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Introduction

1.1 Introduction to superconductivity

Superconductivity is a phenomenon in condensed matteiqawiere a material looses its electri-
cal resistivity below some critical temperatife The phenomenon was discovered in 1911 by the
Dutch physicist Heike Kamerlingh Onnes when measuring lietrécal resistance of Mercury [see
Fig. 1.1(a)] [1]. Being the first one to liquify Helium in 190Bamerlingh Onnes was studying the
behavior of pure metals at temperatures close to the alestéub, when he observed that below 4.2
K the resistance of a mercury sample abruptly vanished.fiftdsg, which was later reproduced in
other materials such as tin and lead [2], convinced Kanghli@nnes that his measurements were
revealing a completely new state of matter. He coined it apraconductivity”, later to be changed
to “superconductivity”.

Another characteristic of superconductivity is the parfBamagnetism, i.e. the total expulsion
of applied magnetic fields independently of the history &f finocess. This behavior is referred to
as the Meissner-Ochsenfeld effect, after its discoveraakhét Meissner and Robert Ochsenfeld
who observed it first in 1933 [see Fig. 1.1(b)] [3]. One is téadpto claim that the origin of the
Meissner-Ochsenfeld effect lies exclusively in the zesistance of the superconducting state [4].
If a superconductor is cooled down below Tsand later a magnetic field is applied, a current is
generated that flows without dissipation to induce a magfietd opposite to the external one, com-
pensating it inside the sample, in agreement with Lenz’s il@wthe superconductor behaves as an
ideal conductor. However, if one inverts the order and fipgtli@s the external field to subsequently
cool down the superconductor belowits the behavior followed by an ideal conductor differs from
the actual behavior of a superconductor. While the ideatlaotor keeps inside the same magnetic
field belowT, that it had abové',., the superconductor totally expels the external field bélpw

On theoretical side, brothers Fritz and Heinz London weeepioneers that devised a model
to capture the Meissner-Ochsenfeld effect in 1935 [5]. Thoeleh which was based on electro-
magnetism and early ideas about solids provided an equftraihe magnetic field along with a
characteristic scale for its spatial variation. This scdénoted by\; is called the penetration depth
of the applied field into the superconducting sample [4]. V&lees of\;, are material specific, e.g.
for Nb and Cd)\, is 32 and110 nm, respectively. Another large breakthrough in supercotidtyc
occurred in 1950 when Vitaly Ginzburg and Lev Landau forrtedaa theory based on Landau’s
theory of second-order phase transitions, to show thatreapéuctivity depends on two different
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Figure 1.1: (a) The resistance of a mercury sample suddeisigpgpears below critical temperatufg. =
4.2 K, indicating that the material became a superconductorntRef. [1]. (b) Depiction of the expulsion of
an external magnetic fielB by a spherical superconductor (the Meissner-Ochsenfédagf

length scales [6])\;, and&. The new length in this model, the so-called coherence et defines
the scale for variation of the order parametewhose square magnitude yields the local density of
carriers of superconductivity((r) = [¢(r)|?). The Ginzburg-Landau model achieved widespread
recognition after (i) introducing two types of superconidus, namely type | and II, and (ii) its pre-
diction of vortices and their subsequent experimental cowtfiion (see Fig. 1.2) [7,8]. Vortices
are localized defects where superconductivity is desttogied in which the magnetic field is com-
pressed so that one vortex carries exactly one quantum afetiadglux ¢,. Vortices arise in type-ll
superconductors to allow partial penetration of the appiregnetic field into the sample without
completely destroying the superconductivity, as wouldheedase in type-I superconductors. Vor-
tices form a triangular lattice, the so-called Abrikosattitz, which defines a phase only in type |l
superconductors (called Shubnikov phase or the mixed)st&ype | superconductors do not have
mixed state, as they can not host vortices, unless due te fiimé and demagnetization effects [4].

Despite of the success of the phenomenological theoriegplaie many of the main character-
istics of superconductivity, there were still several teas that remained puzzling to the scientific
community. The discontinuity of the specific heat at the scpeducting/normal state transition and
its exponentially decaying behavior in the supercondgctinase (see Fig. 1.3) were some of the
features which were only understood after a microscopiorthef superconductivity came out in
1957. The BCS theory, called after its founders John Bardesmm Cooper, and John Robert Schri-
effer [10], emerged after Cooper realized that two electi@yuld form a bound state slightly above
the Fermi surface provided that a weak attractive poteexisits [11]. The bound state of electrons,
the so-called Cooper pair, forms after the virtual exchawigghonons (lattice deformations of the
ionic crystal structure propagating as a wave). This ideampinteraction between electrons me-
diated by phonons that could bind them was first suggestediyli€h in 1950 [12], and it was
subsequently confirmed that same year through the disco¥éhe isotope effect [13], i.e. the de-
pendence of . on the mass of the lattice ions. Finally, another importaeakthrough in the theory
of superconductivity came in 1959, when Lev Gor’kov deritteel Ginzburg-Landau equations from
the BCS theory [14]. This derivation not only validated thie£burg-Landau theory (in its limits),
but also provided a relationship between the phenomermdbgoefficients of the Ginzburg-Landau
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Figure 1.2: (a) Magnetization as a function of the externaldfishowing the differences between bulk type |
and Il superconductors. While in the type | case there is anitransition from superconducting to normal
state, in the type Il case there exists a mixed state so thmrsonductivity is gradually destroyed. (b) In
the mixed state (also called Shubnikov phase) the exterdldl gartially penetrates the sample in the form
of vortices, each carrying a quantized unit of flux, whichniaa triangular lattice known as the Abrikosov
lattice. From Ref. [9].
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theory and the microscopic parameters of a material sudis &simi velocity and density of states.

With the BCS theory explaining the pairing mechanism in sopeductors, and due to lack of
new important discoveries of superconductivity in othetenals, the research in superconductivity
went to a slowdown in decades that followed the publicatibBardeen, Cooper and Schrieffer’s
work. However, the research took a major impulse in 1986 whearg Bednorz and Alex Muller
discovered superconductivity in a ceramic compound ofhiamiim and copper oxide, doped with
barium [16]. The discovery, that drew the attention of thedokcommunity, reported for the first time
superconductivity appearing in a non metallic compounbemthan a chemical element or alloy.
Besides, thd. of this material (35 K) broke an implicit limit (30 K) estabhed for the mechanism
of Cooper pairing based on the virtual exchange of phonorihifthe subsequent few years more
compounds containing copper-oxide planes were reportasdiperconduct with even high&g’s,
reaching to date the record of 153 K for the mercury bariuroical copper oxide (HgB&a,Cu; Og)
under pressure [17]. Regarding the pairing mechanism efgtoup of superconductors, widely
known as cuprates, there is no consensus yet about whaatiter provides the required attractive
potential for the formation of the Cooper pairs. Howeverawhmas been widely accepted to date is
that the superconducting gap hasiave symmetry rather than tkavave symmetry of conventional
(low T,) superconductors [18,19]. Tlhlewave symmetry is manifested in the gap in the form of line
nodes, i.e. regions where the gap in the phase space goes twvhé&ch modify important quantities
such as the quasiparticle density of states (DOS) and thddropenetration depth [20]. Precisely,
in the DOS plot shown in Fig. 1.4(a), one sees the V-shapeactwaistic for high temperature
superconductors (HTSs) [21], agreeing well with the expetiehavior for gaps having line nodes
(d-wave symmetry). This DOS was obtained by scanning tungeticroscopy whose fundamentals
are shown in panels (b) and (c) of Fig. 1.4.

So far in this overview of superconductivity the existenta onique gap developing at the Fermi
surface has been implicitly assumed both in theories andrerpnts. However, recent experimental
reports have revealed superconductivity with multipleggagamely multi-gap superconductivity, in
compounds such as: magnesium diboride (MdB3], iron pnictides (LaFeAsQ . F,) [24,25], iron
chalcogenides (FeTe,Se,) [26], and iron-arsenic compounds (RFeAsO), with R stagfln a rare
earth element. These materials have Fermi surfaces witthaapology that enable the formation
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Figure 1.3: Heat capacity of aluminium in its supercondngtiand normal phases. In the normal phase the
heat capacity has a polynomial dependence with temperatereC,, = vT + 72, while in the supercon-
ducting phase it has an exponential dependence(l.g/yT. = aexp —bT./T, wherey, 3, a, b and T, are
constants that are material specific. From Ref. [15].
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Figure 1.4: (a) Quasiparticle density of states, obtaindgthwa scanning tunneling microscope (STM), for the
high critical temperature superconduct@tio SroCaCu20s. 5 [21]. (b) Depiction of the STM along with (c)
its corresponding diagram. Due to the potential differebetween the tip (N) and the sample (S), electrons
tunnel the insulating barrier (I) formed by vacuum that sunnds the device. From Ref. [22].

of multiple superconducting gaps. As an example, Fig. 1dwsha 3D plot of the three supercon-
ducting gaps, namely, 3, andy, of the compound BaK, sF&As, [27]. The corresponding Fermi
sheets have an almost perfect cilindrical shape and areebbeathe highly symmetric poinisand

M of the two-dimensional Brillouin zone. Thedirection displays the magnitude of the gaps. The
Fermi surface, having three sheets and obtained with aegte#@ved photoemission spectroscopy,
is also shown at the bottom of the figure. Finally, the temjpeeadependence of the three gaps is
shown in the inset.

The report of the first multigap iron-based superconduatewdhe attention of the broad com-
munity since for long time persisted the antagonistic idetavken ferromagnetism (inherent in iron)
and superconductivity. However, with the following yednsstidea was slowly dismantled, owing
to the appearance of more iron-based superconductorsitkatlyl or indirectly confirmed the in-
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Figure 1.5: 3D plot of the superconducting gaps on the Femmiase, «, 8, and~ bands, of the iron-based
superconductor BgsKg 4sFeAsy. With the magnitude of the gaps being displayed along:thirection,
one can note that the: and v bands have roughly the same magnitude. The inset showsntipeitature
dependence of the magnitude of the gaps. The Fermi surfaBey@Kg sFexAsy, having three sheets and
mapped with angle-resolved photoemission spectroscepiiown at the bottom of the figure. From Ref. [27].

terplay between strong correlation and superconductiViibgay, after the intense research carried
out in iron-based superconductors there are solid evidesuggesting that the pairing symmetry in
these superconductors is of the-wave type [28]. On the other hand, regarding the pairinglraec
nism the debate is still open. There is ho consensus yet ohisvtie exact interaction responsible
for superconductivity in the iron-based materials.

We conclude this overview of superconductivity with a sli@scription of a superconductor that
has raised major expectations regarding reaching supsuctwity at ambient temperatures. It is
hydrogen sulphide (6), a chemical compound that at ambient pressures is a ghsreasgnized
by its odor of rotten eggs. 45 becomes a metallic conductor of electricity under presshrgher
than 0.9 million of atmospheres (90 GPa), and at 1.5 millibatmospheres it breaks the record of
the highest superconducting critical temperature with. ®f 203 K (-70 °C) [29]. The wave of
excitement spread within the scientific community mightgesj that we are witnessing the epoch-
making discovery in the field of superconductivity during tast decades.

1.2 The Ginzburg-Landau theory

The grounds of the Ginzburg-Landau (GL) theory of superaatidity lie in (i) the gauge invariant
principle and (ii) the paradigmatic model of Landau of setander phase transitions [6]. That
means that the theory requires a complex order paramegjan (order to describe the continuous
transition from the superconducting to the normal phaseidés,;) has to change smoothly from
a finite value to zero along the superconducting/normakttam. The minimal free energy density
fulfilling this requirement is
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Figure 1.6: Free energy density for different values of tiemmenological parameter, revealing the
existence of two phases that are smoothly connected, ithowtiany abrupt discontinuity at the transition
point, in agreement with the characteristics of second opltese transitions.

Flu) = ol + Dol 11

wherea and g are phenomenological expansion coefficients. MinimizabbEq. 1.1 yields two
solutions,

—@
7

One can see that and 5 have to be negative and positive respectively, in orderHerftee energy
to be bounded from below (see Fig. 1.6). The coefficiediepends on temperature and drives the
transition between the superconducting and the normalkptgesaring in mind that Landau’s theory
of second order phase transitions is valid in the vicinityha critical point (in superconductivity
defined byT.), the precise dependence of the coefficiertn temperature is reduced to first order,
i.e. a(T) = a(T — T.). The coefficients, unlike o, is temperature-independent. Fig. 1.6 shows
plots of the free energy for different values@f There one can see that as the temperature changes
aroundT,, equivalently toor changing around zero, the local minimum is establishedtaéerero
or at a finite value of the order parameter.

Spatial variations of the order parameter and coupling éontilagnetic field are included in the
free energy density 1.1 by adding two more terms,

=0, and []*= (1.2)

2 h?
+8_7r ,
wherem* ande* are the mass and the electric charge of the carriers of supductivity, respec-
tively. A is the vector potential ant is the local magnetic field. The free energy density of the

normal phase%,, has also been added in Eg. 1.3 to complete the full expressitre GL free
energy density. Minimization of# with respect to the fields* and A yields the two GL equations,

1
2m*

(év _ %A)w (1.3)

Fl Al = oo+l + Dol + | (4
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2711* (?V - e_C*A>2w + atp + Bl = 0, (1.4)
3= ¥ xn= orelu (59 - TA)o) 15)

Eq. 1.4 resembles the Schrodinger equation of a free eteatra magnetic field, but with the
nonlinear term3|+|?y) as an interaction term in the first GL equation. On the othedh&q. 1.5
is the Ampere’s law with] being the superconducting current density. The GL equsit@nd the
GL free energy density are gauge invariant by definition. yTiteenain the same for other fields
andA’, provided that)’ = e’ andA’ = A + iV, wherey is the arbitrary gauge. Finally, the
boundary conditions that complement the GL equations gre [4

(@v — €—A>w A =0, (1.6)
7 C

wheren is a vector normal to the boundary surface. This boundargition is appropriate for
vacuum-superconductor (V-S) interfaces since it prosifitperconducting currents to flow perpen-
dicularly to the interface. On the other hand, the appr¢@candition for insulator-superconductor
(I-S), metal-superconductor (M-S), and superconduatpesconductor (S’-S) interfaces is [30]

h * h

(—,V— 6_A>¢.ﬁ: o, (1.7)

i c b

whereb can be infinity, finite positive, and negative for the I-S, MaBd S’-S interfaces, respectively.

1.2.1 Characteristic length scales

The GL equations 1.4 and 1.5 form the set of coupled nonlidi#rential equations that describe
superconductivity near the critical temperatie Due to their complexity the available analytical
solutions are scarce. However, from the analytical cagesrted in the literature to date one can
draw very important quantities, such as the natural lencgleggoverning the spatial variation of the
superconducting order parameter.

Consider a one-dimensional superconductor at zero exteragnetic field and occupying the
regionx > 0. The first GL equation for this case becomes

R d%p

2m*|a| dz?

+ = [P =0, (1.8)

wheret) = A(0)y», andA(0) = y/]a|/3. One can notice in Eq. 1.8 that the quantjiy—— has

2m* |«
the unit of length. Therefore, one can expect that it defihesstale for the order parametey
namely the superconducting coherence length. When onesé&lg. 1.8 with the conditions that
Y(x=0) =0 andy(xr=00) = 1, the order parameter takes the form

¥(x) = tanh <%§>’

where¢ = SmTal In other wordsy)(z) changes from zero to one in a short interval defined by

the coherence length[see Fig. 1.7(a)].

Another example of analytical solutions of the GL equatiaseful for the introduction of a
second length scale, is the case of a superconductor filaffghre real space, i.e. at < 0, with
an constant external magnetic fieltl,; parallel to its surface at = 0. Considering that the order
parameter is constant and equal¥@), Eq. 1.5 reduces to

(1.9)
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Figure 1.7: From the few analytical solutions existing ftietGinzburg-Landau equations, panel (a) plots
the superconducting order parametgrof a one-dimensional superconductor foe= 1.5, and panel (b) the
magnetic fielch, of a semi-infinite superconductor slab for= 6.

4r(e*)?A(0)?
m*c?
Taking the rotational in both sides of the last equation agaring in mind thah=V x A, one
obtains the following equation for the magnetic field,

Vxh=— A. (1.10)

Vh — Mh =0. (1.11)

Here one easily notices that the quantjy*™ < 2" has the inverse units of length. One can

chooseéh = h,(z)é, for simplicity, without loosing the important results, arediuce further Eq. 1.11
to
d?h,  4m(er)2A(0)?
- hy = 0. 1.12
dz? m*c? ( )
The particular solution of Eq. 1.12 with the boundary coiedit:,.(0) = H., iS

ha(2) = ha(0)e™ /2, (1.13)
where )\ = m This means that a constant magnetic field parallel to thiaseirof a
superconductor penetrates the sample in a top layer ofrtbgsd. This is the reason why is
called the penetration depth. Fig. 1.7(b) shows the plotiohgenetrating magnetic field inside the
superconductor.

1.2.2 The surface energy and types of superconductivity

To realize that there exist two types of superconductorsneeels to calculate the difference of the
Gibbs free energyXA (), in the superconducting state, at zero and at a nonzere wéline external
field. One therefore starts from the definition of the Giblegfenergy density [31],

9T, H] = Z[Th] - ih H. (1.14)

Unlike the Helmholtz free energy density which depends ofi’ andh (the temperature and the
local field), the Gibbs free energy denstis a function of the independent variablEeindH, with
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Figure 1.8: Domain structures formed in the type | superaaridr (lead) having a disk-shape, after (left) zero
field cooling, and (right) when field cooled. From Ref. [32].

the latter being the external magnetic field. Substituing E§ into Eq. 1.14, the expression fgr
at the external field becomes

_z o By L (g €A\ _hH
Gort = Fno + Y7+ S0+ 2m* (iv cA)¢ T T (1.15)
whereas the Gibbs free energy density at zero field yields
G0 = Fso. (1.16)

Calculating the differenc&Y = 9., — 9,1y, one easily obtains

— alo2 + Bl b A ol _hH B
A =alul+ ool + o0 (z'v cA)¢‘ & T T T3 (1.17)
which one can simplify even further to
2 By L(hg ey 2, (h—H)
AG = a2 + 2|t + (—,v - —AM i’ (1.18)
2 2m* 1\ ¢ c 8
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One can see that there exists some resemblance betweest rgl@ssion and the first GL equa-
tion, and one can exploit this resemblance to obtain a retexgression foA¥. The multiplication
of Eq. 1.5 byy gives

0 ! (EV— e—:A)2¢+a|¢|2+ﬂlwl4=0. (1.19)

2m* \ 1
Moreover, by using the chain rule it is straightforward towtthat,

N IV R N e

? ?

The last equation after integration, since the last termherright hand side is a surface term that
with the proper boundary condition vanishes, becomes

fors(le -y farl(bo-a):

Therefore the integration af¥¢, after substitution of Egs. 1.19 and 1.21, followed by sotreaght-
forward algebra yields

2

(1.21)

(h—H)Q]

_ [ [ B
AG_/d r[ Sl + (1.22)
which can be easily recast in the most useful form,
H? 3 Yo o( h H \?
AG = 8_7T d r[—’m + 2l‘€ (HCQ — H62> :|, (123)

owing to the the relation between the thermodynamic ctifiedd and the phenomenological pa-
rameters of the GL theor§i?/8m = «?/23 [4]. The magnetic field is scaled to the uppper critical
field, He, andx = \/€ is the GL parameter, respectifiy, = v/2xH.. The integral of Eq. 1.23
has to be solved numerically since it involves simultanesmigtions of the two GL equations. One
case that provides valuable information without loosirgithportant results of the theory is the one
dimensional normal-superconducting interface. In thaeaane obtains that the surface energy can
be positive or negative and that the crossover lies-atl /v/2 [6]. When the surface energy is nega-
tive, i.e. fors > 1/4/2, the superconductor maximizes the normal-supercondyittiarfaces which
leads to multiple localized regions where the magnetic fpadially penetrates the sample [7-9],
i.e. vortex formation. On the other hand, when the surfaeegnis positive, i.e. fok < 1/1/2, the
normal-superconducting interfaces become energetioafgvorable and the superconductor avoids
them, or allows for larger domain structures, such as thbees in Fig. 1.8, appearing in specific
cases where the demagnetization field is important. Supdumors withs > 1/1/2 are known as
type Il whereas those with < 1/1/2 are called type I.

1.2.3 Flux quantization

The distinguishing property of type Il superconductordis éxistence of an intermediate state be-
tween the Meissner and the normal phase where vortices mgpedo the negative energy of the
superconducting-normal interface. Using the second Glaigyu, let us calculate the magnetic flux
inside the are& of a type Il superconductor enclosed by a p@thWriting the order parameter in
the polar form of complex numbers, i:¢.= |/|¢**, Eq. 1.5 becomes

e

J=—lyl (ws - %A) (1.24)
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Calculating the line integral of the vector potentialalong the closed path', one obtains

]{A-dlz/h-ds: @7{ Vo-dl — m;jfj-dl, (1.25)
c s e Je e Jo

wherej = J/|+|?, and in the central equation the Stoke’s theorem has beeh Ufsene chooses
the pathC' such that along i = 0, and one assumes that the order parameter is single vaheed, t
magnetic flux inside the aréabecomes

d = nd,, (1.26)

wheren is an integer number and the quantity = hc/e* is the minimal amount of flux penetrating
the sample, i.e. the quantum of flux. It is noteworthy to paiat that a first reading of Eq. 1.26
might lead us to interpret it as a quantization of the magriktx. However, formally speaking what
is quantized is the fluxoid rather than the flux. Reorgani&ngl1.25 we see that

/h-ds+ mffj-dlzncbo, (1.27)
S e Jo

where the quantity on the left side is the fluxoid. Neverteglaotice that along the pathwhere
j = 0 the fluxoid and the flux are the same.

Finally, direct measurements of the flux quantization reagkdhate* = 2e, wheree is the
electronic charge, indicating that pairs of electronseathan single electrons play the essential
role in superconductivity. In the discussion of the micagsc theory of superconductivity this
suggestion was most useful.

1.2.4 The Josephson effect

One of the archetypal consequences of the quantum behdvédeatrons is their ability to tunnel
through potential barriers. Similarly, the tunneling ofdper pairs between two superconductors
separated by a thin insulating or metallic layer has pravidee of the hallmarks of the quantum
nature of the Cooper pairs. However, the fact that the Copaies form a highly coherent conden-
sate, unlike electrons in a conduction band, allows theiltation of an persistent flow between
two weakly connected superconductors without any extetmeat (the Josephson effect) [33]. This
effect, named after the theoretical prediction of Brian idalosephson in 1962, is one of the most
successfully applied features of superconductivity imtexdogy. In order to explain this effect, let
us consider a junction where a thin layer separates two sapéuctors such as shown in Fig. 1.9.
Moreover, consider the following appropriate boundaryditans for the junction [31]

Ohy e o Opy e’ 1

or EAx@/)l = ?, and o EAx@/& = ?7
where( is a phenomenological parameter associated to the insglatyer. Substituing the junction
boundary condition in the component of the superconducting current density givendylEs, one
obtains

(1.28)

e*h vy ie* vy et

J, = [ *(— A, )— (———Ax )] 1.29
2m*i “ ¢ + hc 1 1 ¢ hc 1 ( )

In the last equation, where the time reversal invariance@btrder parameter and the vector po-

tential was assumed, the boundary coefficiehecame real, along with the vector potential leading

to the following simple form

*h
I, = — clnll]sin (62 — ), (1.30)

m
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Superconductor Superconductor

|y |e'®

|y e

Cooper pair

Figure 1.9: Cartoon of a Josephson junction with two supediators with order parameters having angular
phasesy; and ¢-, weakly connected through a thin insulating layer. Just lesteons are able to tunnel
potential barriers, the Cooper pairs here tunnel through thsulating layer and establish Josephson current
provided that there exists a difference between the angulases ¢, # ¢»).

where the polar expressions of the superconducting ordaners have been used. If the two
superconductors are the same material, the expressidmdgduthneling current becomes

J :J sinq)m, (131)

whereJ,, “hlv| e ® is the maximal value of the Josephson current @pd= ¢ — ¢ is the phase
difference between the two superconductors. Eg. 1.31 #lenus that due to tunneling of Cooper
pairs between two weakly connected superconductors, eenmearrent density can appear on the
junction provided that there exists an imbalance in phased®n the two sides of the junction. Such
imbalance can be achieved by e.g. applying a voltage to tiaign or an external magnetic field.

1.3 BCStheory

Up to here superconductivity has been discussed in thisstinesstly from a phenomenological
point of view. This description, although powerful and gextefalls short in the analysis of the
microscopic origins of superconductivity. Thus, to go beyohe phenomenological description of
superconductivity of the Ginzburg-Landau model, in théof@ing sections the microscopic theory
will be presented.

1.3.1 Instability of the Fermi surface

Superconductivity arises after Cooper pairs condensearoherent state of matter revealing the
unique properties that have been discussed so far. It iswkemot obvious, how two electrons
can form a Cooper pair when the Coulomb repulsion betweem ikestrong. One can naively

think that there exists an attractive potential strongantthe Coulomb repulsion. Nevertheless,
such argument is not required at all to explain the formatib@ooper pairs. Interestingly, what

is required for the Cooper pair formation is a Fermi surface a weak attractive interaction. In

order to demonstrate this, consider two electrons with sp@®pins, i.e. forming a singlet state,
and consider the following Schrodinger equation for tHatat part of the pair

o ;’2 FV(rLm)] [ B, 5)) = (e 4 280) [U(r1, 1)), (1.32)

whereFE is the energy of the Fermi surface ani$ the energy of the pair relative 6. Changing
the coordinates fromr(, r,) to the coordinate of the center of mad & “£*2) and the relative
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coordinate f = r; — ry), one can rewrite the kinetic terms of the Hamiltonian of EQ2 as

2 2 2 2
P Py h 2 2\ _ h l 2 2
2m  2m  2m (Vi+Vs) = 2m (QVR +2V,). (1.33)

Next, considering that the potentiél depends only on the relative coordinateone should notice
the existence of two movements: one where the center of niake @air propagates freely, and
other described by the following Hamiltonian,

[_gvi+v<p)] U(p)) = (e +2Er) [¥(p)) . (1.34)

The solution of Eq. 1.34 can be built by doing an expansiorfims of the complete basfsk) },
whose infinite elements satisfy the eigenvalue equaligik) =ik k), i.e. [¥(p)) = > g(k) |k).
The complete basi§|k)} is nothing less than the infinite set composed of plane wavé&s'}.
Substitution of the expanded wave function into Eq. 1.34dgie

m

S [ v a0 1K) = e+ 2803 g0 k). (1.35)

By projecting into the staték’| and bearing in mind that the elements of the complete basis ar
orthogonal, i.e(k’|k) = dy k, one obtains

h2k12
——g(K) + D _g(k)View = (¢ + 2Ep)g(K), (1.36)
k
where .
Vew= o / V(p)e i K ngs,, (1.37)

The precise value of the matriX. , is complex and depends on the full knowledge of the po-
tential V' (p ), which in many cases is not available. However, a simplificadf the problem, first
suggested by Cooper [11], assunigsy is constant and nonzero only inside a narrow window
around the Fermi surface as shown in Fig. 1.10,

2m 2m
0, elsewhere

o g thQ _ thIQ _
Vie s = { v, Ep| < hwp and | Er| < hwp (1.38)

with wp being the Debye frequency. By applying the Cooper simptificeon matrixVi «, Eq. 1.36
becomes

VY g(k)

m

= g(k'), (1.39)

which can be reduced further by summing okéon both sides of the equation and then factoring
out thek-independent term | g(k’), leading to

~ 1
v — 1. (1.40)
; PERTZ 2EF — &

m

The sum ovek’ in the last equation can be transformed into an integral oveti’k’? /2m — E.,
with the corresponding introduction of the density of stgier spinV(e), so that

. /Oth N(e)de g N(0)In (ﬂ ) (1.41)

2¢ — ¢ €
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Figure 1.10: The simplification suggested by Cooper to thelex matrixVy x replaces it by a constant and
negative potential{V’) in the shaded areas shown in the figure, i.e. the intercepsifahe rings around the
Fermi surfaceEr.

The assumption thgt| < hwp leads finally to the energy of the pair relative to the Fermi
surface,

€= —2the_2/N(0)‘7, (1.42)

which is negative, i.e. represents a bound state, and dinesgl’, explaining why a perturbative
approach was not successful in the attempts prior to the €ooprk.

1.3.2 The BCS ground state

The fact that within the Debye window an attractive intei@ctbetween two electrons, immersed
in a Fermi sea, leads to the formation of a state with negatinggy, i.e. a bound state, suggested
that the Fermi surface is unstable against Cooper pairibg By extension one can then think that
more electrons from the Debye window can also pair up andalgruncrease the number of Cooper
pairs. The process stops when an equilibrium between thdecmate of Cooper pairs and the Fermi
surface is reached. With the condensate of Cooper pairg laemany-body state, one can attempt
to describe it in terms of wave functions of electronic pal®wever, the many-body state has to
be asymmetric under particle interchange in order to futitd Pauli principle. That is achieved by
defining an operatad which for the case of two particles has the following propert

A1) ®[2) = [91) @) — [02) @ eh1) . (1.43)

In order to give a practical example of a many-body wave fion¢iet us consider two electrons
and start the analysis from the spin sector. Each partideheatypical two spin states, either up or
down. The asymmetric two particle state for these spins is

1
|S>:ﬁ(|1 nelzl) -1hel21), (1.44)

wheres denotes that the state is a singlet, i.e. the total angulanentum of the two-particle system
is zero. Now, since the electrons also have orbital compsneansider they are in quantum states
'k,) and|k,), or equivalently, they are described by the plane wa¥e¥ ande*2*2, By imposing
that the total linear momentum of the system is zero, theafsyinmetric wave function of the two-
electron state becomes

(eik.(rl—rg) + 6—ik~(1‘1—1‘2)) |S> , (145)

Sl

‘I’(Fh rZ)k,s =
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which one can easily prove to be asymmetric under partitdeechange. Moreover, this state is time-
reversal invariant, as required in conventional superaotidty due to the absence of spontaneous
magnetic fields.

One can use the second quantization formalism of field thedoi describe the many-body states
of condensed matter in a more practical way. The buildinghdaf the second quantization for-
malism are the creation and annihilation operators, namiglyand Cqp, satisfying the following
properties:

Hallstelstha =0, (1.46)
Ckacqg + cqﬁcka = 0, (147)

and
ClaCas + Cqptla = kg Oap- (1.48)

Herek andq label the orbital component of the state, whilend s label its spin part. From Eq.
1.46 one notices that whdn= q anda = 3, the product]._¢l  vanishes, thus the creation of two
particles occupying exactly the same quantum state isdddn. On the other hand, the definition
of the particle number operator a&;, = éfméka, along with the Egs. 1.46 - 1.48, leads us to the
distinguishing property:, = 7., Which means that the electronic occupation of any quantum
state is either one or zero. The combination of these rethdts indicates that the creation and
annihilation operatoréf(a andc¢, g describe particles satisfying the Fermi-Dirac statist®g using

the second quantization formalism one can then rewrite siyenenetric two-particle state of Eq.
1.45 as,

Ik, s) = éfacly, [o0) (1.49)

where|¢,) represents the vacuum state of the system, i.e. the statedéfy the equatioy, 5 |¢) =
0, for anyq and. By extension, one can also build a many-body wave functbodfelectrons out
of V/2 time-reversal electronic pairs, as

‘\I]N Z Z Yk - gkN/2Ck1TCT kil ® é;r<1\7/2T(/EJLk1\r/2i |¢0> ) (150)

ky k2

where for the casé/ = 2 it was demonstrated earlier that, = 57 a constant. Never-
theless, the wave functio#iy, which represents a state with fixed number of particlesifi€wlt

to manipulate in the calculations of physical quantitiesrd®en, Cooper and Schrieffer then sug-
gested a wave function not conserving the number of pastiblet practical to unravel the properties
derived from the BCS hamiltonian [10]:

|\IIBCS> - H(,uk + Vké;r('réiki) |¢0> 5 (151)
k

where, the normalizatiofWpcs|Upcs) =1) implies that|uu|? + [vi|* =1. The interpretation that
| |? is the probability of an electronic paik ¢,—k ) being occupied, whiléuy |* is the probability
of the pair being unoccupied is easily derived from this raipation condition.

1.3.3 The superconducting gap

The reduced Hamiltonian of the BCS theory that arises dfieirhposition of Cooper pairing in a
Hamiltonian for interacting particles with a general paggvpotential reads [31]



16 INTRODUCTION

21.2
Hred = Y %éiaéka + ) Vil él o 6ot (1.52)
ka k,k/
where the first term represents the kinetic energy of thdrelesin a parabolic band, and the second
term is the electronic coupling responsible for the formatf the Cooper pairs. Since the BCS
wave function of Eq. 1.51 does not conserve the number ofcpest[10], a Lagrange multiplier,
namely the chemical potential, has to be included in thegedidamiltonian as follows,

?:[BCS = ﬁred - ,MN (153)

Here the chemical potentialis nothing but the Fermi energy, and the total particle nuroperator
IS

N=> &ntxa- (1.54)
ka

In what follows, one needs to demonstrate that the BCS wawetiin of Eq. 1.51 is the vari-
ational ground state of the BCS Hamiltonian of Eq. 1.53. Téwits of the calculations are well
documented elsewhere [4,31], so here we will outline justtiost important findings. The expected
value of the Hamiltonian 1.53 with the BCS wave function ggel

<7:[BCS> =2 Z §k|7/k|2 + Z Vk,k’VltNlet’Mk’ R (155)
k k k’

wheregy = i?k?* /2m — p. From the normalization conditiofju|* + |v«|? =1) one can parametrize
the amplitude densities agj = cos 6, anduy, =sin 6. Then one minimizes the expected value 1.55
with respect to the paramet@r and obtains

2€k sin 29k -+ cos 29k Z Vk,k’ sin 2‘9]4 = 0, (156)
k./

where it was assumed that the potentigl, is symmetric, i.e.Vi v = Viv . Defining the sum in
the last equation as

1 .
Ak = —5 ; V]%k/ Sin 2(9]4, (157)

Eg. 1.56 takes the simpler form

A
tan 20), = g—’f (1.58)
k

By using the trigonometric identities one can see that

&k Ay

cos20, = ———, and sin20, = ——, (1.59)
VLA VLA
or equivalently
1 &k 1 Ek
2 1 Sk 2 _ (1 _Sk
= (1 + gk), and v} = - (1 €k>, (1.60)

wheree, = /&7 + A is the excitation energy of a quasi-particle with momentim One can
notice that there is a minimal amount of energy required tbadelectron in the excited state, i.e.
there exists a gap, namely,, which satisfies the following nonlinear integral equation
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/A /
Z ‘2’“ ’“+ kA? (1.61)
k/ !

Normal solution

The simplest solution of the linear equation 1.56 is thealigap solutiom\, = 0. The excitation
energy of the quasi-particles in this case becomes +¢;, and the occupation coefficients are

i =0, vy =1, for & < 0, (1.62)
and
e =1, v, =0, for & > 0. (1.63)
Substituing the last coefficients into the BCS wave functbkq. 1.51 one obtains,

|\DBCS> = H éLTéik¢ W)O)a (164)

k<kp

which is the usual ground-state wavefunction of a filled Fesunface (also called the Fermi vac-
uum) [31].

Isotropic gap solution
Using the Cooper simplification for the attractive potein{see Eq. 1.38) and the important

assumption that the gap is constant in the reciprocal spaeecan analytically solve the integral
gap equation 1.61 to obtain

Z , (1.65)
\/ ék/ +A%/
which in the continuum limit becomes
- [Mepde fiwp
N —_ =1=N h~ 1.66
0)V i \/m (O)Vsm ( A >, ( )

with N(0) the density of states at the Fermi energy. The fact that inyrsaperconductora <
hwp, allows one to approximate the last result and obtain fogdpethe following value

A ~ 2hwpe YNOV (1.67)

which resembles the energy of the bound state discussed.irlBg. Rewriting the expectation
value of the BCS Hamiltonian, i.e. the energy of the supettooting state (see Eq. 1.55), with the
aid of the practical notation introduced through Eq. 1.68ds

(Hpos) = 2 Z % (1 - g—k> Z Viek AkAk, (1.68)
k

Ek ELER!

The detailed calculation of this energy can be found in RH].[ Here we present and discuss the
following relation,

(Hpes) — (Ha—o) = —%N(O)AQ, (1.69)

which means that the BCS wave function of Eq. 1.51 has lowerggrthan the normal state solution
of Eq. 1.64, i.e|¥pcg) is the ground state of the BCS Hamiltonian 1.53.
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Figure 1.11: Contour plots of the Cooper-pair density of oseppic samples of different shapes. Notice that
despite of the samples having the same number of vortica®ttex configuration changes. From Ref. [34].

1.4 Mesoscopic superconductivity

We discussed in section 1.2.1 the existence of two lengtlescaand A\, governing the spatial
variation of the fields) andh, respectively. Also, in section 1.2.2 it was demonstraled the ratio
between these two scales £ )\/¢) determines the magnetic behavior of the superconduatdr, a
classifies it as type | or Il. The limiting case of an extremeetyl superconductor, i.e. a case where
A > £, is known as the London limit [4], where the linear relatibipsbetween the magnetic field
and the superconducting density current can be generafizadlting in an expression useful for our
present purpose

4t \?
c
Hered,(r ) is the 2D Dirac delta distribution function that introdudles fluxoid quantization. Taking

the curl of the second GL equation 1.5 and substituing thelEA) there, one obtains the following
differential equation for the magnetic field,

V x J 4+ h = ®okdy(r). (1.70)

V?h — A7%h = =\ 2®gkdy(r ). (1.71)
The solution of Eq. (1.71) is
(I)O r
h(r) = 27T)\2K0<X>7 (1.72)

where K, is the zeroth order modified Bessel function. From Eq. 1.7@ the use of energy
arguments it is straightforward to calculate the inteacgnergy between two vortices with single
vorticity [4,31], as

Uy = -2k (2) (1.73)
B A WA '
wherer, is the distance between the two vortices. Since this patieatiergy is monotonically
decreasing, the interaction between vortices is repulsiva bulk superconductor this type of inter-
action leads to the formation of a triangular lattice of ia@#s$, the Abrikosov lattice [7—9]. However,
in mesoscopic superconductors, i.e. in those with dim@&sstomparable to the characteristic length
scaleg and), the spatial configuration of vortices changes dependintg®sample shape [34]. For
example, we show in the Fig. 1.11 the contour plots of the @opair density illustrating that the
vortex configuration of square, triangular and circular gls differ for the same vorticity.
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Figure 1.12: (a) Scanning electron micrograph of Hall prelben which disks of aluminum of different radii
were placed. The Hall probes measure the average magndtcefieanating from the aluminum disks. (b)
Measured magnetization loops as a function of the exterragnetic field for the superconducting disks of
(a). The plots reveal distinct behavior in the magnetizats the sample size is changed. From Ref. [35]

The behavior of the magnetization in mesoscopic superadimiusamples also differs from the
one in bulk samples [35]. For instance one can easily seeffibet ef the sample size of several
mesoscopic disks on the magnetization plots in Fig. 1.12r&hn the loops of the magnetization
against the external fielH, jumps occur due to transitions between superconductatgstith dif-
ferent vorticities. Thus, one can infer from these jumps there exists a barrier for the penetration
and exit of vortices which has to be surpassed. This barejpends on the size and geometry of the
sample [36, 37], and the electromagnetic properties ofces38], and causes the irreversibility in
the magnetization loops in the mesoscopic case.

Another interesting effect that emerges in mesoscopicrsopductivity is the stabilization of
superconducting states unattainable in bulk supercoasicin Fig. 1.2(b) it was shown that vor-
tices in bulkNbSe, form the triangular lattice characteristic of type Il supmrductors [9], i.e. the
Abrikosov lattice. These vortices, which each carry a grglantum of flux, minimize the free
energy by forming this lattice [7]. However, in mesoscopiparconductivity, vortices with vorticity
higher than one (from here on called giant vortices) can dlglsted due to geometric confinement
provided by the boundaries [39]. A giant vortex is not atidile in bulk superconductors because its
kinetic energy is far higher than that of a sum of single-quarvortex. The geometric confinement
therefore provides the mechanism for the reduction of iesgnas one can see in Fig. 1.13(a).

For a defined vorticity and at certain value@f Fig. 1.13(a) shows that configurations of vor-
tices (multivortex states) have higher energy than gianexostates, e.g. for vorticity, = 3,4, 5.
Moreover, it also shows continuous transitions from moltigx to giant vortex configurations, that
in the heat capacity appear as jumps [Fig. 1.13(b)], suggeah universal method for the indirect
detection of giant vortices [40]. Directly, giant vorticeave been imaged in mesoscopic supercon-
ductors by e.g. STM [41].
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Figure 1.13: (a) Free energy of a mesoscopic disk with radius 10¢ as a function of the external magnetic
field H. Each colored line represents a superconducting state defined vorticityL. In some states one
finds continuous transitions from multivortex (dashedd)n® giant vortex (straight lines) states. (b) Heat
capacity as a function aff corresponding to the states wifh= 2 and . = 3, and revealing discontinuities in
the multivortex to giant vortex transitions. From Ref. [40]

1.5 Unconventional superconductivity

The theoretical description of superconductivity that besn provided up to here was entirely de-
voted to superconductors with an isotropic gap and spin @nglet) Cooper pairs, the so-called
conventional os-wave superconductors. In this section we briefly discussranhaterials that have
been proven to superconduct but do not support the converhpacture of singlet Cooper pairs with
an isotropic gap.

1.5.1 The cuprates

In superconductivity, the name cuprates designates tlss ofamaterials having a perovskyte struc-
ture with planes of copper oxid€’(O,) being alternated with layers of ions such as lanthanum,
barium and strontium. These materials are supercondurttiagbroad range of temperature and
chemical doping. Precisely, this broad range of tempegathat can reach 170 K in certain mate-
rials under pressure, is the responsible for their altermatame, high temperature superconductors
(HTS). The superconductivity in the cuprates is highly afrigpic owing to their layered structure.
In fact, many experiments point out that superconductinigmois developed in th€uO, so that the
HTS phenomenon is two-dimensional. Nevertheless, this@erconductivity is different from the
conventional superconductivity discussed so far in thigkwo

The superconductivity in cuprates is@fvave type rather than thewave type of conventional
superconductors, according to three different analysasely penetration depth measurements [43],
angle-resolved photoemission spectroscopy (ARPES) Bldafd phase-sensitive experiments [18,
19]. In Fig. 1.15(a) the inverse square of the penetratigtldas a function of temperature for
an YBCO crystal shows that at low temperatupe® linearly depends ofi’, behaving distinctly
different from thes-wave BCS behavior of conventional superconductors (ddswa in the figure).
This distinct behavior is a consequence of quasiparticl&Deing proportional to the energy, i.e. a
line node as expected in the caselefave symmetry.

With ARPES, a technique devised to measure the distribui@hectrons inside a solid, exper-
imentalists have measured the band structure, Fermi ssifand most importantly for this work,
the superconducting gap of the cuprates. In Fig. 1.15(b}tiperconducting gap as a function of
the angle along the Fermi surface is shown for the HBisSr,CaCuyOg, s (BSCCO). There one
notices that the gap has a nodé atr /4, in agreement with what is expected for the casé-afave
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Figure 1.14: (a) Crystal structure of several cuprates. {te copper (blue) and oxygen (red) atoms form a
square lattice in the layers where superconducting ordeerges. From Ref. [42].

symmetry.

Finally, the phase-sensitive measurements in the cupnates the smoking gun evidence that
proved the gap in these materials has #he@ave symmetry. These measurements exploited the
Josephson effect in a double junction device, such as omversimoFig. 1.15(c), to detect the con-
structive or destructive interference in the critical emtrstemming from the spatial anisotropy of
the superconducting gap. The device resembles the staswipedconducting quantum interference
devices (SQUIDs) used widely to measure small magneticsfiégldSQUIDs the critical current that
circulates along the device is a periodic function of the flexetrating the area enclosed by it,

L(®) = 2[0)cos <7r3) ) (1.74)
Do
However, for the device of Fig. 1.15(c) the junctions areppeadicular to each other in such a way
that while one junction is aligned with one of the positiveds of the gap, the another junction
is aligned with the negative one. This results in a destradtiterference that is manifested in the
critical current as a minimum at zero external field [see péi)¢ The experiments with the device
of 1.15(c) and with other devices with different geometadsconfirmed thel-wave symmetry of
the cuprates.

1.5.2 Strontium ruthenate

Strontium ruthenateS¢,RuO,), the first superconductor with a structure similar to therates, but
without copper as the key element, was reported eight y&arsthe discovery of superconductivity
in the cuprates. It has a layered perovskyte structure,@srsim Fig. 1.16(a), where octahedrons
containing oxygen atoms in the corners surround the atomgtloénium. Very quickly it was re-
alized that superconductivity in strontium ruthenate ($B@d the cuprates was different, since the
critical temperature of the former was jusb K, nearly two orders of magnitude lower with respect
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Figure 1.15: (a) Inverse square of the penetration deptbftpt as a function of temperature, for the Ytrium-

Barium-Copper-Oxygen (YBCO) compound, revealing atloavinear dependence. Adapted from Ref. [43].
(b) The superconducting gap as a function of the angle albad-ermi surface (FS) shows the existence of a
node at) = 7 /2 in the HTSBiySroCaCusOg, 5. From Ref. [44]. (c) Double junction device, having in one
corner a single crystal of YBCO, to measure (through interiee) the anisotropy of the gap in this material.
Adapted from Ref. [18]. (d) Critical current as a functiontbE magnetic flux for superconducting quantum
interference devices (SQUIDs) made of s-wave and d-wawwcumuctors.

to the latter. Moreover, the fact that the parent compdurithOs5 is an itinerant ferromagnet pro-
vided another difference between the cuprates and SRO.

Spin-triplet superconductor

One of the first experiments that confirmed the unconventisu@erconductivity in SRO, and
that suggested the possibility of spin-triplet supercanigtity, was the Knight shift experiment of
Ref. [47]. Before going further in this issue, some esséatipects of SRO required an explanation
in order to understand better the Knight-shift results. Feemi surface of SRO is shown in Fig.
1.16(b), containing three sheets: two of the electron typend~), and one of the hole typ&) [46].
The three Fermi sheets are approximately cylindrical. Reiequantities of these Fermi sheets, ob-
tained via the de Haas-van Alphen effect, are presentedbteTal. Those are the quasiparticle
effective massn*, the Fermi wave vectorr, and the Fermi velocity. Note that the quasiparticle
effective mass in the sheet is 16 times larger the electron rest mass. For coropatise effective
masses of two good conductors namely, gold and copper, &§éd df®mn, and 1.01n., respectively.
The considerable enhancement of the effective mass in SROmsrates that the electronic corre-
lations are strong in this material. Specific heat measunésne the normal phase corroborate this
enhancement of the effective mass. Moreover, they alsoestiglyat the normal phase in SRO is
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Figure 1.16: (a) Crystal structure of strontium ruthenai®) The Fermi surface of strontium ruthenate has
three sheets, labelled, 5 and~. Among them two are of the electron typeand ), whereas the remaining
one is of the hole typen]. From Ref. [46]. (c) Depiction of a Cooper pair with the spifithe electrons
represented by small arrows, while the angular momenturhepair is represented by the large arrow. (d)
Knight-shift experiment showing the spin susceptibiltinvariant across. . Adapted from Ref. [47].

Fermi-surface sheet « I6; 0
m* (me) 3.3 7.0 16.0
kr (A1) 0.304 | 0.622 | 0.753
vp (ms™) 1.0x10° | 1.0x10° | 5.5x10*

Table 1.1: Microscopic parameters of strontium ruthenatetained via the de Haas-van Alphen effeat. is
the quasipatrticle effective mass,. is the electron rest mass, ang (kr) is the Fermi velocity (wave vector).

well described by the Fermi liquid theory.

Superconducting order was theoretically predicted to apjrethey band and to be of the spin-
triplet type [48]. That means that the Cooper pairs, instdddrming singlets as in conventional
superconductors and the cuprates, form triplet statesispin part of their wave functions. Due to
the Pauli principle the spin-triplets, which are symmetnicier particle interchange, require asym-
metric states in the orbital part. That is achieved with oduty states, where parity]=(—1)1] is
defined through the orbital angular momentiimrhe odd parity state with the lowekti.e. L = 1,
is called ap-wave state, in analogy with the orbitals of the hydrogematd-ig. 1.16(c) depicts
a Cooper pair with the spin$j of the two electrons represented by small arrows and thalang
momentum L) represented by the large one.

The superconductivity in SRO is as anisotropic as in the HAr8m Table 1.2 one can see a
substantial difference between the upper critical magrietid in and out of the basal plane, both at
zero temperature »(0). Similar anisotropic behavior that is also found in othgueseonducting
parameters such as the coherence legfih the penetration depth(0), and the GL paramete.
Based on the GL parameter the superconductivity is of typel#pendently of the crystallographic
direction. However, while out of the basal plane SRO is asjtype Il superconductor, in the basal
plane it is soft type II.
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Parameter ab c
T, (K) 1.50
tioHe2(0) (T) 1.50 | 0.075
£(0) (A) 660 | 33
A(0) (A) 1900 3.0x 10*
K 2.6 46
gab/gc 20

Table 1.2: Superconducting parameters for strontium rattte. T is the critical temperature H . is the

upper critical field,£ is the superconducting coherence lengths the penetration depth, arigd= \/¢ is the
Ginzburg-Landau parameter.
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Figure 1.17: (a) Device with two opposite junctions of strom ruthenate and a spin-singlet superconductor
to test if the former is a spin-triplet superconductor (Gestibein-Larkin-Barone experiment). Critical cur-
rents as a function of the applied magnetic field for an oppasind a same-direction junctions are shown in
panels (b) and (c) respectively. From Ref. [49].

The Knight-shift effect provides an estimate of the localgmetic field at the ions of a crystal
produced by the magnetization of the conduction electroas, it indirectly measures the mag-
netic susceptibility of the conduction electrons. When @emal becomes superconducting, in the
conventional case and the cuprates, singlet states anrsstodbe formation of Cooper pairs. As a
function of temperature the spin susceptibility of the sapaductor decreases as the temperature
decreases beloW, [see dashed line in Fig. 1.16(d)]. This happens becausernpkesstates are
first destroyed than polarized. However, for a spin-trigl@berconductor the electronic spin sus-
ceptibility, as a function of temperature, across the stgregtucting critical temperature is expected
to remain constant for an in-plane external magnetic fie8]. [4nterestingly, Fig. 1.16(d) shows
exactly that behavior. The Knight-shift effect at two diffat oxygen ions in theb plane reveals
that the spin susceptibility, for an external field paraltethis plane, remains constant above and
belowT,, indicating spin-triplet superconductivity in SRO.

Another experiment that demonstrated the spin-tripleestgnductivity in strontium ruthen-
ate used a Geshkenbein-Larkin-Barone (GLB) interfererssécd [49]. The principle behind this
experiment relies on the Josephson effect between a spItes(SS) and a spin-triplet (ST) super-
conductor. In a junction of SS and ST superconductors thepbhs®n current was demonstrated to

be [50, 51],
= (Re(cgr55;) Im{A'd- nxk)}>Fs (1.75)

wherec,; ands,; represent the transmission amplitudes stemming from timeaspit and the spin-
independent interactiong is the gap of the SS superconducidiis a vector perpendicular to the
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Figure 1.18: (a) Setup of the muon spin relaxation specttemenabling one to measure the internal magnetic
fields inside a material, after statistically analyzing ttecay of implanted muons into positrons. (b) For
strontium ruthenate the muon-spin relaxation measuresn@vieal the existence of a spontaneous magnetic
field that coincides with the emergence of superconductidgroFrom Ref. [52]

spin of the Cooper pairs in the ST superconductas the vector normal to the boundakyjs the
wave vector, and ) ., denotes average over the Fermi surface.

In an experiment where the direction of the normal vectoes@1.B device is the opposite, such
as shown in Fig. 1.17(a), the Josephson currents at thagasavill be opposite as well, singe is
odd under mirror symmetry of vectar This leads to destructive interference in the criticatent.
On the other hand, in a GLB device where the normal vector@functions point in the same
direction, from Eqg. 1.75 one expects constructive interiee in the critical current. Interestingly,
what has been reported in experiments agrees well with #ghaqurs analysis. Fig. 1.17(b) shows
a minimum in the critical current for a GLB experiment withkettwo Josephson junctions opposite
to each other (see the small inset for a depiction). The mimnis not localized exactly at zero
field due to minor issues with trapped vortices and self-otaoce of the device. On the other hand,
for the GLB experiment with two junctions pointing in the samlirection [see Fig. 1.17(c)], the
maximum of the critical current remains close to zero, witthie accuracy of the experiment, thus
confirming the constructive interference. These two ietenice patterns then prove that the super-
conductivity in SRO is of the spin-triplet type.

Time reversal symmetry

Another interesting experiment that shed light on the uaentional properties of SRO is the test
of time-reversal symmetry (TRS), carried out with the mpimn relaxation 4SR) technique [52].
Muons are fundamental particles that decay into one poséral two neutrinos. In ASR experi-
ment muons are implanted in a sample and after they decay#ieqns are registered in a detector
[see Fig. 1.18(a)]. The positrons, which carry informatnout the magnetic order inside the sam-
ple, are statistically analyzed, and for the case of SRO thegaled the existence of a magnetic
distribution at zero external field and for the two polariaas of the muonsK, || c and P, L c)
[see Fig. 1.18(b) and (c)]. This means that the TRS is brogee spontaneous magnetic fields
arise when this symmetry breaks. Another experiment thafirtoed the breaking of TRS in SRO
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Figure 1.19: (a) Tunneling conductance in SRO as a functibthe bias voltage for different positions of
the STM tip over the sample. From Ref. [54]. (b) Differentiahductance in SRO as a function of the bias

voltage, and for temperatures between 200 mK and 1.5 K. Frefn[55].

exploited the effect that samples with broken TRS have aularly polarized beams of light, the
magneto-optical Kerr effect [53]. To date the experimenith the SR and the Kerr effect remain
the most convincing evidence of TRS breaking in SRO.

Gap structure

It was discussed in Sec. 1.5.1 that the linear dependenke’afith T" at low temperatures was
a consequence of a line node in the superconducting gap.h@nphysical quantity that reveals
the existence of a line node in the superconducting gap ispkeific heat. At low temperatures
the dependence of the specific heat is exponential for neslaeperconducting gaps, while for
superconductors with line nodes is that of a power law. Thesighl quantity that is behind the tem-
perature dependence of penetration depth and the speaticshibe quasiparticle density of states
(DOS). In superconductors the DOS can be directly measuitbdS¥M or point contact tunneling
microscopy. For strontium ruthenate the STM measurementsffin the literature seem to be con-
tradictory. While Ref. [54] reported a nodeless, or eq@udly a fully open, superconducting gap,
Ref. [55] indicated the existence of a linear node or a nedemo the superconducting gap of SRO
[see Figs. 1.19(a) and (b)]. These two reports of STM measemés are therefore inconclusive
about the gap structure in SRO and more studies are reqoiradpther experiment where valuable
information of the DOS can be obtained indirectly.

The evidence available to date about SRO indicates thagit isnconventional superconductor
of the spin-triplet type, which apparently breaks TRS. Tteaking of TRS is a controversial issue,
since its manifestation has not been confirmed in any of thgnet& imaging experiments carried
out to date [59-62]. Faced with this worrying history and ith@nclusive results with STM, mea-
surements of the penetration depth and the specific headafipmdicate a depletion rather than a
supression in the superconducting gap. In Fig. 1.20(afjépendence of 2 with T', at low temper-
atures, shows that the superconducting gap in SRO is netleectonventional BCS superconductor
(s-wave), nor of a superconductor with line noddswave). The specific heat measurements of
SRO, shown in Fig. 1.20(b), present similar conclusionse bahavior of the gap in SRO is not
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Figure 1.20: (a) For strontium ruthenate (SRO), the invesgeare of the penetration depth(?) shows that
the superconducting gap is neither of a conventional B&84dve) superconductor, nor of a superconductor
with line nodes d-wave). Adapted from Ref. [56]. (b) Temperature dependefitiee specific heat for SRO.
At low temperatures the behavior is not exactly of an isatrg@ap, neither of a gap with line nodes. From
Ref. [57]. (c) Specific heat measurements depending on ibatation of the magnetic field, revealing an
oscillating behavior with the polar angle that can be well fitted with the functiofy(¢) = 2|sin 2¢| — 1.
From Ref. [58].

exactly of an isotropic gap, neither of a gap with line nodesthat respect, measurements of the
field-orientation-dependent specific heat go further ia thicthotomy, and suggest an anisotropic gap
with a mininum along the crystallographic [100] directids8[63]. At values ofHf between 0.15

T and 0.90 T, Fig. 1.20(c) shows four-fold oscillations i tspecific heat, well described by the
function f,(¢) = 2| sin 2¢| — 1, that imply the emergence of a modulated superconductipgge

~ band [58]. On the other hand, below 0.15 T the field dependehite specific heat, not shown in
the figure but presented in Ref. [58], reveals superconagicirder in thexy and 5 bands. That su-
perconducting order is passive, being induced bytihand. Thus, the field-orientation-dependent
specific heat measurements indicate multiband supercomitpymn SRO. More works are expected
in the future to corroborate these findings.

The 3K phase

Single crystals of SRO are grown by the floating-zone metb@{l [The onset of superconduc-
tivity in crystals with the lowest concentration of impastens is found at temperature of 1.5 K.
To date the majority of experiments reported in the liter@atuave been conducted in crystals with
dimensions in the mm scale. Thin films of SRO appear difficukytnthesize. Only one work has
reported the fabrication of a thin film to date [64]. The ubiqus presence of disorder in SRO was
demonstrated to affect the superconducting propertieseXample, in crystals where Ru atoms are
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Figure 1.21: (a) Crystalline islands of Ru embedded in a maif strontium ruthenate. The islands appear
bright. The islands of Ru form a periodic pattern charadtid of eutectic solidification. From Ref. [65].
(b) In strontium ruthenate two adjacent layers of RuO ardadisted by the insertion of a third one. The
dislocation appears as a dark line in transmission electnoicroscopy (TEM). (c) TEM image of strontium
ruthenate showing a crystalline islands of Ru and a large Ipemnof dislocations. From Ref. [68].

in excess, thd', is twice larger and the superconducting properties aretaaotislly changed [65].
This new phase, known as the 3K phase, was shown later to beosaah by crystalline islands of
Ru embedded in SRO. The islands of Ru form a periodic pattesnacteristic of eutectic solidifi-
cation [see Fig. 1.21(a)]. Despite of a couple of theoréti@ks explaining the origin of the 3K
phase [66, 67], there are some features that remain unsdied, more extensive works providing
an unifying explanation of the reported phenomena are ¢ggdec

Another type of imperfection in SRO forms when two adjaceyels of RuO are dislocated
by a third one, as shown in Fig. 1.21(b). These dislocatiorslbthe symmetry of the crystal
and simultaneously increase the critical temperature wgbtut twice the bulkl, [68]. The dis-
locations appear in transmission electron microscopy (JYBMdark lines owing to the peculiar
scattering of electrons. Dislocations and crystallinandks of Ru are simultaneously found in SRO
[see Fig. 1.21(c)]. Both imperfections reveal an increasthe critical temperature. A fact that
demonstrates the superconductivity in SRO is unconveal&nce this behavior is expected in spin
triplet superconductors, known to have multi-componedeoparameters.

1.5.3 Topological superconductors

In conventional §-wave) superconductors the superconducting gap is iSotnophe phase space.
That means that in order to destroy Cooper pairs, or conyerssate quasiparticle states, one needs
to provide the condensate with an energy at least greaterXHar all the possible directions of the
wave vectork [see the top panels of Fig. 1.22]. In topological supercatohg a gap also exists,
like in the conventional case, but it is limited to the bulkiloé sample [69, 70]. At the edges of the
sample the gap vanishes and allows the formation of surfasedstates having a linear dispersion
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Figure 1.22: (a) Comparison of the superconducting gaps(fpthe conventional BCS case [top panel],
and (ii) the 2D chiral p-wave case [bottom panel]. The Fermiface in both cases is shown in gray. (b)
Comparison of the corresponding density of states.

relation in the energy as shown in Fig. 1.22(b) (bottom pdél, 72]. The phenomenon is similar

to that of topological insulators, which behave as insutato the bulk of the sample and as metals
at the edges [73]. However, the two phenomena are notewdiffieyent, since the nature of the gap

in two cases is completely distinct.

One of the archetypal examples of topological supercomdtycis the model for spinless (spin
polarized)p-wave superconductors, which besides of breaking the tewersal symmetry is known
as the chirap-wave model [69]. The bottom panel of Fig. 1.22(a) shows e ¢prresponding to
this model for a cylindrical Fermi surface. The chigalvave model differs from the spinfull case
(known as helical), which is the archetypal example of a tireersal-symmetric topological su-
perconductor. The edge states in these cases are diffévérie in the helical superconductors two
counterpropagating modes exist, with the spin of the qaasgbes locked perpendicular to the direc-
tion of motion, in the chiral case only one mode exists (ovtothe break of TRS) [73]. Fig. 1.23(a)
shows the differences between chiral and helical supetativity, as well as the comparison with
the quantum/quantum-spin Hall effect (QH/QSH). The edgeestin the chirab-wave model have
spontaneous magnetic fields [76, 77], and in finite samplesetiields should be detectable with
the state-of-the-art magnetic probes. However, none aktpontaneous fields have been directly
detected in SRO, the leading candidate to have chiwve superconductivity [59-62], although
the edge states have been measured in tunneling spectyd3&p To explain the discrepancies
between theory and experiment in SRO many works have caesidiee effects of multigap super-
conductivity [55, 79-81], disorder [82], and “robustnef&3, 84], on the edge states, but consensus
has not been reached yet. On the other hand, STM measurdmagatecently detected edge states,
but in a hybrid device rather than in a bulk superconductdt.[The device consisted of magnetic
Co adatoms forming a cluster under the surface efveave superconductor, monolayer Pb on Si
[see Fig. 1.23(b)]. Owing to the Zeeman field created by thecl@ster, the superconductivity in
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Figure 1.23: (a)Analogies between chiral/helical supemdoctors (SC), and the quantum/quantum-spin Hall
effect (QH/QSH). Despite of the similarities of the edgeestan the topological superconductors and the
guantum Hall systems, the fact that in the former the patfeble symmetry is present and in the latter not,
makes them crucially different. From Ref. [73]. (b) Magoeaidatoms (Co) deposited on the surface of a
monolayer of Pb grown on top of Si. (c) Conductance map owvehttiorid device of panel (b) showing the
experimental observation of the edge states of a topolbgigaerconductor. From Ref. [74]. (d) Semicon-
ductor nanowire situated on top of a conventioralvave superconductor. This hybrid device is predicted to
realize p-wave superconductivity, where two Majorana quasipagicemerge at the edges of the nanowire.
From Ref. [75].

the monolayer of Pb/Si becomes topological. The edge stateshown in Fig. 1.23(c) in the
conductance map of the hybrid device.

The search for topological superconductivity in matengikhout the need of any external drive
(bulk TS), or in hybrid structures where topological supaetuctivity can be induced [85-88], is
motivated by the prediction of Majorana quasiparticles].[70hese are excitations that resemble
the particle introduced by the Italian physicist Ettore dtana [89], and which has the exotic char-
acteristic of being its own antiparticle. One hybrid deviresenting topological superconducting
order is shown in Fig. 1.23(d). The figure depicts a semicotatunanowire situated on top of
a conventionatwave superconductor. The combination of the supercomdyugiroximity effect,
strong spin-orbit coupling in the nanowire, and an extemadjnetic field, results in the emergence
of p-wave superconducting order in the nanowire [86, 87]. Tistesn can be described according
to the Kitaev model, where Majorana quasiparticles are chestnated to exist at their two edges [90].

Majorana quasiparticles are predicted to exist in the cofgsrtices of chirap-wave supercon-
ductors [91, 92]. The energy of a Majorana quasiparticleer® zlue to its duality between particle
and antiparticle [69]. In 2D, Majorana quasiparticles prestatistical properties distinctly different
from those of fermions. For example, when two fermions (lbs}@re interchanged they acquire
a phase?, wheref = 7 (§ = 0). Strictly speaking, the interchange affects the quanttate f
the pair (v19,)) yielding [1110,) = € [1221). For a set of degenerate Majorana quasiparticles the
phase becomes a matrix and the statistics that stems frenpeluliar phase is non-Abelian [91].
That implies that interchanging Majorana quasiparticleanges the state of the system in a way
that depends only on the way that the exchange is executeslinifjortance of the realization of
Majorana quasiparticles in a topological superconductes on the aplication of its non-Abelian
statistical property to provide a set of robust quantum gatith topological protection [91-93].
Such gates are crucial for fault-tolerant quantum compmraf herefore, topological superconduc-
tivity is an active research field with outlooks that if maéaézed could revolutionize the technology
as we know today.
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1.6 Organization and contribution of the thesis

As discussed above, superconducting pairing is not sofdlyess-wave type. There is a large num-
ber of unconventional superconductors being investighyethe broad community, and interested
in unraveling novel phenomena with potential applicatitmgechnology. One of those examples is
strontium ruthenate, the spin-triplet superconductor bh@aks time-reversal symmetry (TRS), and
in which evidence suggests the symmetry of the gap is of thralglhwave type. Interestingly, this
type of gap is proven to be the archetypal example of a topmdbguperconductor breaking TRS.
This feature draws a lot of interest since zero-energy milesondensed matter equivalent of Ma-
jorana fermions) are predicted to emerge in the cores ofcexdf chiralp-wave superconductors.
Such and similar predictions form the bridge between uneotiwnal superconductivity and techno-
logical applications owing to the idea of using Majoranarfems to build a fault-tolerant quantum
computer. However, the materialization of a quantum coerpogised on the unconventional super-
conductivity of SRO is yet to be confirmed since the spontasenagnetic fields predicted to exist
in this superconductor due to TRS breaking have remainesivelso far.

In this thesis, we study chiral-wave superconductivity to reveal the novel supercondgcti
configurations that emerge in mesoscopic samples, whefeeorent is of particular importance.
Furthermore, we discuss how the revealed magnetic, etectamd electric properties of the states
reported in this thesis facilitate the identification ofrethp-wave superconductivity in a candidate
material. These features, namely the magnetic profile, éneit) of states, and the voltage-current
characteristic, can be compared with results from Hall proficroscopy, scanning tunneling mi-
croscopy, and resistance measurements. The approacmubkesithesis comprises the phenomeno-
logical Ginzburg-Landau theory and the microscopic Bagmbv-de Gennes formalism. Since we
consider single band superconductivity, the phenomeinAbgnd microscopic theories employed in
this thesis are a minimal model of unconventional superaotidty in SRO. More elaborated mod-
els for SRO, including superconducting order in multi-bsrdhve been recently proposed. However,
consensus in this respect has not been reached yet.

The thesis is organized as follows.

In chapter 1, we present an introduction to superconductivity, wheesdgscribed its main
properties and two fundamental theories, one phenomeicald@inzburg-Landau) and one micro-
scopic (Bardeen-Cooper-Schrieffer). Next, we presentedvarview of mesoscopic superconduc-
tivity where the dimensions of the sample are comparabledgaharacteristic length scalesand
A. Finally, we concluded the chapter with a brief descriptidrsuperconductors that do not obey
the conventional picture of the original Bardeen-Coopehrteffer (BCS) theory, i.e. the unconven-
tional superconductors.

In chapter 2, we employ the mean-field approach to calculate the BCS ltanan of spin-
triplet superconductivity. Then, we derive the correspogdogoliubov-de Gennes (BdG) equa-
tions which later on are required for the calculations indpecific case of chiral-wave supercon-
ductivity. Finally, the phenomenological theories forarcases of unconventional superconductiv-
ity are obtained using group theory analyses and the saBistent equations for the superconduct-
ing gap. Among the cases considered, there exist two thaklthe time-reversal symmetry (chiral
p-wave ands-+id-wave), and one that preservesdt{s-wave).

In chapter 3, we describe the numerical methods used in this thesislte e BAG and the
Ginzburg-Landau (GL) equations of chiralwave superconductivity. The description of the algo-
rithm that solves the phenomenological equations forlthe anda+id types of superconductivity
is also provided.

In chapter 4, we solve the GL equations for mesoscopic chiralave superconducting samples
in absence of any applied magnetic field. We reveal stableichubl states with domain walls
separating regions with different chiralities, as well asnmchiral states with spontaneous currents
flowing along the edges. The effect of confinement on thesessis investigated - we show that it
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provides stabilization to the multichiral states, but & lame time it can overshadow the magnetic
signatures characteristic of chiral domain walls.

In chapter 5, we continue investigating mesoscopic chiraave superconducting samples with
the GL theory, but this time with an out-of-plane applied metic field. The states that we ob-
tain at finite magnetic field are composed of several uniquégarations of conventional vortices,
edge states and skyrmions, all of them identified not onlyhartmagnetic signatures, but also
by their topological properties. Moreover, the reconfigiora of the states with varied magnetic
field and the anisotropy parameters of the Fermi surfacessdibcussed. Finally, novel temporal
and field-induced transitions between vortical and skymaigtates reveal the remarkable role that
confinement has on the stabilization of states, but also®ngorted novel transitions.

In chapter 6, motivated by the stabilization of skyrmions reportedhater 5, we solve the self-
consistent BdG equations of chigalwave superconductivity, and show the electronic propsioif
the reported states, namely edge states, conventionatesriand skyrmions. We reveal the link
between the local density of states (LDOS) of the novel togickl states and the behavior of the
domain wall that separates regions with different chiesdit enabling direct identification of those
states in scanning tunneling microscopy. Finally, the netigrfield and temperature dependence
of the properties of a skyrmion show that this topologicdedecan be surprisingly large in size,
and can be pinned by an artificially indented non-supercdiimaiy closed path in the sample, thus
facilitating the experimental observation of skyrmiortatss.

In chapter 7, we investigate the dynamic response of the topologiat¢steported in chapters 4
and 5 to an external applied current. Using the time-depen@é& equations we obtain voltage-
current characteristics for nano-bridges of chjrallave superconductors that enable us to reveal
new fingerprints for the identification of these novel togptal states.

Finally we conclude the thesis ahapter 9 and present an outlook for future studies.



Theories of chirap-wave superconductivity

2.1 BCS theory of spin-triplet superconductors

The generalization of the reduced Hamiltonian for spirglehCooper pairs to the spin-dependent
case reads [94, 95],

1
H = Z gkCLkaS - 9 Z Z Vk’k/;51752353754CL31CikSQC_k/S?)Ck/SZI7 (2.1)
k,s

k,k’ 51,52,83,54

where, unlike in Eq. (1.52)/k k. s, s.55,54 1S @ Spin-dependent atractive potential defined within an
energy range around the Fermi surfdge by a cutoffe., i.e. Vi /. s, 515554 IS NONZErO for—¢,. <

&k, &k < e, ande, < Er. The spin subindices;, with i = 1 — 4, are eitherf or . Moreover,
this potential satisfies the following properties, owingte fermionic anticommutation rules of the
creation and annihilation operators,

Vk,k’;sl,52,53,54 = —V—k,k’;52,51,53,54 = —Vk,—k’;sl,52,54,53 = V—k,—k’;52,51,54,53- (2-2)

The Hamiltonian of Eq. (2.1) is treated within the mean figighrmach, where the products
of two creation and annihilation operators are replacedhkyfollowing mean values plus a small
deviation, denoted in parentheses,

C_x/s3Ck’sy — bk’,5354 + {C—k’53ck’54 - bk’,5354}7

C;r(slcT—ksg = bl*<,3231 + {ClT(slcT—ksg - bl*<,3231}' (23)
The following correlation function has been introducedastlequations,

bk,ss’ = <kascks’> 5 (24)

with ( A) denoting the statistical averagge "7 A] /tr[e=?”'|, and8 = 1/kgT. The effective or
BCS Hamiltonian resulting from Eqg. (2.1) after the meandfieéatment reads [94, 95],
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1 *
%ﬂ‘ — Z gkCLSCks + 5 Z [Ak7515201—(8101;k82 — A—k75152c—k81ck82]
k,s

k,s1s9
1 *
- 5 Z Ak73132bk78281’ (25)
k,s1s2
where
Ak,ss’ = Z Vk,k’;s,s’,53754bk’753547 (26)
k’,s354
and
*
A7k’,ss’ = = Z V*kﬂk;S,S’,Sz,Slb;,szm' (27)
k,s182

Using the symmetry properties of the two-pair potential, Ej2), one can derive that the gap
holds the following relation,

Ay = —A_yys, OFin matrix notation A(k) = —A”(—k). (2.8)

2.1.1 Parity of the superconducting gap

Since the superconducting gap is related to the correl&tioction of two electrons with zero total
momentum [see Egs. (2.4) and (2.6)], i.e. the Cooper pams,can decompose it into an orbital
and a spin part. For the spin part, one finds two possibilitasiely singlet and triplet states. While
the singlet state is asymmetric under the exchange of tinarsgexes, the triplet state is symmetric.
These two states read

1

|Singlet) = E(IT@ — M), (2.9)
1)

|Triplet) = ¢ 5 ([T + 1)) . (2.10)
L)

On the other hand, in the orbital part there are also two ptessitates with a well defined
symmetry, namely the parity. These states are the odd areVémeparity states and their properties
are [94],

¥(k) = ¥ (=k), for the even case (2.11)

and

d(k) = —d(-k), for the odd case (2.12)

In order to satisfy the Pauli principle the superconductjag has to be antisymmetric under particle
interchange. This is achieved by the combination of a streglel an even parity state, or a triplet
and an odd parity state. In the literature, the spin-sirghet even-parity superconductivity, as well
as spin-triplet and odd-parity superconductivity, aren®which are used interchangeably.

To sum up, the superconducting gap satisfies the followingeaties,
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Figure 2.1: Orientations of thel vector, the spins of the Cooper pairs, and the angular moumer(L), in
spin-triplet superconductors. The spins of the Coopergaie defined orthogonally to the directiondf(a)
Thed vector is orthogonal to vectdt. (b) Thed vector is parallel to vectoL. From Ref. [96].

Ay = Ay, €ven parity

A oo = —Arse, 0dd parity (2.13)

Ak,ss’ = _Afk,s’s = {

which lead to the following parametrizations of the gap,fuls® dinstinguish the even and odd
parity states, respectively,

—~ o Ak, Ak’ 1 . 0 w(k) L
B < Ak,ﬁ Ak,L ) B ( —(k) 0 ) =0 (k), (2.14)

and

A, = (Ak,ﬁ Ak,w)

Ak,ﬁ Ak,u
—d,(k)+idy(k) d.(k) » o
- ( d:(k) dx(k)+idy(k))_Z(d(k)'a)ay- (2.15)

In last equations(k ) andd(k ) are even scalar and odd vectorial functions. Moreover, ldreep
where the spins in the triplet pairing case lie is definedagtmally to the direction ofl(k ) [57,96].
Fig. 2.1 illustrates two cases of the orientations takermbytvector and the spins of the Cooper pair.
In Fig. 2.1(a), thed vector is in-plane (denoted by yellow arrows), while thenspare out-of-plane
(denoted by red arrows). In Fig. 2.1(b) the case is the oppashere thel vector is out-of-plane,
and the spins are in-plane. Veclordenoted by the largest arrow in the figure, is the orbitalitarg
momentum and in both cases is out-of-plane. If the spidetrguperconductor under consideration
possesses a layered structure, veEt@® perpendicular to the layers.

Defining the square magnitude of the gap as half the traceeomthtrix product, i.e.\ﬁkP =
%tr(ﬁk EL), one obtains for the even parity and odd parity states,

AvAl = [v(k)Pdo,
AcAl = |dPGe+i(dxd*)-s. (2.16)

Note that for the even and for certain odd parity states thertatrix product is proportional
to 0y. In literature these types of states are widely known asagnpairing states. On the other
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Figure 2.2: Phase diagram oHe showing two superfluid phases, namely A (Anderson-BenkraMorel),
and B (Balian-Werthamer).

hand, the states with* #d are known as non-unitary states since the pro&upﬂf( is no longer
proportional too, [57,94-96]. In what follows, some examples of odd parityestaunitary and
non-unitary, will be presented.

Balian-Werthamer state

3He is an isotope of helium having two protons and one neu®6h PDue to the odd number of
fermions that compose itHe is a fermion, unliké¢He (or helium) which is a boson due to its two
protons and two neutrons. Helium is widely known for its stip@l properties at low temperatures
that stems from its bosonic properties. However, and despiits fermionic nature’He is also a
superfluid at extremely low temperatures and high pres$88sThe superfluidity in helium relies
roughly on the Bose-Einstein condensation, meanwhitelmit relies on the instability of the Fermi
surface towards the formation of Cooper pairs.

In Fig. 2.2 the pressure vs. temperature diagram of Bk shows two superfluid phases,
namely the A or Anderson-Brinkmann-Morel (ABM) phase, ahe B or Balian-Werthamer (BW)
phase. The superfluid gap in the BW phase is represented ihvibetor notation by [31, 95],

A
d(k) = k—°<5<km + yk, + 2k.), (2.17)
F

whereky is the Fermi wave vector, and where the corresponding madgminf the gap is,

~ 1~ ~

Akl = Str(Au &) = Ao, (2.18)
meaning that the BW phase is fully gapped in its phase space.
Anderson-Brinkmann-Morel state

Another example of a unitary state of odd parity is providgdhe superfluid ABM phase of
3He. In this phase the correspondifyector is [31, 95],

d(k) = ?—FOZ(/@Z + iky), (2.19)

and the magnitude of the gap becomes
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~ 1 2
|Ak|2:§tr{| o |k, £ ik,|*0 }: |Ao|?sin® 6. (2.20)

This gap has point nodeslat= (0,0, £1), and a finite orbital angular momentum along thdirec-
tion [31], from which originates its widely used label as &ahp-wave state.

Non-unitary state

One example of a non-unitary state in odd parity supercaindtycs given within thed-vector
representation as,

A
d(k) = — (% — i)k, (2.21)
kg
with the corresponding gap
~ 200 (0 O
Ak_g(o k) (2.22)

Comparing last equation and Eq. (2.15) one can see thatttiis Isas pairing only in the spin
down-down channel, so it is an example of a spin-polarizegbling state.

The phase diagram éHe confined to mesoscopic scales differs from the phaseatiagf bulk
3He. The main feature that appears in the diagram is the igaifdin of more phases between the
bulk BW and ABM phases [97]. The novel phases, possessing&quairing different from the
bulk phases, can be identified with nuclear magnetic ressngpectroscopy [97, 98].

2.1.2 The Bogoliubov-Valatin transformation in unitary states

Returning to the Hamiltonian of Eq. (2.5), one can write iaiimore compact form useful to find the
guasiparticle states of this Hamiltonian,

Sk At Axqy Ckt
L S Dy Aiyy Ci)
I = = c ,c , C_jet, C— . . ! '
2? e €1 ) Bictr Dyt Sk e
A% A —£ f
Kkt Skl Kk iy
+ K, (2.23)
where
K = ng 5 Z A1(8182 k,s251 7 (224)
k8152

and where for convenience the subindex “eff” has been rethovéhe BCS Hamiltonian of the
spin-dependent Hamiltonian of Eq. (2.1) thus becomes [94],

1 .
H = Y Cl&Cu+ K, (2.25)
k
where
s | &b A PoiT
Sv=| = , and Cy = (cxr, g, ¢ yr, et . 2.26
k AL — &0 k ( kts Ckls C_gp ki) ( )
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Seeking a vector transformation, naméA’I,y, one can diagonalize the matdy, simplifying the
complexity of the bilinear form in the Hamiltonian (2.25)h& matrix that represents this transfor-
mation introduces a new vector, namely, = (axt, ax, aikT, aikﬂT’ which is related to the old
vector as

Cx = UxAx. (2.27)
If Uy is an unitary matrix, i.eU{ Uy = U, U, = 1, the diagonalized Hamiltonian becomes

By
B

Eyx = UiéUy, = (2.28)

and the elements of the new four vectoy are identified as the generalization for spin-dependent su-
perconductors of the Bogoliubov-Valatin operators [95pr®bver, these new operataens andals
satisfy the same algebra as andcf(s, i.e. the transformation is canonical. The BCS Hamiltonian
in a diagonal base therefore reads

A= AlEA+ K, (2.29)
k
whereﬁk is composed of fou? x 2 submatrices,
N I V) )
Uk = { oA, } ) (2.30)

These submatrices, and the diagonal elemenfs.ofire calculated from the slightly modified Eq.
(2.28), Uk Ex. = &cUy], and the assumption of unitary pairing. They read

E 5 Al
i = (Ex + &)bo e = k ’ (2.31)
V2E (B + &) V2B (B + &)
whereEy, = Ex_ = Ex = /& + |Ax|?, or in more elegant way,
1~ ~
Ey = \/ &+ 5tr(AkAL). (2.32)

With the expressions for the submatrices that compose g the gap equation (Eq. 2.6) be-
comes

Ao = D Vissshsssa [0, 05500 sy (@ w000] 1) = Vi g5yt i (asgaios)]. (2.33)
k’,53,54,0,

Replacing the two statistical averages (the terms in bsakby the Fermi distribution function
f(Ey) = 1/(e’Px + 1), yields

(alpirer) = 0oy f(EX),  (a—woal o) = 06, (1 — f(EX)) (2.34)
and the gap equation reduces to
Ak/ Ek/
Apos = — o D h( ) 2.35
N k,z Viewinst s 100 (g 7 ) (2.35)
,83,54

where the fact that, ando, commute has been used.
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2.2 Bogoliubov-de Gennes equations

To describe inhomogeneous superconducting systems, anesedhe equations derived by Bogoli-
ubov and de Gennes, where a Schrodinger-like equationohias solved for the space-dependent
functionsu and v, along with a self-consistency condition for the superecantithg gap. In what
follows, the derivation of these equations for spin-trigeperconductors is shown.

2.2.1 General case

Within the second quantization formalism, i.e. within tiase defined by the field operatais(r )
andy(r’), which satisfy the following algebra,

Bl (r >wﬁ<r'>+wﬁ< >z/SL<r>A= Sapd(r —1),
Do (X )a(r") + Ut )a(r) = Of(r )L (x) + L (x)Ph(r) =0, (2.36)

/\

the Hamiltonian for a system of fermions interacting thriowg pairwise potentlal/g(,mﬁ(r,r’)
reads [31]

B o= [@rile) At
g [ [drardlw i eV e s, (2.37)

where the pairwise potential remains invariant under glartinterchange in order to satisfy the
algebra of the field operators,

2 2
‘/5(,7),01,5(1'7 r ,) = Vﬁ/(,é),ﬁ,a(r /7 r ) (238)
Introducing the spin and space dependent correlationifumct

bas(rir) = (Yalr)s(r)), (2.39)

and treating the interaction term within the mean field appho i.e. replacing the product of two
creation and annihilation operators by the respectiveetation function plus a deviation term in
parentheses,

Yot Vs(r) = bas(r'r +{z&a Va(r) —bas(r’r)},
Sie)ie’) = b* r)+ {dl(r)dl(x)) = b 45(r'r)}, (2.40)

one obtains the following effective many-body Hamiltongfter discarding second-order terms in
the deriviation [31],

A

g = / dr g (r) A (r)
n / / Prdr [ A (0,0 )5 (010 (E) + Aly(r, T )ds(r ) da(r)]
— 5//d37’d3r’A}§a(r,r Voaps(r'r), (2.41)
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where

Ajy(r,r) = l/(g(,i)vaﬁ(r,r’)b’;?&(r’,r), (2.42)

and
Ayp(r,r’) = V;?ﬂ)ﬁﬁ(r,r’)bgﬁ(r’,r). (2.43)

After a straightforward calculation, one can show that gnimthe Eqs. (2.36) and (2.38) the gap
satisfies the following property,

Ays(r,r’) = —Ag,(r' ). (2.44)

Expanding the field operators as

ba(r) = Zw(rmn,ﬁ + (1 )ag?, 5. (2.45)

Q/Afg(l" /) - Z U TG’ym T + Um(r /)Teﬁm,’ra (246)

where?,, s and?yjm are annihilation and creation operators of Bogoliubov qpaaticles [95], i.e.

(i) the operators satisfy the typical algebra of fermiong] &i) they diagonalize the Hamiltonian
(2.41) [H = Eos+ Y., o EmaVhaYmal, ONE can easily demonstrate that the commutator between th
Hamiltonian and the Bogoliubov quasiparticle annihilataperator is

[]:I, ’?nﬂ] = _gnﬁﬁ/nﬂ- (247)

On the other hand, the commutator between the Hamiltoni&yo{2.41) and the annihilation field
operator gives

[, D(r)) = ~Htnle) = [ Bl 40" (2.48)

Replacing the expansions of the field operators accordifg#o (2.45) and (2.46), one obtains
the following equations for the componentsr ), andv,(r ).,

5n’run(r )047' = %un(r )aT+/d3T,Aaﬁ(r7r,)vn(r,)Tﬂa (249)
—EnUn (T )ar = j‘ff)*vn(r)m+/d3r'A:;B(r,r’)un(r’)Tﬁ, (2.50)

where the self-consistent condition (2.43) for the supedoating gap becomes

Aup(r,1") = Vop gy (v, 1 Zun (r)s0 05 (1 )0 (L = fr)+ v (r )0 un(r )0 fn, (2.51)

or in a more convenient way, after using the symmetry progeedf the pairwise interaction potential
and the gap, Egs. (2.38) and (2.44),

Bas(r.0") = Vi (00) S (020 [ Do v oo i (1 s alx )] (252)
nf
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To sum up, the Bogoliubov-de Gennes equations for spietrguperconductors are composed
of the set of integro-differential equations (2.49) an®(2, along with the self-consistent condition
(2.52). Notice that the equations are for each spin indexhaee are indeed four coupled integro-
differential equations. The complexity of these equatisregh and to circumvent this problem one
needs more insight into the coupling paring in order to siipgpihem. In the next section that will be
done after discussing what is the most convincing pairingR® that agrees well with the majority
of experiments performed to date.

2.2.2 Chiral p-wave superconductivity

In superconductors the spin susceptibility of the eledmovides a powerful method to distinguish
spin-singlet from spin-triplet superconductivity. Moxeg, it can also determine the structure of the
gap, i.e. the representation of the correspondingctor. As a function of temperature the spin
susceptibility for the chiral phaset(k ) = A¢z(k,+ik,), reads [48, 99]

_ YAPM(T) H| 2

wherey p = 2u% N, is the Pauli spin susceptibility of the normal state, & (T') is the Yoshida
function for the ABM phase after integration over the Feroniface. For a spin-triplet supercon-
ductor in the ABM phase the plot of the Knight shift [a tectuecthat indirectly reveals the spin
susceptibility function (2.53)], is depicted in the rigtdnel of Fig. 2.3. The dots, representing the
experimental measurements for SRO [47], match the theatdine y(7') = yp and thus suggest
that SRO is a chirgh-wave superconductor. For comparison, the left panel shiogv&night shift

of YBCO, and reveals the typical behavior of the spin susbéipy for a singlet state.

Experimental data of the spin susceptibility in SRO, wita #pplied magnetic field along tlae
direction, seems to contradict all the evidence pointimgarals chirap-wave superconductivity. The
spin susceptibility remained constant beférewhen the magnetic field was applied perpendicularly
to the basal plane [100]. One is of course aware that the Igvewpritical field H., can affect
the measurements due to the screening effect of the Meisaments. However, this unexpected
behavior was attributed to weak spin-orbit coupling thas waable to sustain the spins of the Cooper
pairs into the basal plane [96]. More accurate and sophistittechniques are required to confirm
the role of the spin-orbit coupling or other possibilitiaghe spin susceptibility measurements.

This thesis primarily considers the case of chiralave superconductivity. Therefore, it requires
the derivation of the BdG equations for chigalvave superconductors. In such equations, the gap
matrix that corresponds to thevector representation of the chirawave phase [see Eq. (2.19)],
reads

A(r,r’) = ( Aow AON ) (2.54)

whereA,, = A ;. The replacement of the superconducting gap (2.54) int8¢i& equations (2.49)
and (2.50) of spin-triplet superconductors, leads onentwke the spin indexes

Enliy(r) = %un(r)+/d3r’A(r,r’)vn(r’), (2.55)
—eatp(r) = ,%’f)*vn(r)+/d3r’A*(r,r’)un(r’). (2.56)

Transforming the coordinates of the two particles to thatiet and center of mass coordinates,
respectively,
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Figure 2.3: The Knight shift, an indirect measurement of ¢kectronic spin susceptibility, shows here that
the superconducting pairing for the Ytrium-Barium-Copfetygen compound is of the singlet type, while for
strontium ruthenate the pairing is suggested to be of th@dtritype since the data (black dots) matched the
theoretical prediction for the spin susceptibility with emplane field. From Ref. [101].

r+r’

5
one can see that the following expression for the superadgmdugap in the center of mass and
reciprocal space coordinates is appropriate for chiahve superconductivity,

X=r—-r1, R = (2.57)

A A
AR k) = De®)Fs Z By R)ky (2.58)
F
wherekr is the Fermi surface wave vector. The gap in termBR@&ndX consequently becomes,
AR,X) = ! / ke *A(R, k), (2.59)
(2m)?

or after a straightforward calculation,
ARX) = ki [A,R) Dy +iA,R) D] 5(r—1"). (2.60)

F

Replacing last expression of the gap back in Eqgs. (2.55) 2:56), one obtains the Bogoliubov-de
Gennes equations for chirgdwave superconductors,

Enlin(r) = Hu,(r) — i{Am(r )0y + Ay (1 )0,

+ % (0.0, (r) + i0,A,(r)] }vn(r ), (2.61)

and

{
ke
+ % [0.485(r) 0,8y (r)] pun(r). (2.62)

—eutn(r) = Hgoa(r) + ={ALr)0—id;(r)o,
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The self-consistency condition of the gap in the chiral eagerived from Eqg. (2.52) by dropping
out the spin labels in the matrices(r’)s andvy(r )., i.e.

Ar,r’) = %V(r, r’) Z(l—an) [wn(r") vl (r) =l (r") u,(r)]. (2.63)

n

Moreover, one can reduce further this expression by rdlagethe coordinates in the last term,
and bearing in mind the asymmetry property of the potenttanvparticles are interchanged, i.e.
V(r,r')==V(r',r),

A(r,r') =V(r,r’) Z tanh <2E—jr:>un(r’) vr(r). (2.64)

Within the weak-coupling approach and the odd-parity etive interaction {/, > 0), the two parti-

cle potential in the reciprocal space reads,

k-k’
KL -

On the other hand, the corresponding attractive potemti#thieé real space is given by the Fourier

transform ofl/ (k—k')|x’—xk,

V(k—k') = -V, (2.65)

74¢) s
Vir,r') = _(2;)3 /d?’kekak—Q, (2.66)
F

with Q being the volume of the system. Defining for convenience #utof that multiplies the
attractive potential in the self-consistency equatio642as

D(r,r’) = Ztanh (f—;)un(r') vi(r), (2.67)

the superconducting gap in terms of the center of mass aigfeeal space coordinates becomes

AR k) = / BXe ™ XA(r, 1) (2.68)
K201\ .y X X
- _ 3.~ 3 i(k'—k)-X i o
V,,Q/dk i (%) /dXe D(R+2,R 2).

Expanding the functio (defined in 2.67) in a Taylor series and taking the first twonter

X X OD(R,R’) O0DR,R’) X
D ZR-Z)aD - L= 2.
(R+3 R=5) ~ DR.R) + { R R ||pon 2 (2.69)
one obtains for the superconducting gap the zero and first @gpansions,
k? E, «
BofR, k) = V305 ;tanh <ﬁ)un(R)vn(R), (2.70)
, k 10 0 E, BN
AR k) =~V 055 [ﬁ_apu} ;tanh <ﬁ>un(R) R @7

Here the zero order term is discarded since we are consigeogily purep-wave paring, and the
first order term is compared with Eq. (2.58) to obtain the-selisistent condition for the two
components of the gap
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?

. (0, —0w) ; tanh (f—;)un(r Yui(r')

1 By ’ (!
Ay(r) = —V;)Qk—F((?y—(?y/);tanh(ﬁ)un(r)vn(r)

Ay(r) = =V,Q

(2.72)

r’—r’

(2.73)

r’'—r’

Finally, to conclude this section the calculation of theexgpnducting current densijyr ) is
provided. Defining it as proportional to the real part of ttedistical average of the kinetic momen-
tum operatoip, one obtains

. /h .
jr) = Re (L (5V - ZA)da),

l

— % {[u;(r )WV (r) — c.c.] fo + [va(r)Voi(r) — ce] (1 — fn)}
B % Z[Iun(r )P fo + o (r)P(1 = fa)] A, (2.72)

where the field operator(s/]j;é andz[;a) have been replaced by their corresponding expansions)(2.45
and (2.46) in the chiral case. The Ampere’s law is thus thiged in its standard form

4
VxVxA = %j(r), (2.75)

but with the current density stemming from the probabiliyrent of the quasiparticle states in the
superconductor.

The BdG equations for chiral-wave superconductivity are thus complemented with thie sel
consistent conditions (2.72) and (2.73), and Ampere’s (2w5). Their numerical solutions are
computationally demanding and in the next chapter the jphareeemployed in this thesis to solve
them is described.

2.3 Phenomenological theory

In this section the superconductivity of unconventionglesgonductors will be treated within the
phenomenological formalism. The treatment is differeaftrfrthe microscopic one discussed in the
previous sections, although the starting point is the satisistent condition [see Eg. (2.35)] derived
whithin the microscopic formalism.

2.3.1 Linearized gap equations

Superconductivity arises after the temperature of a naterits normal state is lowered beldfy,
making the material undergo a second order (continuous3itian. The superconducting phase is
characterized by an order parameter that represents tisgydehthe Cooper pairs, and is vanish-
ingly small closed to the critical temperature, as is theesapnducting gap. One can then linearize
the self-consistent gap equation (2.35) and thereby obitaisuperconducting order parameter.

Replacing the spin-singlet superconducting gap of Eq.4)2rito the self-consistent condition
(2.35), yields
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Bethe| Mulliken Basis function Direction ofd | TRSB
ry Aty Xk, + yky, zk, d||ab, d||c No
ry Asy, xky — Yks d||ab No
Iy By, xk, — Yk, d||ab No
r, By, xk, + ¥k, d||ab No
Iy B, {zk,, zk,}, {xXk., yk.} d||c, d||ab Yes

Table 2.1: Table of the basis functions for thy, symmetry group within theé-vector representation for
spin-triplets. The first two rows denotes the notations ah&and Mulliken, respectively.

P(k') Ey
SN Vi tanh . 2.76
%: Ko B, (2kBT> (2.76)

In a first-order approach in terms of the superconductingtij@xuasiparticle energyy. is replaced
by the kinetic energy,,. Moreover, owing to the assumption that the attractive qitdeis nonzero
only within the Debye window, one can transform the sum imdrdegral and separate it into a
surface and an energy patrt,

w(k) = ~NO) a2 Viewv <) [ dthg—)

—€c

(2.77)

whereN(0) is the density of states at the Fermi surface and a cuttoff energy. In a more conve-
nient way the linearized gap equation becomes

Agih(k) = =N(0) (View o (K) s , (2.78)
where the average is over the Fermi surface and
1 “ 1 €
— = de — tanh : 2.79
As /0 € (2kBT> (2.79)

In a similar way, replacing the spin-triplet supercondougtgap of Eq. (2.15) into the self-
consistent condition (2.35), one obtains

d(k) . By
Z Vew g S ! anh <2kBT)’ (2.80)

where the linearization process, described above for tiresspglet case, can be applied again
yielding

Ard(k) = ~N(0) ( Vieed(K) )y (2.81)

Egs. (2.78) and (2.81) are eigenvalue equations with egemealue\ andA$. corresponding to
an eigenvector®(k) andd“(k), respectively. The eigenvalues define different critieatperatures

{Tc(l), T2 ,. ..}, and the eigenvectors the corresponding representatighe gap.

Finding the eigenvectors of the linearized equation reguiietailed knowledge of the interaction
potentialVy k-, which in many cases is not available. Then, in order to ameent the problem, one
has to appeal to symmetry considerations and obtain theseptations of the gap phenomenologi-
cally. For example, many of the HTSs as well as SRO have aytated crystal structure represented
by the D4, symmetry group. One can then use the basis functions of tbigogand form an expan-
sion of any physical quantity having this symmetry.
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For the superconducting gap the same procedure appliesugh one has to bear in mind that
other symmetries need to be fulfilled such as: (i) the grouptaitions generated by the total angular
mometumJ = L + S, whereLL andS denote the orbital and spin angular momenta, and (ii) the
continuous group of the gauge transformatioris),

G = Dy x Dy x U(1). (2.82)

Let us consider first the basis functions of the grdugp within the d-vector notation and leave
the discussion of the gauge symmetry for later. There existhifferent irreducible representations
for this group (see Table 2.1). Among them four are one-dsimeral and one two-dimensional, i.e.
one that breaks the time-reversal symmetry. Since the hasitions of Table 2.1 are given within
the d-vector notation, the symmetry generated by the total argubmentumJ) is included on
them. The superconducting gap is thus given by an expansitheiirreducible representations of
the group,

d(k) =Y 9T, m)d(I, mk), (2.83)

wherey (', m) are complex order parameters transforming like coordietéhe basis functions.
When the expansion includes one single irreducible reptaten the gap is said to be in a “pure”
state. This can happen when among the critical temperatees is one that dominates the others,
i.e. the highest, is much larger than the remainifig’s. On the other hand, when the critical tem-
peratures of the irreducible representations are sinsitagdmixture of two or more representations
may be realized. As the main example of the phenomenolotjiealy of unconventional supercon-
ductors, the representation of theg, symmetry group breaking the time-reversal symmetry will be
considered first, and the case of a gap with an admixture ofrt@ducible representations will be
discussed later.

2.3.2 Chiral p-wave superconductivity

According to Table 2.1 the expansion of the supercondudieqy in the basis of the irreducible
representatiort’, reads

d(k) = (wmkx"i‘wyky)i- (2.84)

The calculation of the order parameters for this representbreaking the TRS has been reported
elsewhere, so we only briefly outline the procedure. Folgniandau’s theory of second-order
phase transitions, the order-parameter compon&nptand ¥, are demanded to minimize the free
energy density

2

B
F:FN+/d3r[ﬁcond+ﬁkin+8_ ) (285)
T

where Fy is the free energy of the normal staté,,,q denotes the energy density of the conden-
sate,.#, the kinetic energy density, a8 the magnetic field.%.,,q is a combination of second
order and fourth order terms in the order parameter, fuifllihe properties of the group, and
with phenomenological parameters temperature-depemdentiependent as dictated by Landau’s
theory:

ycond = O‘(Wm|2 + Wy|2) + Bl(WmF + Wy‘Q)Q + ﬁ2 (1/1?;% - wwa)Q + 63‘wm|2wy|2- (2-86)

The phenomenological parameterandg;, withi = 1—3, are material dependent constants, and
one can demonstrate that microscopic quantities such ashtpe of the Fermi surface, the Fermi
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(a) a<0, B,<B; By=0
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Figure 2.4: Contour plot of the condensation free energysitgr(#..nq) for chiral p-wave superconductors.
The energy density in panel (a) is bound from below and hagiegenerated ground states, i.e. breaks the
time-reversal-symmetry. On the other hand the energy teoispanel (b) is not bound from below.

velocity and the electronic density of states define them 192, 103]. In this section they will
be treated as independent parameters and rather discuessstidn general grounds. For example,
writing the condensate free energy density in terms of theareler parameterg,. = ¢, + i1, as

Feoma = (|04 > + [0 ?) + & ([ 2 + [p- ) (2.87)
—%(|@/}+|2 — |1/f—|2)2 + f—é [(|@/}+|2 + |¢—|2)2 — (Yt + w—wi)ﬂ,

one can show in Fig. 2.4 two distinct shapes#f,.q for two different combinations of the phe-
nomenological parameters. For ilustration purposes wk o= 0, and extended the contour
plot from the quadrant wherg).| > 0 to the entire Cartesian plane. Whgh < (1, Fcona IS
bound from below and has two local minima at: (J.|,v-) = (\/|a|/(51—052),0), and (i)
(U, [_]) = (0, /]| /(81— 32)). On the other hand, whe®y, > /31, Z..na has only a saddle point
aty, =_ = 0 and consequently it is not bound from below.

The kinetic energy density of Eq. (2.85) is obtained followithe same procedure that was
applied previously to the condensation free energy denbityvever, one has to bear in mind that
these terms contain gradients of the order parametersasunolthe conventional case [see Eq. (1.3)],
that one has to treat properly in order to make them invatiader the set of operations of the group
G. For example, let us consider the covariant derivalive- ’}V - %A, and try to build alU(1)
invariant term out of it and the two order parameteys. A first guess iD;v;(D.,1,,)*, where one

can easily check that this term is indeed invariant undetrtimssformation), = e~ "heX1),, provided
that the vector potential transforms a$, = A, — d,x. However, the ternD;v;(D,,,,)* is not
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invariant under the set of operations of the grdup,. The list of terms which are invariant are
shown below, taken from Ref. [94]. They read

Lg.kin = kO [‘mex‘Q + |Dywy‘2} + kl “D:ﬂ/}y‘Q + |Dywm|2] + (288)
ko [(Dytbe )" (Dyty) + c.c.] + ks [(Doty)* (Dythy) + c.c.] +
k4[|Dz1/}:v‘2 + ‘Dzwyma

wherek;, with i = 0 — 4, are phenomenological constants related to microsco@atgies, but
treated here as independent variables. The method thtgg¢lee phenomenological parameters to
the microscopic quantities uses Gor’kov’s theory of wealdypled superconductors. This method,
besides providing an alternative derivation of the freegnéensity of chirap-wave superconduc-
tors, yields

5, TCB)_NO)_ k

/Mm(z), b _

o TC(3) hwe
T. 3 Fi=Fk (

2
64 (wkgT.)?" 3 PTI98 kaTc) N(0),
(2.89)
whereN (0) is the density of states per spin at the Fermi level,@grdlis the Riemann zeta function.
In order to see that the kinetic energy density possessesythenetry of the grougs, one can
integrate this density over the sample volum(éFkindi”r = Fkin) to subsequently transform the
resultant free energyF{;,) to the reciprocal space. The transformation, convenjapplied in the

notation of the new order parameters, requires the kinagcgy density given in this notation,

Frin =" DY, [+ DY P} + (k- ) Re { T (TL_1h, )"} + (2.90)

bzt Re{ i Dt (Do)~ Do (Do) | |+ 5D P+ ID- ).

wherell. = (D, + z’Dy)/\/i. The Fourier transform aof};, at zero magnetic field yields

B2 oo - -, kot+k)k?  (kotks)k? ] ([ ¥y (k
Fki“:Z/d k(%(k)’@”—(k))[ ((k:2+k3))k2 ((k0+k1))k2 }(mgk; ) (2.91)

wherek, = k, +ik,, ko = k3, the dimension of the problem has been reduced to two;quQH)
are the Fourier transforms ¢f_(r),

Yo (k) = ﬁ /ereikwi(r). (2.92)

The integrand of Eq. (2.91) is a complex bilinear form. Figit reduces to solve the following
algebraic equation,

[(Ko+k1)k? — w?]* — (katks)? (ki k_)? = 0, (2.93)

derived from the eigenvalue problefX =w?X, with X = (¢, (k),¥_(k))”, and
s (ko+k1)k?  (kotks)k?
(kat+ks)k?  (ko+k1)k?
e wi = Z?:o k; k2, and we plot it in Fig. 2.5(a). One can see that this kinetittigoution to the
free energy is isotropic, resembling to what is expectedwave superconductors. However, there

. From the two roots of Eq. (2.93) we pick up the positive one,



CHAPTER 2 49

3m/2

Figure 2.5: (a) Plot of one of the eigenvalues stemming froentilinear form of the kinetic energy density
for chiral p-wave superconductors after Fourier transformation (sesmiext). The plot, revealing that
this eigenvalue is isotropic, is complemented with pangl fihich shows the relative phase between the
components), (k) and_ (k).

is an inherent phase which is the main characteristic of firalc-wave case, and which one can
obtain by replacing} back in the eigenvalue problem. This solution, not uniquiglfined, is only
given as the ratio

T 2

el _ k—; = ¥?, (2.94)
Yo(k) k

meaning that although the magnitude of the gap is constaliy fapped), the phase of it is changing

[see Fig. 2.5(b)].

2.3.3 d+s-wave superconductivity

The phase-sensitive experiments of Refs. [18, 19] showadhle symmetry of the superconducting
gap in the HTS was of thé-wave type. This fact subsequently raised the question of this
symmetry was reflected in the vortex matter. The first answanse from theoretical works [104,
105], which suggested that thlewave symmetry component was not the only component present
in the HTS. In fact, they pointed out that an admixture gfwave component complemented the
dominanti-wave order parameter.

Among the implications on the vortex matter of having a sapeductor with multiple order
parameters one can name two: (i) the lattice that form thecesr and which differs from the con-
ventional Abrikosov lattice, and (ii) the bound states thaterge inside the cores of the vortices
and which are distinct from the Caroli-Matricon bound stat®/orks have demonstrated that the
vortex lattice is oblique for the-wave order parameter with the admixture of-avave compo-
nent [106,107], namely théts-wave superconductor. Moreover, it has also been showndmigie
vortex that the shape of the superconducting density frams-4vave component is not rotational
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Bethe| Mulliken | Basis function| Location of line nodes TRSB
I’ Ay, 1, k% + kK2 e No
Iy Ay, koky (k2 —k2) r=y=0, y=+z No
Ty B, kZ—k: y==x No
Iy Bs, kyk, r=y=0 No
Ty E, {ksk, kyk.} 2=0 Yes

Table 2.2: Table of the basis functions for thy;, symmetry group within thé-vector representation for
spin-singlets. The first two rows denotes the notations tifeBand Mulliken, respectively.

Figure 2.6: Plots of the two irreducible representatidh‘:g; andT'} of Table 2.2, characterized for possessing
d-wave symmetry. Panel (a) shows nodeg at +x and panel (b) ay = 0, andxz = 0.

invariant, unlike in the conventional case. This densitmponent showed a four-lobe profile rather
than the cylindrical symmetric structure of the Abrikosavtices [107,108]. Huge efforts have been
devoted to see this peculiar feature in HTSs, and thus cotifiendd+ s-wave pairing, however the
task has been challenging due to the dominance of the cidaldsymmetric structure of théwave
component.

In order to study phenomenologicalfy- s-wave superconductivity, one can start by finding the
irreducible representations of the corresponding symmgtup. In this case, bearing in mind that
the HTS By Srb,CaCuyOg s possesses the tetragonal crystal symmetry and its pasriofighe singlet
type, the symmetry group behind this analysis isfhg. The list of the irreducible representations
of this group for the gap parametér [see Eq. (2.78)] is shown in table 2.2. Among the five
representations two have thievave symmetry and one thewave symmetry, namely the pairy,
'), andl'{, respectively. In Fig. 2.6, the plot of the two represeptagiwith thed-wave symmetry
is shown. The figure clearly shows that both representatiaus line nodes, and that their locations
correspond to those listed in the fourth column of Table 2.2.

According to the irreducible representations of thg, symmetry group, the expansion of the
superconducting gap for&+ s-wave superconductor reads [108]

Q/J(k) =1s + nd(ki - k;)v (2.95)

wheren, andr, are the order parameters transforming like coordinatesrdiy to the irreducible
representations; andT'S, respectively. These order parameters are obtained fioitptihe same
process that was appliedio, and¥, in the chiralp-wave case, i.e. using Landau’s theory of second
order phase transitions. The condensation free energytgémsd + s-wave superconductivity thus
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Figure 2.7: Contour plot of the condensation free energysitg¢n(%..nq) for d 4+ s-superconductors. The
energy density in panel (a) is bound from below and has itdmim at (; = 0,|ns| = a5+ 53). On the other

hand the energy density of panel (b) is not bound from below.

reads

Feond = Oz5|775|2 + ad|77d|2 + 51|775|4 + 52|77d|4 + 53|775|2|77d|2 + B4 (77:277d2 + 77227752)~ (2.96)
The coefficientsy,, oy, ands; withi = 1 — 4, are treated here phenomenologically. However

they can be related to microscopic quantities such as thegesbfthe Fermi surface, the Fermi
velocity and the electronic density of states [109]. Sirtoe drder parametey, is the dominant
one [107, 108], one assumes thatitss higher than the corresponding onejto That means that
while a4 is considered negative is either positive or negative provided that it can be latban

ag. In Fig. 2.7 the contour plot of the condensation energy sswshfor two different combination
of phenomenological coefficients. For simplicity it hasmebosen that; = o andfs = |ayl. In

panel (a) one can see that for the conditiGr] < «, + 3/2, Zcona IS bound from below and has

one physical minimum ag, = 0 and|n,| = B3/01 + a,. On the other hand, panel (b) shows that
Feona has a saddle point wheg,| > o, + 83/2. The local minimum of panel (a) will be considered
further in this work since we are interested only in stableitsens of thed-wave at zero external

field.
The terms of the kinetic energy density fér s-wave superconductivity have been reported
extensively in the literature [106—109]. They are calediasuch as the corresponding terms for

chiral p-wave superconductors, outlined in the previous sectibieyTead

Frin = Vs D 1> 4+ valD nal® + % [(Dyns)* (Dyna) — (Dans)* (Dana) + c.c.], (2.97)

where the coefficients,, 7,4, and~, are treated phenomenologically here, although one caterela
them to the inverse masses of the electrons insthrdd bands, and their corresponding coupling
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3r/2 3r/2

Figure 2.8: Plots of one of the eigenvalues stemming fronbilireear form of the kinetic energy density for
d+s-superconductors after Fourier transformation (see maiti} The eigenvalue has the four lobe estructure
of theT'§ irreducible representation, but it also has other four Istat the line nodes of this representation
due to the admixture of thewave component.

[106,107]. In order to see that these terms indeed refleci-thewave symmetry, one can calculate
the kinetic free energyH;,) using the Fourier transform, as done in Eq. (2.91) and tkigherein,

where
ﬁs(d)(k) = %/ereik'rns(d)(r). (299)

The roots of the secular equation derived from the eigeevatoblemf?Y = wY, where

) AN and B — vk (k= kD)
Y = (iis(k), 7a(k))", and B = [ W =) | e
Wit =y k? — v, k2 — K2, (2.100)

where for ilustrative reasong = ~, was chosen. In Fig. 2.8 we plot the eigenvahiés in polar
coordinates. There is shown thaﬂfs, and consequentlyi;,, has the four lobes symmetry of the
5 irreducible representation plus another four lobes agisirthe line nodes of this representation
and owing to the admixture of anawave component.

2.3.4 Relevance to other superconductors with multi-compent order pa-
rameter

The Fermi surface of the iron-based superconducter B&.Fe,As, is complex and contains many
sheets, as shown in Fig. 1.5 for= 0.4. Theoretical and experimental works suggest that at mtelera
doping ¢ ~ 0.4) the superconductor possessasave symmetry, and at maximum doping= 1)

it possesses bothwave andi-wave symmetries [110,111]. Many works have thereforencdal that
atz < 1 an admixture of the two distinct pairings is possible [11IB3]1 However, this particular
combination of symmetries is distinct from the previousbodissed case{s-wave), since it breaks
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the time-reversal symmetry. The community name-itid to distinguish it from the time-reversal
preserving pairingl + s-type. On the other hand, the GL free energy darid superconductivity
resembles that of-+ s-wave superconductors. It reads

T = asns|® + aalnal® + Bilns|* + Balnal* + BsnsPnal* + Ba(n*na® + nj*ns®)
+ Y| D ns* 74D nal* +70 [(Dans)* (Dena) — (Dyns)*(Dyna) + c.c.], (2.101)

where it is assumed that the parameterandg; of the condensate free energy density are such
that the ground state is degenerate [113], i.e. breaksrniereversal symmetry. Thetid pairing
is therefore another example of an unconventional supdtgdar with particular relevance in the
study of multiband superconductivity in the iron-basedesapnductors and can be addressed using
similar theoretical tools to the ones discussed in thisishes






Numerical methods

3.1 Numerical solution of the Bogoliubov-de Gennes equatis

The numerical solution of the Bogoliubov-de Gennes (BdGlagigns for chirap-wave supercon-
ductivity presented in this thesis follows the same procedhat was applied to conventional super-
conductivity in Refs. [114] and [115]. In this section a hdescription of this procedure is provided.
Instead of solving Egs. (2.61) and (2.62), the BdG equattmesolved in the representation where
the components of the gap, , are substituted bA, = (A, £ A,)/2. They read

T e 1 G ) = () @)

where the single particle Hamiltonia is

Hi(r) = ﬁ [?v - ZAF o (3.2)
and, .
M(r) = _kiF{A+<r)a+ FA_(r)d_ + % [8+A+(r) FOA_(r )] } (3.3)

with A being the vector potentiad. = 0, +19,, andkr (Er) being the Fermi wave length (energy),
respectively. The self-consistent conditions (2.72) &dJ) are correspondingly changed to the
representation, and yield

Ai(r) = —Vin Z [07(r )05t (r) — w,(r)O5vj (r)] tanh <2€—;> (3.4)

n

The sample that we consider in this section is a cylinder @iusa? and thicknesg. However,
in the limit of d < A, physical quantities such as the superconducting currehtlee magnetic field
remain constant along the sample (see Fig. 3.1). As a residtcan treat the system as a quasi-two
dimensional sample. Therefore, we can choose polar casdifior convenience, for this particular
geometry. Moreover, we also assume that the cylindricalnsgtry of the sample is imposed on
the superconducting gap, i.e. we consider the following&nfor the gapA.(r) = AL (r)elt=’,
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@) (b) (©

Figure 3.1: Cartoons of superconducting disks showing itie giew of three samples with different thickness.
The line profiles of their magnetic fields are also shown. ®i@Esamples reveal that the demagnetization
effects are smaller for the thinner disks.

This assumption leads to the subsequent expression forotelingonal operatoll(r ) in polar
coordinates,

) = e la (G (e )
4 i1 [A, (% . %%) + %(85‘; + %A)] } (3.5)

On the other hand, in the Coulomb gauge the single-partialaildionian reads

1 2eh 2
Hy(r) = — [_ffv? _EA LY %A?} — By, (3.6)
2m ic c
where the set containing all the eigen-functions stemnmmg the Hamiltoniark, = —%V%orms

a complete basis that one can use for the expansion of thgaquade wavefunctions of the BdG
equations,

Up(r) = chu,j(bj,u(r)v Un(r) = Zdnu/,j/ﬁbj’,u/(r)- (3.7)
13 g’

The eigen-function®; ,(r) = goj,u(r)j—g_i, which are composed of separate radial and azimuthal

parts are demanded to be orthonormal, ifel’*r G5 ()P u(r) = 55’5{. They have the eigen-
energies;;, = h*a; ,/2mR?, wherea; , are the zeros of theth Bessel function of the first kind
[J.(r)]. The radial part of the eigen-functions reads

V2 ,
Pju(r) = mju <aj’“ﬁ)' (3.8)

Replacing the expansions of the quasiparticle wavefunstiiack into the BdG equations (3.1),
and projecting the resultant quantum state into the bagengg (r ), one obtains the following set
of linear equations

S v |G i en g+ Y GV 1)y =Y Enn 0oL, (3.9)
M

g wg’

> (VTG ) enpi— > G vIAG |G 1 )y = endn 38508,
whi

] uhg’
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where

(L] Al ) = /d2r¢7,y(r)e%”o(r)¢j,u(r), (3.10)
Ll ) = [ﬁwa@m@ww@» (3.11)

and(l, v|II*|7, ), (I, v|.7¢ |7, 1') can be obtained in a similar way straightforwardly.

In the quasi-two dimensional limit/(« \) the magnetic field is constant along the sample and
one can obtain that the vector potential becomes= XXX, or A = %é, in polar coordinates.
This expression reduces the complexity of the problem acititédes the calculation of the matricial
elements deriving from the single particle Hamiltonian @adtomplex conjugate,

. h%a? he H 1
1\ Ali) = { |G = Be = o]
62 H2 5 ,
T oo drr°puy (1) @u(r )}5 (3.12)
and
*| - hQOZQ», / he H I
i = ([ s S
e? H? }
+ o [l )soj*cw(r)}éw. (3.13)

On the other hand, the matricial elements deriving from theratorll, and its complex conjugate
IT*, read

(L vl ) = (3.14)

1 0.1 1 ©ar 0 8A O 0
_ v J5H Jhu + il /
= Jdrron, [AJF L | 2 — AL EEE (g

—éfdrﬂpl,u [A 8% + Lo (m* +A—%r (' %)}%%L —1
and,
(I ) = (3.19)
g[8 25+ e O e =)o
+éfd7’7“901,u [A* Oiu | %u _A* %u( — f)}5Z—L7+1’

where one can easily note that due to the separable form @ainbetz for the gap, — L, = 2.
This fact leads to the reduction of the number of indepengarameters existing in the model and
subsequently to the speed up of the numerical algorithm.ebaar, from the comparison of the
nonzero elements of Egs. (3.12) and (3.14) [or (3.13) aribjB.another reduction of independent
parameters is obtained for the BdG equations. That redufitows from the equation’ = 1 —
L, —1.

In order to demonstrate how the numerical algorithm worksceleulate the Hamiltonian and
the eigen-vector arising from the set of linear Eqgs. (3.9¢m{.., L_) = (0,2). They read
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Hy
ﬁg ﬁQ,l
Hy 2
A= |——— - |, (316
- g, —Hg
' I —Hy
s —H;
_[f[§
and .
wn = (CnOa Cn1;, Cn2, Cn3, ~ - 7dn07 dn17 dn27 dn37 o ) ) (317)

with H,, I, o1, H, andII; ,,, being the submatrice®, a|7%|j, ), (I, a[Il|5", o — 1),

(I, a7 |5, ), and(l, o|IT*|7, o + 1), respectively. Moreoves,, , andd,, , are subvectors with the
corresponding cOmMponents, a0, ¢na,1; Cna2, - )" and(dna,0, dpa,1: dnag, - - )", respectively.
Owing to the particular block structure of the Hamiltonighl®), one can decompose this large
matrix into a set of 22 matrices and write the BdG equations as

A~ A

Ha Ha,afl Cna _ Cna
_ﬁ;;fl,a _F[Zfl } ( dpa—1 ) s ( dpa— ) . (3.18)

The expansion of the quasiparticle wavefunctions [see Bd)|(is infinite, and consequently
so is the dimension of matrix (3.16), rendering the BAG dquatimpractical to solve for any
numerical algorithm. However, due to the instability of fermi surface toward the formation of
Cooper pairs, only states within the Debye window make majatributions to the superconducting
gap. Thus, one can select a finite number of basis statesehaithin this window and obtain a
reliable approximation of the gap. Precisely, this is alediiteratively after the eigenvectors and
eigenvalues of the set of BAG Egs. (3.18) are calculatedit@étagion starts with a trial gap and ends
when the relative convergence between two neighbor itaraiis below some limit, typically0—>
meV. The BdG equations have a discrete symmetry that is woethtioning since it allows one to
speed up the numerical algorithm. It is the time reversakieh

{u_c,,v_c,} ={v ,u’_ }, (3.19)

which enables us to obtain the quasipatrticle excitatiootspe for negative angular momenta from
that with positive angular momenta.

3.2 Finite difference method for the Ginzburg-Landau equaions
of p-wave superconductivity

In this thesis the GL equations for chiralwave superconductivity are solved using the time-
dependent (TDGL) approach. TDGL equations introduce teaipvolution in the stationary GL
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equations of conventional superconductors [see Eqs. &bd)1.5)], and for chirgh-wave super-
conductivity they read

h? 0 e* 0.7
2m*D<8t +2—g0>\11 Y (.20
10A 5F 1
Z(=57+ V%) = —Tx—-VxVxA, (3.21)

where the free energ¥ = Z...a+-%rin IS given by Egs. (2.87) and (2.90),is a phenomenological
diffusion coefficientg the normal conductivity, ang the electrostatic potential. The TDGL equa-
tions are strictly valid only for gapless superconduct@ds®]. However, for conventional supercon-
ductivity they have proven to describe well the slow movingices in the mixed state regime [117].
For dirty superconductors there exists another genetaliZGL equation, taking into account the
inelastic scattering [118].

The TDGL equations are gauge invariant, i.e. under the fioamsition
(T, A", ¢') = (TeieX, A + Vx,p — 12) they remain invariant for any arbitrary function
That allows one to simplify the TDGL equations by properlpsimg the arbitrary function (gauge
fixing). In what follows we present the two gauge choices msred in this thesis.

3.2.1 Zero-electrostatic potential gauge

The zero-electrostatic potential gauge is the most coemchoice for the TDGL equations when
neither charges nor external currents are considered isugperconducting sample. From the orig-
inal fields (\II,A, cp) the arbitrary functiony is required to satisfy the equatic%r%—f = . This
choice imposes the transformed electrostatic potentiahidsh,,” = 0, reducing considerably the
complexity of the TDGL equations for the transformed fields:

n:ow OF W 0" A
om*D ot S : (3:22)
o OA/ 0F 1 ,
g 6t = _5A/ — EV VXA (323)

For the numerical algorithm that solves the TDGL equatidnis iconvenient to work with di-
mensionless guantities. That is achieved by scaling thardie in units of the coherence length

£ = 2m*|a‘, time in units of the GL time, = £2/D, the magnetic field in units of the bulk upper

critical field H., = E—EQ the order parameter scaled to its bulk value in absence gheti field

Ao = y/52L-, and the free energy density &, =

the zero-electrostatic potential gauge thus become

ow 07

i (3.24)
A 167

O'E = —55—A—li VXVXA (325)

where for convenience we have dropped all the primessaisdthe dimensionless normal conduc-

tivity, scaled too, = 40;302. The dimensionless free energy density reads
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F =R Dy, P+ DY_ [} 4 (ko ks)Re{ T (TT¢py )"} + (3.26)
uRe{i[Duts (D) - Dt (D] |+ 5{1D.0 P D0 1)
—%(w? o) + B (P + o ?) = 2 (jo 2 — - ),

wherer = — ¢A and we took3; = 0 [103].
The geometry of the sample to be solved with TDGL equatlortshcrblp wave superconductivity
is rectangular and thin. Moreover, an external magnetid fs&ehpplied perpendicularly to the plane
of the sample. Assuming the demagnetization field is vangsdue to the small thickness of the
sample in comparison ta, one can treat the system as quasi-two-dimensional. Inctse the
dimensionless TDGL equations read

A 1{’““’“13” ks [D,, D, (ko + ks) TI2 Km)
ot 2 (k?g + k?g) HZ ko;rlm D2 — kz;iks [Dxa Dy] w_
1 1
+ \Il(— _ T|\IJ\2 \Ila\Il) , (3.27)
2
A
Jaa—t = J - K’V xVxA, (3.28)
where[ | denotes the commutator addhe superconducting current density
o k(]_'_kl 2+k3 * ~ A A
J = Im{ (¢+Dw++w Dy ) o (\If [H+a++n_o—_]\m (3.29)
ko—k -
o [ma—+ _ H&]\IJj)} -2 3Re{k>< (47 Dy, — wisz)}.

Heres. = (0, £ io,)/2 are pseudospin or chiral operators acting on the space spén.bThe
boundary conditions for the TDGL Egs. (3.27) and (3.28), aachpatible with the existence of
spontaneous edge currents, are [94]

Yy — P = } -
at the north and south sides
Dytos + Dy = d
Yy +9Y- = }
at the east and west sides
Doy — ggw_ 'd

« A) (3.30)

wheren is the unitary vector normal to the sample surface. Withehssundary conditions the
problem is well posed and one can solve the TDGL equatiorts avitumerical algorithm. In this
thesis we use the finite difference method and the link vlegatechnique. The discretization of

kinetic terms such aB?y.. has been reported elsewhere [119, 120], but thaldf), was not. It
reads
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(a) (b)
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Figure 3.2: Comparison of (a) the five-point stencil disization of the operatoiD?, and (b) the nine-point
stencil of1%.

24 = —(D,+iD,)(D, £iD,), (3.31)

(D - D +i[D,D, + Dny})z/;jF,
Uixy‘jd):':vi"_lvj B qui,i,j + i— 1]w:F i—1,5
202

Yy 7Y
Ui,ﬂb%i,ﬁl - 27/’?,1‘,3‘ + Uz‘,j—lw:F,i,j—l
2
202

N~ DN~

Yy 7Y
+ Ue Ui+1,jw¥7i+1,j+1 - Ui+1,j—17/’$,i+1,jfl
wJ 80,0
=y
Yy 7Y
Ui V5, i-1501 — Uiy joatsim15-1
89,0,

:13 r7x
Loy Ui7j+1'¢):|:,i+1,j+1 - Uz‘fl,jJrlw:F,i—l,j-i-l
j 86,0,

TTX
F ULy,

_ o UP sy —UP s i1
+ Z'Uf{j_l \J 1¢$, +1,5 186 ; 1,j—1%F,1—1,j—1 —|—O(5I‘3)7
z0y

whereU;; = e WaAe i ,andU;; = e~®v4y.i5 are the link varlablest ande their complex con-
jugates, andl,, o, the W|dths of the mesh shown in Fig. 3.2. There one can seﬁ*@a&cond order
finite difference approach fdd?3 «, contains nine grid points, unlike the five points stencilraggh

for D%¢,.. The commutator term in Eq. (3.27) can be simplified furthigh\a straightforward cal-
culation,[D,, D,|=—i(0, A, — 0,A,)=—iB,, and thus its discretization becomes simpler. Finally,
the discretization of Eq. (3.28) reads

At KZAL

n+1 n - n n
Axt] Ax i T 7Jx,i,j - O'(Sy (BZ i, BZ ij— 1)’ (332)
. . At KEAE, .
Aytlj Ay ,J = 7Jy,i,j + 0_5 (Bz 2,] Bz i— 1]) (333)

where
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ko+ki |, UliVa,it1,j — Ui{l, Vayi-151  kotks
Jyij = Im Z{ 4 wa,i,j[ ’ ’ ] + wa,m
a==+

20, 4
y [Uz‘m,jwa,iJrl,j_Uix—l,jwa,i1,j_i_iaUgjw—a,i,j—H_Ugj—lw—amj—l}
2, 2,
ko—ks U;{jwa,i,j-i-l_Ugj—lwa,i,j—l
+ ReZa e %, , (3.34)

/{Z0+/{71 % Ug'wa,iJrl,j - Uiy_l, ‘wa,z’fl,j k2+/€3 %
Jyaiaj = Im Z{ 4 wa,i,j [ ’ ’ ] + wa,i,j
a==

. 20, 1
o [a Uil;jwfa, z’+1,j—Uf,1,j1/La,z‘71,j +Z,Uf{j¢a,z',j+1—0§{j11/1a,z‘,j1]
20, 20,
ko —k U Waigr1 — Ufj1¥a,i-
— Red a= Vi 41 5 Wouij-1. (3.35)

andB? . . is the local magnetic field calculated using first-order éniifferences,

z,1,J

Ayiviy —Ayig  Avijn — Auiy

Bzi =
i 5 5,

(3.36)

In Egs. (3.32) and (3.33) the superindestands for the discretized time index. That means that
A”Jrl and Ay ; ; are two subsequent local values of the vector potentialratgzhby the time inter-
vaI At The solution of these equations can be done within an imptiethod e.g. the Crank-
Nicolson one, semi-implicit or epr|C|t In this thesis weted for an explicit method, where
At<m1n{ YRt 2} with ©? =

5 +5;

3.2.2 Coulomb gauge

The Coulomb gauge, unlike the zero-electrostatic potegtage, is the most convenient choice
when an external current is applied to the superconductangpte [121,122]. In this case the ar-
bitrary function is required to satisfy the equatidry + V - A = 0, which makes the transformed
vector potentialA ' divergence-free. This fact, combined with the operatiotaking the divergence
of Eq. (4.3) leads to the TDGL equations in dimensionlesssdor the Coulomb gauge

B 5T
<8t+w>\I’ - - (3.37)
oAy = V-7, (3.38)

where the second TDGL equation is for the electrostatic@tierather than the vector potential
such as in Eq. (3.28). The vector potential in this case iainbt from the gauge choicé- A =

0. The boundary conditions for the fields and ¢ in a superconducting nanobridge linking two
normal leads located at the north and south sides, and winclised to apply current into the
superconducting sample are
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e =0 .
Dy + o = 0 at north and south sides
Yy +1-=0
Dy, —Dyp_ =0 at east and west sides, (3.39)
0:=0

wherej, denotes the normal current density. The TDGL equations/{3a8d (3.38) are numeri-
cally solved with finite differences and the link variableheique, where the discretization of the
operators appearing in the first TDGL equation follows thathe previous section. The second
equation is solved using the highly optimized Intel MKL rimats for Fourier transformation, with
the discretization for the superconducting current dgrastgiven in Egs. (3.34) and (3.35).

3.3 Finite difference method for the Ginzburg-Landau equatons
of d+s-wave superconductivity

Although this thesis is devoted to the study of chipalvave superconductivity, the GL equations
for d+ s-wave superconductors provide an example of a gap symmétnya@mixture of two dis-
tinct Cooper pairings. These GL equations can be solvedviatlg a procedure similar to that for
p-wave superconductors, and the description of the numexiigarithm has value to several super-
conducting compounds outside the ones considered in tlestHe this case the TDGL equations
in dimensionless units read

0
( + Z(P) Na = ’YdDQ’r]d + ’YV(Dz - D?z)ns

ot
+ g — |nal*na — %|ns|277d — Ty (3.40)
s (% + w) ns = 7D +7(D) — D2)ng
— wns — mulnsl?ns — %Indl% — TN (3.41)
(88?+Vg0) = J-K’VxVxA, (3.42)

where

J = Tm {3 Dna + 751D, }
— t{ 5, (93 Dats + 0 D 1= 13Dy + 0 Dynal 7}, (3.43)

and the dimensionless phenomenological parameters ate: C“Sl, andr; = %, withi=1,3,4. In

!

Egs. (3.40) - (3.42) the distance is measured in units ofdéherence lengtl,; = time in

Qm\ al’

units of the GL timey,; = 561 the magnetic field is scaled to the bulk upper critical fifld = -

e

the order parameter to its bulk valyg = '2”;; , and the

free energy density t&,, = "do . Moreoverx = g < is the GL parameter wherg = , /47::*;22 is

the electrostatic potential toy; = 7 t :
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the London penetration depth. The boundary conditionshfiercomponents of the order parameter
and the vector potential in the sample considered here, Igaathin rectangular sample with an
external magnetic field applied perpendicularly, read

YaDyna + 1 Dyns = 0

Vs Dyns + 1 Dyna = 0
YaDana — 7 Den)s = 0
YsDans — Y Dana = 0
(VxA)-n=H. (3.44)

} at the north and south sides

} at the east and west sides

Finally, the discretization of the TDGL equations fo# s-wave superconductors in the zero-
electrostatic potential gauge and within the finite-de#fere and the link-variable technique read,

773;]1_%” _ U,]ndz—i—lj 2ndz,] _'_U 1]77dz 1,5
d At d ox?
+ U;{jng,i,j+1 277d1] + Uy] 177d,z,] 1
oy?
ijns i,7+1 2773 N + U 4, — 1773,@,] 1
+ % o
B U{fﬂ?,iﬂ,j - 2772,1',]' + Uim—l,jn?,i—l,j
0x?
n n 2.n T3, n 2, n
i = i s = 5 1 P = Tl
(3.45)
W?jl - 77?,1‘,]‘ _ Uim,jn?,iJrlj 2773 )0, + U 1,]773 i—1,5
s At s 0x?
+ Uz?{jncrlb,i,j-i—l 2?7de + U 1,j— 1?7de 1
oy?
U;{jng,i,jJrl 277d 4,7 + U i,j— 1nd,z,] 1
+ W o
B U$ 77d i+1,5 2773,2‘,3‘ + Uz{l,jncrlb,i—l,j
ox?
n n 2. n 3. n
- Vns,i,j _7'1‘773,@',]'| 773,1',]'— §|77d,i,]‘ 773 N 47)0l,Z 3773,2 j
(3.46)
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Multichiral ground states in mesoscopiavave
superconductors

Using Ginzburg-Landau formalism we investigate the eféconfinement on the ground state of
mesoscopic chirgh-wave superconductors in absence of magnetic field. Welrstadde multichi-

ral states with domain walls separating the regions witliedldnt chiralities, as well as monochiral
states with spontaneous currents flowing along the edgesh@ve that multichiral states can exhibit
identifying signatures in the spatial profile of the magaodigld, if those are not screened by edge
currents in the case of strong confinement. Such magnegctit@mt of domain walls in topological
superconductors can serve as a long-sought evidence oébtoke-reversal symmetry.

4.1 Introduction

In a topological superconductor besides the bulk gap thzdrages the normal and the supercon-
ducting phases, there exist gapless edge states carryonggsigous currents along the boundaries
of the sample [70]. Theoretical works have classified theltmgical superconductors in two types
according to whether or not they break the time-reversalnsgtry (TRS), namely (i) chiral, and
(i) helical [69, 73], respectively. In a chiral supercowtlu the Cooper pairs are spin polarized, i.e.
spinless owing to the broken TRS, and its edge states res¢hdde of the quantum Hall state [73].
On the other hand, in a helical superconductor the Coopes gee in a spin-triplet state, i.e. spinful
owing to the TRS, and its edge states resemble those of tmguqnapin Hall state [73].

The archetypal example of a topological superconductcaking (satisfying) the TRS in two
dimensions is the chiral (helicgh)-wave model of superconductivity. Inyjgawave superconductor
the orbital part of the superconducting gap) (has odd parity, i.e. the Cooper pairs have angular
momentum/ = 1 since the parity P) is defined by:P = (—1)". Moreover, the spin part of the
gap is either spin polarized for the chiral case or spinfuhva triplet state for the helical case.
Microscopic and phenomenological models of chiralvave superconductivity in two dimensions
(2D) have reported intriguing states comprising (i) theeesligites arising from the topological nature
of the model [77], (ii) chiral domain walls separating reggovith different chiralities [76], and (iii)
coreless vortices (skyrmions) with topology and electgroperties distinctly different from that
of conventional Abrikosov vortices [123-125]. Howeverspige the numerous works revealing the
vast novel physics behind chiratwave superconductivity, none of the three previously noeed
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hallmarks have been confirmed experimentally in strontiuthenate (SRO) [59-62], the leading
candidate to display chiral-wave superconductivity [101].

Strontium ruthenate, JRuQ,, is a layered perovskite with a Fermi surface containingehr
sheets [57,96]. Among them two are one-dimensionarfd 5) and arising from the d and d,.
orbitals of Ru, whereas the remaining one is two-dimendioyjaand arising from the g orbitals
of Ru. Chiralp-wave superconducting order was suggested to emerge i Itlaed of SRO as a
consequence of strong Hund’s rule coupling [48]. The ewdsrofp -wave order in SRO to date
comprise (i) the detection of spontaneous fields in muon sggBonance;(SR) experiments [52],
(if) the enhancement and suppression of the Josephsaratatirrent depending on the direction of
the junction plane [49, 126], and (iii) the observation otae breaking the TRS in the polar Kerr
effect (PKE) [53]. However, measurements of the spin suguéfy below the critical temperature
(T.) for magnetic fields applied either parallel or perpendidylto thec axis could not demonstrate
that the spins remained in the basal plane independenthedfitection of the field [47,100], as one
expects in chirap -wave superconductivity. Then, the debate about whetheobERO is a chiral
superconductor remains open, with an increasing numbeo{sasuggesting that superconducting
order also develops in and 5 bands and that those play an essential role in the physicpepies
of this material [55, 79-81].

In this chapter we employ the phenomenological Ginzbungelaa (GL) model to describe chiral
p -wave superconductors [94]. The set of coupled and nonldiffarential equations that we solve
numerically for the two component superconducting ordeameter, & = (¢, ,v_)%, and the
vector potentialA, depends on four phenomenological parameters, definectlshtdpe of the Fermi
surface of the material under consideration [77,102]. Wanthse the microscopic information
available for SRO to calculate the four phenomenologicahmpeters, and present striking results
useful to explain the elusive detection of chiral domainlsvéDWs). From our simulations we
present the ground-state phase diagram as a function aztharsd aspect ratio of the mesoscgpic
wave superconducting samples, in absence of any appliedetiadield. Among the stable phases,
we reveal the multichiral states with domain walls sepatathe regions with different chiralities,
as well as monochiral ones with spontaneous currents floalomnp the edges.

The chapter is organized as follows. Sec. 4.2 presents duedtical formalism and the discus-
sion of the gauge invariance in the GL equations. From thereevive the equations that describe
the considered system, namely mesoscopic rectanguladesmiphout an external magnetic field.
Sec. 4.3 then summons our findings, in a phase diagram of distates, showing the stability and
relationship between the superconducting configuratiamsposed of multiple chiral domains as
well as the monochiral states. Our findings and conclusioms@mmarized in Sec. 4.4.

4.2 Theoretical Formalism

Based on the point symmetry of the crystal structure undesideration, one can obtain the GL
functional, and subsequently by its minimization, the tidependent Ginzburg-Landau (TDGL)
equations, which describe the spatial distribution of tlagnetic inductiorB, and the superconduct-
ing order paramete¥. Within an analysis for unconventional superconductpdtyGL functional
with a state breaking the TRS and of thewave type has already been reported for a tetragonal
lattice [94]. Thus, the dimensionless GL functiond, = .Z'/.%,, where.%, = h*A3/2m¢&?, for
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chiral p -wave superconductors reads

7 = KH“ (Do + Dy [)
+ (k2+k3)Re{H+w_( _¢+)}
= %}\pf HT]\I:] (w6 w)?, (4.1)
whereé = \/7 is the superconducting coherence length, agd= , /-%- is the magnitude of

the degenerate zero-field solutian, = Ay(1, £i)/+/2, in the fieldsy, = (2/1_ +1_)/2 andy, =
(Yy—1_)/2i. In Eq. (4.1),k;, o, andT = 55/, with i = 1,2, 3, are parameters microscopically
derived depending on the Fermi surface of the material. R® Refs. [77] and [102] give detailed
calculation of these parameters assuming chiral supevobindy develops in the cylindrical band.

K = > k;, D is the covariant derivative, ard., = %(Dw + ¢D,) are creation and annihilation
operators of Landau levels, respectively. In dimensiaigsts where time is scaled to the GL time
to = £2/D, with D a diffusion phenomenological coefficient, distance to tbkeecence lengtl,
the magnetic field to the upper critical field.,, and the electrostatic potential §g = H.,£%/cty,
wherec is the speed of light, the TDGL equations become [119]

0 0F
(8t+w)\ll - - 4.2)
0A 0F 9
In Egs. (4.2) and (4.3B is the magnetic inductiory the electrostatic potentiat,the conductiv-
ity in units of D /aty, andk =\ /¢ the GL parameter, where= me®_ is the London penetration

8me2 A2
depth.
The gauge invariance of the TDGL equations allows one to lgiyrthem owing to the freedom
of the arbitrary functiory in the transformatiof®’, A", ¢') = (TeX, A + Vx, p — Z). Wheny
is properly chosen (gauge fixed), it provides a supplemgetguation for the transformed fields that
simplifies the form of the TDGL equations. In what follows wegent the gauge choice considered
in this chapter.

4.2.1 Zero-electrostatic potential gauge

The zero-electrostatic potential gauge is the most coemhoice for the TDGL equations when
neither charges nor external currents are considered sugerconducting sample [124]. From the
original fields(\If, A, <p) the arbitrary functiony is required to satisfy the equatit%ig = . This
choice renders vanishing the transformed electrostatenpal, o’ = 0, reducing considerably the
complexity of the TDGL equations for the transformed fields,

8_\11 (K—;—kl

D? + (ks [0, +1126] ) @

ot
1
+ (1— +T|\P|Qi \11\11>x11 (4.4)
a%—‘? = J - K’V x B, (4.5)

where for convenience we have dropped all the primessane- (¢, + i5,)/2 are pseudo-spin or
chiral operators acting on the space span/hy It is straightforward to show in Eq. (4.4) that by
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considering: (i) the stationary regime, i.@% = 0, and (ii) the proximity of the superconducting
to the normal phase, i.e. discarding the nonlinear ternesfitet GL equation transforms to the
eigenvalue problem{Z1D? + (ky+ ks) (126, +1126_)| ¥ = —W¥. The analytical solutions
to the latter equation have been obtained from Landau lea&s () satisfying the equations
[I1¢, x ¢,+1 [94,102,127]. Thus, in the linearized case for chiralvave superconductors the
order parameter is given by = (¢,,, ¢,,_»)”, wheren becomes the vorticity.
Finally, with {7, j} being canonical base vectors in Cartesian coordinatesdithensionless

superconducting density currehtgiven in units ofJ, = ;—’ZA%, reads

J = Im{KZkl (¢1D¢++wiD¢_) (4.6)

ko + ks

2V/2

(xp* [m@ n H,&,} Witil [ma—+ - H,a—,] \Ilj) }

4.2.2 Boundary conditions

Egs. (4.4) and (4.5) are solved in this chapter for mesosaegpiangular samples with an external
magnetic fieldH applied perpendicularly to the sample plane. The requimchbary conditions
that pose the problem well and that are compatible with tlist@xce of spontaneous edge currents
are: [77,94,124]

Y —1y_=0 } _
at north and south sides
Dy,l/}++Dy’l/}7 =0 e
Yy+9-=0 _
Dyths — Dyt =0 at east and west sides.

wheren is the unitary vector normal to the sample surface.

The equations (4.4) and (4.5) are numerically solved usmigfdifferences and the link variables
technique of Refs. ([119], [120]), with the correspondirmgibdary condition (4.7).

Before concluding this section, we give the reduced (henaesrmonvenient) expression for the
dimensionless free energy density, obtained by transfioomaf Eq. (4.1):

f 1/ 1+7, .4 7 . 9 90 2
EA—— dv{ o)t - L(0°6.9)? - 4B } 4.8
=y LU A IR (4.8)
The energetic considerations enable us to find not only twedbenergy (ground) states but also
other stable states with higher energies (metastablesktate

4.3 Ground-state phase diagram

In this section we solve the TDGL equations using the zeeotsdstatic potential gauge for rect-
angularw, x w, mesoscopic samples with sizes in the rafgs, 23¢]. We consider no external
magnetic field and obtain the superconducting ground statesrding to the following procedure.
(i) For taken size of the sample we numerically solve Eqs4)(dnd (4.5) with different initials
inputs, e.g. one domain wall (DW) at half-width of the sample

\Il:<(1]) 0 <x<0.5w,, \Il:<(1)) 0.5w, <z <w,.
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Figure 4.1: The phase diagram of the ground state of rectiargu-wave samples in absence of external

magnetic field. Five (1)-(V) different phases are clearlgtotiguished and exhibit distinct magnetic responses.
The phases are labeled according to the number of domairswaly contain, e.g. phases | and Il have one
and two domain walls, respectively. State V is an exceptdhe previous rule being free of domain walls

(the monochiral state).

Other initial inputs in the set have two, three and four DW&rihuted in the sample either horizon-
tally or vertically. Moreover, initial inputs without DWg@considered as well, such ds= (1,0)7
and® = (0, 1)” throughout the sample. (ii) After the numerical simulagioising different initial in-
puts, we compare the energies of all found solutions, usqng48), and identify the lowest-energy
solution. (iii) The process is repeated for all the sampli¢s sizes in the range:,,, w,, € [3.5¢, 23¢].

Fig. 4.1 shows the phase diagram of the ground state at ze&zmakmagnetic field for meso-
scopic rectangular samples of different sizes. For the @inemological parameters, microscopic
calculations have demonstrated that= k, = k3 = 1/3 andT = 1/2, for chiral superconductivity
developing in a cylindrical Fermi surface [77,102]. The e#ning two parameters:(ando) are
taken1.25 and1, respectively. The value of was chosen to weakly deviate from the in-plane bulk
GL parameter,;) of SRO [57,96], in order to compare our results with pregigueported works
based on the BCS model for chiratwave superconductivity [77]. The value efwas set to one
as typically used [119]. This choice has weak implicationslee stationary solution of the Eqgs. 4.4
and 4.5, as it predominantly influences the dynamical redgiynéetermining the distribution of the
electrostatic potential in the presence of applied curr@hie diagram shows five different phases
denoted by Roman numerals clearly distinguished accotditigeir magnetization, and labeled ac-
cording to the number of domains walls that they containgtteeption being phase V which is free
of DWs.

Fig. 4.2 shows a superconducting state belonging to theephafsthe diagram of Fig. 4.1, i.e.
a state with one domain wall as seen in the contour plofgof’. Note that the two-component
order paramete¥ can also be expressed in terms of its Cartesian compotier@sd, (asy, =
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Figure 4.2: Contour plots of the superconducting densitymponents|y.|?, the phase difference
cos (A, — 0,), and the magnetic inductiofs, of a ground state with one domain wakl,, , are the angu-
lar phases ofy, ,, wherevy, = (Y +1_)/2 andv, = (¥4 —1_)/2i. The spatial distribution of the
superconducting current densiyis superimposed on the contour plotcok (6, — 6,,).

Yeiv- andq, = “-¥=), whose phase§, andf, can be employed for better identification of
topological defects in-wave superconductors (see Ref. [124]). The quamwtity6, — 6,), from
now on simply called the phase difference, convenientlycautgs the exact position of the DWs
(the interface separating the regions where the chiraitjominated by, in one side and by _

in the other side). The spatial distribution of the supedumting current density [see Eq. (5.7)]

is also plotted in Fig. 4.2. It is superimposed on the confat of the phase difference, and it
shows (i) the currents of the DW flowing from the south to themagide, and (ii) the spontaneous
currents of the edge states flowing clockwise and countekalise on the west and east sides of
the sample, respectively. Consequently, the contour gltited magnetic inductiorB, shows (i)
the typical dipole profile expected from a DW at the samplder@and (ii) the magnetic induction
arising from the spontaneous currents on the left and riglesq76, 77, 124]. It is noteworthy that
by slightly increasing the ratio between the sample heighj énd width (v,), one can shift the
vertical position of the DW. This fact leads us to the discus®f the following states.

Changing the aspect ratio= w, /w, away from one, the phase Il becomes the ground state.
We show in Fig. 4.3 one of the ground states belonging to thase. It exhibits in the contour
plots of |¢.|? and cos (6, — 6,) two horizontal DWs located close to the north and south sides
of the sample. However, the contour plot of the magnetic @tida, which is expected to show
characteristic dipole-like profiles at each DW, does nowshay clear signature of DWs. This is
caused by (i) the vorticity of this state (=0 andv_ = —2) and (ii) the shape of the superconducting
sample (rectangular), which causes the two DWs to resideedimthe north and south sides of the
sample. As a consequence the current on one side of the DVdatggannihilates) with the edge
current, which diminishes the magnetic response on thatzsid the characteristic dipolar signature
is lost.

When making the aspect ratiaof the sample more acute, one obtains as the ground stage thre
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Figure 4.3: Same quantities as in Fig. 4.2 but for a groundestaith two domain walls. The two pairs of

boxes with different colors are displayed in the figure inawrth highlight the regions where the shape of the
sample strongly affects the order parameter componentdazaks the mirror symmetry of the domain wall.
Consequently, only one quasi-circular clockwise strearounfent is preserved in the vicinity of the domain
walls while the anticlockwise current on the other side efwhall (c.f. Fig. 4.2) is annihilated by the currents

stemming from the sample edges.
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Figure 4.4: Same quantities as in Fig. 4.2 but for a state wftitee domain walls. A pair of boxes are

displayed in the figure in order to highlight the local symmexisting between the componeriig, | and

4|2, related to the current distribution in the vicinity of themain walls.



72 MULTICHIRAL GROUND STATES IN MESOSCOPIQr-WAVE SUPERCONDUCTORS

[ cos(8,—0,) B./He
@ oo 0.7

-1 0 1 -0.05-0.02 0.01
|

==
;7 3
A
3
bR
3
:
7
;
v
R 4/
i
1A
o vy
i

|

-y

ey

jeddddesTiw
e rraaag.

15

y/€
=
o

T

1

Il L L
0 4 0 2 40 2 4 0 2 4

T T T T T T T T

()12 (e =29)" i

"o 0.8 .

=

0.4 ,
[ (z =26)|
0.0 1 1 1

0 5 15 20

10
y/€
Figure 4.5: Row (a) shows the same quantities as in Fig. 4tZdma state with four domain walls. Row (b)
shows the line profiles of the superconducting density coegs|i.|? along the line defined by = 2¢.

DWs, i.e. phase lll. In Fig. 4.4 we show a state belonging ie pinase. Again, the contour plot

of the magnetic induction confirms that top and bottom DWs alcshow their characteristic dipole

profiles, whereas the central DW does. The dipole profile ercémtral DW is maintained because of
its weak interaction with the edge currents, so that thel gametry between the two components
|44 |? and|+_|? is maintained (see the regions enclosed by boxes in Fig. 4.4)

In the ground-state phase diagram of Fig. 4.1, the phasaicamg four DWs is obtained only for
extreme aspect ratios of the samplex 5). One state belonging to this phase is shown in Fig. 4.5 for
a narrow sample withv, =4¢. According to the contour plot of the phase difference, the DWs
appear almost equidistantly distributed along the santptavever, the typical magnetic responses
for the DWs expected in the contour plot of the magnetic itidncare absent. The reason for this
behavior is the imbalance between the superconducting coemts+/, |* and|+_ |?, which one can
clearly see in the line profiles along= 2£, shown in panel (b). Namely, the strong confinement
in x direction has stronger influence a@n than_, which affects the balance between the two
components required for the formation of the DW currents@msequently diminishes the dipolar
profile of the DW in the magnetic induction.

Finally, in what follows we discuss the phase that is free Bfd)i.e. the phase V. It is the most
present phase in the diagram of Fig. 4.1, as it spans sangpigsg from size), x w,)=(7{x7¢) up
to (23£x23¢). Based on the transformation of dimensionless units faurgts (using the temperature
dependence of the coherence length- £(0)/1/1 — T'/T., choosing¢(0) to fit SRO andl’ =
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Figure 4.6: (a) Magnetic induction of a square sample withndnsionsZ2¢ x 22£) at zero external magnetic
field. The spontaneous currents flowing clockwise give ddbd negative values @.. (b) Line profiles of
the magnetic induction of different square samples aloegctntral cut through the sample.

0.95T,), the ground state of a-wave superconducting sample with siX& x 20¢ (approximately
6pmx 6pm) will be free of DWs in the ground state. However, this doesmean that the magnetic
response of the ground states belonging to the phase V igiidgl On the contrary, the contour plot
of the magnetic induction in Fig. 5.5(a) shows a significaagnmetic response of this monochiral
state, with spontaneous currents flowing along the edges.characteristic scale for the magnetic
response of the spontaneous current$ is 1.6875¢, slightly different from the natural scale for
the magnetic inductionn = 1.25¢, presumably due to weak confinement effects. Then, in order
to describe further the effects of confinement on the grotatt $sn phase V, panel (b) shows line
profiles of the magnetic induction of square samples withssiag, 13, 16£, 19¢, and22¢. Here
one can notice that owing to the confinement, the left and eglge currents interact strongly in
the square samples smaller thEt x 19¢, i.e. in the central region of the sample the value of
the magnetic induction becomes notably nonzero belowicestanple size, due to the overlap and
interaction of spontaneous currents stemming from oppesiges of the sample.

4.3.1 Influence of the parameters on the ground-state phaseafjram

The phase diagram shown in Fig. 4.1 was obtained for the phenological parameters adjusted to
represent a chiral-wave superconductor with a cylindrical Fermi surface gpreably SRO falls in
this category). However, the fact that the spontaneougitgin SRO have remained elusive so far,
guestions the emergence of chiral order in this materialgé a&fforts have been made to reconcile
the experiments with theory, including works analyzing #fiect of disorder on the spontaneous
currents [82, 84], as well as the possibility of chiral nemave order in SRO [83].

Recent works have also considered that superconductamitylevelop in the other two bands of
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Figure 4.7: Diagram of ground states for different valuedhef phenomenological parametetsand . The
color scales indicate the corresponding magnetizationhef ground states. The panels enclose a region
containing the phases I, I, and V, and demonstrate the infee¢hat the parameters have on these phases.

SRO @ andf) [55, 79-81]. Surprisingly, in this scenario of multi-basdperconductivity one of
the predictions is that the spontaneous currents are $yrengpressed owing to the existence of the
« and g bands. Quantitatively, the suppression is due to a coraitkereduction of thé, andk;
parameters [81] (see in Eg. 5.7 that the term that suppatshinal currents is multiplied by the sum
of k, andks). The effect of such changed valuesigfi.e. k; # 1/3, on the superconducting states
of mesoscopic samples has already been discussed elsdgd®@r&24]. However, little is known
about the robustness of multichiral states against thetvamni of parameters andr. In Fig. 4.7
we focus on one part of the phase diagram to illustrate thednfle that these parameters have on
the transitions between states I, I, and V, and then dravemgeionclusions. As a first important
finding, one can see in the sequence of Fig. 4.7(a) that theegtaving the multichiral state of Fig.
4.2 expands as is increased, i.e. the magnetic response of the samplefavdied. The expansion
of phase | occurs at the expense of phases Il and V, since dwanie less favorable owing to their
nonzero magnetization.

To understand the influence of the parameten the phases |, Il, and V, before looking at the
actual results, one can analyze the condensation energy.odEL) (the last three terms), to have
an insight into the expected behavior. The minima®f.q = —%}\II}QJF%T}\II}ZL— (U5, W)?
are the degenerate states¢(| = v/2, v— = 0) and ¢, = 0, |[¢_| = Vv2). These states are
separated by a barrier which is proportionatt@®ne can obtain the shape of this barrier by replacing
94| = V2cos®, and|i)_| = v/2sin @, so the condensation energy expression becdifigsy =
-1 — Z cos? (26)]. One should notice that the barrier disappears when0, leading to the removal
of the degeneracy of the ground state. That means that ongdshot expect the formation of
domain walls ifr is close to zero. However, in the sequence of Fig. 4.7(b) ees that phase | is
the most dominant one at= 0.1. The reason of this seemingly counterintuitive result & the last
term of Z...q IS NOt the only one that breaks TRS. In fact, the second tertekinetic energy of
Eq. (4.1) also breaks TRS and in this case is the term thatfakie multichiral over the monochiral
states.

From Fig. 4.7(b) one can also deduce that the effect on phatatreasingr is the opposite
of increasingx. As 7 is increased, phases | and Il give way to the expansion ofgp¥iathis effect
can be attributed to the increase of the barrier separdtiegiégenerate ground states. When the
barrier is high such that the spatial fluctuations (real ayincase numerical) can not overcome it,
combination of degenerate states becomes energeticddyarable, leading the system to prefer
the monochiral state of phase V.
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4.4 Conclusions

In summary, we have employed the time-dependent Ginzbargthu equations to study in detail
chiral p -wave superconductivity in mesoscopic rectangular sasnméh a goal to stabilize mono
and multichiral states in the absence of any magnetic fielelh®e reported the ground-state phase
diagram of rectangular mesoscopic samples with sizesmgrigpm 3.5¢ to 23, where¢ is the su-
perconducting coherence length, and classified the stetesdang to the number of chiral domain
walls they contain. The monochiral state has no domain walls contains spontaneous currents
flowing along the edges. We also noticed that the multiclpihalses are made stable owing to the
strong confinement, but that same confinement can overshtwowypical dipole-like magnetic
field profile of the domain walls. Nevertheless, the imagihthe reported spatial profile of stray
magnetic field of the multichiral states can serve as a chderce of the time-reversal symmetry
breaking in topological superconductors.

Publication The results of this chapter were published in:

e V. FernandeBecerra and M. V. MiloSevidvultichiral ground states in mesoscopiewave
superconductorsPhys. Rev. B4, 184517 (2016) (10 pages).







Vortical versus skyrmionic states in mesoscopic
p-wave superconductors

In this chapter, we reveal the properties of the supercohdgatates that arise as a consequence of
mesoscopic confinement and a multi-component order paearimgihe Ginzburg-Landau model for
p-wave superconductivity. Conventional vortices, but &lalh-quantum vortices and skyrmions are
found as the applied magnetic field and the anisotropy patars®f the Fermi surface are varied.
The solutions are well differentiated by a topological amthat for skyrmions is given by the Hopf
invariant and for vortices by the circulation of the supandoicting velocity. We show several unique
states combining vortices and skyrmions, their possildeméguration with varied magnetic field,
as well as the novel temporal and field-induced transitiogtsvieen vortical and skyrmionic states.

5.1 Introduction

Strontium ruthenate, SRuQy, is according to theoretical predictions the best canditiaidate to
hostp -wave superconductivity. Generally speaking, the ordeampater in superconductors de-
scribes the spatial profile of the gap functidx,; (k). The order parameter jm-wave superconduc-
tivity is an odd function of the wave vectér unlike the s-wave superconductors where it is an even
function ofk [101]. Following the notation of Balian and Werthamer, thevave order parameter
reads [48, 94]

A —d, (k) + id,(k) d.(k)

AE=1 T am dw ridk) | 1)

or in a short notatio’ (k) = i (d(k) - &) o,, whered(k) transforms as a vector under rotations and
o; are Pauli matrices. Microscopic calculation of the supedcting gap is a highly demanding
task that requires a detailed knowledge of the pairing n@shawhich in many cases is not avail-
able. What remains then is to exploit all the symmetries fjooous and discrete) exhibited by the
material under consideration and build a model that willefepon certain number of parameters.
The possible superconducting order parameters that haverbported fop -wave superconductors
required a detailed description of the crystal structuréhefconsidered material [48, 94]. In that
respect, strontium ruthenate (SRO) is a layered perovskilea crystal structure similar to the well
known high-T. superconductor (La,SiFuO,, where oxygen ions at the corners of an octahedron
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surround the body-centered Ru ion [57,101]. The planartageRuQ are separated by Sr layers
that stack along the highly symmetric axis The Fermi surface of strontium ruthenate contains
three sheets arising from the binding of the Ru and O ionsiwitie same layer [128]. Bindings
between the RuPlayers are weak due to the long separation of the interplRn&¥ octahedra.
The Fermi sheets and g are both one dimensional (1D), while thesheet is two dimensional
(2D). A rigorous analysis found that among the five irredleitepresentations for vectdr(k) in
the lattice point grou@y, there are four 1Dd = k,x + k,§ andd = k,x £ k,y, and one 2D,

d = (k, £ ik,)z [48,94]. These 1D and 2D representations, namely helicélchiral, are the
electronic analogues of the B and A phases of the superftiéd[48], respectively. Knight shift
measurements were not able to discern the chiral from theghebntributions, since they detected
constant spin susceptibility() for external field either within the RuQplane or perpendicular to
it [47,100]. On the other hand, muon-spin relaxatip®R) and the optical Kerr effect experiments
have detected spontaneous magnetic fields [52, 53], onbkilgesn the chiral phase that breaks the
time-reversal symmetry (TRS) [76].

To confirm or discard SRO as a chiral superconductor, magrestponse experiments have been
carried out on single crystals, but have failed to conviglyirdetect the spontaneous currents pre-
dicted to exist in chiral domain walls and close to sampleesd§9-62]. In these works, numerical
simulations of evenly distributed chiral domains estirdaeminimal domain wall length of Zm
~ 30& (where&, is the zero-temperature coherence length of SRO) to betdbtedn scanning
SQUID setup. Such domains are energetically costly in a $ygkem, but are likely to stabilize in a
mesoscopic sample of comparable size.

Therefore, to provide further insights in chiral physicgefvave superconductors, in this work
we employ the chirap-wave GL model [77,94, 102, 129], to report distinct mespsceffects of
chirality in the superconducting state and related expamtiad observables, which in turn can serve
to discriminate chiral from helical contributions in supenductors like SRO. We report the stabi-
lization of various topological entities, full vortex (Fvhalf-quantum vortex (HQV) and skyrmion
states. Skyrmion states, carrying topological charge défby the Hopf invariant [123, 130, 131],
are one of the distinct hallmarks of chiral supercondutgtiand can be stable in bujk-wave su-
perconductors. It is well known in conventional s-wave sapeductivity that confinement can sta-
bilize superconducting configurations which in bulk systeame energetically unfavorable or even
unattainable, e.g. non-Abrikosov vortex lattices, or i@s with phase winding = 27n, with
n > 1 (giant vortices) [39—-41, 132]. In mesoscopic spin-trigaeperconductors HQVs have been
predicted to exist, owing the reduction of their otherwiseetyent energy to the low dimension-
ality of the system [133]. They carry unscreened spin cusrand half the vorticity of a full vor-
tex [133,134]. Despite of the fact that in the chiral phassoead is locked to the: axis [94,129], we
found analogous HQVs defined by: (i) the—phase winding of one of the chiral superconducting
components, and (ii) the anisotropic screening that catlre#sattraction to the edges of the meso-
scopic sample. We present the found HQV states in multipi@$o but also FV and skyrmionic
states and transitions between them as a function of thenaxt@magnetic field applied perpendic-
ularly to the sample. We employed the time-dependent tiieatéormalism, which allowed us to
observe novel temporal transitions as well, related to lpacentry and arrangement of HQVs and
their temporal transformations into other topologies. H@Vs that were found to reside at the
sample edges are the realization of the quasi-1D periothy @f domains discussed in Ref. [61].

The chapteris organized as follows. Sec. 5.2 presentseloedtical formalism and our analytical
analysis of the first GL equation and the superconductinggatir The boundary conditions imposed
on our equations are derived from the latter expression. %8dhen summarizes our findings for
the superconducting configurations composed of HQV, FV &ydhson states, obtained at weak
coupling and considering a cylindrical Fermi surface. Thamsitions between states of interest as
a function of the magnetic field are discussed in Sec. 5.4lewthe temporal transformations are
shown in Sec. 5.5. The effect of anisotropy on the topoldgieatical and skyrmionic entities is
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analyzed in Sec. 5.6. Our findings and conclusions are suinadan Sec. 7.5.

5.2 Theoretical Formalism

After the above brief general description of strontium eutate, in what follows we show the
Ginzburg-Landau (GL) equations that the order paramaet- (v, v,)" must satisfy. The or-
der parameter has two components (is chiral) as a consegoétite 2 dimensional representation
(T'Y) of the tetragonal group,, [94]. The expansion of the GL free energy density up to fourth
order iny, ,, that fulfills the group symmetries, reads

F = K (IDoby|* +|Dyhy|?) + k1 (|Datdy|? + | Dyifa]?)
+ 2Re{kaD,ta(D,)" + ks Dst (Dyhs)* } o | B
B By — Ut + el (5.2)

whereaq, k; andj;, with i = 1,2, 3, are parameters that depend on the details of the Fermcsurfa
of the material under consideratiokl = ). k;, and D, , denote the components of the covariant
derivative. The time-dependent Ginzburg-Landau (TDGL)atmpns, used in our numerical ap-
proach [120], are the set of coupled differential equatiomnshe superconducting order parameter,
¥, and the vector potentia\, [119]

h? 0 e 0F
s T h )Y = e (-3)
o/10A 0OF 1
(G 1) = AV XE (5-4)

wherey is the scalar electric potentidB is the magnetic inductiony, is the effective masd) is
the phenomenological diffusion coefficient, amdhe electrical conductivity. For convenience we
seth = 1 andms = 1/2. The second GL equation [Eq. (5.4)] is discarded in this wsinke the
diamagnetic effects of superconductors are vanishingblidor a thin (effectively 2D) mesoscopic
geometry. We use the symmetric gauge for the vector poteatia- (r x H)/2, with the magnetic
field (H) directed alongz. The scalar electric potential is set to zero since neitharges nor
external currents are considered in this work. In dimers&munits, where distance is scaled to

the coherence lengtly, = \/g time tot, = %, magnetic field to the upper bulk critical field

Ho = W and the superconducting order parameteAto = TR the first TDGL equation
becomes
(9_‘1’ _ [ K-2H~c1D2 + sz—iks [Dm,Dy] (ko + k3) Ha_ } < Uy )
ot (ky + k3) 12 Ehp? _kels(p D) U
1
+ lIl(l - +T|\I:|2 Q\D*&Z\Ir> , (5.5)

wherell, = %(Dm +1D,), Yy = ¢, £ip,, 3 = 0[103], andr = (/5. A straightforward
calculation reveals the following important resul},, D,|] = ¢H, which leads the operatoi$,

to satisfy the commutator{Il, ,II_] = H. The external magnetic field, being constant, can be
factored out from the above commutators, leadinglto, IT_| = 1, which defines the algebra behind
the Landau IeveIsHi = Hi/\/_ This algebra is defined through the following commutators:
[N,II,] = —II,, [N,II_] = II_; where N = II,II_ is the particle number operator. Within the
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weak-coupling limit and considering a cylindrical Fermrfsge ¢ sheet), all thé:; parameters are
equal to(v2vy)/(vy) = 1/3, where bracket$) denote averaging over the Fermi surface [103], and
T = 1/2. For this case the first GL equation reads

+
4 4

TP U6
3| ik ) (5.6)

2
o =3 D?+ 126, + 125 |0+ (1 -

wheres, = (6, + i6,)/2, are pseudospin or chiral operators acting on the spacelspan .
Ignoring the nonlinear terms (linearized case), it is gtrid#brward to show that the superconducting
order parameter must be of the forf:= (¢, ¢n_2)7, Wheregy is the state corresponding to the
Landau levelV [77,102,103,127,129, 135, 136]. Within the supercondigdibrmalism the number
N turns out to be the vorticity of the order parameter. Therm concludes that for chiral-wave
superconductors there is a vorticity difference two betwide components of the superconducting
order parameter. The full GL equations, i.e. the lineariggdation plus the nonlinear terms, are
a complicated set of partial differential equations witktrieted analytical solutions [103, 127].
Therefore, in this work we solve this problem numericallyelo the mesoscopic dimension of the
sample under consideration, proper boundary conditiorst tbelincorporated in the GL equations
in order to pose the problem well. In what follows, the supaducting current is calculated for the
general case, which includes the specific case whekgsalire equal to 1/3, and from this expression
the boundary conditions for the first GL equation are derividte superconducting current density,
defined as the negative functional derivative of the GL freergy density with respect to the vector
potential, for chirap -wave superconductors is

J = Im{ KI’“ (wi;Dm + ¢iD¢_) + k';j;;?’ <\If [H+&+ + H_&_} Wi
ks — ks

o [ma—+ — H,é',] \Ilj>} _ Re{kx (43D, — " D) } (5.7)
wherei, j form the canonical base in Cartesian coordinates. The sgtevhtors €. ands.) act on
¥, while S, acts on{i, 7}. The superconducting current contains mainly three doutions defined
by the following factors(K + ki) /4, (ks + ks) /2v/2, and(ky — k3) /4. The first one arises from the
conventional ternD? in Eq. (5.5), the second one (we name chiral) is due to thenatelegree of
freedom (chirality) that appears in Eq. (5.5) in the formwbthondiagonal terms. Finally, the third
contribution arises from the diagonal terms[D,., D,]) in Eg. (5.5), and accounts for the chiral
polarization introduced by the orbital Zeeman interactifithin the weak coupling limit, andks
are equal [102,127, 135, 136], but if the the density of st&t§0)) weakly depends on the energy
derivative (N’(0)) at the Fermi surfacek, and k3 slightly differ [77]. The boundary conditions
imposed on Eq. (5.5) for our square mesoscopic sample aga gs.

Yy = =0 } ;
at north and south sides
Dytps + Dytp— =0 F
Y+ =0 :
Dot — Doth_ =0 at east and west sides. (5.8)

It is straightforward to show that the boundary conditioh&q. (7.5) set the perpendicular current
at the edges to zero, i.e. they impose specular reflectiomeirchiralp -wave superconductor [77,
94,135, 136]. It is important to remark also that they areapaater-independent, so they provide
the proper boundary conditions for Eq. (5.6) but also forrtiast general case of Eq. (5.5). With
Eqg. (7.5) we have completed the set of equations neededddsthdescription of a chirgh -wave
mesoscopic superconductor. Eq. (5.5) is numerically sbiw@ng finite differences and the link
variables technique of Ref. [119] on a square lattice witlsimgridh, = h, = 0.1. On the other
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hand, the temporal derivative is discretized using the Rufgtta method of first order. Before

concluding this section, we give the reduced expressioth®dimensionless free energy, since it
allows us to find not only the lowest energy (ground) statdsalso the stable states with slightly
higher energies (metastable states) The free energy reads:

F

= = %/dv{(l + )|+ (96w (5:9)

whereF;, = A% /¢? is the bulk free energy at zero field.

5.3 Isotropic Case (Cylindrical Fermi surface)

The results obtained using Eq. (5.6) for a square® sample are summarized in Fig. 5.1, showing
the dimensionless free energy and the vorticity of vedtoas a function of the external magnetic
field H. Panels (b) and (c) show the vorticity of the ground statesunfsuperconducting sample,
labeleda-j in Fig. 5.1 (a), where/, _, is the vorticity of component), _y. Note that both/
andv_ remain constant along the stability curves of each statamep(a), and as such are good
identification numbers for these states. Contour plots 0 F5.2 show the order parameté
corresponding to the ground stai@s d. While the left and central columns of Fig. 5.2 show
contour plots of the superconducting density of each corapbhy, |? and|y_|?, respectively, the
third column shows the difference between the angular ghaisthe components, .6, — 6_.

The ground stata of Fig. 5.2 shows one anisotropic vortex in each componemst,vorticity
v, = —1in component), andv_ = 1 in component)_. The contour plots of the ground stdtén
Fig. 5.2, show the vortex free state in componentand the giant vortex [39—-41,132] with vorticity
v_ = 2in component)_. The subsequent ground statbas vorticityr, = 2 andv_ = 4, where
|v»_|? contains four vortices close to the corners, meanwhilg? shows a pronounced depletion
around the center of the sample. The corresponding phdseatiite figure reveals that the depletion
in component), is a consequence of two vortices and two vortex-antivorégsspgthere. The ground
stated has six vortices if)_|? in full agreement with the vorticity reported in Figs. 5.) émd (c)
(v, = 4 andv_ = 6). However, the density, |? fails to convincingly show any signature of a
vortex. The vorticityr, = 4 of component), is visible in the phase difference figure 2 (d), where
10 discontinuities are found along the edges as a consegjoésix vortices from)_ and four from
1. Four vortex-antivortex pairs at the center of the sampeadso visible in this contour plot, but
do not affect the total vorticity.

From the comparison between Figs. 5.2 (c) and (d) one seésvitimincreasing the mag-
netic field the component_ dominates its partner component. The dominance of_ overy,,
especially at high fields impedes the proper descriptioh@¥brtex configuration in the latter com-
ponent. In order to describe the components of the ordemnpetea on an equal footing, a more
suitable representation is in termsf and,. Fig. 5.3 show contour plots df/,|?, |¢,]* and
cos(f, — 6,) for ground states - j of Fig. 5.1. Fig. 5.3 (a) showsos(d, — 6,) for ground state
a (from now on called the phase difference figure), and reveditsear domain wall. Its extension
across the sample coincides with the stripe where depsjvanishes. On the other hand, the part-
ner component),, is free of vortices. Ground statbsndc look similar in both densities, although
from the comparison between their phase difference figur&sg. 5.3 (b) and (c) respectively, we
see four domain walls in stateand none in state. The domain walls (DWs) of ground state
define a path where the difference between the angular pbhsemponents), and, are0 or ,

i.e. 0, — 6, = 0, 7. Ground state shows two vortices in density’,|* and none iy, |, while its
corresponding phase difference figure shows the four domalis of ground state plus two other
alternating domain walls that weakly connect the formersoiféne contour plots of Fig. 5.3 (e), for




82 VORTICAL VERSUS SKYRMIONIC STATES IN MESOSCOPI@®-WAVE SUPERCONDUCTORS

-0.08F T T T

-0.12

FIF,

-0.24 e
-0.28 .4 D

-0.32F -] 1 | | |

Do To
| ——TQ —*

PO OT O

®

...................

| | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4
H/H,

Figure 5.1: (a) Free energy in units of the bulk condensagmergy at zero fieldH,) as a function of the
external magnetic field in units of the bulk upper criticaldiéH .,), for a square mesoscopic sample of size
8¢x8¢. Letter labels denote different found ground states. Somtagstable states (not labeled) are also
shown in this figure. Vorticity of components and_ of the ground states of panel (a) are shown in (b)
and (c) respectively. The difference in vorticity. ( v_ =2) between the components is in perfect agreement
with the analytically predicted solutio® = (¢x, on_2)7.

statee show clearly two vortices in each component. They look itigiishable just from the anal-
ysis of their densities, but their phase difference figuveats that there are two vortices, one in each
component, that combine to produce a different signatune fthe remaining vortices. While the
uncorrelated vortices lead to the formation of the altengatiomain walls towards sample edges,
the pair of correlated vortices align their cores and do hotwsany domain wall between them.
The alternating domain wall is therefore the signature oélh quantum vortex (HQV) defined by
the 2r—phase winding of one of its superconducting componentpiirast to the other signature
without domain wall that corresponds to the full vortex (FV)

The remaining ground statés j of Fig. 5.1 are shown in the right column of Fig. 5.3. Both
densities in ground stateclearly show two vortices in each component, which are iddeer HQVs
according to the corresponding phase difference figure u@tstateg andh show one common
feature, having different number of vortices per componbuat all of them aligned vertically in
componenty), and horizontally in component,. On the other hand, the corresponding phase
difference figures for statggandh show that: (i) two vortices, one per component, combine tmfo
one FV in stateg, and (ii) four vortices, two per each component, combineotanfone skyrmion
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Figure 5.2: Ground statea - dof Fig. 5.1. Left and central columns show the contour pldtHhe supercon-
ducting densities componerijtg, | and |¢)_|?, respectively. Right column shows the difference between t
angular phases of the components, tle.— 6_.

in stateh. The signature of the skyrmion is shown here for the first tifoer alternating domain
walls which are connected into a circular structure [13B]13he skyrmion state here of course
differs from those of magnetic materials due in physics dredformation mechanism [131, 139,
140]. Nevertheless, their topological properties remanilar, as will be presented later. The phase
difference figure of the ground statehows four DWs around the corners, four HQVs close to the
edges and three FVs in the center. What draws attentiontimrat contour plots of Fig. 5.3 (i) is that
there are five vortices in each component (fractional veslicand among them three align their cores
to form FVs according to the corresponding phase differéigcee. The triangular array formed by
them resembles the consequences of vortex-vortex reputsamnventional type 1l superconductors.
Therefore, this supports our initial premise that the FVunanalysis is the usual Abrikosov vortex
of conventional superconductivity. Finally, the phasdeddnce figure of the ground stgtshows
four DWs, six HQVs and two FVs. One systematic comparisorhefghase difference figure of
ground states - j clearly shows that HQV and FV are indeed very different staté/hile FVs
are formed in the sample center, being favored by confingnadinthe HQVs remain close to the
sample edges. In order to explain this difference the falgwsubsection discusses the calculated
superconducting currents in the sample.

So far, DWs, HQVs, FVs and skyrmions have been distinguishdtlis work according to
their signatures in the phase difference plots. The supedrteding current, the physical quantity
intertwined with the magnetic field, also allows us to idBnthore characteristic features of the
novel topological solutions. Figs. 5.4 (a)-(d) show theesaprrents around one DW, HQV, FV and
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Figure 5.3: Ground states - j of Fig. 5.1, plotted correspondingly in panels (a) - (j). tahd central
columns show the contour plots of the superconducting tlessiomponent&),.|* and |¢, |2, respectively.
Right column showsos (6, — 6,), whered,, , are the angular phases of componentsand1),.

skyrmion, respectively. Fig. 5.4 (a) zooms in the supeents around the right-top DW of Fig.
5.3(c). One can see two streams flowing in opposite sensks apper right and lower left corners,
respectively. The DW currents arise when these superctinduzurrents with opposite chiralities
meet. In order to understand better the origin of the DW cus;eFig. 5.5(a) shows the line profiles
of the corresponding superconducting densities|> along the diagonal line defined by = z.
Light (green) arrows point towards the already seen vortegs of component_ in Fig. 5.2(c).
Dark (blue) arrows indicate the center of two DWs defined leyitliersection where the densities
|4_|? and |y, |? become equal. Wher¢, = 0, in the center of the sample, the other component
() is non-zero and contributes to the chiral superconductirgent. On the other hand, where
w_ =0, ¢, is non-zero and its current represents the chiral currewiritp close to the corners of
the sample.

The magnetic induction that corresponds to the DW supezntsrof Fig. 5.4(a) is shown in
panel (a) of Fig. 5.6. Itis calculated using the Maxwell g

2V x B =1, (5.10)

wherei? = x%/d, with x = 2.3 being the GL parameter reported for SRO alongab@lane [57],
and d being the sample thickness which we suitably choose ta@¢beThe contour plot of Fig.
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Figure 5.4: Superconducting currents around: (a) the uppeht DW of Fig. 5.3(c), (b) the upper HQV of
Fig. 5.3(d), (c) the FV of Fig. 5.3(g), and (d) the skyrmiorFa. 5.3(h).

5.6(a) shows that the magnetic induction correspondiniga®\V is weak and strongly screened by
the Meissner effect. This fact represents an obstacle @détection of DWs signatures in direct
measurements of their magnetic response such as in mafpreganicroscopy (MFM) or scanning
Hall probe microscopy (SHPM).

Fig. 5.4(b) zooms in the supercurrents around the upper HOM@ 5.3(d). It shows two
adjacent counter-flowing streams with the bottom one flowingkwise and belonging to the HQV
supercurrents, while the top one flows counter-clockwigkrapresents the screening currents. The
Meissner effect for the HQV is anisotropic due to the boupdamnditions of Eq. (7.5). From
the supercurrent equation (5.7), and the local approxonatj ~ 0, or« ~ 1_, drawn from Fig.
5.3(d), one easily obtaingd: ~ Im{v* D1, i+ §w+Dy¢+j}. After straightforward calculations and
replacing the covariant derivative once again one obtdins:|y |*[(9,0 7+ $0,07) + A (singpi—

5 cos ¢j)], which draws attention since the screening currents areidgfelliptical equipotential
lines. Thus, the anisotropic screening of the supercondtmivards the HQVs causes them to move
along the easy-screening direction which in this case isgajo The contour plot of the magnetic
induction corresponding to the supercurrents of Fig. 5.&shown in Fig. 5.6(b). As expected
from the two counter-flowing streams seen in the HQV supeeots, the magnetic induction also
shows adjacent local maximum and local minimum.

Fig. 5.4(c) zooms in the superconducting currents arouad=W¥ of Fig. 5.3 (g), and shows
that the FV currents flow clockwise and vanish as we move avay the FV core. This vanishing
is due to the spatially isotropic Meissner effect, unlikeailQV, that screens the FV currents. As
expected, its magnetic induction signature [see Fig. H.a@rees well with that of the Abrikosov
vortex.

The superconducting currents around the skyrmion of Fi§. () are shown in Fig. 5.4 (d).
Unlike the FV, the skyrmion supercurrents clearly show oatel inner structures. The supercurrents
of the outer structure flow clockwise while the supercusesftthe inner flow counter-clockwise.
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Figure 5.5: Diagonal profiles of the contour plojis..|? corresponding to ground statesand h of Fig. 5.1,

shown in panels (a) and (b), respectively. Blue and greeovesrindicate the DW and vortex core locations,
respectively.
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Figure 5.6: Contour plots of the magnetic induction corresging to: (a) the supercurrents of the DW of Fig.
5.4(a), (b) the HQV of Fig. 5.4(b), the FV of Fig. 5.4(c), andl {he skyrmion of Fig. 5.4(d).
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The skyrmionic DW of Fig. 5.3(h) along with its supercurem Fig. 5.4(d) shows cylindrical
symmetry, and one easily deduces that the same symmetgsisrgrin densitieg)|*. Line profiles
of [¢.|* then provide enough information to unveil the skyrmion sapegents [see Fig. 5.5 (b)].
The inner structure of the skyrmion is defined hy: =0 andvy, # 0, i.e. the counter-clockwise
currents at the core of the skyrmion arise from the chiral ponent,), . However, away from the
skyrmion core the scenario changes since the circular DWf 5.3 (h) is met, as indicated by
arrows in Fig. 5.5 (b). Close beyond the circular DW, we findttivhile component), drops
to zero,v)_ becomes non-zero. Replacing in Eq. (57) = 0 and bearing in mind that one
giant vortex is hosted in component , the supercurrent in cylindrical coordinates becomkesy
Bdbr | 2(—2 %r))q@. The magnetic induction corresponding to the skyrmionjmesaurrents of
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Figure 5.7: Representation of the spaces where the projecicts C x C) and where it projectsK?).

Fig. 5.4(d) is shown in the contour plot of Fig. 5.6(d). Itally shows one local minimum at the
skyrmion core surrounded by one circular stripe of local mmax and as such can be directly imaged
in magnetic measurements.

5.3.1 The topology of the skyrmion

In a two-component order parameter system, a 2D skyrmiexitite is not obviously seen in the
order parameter configurations. However, it can be well tstded by projecting the system onto
a pseudospin space. This projection, defined by the Pauticest;, with ¢ = z,y, 2z, reads [123,
130,141]
VA A

1n = (7’L$,7’Ly, ’I’LZ) = W, (511)
where the complex spac€sx C of components),, ¢, are mapped into the real spake [see Fig.
5.7]. A straightforward calculation yields

N = (sin a cos ¢, sin acsin ¢, cos a), (5.12)
wheresin o = 2ellval - oog o — BP0l anges — 9 4, As one can easily see from Eq. (5.12)
[t [24-[by |2 [Va]2+]tby | y e AT

the target space of mapping (5.11) is the 2-dim sphere ofisashie S? [142, 143]. The topological
invariant of the spaces that result from mapping (5.11) fdd by the integral [123,130, 131]

Q= %/n (0.1 x 9,n) dx dy, (5.13)
™

which is widely known as the Hopf invariant. One conveniarieipretation of this topological
invariant is that it counts the number of times that the 3-d#al field () wraps around the 2-dim
sphere $2). Since the pan€lh) of Fig. 5.3 reveals an additional topological possibiligybnd the
conventional vortex, the description of the superconaigotionfiguration by the topological charge
Q besides the vorticity per component of the order parameten ), arises naturally.

Left and right panels of Fig. 5.8 show the texturdor ground statet andg of Fig. 5.3, re-
spectively. The texture for the skyrmion (left panel) différom the texture for the FV (right panel)
owing to the alternating circular DW characteristic of tbemer state. While at the skyrmion core,
field n points towards- 7, outside the skyrmion it points towardsAlong the DW that separates the
skyrmion core from the outside, the field texture whirlsréfere providing to the space the topo-
logical charge) = —2. The field texture that corresponds to the FV shows four |@¥esymmetric
profile wheren changes smoothly. Unlike the skyrmion and in agreement authearlier results,
the field texture for the FV does not show any signature of aalowall separating unequivalent
outer and inner regions. Hence, its topological ch&pgs zero.
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Figure 5.8: Textures of the ground stateand g of Fig. 5.3, according to the mapping= ¥i6¥ /. ¥,
whereg are the Pauli matrices. Colors show the amplitude of thermmonent oh.

5.4 Field-driven transitions between skyrmionic and Vortical
states

In bulk and type Il superconducting samples vortices witagghwindings higher thadnr, where
n is integer, are energetically disfavored. The supercadycefers two distant vortices each with
phase windin@7 rather than one single vortex (giant vortex) with phase wigdr. Neverthe-
less, in samples with dimensions of the order of the supelettimg coherence length (mesoscopic
samples), giant vortices can appear as stable configusafidre stabilization is provided mainly by
the confinement due to the small sample size, although teer@itmagnetic field also contributes
through the screening currents and the confining force tkest en vortices. Field driven transitions
from states with multiple distant vortices to giant vorideve been widely reported. [39-41, 132]
In this work we first report the field-driven transitions fradQV to FV states. Fig. 5.9 (a)
shows the energy of stafeof Fig. 5.1 (a), along with some of its neighboring statesndPgb)
shows the second derivative of the energy with respect texternal field only for staté . While
the energy of statkis continuous, its second derivative shows discontinglitielicating transitions
between distinct states. Three different states can bé& ehsiinguished, which we labeled by a
circle, square and triangle marker. The correspondingibligions of the superconducting order
parameters are also shown in the figure: logarithmic corpéats of |¢/,|* and|¢,|* are shown in
the left and central columns, while the cosine of the phaferdnce is shown in the right column.
State () shows two fractional vortices in each component rendeiong HQVs according to the
phase difference contour plot. State)(shows two HQVs and two FVs. The FVs are composed of
two fractional vortices belonging separately to each camepé. The fractional vortices composing
the FVs are slightly misaligned as can be seen in the dengiyefs. This makes the FVs display a
small closed domain wall in the phase difference contour. glohigh fields the screening currents
confine even more the superconducting configuration of gigteransforming it into one state with
three HQVs and one FV/(). Due to the strong screening currents the upper FV of statéoses
one of its fractional vortices which renders one HQV in si@t§. The strong confinement also
forces the alignment of the fractional vortices composhegRkV of state ().
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Figure 5.9: Field-driven transition from HQV to FV due to dorement in a square mesoscopic sample of
size & x8¢. (a) Energy of the statéof Fig. 5.1 (a), along with some of its neighboring states). §bcond
derivative of the energy with respect to the external fielowghg three distinct states indicated by circular,
squared and triangular symbols. The corresponding compisnaf the superconducting order parameter are
shown in panels(), () and (/). Displayed quantities are logarithmic contour plots|gf,|? and |+, |? in

left and central columns, respectively, while the cosinthefphase difference is shown at the right column.

Another field-driven transition from skyrmion to FV statepgesented in Fig. 5.10. Panel (a)
shows the energy of statef Fig. 5.1, along with some of its neighboring states. Pémeshows the
first and second derivatives of the energy with respect texiternal field only for statg Unlike in
Fig. 5.9 (b), here the second derivative is continuous akasehe first derivative. Nevertheless, this
does not mean that there are no distinct states along thiétgtaibrve of statg. Circle, square and
triangle markers((), [J and /\) indicate three states at weak, intermediate and stronfjneonent,
respectively. At weak confinement the phase difference dighows six HQVs and one skyrmion
(see Fig. 5.10(D)). At intermediate confinement, state)(shows in|v,|? that two out of the four
fractional vortices composing the skyrmion of parel)(have merged into one single discontinuity.
This merger of initially distant fractional vortices remd¢he domain wall of the skyrmion asymmet-
ric. At strong confinement/() the former fractional vortices split their cores along Hwizontal
axis. According to the phase difference figure they join twweofractional vortices in density, |
to form two horizontal FVs in the center of the sample. As carebsily seen, the vorticity of the
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Figure 5.10: Another example of a field-driven transitiorivioeen skyrmionic and vortical states along the
statej of Fig. 5.1. Displayed quantities are the same as in Fig. 518 #he only exception that in panel (b)
the first derivative of the energy with respect to the extifield is also shown.

superconducting components along this field-driven ttaomsis constant, unlike in Fig. 5.9 where
it was not. This fact explains why the second derivative igticmous here and discontinuous in Fig.
5.9.

5.5 Temporal Dynamic transitions

To date, no works have treated the time-dependent phenomgmathe GL formalism for chirap -
wave superconductors. Here we benefit from the temporaligealincluded in the TDGL equations
to report for the first time dynamic transitions involvingrtioes and skyrmions.

The dimensionless free energy as a function of the exterela for states andj is shown
in panel (a) of Fig. 5.11. Unlike in Fig. 5.1 the sample sizeehis 1Z x12¢ rather than the
8¢ x 8¢, which was a suitable choice to study the evolution of theestgmducting configuration.
Panel (b) shows the temporal evolution of the free energyheatdiscontinuous step in energy in
panel (a). Three states, initial, intermediate and finad, denoted by circle, square and triangle
markers. The corresponding superconducting order paessate shown in panels)), ((J) and
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Figure 5.11: Temporal vortex-skyrmion transition in a sggianesoscopic sample of siz&€3¥22¢. Panel (a)
shows the free energy of staiesnd j containing 10 and 12 fractional vortices per componentpessively.
The energy of stateis discontinuous aff ~ 1.06H, reflecting a first order transition. Panel (b) shows
the temporal evolution of the energy at the latter transitid hree states, initial, intermediate and final are
denoted by circle, square and triangle markers, respelgtivehe components of the superconducting order
parameter corresponding to each state are shown in paiiéls (1) and (/).

(X)), respectively. The displayed quantities in the lattergisare the same as in those of Fig. 5.9.
The initial state (0) is a multi-vortex-skyrmion state containing two pairs &ysnions and FVs,
surrounded by eight HQVs at the sample edges. This state etabtained for sample siz& 8 8¢
mainly due to the strong confinement there. At the internmtedstate [(J) two fractional vortices
nucleate in each component of the superconducting ordanper forming two FVs according to
the phase difference contour plot. The four FVs of the ineztiate state then combine following the
inverse process of the one described in Fig. 5.10, to formskyomions as depicted in state }. It

is noteworthy here that all field-driven transition from H@¥skyrmion to FV states and vice-versa
are essentially driven by HQV penetration and recombinatito other topological entities.

Finally we note that the above principles hold also for lamgpesoscopic samples, though with
more multi-vortex-skyrmion states found inside the samatewell as more HQVs at the sample
edges. Effectively, the edges of a large mesoscopic saniplgost realization of the quasi-1D
periodic distribution of chiral domains discussed in Ré1][ with domain walls of length: 3¢(T),
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Figure 5.12: The free energy as a function of the externalma#g field, showing ground statés j plus one
metastable statq, from the numerical simulations using Eq. (5.14) with= 0.03. The parameterg; thus
only slightly deviate from the value/3 obtained when a cylindrical Fermi surface is considerednéta (a)
and (b) show the superconducting density component§ and |_ |2 of the states and b, respectively.

i.e. ~ 600 nm forT" = 0.97,. This length is already matching the limits of scanning SRQ&hd
Hall probe microscopies, explaining why spontaneous atsreemained elusive in experiments to
date, always performed on larger samples than considetédinwork.

5.6 Anisotropic case

5.6.1 Strong chiral limit

This far, the ground states ofigawave mesoscopic superconductor with stZzex 8¢ have been
obtained under the assumption of weak coupling and with adstal Fermi surface, which led
us to set thek; parameters td /3 [77, 103, 135, 136]. However, several works have reported or
suggested other scenarios for SRO such as: (i) multibandresoipductivity with the 1D Fermi
sheets developing superconducting order [63, 79, 80, b44i) anisotropy in the cylindrical Fermi
surface [103,123, 130]. In order to include just anisotropthe Fermi surface, while preserving
single-band superconductivity, and electron-hole syyi&@,102,127], in this section we introduce
the parameterd(), which sets thé;’s to: k&; = 1/3 + 20, andky, = k3 = 1/3 — 0. The motivation
behind this choice is that the theoretical values forith@arameters corresponding to the three Fermi
sheets {, a and ) lie betweenl /3 < k) < 1and0 < k™’ < 1/3 [103], respectively. The GL
eqguation forp -wave superconductors with anisotropy in the Fermi surfsmmmes:

2

TP W6,
0T = g[D2+Hi&++H2_&}\II+\II<1—3|4| =)

+ &[D?—2(I%64 +1126_)] 0. (5.14)
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Figure 5.13: (a) Superconducting currents correspondioghte statea of Fig. 5.12. These currents, which
were obtained at zero field, are composed of two edge cunvégtiiglifferent chiralities and flowing in opposite
senses. (b) Contour plot of the magnetic inductiéh)(calculated from the supercurrents of panel (a). (c)
Line profiles o/, and B, along the liney = 4£. (d) Line profiles ofy1 |2 corresponding to the stateof Fig.
5.12. (e) Line profiles of the angular phases of compongntalong the linex = 4£.

By tuningd;, within the interval[0, 1/3], the strength of the non-diagonal (chiral) terms of Eq. 5.5
is changed, therefore driving the system between two Ingitases: the left limiting case being
atd, = 0 and given by Eq. (5.6), and the right limiting case being,at= 1/3 where the chiral
coupling between the superconducting components is setto z

Fig. 5.12 summarizes the results obtained from the sinmratthat numerically approach Eq.
(5.14) with§, = 0.03. The energy against field plot of Fig. 5.12 shows nine grouates labeled
by letters. The comparison between Figs. 5.12 and 5.1 ®ea@ important fact: the energy of the
statea is higher than the energy of its adjacent statéctually, statea here is no longer the ground
state at low field$7 ~ 0, unlike in Fig. 5.1 where it was. Contour plots of the supadacting order
parameter ¥) that correspond to the stateasndb of Fig. 5.12 are depicted in insets (a) and (b),
respectively. The comparison between the insets of Fig2 &nt the corresponding states in Fig.
5.2 shows that despite of the small anisotropy introducetienGL equation, the superconducting
configuration of these states is practically identical ithbzases.

Two decades have passed since the discovery of the uncamanproperties of strontium
ruthenate, but to date there has not been a consensus wbethet it is a chiralp -wave super-
conductor [59-62]. The main experimental results that stpynconventional superconductivity
in SRO are provided by the set of measurements carried ong tischniques such as the Knight
shift [47, 100], uSR [52], the optical Kerr effect [53], and cantilever magmeétry [134]. The
smoking gun evidence that lacks, and which, if found, wowduvince the scientific community is
the finding of the theoretically predicted spontaneousasusrin SsRuO; [71,76,77]. Interestingly,
what we just found in this work is that the state with spontarsecurrents is no longer the ground
state when the GL model slightly deviates from the isotragaise atH = 0, i.e slightly deviated
from the cylindrical Fermi surface. This energy lift of thate with spontaneous currents makes it
even harder to be detected. Fig. 5.13(a) shows the supentufistribution corresponding to the
statea of Fig. 5.12. We note that the currents displayed there wbtaimed atH = 0, thus those
are the spontaneous currents widely sought in experim&h&sspontaneous currents are composed
mainly of two counter-flowing streams at left and right sidésur sample. They are the chiral edge
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currents predicted by Matsumoto and Sigrist [76]. Alonglthe = = 4¢, the linear domain wall
(DW) of Fig. 5.3(a) separates the left and right sides shgwim enhancement in the supercurrents
around the center. The magnetic induction corresponditigetgupercurrents of panel (a) is shown
in panel (b) of the same figure.

Panel (c) of Fig. 5.13 shows line profiles of the magnetic atidun and they-component of]
along the lingy = 4£. This plot agrees well with the result of Matsumoto and Sigwihich showed
that J, (B.) is an even (odd) function of along the line perpendicular to the DW [76]. Finally,
panels (d) and (e) provide important information that alleito calculate the supercurrent along the
DW. From panel (d) the DW is defined by. | = |¢_| atz = 4¢, but along this line panel (e) tells
us that not only the magnitudes of the superconducting coemis are equal but also their angular
phases. Then, from Eq. (5.7) our estimation for the supehacting current along the linear domain
wall is simply J, (z = 4€) = k1|4 20,0

5.6.2 Strong Zeeman limit

Microscopy with superconducting quantum interferenceas/(SQUIDs) and scanning Hall probes
(SHPs) have recently detected vortex coalescence in somgétals of strontium ruthenate [145,
146]. One possible explanation for this behavior is theterise of at least two different coherence
lengths arising from multigap superconductivity, and viHigad to attractive (repulsive) interaction
at long (short) ranges [144]. Refs. [60] and [146] have reggbthat within their corresponding
resolutions no convincing evidence for spontaneous ctg@md DWs has been found yet. In order
to explore more superconducting configurations, comggifVs, HQVs, FVs and skyrmions as
the fundamental entities, in what follows a different sethefk; parameters is defined by; = 1/3,

ke = 1/3 4+ 6, andks = 1/3 — ;. Such a choice of parameters enables one to keep constant the
strength of the chiral terms while varying. The first GL equation for this particular choice of
parameters reads

2 36
¥ = g[D2+Hia—++H2_L—7kH&Z]\II
W2 | W6
+ \11(1— ‘4' + Z ) (5.15)

The fourth term in the right side of Eq. (5.15) representotthital Zeeman interaction. It is zero
whitin the weak-coupling limit wheré, = k5 [77,127]. In this subsection, we consider a possible
assymetry between electron and hole that leads to slighffgrent £, and k5. In order to study
the dependence of the superconducting configuration omiketeopy parameter, in Eq. (5.15) the
magnetic field is kept fixed whil&, is varied. Fig. 5.14(a) plots the free energy of the statdsirgy
Eqg. (5.15), as a function of the anisotropy paraméte/Circle, square and triangle markers denote
three states whose, | and|v_|? diagonal {f = z) line profiles are shown in panels (b) and (c),
respectively. From panel (c), and unlike in panel (b), omakdy sees that for high values &f the
density|:>_ |* diminishes. Our explanation for this behavior is throughdefinition of two effective
coherence lengths, one for each superconducting compoBefining them as the coefficients in
front of the linear termg, and«_ in Eq. (5.15), theyread, =1 — 6, H and{_ =1+ 6 H, re-
spectively. WithH fixed andd,, increasing¢, (£_) becomes smaller (larger) therefore leading to an
effective reduction (increase) of confinement in componenfy>_). Concerning the phase, contour
plots of 6, _ andcos (¢, — 6,) corresponding to the states denoted by circle, square mEmgke
markers are shown in rows)), (LJ), and(/.). According to the phase difference figure, stétg) (
is composed of two concentric skyrmions, one circular arglrimboidal. From the contour plot
of #_ one sees that the circular skyrmion arises from the formaifoone giant vortex iny_ with
phase windingr. The phase difference figure corresponding to stajeshows one irregular closed
domain wall emerging from the intersection of the circulad shomboidal skyrmions. Its formation
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Figure 5.14: (a) Free energy as a function of the anisotropyameterd;, with the external magnetic field
fixed atH = 0.530[H.2|. Three distinct states are indicated by circular, square &mangular markers (O,
[Jand /). (b) and (c) show line profiles dfy, |> and |)_|?, respectively, along the diagonal ling & z)
corresponding to the states of panel (a). Colum@y),((CJ) and (/) show contour plots of ., #_ and
cos (0, — 0,) corresponding to the denoted states of panel (a).

is determined by the annihilation of the giant vorteXinthat has split into two fractional vortices.
Finally, the phase difference figure of state)(shows four FVs with cores slightly asymmetric as
can be seen from the small circular DWs present there. Dueetdénsity|y>_|? has been substan-
tially depleted at this value @}, the superconducting state is completely defined by conrgane
Hence, what we have achieved by considering assymetry bateiectron and hole in the chiral
p-wave model of Eq. (5.5), is a chiral polarization enhancee @ the strong confinement present
in a mesoscopic sample.

5.7 Conclusions

In summary, we have studied in detail the Ginzburg-Landadehthat describes chiral-wave
superconductors [77,94,102, 103, 129, 135, 136], and a@lptssible states of a mesoscopic super-
conducting sample as a function of the external magnetid &ietl the anisotropy parameters of the
material. Due to odd parity and breaking of the time-reMesgmmetry, the order parameter is a
two-component complex vector [48, 94] and the fundamemtait®ns of the corresponding TDGL
equations, that we obtained numerically, are fractiondiees, i.e. solutions where the phase wind-
ing 27 is found in one component but not in the other one. In two- &nee-band superconductors
similar fractional vortices were obtained between comptseout for different reasons [147-149].
Fractional vortices in different components can combinfetm a cored/full-vortex state, as well as
a coreless/skyrmion state seen in phase difference andatiagesponse figures. Skyrmions arise
when same number of fractional vortices in each componenbate to form a closed domain wall
that separates distinct intercomponent phase differefice- ¢,) regions [137, 138]. Alternating
segments betweehand—1 in thecos (6, — 6,) between fractional vortices along the domain wall
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is the main signature for skyrmions. While for skyrmions tbeological charge@) is defined by
the Hopf invariant [123, 130, 131], for vortices it is defingdthe circulation of the superconducting
velocity. Despite of the fact that vectar is strongly pinned along in the chiral representation
d = (k, £ik,)z [94,129], we also obtained half-quantum vortices analsgouhose of spin-triplet
superconductors [133]. The screening currents of halftyum vortices are anisotropic and in Carte-
sian coordinates we have analytically shown that the edeiial lines of the screening currents are
ellipsoidal rather than circular as in full vortices. Thrasotropic screening causes the attraction of
the half quantum vortex towards the sample edges. The m@sicssize of our samples provides
stability to the half quantum vortices and tfe= 2 skyrmions, in contrast to larger systems where
larger values of) were considered [123, 130], and bulk systems where the halfitgqm vortices
have been usually regarded as high-energy states. Acthalljesoscopic size of the sample plays
a remarkable role in the stability of skyrmions as well ashie here reported novel transitions (e.g.
from a skyrmion to a full vortex). At high external fields, aledcheH . critical field, states with dif-
ferent configurations of skyrmions and half quantum vostigeadually transform into full vortices
owing to the increased screening currents and confinemiect®f

To date, the only superconductor expected tp beave is strontium ruthenate, with enough ev-
idence demonstrating its unconventional behavior [47582100, 134]. Nevertheless, many works
have failed to convincingly detect spontaneous currerdl;dquantum vortices and skyrmions in
large samples [59-62]. What we have demonstrated heretiqifhaven by slight anisotropy in the
Fermi surface, the state with spontaneous currents is rgetahe ground state & ~ 0, (ii) for
large mesoscopic samples quasi-1D periodic distributiachwal domains is realized at the edges
of the sample, with half-quantum vortices residing on domvells with length of several coherence
lengths, with magnetic features detectable in scanningIBQldd hall probe microscopy, and (iii)
distinct field-driven transitions between half-quantunntew, full vortex, and skyrmions, provide
alternative method to indirectly prove the existence oféhexotic states in magnetic measurements.

Publication The results of this chapter were published in:

e V. FernandeBecerra, E. Sardella, F. M. Peeters, and M. V. MiloSevigtical versus skyrmio-
nic states in mesoscopiewave superconductor®hys. Rev. B3, 014518 (2016) (13 pages).




Electronic properties of emergent topological
defects in chirap-wave superconductivity

Chiral p-wave superconductors in an applied magnetic field can éximbre complex topological
defects than just conventional superconducting vortidas,to the two-component order parameter
and the broken time-reversal symmetry. In this chapter, vesvsthe electronic properties of those
exotic states, all obtained as a self-consistent solutibthe microscopic Bogoliubov-de Gennes
equations. We reveal the link between the local densityabést(LDOS) of the novel topological
states and the behavior of the chiral domain wall betweerctimponents of the order parameter,
enabling direct identification of those states in scannimgneling microscopy. Finally, we present
the magnetic field and temperature dependence of the prep@ta skyrmion, indicating that this
topological defect can be surprisingly large in size, and ba pinned by an artificially indented non-
superconducting closed path in the sample. These featteexpected to facilitate the experimental
observation of skyrmionic states, thereby enabling expental verification of chirality in emerging
superconducting materials.

6.1 Introduction

Spin-triplet chiralp-wave superconducting states attract great interest beazfitheir exotic prop-
erties and the possibility to have topologically proteajedntum states [150]. Such unconventional
pairing is realized in the A-phase of superfléide and may be attributed also to the layered ruthenate
superconductor SRuQ, [151]. The order-parameter (OP) of thevave pairing state is necessarily
multi-component due to the nonzero orbital angular monmaréithe Cooper pairs. This fact has
profound consequences, namely the breaking of time-rabgysnmetry [48,152], and results in rich
topological defect states, of different types, with oftemtmivial vorticity.

First, there exist domain walls with spontaneous supesotigeparating domains with different
degenerate time-reversal-symmetry-broken ground sfaééésSecond, half-quantum vortices arise
due to the extra spin freedom in OP and are predicted to beatttymamically stable in mesoscopic
samples and have been detected R8O, [134, 150]. It is also expected that the half-quantum
vortices in two-dimensional superfluids will host Majorastates at exactly zero energy as bound
states inside the vortex cores [153]. The Majorana zero rgn@s rise to non-Abelian statistics and
thus can be utilized to make topological quantum computdiis4].
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Third, in p-wave superconductivity, there exist two types of singhamfized vortices due to
the broken time-reversal symmetry [155]. The Cooper pdichoal p-wave pairing have internal
orbital angular momentum, i.e. the paired electrons ar&irg}. Then, the vortex can have either
the vorticity in the same direction to the angular momenturthe rotating Cooper-pair (parallel
vortex), or in the opposite direction (anti-parallel vojteThese two types of vortices have different
angular momenta, causing different properties in eleatrstates [156] leading to different optical
absorption [155], vortex charging effect [157], and suefaensitivity effect [158].

Lastly, the chiralp-wave pairing state allows the existence of coreless \&Bt{€LVSs) with
nonzero vorticity in only one OP component [159], which asydifferent from conventional
singular-core vortices. The CLVs result from the extra @band spin degree of freedom in the
OP. The CLV with doubly quantized flux has been detected idigHe [160]. In chiralp-wave
superconductors, this doubly quantized vortex state idigiexd to be energetically favorable when
compared to the state with two singly quantized vortice8[130], and should be further stabilized
in the presence of mesoscopic boundaries [124]. The GigzZbamdau simulations reported the
magnetic field distributions of the CLV states [130], tha still to be been observed experimentally.

Such CLVs are extremely interesting, exhibiting a varidtdifferent aspects: (i) they are anal-
ogous to a giant vortex igrwave superconductors [39] since they contain multiple fuanta, but
exhibit a larger size. (ii) The CLV is similar to a domain waélparating domains where different
OP components dominate [159]. (iii) Theector texture of a coreless vortex was characterized as
a 2D skyrmion [143], where a pseudo-spin textaref a two-component OP exhibits 2D skyrmion
texture for the coreless vortex [130,141]. Although thaseijous studies revealed important aspects
of the coreless vortices, there is still a need for a systierstidy in order to enhance understand-
ing on the coreless vortices and skyrmionic topologicakdef especially concerning their bound
electronic states.

In this chapter, we study the possible topological defeatestin chirap-wave superconductors,
ranging from domain walls, and vortices, to coreless vegiand skyrmions, by solving the micro-
scopic Bogoliubov-de Gennes (BdG) equations self-cosrsilst The purpose of this chapter is to
clarify their topological properties and also to revealitlietailed electronic properties. The bound
electronic states in e.g. vortices are known to be impofftanmany applications [161-165]. For
example, they determine the low-temperature behavior @fkgecific heat [166]. In this chapter,
the shown results on characteristic quasiparticle exaitapectra and details of the local density of
states (LDOS) of each state (especially the states assdaiath the skyrmion), enable their iden-
tification in e.g. scanning tunneling microscopy (STM). Mod STM operates at spatial resolution
up to 0.1 nm, and has successfully detected to date the zero bias camdecpeak at the vortex
core [167], phase transition between multi- and giant vostates [41], proximity effect [168],
Josephson vortices [169, 170], etc. Hence our results valtige valuable info for direct detection
of novel topological states, which can in turn serve as a ksngpgun’ for p-wave superconductivity
in the studied system.

The chapter is organized as follows. In Sec. 6.2 we introdweeheoretical methodology for
chiral p-wave superconductors. In Sec. 6.3 we collect the resultthfee distinct states without a
skyrmionic topology. Those are the vortex-free state, #u@lpel vortex state and the anti-parallel
vortex state. In Sec. 6.4 we present results on corelesexvetates. Their OP structures, super-
current distribution, energy spectra and LDOS are discus3®¥e show that they are associated
with skyrmionic topological defects in relative OP space.Skec. 6.5 we reveal the magnetic field
and temperature dependence of the properties of the skyrriokbowed by the investigation of an
effective skyrmion pinning in Sec. 6.6. Finally, our findgngre summarized in Sec. 6.7.
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6.2 Bogoliubov-de Gennes equations for chirap-wave super-
conductors

We consider chiragb-wave superconductors whose order parameter (OP) is sques
A(r,k) =A:(r)Yi(k) + A_(r)Y_(k). (6.1)

Here theA . (r) are the real spatial, +ip,-wave OP and’; (k) = (k,+ik,)/kr are the pairing func-
tions in relative momentum space. We consider a disk gegmatin radius?. The corresponding
ps £ ip,-wave BdG equations are written as: [157]

{He(r) (r) } {un(r)} _ 5 {w(r)}, (6.2)

—T*(r) —H:(r)] [va(r) vn(r)
where -
H(r) = 3= |2V - “AG >] — By (6.3)

is the single particle Hamiltonian witlw being the electron mas&r the Fermi energy and (r)
the vector potential (we use the gauge- A = 0). For simplicity, we take the cylindrical two
dimensional Fermi surface. The tefiitr) is written as
1
2

H(I’) = k:‘lF Z[AiDi + =

(OLAL)], (6.4)
with Oy = e**(9, + £9y) in cylindrical coordinatesu,, (r)(v,(r)) are electron(hole)-like quasipar-
ticle eigen wavefunctions with the normalization conditio

/ [ (0 + [oa(0)2}dr = 1, 6.5)

and E,, are the corresponding quasiparticle eigenenergies. Taedawoy conditions for the wave-
functions areu,(r = R) = 0 andv,(r = R) = 0. The A,(r) satisfy the self-consistent gap
equations

As(r) = =i 3 () Dsun(r) — un(M0503 ()] x [L=2f(E)),  (66)
F
Ep<hwp
wherekr = /2mEy/h? is the Fermi wave lengthy the coupling constant anfl(E,,) = [1 +
exp(FE,/kgT)]~! is the Fermi distribution function. The summations in Eq6j6re over all the

guasiparticle states with energies in the Debye windaw. The supercurrent density is calculated
by

) eh e

i) = S { Fa [ = A ()

2mz
n

(1= f)ua(r) [v - %A(r)}v;(r) - h.c.}.

In order to perform the self-consistent simulation, weudd the contribution of the supercurrent
to the total magnetic field. Then, the vector potenfidk) in Egs. (6.3) and (6.7) has two parts,
i.e. A(r) = Ao(r) + Ay(r), whereAy(r) = 1Hyrey corresponds to the applied magnetic field
H = Hye, and theA (r) is induced by the supercurrent and obey the Maxwell equation

V x V x Ay(r) = %j(r). (6.8)

(6.7)



ELECTRONIC PROPERTIES OF EMERGENT TOPOLOGICAL DEFECTS IN (RAL p-WAVE
100 SUPERCONDUCTIVITY

However, we find that the\; (r) is negligible due to the very thin superconducting sample.aA
result, the contribution of the supercurrent to the totagnaic field can be completely neglected in
this type of simulation.

In this chapter, we only consider vortex and skyrmion statéis cylindrical symmetry. There-
fore, thep, + ip, components of the order parameter are expressed.gs) = A (r)el+? with
winding numberd.., respectively. Due to operatdrs, in Egs. (6.2)-(6.6)A have at1 Cooper-
pair phase winding, respectively, leadingfio = L, + 2. This also breaks the time-reversal
symmetry, resulting in chiral states.

In a cylindrical system, the quasiparticle wavefunctien$r) andv,(r) can be expanded in
terms of the following Bessel set [114]:

un(r)y _ Cngsg P (1)
<U”(r)> N zj: (dw’j%u’("’)ewle) ’ (6.9)

wherec,,,; andd,,,; are coefficientsy,,/ € Z are angular quantum numbers corresponding to the
angular momentum, and
\/5 T

Pju(r) = mj“(%ﬁ)’ (6.10)

with J, the pth Bessel function and;,, the jth zero ofJ,. Note thaty’ = u — L, — 1 because
of the phase winding i\, i.e. L_ = L, + 2. Then, the BdG equations are reduced to a matrix
eigenvalue problem and can be solved separately in eachaisf fixedu andy’.

After the self-consistent solutions are obtained, we datetthe LDOS as usual

Ar, E) =) [lun(r)*6(E = E,) + [0,(r)6(E + E,)]. (6.11)

n

For each quasiparticle state, we can define the spectrahw@gig
Zy = / |, (r)|*dr. (6.12)

Z, € 10,1] and it represents the contribution of the electronic pathefwave function of a Bo-
goliubov quasipatrticle state. A state wiff) < 0.5 indicates a hole-like state whilg, > 0.5 is
an electron-like state. A Bogoliubov quasiparticle statevell formed when it couples between
half-electron and half-hole, i.e. fdf,, = 0.5.

Next, we remark that the quasiparticle states have theWollptime-reversal relation:

{U_En7 U_En} - {UE"7 U*E"}' (613)

Itindicates that a state having enetjy and angular momentu(p, i) carries the same information
as a state having energyF,, and angular momenturf+-,’, —p). This allows us to reduce half of
the computational time by only considering half of the amgmhomentundi, i/). Due to this, it is
sufficient to display the quasiparticle excitation spattmith both positive and negative energy
but with only positive angular momentumor /.’

We also remark that our chirptwave BdG equations are invariant under the time-reversad-o
ations:

{A+, B} — {AL, -B}, (6.14)

whereB is the magnetic field. In the bulk the two degenerate grouatbstare the, + ip, and
P, —ip,-wave states. At zero temperature, their@B., A_) = Ay(1,0) andA(0, 1), respectively,
whereA, € R is the bulk OP at zero temperature. These two states can beredirby Eq. (6.14).
The situation is the same for vortex states. For examplenwie knows the\ | dominant vortex
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Figure 6.1: Vortex-free statéL,L_) = (0,2) with A, dominant. (a) Profile ofA.(r) atd = 0. (b)
Azimuthal supercurrent density(r). (c) The quasiparticle excitation spectrufij, as a function of the
positive angular momentum The negative part of the spectrum can be obtained by thergrasal relation

of Eq. (6.13). The color coding indicates the spectral weigh (d) The LDOS near surface as a function of
radiusr and bias energy.

states with winding numberd.., L_), one can easily obtain th& dominant vortex states with
winding numberg—L_, — L) by using Eq. (6.14). The complete study requires to condidér
A, dominant andA_ dominant states for all possible (positive and negativejdiig numbers.
However, with the time-reversal operations of Eq. (6.14¥ equivalent to consider only half of the
possible winding numbers but for both, dominant and\ _ dominant states.

Next we define the, andp,-wave OPA, andA,. They often show interesting properties and
can provide important information about the vortex and skgn states. The OP expresseddy
andA, can be written as

A = (Agky + Ayky) /kp. (6.15)

Eqg. (6.1) can also be expressed as
A= {[Ay +A_]k, +i[AL — A_]ky}/ k. (6.16)
By comparing Egs. (6.15) and (6.16), we find

A=A, + A

A, =i(Ay —A). (6.17)

6.3 Structure of vortex states without skyrmionic topology

In this section, we investigate three prominent vortexestaiot exhibiting a skyrmionic topology:
Vortex-free staté L., L_,Q) = (0, 2,0), parallel vortex statél, 3,0) and anti-parallel vortex state
(—=1,1,0). Since@, defined by Eq. 5.13, is zero for all these states, we omit this section.
The OP structures, supercurrent density, quasipartict@agion spectrum®,,, and LDOS for the
considered states will be presented, where some findingsidei with previous works [72, 76]. In
our analysis, we found that the andp, OP component&, andA, are very useful, and will be
employed in the analysis of the found vortex states. Theutions are performed for the sample
of radiusR = 51&,, where¢, = hvr/mA, is the BCS coherence length at zero temperature, with
vr the Fermi velocity and\, the bulk OP at zero temperaturélrx = hwp andhwp/Ay ~ 14,
resulting inkp&, = 9. We also set the applied magnetic fieldHo= 0, so the reported properties
are surly not a consequence of the magnetic field. The caesidemperature i$ = 0.17,.. The
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Figure 6.2: Two types oA\ -dominant singly-quantized vortex statéd., , L

-)
spectively shown in panels (a) and (b). Plots on the left ghofiles of A () and the azimuthal supercurrent
densityjy(r). Central plots show both amplitude and phase of OP compsenptr) and A, (r), their rela-

= (1,3) and (—1,1), re-

tive phasecos(6, — 6,), and the total OP amplitudg\ (r)|. Note that the winding numbers &f, and A, are
L,=L,=1forthe(Ls,L_) = (1,3) state andL, = L, 1 for the (L4, L_) = (—1,1) state. Plots
on the right show the quasiparticle excitation spectriimas a function of the angular momentumwith
color coding indicating the spectral weight,), and the LDOS around the vortex core as a function of radial
distancer and bias energy.

results remain qualitatively the same when we change thenetiagfield H and temperaturd.
We first introduce the vortex-free staté,,L_) = (0,2), with A, as a dominant component.
The results are summarized in Fig. 6.1. The state is anatogothe Meissner state istwave
superconductors, therefore it is the first step for undedstey vortex and skyrmion states. In bulk,
the ground state isA,, A_) = Ay(1,0). However, the physical properties significantly change
near a surface [76]. As seen from Fig. 6.1(a), the | suppresses and\_| rises at the surface,
where an anticlockwise supercurrent is also induced [sge@-1(b)]. The quasiparticle excitation
spectrum shown in Fig. 6.1(c) reveals chiral surface staitsa linear dispersion around the Fermi
energy [71,72,76]. These are Andreev bound states inducttelehirality of the superconducting
state [77]. The states cross the Fermi energy but there igaxt-@ero energy Majorana mode [71].
They contribute to the low-bias LDOS distributions nearsheace, as shown in Fig. 6.1(d). Note
that the LDOS and the supercurreptr) show Friedel-like oscillations with a wave vect: near
the surface.

Here we note that the spontaneous surface supercurrem isdfor characteristic of the super-
conducting state with broken time-reversal symmetry. Expents to date have observed the surface
bound states [78] but failed to capture the surface supencuf59—-62]. One possible explanation
is that the supercurrent depends on exact geometry and batuse of the sample, [171] but that
discussion is out of the scope of this paper.

Next we present the case of two types of singly quantizecexastates with\ , dominant: the
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parallel vortex statéL ., L_) = (1, 3) and the anti-parallel vortex staté ., L_) = (—1, 1), shown
in Fig. 6.2(a) and (b), respectively. Here we remind the eedldat the vortex and the anti-vortex
states exhibit very different properties due to the brokaetreversal symmetry [72, 155, 157].

The left plots in Fig. 6.2(a,b) shov () and the supercurrent density profjlgr). Compared
to the vortex-fred L., L_) = (0, 2) state shown in Fig. 6.1\, (r) exhibits a singular vortex core
in the center of the sample. At the same time, (r) is induced near the vortex core and also
exhibits singularity there, so the coresi overlap. However, the two possible singly-quantized
vortex states have different vortex core structures. Femptrallel vortex1, 3) state, A, (r) show
different asymptotic behavior\, (r) oc r while A_(r) o r3. For the anti-vortex—1, 1) state, both
|AL(r)| oc . In addition, the states have different supercurrent dgwéstributions. The parallel
vortex (1, 3) state has the positive vorticity, leading to the clockwijge) around the vortex. In
contrast, the anti-vortef—1, 1) state has the negative vorticity, leading to the anti-olzsk jy(r)
around the vortex core.

Previous works concerning vortex states in chiratave superconductors rarely presentedithe
andp, OP component&, andA,. We actually found that they can be very useful in the analgti
interesting properties, especially related to the vdstiof the sample. The central plots in Fig. 6.2
show the profiles of\,, A,, the relative phase between théin— 6, and the total ORPA. We
find the winding numberd.,, = L, = 1 for the parallel vortex1, 3) state and_, = L, = —1
for the anti-vortex(—1, 1) state, thus better describing the vorticity of the sampéa tthe angular
momenta ofA,. The vortex cores i\, andA, are at the sample center and they overlap. Unlike
the cylindrical vortex core structuresin, , the vortex cores are deformedA) andA,,, and exhibit
different profiles for thé1, 3) and(—1, 1) states. Itis interesting that, can be obtained by rotating
A, with 90 degrees clockwise for the, 3) state and anticlockwise for the-1, 1) vortex state. It
is also interesting to note that the relative phése- 0, twirls twice for both cases, exhibiting a
cloverleaf profile. For th¢—1,1) vortex state A, and A, alternate between being fully in-phase
and fully out-of-phase around the vortex core.

The right hand side plots in Fig. 6.2 show the quasipartig@tation spectrunt, (u,,) and the
LDOS. Comparing to the vortex-freld.., L_) = (0,2) state, one more branch of bound states
appears within the gap energy, in the excitation spectrum. Those are the vortex bound sstate
localized around the vortex core [155]. The vortex bountestéor the(1,3) and(—1, 1) states are
different. For(1,3) vortex states, the bound states reside in the negativeyerange for positive
angular momentum,,. However, for thg —1, 1) state they have positive energy for positiyg due
to opposite vorticity.

It was demonstrated in Refs. [172-174] that there existsraopaero-energy Majorana modes
for a single vortex with odd vorticity in the chiralwave superconductivity. The energy levels of
the vortex bound states appear at integer pol)ts~ nFEs;, wheren is an integer andvs is the
level spacing of the order ak2/Ey [175]. For the state witls,, = 0, the time-reversal relation of
Eq. (6.13) prescribes the zero-energy state appearing ais, apd the quasiparticle wave functions
keep the relatiom,,(r) = v (r). Thus, the quasiparticle creation operator is equivatetit¢ annihi-
lation of a quasiparticle, which corresponds to the Majarimmions [173]. However, the Majorana
zero mode splits when there exists vortex-vortex inteoaabir/and vortex-surface interaction [176].
In our case wher& = 51&,, the energies of the lowest vortex bound state of both casesfahe
order of 10~7A,. It indicates the existence of the Majorana zero mode anddhex-surface in-
teraction being negligible. With sample radididecreasing, the energy of the lowest vortex bound
state oscillates and its envelope increases with expaildati. The vortex bound states of both
cases are the well-formed Bogoliubov quasiparticle statdsZ,, = 0.5, which is also supporting
the Majorana zero mode.

The LDOS showing in Fig. 6.2 reveals the zero-bias peak avdniex core, corresponding to
the same characteristic of vortex states with odd windingler ins-wave superconductors. It is
worth noting that the LDOS is asymmetric fér <+ —F for the (1, 3) state and symmetric for the
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Figure 6.3: Topological structure of the skyrmion stéfe,, L_,Q) = (0,2,2). (a) Profiles ofAL(r) and
the azimuthal supercurrent densiiy(r). (b) The amplitude and the phase®df (r) and A, (r), their relative
phasecos(6, — 6,), and the total OP amplitudeA(r)|. Note that the winding numbers of, and A, are
L, = L, = 2. (c) The texturen(r) of the relative OP space, calculated using (upper panel), and using
A, andA, (lower panel). The colors show the amplitude of theomponent ofi(r). Both shown pseudospin
textures give topological charge densipyr) shown in panel (d) and the topological char@e= 2.

(—1,1) state.

6.4 Structure of skyrmionic topological defects

Coreless vortices are one of the most striking states engengithe chirap-wave superconductivity.
They exhibit an additional topology which is skyrmionic. é&flbne known coreless vortex state is
the doubly quantized one [156, 159], having the topologitergeQ = 2 [123]. In this section,
we investigate the topological structure and the electrpnoperties of the doubly quantized core-
less vortex state (skyrmion statd)., L_, Q) = (0,2, 2) and the vortex-skyrmion coexisting state
(Ly, L_,Q) = (1,3,2). We set parameters the same as in the previous sectionlitafadhe direct
comparison of the results. Note that we chooseAhedominant states for convenience, so that the
skyrmion corresponds to positive vorticity. The, -dominant counterpart with negative vorticity
can be obtained equivalently by using Eq. (6.14).

We first present the topological structures of the stdie, ._,Q) = (0,2,2) in Fig. 6.3.
Fig. 6.3(a) shows\. () and the supercurrent density profilgr). Comparing to the results for
the vortex free statéL,,L_,Q) = (0,2,0) shown in Fig. 6.1, a domain wall appearsAa ()
atr = 12§, separating outeA _ and innerA, regions. In addition, the winding numbers Af.
areL, = 0andL_ = 2, respectively. There is thereforela-phase difference betweek. along
the domain wall, which breaks the time reversal symmetrditeato thechiral domain wall A
supercurrenjy(r) is induced around the chiral domain wall, and changes sigimealomain wall -
flowing clockwise inside the domain wall but anti-clockwmétside of it [124].

The region inside the chiral domain wall is sometimes thowfas a vortex core. However, this
is not correct. Different from the singular vortex which ip@nt-like topological defect, the coreless
vortex is a loop-like topological defect. Fig. 6.3(b) shathe results expressed usidg, andA,,.
We found thatA, and A, components of the OP contain two vortices each, thus havinding
numbersL, = L, = 2, so this state carries a total of 2 flux quanta. The vorticesnat at the
sample center but on the chiral domain wall and align orthadlp in A, compared ta\,. All four
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Figure 6.4: Electronic structure of the skyrmion stafe,, L_,Q) = (0,2,2). (a) The quasiparticle excita-
tion spectrumk,, as a function of the angular momentuwry) (color coding indicates the spectral weight,).

S, DW and A represent the surface bound state, domain-watidstate and the Andreev bound state associ-
ated with the domain wall, respectively. Their spectralghtsZ,, are shown in panel (b). (c) The LDOSE)
around the skyrmion as a function of radial distancand bias energy~. (d) The profiles of the LDQ8)
around the domain wall at bias energi&s= 0.3, 0 and—0.3. The chiral domain wall is atg. /{0 = 12. (€)
The profiles of the LDQ®) as a function of bias energids at several radial distances. The peaks labeled
by triangles (diamonds) are induced by the domain-wall lnbstates (Andreev bound states).

vortices are spatially separated and play the same rolésif(tt2, 2) state, as seen from Fig. 6.3(b).
Therefore they are the one-component vorticesirA, space) and each of them carries half of
the flux quantum, analogously to the half-quantum vortex[1%inally, the chiral domain wall is
formed by arenclosed chain of all one-component vortieesl carries 2 flux quanta. The total OP
is cylindrically symmetric, and it is suppressed (thoughemmpletely) on the chiral domain wall.
The relative phasé, — 6, alternates between 0 andalong the domain wall, indicating thaX,
andA, are respectively in- and out of phase. Note that the relpinsese alternates exactly 4 times
along the domain wall, where each node corresponds to tlatidocof one-component vortices on
the chiral domain wall.

Actually, thechiral domain wallin A and theenclosed chain of one-component vorticea,
andA, are two different but both relevant aspects akgrmionic topological defeen the relative
OP space. This can be seen clearly from Fig. 6.3(c) where wpebwthA . andA,, , decompositions
of the OP onto the pseudo-spin fieklsAs seen from the upper panel, where the results are obtained
by using OP components., the fieldn rotates at the domain wall which separates the centralmegio
wheren points up and the region outside of the domain wall whepmints down. In addition, the
field n rotates along the domain wall lyt, resulting in the nontrivial topological charge density on
the chiral domain wall [see Fig. 6.3(d)]. The net topologedaargeQ = 2 indicates that the field
wraps twice on the surface of the sphere. The lower panelgpfd=8(c) shows the results obtained
by using OP components, andA,. The fieldn also rotates at the domain wall. In this case,
the domain wall separates the central region whep®ints in positivey-direction and the outside
region wheren points in negativey-direction. n also rotates byir along the domain wall, leading
to the net topological charg@ = 2. In fact, this pattern can be reached by rotating the prewiou
field by an angl®0° about they-axis. The topological charge density and the net topoldgicarge
are invariant under this operation. As a result, one cordutiat(0, 2, 2) state is a skyrmionic
topological defect wit) = 2 in the relative OP space, and that such topological strestretain



ELECTRONIC PROPERTIES OF EMERGENT TOPOLOGICAL DEFECTS IN (RAL p-WAVE
106 SUPERCONDUCTIVITY

the skyrmionic character under the transformation betwgen A_) and(A,, A,) representations.

Next we present the electronic properties of this skyrnidapological defect in th€0, 2, 2)
state in Fig. 6.4. Previous studies revealed low energytatians at the domain wall [156, 159].
However, the complete picture of excitations and LDOS i Isitking. Here, our self-consistent
calculations provide the more details of the quasipar&sleitation spectra and LDOS, enabling
their identification in e.g. scanning tunneling microsc¢gyM).

Fig. 6.4(a) shows the quasiparticle excitation spectfyty,,) and the corresponding LD@S F)
near the domain wall. As seen from Fig. 6.4(a), there areettrstinct branches of bound states.
These are the surface bound states (S), the domain-waltisiates (DW) and the Andreev bound
states (A). The surface bound states are the same as thogkifothe vortex free stat€$), 2, 0),
which were shown in Fig. 6.1. The domain-wall bound states the Andreev bound states are
typical for the skyrmion, i.e. chiral domain wall.

The domain-wall bound states cross zero energy with thedbareergy level having a small gap
of the orderA2/Er [156,174]. Thus, the zero-energy Majorana states do naapplowever, the
domain-wall bound states cause two effects in LDOS: a ze&s{lieak at the domain wall, and the
peak splitting with increasing or decreasing the bias. Gribase peaks shifts towards the interior
of the domain wall, while the other shifts outward. This teatcan be seen clearly in Fig. 6.4(d),
where we display the profile of the LDQS for bias energie€’ /A, = 0.3, 0, and—0.3.

The Andreev bound states are induced near the gap enérgie\,|, leading to peaks in LDOS
at the domain wall, as seen from Fig. 6.4(c). They are esgdbnsimilar to the quantum rotor state
which is induced by multiple Andreev reflections at the ndfswgerconducting interface [177]. In
that case, due to the time-reversal symmetry, Andreev betatds appear near both = +|A|.
However, the chiral domain wall breaks the time-reversalsetry so that the Andreev bound states
nearE = —|A| are suppressed.

In addition, we found that the domain-wall bound states &eten-dominant (with spectral
weightZ,, < 0.5) when they cross the zero bias, while the Andreev boundsséaiehole-dominant
(with spectral weightZ,, > 0.5), as seen from Fig. 6.4(a) where the color coding indicdtes t
spectral weightZ,,. This feature can be seen clearly in Fig. 6.4(b), where welalyed the spec-
tral weightZ,, for all three types of bound states. The domain wall bountkstand the Andreev
bound states are different from the surface bound statesev$yectral weight ig,, = 0.5. These
two branches of bound states are also different from theysipgantized vortex bound states of
(Ly,L_,Q) = (1,3,0) and (L, L_,Q) = (—1,1,0) shown in Fig. 6.2, which are fully coupled
Bogoliubov quasiparticles with spectral weight = 0.5.

Due to the electron-dominant domain-wall bound states hadble-dominant Andreev bound
states, the LDOS near the domain wall exhibits asymmetrpis energyy <+ —F, as visible in
Fig. 6.4(c). This feature can be seen clearly in Fig. 6.4¢fere we displayed the LDQE) as a
function of bias energy at several radial distance$Vhen we scan the LDOS far away from the
chiral domain wall, e.g. at/{, = 5, the superconducting coherence peaks are well estabkis|tieel
gap energy\, and there is no LDOS peak wheéR| < A,. Whenr /{, = 11 (near the domain wall
atrayr/& = 12), there are four peaks inside the gap engifgy < A,. Two of them are induced
by the domain wall bound states [labeled by solid and opangies in Fig. 6.4(e)]. The other two
are induced by the Andreev bound states [labeled by diamiorfélg. 6.4(e)]. Due to the electron-
dominant domain-wall bound states, the peaks labeled Iy tsi@ngle have a higher amplitude than
the ones labeled by the open triangle, which results in theagetric profile in LDOS. At larger
r, the two peaks labeled by triangles move towards each otfiemeerge at the domain wall where
r/& = 12. Simultaneously, the Andreev peak in negativiabeled by diamond is significant due to
the hole-dominant Andreev bound states, leading to anafyanmetric profile in the LDOS. When
r is further increased, the peaks labeled by triangles coatshifting and finally merge into the
coherence peaks at gap enefgly = A,.

Since the skyrmionic topological defect appears in thetike@aOP space, whereas the vortex
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Figure 6.5: The skyrmion-vortex coexisting stéfe,, L_, Q) = (1, 3,2). Plots on the left show profiles of
A4 (r) and the azimuthal supercurrent densjiy(r). Central plots show both amplitude and phase of OP
components, (r) and A,(r), their relative phaseos(¢, — 6,), and the total OP amplitudeA(r)|. Note
that the winding numbers &, andA, are L, = L, = 3. Plots on the right show the quasiparticle excitation
spectrumE,, as a function of the angular momentungwith color coding indicating the spectral weight,),
and the LDOS around the vortex core as a function of radiaagicer and bias energy.

appears in the OP space, a vortex can be added t/thd. _,Q) = (0, 2,2) state leading to the
skyrmion-vortex coexisting staté. ., L _, Q) = (1, 3, 2). The results for such a topological “hybrid”
are presented in Fig. 6.5(b). Comparing to the skyrniidr2, 2) state, one sees the superposition
of a singly quantized vortex and the chiral domain wall, vtk vortex being located at center of
the sample. The supercurrejtr) flows clockwise around the vortex core, gradually changang t
anti-clockwise on the inner side of the domain wall, and fligsdirection again to clockwise outside
the domain wall. A, andA, have winding numberé, = L, = 1+ 2 = 3 in this case, 1 for the
central vortex, and 2 for the one-component vortices on timeain wall. The chiral domain wall is
larger than that of the skyrmion in tt{8, 2, 2) state, because of the repulsion between the vortex at
the center and the one-component vortices on the domain wall

The quasiparticle excitation spectruii (u.,,) also shows the superposition of the vortex bound
states and the chiral domain wall bound states. Since thaitorall is now larger, the domain wall
bound states and the Andreev bound states shift to largem addition, we find that the domain
wall bound states become even more electron-dominant airttireev ones more hole-dominant,
resulting in more pronounced electron-hole asymmetry i©iaround the domain wall compared
to the skyrmion(0, 2, 2) state. The LDOS of the coexisting skyrmion-vortex statdlsihdistinctly
strong zero-bias peak at the vortex core, and a significarghker one at the domain wall.

Finally, we mention that the skyrmion-anti-vortex coeigtstate(L.,L_,Q)= (—1,1,2) is
unstable. Due to the attractive interaction between thevantex and the skyrmion, such state
evolves into the parallel vortex state ., L_, Q) = (1, 3,0).

6.5 Magnetic field and temperature dependence of the proper-
ties of the skyrmion

The skyrmion is a chiral domain wall in. and an enclosed chain of one-component vortices in
A,, A, representation of the two component OP. In either casekgivenson is a loop-like structure

in OP space and it has very different properties from theexoais a point-like defect. For example,
the size of the vortex depends solely on the supercondumtingrence length However, the size of
the skyrmion depends also on the applied magnetic field Isedéwe chiral domain wall is expected
to move under the influence of the magnetic field. We therefgpert in this section the magnetic
field and temperature dependence of the size of the skyrmitimei( L., L._, Q) = (0, 2, 2) state,
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Figure 6.6: The radius of the skyrmiog as a function of the applied magnetic flixthrough the sample, at
temperatured” = 0, 0.3, 0.5, and0.87.. The inset shows that the area of the skyrmion shrinks IIpeeth
magnetic field, being maximal for negative magnetic field.

and the consequences of varied skyrmion size on the eneegyrsp.

Fig. 6.6 shows the radius of the A _-dominated0, 2, 2) skyrmion, as a function of the magnetic
flux ¢ through the sample, at temperatuiles= 0, 0.3, 0.5, and0.87,.. The¢ = HyS whereH,
is the magnetic field strength arftl = 7R? the area of the sample. We find that the skyrmion
expands with increasing temperatuie but shrinks with increasing applied magnetic field. The
skyrmion consists of the one-component vortices, with setated to the coherence lengthSince
¢ increases with temperature, so does the vortex-vorteraictien, and the size of the skyrmion can
duly increase. However, it is crucial here that the skyrmsoa chiral domain wall, balanced by the
clockwise supercurrnf, in the interior and the anti-clockwise at the exterior of themain wall.
With increasing applied magnetic field, the anti-clockwpset of j, is enhanced and the clockwise
part is weakened, shrinking the domain wall to smaller @guilm radiusr,. Inversely, the skyrmion
expands withy decreasing. Interestingly, the skyrmion survives evenegative magnetic field,
i.e. for¢p < 0, likely due to the finite energy needed to break the domain sakhat vortices
can leave the sample. As a consequence, at negative fieddskyhmion continues to expand to
surprisingly large sizes. The insetin Fig. 6.6 shows thatadly the square of,(¢) depends linearly
on ¢, i.e. o« 1/¢?, so that magnetic flux inside the skyrmion is roughly contstarhis is a very
important finding, indicating that existing skyrmions in i@en sample can be made larger, hence
easier to detect in experiment, if the polarity of the apphgagnetic field is reversed. Furthermore,
the stability at reversed field clearly distinguishes skgmms from vortices, since there is nothing
preventing individual vortices from leaving the samplegidgrom the ever-present disorder) if the
polarity of the field is changed. Last but not least, our figdimdicate that skyrmions are in general
an order of magnitude largethan the conventional vortices.

The electronic structure is of course affected by the chamgjee size of the skyrmion. Fig. 6.7
shows the quasiparticle excitation spectriiy(y,,) of the skyrmion at zero temperature, for mag-
netic flux through the sampl&/ ¢, = 10, 0, and—3, for whichr, /&, = 8,11.7 and17.1, respectively.
The domain-wall bound states move to large angular momeptwhenr, increases, which is ex-
pected since the bound states are confined to the domainlwaltidition, the cusped energy lines
of the Andreev bound states become more significant aréurd|A,|. The continuous spectrum
above the gap energy| > |A| tilts as a function of.,, because of the supercurrent induced by the
applied magnetic field favoring one chirality over the other
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Figure 6.7: Quasiparticle excitation spectruB), of the skyrmion studied in Fig. 6.6, as a function of angular
momentunu,,, at zero temperature and for applied magnetic flux throughséimplep/ ¢, = —3, 0, and10.
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Figure 6.8: Skyrmior{L,, L_,Q) = (0, 2, 2) state trapped by a normal-metal ring. The radius of the pigni
rings increases as,/{, = 14.5, 22, 36.5, 44 from left to right panels, respectively. The top row of pkitews
the OP profiles. The central row shows the corresponding igagticle excitation spectrum as a function of

angular momentum,,, and the bottom row shows the LDOS as a function of radiahdistr.

6.6 Pinning the skyrmion

Vortex matter in superconductivity is known to be pinned rehlne OP is suppressed, which can
have technological relevance for e.g. increasing the maixaurrent a superconductor can sustain
without the onset of vortex motion and related onset of taste and heating. The skyrmion matter
is a chain of enclosed one-component vortices accordingeddP representation usiny, and
A,, implying that skyrmions can be pinned in an analogy to eedi If so, then the size and the
position of the skyrmion could be controlled artificiallyhigh may be beneficial for the observation
of skyrmions and for further fluxonic manipulations. In tlsiection, we therefore consider the
possibility to pin the skyrmion by an embedded normal-mataj in the superconductor, where
the superconducting coupling constgns suppressed to zero, leading|td| = 0 inside the ring.
The median radius of the ring is labeleg and the width of the ring i8.5¢,. Such narrow rings
do not break the phase coherence between the supercornguiciside and outside of the ring.
We investigate the OP profile, energy spectrum and LDOS wiheiskyrmion is pinned by such a
normal-metal ring. The calculations are performed setfststently for7” = 0.17,. and in absence
of the magnetic field, since we do not want the competing tffecshadow the conclusions.



ELECTRONIC PROPERTIES OF EMERGENT TOPOLOGICAL DEFECTS IN (RAL p-WAVE
110 SUPERCONDUCTIVITY

Fig. 6.8 presents the OP profiles (top row), quasipartictatatton spectrum (central row) and
LDOS (bottom row) for the radii of the normal-metal ring/&, = 14.5, 22, 36.5, 44 (from left to
right respectively). A seen in the OP profiles in Fig. 6.8, ¢h&al domain walls are trapped in the
normal-metal ring in every considered case. With incregsadius of the ring,, the skyrmion cor-
respondingly expands. As a result, the domain wall bounésthift to larger angular momentum
14 1N the energy spectrum, and the zero-bias peak in LDOS shsftsell. Note that the domain
wall bound states become increasingly hole-dominant vii¢ghexpansion of the skyrmion. At the
same time, the Andreev bound states arofihe: |A,| become more significant and increasingly
electron-dominant.

The surface bound states are not affected by our exercidethaskyrmion gets close to the
sample surface. As seen from the panelsfgi, = 44, the OP profiles at the surface are strongly
affected by the domain wall. The supercurrents induced bydthmain wall and ones running near
the surface combine, causing interactions between the idowadl bound states and the surface
bound states. As seen from the energy spectfijfu, ), these two branches of bound states avoid
crossing each other. Finally, we note that the quasipesticiterference above the gap enery >
Ay is enhanced with the, increasing. The quasiparticles interference effect isdmto result in
additional BCS-like energy gaps and more Bogoliubov quasige states with7,, = 0.5 above
the gap energy\, [178]. Here, it is induced by the inhomogeneous OP profilmsteng from the
normal-metal ring, the skyrmion and the surface.

6.7 Summary

In summary, we have studied the topological and electromipgrties of characteristic vortical and
skyrmionic states in chirgh-wave superconductors, by solving Bogoliubov-de Gennestaans
self-consistently. We have presented the distributiorhef ttvo-component order parameter, the
supercurrent, quasiparticle excitation spectra, and L¥@Seach of the typical states. We pointed
out that the chiral order parameter representation usingpooentsA . = p, + ip, is ideal to study
the properties of chiral domain walls in the given state |athiep,- andp,-components of the order
parameter conveniently reveal the properties of vortices.

While conventional vortices are rather well understoodhmliterature (as point-like topological
defects, with core in the order parameter, supercurrentdimund it, and the vortex bound states
and LDOS peaks at the core), the topological defects comgri@ne-component vortices, and/or
chiral domain walls as well as their interaction with corvenal vortices, are an entirely new topic.
Moreover, a chain of one-component vortices (half the eiytiof a complete vortex, analogous to
half-quantum vortices of spin-triplet superconducto@3J) on a chiral domain wall can be charac-
terized as a skyrmion, and can be seen in the total order péeams loop-like topological defect
without a fully developed core. Such defects carry multifl@ quanta, but are entirely different
from “giant” vortices ins-wave superconductors [39, 41, 162]. Such skyrmion exhdbithiral do-
main wall inA_, whereas a vortex does not. Unlike vortices, they are cteniaed not only by the
angular momentum, but also by the topological charge inglegive order parameter space, where
both the relative amplitude and relative phase betweenitbhecomponents of the order parameter
play a role. A skyrmion traps bound states at the chiral domaill, leading to zero-bias LDOS
peaks at the domain wall. In addition, the LDOS exhibits tetechole asymmetry, which is differ-
ent from the electron-hole symmetric LDOS of usual multanta vortex states. We also show the
possibility to have a topological defect with a vortex iresaskyrmion, with superimposed features
of both topological constituents.

Accounting for variations of the magnetic field and tempamt our analysis shows that the
size of the skyrmion can be strongly tuned, being increageiddyeasing temperature and by de-
creasing applied magnetic field. The size of the skyrmiogpgctlly an order of magnitude larger
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than a vortex. Furthermore, contrary to conventional gedj a skyrmion survives changing the
polarity of the applied magnetic field, due to the finite egrecgst of breaking the chiral domain
wall so that vortices within the skyrmion can leave the samp\s a consequence, the skyrmion
can significantly increase in size at negative magnetic,feitte the decreasing energy of currents
flowing inside the skyrmion compensates the increasingggnef the longer chiral domain wall.
Finally, we have shown that even in the absence of the mayieltd the size of the skyrmion can
be manipulated by pinning on a normal-metal ring of presatibize. Considering that due to recent
experimental achievements in e.g. superconductor-fiectsee hybrids one can draw practically at
will the normal-metal paths inside the superconductor [189], this opens up a broad playground
for novel phenomena in fluxonics. We expect that our findiregated to stability of skyrmionic
topological defects in superconductors, manipulatiomeirtsize, and their distinct signatures in for
example LDOS, will enable their experimental identificatio scanning tunneling microscopy and
spectroscopy, which can be further used to prove partipaaing symmetry in the superconductor
of interest.

Publication The results of this chapter were published in:

e L.-F. Zhang,V. Fernande®Becerra, L. Covaci, and M. V. MiloSevi&lectronic properties of
emergent topological defects in chiralwave superconductivityPhys. Rev. B4, 024520
(2016) (13 pages).







Dynamics of skyrmions and edge states in the
resistive regime of mesoscomewvave
superconductors

In a mesoscopic sample of a chiratwave superconductor, novel states comprising edge states
skyrmions, mono and multichiral states have been staliiiz@ut-of-plane applied magnetic field.
Using the time-dependent Ginzburg-Landau equations we bglet on the dynamic response of
such states to an external applied current, thereby proxgjdiew fingerprints for identification of
p-wave superconductivity.

7.1 Introduction

Edge states, appearing where the condensate homogenaioken, and domain walls, separating
regions with different chiralities, are the main charastess of chiralp -wave superconductivity
[76,77]. They arise as a consequence of breaking the tire¥gal symmetry in an order parameter
with two components, i.e¥ = (v, ,v_)T [94]. Besides the edge states and the domain walls
another topological entity (the skyrmion) has recently eged in chiralp -wave superconductivity
[123]. Unlike the Abrikosov vortex that has a core due to tiseahtinuity of its phase, the skyrmion
is coreless and defined by a loop domain wall [124].

Chiral p -wave superconductivity is realized in spin-triplet sigmerductors. In such materials
two electrons pair up forming a triplet rather than a singketn conventional superconductivity. In
order to fulfil the Pauli principle, the orbital part of the wesfunction in spin-triplet superconductors
has odd parity, i.e. angular momentuin= 1 (p-wave). As a consequence of the spin of the
electronic pairs, another topological entity, the hal&gum vortex (HQV), arises in these materials.
HQVs are expected to be unscreened by the Meissner effedbdbeir spin currents, i.e. they are
likely to be found at the lateral borders of the sample [133].

Substantial evidence has been provided over the yeargtbatism ruthenate, SRuO, (SRO),
is a chiralp -wave superconductor [49, 52, 53]. However, the lack ofdimbservation of states
carrying spontaneous currents around space homogensgitiesmines the candidacy of SRO to the
p-wave class of superconducting materials [59-62]. In thegpter we study the electrical response
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of edge states, skyrmions, mono and multichiral states iegostopic chirgh -wave superconduc-
tor sample when an external current is applied to the sampie distinct behavior reported for
the states with and without domain walls in the currentagét characteristic provides an indirect
method for their differentiation. Furthermore, the thré&edent regimes, namely, superconducting,
resistive and normal, seen in the current-voltage chaiatite coincides with those of conventional
superconductivity. However, the temporal evolution of tiwe-component superconducting order
parameterw) is found to provide rich physics, and depending on the ntagsiof applied-current,
the skyrmionic and edge states must present different bmhfagm kinematic vortices in conven-
tional superconductors [121,181,182]. This in turn pregidew possibilities for resistive stages in
the sample behavior, and indirect means to identiyave superconductivity.

7.2 Theoretical Formalism

Within the weak-coupling limit and considering a cylingriid=ermi surface, the dimensionless
time-dependent Ginzburg-Landau (TDGL) equations for ti@ ¢component order parametér=
(¢4, )T and the vector potentid\ , in chiral p -wave superconductors reads

| D2 1P .
(%+Z(p>‘1’ = %[ 2 DJQ } ( Zt )+\Il<1 — w2 + g‘I’*Uz‘I’>, (7.1)
RV (VX A) + (Vo +28) =17, (7.2)

wherey is the electrostatic potentid) = (V — ¢A) is the covariant derivative, and, = (D, +
iD,)/~/2 are creation and annihilation operators of Landau levatssfying the commutator
%[lL, IT_] = 1. 7 is a phenomenological parameter that depends solely orh#peof the Fermi
surface of the material under consideration (for SRO catas yieldr = 1/2, owing to cylin-
drical Fermi surface [77,102]). Finallg, is a Pauli matrix, is the GL parameter, andl is the
superconducting current density,

J = %Im{wiD¢++@/}*Dw_}

+ % Im{\IJ* [H+&++H,&,} Witiw [H+&+—H,a—,] \Ilj}, (7.3)
wheresy = (6, £ i6,)/2, and{z, j} is the canonical base in Cartesian coordinates. In Eqs)-(7.1
(7.3) distances are scaled to the superconducting cohetength¢, time to the GL timet,, and
the vector and electrostatic potentialsAg = hc/2ef and gy = Ag/cto, respectively. Similarly,
the order parameter is scaled to its bulk zero-field vaiieA = 0)|, and the current density to
Jo = (eh/m&)|®o|?. In order to study the dynamical properties of mesoscogiakch-wave super-
conductors, we adopt the Coulomb gauge, i.e. the arbittargtion of Sec. 3.2 is required to satisfy
the equatiom\y = —V - A, which makes the transformed vector potenfididivergence-free at all
times. This gauge choice thereby provides the equatioréelectrostatic potential,

Vip=V.J. (7.4)
For the vector potential and because of an out-of-plangexpptagnetic field, we choosk =

—(rxH)/2. The boundary conditions imposed at the superconductmrtra and superconductor-
normal-metal interfaces are,

v =0 .
Dy +j = 0 } at N and S sides
Yrt+p_=0
Dy, —D,v_=0 » atE and W sides, (7.5)

0:=0
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Figure 7.1: The voltage as a function of the applied curreanhsity for two nanobridges of same length
(wy = 20¢), and with different widthsw, = 6£ (a), andw, = 10¢ (b). The lower inset of panel (a) shows
the nanobridge, along with the normal leads used to applyctireent, and the points where the voltage is
measured, namely; = 17.5 andy; = 2.5¢. Another two insets show the opening (a) and the absencd (b) o
the hysteretic loop of the voltage vs. current density instiygerconducting phase, i.e. the phase with nearly
zero voltage drop.

respectively. N, S, E and W stand for the cardinal points.r&hr; is applied at contacts located
at N and S. Eq. (7.5) completes the TDGL equations for chiralave superconductors which we
solve using the finite-difference technique.

7.3 Transport signatures of domain walls in multichiral states

In this section we solve the TDGL equations using the Coulgaune, for nanobridges with normal
leads at the north and south sides [see the lower inset of Fitfa)]. These leads are used to
apply an external current density to the superconducting sample in order to measure the eltag
drop between two voltage contacts, namghandy;. In dimensionless units and at zero external
magnetic field, the voltage versus the current densityM characteristic) is plotted in Fig. 7.1
for two nanobridges of length0¢ and widths6¢ (a) and10¢ (b), respectively. The obtaineg-V
characteristics are apparently similar, with two différenitical currents forj, > 0 (jo, < Jer)
depending on whethey, is decreased (ramped down) or increased (ramped up). Hoveezeom

in of the superconducting phase i.e. the phase with neartyraeasured voltage, shows a distinctly
different behavior, as seen in the two upper insets. Theshgtst loop in the superconducting phase
opens in Fig. 7.1(a), while being absent in Fig. 7.1(b). ldeorto understand the origin of the
hysteresis within the superconducting phase, in whatidlwe describe the order parameters that
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Figure 7.2: Four representative states during the ramp ddesf) and ramp up (g-1) of the current in the V
vsj plot of Fig. 7.1(a). The quantities shown are the contoutglaf the superconducting order parameters
(J1»+|?) and the vectorial flow of the current densit})(

correspond to these cases.

Fig. 7.2 directly shows the superconducting states resiplen®r the opening of the hysteretic
loop in thej,,-V characteristic of Fig. 7.1(a). The top row in Fig. 7.2 slsdwo representative states
corresponding to the ramp down ¢f, whereas the bottom row shows two representative states
corresponding to the ramp up gf. From the top (bottom) row one can easily see that by ramping
down (ramping up) the current from the normal phase, onécatW with chiral currents flowing
downward (upward) is formed. Subsequently, as the exteuratnt is further decreased (increased)
the vertical DW transforms to a horizontal DW with leftwardyhtward) currents. Furthermore, one
can also notice that the states with vertical DWs, as welhasstates with horizontal DWSs, form
the pair of degenerate states owing to the broken TRS. Thahsnthat under the transformation
[Yi|a — |-, and|y_|. — |14],, the reduced expression of the free energy [Eq. (4.8)] nesnai
unchanged. Thus, we claim that the combination of degemetgterconducting states with opposite
currents (vertical DWs), and the fact that the voltage inrtheobridge is measured transversally to
them, leads to the hysteretic behavior seen in the insegffi(a).

However, when the width of the nanobridge is changed, e.g: t0 10§, the degenerate states
become monochiral, allowing the formation of spontaneausents flowing along the edges of the
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Figure 7.3: Same quantities as in Fig. 7.2 but for the statethé superconducting phase for the ramp down
(top row) and ramp up (bottom row) paths of the V yglot of Fig. 7.1(b).

sample for each case, but with opposite directions [clos&wss in Fig. 7.3(c) and counterclockwise
as in Fig. 7.3(f)]. The corresponding voltage drop, rembiteFig. 7.1(b) for the latter case does
not reveal any hysteretic opening of tlieV characteristic in the superconducting phase. Then,
it is noteworthy that at zero external magnetic field hydiedeehavior can be used to distinguish
monochiral states with spontaneous currents along thesdtga multichiral states containing DWSs.

Finally, we apply an external magnetic field perpendicyléslthe nanobridge of widthé and
report the differential resistivityV’/dj,, as a function of the applied current density j,, for several
values of applied field. In Fig. 7.4 the differential resigtes for different external magnetic fields
H have been linearly shifted for clarity. In all curves, at tniical current densities:j.|, two dis-
continuities are clearly seen, indicating the transitiompfrom the normal to the superconducting
phase.

It is known that degenerate states such as those of Figs.nd.Z.8 split up when an external
magnetic field is turned on [124]. Thus, one expects that amaaguence of the lifted degeneracy,
a nonzero fieldd can close the hysteretic loop of the inset of Fig. 7.1(a). \&efiom this pre-
diction in Fig. 7.4(a), although we notice that the hysierepening survives up to some threshold
field, labeledH,. Below H., one can see pronounced dips in the differential resistigitgtirect
consequence of the discontinuities seen in the voltageoplbig. 7.1(a)(upper inset), arising due
to applied current pushing the vertical DWs of Fig. 7.2 (Yt of the sample and allowing the
formation of the horizontal DWs of Fig. 7.2(c,l). Since thargple is narrow), = 6£), a weak
applied magnetic field is sufficient to push out the vertic&/$and favor horizontal DWs as the
ground state of the system, so that the hysteretic behaveypplied current is lost.

Above H, in Fig. 7.4(a) the applied current density can only stabilize one ground state,
i.e. one of the two non-degenerate states, independentlyegbolarity of applied current. As a
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Figure 7.4: (a) Differential resistivitydV/dj, as a function of the applied current densify,jo, for several
values of the applied magnetic field, for the nanobridge with sizé¢ x 20¢. For clarity the differential
resistivities have been linearly shifted as a function efekternal fieldd. The visible dips in the curves arise
due to the discontinuities in the voltage vs. current dgndilaracteristic [see upper inset in Fig. 7.1(a)]. (b)
One representative state abolk,, at zero applied current density. The displayed quantitiestihe same as
in Fig. 7.2.

consequence, the hysteretic loop in the voltage vs. cudemity characteristic is closed. In order
to show the lifted degeneracy of the ground state, in Fig(bj we show one representative non-
degenerate state abo¥#, at zero applied current. There one can see that the edgetsiome one
side of the DW are annihilated by the screening currentseoégternal magnetic field, and enhanced
on the other side, so that it becomes energetically favertbtlisplace the horizontal DW off the
center (downwards in this case).

7.4 Transport signatures of skyrmions and edge states

In Sec. 5.3 we saw that in mesoscopic samples an out-of-pfgrieed magnetic field stabilized states
containing edge states, vortices and skyrmions. The skyriaithe topological entity originally con-

ceived in particle physics but appearing also as a charsiiteiopological defect in different areas
of condensed matter physics, such as Bose-Einstein comgsn@EC) [183-185], unconventional
superconductivity [123, 124], and magnetism [139, 186}ic8y speaking, skyrmions are defined
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Figure 7.5: Measured voltage versus applied current in disienless units for a mesoscopic sample of size
10¢ x 12¢ with normal contacts at north and south sides. An externaymeéic field = 0.8 H.) applied
perpendicularly to the sample stabilizes domain wallsrreigns and half-quantum vortices. Three different
regimes can be identified, namely the superconducting (®€istive and normal regime (N). The resistive
regime contains different states labelled here dy-((g).

by the integral
Q= %/ n.(o,nxo,n)dzdy, (7.6)
™

which measures in discrete units their topological chahgenagnetic materials, more specifically
in chiral magnets [139, 186} stands for the magnetization density, while in unconveraicu-
perconductivity and BECa is a pseudospin field obtained from the projection of the dlipe
(superconducting) order parameters into the Pauli matfit23, 124, 183, 185]

AN A/
BT (7.7)

In this work we stabilize skyrmions with topological charge and the edge states in a meso-
scopic sample of sizé0¢ x 12¢ by applying an external magnetic field = 0.8 H., out of plane
of the sample. Although skyrmions can be stabilized alsouitk bamples [123], the edge states
(containing one vortex just in component, i.e. a half-quantum vortex for the systeéinappear
only where the space homogeneity is broken, thus are clesisict of mesoscopic samples [124].
In what follows, we examine the response of such states tiegjpqurrent. In our study, the external

LIn the literature half-quantum vortices arisegirvave spin-triplet superconductors when only one of the $pi
components hosts a quantum of flux, i.#. = A(p)[e| t> +| lI> ]. In the chiralp-wave model considered
here the spin of the Cooper paris has been polarized andcuudrsy they behave as spinless particles. Nevertheless,
nucleation of vortices only in one component (half-quantamtices) is still possible due to the nonzero orbital aagul
momentum of the Cooper pairs now playing the role of the spthraquiring an order parameter with two components,

e W = (iy, )7
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Figure 7.6: Contour plots ofy, |* (a), |¢_|? (b), the cosine of the intercomponent phase difference
cos (A, —0,) (c), and the density of the topological charge (d) [see Eq6){7 The current distributionJ

is superimposed over the contour plot of panel (c), whereptiase differencéd, —6,)) was obtained from
the fields: v, = (Y4 +v_)/2 andvy, = (¢4 —1_)/2i. According to panels (c) and (d) the superconduct-

ing state is composed of one skyrmion inside the sample anddhe state formed by the connection of six
half-quantum vortices at the borders and four chiral domaaills around the corners.

current densityj is increased adiabatically from zero up to certain valustreaming from the north
to the south side of the sample.

The plot of voltage against current for a mesoscopic chiralave superconductor is shown in
Fig. 7.5, with the voltage defined aB: = ¢|,, — ¢|,,, where the bar over the electrostatic potential
denotes average, and = 1.5¢ andy; = 10.5¢. To date, for chiralp -wave superconductors
only the stationary GL equations have been derived eithen@imenologically or microscopically
[77,94,102]. The TDGL equations (7.1) and (7.2), obtainedm extension of the stationary ones
after imposing full gauge invariance are conceived for gapkuperconductors, but are expected to
capture the evolution of static and dynamic states in the sterdied cases.

Three different regimes can be identified from the curresitage characteristics of Fig. 7.5,
namely the superconducting (stationary), resistive (stationary), and normal (ohmic) regime. At
low currents the superconducting regime can exhibit wealstance, consequence of the normal
contacts (see the inset of Fig. 7.5). Fig. 7.6 shows the sapducting phase gt= 0 in contour
plots of |4, |? (a),]—|* (b), the cosine of the intercomponent phase differens¢d,. —6,) (c) [from
here on called the phase difference], and the density objtagical charge (d) [see Eq. (7.6)]. For
clarity the current distributiod is superimposed over the contour plot of the phase diffexenbere
the angular phaseés andd, were obtained from the redefined order parameters- (¢ +1_)/2
andiy, = (Y —1_)/2i, respectively.

The superconducting state, according to panels (c) and fyo7.6 and the pseudospin texture
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Figure 7.7: Texture of the pseudospin fialdcorresponding to the superconducting state of Fig. 7.6 and
obtained from the projection of the superconducting ordeiameter¥ into the Pauli matriceqé-,, 6,6}
[see Eq. (7.7)].

of Fig. 7.7 is composed of (i) one skyrmion inside the samale] (ii) the edge state enclosing
the sample and formed by the connection of six HQVs at thedserdnd four chiral domain walls
around the corners. The topological charge of the skyrngdéhds obtained from Eq. (7.6) with the
domain area indicated by the rectangle in Fig. 7.6 (d). Wniile skyrmion, the topological charge
of one isolated HQV is difficult to estimate due to the ill défon of its boundaries in the edge state
(see in Fig. 7.6(d) that delimiting one single HQV is not gthaforward). However, by comparing
qualitatively the local density of the topological chargeone HQV with that of the skyrmion and
with that of a vortex molecule, composed of a vortex-antewipair in different components, i.e.
a meron pair [183, 185], one realizes that all those topoldglefects are distinctly different. This
suggest that a convenient general description of the sapéucting state is in terms of the bulk and
surface states, namely the skyrmion/vortex and the edge sta

As one increases the external current the superconductitegaf Fig. 7.6 shifts to the right due
to the reduction of the superconducting currents in the gdstcompared to the west side (due to
compensation of the Meissner currents with applied curisse e.g. [187]). The resistive regime
thus appears at currents where the flux motion drives therstipguctor to a non-stationary state.
From Fig. 7.5 one can see that such regime exhibits sequgmntias in the voltage as current is
increased, which we attribute to different non-statiorsages (labelled there by letters). In order to
study the temporal evolution of the two-component supetaoting order parameter in the resistive
regime, we choose the statef Fig. 7.5 since it summarizes all the rich properties thaesoscopic
chiral p -wave superconductor presents.
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Figure 7.8: Temporal evolution of the non-stationary statef Fig. 7.5 (j =0.022j,), seen in the voltage vs.
time plot (a), and four snapshots of the phase differensgt, —6,), (o), (m), (A) and (), respectively. The
snapshots describe the states associated with the thrdes jpésarly seen in the voltage plot (a).

The plot of Fig. 7.8(a) reveals that the voltage in statd Fig. 7.5 is a periodic function of time.
Moreover, one can clearly see that there exist three digtiocles that correspond to a special flux
motion. Contour plots of the phase difference show the sigmelucting state at these modes. From
panel @) to (m) one can distinguish three events: (i) the bottom skyrmsomeading towards the E
side, (ii) one HQV at the E side left the sample at the sou#it-earner, and (iii) one HQV at the
W side acquired a quantum of flux from componeéntto form a full vortex. Next, the skyrmion
having two quanta of flux broke into two HQVs and one of thesatwe the E side while the other
fused with another quantum of flux to form a second full vorfsee panelsa) and @&)]. Another
mechanism of skyrmion annihilation, displayed in statésee the supplementary section), consist
of one skyrmion losing its two quanta of flux in the form of twoncentric HQVs. Finally, panels
(A) to (%) show the fusion of two full vortices into a skyrmion and theckeation of a HQV at the W
side from the west-south corner. There exists another nmésainaof skyrmion creation, consisting
of two quanta of flux being pumped inside the sample from thgeestate, more precisely the W
side.

The role of the normal contacts in the one dimensional mowofehe HQVs is crucial. Owing
to the superconducting-normal-metal interfaces the &afar HQV exit/entry is cancelled on the
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N/S sides of the sample. Further, there also exists a béorimed by Meissner currents on the E/W
sides, that prevents the HQVs to leave the edge state orrsahyé¢hat prevent the HQV to get in the
sample. Altogether, the HQV at the E and W sides experiereedly direction for motion along

the superconducting-vacuum interfaces.

7.5 Conclusions

In summary, using the time-dependent Ginzburg-Landautemsafor chiralp -wave superconduc-
tors, we have shown some characteristic dynamics of thesdge skyrmions, mono and multichi-
ral states in a mesoscopicwave superconductor. When an external current is apphi¢e sam-
ple, we reported novel features in the voltage versus cucteracteristics, which show a hysteretic
behavior in the superconducting phase when domain walt®areed due to confinement. This be-
havior persisted even when a weak out of plane magnetic fiakdapplied, providing a useful new
hallmark for indirect confirmation of the presence of domaails in the superconducting state and
thereby offering a proof of chiral-wave superconductivity in the material of interest. Farthore,
the resistive state shows much richer behavior comparedreeationals-wave superconductors.
For example, depending on the strength of the external miyrvee found that the half-quantum
vortices in the edge state can move along the direction oipdéied current, contrary to standard
kinematic vortices which always move perpendicularly t® tarrent flow [121, 181, 182]. We also
observe in the resistive regime that under the applied suskeyrmions either nucleate the sample
directly from the edge state or arise from the recombinatibtwo full vortices. These findings
combinatorially increase the possibilities for differeasistive states in mesoscopic superconduc-
tors, worthy of further exploration.

Publication The results of this chapter were published as:

e V. FernandeBecerra and M. V. MiloSevidviultichiral ground states in mesoscopiewave
superconductorsPhys. Rev. B4, 184517 (2016) (10 pages).

e V. FernandeaBecerra and M. V. MiloSevicDynamics of skyrmions and edge states in the
resistive regime of mesoscopiavave superconductor®hysica (633 91 (2017) (4 pages).







Summary and Outlook

8.1 Summary

Strontium ruthenate is an unconventional supercondudb@revthe Cooper pairs form spin-triplets
and break the time-reversal symmetry (TRS). Moreover,ewéd suggests the symmetry of the gap
is of the chiralp-wave type. Interestingly, this type of gap is proven to bedihchetypal example
of a topological superconductor breaking TRS. Vortex cameshiral p-wave superconductors are
expected to host zero-energy modes (the condensed-matigakent of Majorana fermions), that
are predicted to be the key element for the future quantunpatation. Then, the interest in SRO to
develop a technological application from its topologicaigerties appears well justified. However,
the materialization of a quantum computer based on the agprdl superconductivity of SRO is yet
to be confirmed since the spontaneous magnetic fields peediatexist in this superconductor due
to TRS breaking remained elusive so far.

In this thesis, we studied chiralwave superconductivity to reveal the novel supercondgcti
configurations that emerge in mesoscopic samples whereneomént is of importance. The ap-
proach used in this thesis comprises the phenomenologinabGg-Landau theory and the micro-
scopic Bogoliubov-de Gennes formalism, solved self-csiesily. We discussed the novel magnetic,
electronic and electric properties of the emergent statesder to facilitate the identification of chi-
ral p-wave superconductivity in a candidate material. Thestifea, namely the magnetic profile,
the density of states, and the voltage-current charatitertsin be compared with results from Hall
probe microscopy, scanning tunneling microscopy, anéta&sce measurements.

With these goals, we first studied chiralwave superconductivity in mesoscopic rectangular
samples in absence of any applied magnetic field, in ordeatolize mono and multichiral states.
We reported the ground-state phase diagram of rectang@sosnopic samples with sizes ranging
from 3.5¢ to 23, wheref is the superconducting coherence length. We classifieddtessaccording
to the number of domain walls separating the regions witieift chiralities. The monochiral state
has no domain walls, but contains spontaneous currentsiioaiong the edges. We also noticed that
the multichiral phases are made stable owing to the stronfirament, but that same confinement
can overshadow the typical dipole-like magnetic field peodit the domain walls. Nevertheless, the
imaging of the reported spatial profile of stray magnetidf@the multichiral states can serve as a
clear evidence of the time-reversal symmetry breaking fpolagical superconductors. Finally, we
show that our conclusions and results are robust as a funatithe phenomenological parameters
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T andk, describing the possible variation of fermiology and maigrigroperties in a given material.

After describing the multichiral states, as an entirelyel@monfiguration compared to the avail-
able studies of mesoscopiewave superconductors, we have studied in detail all otlssiple
states that arise in a mesoscopic chiraave superconductor, as a function of out-of-plane agplie
magnetic field and the anisotropy parameters of the mat®is to odd parity and breaking of the
time-reversal symmetry the fundamental solutions of th&L[2quations are fractional vortices, i.e.
solutions where the phase windig is found in one component of the order parameter but not in
the other one. Fractional vortices in different componeats combine to form a cored/full-vortex
state, as well as a coreless/skyrmion state -clearly sedmreispatial profiles of the phase differ-
ence and the magnetic response. Skyrmions arise when santenaf fractional vortices in each
component combine to form a closed domain wall that sepathgeouter and inner region with dif-
ferent chiralities. On the other hand, we also obtainedtpadéintum vortices analogous to those of
spin-triplet superconductors, despite of the fact thataretis strongly pinned along in the chiral
representationf = (k, £ ik,)z. Actually the mesoscopic size of the sample plays a remégkab
role in the stability of skyrmions as well as in the here répadmovel transitions (e.g. formation of
skyrmions from the edge states, or transitions from a skymrto a full vortex).

Once we have identified these novel states and configuratimnbiave studied the topological
and electronic properties of characteristic vortical akyr®ionic states in chirgh-wave supercon-
ductors. The distribution of the two-component order patam the supercurrent, quasiparticle
excitation spectra, and LDOS, for each of the typical sthtage been presented. Special attention
is devoted to the skyrmion, exhibiting a closed domain wdikeve the Cooper-pair density is sup-
pressed, but core is not fully developed, unlike converiimortices. Moreover, the skyrmion is
found to be characterized not only by the angular momentwhnalso by its topological charge,
and the bound states that are trapped at the chiral domainMaaise bound states lead to zero-bias
LDOS peaks at the domain wall, and electron-hole asymmuetitya LDOS, which is different from
the electron-hole symmetric LDOS of usual multi-quantatexistates. We also show the possi-
bility to have a topological defect with a vortex inside a skion, with superimposed features of
both topological constituents. Finally, the analysis inie magnetic field and temperature shows
that the size of the skyrmion can be strongly tuned, beingeased by increasing temperature and
by decreasing applied magnetic field. Moreover, contrargotoventional vortices, a skyrmion sur-
vives changing the polarity of the applied magnetic fieldt tleads to the significant enlargement
of skyrmions at negative magnetic field. Nonetheless, slgmaican be manipulated also in the
absence of the magnetic field, by pinning on a normal-metglaf prescribed size, opening a broad
playground for novel phenomena in fluxonics. We expect thatfiodings will enable the experi-
mental identification of these novel states in scanningeling microscopy and spectroscopy, and
that those can be further used to prove particular pairingsgtry in the superconductor of interest.

Finally, we addressed some characteristic dynamics ofdge state, skyrmions, mono and mul-
tichiral states in a mesoscopicwave superconductor. When an external current is apphiedet
sample, we reported novel features in the voltage versusmucharacteristics, which show a hys-
teretic behavior in the superconducting phase when domaiis &re formed due to confinement.
This behavior persisted even when a weak out-of-plane niagiredd was applied, providing a use-
ful new hallmark for indirect confirmation of the presencedofmain walls in the superconducting
state and thereby offering a proof of chiyalwave superconductivity in the material of interest.
Furthermore, the resistive state shows much richer behavimpared to conventionatwave su-
perconductors. For example, depending on the strengtheoéxternal current, we found that the
half-quantum vortices can move along the direction of thgliad current, contrary to standard
kinematic vortices which always move perpendicularly te trrent flow. We also observe in the
resistive regime that under the applied current skyrmigthgenucleate the sample directly from the
edge state or arise from the recombination of two full vegicThese findings combinatorially in-
crease the possibilities for different resistive statea@soscopic superconductors, worthy of further
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exploration.

In conclusion, this thesis shows a comprehensive analfaisvel vortical and skyrmionic states
in mesoscopig-wave superconductors, with emphasis on their experirfigntifiable properties,
magnetic and electronic, as well as their behavior undeliegppurrent. The shown new features
are potentially useful in technology, either for detect& manipulation of Majorana states, or by
creation of more versatile nanoengineered circuits anccdsvMore importantly, we hope that this
thesis presents the opening chapter in the further invastig of novel states in superconducting
systems with a multicomponent order parameter, whesgave case is only a particular example.

8.2 Outlook

In chapters4 - 7, | investigated the novel superconducting configuratithat appear in mesoscopic
chiral p-wave superconductors. | revealed not only monochiral anltichiral states in absence of
an out-of-plane applied field, but also skyrmions, conwardl vortices and edge states in a non-zero
external magnetic field. These novel states, charactenzed)j to their magnetic, electronic and dy-
namic properties, emerged as the signature of supercawitjpof the p-wave type and breaking the
TRS. However, superconductivity breaking the TRS can alanifest in other pairing symmetries,
as for example+id ands+is. These symmetries are worthy of investigation since thealeand
experimental works have suggested that in the iron-bageetconductor Ba .K . Fe,As,, between
the moderatex ~ 0.4) and maximum{ = 1) doping, thes+id ands+is pairing symmetries are
the leading candidates [112,113]. Therefore, as a futunéragation of my work it will be interest-
ing to investigate these pairing symmetries phenomencddigiand microscopically in mesoscopic
samples, in order to reveal magnetic, electronic and dyngmuperties of their superconducting
configurations.

In chapters5 and 7, | reported edge states containing half-quantuncesr{HQVs) analogous
to those of spin-triplet superconductors where the dioeabif thed vector is allowed to rotate, unlike
chiral p-wave superconductivity wherEremains fixed along th#& axis. HQVs have been predicted
to be more favorable than conventional vortices when ananefield is applied [133, 188, 189].
However, the theoretical approach for the study of these BI@@\hot chiral, and | plan to upgrade
the methods to address the emergent physics.

In chapter 7, | showed some characteristic dynamics of the edge statengns, mono and
multichiral states in a nanobridge of a mesoscepigave superconductor linking two normal leads.
| revealed novel features in the voltage versus currentaci@ristics when an external current was
applied. The extension to a doubly connected supercondattioough not finished and included in
this thesis, is already developed. The importance of tasih our collaboration with experimental
teams in Leiden and Penn State University, working on measents of the nontrivial oscillation of
the superconducting transition temperature with the adpinagnetic flux (the Little-Parks effect),
as well as the magnetoresistance of the ring-like SRO samflberefore, the study of the mag-
netoresistance in a doubly connected mesoscopic ¢hvnadve superconductor is the immediate
extension of this work.






Samenvatting

9.1 Samenvatting

Strontium ruthenaat (SRO) is een onconventionele supadgel waarin de Cooper paren spin-
triplets vormen en de tijdsomkeersymmetrie (TRS) brekeawi® suggereert dat de symmetrie van
de bandgap van het chiralegolf type is. Het is bewezen dat dit type van gap een arclsthivoor-
beeld is van een topologische supergeleider die de TRSthieekordt verwacht dat vortices in een
chiralep-golf supergeleider modes met energie nul bevatten (hetrgienseerd materie equivalent
van Majorana fermionen), waarvan voorspeld wordt dat zeséautelelement zijn in toekomstige
kwantum computationele berekeningen. Daarnaast lijkhteresse in SRO, voor de ontwikkeling
van toekomstige technologische applicaties, omwille vpmtapologische eigenschappen gerecht-
vaardigd. De materialisatie van een kwantumcomputer,spyd op de topologische supergeleid-
ing van SRO, moet echter nog steeds bewezen worden, aam@petigpontane magnetisch veld, dat
voorspeld werd te moeten bestaan in deze supergeleidedlenaam de breking van de TRS, echter
afwezig blijft.

In deze thesis bestuderen we de chigalf supergeleiding om de nieuwe supergeleidende con-
figuraties die zich voordoen in mesoscopische samples, eyshniting belangrijk is, te onthullen.
De methode die in deze thesis toegepast wordt, omvat de famaoygische Ginzburg-Landau the-
orie en het microscopische Bogliubov-de Gennes formaligbeevergelijkingen worden daarbij op
een zelf-consistente manier opgelost. We bespreken devaisagnetische, elektronische en elek-
trische eigenschappen van de toestanden, om de idendficaii de chirale-golf supergeleiding
in een kandidaat materiaal mogelijk te maken. Deze eigampgsn, zoals het magnetisch profiel,
de toestandsdichtheid, en de spanning-stroom eigensehggmnen vergeleken worden met resul-
taten van Hall probe microscopie, scanning tunneling nsicopie, en weerstandsmetingen.

Met deze doelstellingen in het achterhoofd, bestudeerdeaenst de chiralg-golf supergelei-
ding in rechthoekige mesoscopische samples, in afwezigle een magnetisch veld, om zo de
mono- en multi-chirale toestanden te stabiliseren. Weadppen het grondtoestand fasediagram van
rechthoekige mesoscopische samples met groottes gaamdsg#ot 23¢, waarbij¢ de supergelei-
dende coherentie lengte is. We classificeerden de toestantipens het aantal domeingrenzen die
de regio’s met verschillende chiraliteit van elkaar schreid De monochirale toestand heeft geen
domeingrens, maar bevat spontante stromen die langs de/l@idn. We hebben ook ontdekt dat
de multichirale fasen stabiel gehouden worden dankzij ekestopsluiting, maar dat deze opsluit-
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ing het typische dipool magnetisch veld profiel van de dongegmzen kan overschaduwen. Toch
kunnen afbeeldingen van het ruimtelijk profiel van het demegigerend veld van de multichirale
toestanden dienen als een duidelijk bewijs van de tijdsemsy@enmetrie breking in topologische
supergeleiders. Uiteindelijk tonen we dat onze conclusieesultaten robuust zijn als functie van
de fenomenologische parametersnx, die de mogelijke variaties van fermiologie en magnetische
eigenschappen van een bepaald materiaal beschrijven.

Na het beschrijven van de multichirale toestanden, als edsolig nieuwe configuratie in vergeli-
jking met de beschikbare studies van mesoscopisa@f supergeleiders, maakten we een gede-
tailleerde studie van andere mogelijke toestanden dig¢aartsiit mesoscopische chiraleolf su-
pergeleiders, als functie van een loodrecht aangelegd etiagh veld en de anisotropische param-
eters van het materiaal. Dankzij oneven pariteit en eenifigekan de tijdsomkeersymmetrie zijn
de fundamentele oplossingen van de TDGL vergelijkingeatifvaele vortices, i.e. oplossingen
waar de fase omwindingr teruggevonden wordt in @en van de componenten van de analep-
ter, maar niet in de andere. Fractionele vortices in vellecitie componenten kunnen combineren
om coredfull vortex toestanden te vormen, net zoals kernloze/skyrnoiestanden, duidelijk geob-
serveerd in het spatiale profiel van het faseverschil en dgetsche reactie. Skyrmionen komen
voor wanneer een gelijke hoeveelheid van fractionele sestin elke component combineren om
gesloten domeingrens te vormen die de binnenste en buategb’s met verschillende chiraliteit
van elkaar gaat scheidt. Langs de andere kant verkregen kvhatbkwantum vortices, analoog
aan de spin-triplet supergeleiders, ondanks het feit daedrd sterk vastgepind is langsin de
chirale voorstellingd = (k, + ik,)z. De mesoscopische grootte van het sample lijkt een merk-
waardige rol te spelen in de stabiliteit van de skyrmionésgak in de hier gerapporteerde nieuwe
overgangen (bv. vorming van skyrmionen van randtoestarafesvergangen van skyrmion tot een
volledige vortex)

Eens we de nieuwe toestanden en configuraties hebben tigédend, bestudeerden we de
topologische en elektronische eigenschappen van kaistie¢ke vortex en skyrmion toestanden in
chiralep-golf supergeleiders. De distributie van de twee-compbaogteparameter, de superstroom,
guasideeltje excitatie spectra en LDOS worden voor elk watypische toestanden voorgesteld. Er
wordt extra aandacht besteed aan het skyrmion, dat eengeslomeingrens heeft waar de coop-
erpaar dichtheid onderdrukt wordt, maar waar de kern nikedig ontwikkeld is, in tegenstelling
tot conventionele vortices. Bovendien werd er ontdekt addtskyrmion niet enkel door angulair
moment gekarakteriseerd kan worden, maar ook door zijnagseche lading, en de gebonden toe-
standen die vast zitten aan de chirale domeingrens. Dezmdeb toestanden leiden wgro-bias
LDOS pieken aan de domein grens, en elektron-gat asymnmetteeLDOS, dat verschillend is van
de elektron-gat symmetrische LDOS van gebruikelijke rkitanta vortex toestanden. We tonen
ook de mogelijkheid om een topologisch defect te verkrijgern een vortex binnenin een skyrmion,
met gesuperponeerde kenmerken van beide topologischétaengen. Ten slotte toont de anal-
yse in verschillende magnetische velden en bij versclibetemperaturen aan dat de grootte van
het skyrmion sterk gevarieerd kan worden, waarbij dezede® bij toenemende temperatuur en
bij afnemend aangelegd magnetisch veld. Daar tegenoverekuskyrmionen ook gemanipuleerd
worden in afwezigheid van een magnetisch veld, dankzijipmop een normaal-metaal ring van
bepaalde grootte, waarbij een groot veld van nieuwe fenemerfluxonicsgeopend kan worden.
We verwachten dat onze bevindingen een experimenteleifidatie van deze nieuwe toestanden
met behulp van scanning tunneling microscopie en spedpis staat kunnen stellen, en dat deze
verder gebruikt kunnen worden om specifieke paringssyninietreen relevante supergeleider te
kunnen bewijzen.

Ten slotte bestudeerden we enkele karakteristieke dyhkamian de randtoestanden, skyrmio-
nen, mono- en multichirale toestanden in een mesoscopisgodf supergeleider. Wanneer een
externe stroom wordt aangelegd op het sample, rapporteergl@ieuwe eigenschappen in de span-
ning versus stroom karakteristieken, die een hysteregjednag vertonen in de supergeleidende
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fase, wanneer de domeinsgrens gevormd worden door opglulliit gedrag bleef behouden wan-
neer een zwak loodrecht magnetisch veld aangelegd wegkradwvoor een handig nieuw keurmerk
voor indirecte bevestiging van de aanwezigheid van donreinzgn in de supergeleidende toestand
en daarbij bewijs leverend voor chirgbegolf supergeleiding in het beschouwde materiaal. Verder
toont de resistieve toestand een veel rijker gedrag in ligdigg met de conventionele-golf su-
pergeleiders. Zo vonden we bijvoorbeeld dat, afhankehjk de kracht van de externe stroom, de
half-kwantum vortices kunnen bewegen langs de richtingdeaaangelegde stroom, in tegenstelling
tot standaard kinematische vortices die altijd loodreehtdgen ten opzichte van de richting van de
stroom. We observeerden in het resistieve regime ook daraahgelegde stroom skyrmionen het
sample ofwel direct vanuit de randtoestanden kunnen acere 0fwel ontstaan vanuit de recombi-
natie van twedull vortices Deze bevindingen zullen de mogelijkheden in het vormerrgaestieve
toestanden in mesoscopische supergeleiders combirtdtali®en toenemen, en zijn daarbij verder
onderzoek waardig.

In conclusie, deze thesis toont een uitgebreide analyseigamwe vortex en skyrmion toestanden
in mesoscopischg-golf supergeleiders, waarbij de nadruk gelegd wordt op éxperimenteel te
verifieren eigenschappen, magnetisch en elektronisshpklhun gedrag onder aangelegde stroom.
De getoonde nieuwe kenmerken zijn potentieel van belangdhnologie, ofwel voor de detectie
en manipulatie van Majorana toestanden, ofwel bij de aeath meer veelzijdige nano-ontworpen
circuits en apparaten. Verder hopen we dat deze thesis eamngghoofdstuk is in toekomstig
onderzoek naar nieuwe toestanden in supergeleidendergrstmet een multicomponent ordepa-
rameter, waarbij het-golf geval enkel een specifiek voorbeeld is.

9.2 Toekomstperspectieven

In hoofdstuk 4 - 7, onderzoek ik de nieuwe supergeleidende configurateezich voordoen in
mesoscopische chirategolf supergeleiders. Ik onthul niet enkel monochirale artichirale toe-
standen in afwezigheid van een loodrecht aangelegd veldy mak skyrmionen, conventionele
vortices en randtoestanden in externe magnetische vektschillend van nul. Deze nieuwe toe-
standen, gekarakteriseerd door magnetische, elekttenese dynamische eigenschappen, komen
naar voor als de signatuur van supergeleiding vaptgatif type en de breking van de TRS. Echter,
supergeleiding die de TRS breekt kan zich ook manifesterandere paringssymmetrieén, zoals bi-
jvoorbeelds+id ands+is. Deze symmetrieén zijn verder onderzoek waardig, aaageleoretisch

en experimenteel werk suggereert dat in ijzer-gebaseeprgeleider Ba .K, Fe,As,, tussen de
gematigde { ~ 0.4) en de maximumiA = 1) doping, des+id ands-+is pairingssymmetrieén de
leidende kanidaten zijn [112,113]. Als een toekomstigertzmiting van mijn werk zou het inter-
essant zijn om deze paring symmetrieén verder fenomeisslogn microscopisch te bestuderen in
microscopische samples, om zo de magnetische, elekthmisa dynamische eigenschappen van
hun supergeleidende configuraties te kunnen onthullen.

In hoofdstukken5 en 7 rapporteerde ik over randtoestanden die half-kwartutitces (HQVS)
bevatten, analoog aan deze van spin-triplet supergeteidaar de richting van dd vector kan
roteren, tegengesteld aan chiralgolf supergeleiding waat gefixeerd blijft langs dé as. Er wordt
voorspeld dat HQVs gunstiger zijn dan conventionele vegtiiwanneer een parallel veld aangelegd
wordt [133, 188, 189]. De theoretische aanpak voor de statiedeze HQVSs is echter niet chiraal
en ik ben van plan om deze methodes te verbeteren om de nigsive fe kunnen behandelen

In hoofdstuk 7 toon ik karakteristieke dynamica van de randtoestandgmmsonen, mono-
en multichirale toestanden in een nanobrug van een meseshgpgolf supergeleider die twee
metalen met elkaar verbindt. Ik onthulde nieuwe kenmerketel spanning versus stroom eigen-
schappen wanneer een extern veld aangelegd werd. De ditlg@aar een dubbele aaneengesloten
supergeleider, hoewel nog niet afgewerkt en ingesloteree dhesis, is reeds ontwikkeld. Het
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belang hiervan ligt in onze samenwerking met experimernegms in Leiden en Penn State Uni-
versity, waar zowel gewerkt wordt aan metingen van nieteie oscillaties van de supergeleidende
transitie-temperatuur met aangelegde magnetische flud {tile-Parks effect), alsook aan magne-
toresistentie van ringachtige SRO samples. Daarom is diestan de magnetoresistentie in een
dubbel verbonden mesoscopische chigawlf supergeleider een directe extensie van dit werk.
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