µ for a fixed value of the
pairing potential U = −2.0t0. Notice that, surface superconductivity becomes
strongly suppressed as the doping shifts the Dirac point away from the Fermi
energy. Total suppression occurs for doping lower than the value of the order
parameter at the surface. Looking at the LDOS we found that this critical doping
coincides with the extinction of the coherence peaks and the rising of the single
peak away form the Fermi energy. Despite the fact that we do not find any rel-
evant difference between homogeneous doping and surface only doping in our
self-consistent calculation, the value of the critical doping is slightly higher than
the one reported by the analytical results [134] where the critical doping was
found to be µcrit=(2/3)∆S. In addition to the homogeneous case we have also
considered inhomogeneous doping, achieved when an electric field is applied
perpendicular to the graphene sheets. Following Ref. [138] where the poten-
tial distribution due to an electric field was self-consistently calculated by taking
into account screening effects, we consider the z-dependent doping as described
in the inset of Fig. 4.6. For comparison purposes we have considered the same
pairing potential U = −2.0t0, as we did in Fig. 4.4, and three different cases
for which the doping at the surfaces is strongly suppressing the superconducting
correlations in the homogeneous case. Surprisingly, in contrast to homogeneous
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Figure 4.8: Self-consistent order parameter profile for a multilayer graphene consider-

ing the stacking configuration shown in the top part. Different point types correspond to

different values of the pairing potential, U/t0 = 2.16, 2.12 and 2.08, where U decrease

in the direction pointed by the arrow. Open points represent the corresponding cases for

an ordered ABC stacked multilayer graphene.

doping, we found that the field-induced doping suppresses only slightly the pair
correlation at the surface. According to this result, the electric-field induced gap
in the inhomogeneous case is much lower than the value of the doping at the sur-
face [138]. Therefore, even considering the same surface doping in both cases,
superconducting correlations are weakly affected by an inhomogeneous doping
configuration. Fig. 4.7 shows how coherence peaks still survive for this doping
configuration even if the value of the doping at the surface is on the order of the
surface order parameter (as obtained for zero-doping). This is in contrast with
the effect observed in Fig. 4.5 where for a similar level of the doping causes a
strong suppression of the superconducting gap. Finally, we consider multilayer
graphene with hybrid stacking. In order to shift the high-temperature surface
superconductivity, observed in ABC, to the bulk of the structure, we propose
an intercalated hybrid stacked graphite with few layers. Numerical calculations
considering stacking faults in multilayer graphene were recently reported [139],
showing that surface superconductivity survives at the interface between ABC
and ABA stacking. However, superconductivity in the bulk is still seen being
suppressed when the thickness of the hybrid layers is large. By considering a
few-layer structure where the external layers have the ABC stacking configura-
tion while the inner ones have ABA stacking, we expected a slight suppression of
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surface superconductivity and an enhancement of its bulk value. Fig. 4.8 shows
self-consistent results obtained for the hybrid structure depicted in the top part of
the figure. While surface superconductivity appears suppressed as compared to
the non-hybrid ABC multilayer, bulk correlation are also enhanced. On the basis
of these results we suggest that this kind of hybrid stacked multilayer structure,
or more complex combinations, could support high temperature superconduc-
tivity due to the interplay between surface superconductivity present in ABC
stacking and the bulk superconductivity preserved in the ABA case.

4.4 Conclusions

By using a highly efficient GPU-based numerical procedure we solved self-
consistently for the s-wave order parameter within a mean-field approach for
a tight-binding model of the ABA and ABC-stacked multilayer graphene. Main
findings show that a surface superconducting state appear when the multilayer is
in the ABC stacking configuration. Opposite behavior is seen for the ABA stack-
ing where bulk superconductivity is predominant but unstable below a certain
critical pairing potential. The LDOS for surface sites shows peculiar coherence
peaks and sublattice polarization, i.e. large LDOS in one sublattice and zero
in the other. We showed that under homogeneous doping this state is quickly
suppressed. We extracted a critical doping which is slightly higher than the one
reported previously based on an approximate analytical study [134]. In addi-
tion, we considered a field-induced inhomogeneous doping and showed that the
superconducting correlations survive in this case for higher values of µS . Fi-
nally we pointed out the importance of hybrid stacking structures where surface
superconductivity related to ABC stacking could be preserved even in the bulk
of the structure, suggesting a possible path for the survival of high temperature
superconductivity.

Publication The results of this chapter were published as:

• W. A. Muñoz, L. Covaci and F. M. Peeters, Tight-binding description of

intrinsic superconducting correlations in multilayer graphene, Phys. Rev.
B 87, 134509 (2013) (7 pages).
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5
Superconducting current and

proximity effect in ABA and ABC

multilayer graphene Josephson

junctions

Using a numerical tight-binding approach based on the Chebyshev-Bogoliubov-
de Gennes method we describe Josephson junctions made of multilayer graphene
contacted by top superconducting gates. Both Bernal (ABA) and rhombohedral
(ABC) stacking are considered and we find that the type of stacking has a strong
effect on the proximity effect and the supercurrent flow. For both cases the pair
amplitude shows a polarization between dimer and non-dimer atoms, being more
pronounced for rhombohedral stacking. Even though the proximity effect in non-
dimer sites is enhanced when compared to single layer graphene, we find that the
supercurrent is suppressed. The spatial distribution of the supercurrent shows
that for Bernal stacking the current flows only in the top-most layers while for
rhombohedral stacking the current flows throughout the whole structure.
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5.1 Introduction

The exceptional characteristics of carriers in a single graphene layer gives rise to
unusual properties of superconductor-graphene junctions such as specular An-
dreev reflection [60] and finite superconducting current at the neutrality point
[59]. Although there is still no clear evidence of the novel electron-hole conver-
sion, a bipolar proximity-induced supercurrent has been detected in superconduc-
ting-graphene-superconducting Josephson junctions (JJ) [58, 63–65] opening a
new perspective for Josephson field transistors. In these devices, carrier den-
sity modulations by the gate voltage playes an important role in controlling the
strength of the proximity effect and therefore the dissipationless current flowing
through the junction. It is also expected that other graphene structures show in-
teresting properties when in contact with superconducting leads. In fact, Joseph-
son junctions with non-superconducting few-layer graphite films have been the
focus of experimental investigations [122, 140–142]. In most of the few preced-
ing theoretical studies [143–145] the proximity-induced superconducting corre-
lations in multilayer graphene were determined using analytical approximations
where the electronic description was limited to parabolic energy bands near the
Fermi energy. As a consequence the depth dependence of the order parameter
was neglected and in some cases the superconducting pair diffusion was reduced
to a 2-dimensional scenario, therefore ignoring any spread of the Cooper pairs
among the different layers. Since all the experimental setups require top super-
conducting contacts, a calculation taking into account the depth dependence of
the pair correlation is needed. Here, we describe the 3-dimensional diffusion of
Cooper pairs through a non-superconducting multilayer graphene junction con-
nected to two top superconducting electrodes. The Josephson superconducting
current is also studied by setting a phase gradient between the superconducting
leads. We find significant differences between the two possible stacking orders,
Bernal and rhombohedral. For junctions with Bernal stacking the supercurrent
flows mostly through the two top-most layers while for junctions with rhombo-
hedral stacking the current is weaker and spread throughout the whole multi-
layer. We consider a multilayer graphene junction, shown in Fig. 5.1, where the
top layer is in contact with two superconducting leads separated by a distance
L, which corresponds to the junction length. We adopt the non self-consistent
method employed in Ref. [128] where three-dimensional superconducting leads
were assumed to act as external reservoirs of Cooper pairs. In our case the su-
perconducting contacts, are single layer graphene with an intrinsic s-wave order
parameter, ∆0 = 0.1t0, and a high doping level, µs=0.6t, where t0=2.8eV. The
coupling between the graphene multilayer and the superconducting contacts is
chosen such that there is a sizable proximity effect and the edge effects are mini-
mal for the size of the junctions considered here. At the present stage, we assume
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Figure 5.1: Schematic layout of a multilayer graphene JJ showing the superconducting

(SC) leads which are separated by a distance L. W corresponds to the width of the

junction. On the right-hand side the layer arrangements in multilayer graphene shows

the two different stacking configurations: ABC(rhombohedral) and ABA(Bernal).

that the inverse proximity effect on the superconducting contacts is negligible.

It is well known that the electronic properties of multilayer graphene depend
strongly on the particular type of coupling between the graphene layers. Like-
wise, intrinsic electronic correlations have been shown to behave differently ac-
cording to the stacking configuration [146, 147]. A question that arises naturally
is: how different is the superconducting pairing diffusion under the contacts and
across the junction for different number of layers and stacking configurations?

Based on this motivation, we perform calculations considering the two most
stable interlayer stackings found in multilayer graphene: ABA or Bernal, and
ABC or rhombohedral. Bernal stacking is the natural way in which graphene
layers are stacked inside graphite. In this case, for N = 2M + 1 layers the
low-energy electronic dispersion shows 2M parabolic energy bands and 1 linear
band [83]. On the other hand, for the ABC case the energy band structure for
small k disperses as |k|N such that in the limit of large number of layers (N)
the lower-energy band becomes flat over a large region in k-space [89]. This
suppression of the kinetic energy results in low-energy surface states localized
in the outer layer with a diverging density of states around the K point.

In order to describe superconducting correlations in multilayer graphene we
use the same tight-binding mean-field Hamiltonian of Eq. 4.1 as we considered
in Chapter 4. Both stacking configurations are defined according to the vertical
symmetry along the z-axis as shown in Fig. 5.1. While the vertical atomic ar-
rangement of ABA shows that we have only one sub-lattice per layer (Al or Bl)
participating in the interlayer coupling, both sub-lattices from each layer are di-
rectly coupled in the ABC stacking. Despite the fact that both atomic configura-
tions are different we assumed for simplicity the same intra-layer and inter-layer
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Figure 5.2: Absolute value of the pair correlation along the line (x, y, z) = (W/2, y, 1)
in a single-layer graphene JJ and in the top-most layer in (a) ABC and (b) ABA multi-

layer graphene JJs with N=2, 3 and 10 layers. a0=3a/2 where a is the intra-layer C-C

distance. Pair correlation function at the middle point of the junction along the ẑ vertical

axis, (x, y, z) = (W/2, L/2, z), for (c) ABC and (d) ABA multilayer graphene JJs with

N=10 layers. The integer index z/c, where c corresponds to the distance between adja-

cent layers, labels the different layers where z/c = 1 correspond to the top-most layer

and open(close) circles correspond to A(B) sub-lattice (see Fig. 5.1). Dotted lines in (c)

correspond to the results obtained for small doping µ = 0.0014t. The insets in (c) and

(d) show the vertical profile of the pair correlation at the middle point right underneath

the superconducting contacts.

hopping integrals to be t0 and t, respectively for both cases. We define as dimer
(non-dimer) atoms, the atoms that are coupled (not coupled) to adjacent layers.
Since these types of structures involve a large number of atoms (each graphene

layer is considered to have hundreds of thousands of atomic sites) numerical cal-
culations are performed by implementing the Chebyshev-Bogoliubov-de-Gennes
method. In this way, we can numerically obtain an approximation of the Gorkov-
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Green’s functions by a superposition of Chebyshev polynomials as described in
Eq. 3.5 in Chapter 3.

5.2 Model System

We next present the results of our simulations. In Fig. 5.2 we show the pair
correlation profile along a line (x, y, z) = (W/2, y, 1) for single and multilayer
graphene JJs with N = 2, 3 and 10. In the case of multilayer graphene the
profile corresponds to the top-most graphene layer. As expected, in single layer
graphene JJ, the pair amplitude decays exponentially in the non-superconducting
link in the same way for the A and B sub-lattice. However, a sub-lattice polariza-
tion is observed in the behavior of the pair amplitude for the multilayer graphene
junctions where the Cooper pair diffusion across the junction has different decay
characteristics in the A and B sub-lattice.

Previous self-consistent calculations performed by us revealed a similar sub-
lattice polarization in the pair correlation function along a bilayer graphene JJ
[148]. It can be observed in Fig. 5.2 that such a polarization of the pair amplitude
in the surface depends strongly on the stacking configuration for the multilayer
cases with N ≥ 3. While no relevant differences in the pair depletion at the sur-
face are observed for ABA stacking between the different values of N, a peculiar
dependence on N is observed for the ABC case where the leaking distance is
highly sensitive to the flatness of the lower energy band, i.e. to the number of
layers N . Note in Fig. 5.2(b) that the interlayer coupled B sub-lattice in the top-
most layer shows a suppression in the pair correlation while this is enhanced in
the A sub-lattice which does not have a direct neighbor in the adjacent layer. In
this way, and different from ABA, pair leaking in ABC is found to be larger than
in the case of a single layer graphene JJ.

Complementary results are shown in Figs. 5.2(c) and (d) where we plot the
pair amplitude along the vertical axis ẑ at the midpoint of the junction, (x, y, z) =
(W/2, L/2, z), as a function of the integer index z/c, which labels the different
layers starting from the top-most layer with z/c = 1 (see Fig. 6.1), for both
ABA and ABC stacking. Notice that the diffusion perpendicular to the contacts
happens quite differently for ABC and ABA stacking. For ABC stacking the pair
leaking through the layers decays exponentially for the B sub-lattice while at the
same time increases slowly for the A sub-lattice. For ABA stacking the pair
amplitude for both dimer and non-dimer sites decays with a coherence length
much smaller than the one observed in ABC (for the A sub-lattice). A particular
behavior is found for ABA in the non-dimer site at the (z/c = 2)-layer, where a
rise of the pair amplitude is observed. This fact can be explained from a density
of states point of view because it is well know that the local density of states in
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Figure 5.3: (a)-(b) LDOS around the Dirac point for both sublattices A (dashed) and B

(solid) in (x, y, z) = (W/2, L/2, z) along the z direction for a trilayer graphene (TLG)

JJ with ABC and ABA stacking configuration. (c)-(d) Profile of the amplitude of the pair

correlation along the line (x, y, z) = (W/2, y, z) in the different layers of a ABC and

ABA TLG JJ respectively.

non-dimer sites is enhanced in the bulk while being suppressed at the surface.
We can therefore conclude that the vertical leaking distance is larger in ABC
than in ABA.

In order to investigate the relation between the local density of states (LDOS)
and the coherence length for both stacking configurations, these are showed in
Fig. 5.3 for all the layers in a trilayer graphene (TLG) JJ. Around the Dirac
point, the density of states differs for the different sublattices from within the
same layer except for the middle layer for the ABC stacking. Sharp peaks are
observed for the non-dimer sublattices from the top and bottom layers in ABC
stacking, while the density of states vanishes for the dimer sublattices. As we can
observe in Fig. 5.3(c), the LDOS peaks lead to longer coherence lengths in those
layers. Interestingly, for ABC stacking, we observe that the coherence length for
the bottom B sublattice overcomes the one of the top sublattice A. This is due
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Figure 5.4: Amplitude of the pair correlation at the middle point (x, y, z) =
(W/2, L/2, 1) as a function of the junction length L for different values of the dop-

ing µN for the A sub-lattice in the top-most layer of the ABC and ABA (inset) multilayer

graphene JJ containing N = 10 layers.

to the fact that the LDOS of the top layer is slightly affected by the coupling to
the doped contacts, thus the zero energy peak is slightly shifted away from the
Dirac point. Opposite to ABC stacking, where a notable enhancement of the pair
amplitude is observed in the outermost layers, for the ABA stacking we show in
Fig. 5.3(d) that coherence length is large in the A sublattice of the middle layer,
since the LDOS is higher than the one for surface atoms.

Since previous results are performed at the Dirac point, i.e. for µ = 0, we
have included in Fig. 5.2(c) an additional case for which the junction is slightly
doped by setting a chemical potential µ = 1.4×10−3t0. These results are shown
as dotted lines in Fig. 5.2(c) where we see that the pair correlations are enhanced
in the A sub-lattice of the upper layers while being suppressed in the B sub-lattice
in the lower layers. Such a high sensitivity of the pair correlation on the chemical
potential results from the sharp peak found in the LDOS for the surface sites of
ABC multilayer graphene. The LDOS calculations (not shown here) demonstrate
that the energy position of this peak is slightly shifted by the coupling of the
multilayer graphene with the highly-doped superconducting leads. Therefore, a
slight doping will reposition the peak at the Fermi level and contribute to a large
modification of the pair correlation.

The pair amplitude for the region underneath the superconducting contacts is
shown in the insets of Figs. 5.2 (c) and (d) as a function of the integer index z/c.
In this case, an exponential decay is observed for both stacking orders, with the
difference that for dimer-sites, in ABC stacking, this decay is much faster. The
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Figure 5.5: (a) Josephson current as a function of the total number of layers, N (b)

Current density-phase relation for single (N=1), bilayer (N=2), trilayer (N=3) and

multilayer (N=10) graphene JJs. Both stackings are considered. (c) Critical current

density as a function of the junction length L for T=0K (solid lines) and T=10K (dashed

lines). Note that the current densities in panels (b)-(c) are normalized by the maximum

Josephson current obtained for single layer graphene, as shown in panel (a).

dependence of the pair correlation at the midpoint of the junction corresponding
to the A sub-lattice in the top-most layer is shown in Fig. 5.4 as a function of
the length of the junction for different values of the chemical potential µ . The
L-dependence for ABC is notably different from the usual exponential decay
observed in the ABA case (see inset Fig. 5.4). Each doping level exhibits a
maximum for different values of L. The unusual behavior is a consequence of
the electron-hole asymmetry induced in the junction by the contact. Since very
low values of doping in the normal region shifts the sharp LDOS peak localized
at the surface, this has a strong effect on the decay of the pair amplitude. We
found that a maximal effect is achieved when the value of the doping coincides
with the energy position of the peak from the undoped case for each junction
length. As this effect is coming from the influence of the leads on the surface
state, there is a small dependence of this optimal doping on L.

Since there are remarkable differences in the pair diffusion between ABC
and ABA multilayer graphene it is expected that the superconducting current
behaves differently in the two cases. In order to induce a zero-voltage super-
current we set a phase difference, ∆φ, between the left and right superconducting
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Figure 5.6: In-plane current-phase relation for the different layers in (a) ABC and

(b) ABA stacked trilayer (N=3) graphene JJ. (c) z resolved in-plane critical current

through the different graphene layers for ABC and ABA multilayer graphene JJs with

N=10. Note that the current densities in panels (a)-(c) are normalized by the maximum

Josephson current obtained for single layer graphene, as shown in Fig. 5.5 (a).

contacts. We observe that the same phase difference is kept along the vertical
axis ẑ between two regions underneath the contacts which are away from the
junction. However, near and inside the multilayer junction, the gradient of the
phase along both the ẑ and ŷ directions varies in a different way in the two
stacking configurations. This shows that the supercurrent is finite both within
the intra-layers and between the inter-layers.

In Fig. 5.5(a) we plot the current density integrated over ẑ as a function of
the number of layers for the two stacking configurations. Notice that the largest
current density was obtained for single layer graphene while for the cases with
N ≥ 2 the current is suppressed. Interestingly, the current is always higher for
ABA than ABC. In Fig. 5.5(b) we plot the current-phase relation and observe the
same dependence on the stacking configuration. For N ≥ 2 the current-phase
relation has the conventional sin(∆φ) dependence for short junctions. The length
dependence of the current density is shown in Fig. 5.5(c) for two temperatures, 0
and 10K. Clearly, the current decays exponentially with the junction length. This
is in contrast to the experimental finding from Ref. [122], where a linear length
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dependence was uncovered. We believe that the main reason for this discrepancy
comes from the different experimental setup, which considers a bottom gate that
dopes only the lower layers.

In order to further elucidate these discrepancies we plot in Figs. 5.6(a) and
(b) the current-phase relation for each layer of the trilayer graphene JJ while in
Fig. 5.6(c) we shown the ẑ profile of the current for both stackings in the case
of a multilayer with N=10. Thereby we find that the surface current is highly
dominant in ABA stacking for which most of the current is observed in the two
upper layers. This also explains the very weak dependence of the ABA current
on the number of layers (see Fig. 5.5(a)). Alternatively, for ABC stacking the
current is much more spread throughout the whole multilayer also explaining
the stronger dependence of the current on the number of layers. In addition, for
ABC stacking the larger the number of layers, the flatter the low energy band
will be, which in turn will have an effect on the supercurrent by enhancing it.

5.3 Conclusions

In conclusion, by using a numerical tight-binding approach for multilayer graphene
contacted by two superconducting electrodes, we showed how the Cooper pairs
diffuse both perpendicular and across the junction. We found that the proximity
effect as well as the induced supercurrent are strongly dependent on the stacking
configuration of the multilayer structure. For both ABA and ABC stacking we
observe a polarization of the pair amplitude between dimer and non-dimer sites.
This effect is enhanced in ABC stacking due to the peculiar flat band at the Fermi
level which is localized at the surface. Interlayer pair leaking is found to decay
exponentially with a vertical-leaking distance larger in ABC than in ABA stack-
ing. Despite the fact that the proximity effect is enhanced in ABC we found that
the induced-current is larger in ABA but most of the current flows through the
first two surface layers as opposed to ABC where the current is spread through-
out the whole structure. We are therefore proposing that future experimental
setups should use all the gates on the same side of the multilayer in order to take
advantage of the surface currents.

Publication The results of this chapter were published as:

• W. A. Muñoz, L. Covaci and F. M. Peeters Superconducting current and

proximity effect in ABA and ABC multilayer graphene Josephson junctions,
Phys. Rev. B 88, 214502 (2013) (5 pages).



6
Disordered graphene Josephson

junctions

A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method
is used to describe disordered single-layer graphene Josephson junctions. Scat-
tering by vacancies, ripples or charged impurities is included. We compute the
Josephson current and investigate the nature of multiple Andreev reflections,
which induce bound states appearing as peaks in the density of states for en-
ergies below the superconducting gap. In the presence of single atom vacancies,
we observe a strong suppression of the supercurrent that is a consequence of
strong inter-valley scattering. Although lattice deformations should not induce
inter-valley scattering, we find that the supercurrent is still suppressed, which
is due to the presence of pseudo-magnetic barriers. For charged impurities, we
consider two cases depending on whether the average doping is zero, i.e. exis-
tence of electron-hole puddles, or finite. In both cases, short range impurities
strongly affect the supercurrent, similar to the vacancies scenario.

6.1 Introduction

The notable absence of intrinsic superconductivity in graphene has not been an
obstacle for recent experimental advances demonstrating potential applications
of graphene in superconducting devices by using the proximity effect [58, 67–
70]. Despite the fact that the interplay between superconductivity and quantum
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relativistic dynamics in graphene, expressed in an unusual Andreev reflection,
has been elusive to experiments, advances in lithography make graphene-based
superconducting devices a possible platform for superconducting quantum engi-
neering. However, it has been observed that superconducting states in graphene
are strongly affected by the inherent disorder that is present in graphene sam-
ples. More relevant, the specular Andreev reflection predicted to take place in
a clean superconducting-normal (S/N) graphene interface and where, different
from the conventional retro-reflection, the path of the reflected hole does not re-
trace the path of the incoming electron, cannot be observed in the presence of
dopant inhomogeneities.

Many speculations have been made on the effect of disorder, like for instance
the report of a gate-tunable Josephson junction where the off state at the Dirac
point is believed to be caused by the suppression of the supercurrent due to in-
trinsic ripples appearing in graphene [69]. A suppression of the critical current
due to the presence of puddles of charges has been reported as well [67]. Thus,
disorder can play an important role in graphene superconducting devices.

From a theoretical point of view, the interplay between superconductivity
and disorder in graphene has not been thoroughly investigated. In only a few
exceptional cases, works showing the role of disorder in intrinsic superconduc-
tivity [149], as well as in S/N graphene interfaces [150, 151] have been recently
reported. For instance, a counter-intuitive enhancement of superconductivity by
weak disorder has been predicted, while others have shown that the presence
of disorder prevents the observation of the specular Andreev reflection and sup-
presses intrinsic superconductivity in graphene. From the perspective of the con-
tinuum Dirac approximation only scattering processes which mix the K and K ′

valleys, are predicted to matter [61]. However, it has been shown that inho-
mogeneous strain, which breaks the effective time-reversal symmetry in each
cone but not the true time-reversal symmetry, can lead to the suppression of the
Cooper diffusion in a graphene Josephson junction [128] by generating a pseudo-
magnetic barrier and allowing suppercurrents to flow only as edge states.

The effect of disorder in graphene has been widely studied [9, 152] and was
shown to break various symmetries, like the chiral or the effective time-reversal
symmetries. The absence of these symmetries may strongly affect electronic
transport [152–154]. The first and most commonly investigated type of extrinsic
disorder corresponds to charge inhomogeneities [153,155]. This type of disorder
resembles charged puddles, which are usually present when graphene is put on a
substrate [156], or when e.g. water molecules are deposited on its surface. De-
pending on the strength of the potential generated by these charged impurities,
or the distance from the graphene sheet, they can be considered as long-range
or short-range potentials. For instance, elastic scattering from a short-range
disorder potential may mix electron states in different valleys K and K ′, i.e.
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inter-valley scattering. Instead, for a long-range potential varying smoothly over
scales larger than the lattice constant, electrons in the K and K ′ valleys do not
mix.

Scattering on vacancies, i.e. the absence of a carbon atom [153,157,158], un-
like charged potentials, induces resonant states near the Dirac point. This short-
range unitary scatterer may introduce a localized state, for which the wavefunc-
tion is formed equally from both K and K ′ [157] valleys, similar to the nature
of the wave-function at armchair edges. For this type of disorder, coupling be-
tween valleys is expected to ocurr [159] and thus have a strong influence on the
supercurrent.

Yet another type of disorder is induced by lattice distortions, either intrinsic
or designed by strain engineering. Due to its exceptional flexibility graphene
can be easily deformed by mechanical stress or conform to the geometry of the
substrate. Unusual high pseudo-magnetic fields have been predicted to emerge
from strained graphene [15]. In fact, theoretical descriptions have revealed the
existence of an effective vector potential coming from the change in the hopping
parameter due to the geometrical deformation of the distance between nearest
neighbors carbon atoms [160–164]. Particularly, some works have investigated
the interplay between superconductivity and uniform strain [125] or pseudo-
quantum Hall states in graphene Josephson junctions [128].

Both electrons and holes experience normal scattering inside the junction,
therefore different dephasing mechanisms are expected to strongly influence the
transmission of the Copper pair between the superconducting leads. Since the
more general description reported so far is based on the continuum Dirac ap-
proximation [61] a clear understanding of the effect of disorder in graphene
Josephson junction is imperative. In this paper we work directly at the tight-
binding level and consider three different types of disorder: vacancies, ripples
and impurity scatterers. In all of these cases we find that disorder affects the An-
dreev bound states that are formed in the junction. For instance vacancies induce
a zero-energy mode which destroys the Andreev gap when the concentration
of vacancies is increased. Similarly short-range scatterers and strong pseudo-
magnetic fields will broaden and subsequently destroy the Andreev peaks. We
calculate the Josephson current induced by the phase difference of the supercon-
ducting order parameter of the two contacts, and provide a qualitative picture on
the effect of various types of disorder.

This chapter is organized as follows: In Sec. II we introduce our model and
the numerical approach used. Results are organized according to the type of
disorder considered in Sec. III. For instance, results concerning vacancies are
presented and discussed in Sec. III(a), while the same is done for the cases re-
garding ripples and impurity scatterers in Sec. III(b) and(c) respectively. Finally,
we summarize our findings in Sec. VI.
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6.2 Model

A graphene Josephson junction is modeled according to the layout depicted in
Fig. 6.1. Following closely the recipe implemented in previous works [121,148],
we model the influence of the right and left superconducting contacts by assum-
ing an on-site attractive pairing potential U < 0 and high doping, µ > 0. In this
way, we introduce a s-wave superconducting state over the outermost regions in
the graphene sheet separated by a distance L. The width of the junction is con-
sidered to be much larger than the junction length, W ≫ L. We consider here
an impurity-free S/N interface and set a high Fermi level mismatch between the
superconducting and the normal parts of the junction where the paring potential
is set to zero U = 0 (see Fig. 6.1). The large Fermi level mismatch between the
highly doped contact region and the undoped interface may suppress Andreev
reflection from non-relativistic electrons [165]. We allow disorder only over the
middle region of the junction, away from the interfaces, in order to guarantee
that the leakage of the Coopers pairs is homogeneous along the clean interface
strips. In addition, an absorbing region is imposed at the borders of the junctions
in order to eliminate reflections coming from the boundaries and manifesting as
finite size effects.

Finally, a dc-Josephson current is induced by fixing a phase difference ∆φ =
φR−φL between the outermost parts of the contact regions, as shown in Fig. 6.1.
The calculation of the supercurrent is performed once the amplitude and the
phase of the order parameter is relaxed over the superconducting region and
convergence is achieved. The Andreev scattering process [57] in graphene is de-
scribed within the Bogoliubov-de Gennes formalism by using the Nambu Gor’kov
Green functions of Eq. (2.39). The elements of the matrix (2.39) are calculated
within the approximation of the Gor’kov Green’s functions by implementing
the Chebyshev-Bogoliubov-de Gennes method of Chapter 2. The BdG Hamil-
tonian, in a real-space tight-binding formulation, has the following form at the
mean-field level:

H =
∑

<i,j>

(

c†i↑ cj↓

)

Ĥij

(

cj↑
c†j↓

)

(6.1)

where the matrix H can be seen as arrangements of matrix blocks as follows:

Ĥij =

(

ǫi − µ ∆i

∆∗
i µ− ǫi

)

δij +

(

−tij 0
0 t∗ij

)

(1− δij), (6.2)

where ǫi denotes the on-site potential of the carbon atoms while µ is the chem-
ical potential which pins the Fermi energy. Nearest-neighbor pz-orbitals Ai

and Bj are coupled through the hopping parameter tij which is known to be
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Figure 6.1: Layout of graphene Josephson junction considered in this work. Disordered

and superconducting regions are separated by clean interface strips where Andreev re-

flection takes place.

tij=t ≈2.7eV for pristine graphene, where the minimum distance between car-
bon atoms is assumed to be a0 ≈1.42Å. Inhomogeneous superconductivity is
taken into account through the on-site s-wave order parameter ∆i = Ui〈ci↑ci↓〉
where Ui corresponds to the strength of the pairing potential and the complex
correlation function 〈ci↑ci↓〉 is derived from the Gor’kov Green function (3.5)
according to the Eq. (3.9) in Chapter 3. Another physically relevant quantities
considered here are the local density of states and the Josephson current, which
are obtained from the Green function (3.5) through the formulas in Eqs. (3.8)
and (3.10) In order to obtain the average DOS in the disordered region, we use
a more suitable approach to calculate the moments (3.6) is more suitable. It was
shown that the average DOS can be expanded in terms of Chebyshev polynomi-
als and the coefficients of order n can be expressed as the trace of the polynomials
of order n of the Hamiltonian matrix. Instead of performing the full trace, i.e.
averaging over the LDOS, we perform a stochastic evaluation of the trace of the
Hamiltonian as follows [104]:

a(n) = Tr[Tn(H))] ≈ 1

R

R−1
∑

r=0

〈r|Tn(H)|r〉. (6.3)

where the summation is carried out over R random vectors |r〉, which in an

arbitrary basis are defined as: |r〉 = ξri|c†i↑〉 with random coefficients ξri having
a normal random distribution over the interval [−1, 1]. The statistical average
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over the R vectors of the expectation value approximates the trace in Eq. (6.3).
Here the number of vectors R required to perform (6.3) is much lower than the
order M of the Hamiltonian (6.1) (R < M) [166] and the number of atoms in
the disordered region.

The average DOS is calculated by using Eq. (3.8) with the moments obtained
using Eq. (6.3). The number of random vectors, R, is taken to be large enough
such that the DOS converges. We typically use R ∼ 200. In order to mimic
effectively an infinite region we introduce an absorbing potential operator Γ̂ at
the boundary by following the recipe shown in Section 2.3. It was shown that
this absorbing boundary condition could be easily incorporated in the Chebyshev
expansion of the Green’s function by considering an imaginary damping factor
γ̂, which redefines the recursion formula (2.60) as follows:

|νn〉 = e−γ̂
(

2H|νn−1〉 − e−γ̂|νn−2〉
)

, (6.4)

with the initial conditions |ν0〉 = |c†i↑〉 and |ν1〉 = e−̂γ |ν0〉. Our calculations for
pristine graphene (not presented here) show that we can remove all the finite size
interference peaks in the LDOS, appearing due to scattering from the boundaries,
without implementing periodic boundary conditions or considering large lattice
sizes.

6.3 Results

6.3.1 Vacancies

Within the tight-binding formalism considered here, a vacancy at atomic site i is
modeled by setting the on-site energy larger that any energy scale present in the
pristine normal state in graphene, ǫi ≫ 3t. In addition, the corresponding hop-
ping parameters that connect the i-site to its neighbors are set to zero, tij = 0.
Our numerical procedure considers any finite concentration of vacancies, defined
through the ratio xvac = Nvac/N , where N is the total number of atomic sites in
the junction.

It has been shown that divergences in the DOS are present around the Dirac
point when a finite concentration of vacancies are induced in graphene [157].
Here, we calculate the DOS of the graphene Josephson junction while introduc-
ing different concentrations of vacancies over the disordered region depicted in
Fig. 6.1. The DOS is averaged over different realizations for the configuration
of vacancies in order to include all possible scattering and interference processes
between the electron/hole wave and the scatterers induced by the missing atoms.
In Fig. 6.2 we shown the different Andreev peaks that are present in our clean
Josephson junction of graphene (bottom curve). The electron and hole wave
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Figure 6.2: DOS for a graphene Josephson junction considering different concentration

of vacancies xvac = Nvac/N = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1 and 5% from bottom to top.

Energy scale is normalized to the bulk value of the order parameter (∆) in the graphene

superconducting regions. Two cases are considered, according to the compensation in

the distribution between the two sublattices: (a) completely compensated where vacan-

cies are distributed equally in the two sublattices and (b) completely uncompensated

where vacancies are randomly present only in one of the sublattices.

are scattered by the N/S interface and interfere, giving rise to the well known
Andreev peaks. Note that because the chemical potential in the junction is at
the Dirac point, the Andreev peaks show the specific energy dependence in the
graphene junctions, i.e. traveling modes with a gapped spectrum versus bound
states with an ungapped spectrum as observed in conventional S/N/S junctions.
As we can see clearly in Fig 6.2, as the concentration of impurities increases, the
Andreev peaks are progressively suppressed. Notice that the lowest energy peaks
are the first to disappear as the scattering probability for long paths between the
interfaces becomes higher, affecting lower energy states, when compared to short
paths, which contribute to higher subgap energy states. As the concentration is
increased above x > 0.5%, traces of the Andreev reflection processes on the
DOS vanish.

Selective dilution of the vacancies in the different sublattice sites has been



82 DISORDERED GRAPHENE JOSEPHSON JUNCTIONS

shown to induce different zero modes in the DOS [157,167]. For instance, com-
plete dilution of the vacancies in one of the sublattices, or complete uncompen-
sated dilution, leads to the opening of a gap around the zero mode at the Dirac
point and whose magnitude is proportional to the vacancy concentration. On
the opposite, complete compensated dilution brings an increase of the spectral
weight for energies surrounding the Dirac point. We have investigated both cases
and found slight differences in the DOS around the Fermi level, which are more
remarkable for larger vacancy concentrations, x > 0.5% (see Fig. 6.2). In or-
der to further clarify the contrast between the compensated and uncompensated
cases we show in Fig. 6.3 the average critical current density across the junction
as a function of vacancy concentration. Note that the current is averaged over the
junction width and over impurity configurations. As we can observe both cases
lead to different power-law suppression of the the critical current. For instance,
the suppression of the current goes according to Jc ∼ x−1.8 for uncompensated
dilutions of the vacancy configurations. This agrees with the fact that a gap
of energy scale E2 ∼ xvac is induced for complete uncompensated dilution of
vacancies in graphene [157]. On the other hand, vacancies diluted in both sub-
lattices still show a strong suppression of the supercurrent but weaker than the
uncompensated case. As an interesting fact, we note that by placing these va-
cancies in pairs of bounded atomic sites (bivacancies), we can observed that the
suppression is much weaker than in previous cases. The slow linear suppression
of the supercurrent in the presence of bivacancies is due to the absence of inter-
valley scattering, as was already reported previously for this type of atomic-scale
defects [159].

6.3.2 Ripples: Gaussian bumps

We next analyze the effects of inhomogeneous strain over the disordered area
in the graphene Josephson junction. For this purpose, we model the ripples in
graphene as smooth bumps where the out of plane deformation is described by a
Gaussian function. It has been theoretically shown that a six-fold spatially sym-
metric pseudo-magnetic fields, with alternating sign, emerges from this strain
configuration [164, 168, 169].
The Gaussian deformation is introduced in the tight-binding description of Eq. (6.2)
by the strained hopping parameter:

tij = γ0 exp
−3.37(

lij
a0

−1)
(6.5)

where γ0 = 2.7eV and a0 = 1.42Å are the unstrained hopping and lattice param-
eter, respectively, while lij is the strained distance between nearest-neighbors i
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Figure 6.3: Average critical current density in a graphene Josephson junction for differ-

ent concentrations of vacancies, diluted randomly over both sublattices (compensated),

or over a single sublattice (uncompensated), or over two-coupled sublattices (biva-

cancy). The continuous lines correspond to a least squares fit to f(x) = a(x + b)c

and g(x) = ax+ b.

and j. The corresponding out of plane deformation is given by a Gaussian func-
tion as follows:

Z(Rij) = Z0 exp
−|Rij |

2/2ε2 . (6.6)

where Rij = rij−R0 is the in-plane atomic position with respect to the center of
the Gaussian, R0. It is important to mention that the Gaussian width parameter
ε is constrained here, such that Z(Rij) ≈ 0 in the clean interface regions (see
Fig. 6.1). Once the width is fixed, the height parameter Z0 is adjusted according
to a desired maximal strain. Since we known from the continuum model how the
strength of the pseudomagnetic field depends on the parameters of the Gaussian,
we considered different configurations for the size and the number of Gaussian
bumps inside the junction (see Fig. 6.4). As a particular case, we have included
in Fig. 6.4 an arrangement of triangular bumps made from a superposition of
four Gaussians in a triangular configuration, where three are centered in equidis-
tant vertices while the last is placed a distance d from the vertices in the middle
of the triangle. This particular strain has been inspired by a previous theoreti-
cal study where a nonuniform deformation is engineered by depositing graphene
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Figure 6.4: Strained graphene Josephson junction with different configurations of Gaus-

sian bumps. Panels (a)-(c) show isolated Gaussian bumps while (d) corresponds to an

arrangement of four Gaussian bumps in a triangular configuration.

on a substrate decorated with nanopillars set in a triangular configuration [170].
The corresponding pseudomagnetic fields emerging from these deformation ex-
hibit a non-trivial symmetry, consisting of larger regions with an almost constant
pseudo-magnetic field, when compared to the sixfold symmetric fields generated
by isolated Gaussian bumps. In order to investigate the effect of ripples on An-
dreev scattering in the junction we calculated the average DOS for the different
configurations of Gaussian bumps shown in Fig. 6.4. These results are shown
in Fig. 6.5(a)-(d) for different values of the maximum strain: 0%, 5%, 10% and
20%. The Andreev states seen in Fig. 6.5(a) start to be affected by the pres-
ence of the Gaussian bumps even for the lowest values of the strain. Particularly,
high-energy Andreev peaks are mainly suppressed for the case of high density of
Gaussian bumps depicted in Fig. 6.4(a). This suggests that short paths are influ-
enced more by the pseudomagnetic field than the long paths, which contribute to
the low energy spectrum.

Alternatively, the configuration with a single Gaussian bump, shown in Fig.
6.4(b), for which the DOS is presented in Fig. 6.5(b) shows that high-energy
Andreev peaks remain conserved despite the fact that the pseudo-magnetic field
is supposed to be stronger over a wider region. At low energies, sharp peaks
appear, and the quasi-particle gap starts to close.

The next two cases, shown in Figs. 6.4(c) and (d) and Figs. 6.5(c) and (d),
reveal an interplay between the size of the Gaussian bump and the strength of
the pseudo-magnetic field. As seen previously, the high energy peaks are the
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Figure 6.5: DOS for a graphene Josephson junction for the different strain configura-

tions shown in Fig. 6.4. Panels from left to right correspond to cases from top to bottom

shown in Fig. 6.4, respectively. Areas delimited by subsequent curves have been filled in

order to present a better contrast between the Andreev peaks for deformations with the

maximum strain increasing from 0% to 5%, 10% and 20% (bottom to top).

first to be affected as the strain is increased. At low energies, Landau level-
like peaks appear and the gap observed for the clean system closes. Because
of the oscillating pseudo-magnetic field, a combination of snake-like states and
pseudo-Landau levels, appear where the field vanishes or is maximal. The exis-
tence of extended regions with large pseudo-magnetic fields, will act as a pseudo-
magnetic barrier for the electron or hole quasiparticles propagating in the junc-
tion. As a consequence, although the time-reversal symmetry is not broken, it is
expected that the supercurrent is suppressed and will flow only as edge states near
the boundaries [128]. We next investigate the Josephson current flowing through
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Figure 6.6: Average critical current density in strained Josephson junctions as a func-

tion of maximal strain for the strain configurations depicted in Figs. 6.4(a)-(d).

the strained junctions in Fig. 6.6, where we present the average critical current
density as a function of the maximum strain applied in each configuration. We
find a suppression of the critical current as the strain is increased. In particular,
this suppression is stronger for the configurations shown in Figs. 6.4(c) and (d)
when compared with the single bump case, Fig. 6.4(b), and the many smaller
bumps, Fig. 6.4(a). As suggested previously, these results can be explained by
noticing that the current is more effectively suppressed in the cases in which the
pseudo-magnetic field is larger over a more extended area, thus providing a bet-
ter magnetic barrier. Although the size of the bump in case (d) is the same as
the one in case (c), the current is further suppressed because the triangular bump
induces larger regions with pseudo-magnetic fields with the same sign, although
the average field is zero.

6.3.3 Charged impurities

Finally, we investigate the effect of scattering due to the presence of impurities
on the diffusion of Andreev pair in graphene Josephson junctions. It is well-
known that the presence of these types of impurities may induce local charged
puddles in graphene, which can be emulated through spatial fluctuations of the
Fermi energy around the Dirac point. These fluctuations are modeled here by
means of a random superposition of Nimp potentials with a Gaussian-like spatial
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dependence. Thus, we assume that the proximity of a single charged impurity is
reflected in the parameters of a Gaussian potential such that on-site energies of
carbon atoms in the disordered region are given as follows [171]:

ǫi =

Nimp
∑

j=1

Vj exp

(

−|ri − Rj|2
2ε2

)

(6.7)

where Vj and ε correspond to the amplitude and range of a single Gaussian poten-
tial centered at the atomic position Rj , respectively. These on-site potentials as
described by Eq. (6.7) are introduced in our formalism described by the Hamil-
tonian (6.2) but we constrain their scope to ε < L,W such that they vanish in
the interface strips where the Fermi level is pinned at the Dirac point.

In order to characterize the effect of this sort of disorder we follow the recipe
proposed in previous works [171, 172] where the mean-free path is considered
as being inversely proportional to the following parameter:

κ0 ∝
(

Vi
t

)2

ximpκ
2 (6.8)

where Vi/t is amplitude of the random potential in units of the hopping parameter
while the ratio of the number of impurities and the total number of atoms in the
junction corresponds to the concentration of impurities ximp = Nimp/N . The
averaged charge density per impurity atom is described by the factor κ according
to:

κ =
1

Nimp

Nimp
∑

j

N
∑

i

exp

(

−|xi − xj |2
2ε2

)

(6.9)

For practical purposes, we consider the same amplitude for all potentials in
Eq. (6.7), i.e. |Vj| = V for all j. In addition, for a given value of the Gaus-
sian width ε, we fixed the maximum of the Gaussian, V , such that the density
of charges obtained from Eq. (6.9) is the same for the different values of ε con-
sidered here. This allows us to make a more clear discussion about the effect of
the Gaussian potential, mainly of its height and width parameters, as long as the
total charge density is kept fixed under a constant concentration of vacancies. We
consider two separate cases. First, in the presence of electron and hole puddles,
the total charge density is zero, meaning that the number of electron and hole-
doped Gaussians is equal. We next investigate the presence of charged impurites
of the same type, i.e. electron-doped Gaussians, in which case the charge density
will increase as the concentration of impurities increases.
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We first present our results for the electron-hole charge puddles. In Figs. 6.7(a)-
(c) we shown the average DOS in a graphene Josephson junction with doping in-
homogeneity profiles given by Eq.( 6.7) for three different cases according to the
size of the Gaussian potential induced by single impurities. As in the previous
disorder cases, the DOS is averaged over different realizations of the impurity
configurations. The most trivial case, where ε/a = 0.1 ≪ 1, is depicted in
Fig. 6.7(a). In this limit, which resembles the typical Anderson disorder model,
we can observe that the effect of increasing the concentration of impurities ximp

leads to a suppression of the Andreev bound states. Despite that this on-site
defect is similar to the case of vacancies (in the limit of large V ) we can see
that when comparing with Fig. 6.2 the dispersion mechanism acts differently in
the two cases, as lower energy Andreev states are preserved even for the highest
values of xvac in Fig. 6.7(a).

Next we proceed to a larger ε/a = 0.5, a value still smaller than the lattice
parameter. In this situation, we see in Fig. 6.7(b) that Andreev bound states
are affected much more strongly as inter-valley scattering is expected to become
more pronounced. It is clearly seen that the lower energy gap disappears in the
first place as the concentration of impurities is increased. This is similar to what
was observed for vacancies, with the difference that the quasiparticle gap does
seem to be completely suppressed as the impurity concentration increases.

Contrary to the previous cases, when ε > a, the influence of disorder on
the Andreev states is weak. As the potential profile becomes smoother on the
scale of the lattice parameter, inter-valley scattering is suppressed, thus having
a weak influence on the average DOS in the junction, as seen in Fig. 6.7(c).
In order to verify the insights given by the change in the Andreev levels seen
in the averaged DOS, we plot in Fig. 6.8 the average critical current density as
a function of impurity concentration for different values of ε. First, in panel
Fig. 6.8(a), the electron-hole puddles scenario is considered. In this case the
current is suppressed for all ranges of the potential profiles, with a much stronger
effect when ε ≤ a, and a very weak effect when ε > a. The case ε/a = 0.5
deserves particular attention as the current becomes strongly suppressed when
the impurity concentration is increased, confirming the strong suppression of
the Andreev peaks observer in the averaged DOS. This effect was investigated
experimentally in graphene Josephson junctions in the long-junction limit [67]
and presence of electron-hole puddles was given as an explanation for the strong
suppression of the supercurrent at charge neutrality. As shown here, we only
observe a strong suppression when the charge scatterers are short-range.

In addition to the charge puddles case, the effect of an impurity distribu-
tion with positive charge, inducing an average finite doping in graphene, is also
studied. The average critical current density for this scenario is presented in
Fig. 6.8(b). Here the dependence of the current is not monotonic as a function of
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Figure 6.7: (Color online) Average DOS for disordered graphene Josephson junctions,

considering impurity scattering potentials with different ranges, ε/a =0.1, 0.5 and 4.0.

The area between the curves has been filled in order to have a better contrast for lines

corresponding to different impurity concentrations. Different values of the impurity con-

centration considered inside the panels are ximp =0%, 1%, 2%, 3% and 5%, from

bottom to top.

ε. The overall tendency is for the supercurrent to be enhanced since finite doping
brings the Fermi level away from the Dirac point. On the other hand, the pres-
ence of short-range scatterers will also generate inter-valley scattering events,
thus suppressing the current. Therefore we observe two separate regimes, de-
pending on whether ε < a or ε ≥ a. For ε = 0.1a and 0.5a, the current is
suppressed even for low impurity concentration, signaling the fact that inter-
valley scattering is the main contribution, larger for ε = 0.5a. If ε ≥ a, at low
impurity concentration the supercurrent is increasing due to an increase in the
average doping but depending on the inter-valley scattering probability it will be
eventually suppressed, more for ε = a than ε = 4a.
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Figure 6.8: (Color online) Average critical current density in a graphene Josephson

junction as a function of the impurity concentration ximp for different widths of the

Gaussian potential induced by isolated impurities. Equal number of electron and hole-

like potentials are considered in panel (a) while only electron-like potentials are assumed

in (b) leading to a inhomogeneous but finitely doped junction.

6.4 Conclusion

In conclusion, by using a numerical tight-binding approach, we described var-
ious disorder scenarios in graphene Josephson junctions near charge neutrality.
We investigated both the disappearance of the multiple Andreev reflection peaks
in the junction and the suppression of the Josephson current. We observed that
the supercurrent is most strongly suppressed in the presence of vacancies or res-
onant impurities, e.g. adsorbed hydrogen atoms. In this case, the presence of
strong inter-valley scattering destroys the interference of time reversed electron-
hole pairs which undergo Andreev reflections at the N/S interfaces. As a test, we
show that when the vacancies come in pairs, and thus the sub-lattice symmetry
is not being broken, the supercurrent is very weakly suppressed.

Another scattering mechanism is given by the presence of ripples. We show
that although there should be no inter-valley scattering in this case, Gaussian
bumps will act as pseudo-magnetic barriers, thus suppressing the supercurrent.
The larger the regions with finite pseudo-magnetic fields, the more efficient the
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scattering will be.
A third disorder scenario involves the presence of charged impurities, which

are modeled as variations of the local potential. We show that in the presence
of electron-hole charge puddles, the supercurrent is always suppressed, but the
strongest effect is obtained when the range of the potential disorder is very small,
thus inducing significant inter-valley scattering. When the impurities only dope
with electrons, we observe an interplay between an enhancement of the current
due to the shift of the Fermi energy away from the Dirac point, and a suppression
by short range scatterers due to inter-valley scattering.

Publication The results of this chapter will be published as:

• W. A. Muñoz, L. Covaci and F. M. Peeters Disordered graphene Josephson

junctions, Phys. Rev. B , (2014) (9 pages).
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7
Summary

7.1 Concluding remarks of the thesis

In the present thesis, we theoretically investigated intrinsic and proximity-induced
superconducting correlations in single and multilayer graphene. In order to de-
scribe inhomogeneous superconductivity in these lattice structures we solved
self-consistently the Bogoliubov-de Gennes equations within a tight-binding for-
malism. For our study we used an efficient numerical method for the calculation
of Green-Gor’kov functions through an expansion in terms of Chebyshev poly-
nomials. Significant speed-up is achieved for the present method by implement-
ing massive parallel algorithms in Graphic Processing Units (GPUs). This allows
us to solve efficiently systems described by matrices with large sizes (∼ 104−106

atoms) as this corresponds to the typical dimension of the Hamiltonian matrix for
multilayer graphene structures, where direct diagonalization is not suitable.

In chapter 3, we performed a study of the proximity effect and the supercon-
ducting current in a normal-superconducting-normal single and bilayer graphene
Josephson junction. Proximity is emulated through the self-consistent calcula-
tion of the pair amplitude along the junction, where the Fermi level is shifted in
the normal (non-superconducting) region. For large and moderate doping, where
BLG seems to behave similar to SLG, the characteristic leakage length is found
to match with the SLG Josephson junction case. However, we observed that for
doping levels below the interlayer coupling energy, the pair amplitude behaves
quite differently from SLG case. Due to the polarization in the local density of
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states in BLG between dimer and non-dimer sites, we found two different leak-
ing distances. As a consequence, we observed that around the Dirac point the
current-phase relation differ from SLG where the critical current is suppressed
for the BLG case. Broken space inversion symmetry was also considered in our
work and it is shown that an electric field perpendicular to the bilayer suppresses
the current in short junction where the length of the junction (L) is comparable
to the Fermi length (λF ). For the L < λF regime, where doping effects from
the contact are important, we found an enhancement of the current as the electric
field increases.

In chapter 4, we used the same method to solve self-consistently for the s-
wave pair order parameter in a rhombohedral (ABC) and Bernal (ABA) mul-
tilayer graphene. We examined the effect of both stacking configurations and
found opposite bulk/surface behavior of the order parameter. Surface supercon-
ductivity is robust for ABC stacked multilayer graphene even at very low pairing
potentials for which the order parameter vanishes in the bulk. This is in contrast
to Bernal stacked multilayer graphene, where we find that the order parame-
ter is always suppressed at the surface and that there exists a critical value for
the pairing potential below which no superconducting order is achieved. We
also considered different doping scenarios and find that homogeneous doping
strongly suppresses surface superconductivity while a non-homogeneous field-
induced one has a much weaker effect on the superconducting order parameter
in rhombohedral multilayer graphene. For those multilayer structure with hy-
brid stacking (ABC and ABA), we find that when the thickness of each region
is small (few layers), rhombohedral surface superconductivity survives through-
out the bulk due to the proximity effect between ABC/ABA interfaces where the
order parameter is enhanced.

In chapter 5, we presented a 3-dimensional description of a Josephson junc-
tion made of two superconducting contacts linked weakly by a non-intrinsically
superconducting multilayer graphene substrate. Both Bernal (ABA) and rhom-
bohedral (ABC) stacking are considered and we found a strong dependence of
the pair leaking on the type of stacking. For instance, the amplitude of the pair
correlation function shows a polarization between dimer and non-dimer atoms,
which is more pronounced for rhombohedral configuration. Despite the fact that
proximity effect in non-dimer sites is enhanced when compared to single layer
graphene, we find that the Josephson current is suppressed. In fact, the spatial
distribution of the supercurrent shows that for ABA stacking the current flows
mostly in the top-most layers while for ABC stacking the current flows through-
out the whole structure.

In chapter 6, we investigated the effect of disorder on the Andreev states and
the Josephson current in a graphene Josephson junction. We considered different
disorder scenarios like vacancies, ripples and charged impurities. In presence of
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vacancies, for instance, we observed the disappearance of the multiple Andreev
peaks and suppression of the Josephson current. This follows from the inter-
valley scattering induced by this resonant impurities which destroys the quan-
tum interference between the time-reversal trajectories of the Andreev-reflected
electron-hole pair. The situation is similar under another scattering mechanism
induced by the presence of ripples, which do not mix valleys but, where we have
also observed the suppression of the supercurrent. This suggests that the pres-
ence of the ripples act as pseudo-magnetic barriers on the electron and holes
trajectories. Finally, we considered the case where the presence of charged im-
purities induces local variation in the Fermi energy named charged puddles. We
examined the effect of both electron-hole and only electron charged puddles and
found that for the former case the supercurrent is always suppressed with strong
effect for short-range potential where intervalley scattering seems to be impor-
tant. The later case shows an enhancement of the supercurrent since Fermi level
in the junction is shifted away the neutrality point as a consequence of the non-
zero averaged doping induced for the electron charged puddles. Suppression of
the supercurrent is found in this case only for short-range potential due to the
intervalley scattering.

7.2 Future prospects

In chapter 3 we considered exclusively clean graphene systems. Nonethless, we
have demonstrated in chapter 6 that it is possible to extend our calculations to
disordered graphene. We expect that disorder will influence differently the single
and bilayer cases since the LDOS modification near impurities is different in the
two cases. Also, in bilayer graphene, one can have different levels of disorder in
the two layers, for example hydrogenation at one side, which will make bilayer
distinct from single layer. It is expected that different effects on the Andreev
states emerge from the presence of charged impurities since Klein tunneling in
BLG is converted to total reflection instead of total transmission as was found in
SLG [173].

In chapter 4 we discussed about possible superconducting correlations in
multilayer graphene with different stacking configuration. Our calculations were
made under the assumption of the existence of a s-wave coupling. It will be in-
teresting to continue similar calculations but assuming p-wave coupling. The
reason is that there are several hints suggesting that magnetism may play some
role in the superconducting signal obtained for HOPG samples [51,52]. In anal-
ogy with rhombohedral multilayer graphene, the electronic band structure shows
the presence of flat band close to the Fermi level for slightly twisted bilayer
graphene [174]. According to our findings in chapter 4, van Hove singularity
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near the Fermi energy, which is a clear sign of flattening of the band, may pro-
vide some enhancement in the electronic correlations in twisted bilayer graphene
which in turn can trigger high critical temperature superconductivity.

Finally, in chapter 5 we numerically studied Josepshon junctions of a mul-
tilayer graphene. Numerical calculations can be performed including a bottom
gate which dopes only the lower layers as in the experimental setup of Ref. [122].
In order to do that, screening effects have to be included such that a proper charge
distribution in the layers is accounted for.



8
Samenvatting

8.1 Overzicht van de thesis

In dit proefwerk berekenen we de intrinsieke en nabijheid geinduceerde su-
pergeleidende correlaties in enkele en multilaag grafeen. Om inhomogene su-
pergeleiding in deze materialen te kunnen beschrijven, hebben we zelfconsis-
tent de Bogoliubov-de Gennes vergelijkingen opgelost binnen een tight-binding
formalisme. In onze studie hebben we een efficiente numerieke methode ge-
bruikt om de Green-Gorkov functies te berekenen door ze te ontwikkelen in ter-
men van Chebyshev polynomen. Voorts werden significanten snelheidswinsten
geboekt door deze theorie parallel te implementeren op Graphic Processing Units
(GPUs). Dit laat ons toe om grote systemen (104 − 106 atomen) te simuleren.
Bij deze grootte orde is het niet mogelijk om voor multilaag grafeeen de Hamil-
toniaan rechtstreeks te diagonaliseren.

In hoofdstuk 3 hebben we een studie uitgevoerd om het nabijheidseffect en
de supergeleidende stroom in een normaal-supergeleidend-normaal junctie te
berekenen op enkele en bilaag grafeen. Het nabijheidseffect manifesteert zich
in zelf consistente berekeningen van de paar amplitude langs de junctie waar
het Fermi niveau bepaald wordt door het niet supergeleidende deel. Indien het
systeem gemiddeld tot sterk gedoopt wordt, blijkt dat bilaag grafeen (BLG) zich
gelijkaardig gedraagt als monolaag grafeen (SLG), de karakteristieke leklengte
komt overeen met een SLG Josephson junctie. We observeerden echter dat in-
dien het doping niveau onder de interlaag koppeling energie ligt, de paar ampli-
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tude zich vrij anders gedraagt dan voor het SLG geval. Door de polarizatie van
de lokale toestandsdichtheid in de BLG tussen de gedempte en vrije toestanden,
vonden we twee verschillende leklengtes voor beide toestanden. Bijgevolg ob-
serveerden we dat rond het Dirac punt de stroom-fase relatie verschilt van SLG.
Bij BLG is de kritische stroom onderdrukt ten opzichte van de SLG. We on-
derzochten ook een gebroken ruimtelijke inversie symmetrie en toonden aan dat
een elektrisch veld loodrecht op de bilaag de stroom onderdrukt indien de junc-
tie kort is, i.e. de lenge (L) is vergelijkbaar met de Fermi lengte (λf ). Voor het
L < λf regime, waar effecten van contactdoping belangrijk zijn, vonden we een
versterking van de stroom als het elektrisch veld verhoogd werd.

In hoofdstuk 4 gebruikten we dezelfde methoden om de s-golf paar orde
parameter in een rhombohedraal (ABC) en Bernal (ABA) multilaag grafeen te
bestuderen. We onderzochten het effect van beide stapelconfiguraties en von-
den een tegenovergestelde bulk/oppervlakte gedrag in de ordeparameter. Opper-
vlakte superconductiviteit is robust in ABC multilaag grafeen zelfs bij kleine par-
ingspotentialen waarvoor de ordeparameter verdwijnt in de bulk. In tegenstelling
tot Bernal gestapeld multilaag grafeen, waar we vinden dat de ordeparameter al-
tijd onderdrukt wordt aan het oppervlak en dat er een kritische waarde bestaat
voor de potentiaal waaronder geen supergeleidende orde wordt bereikt. We in-
derzochten ook verschillende manieren van doperen en vonden dat homogene
doping de oppervlakte supergeleiding sterk onderdrukt terwijl niet-homogene
doping die geinduceerd is door een veld een veel zwakker effect heeft op de
supergeleidnede ordeparameter in ABC multilaag grafeen. Voor deze multi-
laag structuren met een hybride stapeling (ABC en ABA), vinden we dat, voor
een kleine dikte van iedere regio (enkele lagen), rhombohedraal oppervlakte su-
pergeleiding in de bulk overleeft door het proximity effect tussen ABC / ABA
tussenvlakken die de orde parameter versterken.

In hoofdstuk 5 presenteren we een driedimensionale beschrijving van een
Josephson junctie die gemaakt is van twee supergeleidende contacten zwak ver-
bonden door een niet-intrinsiek supergeleidend multilaag grafeen substraat. Beide
Bernal (ABA) en rhombohedraal (ABC) stapel wijzen zijn bestudeerd en we von-
den dat de mate waarin paarlekking optreedt sterk afhankelijk is van de stapel-
wijze. Zo vertoont bijvoorbeeld de amplitude van de paarcorrelatie functie een
sterke polarizatie tussen de boven en naast elkaar gestapelde atomen, wat het
sterkst duidelijk is bij de ABC configuratie. Ondanks het feit dat het nabijhei-
dseffect in de boven elkaar gestapelde toestanden versterkt is in vergelijking
met SLG, vinden we dat de Josephson stroom onderdrukt is. In feite toont de
ruimtelijke distributie van de superstroom dat voor ABA stapeling de stroom
hoofdzakelijk in de bovenste lagen stroomt terwijl dit voor ABC stapeling in de
hele struktuur gebeurt.

In hoofdstuk 6 onderzoeken we het effect van wanorde op de Andreev toes-
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tanden en de Josephson stroom in een grafeen Josephson junctie. We beschouwen
verschillende wanorde scenarios zoals gaten, rimpeld en geladen onzuiverheden.
In de nabijheid van gaten, bijvoorbeeld, observeerden we dat verschillende An-
dreev pieken verdwenen en dat de Josephson stroom onderdrukt werd. Dit vol-
gde uit de intervallei verstrooiing geinduceerd door resonante onzuiverheden die
de kwantum interferentie tussen de tijdsomgekeerde paden van de Andreev gere-
flecteerde elektron-gat paren vernietigde. De situatie is gelijkaardig voor andere
verstrooiingsmechanismen zoals rimpels, waarvoor de valleien niet gemengd
worden, waarvoor we vonden dat de superstroom onderdrukt werd. Dit sug-
gereert dat de aanwezigheid van rimpels zich uitdrukt als pseudo-magnetische
barriéres voor de elektron en gat paden. Uiteindelijk beschouwden we ook het
geval waarvoor de aanwezigheid van geladen onzuiverheden lokale variaties in
de Fermi energie induceren. Deze variaties noemen we geladen poelen. We on-
derzochten het effect van elektron-gat en enkel elektron poelen en vonden dat
voor de eerste de superstroom altijd onderdrukt wordt als gevolg van het sterke
effect voor korte dracht potentialen waarvoor de intervallei verstrooiing belan-
grijk begint te worden. In het andere geval vinden we een versterking van de
superstroom omdat het Fermi niveau in de junctie opgeschoven is, weg van het
neutraliteitspunt als gevolg van de eindige gemiddelde doping geinduceerd voor
de elektronpoelen. Onderdrukking van de superstroom wordt in dit geval gevon-
den voor korte-dracht potentialen als gevolg van intervallei verstrooiing.





Bibliography

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in
Atomically Thin Carbon Films,” Science, vol. 306, pp. 666–669, Oct.
2004. PMID: 15499015.

[2] P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev., vol. 71,
pp. 622–634, May 1947.

[3] G. W. Semenoff, “Condensed-Matter Simulation of a Three-Dimensional
Anomaly,” Phys. Rev. Lett., vol. 53, pp. 2449–2452, Dec. 1984.

[4] B. C. Brodie, “On the Atomic Weight of Graphite,” Phil. Trans. R. Soc.

Lond., vol. 149, pp. 249–259, Jan. 1859.

[5] H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “Das Adsorp-
tionsverhalten sehr dünner Kohlenstoff-Folien,” Z. anorg. allg. Chem.,
vol. 316, pp. 119–127, July 1962.

[6] A. J. Van Bommel, J. E. Crombeen, and A. Van Tooren, “LEED and Auger
electron observations of the SiC(0001) surface,” Surface Science, vol. 48,
pp. 463–472, Mar. 1975.

[7] J. T. Grant and T. W. Haas, “A study of Ru(0001) and Rh(111) surfaces
using LEED and Auger electron spectroscopy,” Surface Science, vol. 21,
pp. 76–85, June 1970.

[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson,
I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas
of massless Dirac fermions in graphene,” Nature, vol. 438, pp. 197–200,
Nov. 2005.

[9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.
Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81,
pp. 109–162, Jan. 2009.



102 BIBLIOGRAPHY

[10] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport
in two-dimensional graphene,” Rev. Mod. Phys., vol. 83, pp. 407–470,
May 2011.

[11] A. F. Young and P. Kim, “Quantum interference and Klein tunnelling in
graphene heterojunctions,” Nat. Phys., vol. 5, pp. 222–226, Mar. 2009.

[12] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observa-
tion of the quantum Hall effect and Berry’s phase in graphene,” Nature,
vol. 438, pp. 201–204, Nov. 2005.

[13] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnel-
son, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional
quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat.

Phys., vol. 2, pp. 177–180, Mar. 2006.

[14] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Pono-
marenko, D. Jiang, and A. K. Geim, “Strong Suppression of Weak Local-
ization in Graphene,” Phys. Rev. Lett., vol. 97, p. 016801, July 2006.

[15] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea,
A. H. C. Neto, and M. F. Crommie, “Strain-Induced Pseudo–Magnetic
Fields Greater Than 300 Tesla in Graphene Nanobubbles,” Science,
vol. 329, pp. 544–547, July 2010. PMID: 20671183.

[16] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K.
Vandersypen, “Gate-induced insulating state in bilayer graphene devices,”
Nat Mater, vol. 7, pp. 151–157, Dec. 2007.

[17] A. K. Geim, “Nobel Lecture: Random walk to graphene,” Rev. Mod.

Phys., vol. 83, pp. 851–862, Aug. 2011.

[18] Z. K. Tang, L. Zhang, N. Wang, X. X. Zhang, G. H. Wen, G. D. Li,
J. N. Wang, C. T. Chan, and P. Sheng, “Superconductivity in 4 Angstrom
Single-Walled Carbon Nanotubes,” Science, vol. 292, pp. 2462–2465,
June 2001. PMID: 11431560.

[19] M. Kociak, A. Y. Kasumov, S. Guéron, B. Reulet, I. I. Khodos, Y. B.
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