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Promotor
Prof. dr. Milorad Milošević Antwerpen, June 2017



ii

Members of the Jury:

Chairman
Prof. dr. Jacques Tempere, Universiteit Antwerpen, Belgium
Promotor
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vickthor31@gmail.com



To the loving memory of my brother
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I am very greatful to Hilde Evans and Véronique Van Herck for their unlimited help with the
paperworks of the uncountable registration offices at the most varied instances (academic and non-
academic ones). I am also greatful to the support team of the computational facilities at the univer-
sity where all the simulations of this work were performed.

I kindly thank to all my friends from the CMT group and outsideof it. The Brazilians (the Die-
gos, the Jorges, Lucas, Silvia, Ariel and Rodolpho), the Serbians (Slaviša, Dean,̌Zeljko, Miša, and
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1
Introduction

1.1 Introduction to superconductivity

Superconductivity is a phenomenon in condensed matter physics where a material looses its electri-
cal resistivity below some critical temperatureTc. The phenomenon was discovered in 1911 by the
Dutch physicist Heike Kamerlingh Onnes when measuring the electrical resistance of Mercury [see
Fig. 1.1(a)] [1]. Being the first one to liquify Helium in 1908, Kamerlingh Onnes was studying the
behavior of pure metals at temperatures close to the absolute zero, when he observed that below 4.2
K the resistance of a mercury sample abruptly vanished. Thisfinding, which was later reproduced in
other materials such as tin and lead [2], convinced Kamerlingh Onnes that his measurements were
revealing a completely new state of matter. He coined it as “supraconductivity”, later to be changed
to “superconductivity”.

Another characteristic of superconductivity is the perfect diamagnetism, i.e. the total expulsion
of applied magnetic fields independently of the history of the process. This behavior is referred to
as the Meissner-Ochsenfeld effect, after its discoverers Walther Meissner and Robert Ochsenfeld
who observed it first in 1933 [see Fig. 1.1(b)] [3]. One is tempted to claim that the origin of the
Meissner-Ochsenfeld effect lies exclusively in the zero resistance of the superconducting state [4].
If a superconductor is cooled down below itsTc and later a magnetic field is applied, a current is
generated that flows without dissipation to induce a magnetic field opposite to the external one, com-
pensating it inside the sample, in agreement with Lenz’s law, i.e. the superconductor behaves as an
ideal conductor. However, if one inverts the order and first applies the external field to subsequently
cool down the superconductor below itsTc, the behavior followed by an ideal conductor differs from
the actual behavior of a superconductor. While the ideal conductor keeps inside the same magnetic
field belowTc that it had aboveTc, the superconductor totally expels the external field belowTc.

On theoretical side, brothers Fritz and Heinz London were the pioneers that devised a model
to capture the Meissner-Ochsenfeld effect in 1935 [5]. The model which was based on electro-
magnetism and early ideas about solids provided an equationfor the magnetic field along with a
characteristic scale for its spatial variation. This scale, denoted byλL is called the penetration depth
of the applied field into the superconducting sample [4]. Thevalues ofλL are material specific, e.g.
for Nb and CdλL is 32 and110 nm, respectively. Another large breakthrough in superconductivity
occurred in 1950 when Vitaly Ginzburg and Lev Landau formulated a theory based on Landau’s
theory of second-order phase transitions, to show that superconductivity depends on two different
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Figure 1.1: (a) The resistance of a mercury sample suddenly disappears below critical temperatureTc =
4.2K, indicating that the material became a superconductor. From Ref. [1]. (b) Depiction of the expulsion of
an external magnetic fieldB by a spherical superconductor (the Meissner-Ochsenfeld effect).

length scales [6],λL andξ. The new length in this model, the so-called coherence length (ξ), defines
the scale for variation of the order parameterψ whose square magnitude yields the local density of
carriers of superconductivity (ρs(r) = |ψ(r)|2). The Ginzburg-Landau model achieved widespread
recognition after (i) introducing two types of superconductors, namely type I and II, and (ii) its pre-
diction of vortices and their subsequent experimental confirmation (see Fig. 1.2) [7, 8]. Vortices
are localized defects where superconductivity is destroyed, and in which the magnetic field is com-
pressed so that one vortex carries exactly one quantum of magnetic fluxφ0. Vortices arise in type-II
superconductors to allow partial penetration of the applied magnetic field into the sample without
completely destroying the superconductivity, as would be the case in type-I superconductors. Vor-
tices form a triangular lattice, the so-called Abrikosov lattice, which defines a phase only in type II
superconductors (called Shubnikov phase or the mixed state). Type I superconductors do not have
mixed state, as they can not host vortices, unless due to finite size and demagnetization effects [4].

Despite of the success of the phenomenological theories to explain many of the main character-
istics of superconductivity, there were still several features that remained puzzling to the scientific
community. The discontinuity of the specific heat at the superconducting/normal state transition and
its exponentially decaying behavior in the superconducting phase (see Fig. 1.3) were some of the
features which were only understood after a microscopic theory of superconductivity came out in
1957. The BCS theory, called after its founders John Bardeen, Leon Cooper, and John Robert Schri-
effer [10], emerged after Cooper realized that two electrons could form a bound state slightly above
the Fermi surface provided that a weak attractive potentialexists [11]. The bound state of electrons,
the so-called Cooper pair, forms after the virtual exchangeof phonons (lattice deformations of the
ionic crystal structure propagating as a wave). This idea ofan interaction between electrons me-
diated by phonons that could bind them was first suggested by Fröhlich in 1950 [12], and it was
subsequently confirmed that same year through the discoveryof the isotope effect [13], i.e. the de-
pendence ofTc on the mass of the lattice ions. Finally, another important breakthrough in the theory
of superconductivity came in 1959, when Lev Gor’kov derivedthe Ginzburg-Landau equations from
the BCS theory [14]. This derivation not only validated the Ginzburg-Landau theory (in its limits),
but also provided a relationship between the phenomenological coefficients of the Ginzburg-Landau
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(a) (b)

Figure 1.2: (a) Magnetization as a function of the external field showing the differences between bulk type I
and II superconductors. While in the type I case there is an abrupt transition from superconducting to normal
state, in the type II case there exists a mixed state so that superconductivity is gradually destroyed. (b) In
the mixed state (also called Shubnikov phase) the external field partially penetrates the sample in the form
of vortices, each carrying a quantized unit of flux, which form a triangular lattice known as the Abrikosov
lattice. From Ref. [9].

theory and the microscopic parameters of a material such as its Fermi velocity and density of states.
With the BCS theory explaining the pairing mechanism in superconductors, and due to lack of

new important discoveries of superconductivity in other materials, the research in superconductivity
went to a slowdown in decades that followed the publication of Bardeen, Cooper and Schrieffer’s
work. However, the research took a major impulse in 1986 whenGeorg Bednorz and Alex Müller
discovered superconductivity in a ceramic compound of lanthanum and copper oxide, doped with
barium [16]. The discovery, that drew the attention of the broad community, reported for the first time
superconductivity appearing in a non metallic compound rather than a chemical element or alloy.
Besides, theTc of this material (35 K) broke an implicit limit (30 K) established for the mechanism
of Cooper pairing based on the virtual exchange of phonons. Within the subsequent few years more
compounds containing copper-oxide planes were reported tosuperconduct with even higherTc’s,
reaching to date the record of 153 K for the mercury barium calcium copper oxide (HgBa2Ca2Cu3O8)
under pressure [17]. Regarding the pairing mechanism of this group of superconductors, widely
known as cuprates, there is no consensus yet about what interaction provides the required attractive
potential for the formation of the Cooper pairs. However, what has been widely accepted to date is
that the superconducting gap hasd-wave symmetry rather than thes-wave symmetry of conventional
(low Tc) superconductors [18,19]. Thed-wave symmetry is manifested in the gap in the form of line
nodes, i.e. regions where the gap in the phase space goes to zero, which modify important quantities
such as the quasiparticle density of states (DOS) and the London penetration depth [20]. Precisely,
in the DOS plot shown in Fig. 1.4(a), one sees the V-shape characteristic for high temperature
superconductors (HTSs) [21], agreeing well with the expected behavior for gaps having line nodes
(d-wave symmetry). This DOS was obtained by scanning tunneling microscopy whose fundamentals
are shown in panels (b) and (c) of Fig. 1.4.

So far in this overview of superconductivity the existence of a unique gap developing at the Fermi
surface has been implicitly assumed both in theories and experiments. However, recent experimental
reports have revealed superconductivity with multiple gaps, namely multi-gap superconductivity, in
compounds such as: magnesium diboride (MgB2) [23], iron pnictides (LaFeAsO1−xFx) [24,25], iron
chalcogenides (FeTe1−xSex) [26], and iron-arsenic compounds (RFeAsO), with R standing for a rare
earth element. These materials have Fermi surfaces with a rich topology that enable the formation
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Figure 1.3: Heat capacity of aluminium in its superconducting and normal phases. In the normal phase the
heat capacity has a polynomial dependence with temperature, i.e. Cn = γT + βT 3, while in the supercon-
ducting phase it has an exponential dependence, i.e.Ces/γTc = a exp−bTc/T , whereγ, β, a, b andTc are
constants that are material specific. From Ref. [15].

(a) (b) (c)

Figure 1.4: (a) Quasiparticle density of states, obtained with a scanning tunneling microscope (STM), for the
high critical temperature superconductorBi2Sr2CaCu2O8+δ [21]. (b) Depiction of the STM along with (c)
its corresponding diagram. Due to the potential differencebetween the tip (N) and the sample (S), electrons
tunnel the insulating barrier (I) formed by vacuum that surrounds the device. From Ref. [22].

of multiple superconducting gaps. As an example, Fig. 1.5 shows a 3D plot of the three supercon-
ducting gaps, namelyα, β, andγ, of the compound Ba0.6K0.4Fe2As2 [27]. The corresponding Fermi
sheets have an almost perfect cilindrical shape and are located at the highly symmetric pointsΓ and
M of the two-dimensional Brillouin zone. Thez direction displays the magnitude of the gaps. The
Fermi surface, having three sheets and obtained with angle-resolved photoemission spectroscopy,
is also shown at the bottom of the figure. Finally, the temperature dependence of the three gaps is
shown in the inset.

The report of the first multigap iron-based superconductor drew the attention of the broad com-
munity since for long time persisted the antagonistic idea between ferromagnetism (inherent in iron)
and superconductivity. However, with the following years this idea was slowly dismantled, owing
to the appearance of more iron-based superconductors that directly or indirectly confirmed the in-
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Figure 1.5: 3D plot of the superconducting gaps on the Fermi surface,α, β, andγ bands, of the iron-based
superconductor Ba0.6K0.4Fe2As2. With the magnitude of the gaps being displayed along thez direction,
one can note that theα and γ bands have roughly the same magnitude. The inset shows the temperature
dependence of the magnitude of the gaps. The Fermi surface ofBa0.6K0.4Fe2As2, having three sheets and
mapped with angle-resolved photoemission spectroscopy, is shown at the bottom of the figure. From Ref. [27].

terplay between strong correlation and superconductivity. Today, after the intense research carried
out in iron-based superconductors there are solid evidences suggesting that the pairing symmetry in
these superconductors is of thes±-wave type [28]. On the other hand, regarding the pairing mecha-
nism the debate is still open. There is no consensus yet on what is the exact interaction responsible
for superconductivity in the iron-based materials.

We conclude this overview of superconductivity with a shortdescription of a superconductor that
has raised major expectations regarding reaching superconductivity at ambient temperatures. It is
hydrogen sulphide (H2S), a chemical compound that at ambient pressures is a gas easily recognized
by its odor of rotten eggs. H2S becomes a metallic conductor of electricity under pressures higher
than 0.9 million of atmospheres (90 GPa), and at 1.5 million of atmospheres it breaks the record of
the highest superconducting critical temperature with aTc of 203K (-70 oC) [29]. The wave of
excitement spread within the scientific community might suggest that we are witnessing the epoch-
making discovery in the field of superconductivity during the last decades.

1.2 The Ginzburg-Landau theory

The grounds of the Ginzburg-Landau (GL) theory of superconductivity lie in (i) the gauge invariant
principle and (ii) the paradigmatic model of Landau of second order phase transitions [6]. That
means that the theory requires a complex order parameter (ψ) in order to describe the continuous
transition from the superconducting to the normal phase. Besides,ψ has to change smoothly from
a finite value to zero along the superconducting/normal transition. The minimal free energy density
fulfilling this requirement is
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Figure 1.6: Free energy density for different values of the phenomenological parameterα, revealing the
existence of two phases that are smoothly connected, i.e. without any abrupt discontinuity at the transition
point, in agreement with the characteristics of second order phase transitions.

F [ψ] = α|ψ|2 + β

2
|ψ|4 , (1.1)

whereα andβ are phenomenological expansion coefficients. Minimization of Eq. 1.1 yields two
solutions,

ψ = 0, and |ψ|2 = −α
β

. (1.2)

One can see thatα andβ have to be negative and positive respectively, in order for the free energy
to be bounded from below (see Fig. 1.6). The coefficientα depends on temperature and drives the
transition between the superconducting and the normal phase. Bearing in mind that Landau’s theory
of second order phase transitions is valid in the vicinity ofthe critical point (in superconductivity
defined byTc), the precise dependence of the coefficientα on temperature is reduced to first order,
i.e. α(T ) = α(T − Tc). The coefficientβ, unlikeα, is temperature-independent. Fig. 1.6 shows
plots of the free energy for different values ofα. There one can see that as the temperature changes
aroundTc, equivalently toα changing around zero, the local minimum is established at either zero
or at a finite value of the order parameter.

Spatial variations of the order parameter and coupling to the magnetic field are included in the
free energy density 1.1 by adding two more terms,

F [ψ,A] = Fn0 + α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣∣∣
(~
i
∇− e∗

c
A
)
ψ
∣∣∣
2

+
h2

8π
, (1.3)

wherem∗ ande∗ are the mass and the electric charge of the carriers of superconductivity, respec-
tively. A is the vector potential andh is the local magnetic field. The free energy density of the
normal phaseFn0 has also been added in Eq. 1.3 to complete the full expressionof the GL free
energy density. Minimization ofF with respect to the fieldsψ∗ andA yields the two GL equations,
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1

2m∗

(~
i
∇− e∗

c
A
)2

ψ + αψ + β|ψ|2ψ = 0, (1.4)

J =
c

4π
∇× h =

e∗

m∗Re
{
ψ∗

(
~

i
∇− e∗

c
A
)
ψ
}
. (1.5)

Eq. 1.4 resembles the Schrödinger equation of a free electron in a magnetic field, but with the
nonlinear termβ|ψ|2ψ as an interaction term in the first GL equation. On the other hand, Eq. 1.5
is the Ampère’s law withJ being the superconducting current density. The GL equations and the
GL free energy density are gauge invariant by definition. They remain the same for other fieldsψ′

andA′, provided thatψ′ = ψeiχ andA′ = A + i∇χ, whereχ is the arbitrary gauge. Finally, the
boundary conditions that complement the GL equations are [4]

(~
i
∇− e∗

c
A
)
ψ · n̂ = 0, (1.6)

wheren̂ is a vector normal to the boundary surface. This boundary condition is appropriate for
vacuum-superconductor (V-S) interfaces since it prohibits superconducting currents to flow perpen-
dicularly to the interface. On the other hand, the appropriate condition for insulator-superconductor
(I-S), metal-superconductor (M-S), and superconductor-superconductor (S’-S) interfaces is [30]

(~
i
∇− e∗

c
A
)
ψ · n̂ =

i~

b
ψ, (1.7)

whereb can be infinity, finite positive, and negative for the I-S, M-S, and S’-S interfaces, respectively.

1.2.1 Characteristic length scales

The GL equations 1.4 and 1.5 form the set of coupled nonlineardifferential equations that describe
superconductivity near the critical temperatureTc. Due to their complexity the available analytical
solutions are scarce. However, from the analytical cases reported in the literature to date one can
draw very important quantities, such as the natural length scale governing the spatial variation of the
superconducting order parameter.

Consider a one-dimensional superconductor at zero external magnetic field and occupying the
regionx ≥ 0. The first GL equation for this case becomes

~2

2m∗|α|
d 2ψ,

dx2
+ ψ, − |ψ,|2ψ, = 0, (1.8)

whereψ =∆(0)ψ,, and∆(0) =
√
|α|/β. One can notice in Eq. 1.8 that the quantity

√
~2

2m∗|α| has

the unit of length. Therefore, one can expect that it defines the scale for the order parameterψ,
namely the superconducting coherence length. When one solves Eq. 1.8 with the conditions that
ψ(x=0) = 0 andψ(x=∞) = 1, the order parameter takes the form

ψ(x) = tanh
( x√

2ξ

)
, (1.9)

whereξ =
√

~2

2m∗|α| . In other words,ψ(x) changes from zero to one in a short interval defined by

the coherence lengthξ [see Fig. 1.7(a)].
Another example of analytical solutions of the GL equationsuseful for the introduction of a

second length scale, is the case of a superconductor filling half the real space, i.e. atz ≤ 0, with
an constant external magnetic fieldHext parallel to its surface atz = 0. Considering that the order
parameter is constant and equal to∆(0), Eq. 1.5 reduces to
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Figure 1.7: From the few analytical solutions existing for the Ginzburg-Landau equations, panel (a) plots
the superconducting order parameterψ of a one-dimensional superconductor forξ = 1.5, and panel (b) the
magnetic fieldhx of a semi-infinite superconductor slab forλ = 6.

∇× h = −4π(e∗)2∆(0)2

m∗c2
A. (1.10)

Taking the rotational in both sides of the last equation and bearing in mind thath=∇×A, one
obtains the following equation for the magnetic field,

∇2h− 4π(e∗)2∆(0)2

m∗c2
h = 0. (1.11)

Here one easily notices that the quantity
√

4π(e∗ )2∆(0)2

m∗c2
has the inverse units of length. One can

chooseh=hx(z)êx for simplicity, without loosing the important results, andreduce further Eq. 1.11
to

d 2hx
dz2

− 4π(e∗)2∆(0)2

m∗c2
hx = 0. (1.12)

The particular solution of Eq. 1.12 with the boundary condition hx(0)=Hext is

hx(z) = hx(0)e
−z/λ, (1.13)

whereλ =
√

m∗c2

4π(e∗)2∆(0)2
. This means that a constant magnetic field parallel to the surface of a

superconductor penetrates the sample in a top layer of thicknessλ. This is the reason whyλ is
called the penetration depth. Fig. 1.7(b) shows the plot of such penetrating magnetic field inside the
superconductor.

1.2.2 The surface energy and types of superconductivity

To realize that there exist two types of superconductors oneneeds to calculate the difference of the
Gibbs free energy (∆G), in the superconducting state, at zero and at a nonzero value of the external
field. One therefore starts from the definition of the Gibbs free energy density [31],

G [T,H] = F [T,h]− 1

4π
h ·H. (1.14)

Unlike the Helmholtz free energy densityF which depends onT andh (the temperature and the
local field), the Gibbs free energy densityG is a function of the independent variablesT andH, with



CHAPTER 1 9

Figure 1.8: Domain structures formed in the type I superconductor (lead) having a disk-shape, after (left) zero
field cooling, and (right) when field cooled. From Ref. [32].

the latter being the external magnetic field. Substituing Eq. 1.3 into Eq. 1.14, the expression forG

at the external fieldH becomes

GsH = Fn0 + α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣∣∣
(~
i
∇− e∗

c
A
)
ψ
∣∣∣
2

+
h2

8π
− h ·H

4π
, (1.15)

whereas the Gibbs free energy density at zero field yields

Gs0 = Fs0. (1.16)

Calculating the difference∆G = GsH − GnH, one easily obtains

∆G = α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣∣∣
(
~

i
∇− e∗

c
A
)
ψ
∣∣∣
2

+
h2

8π
− h ·H

4π
+

H2

8π
, (1.17)

which one can simplify even further to

∆G = α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣∣∣
(~
i
∇− e∗

c
A
)
ψ
∣∣∣
2

+

(
h−H

)2

8π
. (1.18)
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One can see that there exists some resemblance between the last expression and the first GL equa-
tion, and one can exploit this resemblance to obtain a reduced expression for∆G . The multiplication
of Eq. 1.5 byψ̄ gives

ψ̄
1

2m∗

(~
i
∇− e∗

c
A
)2

ψ + α|ψ|2 + β|ψ|4 = 0. (1.19)

Moreover, by using the chain rule it is straightforward to show that,

ψ̄
(~
i
∇− e∗

c
A
)2

ψ =
∣∣∣
(~
i
∇− e∗

c
A
)
ψ
∣∣∣
2

+
~

i
∇
[
ψ̄
(~
i
∇− e∗

c
A
)]
. (1.20)

The last equation after integration, since the last term on the right hand side is a surface term that
with the proper boundary condition vanishes, becomes

∫
d3r ψ̄

(~
i
∇− e∗

c
A
)2

ψ =

∫
d3r

∣∣∣
(~
i
∇− e∗

c
A
)
ψ
∣∣∣
2

. (1.21)

Therefore the integration of∆G , after substitution of Eqs. 1.19 and 1.21, followed by some straight-
forward algebra yields

∆G =

∫
d3r

[
−β
2
|ψ|4 +

(
h−H

)2

8π

]
(1.22)

which can be easily recast in the most useful form,

∆G =
H2
c

8π

∫
d3r

[
−
∣∣∣ ψ

∆(0)

∣∣∣
4

+ 2κ2
( h

Hc2
− H

Hc2

)2]
, (1.23)

owing to the the relation between the thermodynamic critical field and the phenomenological pa-
rameters of the GL theory,H2

c/8π = α2/2β [4]. The magnetic field is scaled to the uppper critical
field, Hc2, andκ = λ/ξ is the GL parameter, respectingHc2 =

√
2κHc. The integral of Eq. 1.23

has to be solved numerically since it involves simultaneoussolutions of the two GL equations. One
case that provides valuable information without loosing the important results of the theory is the one
dimensional normal-superconducting interface. In that case one obtains that the surface energy can
be positive or negative and that the crossover lies atκ = 1/

√
2 [6]. When the surface energy is nega-

tive, i.e. forκ > 1/
√
2, the superconductor maximizes the normal-superconducting interfaces which

leads to multiple localized regions where the magnetic fieldpartially penetrates the sample [7–9],
i.e. vortex formation. On the other hand, when the surface energy is positive, i.e. forκ < 1/

√
2, the

normal-superconducting interfaces become energeticallyunfavorable and the superconductor avoids
them, or allows for larger domain structures, such as those shown in Fig. 1.8, appearing in specific
cases where the demagnetization field is important. Superconductors withκ > 1/

√
2 are known as

type II whereas those withκ < 1/
√
2 are called type I.

1.2.3 Flux quantization

The distinguishing property of type II superconductors is the existence of an intermediate state be-
tween the Meissner and the normal phase where vortices appear due to the negative energy of the
superconducting-normal interface. Using the second GL equation, let us calculate the magnetic flux
inside the areaS of a type II superconductor enclosed by a pathC. Writing the order parameter in
the polar form of complex numbers, i.e.ψ = |ψ|eiφ, Eq. 1.5 becomes

J =
e∗~

m∗ |ψ|
2
(
∇φ− e∗

~c
A
)
. (1.24)
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Calculating the line integral of the vector potentialA along the closed pathC, one obtains
∮

C

A·dl =
∫

S

h·ds = ~c

e∗

∮

C

∇φ·dl− m∗c

e∗2

∮

C

j·dl, (1.25)

wherej = J/|ψ|2, and in the central equation the Stoke’s theorem has been used. If one chooses
the pathC such that along itj= 0, and one assumes that the order parameter is single valued, the
magnetic flux inside the areaS becomes

Φ = nΦ0, (1.26)

wheren is an integer number and the quantityΦ0 = hc/e∗ is the minimal amount of flux penetrating
the sample, i.e. the quantum of flux. It is noteworthy to pointout that a first reading of Eq. 1.26
might lead us to interpret it as a quantization of the magnetic flux. However, formally speaking what
is quantized is the fluxoid rather than the flux. ReorganizingEq. 1.25 we see that

∫

S

h·ds+ m∗c

e∗2

∮

C

j·dl = nΦ0, (1.27)

where the quantity on the left side is the fluxoid. Nevertheless, notice that along the pathC where
j = 0 the fluxoid and the flux are the same.

Finally, direct measurements of the flux quantization revealed thate∗ = 2e, wheree is the
electronic charge, indicating that pairs of electrons rather than single electrons play the essential
role in superconductivity. In the discussion of the microscopic theory of superconductivity this
suggestion was most useful.

1.2.4 The Josephson effect

One of the archetypal consequences of the quantum behavior of electrons is their ability to tunnel
through potential barriers. Similarly, the tunneling of Cooper pairs between two superconductors
separated by a thin insulating or metallic layer has provided one of the hallmarks of the quantum
nature of the Cooper pairs. However, the fact that the Cooperpairs form a highly coherent conden-
sate, unlike electrons in a conduction band, allows the stabilization of an persistent flow between
two weakly connected superconductors without any externaldrive (the Josephson effect) [33]. This
effect, named after the theoretical prediction of Brian David Josephson in 1962, is one of the most
successfully applied features of superconductivity in technology. In order to explain this effect, let
us consider a junction where a thin layer separates two superconductors such as shown in Fig. 1.9.
Moreover, consider the following appropriate boundary conditions for the junction [31]

∂ψ1

∂x
− ie∗

~c
Axψ1 =

ψ2

ζ
, and

∂ψ2

∂x
− ie∗

~c
Axψ2 =

ψ1

ζ
, (1.28)

whereζ is a phenomenological parameter associated to the insulating layer. Substituing the junction
boundary condition in thex component of the superconducting current density given by Eq. 1.5, one
obtains

Jx =
e∗~

2m∗i

[
ψ∗
1

(ψ2

ζ
+
ie∗

~c
Axψ1

)
− ψ1

(ψ∗
2

ζ
− ie∗

~c
Axψ

∗
1

)]
. (1.29)

In the last equation, where the time reversal invariance of the order parameter and the vector po-
tential was assumed, the boundary coefficientζ became real, along with the vector potential leading
to the following simple form

Jx =
e∗~

m∗ζ
|ψ1||ψ2| sin (φ2 − φ1), (1.30)
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Figure 1.9: Cartoon of a Josephson junction with two superconductors with order parameters having angular
phasesφ1 and φ2, weakly connected through a thin insulating layer. Just as electrons are able to tunnel
potential barriers, the Cooper pairs here tunnel through the insulating layer and establish Josephson current
provided that there exists a difference between the angularphases (φ1 6= φ2).

where the polar expressions of the superconducting order parameters have been used. If the two
superconductors are the same material, the expression for this tunneling current becomes

Jx = Jm sinΦ21, (1.31)

whereJm = e∗~|ψ|2
m∗ζ

is the maximal value of the Josephson current andΦ21 = φ2 − φ1 is the phase
difference between the two superconductors. Eq. 1.31 then tells us that due to tunneling of Cooper
pairs between two weakly connected superconductors, a nonzero current density can appear on the
junction provided that there exists an imbalance in phase between the two sides of the junction. Such
imbalance can be achieved by e.g. applying a voltage to the junction or an external magnetic field.

1.3 BCS theory

Up to here superconductivity has been discussed in this thesis mostly from a phenomenological
point of view. This description, although powerful and general, falls short in the analysis of the
microscopic origins of superconductivity. Thus, to go beyond the phenomenological description of
superconductivity of the Ginzburg-Landau model, in the following sections the microscopic theory
will be presented.

1.3.1 Instability of the Fermi surface

Superconductivity arises after Cooper pairs condense intoa coherent state of matter revealing the
unique properties that have been discussed so far. It is of course not obvious, how two electrons
can form a Cooper pair when the Coulomb repulsion between them is strong. One can naively
think that there exists an attractive potential stronger than the Coulomb repulsion. Nevertheless,
such argument is not required at all to explain the formationof Cooper pairs. Interestingly, what
is required for the Cooper pair formation is a Fermi surface and a weak attractive interaction. In
order to demonstrate this, consider two electrons with opposite spins, i.e. forming a singlet state,
and consider the following Schrödinger equation for the orbital part of the pair

[ p 2
1

2m
+

p 2
2

2m
+ V (r1, r2)

]
|Ψ(r1, r2)〉 = (ε+ 2EF ) |Ψ(r1, r2)〉 , (1.32)

whereEF is the energy of the Fermi surface andε is the energy of the pair relative toEF . Changing
the coordinates from (r1, r2) to the coordinate of the center of mass (R = r1+r2

2
) and the relative
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coordinate (ρ = r1 − r2), one can rewrite the kinetic terms of the Hamiltonian of Eq.1.32 as

p 2
1

2m
+

p 2
2

2m
= − ~2

2m

(
∇2

1 +∇2
2

)
= − ~2

2m

(1
2
∇2

R + 2∇2
ρ

)
. (1.33)

Next, considering that the potentialV depends only on the relative coordinateρ, one should notice
the existence of two movements: one where the center of mass of the pair propagates freely, and
other described by the following Hamiltonian,

[
−~2

m
∇2
ρ + V (ρ )

]
|Ψ(ρ )〉 = (ε+ 2EF ) |Ψ(ρ )〉 . (1.34)

The solution of Eq. 1.34 can be built by doing an expansion in terms of the complete basis{|k〉},
whose infinite elements satisfy the eigenvalue equation∇ρ |k〉= ik |k〉, i.e. |Ψ(ρ )〉 = ∑

g(k) |k〉.
The complete basis{|k〉} is nothing less than the infinite set composed of plane waves{eik·ρ}.
Substitution of the expanded wave function into Eq. 1.34 yields

∑

k

[~2k2

m
+ V (ρ )

]
g(k) |k〉 = (ε+ 2EF )

∑

k

g(k) |k〉 . (1.35)

By projecting into the state〈k′| and bearing in mind that the elements of the complete basis are
orthogonal, i.e.〈k′|k〉 = δk′,k, one obtains

~2k′ 2

m
g(k′) +

∑

k

g(k)Vk′,k = (ε+ 2EF )g(k
′), (1.36)

where

Vk′,k =
1

Ω

∫
V (ρ )e−i(k

′−k)·ρd3ρ. (1.37)

The precise value of the matrixVk′,k is complex and depends on the full knowledge of the po-
tentialV (ρ ), which in many cases is not available. However, a simplification of the problem, first
suggested by Cooper [11], assumesVk′,k is constant and nonzero only inside a narrow window
around the Fermi surface as shown in Fig. 1.10,

Vk′,k =

{
−Ṽ , |~2k2

2m
− EF | < ~ωD and |~2k′2

2m
− EF | < ~ωD

0, elsewhere
(1.38)

with ωD being the Debye frequency. By applying the Cooper simplification on matrixVk′,k, Eq. 1.36
becomes

−Ṽ ∑
g(k)

ε+ 2EF − ~2k′ 2

m

= g(k′), (1.39)

which can be reduced further by summing overk′ on both sides of the equation and then factoring
out thek-independent term

∑
g(k′), leading to

Ṽ
∑

k′

1
~2k′ 2

m
− 2EF − ε

= 1. (1.40)

The sum overk′ in the last equation can be transformed into an integral overǫ = ~2k′ 2/2m−EF ,
with the corresponding introduction of the density of states per spinN(ǫ), so that

Ṽ

∫ ~ω
D

0

N(ǫ)dǫ

2ǫ− ε
= 1 =

Ṽ

2
N(0) ln

(ε− 2~ωD
ε

)
. (1.41)
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Figure 1.10: The simplification suggested by Cooper to the complex matrixVk′,k replaces it by a constant and
negative potential (−Ṽ ) in the shaded areas shown in the figure, i.e. the interception of the rings around the
Fermi surfaceEF .

The assumption that|ε| ≪ ~ωD leads finally to the energy of the pair relative to the Fermi
surface,

ε = −2~ωDe
−2/N(0)Ṽ , (1.42)

which is negative, i.e. represents a bound state, and divergent atṼ , explaining why a perturbative
approach was not successful in the attempts prior to the Cooper work.

1.3.2 The BCS ground state

The fact that within the Debye window an attractive interaction between two electrons, immersed
in a Fermi sea, leads to the formation of a state with negativeenergy, i.e. a bound state, suggested
that the Fermi surface is unstable against Cooper pairing [11]. By extension one can then think that
more electrons from the Debye window can also pair up and abruptly increase the number of Cooper
pairs. The process stops when an equilibrium between the condensate of Cooper pairs and the Fermi
surface is reached. With the condensate of Cooper pairs being a many-body state, one can attempt
to describe it in terms of wave functions of electronic pairs. However, the many-body state has to
be asymmetric under particle interchange in order to fulfillthe Pauli principle. That is achieved by
defining an operator̂A which for the case of two particles has the following property,

Â |ψ1〉⊗|ψ2〉 = |ψ1〉⊗|ψ2〉 − |ψ2〉⊗|ψ1〉 . (1.43)

In order to give a practical example of a many-body wave function, let us consider two electrons
and start the analysis from the spin sector. Each particle has the typical two spin states, either up or
down. The asymmetric two particle state for these spins is

|s〉 = 1√
2

(
|1 ↑〉⊗|2 ↓〉 − |1 ↓〉⊗|2 ↑〉

)
, (1.44)

wheres denotes that the state is a singlet, i.e. the total angular momentum of the two-particle system
is zero. Now, since the electrons also have orbital components, consider they are in quantum states
|k1〉 and|k2〉, or equivalently, they are described by the plane wavesek1·r1 andek2·r2. By imposing
that the total linear momentum of the system is zero, the fullasymmetric wave function of the two-
electron state becomes

Ψ(r1, r2)k,s =
1√
2

(
eik·(r1−r2) + e−ik·(r1−r2)

)
|s〉 , (1.45)
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which one can easily prove to be asymmetric under particle interchange. Moreover, this state is time-
reversal invariant, as required in conventional superconductivity due to the absence of spontaneous
magnetic fields.

One can use the second quantization formalism of field theories to describe the many-body states
of condensed matter in a more practical way. The building blocks of the second quantization for-
malism are the creation and annihilation operators, namelyĉ†kα and ĉq β, satisfying the following
properties:

ĉ†kαĉ
†
qβ + ĉ†qβ ĉ

†
kα = 0, (1.46)

ĉkαĉqβ + ĉqβ ĉkα = 0, (1.47)

and
ĉ†kαĉqβ + ĉqβ ĉ

†
kα = δkq δαβ. (1.48)

Herek andq label the orbital component of the state, whileα andβ label its spin part. From Eq.
1.46 one notices that whenk = q andα = β, the product̂c†kαĉ

†
kα vanishes, thus the creation of two

particles occupying exactly the same quantum state is forbidden. On the other hand, the definition
of the particle number operator as:n̂kα = ĉ†kαĉkα, along with the Eqs. 1.46 - 1.48, leads us to the
distinguishing propertŷn2

kα = n̂kα, which means that the electronic occupation of any quantum
state is either one or zero. The combination of these resultsthen indicates that the creation and
annihilation operatorŝc†kα andĉq β describe particles satisfying the Fermi-Dirac statistics. By using
the second quantization formalism one can then rewrite the asymmetric two-particle state of Eq.
1.45 as,

|k, s〉 = ĉ†k↑ĉ
†
−k↓ |φ0〉 , (1.49)

where|φ0〉 represents the vacuum state of the system, i.e. the state defined by the equation̂cq β |φ0〉 =
0, for anyq andβ. By extension, one can also build a many-body wave function forN electrons out
of N/2 time-reversal electronic pairs, as

|ΨN〉 =
∑

k1

· · ·
∑

kN/2

gk1
· · · gkN/2

ĉ†k1↑ĉ
†
−k1↓ · · · ĉ

†
kN/2↑ĉ

†
−kN/2↓ |φ0〉 , (1.50)

where for the caseN = 2 it was demonstrated earlier thatgk1
= C1

2ξ−ǫ , with C1 a constant. Never-
theless, the wave functionΨN , which represents a state with fixed number of particles, is difficult
to manipulate in the calculations of physical quantities. Bardeen, Cooper and Schrieffer then sug-
gested a wave function not conserving the number of particles, but practical to unravel the properties
derived from the BCS hamiltonian [10]:

|ΨBCS〉 =
∏

k

(
µk + νkĉ

†
k↑ĉ

†
−k↓

)
|φ0〉 , (1.51)

where, the normalization
(
〈ΨBCS|ΨBCS〉=1

)
implies that|µk|2 + |νk|2=1. The interpretation that

|νk|2 is the probability of an electronic pair (k↑,−k↓) being occupied, while|µk|2 is the probability
of the pair being unoccupied is easily derived from this normalization condition.

1.3.3 The superconducting gap

The reduced Hamiltonian of the BCS theory that arises after the imposition of Cooper pairing in a
Hamiltonian for interacting particles with a general pairwise potential reads [31]
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Ĥred =
∑

kα

~2k2

2m
ĉ†kαĉkα +

∑

k,k′

Vk,k′ ĉ†k′↑ĉ
†
−k′↓ĉ−k ↓ĉk ↑, (1.52)

where the first term represents the kinetic energy of the electrons in a parabolic band, and the second
term is the electronic coupling responsible for the formation of the Cooper pairs. Since the BCS
wave function of Eq. 1.51 does not conserve the number of particles [10], a Lagrange multiplier,
namely the chemical potential, has to be included in the reduced Hamiltonian as follows,

ĤBCS = Ĥred − µN̂. (1.53)

Here the chemical potentialµ is nothing but the Fermi energy, and the total particle number operator
is

N̂ =
∑

kα

ĉ†kαĉkα. (1.54)

In what follows, one needs to demonstrate that the BCS wave function of Eq. 1.51 is the vari-
ational ground state of the BCS Hamiltonian of Eq. 1.53. The details of the calculations are well
documented elsewhere [4,31], so here we will outline just the most important findings. The expected
value of the Hamiltonian 1.53 with the BCS wave function yields

〈ĤBCS〉 = 2
∑

k

ξk|νk|2 +
∑

k,k′

Vk,k′ν∗kµkν
∗
k′µk′ , (1.55)

whereξk = ~2k2/2m−µ. From the normalization condition
(
|µk|2+ |νk|2=1

)
one can parametrize

the amplitude densities as:µk=cos θk andνk=sin θk. Then one minimizes the expected value 1.55
with respect to the parameterθk and obtains

2ξk sin 2θk + cos 2θk
∑

k′

Vk,k′ sin 2θk′ = 0, (1.56)

where it was assumed that the potentialVk,k′ is symmetric, i.e.Vk,k′ = Vk′,k. Defining the sum in
the last equation as

∆k = −1

2

∑

k′

Vk,k′ sin 2θk′ , (1.57)

Eq. 1.56 takes the simpler form

tan 2θk =
∆k

ξk
. (1.58)

By using the trigonometric identities one can see that

cos 2θk =
ξk√

ξ2k +∆2
k

, and sin 2θk =
∆k√
ξ2k +∆2

k

, (1.59)

or equivalently

µ2
k =

1

2

(
1 +

ξk
εk

)
, and ν2k =

1

2

(
1− ξk

εk

)
, (1.60)

whereεk =
√
ξ2k +∆2

k is the excitation energy of a quasi-particle with momentum~k. One can
notice that there is a minimal amount of energy required to add an electron in the excited state, i.e.
there exists a gap, namely∆k, which satisfies the following nonlinear integral equation,
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∆k = −1

2

∑

k′

Vk,k′∆k′√
ξ2k′ +∆2

k′

. (1.61)

Normal solution

The simplest solution of the linear equation 1.56 is the trivial gap solution∆k = 0. The excitation
energy of the quasi-particles in this case becomesεk = ±ξk, and the occupation coefficients are

µk = 0, νk = 1, for ξk < 0, (1.62)

and
µk = 1, νk = 0, for ξk > 0. (1.63)

Substituing the last coefficients into the BCS wave functionof Eq. 1.51 one obtains,

|ΨBCS〉 =
∏

k<kF

ĉ†k↑ĉ
†
−k↓ |ψ0〉 , (1.64)

which is the usual ground-state wavefunction of a filled Fermi surface (also called the Fermi vac-
uum) [31].

Isotropic gap solution

Using the Cooper simplification for the attractive potential (see Eq. 1.38) and the important
assumption that the gap is constant in the reciprocal space,one can analytically solve the integral
gap equation 1.61 to obtain

1 =
Ṽ

2

∑

k′

1√
ξ2k′ +∆2

k′

, (1.65)

which in the continuum limit becomes

N(0)Ṽ

∫ ~ω
D

0

dξ√
ξ2 +∆2

= 1 = N(0)Ṽ sinh−1
(
~ωD
∆

)
, (1.66)

with N(0) the density of states at the Fermi energy. The fact that in many superconductors∆ ≪
~ωD, allows one to approximate the last result and obtain for thegap the following value

∆ ≈ 2~ωDe
−1/N(0)Ṽ , (1.67)

which resembles the energy of the bound state discussed in Eq. 1.42. Rewriting the expectation
value of the BCS Hamiltonian, i.e. the energy of the superconducting state (see Eq. 1.55), with the
aid of the practical notation introduced through Eq. 1.60 yields

〈ĤBCS〉 = 2
∑

k

ξk
2

(
1− ξk

εk

)
+

1

4

∑

k,k′

Vk,k′
∆k∆k′

εkεk′
. (1.68)

The detailed calculation of this energy can be found in Ref. [31]. Here we present and discuss the
following relation,

〈ĤBCS〉 − 〈Ĥ∆=0〉 = −1

2
N(0)∆2, (1.69)

which means that the BCS wave function of Eq. 1.51 has lower energy than the normal state solution
of Eq. 1.64, i.e.|ΨBCS〉 is the ground state of the BCS Hamiltonian 1.53.
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Figure 1.11: Contour plots of the Cooper-pair density of mesoscopic samples of different shapes. Notice that
despite of the samples having the same number of vortices thevortex configuration changes. From Ref. [34].

1.4 Mesoscopic superconductivity

We discussed in section 1.2.1 the existence of two length scales, ξ andλ, governing the spatial
variation of the fieldsψ andh, respectively. Also, in section 1.2.2 it was demonstrated that the ratio
between these two scales (κ = λ/ξ) determines the magnetic behavior of the superconductor, and
classifies it as type I or II. The limiting case of an extreme type II superconductor, i.e. a case where
λ ≫ ξ, is known as the London limit [4], where the linear relationship between the magnetic field
and the superconducting density current can be generalized, resulting in an expression useful for our
present purpose

4πλ2

c
∇× J+ h = Φ0k̂δ2(r ). (1.70)

Hereδ2(r ) is the 2D Dirac delta distribution function that introducesthe fluxoid quantization. Taking
the curl of the second GL equation 1.5 and substituing the Eq.1.70 there, one obtains the following
differential equation for the magnetic field,

∇2h− λ−2h = −λ−2Φ0k̂δ2(r ). (1.71)

The solution of Eq. (1.71) is

h(r) =
Φ0

2πλ2
K0

( r
λ

)
, (1.72)

whereK0 is the zeroth order modified Bessel function. From Eq. 1.72 and the use of energy
arguments it is straightforward to calculate the interaction energy between two vortices with single
vorticity [4,31], as

U(r) =
Φ2

0

8π2λ2
K0

(r12
λ

)
, (1.73)

wherer12 is the distance between the two vortices. Since this potential energy is monotonically
decreasing, the interaction between vortices is repulsive. In a bulk superconductor this type of inter-
action leads to the formation of a triangular lattice of vortices, the Abrikosov lattice [7–9]. However,
in mesoscopic superconductors, i.e. in those with dimensions comparable to the characteristic length
scalesξ andλ, the spatial configuration of vortices changes depending onthe sample shape [34]. For
example, we show in the Fig. 1.11 the contour plots of the Cooper-pair density illustrating that the
vortex configuration of square, triangular and circular samples differ for the same vorticity.
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Figure 1.12: (a) Scanning electron micrograph of Hall probes on which disks of aluminum of different radii
were placed. The Hall probes measure the average magnetic field emanating from the aluminum disks. (b)
Measured magnetization loops as a function of the external magnetic field for the superconducting disks of
(a). The plots reveal distinct behavior in the magnetization as the sample size is changed. From Ref. [35]

The behavior of the magnetization in mesoscopic superconducting samples also differs from the
one in bulk samples [35]. For instance one can easily see the effect of the sample size of several
mesoscopic disks on the magnetization plots in Fig. 1.12. There, in the loops of the magnetization
against the external fieldH, jumps occur due to transitions between superconducting states with dif-
ferent vorticities. Thus, one can infer from these jumps that there exists a barrier for the penetration
and exit of vortices which has to be surpassed. This barrier depends on the size and geometry of the
sample [36,37], and the electromagnetic properties of vortices [38], and causes the irreversibility in
the magnetization loops in the mesoscopic case.

Another interesting effect that emerges in mesoscopic superconductivity is the stabilization of
superconducting states unattainable in bulk superconductors. In Fig. 1.2(b) it was shown that vor-
tices in bulkNbSe2 form the triangular lattice characteristic of type II superconductors [9], i.e. the
Abrikosov lattice. These vortices, which each carry a single quantum of flux, minimize the free
energy by forming this lattice [7]. However, in mesoscopic superconductivity, vortices with vorticity
higher than one (from here on called giant vortices) can be stabilized due to geometric confinement
provided by the boundaries [39]. A giant vortex is not attainable in bulk superconductors because its
kinetic energy is far higher than that of a sum of single-quantum vortex. The geometric confinement
therefore provides the mechanism for the reduction of its energy as one can see in Fig. 1.13(a).

For a defined vorticity and at certain value ofH, Fig. 1.13(a) shows that configurations of vor-
tices (multivortex states) have higher energy than giant vortex states, e.g. for vorticityL= 3, 4, 5.
Moreover, it also shows continuous transitions from multivortex to giant vortex configurations, that
in the heat capacity appear as jumps [Fig. 1.13(b)], suggesting an universal method for the indirect
detection of giant vortices [40]. Directly, giant vorticeshave been imaged in mesoscopic supercon-
ductors by e.g. STM [41].
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(a)
(b)

Figure 1.13: (a) Free energy of a mesoscopic disk with radiusR = 10ξ as a function of the external magnetic
fieldH. Each colored line represents a superconducting state withdefined vorticityL. In some states one
finds continuous transitions from multivortex (dashed lines) to giant vortex (straight lines) states. (b) Heat
capacity as a function ofH corresponding to the states withL=2 andL=3, and revealing discontinuities in
the multivortex to giant vortex transitions. From Ref. [40].

1.5 Unconventional superconductivity

The theoretical description of superconductivity that hasbeen provided up to here was entirely de-
voted to superconductors with an isotropic gap and spin zero(singlet) Cooper pairs, the so-called
conventional ors-wave superconductors. In this section we briefly discuss other materials that have
been proven to superconduct but do not support the conventional picture of singlet Cooper pairs with
an isotropic gap.

1.5.1 The cuprates

In superconductivity, the name cuprates designates the class of materials having a perovskyte struc-
ture with planes of copper oxide (CuO2) being alternated with layers of ions such as lanthanum,
barium and strontium. These materials are superconductingin a broad range of temperature and
chemical doping. Precisely, this broad range of temperature, that can reach 170 K in certain mate-
rials under pressure, is the responsible for their alternative name, high temperature superconductors
(HTS). The superconductivity in the cuprates is highly anisotropic owing to their layered structure.
In fact, many experiments point out that superconducting order is developed in theCuO2 so that the
HTS phenomenon is two-dimensional. Nevertheless, this 2D-superconductivity is different from the
conventional superconductivity discussed so far in this work.

The superconductivity in cuprates is ofd-wave type rather than thes-wave type of conventional
superconductors, according to three different analyses, namely penetration depth measurements [43],
angle-resolved photoemission spectroscopy (ARPES) [44,45], and phase-sensitive experiments [18,
19]. In Fig. 1.15(a) the inverse square of the penetration depth as a function of temperature for
an YBCO crystal shows that at low temperaturesλ−2 linearly depends onT , behaving distinctly
different from thes-wave BCS behavior of conventional superconductors (also shown in the figure).
This distinct behavior is a consequence of quasiparticle DOS being proportional to the energy, i.e. a
line node as expected in the case ofd-wave symmetry.

With ARPES, a technique devised to measure the distributionof electrons inside a solid, exper-
imentalists have measured the band structure, Fermi surfaces, and most importantly for this work,
the superconducting gap of the cuprates. In Fig. 1.15(b) thesuperconducting gap as a function of
the angle along the Fermi surface is shown for the HTSBi2Sr2CaCu2O8+δ (BSCCO). There one
notices that the gap has a node atθ=π/4, in agreement with what is expected for the case ofd-wave
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Figure 1.14: (a) Crystal structure of several cuprates. (b)The copper (blue) and oxygen (red) atoms form a
square lattice in the layers where superconducting order emerges. From Ref. [42].

symmetry.
Finally, the phase-sensitive measurements in the cuprateswere the smoking gun evidence that

proved the gap in these materials has thed-wave symmetry. These measurements exploited the
Josephson effect in a double junction device, such as one shown in Fig. 1.15(c), to detect the con-
structive or destructive interference in the critical current stemming from the spatial anisotropy of
the superconducting gap. The device resembles the standardsuperconducting quantum interference
devices (SQUIDs) used widely to measure small magnetic fields. In SQUIDs the critical current that
circulates along the device is a periodic function of the fluxpenetrating the area enclosed by it,

Ic(Φ) = 2I0

∣∣∣cos
(
π
Φ

Φ0

)∣∣∣. (1.74)

However, for the device of Fig. 1.15(c) the junctions are perpendicular to each other in such a way
that while one junction is aligned with one of the positive lobes of the gap, the another junction
is aligned with the negative one. This results in a destructive interference that is manifested in the
critical current as a minimum at zero external field [see panel (d)]. The experiments with the device
of 1.15(c) and with other devices with different geometriesall confirmed thed-wave symmetry of
the cuprates.

1.5.2 Strontium ruthenate

Strontium ruthenate (Sr2RuO4), the first superconductor with a structure similar to the cuprates, but
without copper as the key element, was reported eight years after the discovery of superconductivity
in the cuprates. It has a layered perovskyte structure, as shown in Fig. 1.16(a), where octahedrons
containing oxygen atoms in the corners surround the atoms ofruthenium. Very quickly it was re-
alized that superconductivity in strontium ruthenate (SRO) and the cuprates was different, since the
critical temperature of the former was just1.5K, nearly two orders of magnitude lower with respect
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Figure 1.15: (a) Inverse square of the penetration depth, plotted as a function of temperature, for the Ytrium-
Barium-Copper-Oxygen (YBCO) compound, revealing at lowT a linear dependence. Adapted from Ref. [43].
(b) The superconducting gap as a function of the angle along the Fermi surface (FS) shows the existence of a
node atθ = π/2 in the HTSBi2Sr2CaCu2O8+δ. From Ref. [44]. (c) Double junction device, having in one
corner a single crystal of YBCO, to measure (through interference) the anisotropy of the gap in this material.
Adapted from Ref. [18]. (d) Critical current as a function ofthe magnetic flux for superconducting quantum
interference devices (SQUIDs) made of s-wave and d-wave superconductors.

to the latter. Moreover, the fact that the parent compoundSrRuO3 is an itinerant ferromagnet pro-
vided another difference between the cuprates and SRO.

Spin-triplet superconductor

One of the first experiments that confirmed the unconventional superconductivity in SRO, and
that suggested the possibility of spin-triplet superconductivity, was the Knight shift experiment of
Ref. [47]. Before going further in this issue, some essential aspects of SRO required an explanation
in order to understand better the Knight-shift results. TheFermi surface of SRO is shown in Fig.
1.16(b), containing three sheets: two of the electron type (α andγ), and one of the hole type (β) [46].
The three Fermi sheets are approximately cylindrical. Relevant quantities of these Fermi sheets, ob-
tained via the de Haas-van Alphen effect, are presented in Table 1.1. Those are the quasiparticle
effective massm∗, the Fermi wave vectorkF , and the Fermi velocityvF . Note that the quasiparticle
effective mass in theγ sheet is 16 times larger the electron rest mass. For comparison, the effective
masses of two good conductors namely, gold and copper, are only 1.10me and 1.01me, respectively.
The considerable enhancement of the effective mass in SRO demonstrates that the electronic corre-
lations are strong in this material. Specific heat measurements in the normal phase corroborate this
enhancement of the effective mass. Moreover, they also suggest that the normal phase in SRO is
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Figure 1.16: (a) Crystal structure of strontium ruthenate.(b) The Fermi surface of strontium ruthenate has
three sheets, labelledα, β andγ. Among them two are of the electron type (β andγ), whereas the remaining
one is of the hole type (α). From Ref. [46]. (c) Depiction of a Cooper pair with the spinof the electrons
represented by small arrows, while the angular momentum of the pair is represented by the large arrow. (d)
Knight-shift experiment showing the spin susceptibility is invariant acrossTc . Adapted from Ref. [47].

Fermi-surface sheet α β γ

m∗ (me) 3.3 7.0 16.0
kF (Å−1) 0.304 0.622 0.753
vF (ms−1) 1.0 x 105 1.0 x 105 5.5 x 104

Table 1.1: Microscopic parameters of strontium ruthenate,obtained via the de Haas-van Alphen effect.m∗ is
the quasiparticle effective mass,me is the electron rest mass, andvF (kF ) is the Fermi velocity (wave vector).

well described by the Fermi liquid theory.
Superconducting order was theoretically predicted to appear in theγ band and to be of the spin-

triplet type [48]. That means that the Cooper pairs, insteadof forming singlets as in conventional
superconductors and the cuprates, form triplet states in the spin part of their wave functions. Due to
the Pauli principle the spin-triplets, which are symmetricunder particle interchange, require asym-
metric states in the orbital part. That is achieved with odd parity states, where parity [P =(−1)L] is
defined through the orbital angular momentumL. The odd parity state with the lowestL, i.e.L = 1,
is called ap-wave state, in analogy with the orbitals of the hydrogen atom. Fig. 1.16(c) depicts
a Cooper pair with the spins (S) of the two electrons represented by small arrows and the angular
momentum (L) represented by the large one.

The superconductivity in SRO is as anisotropic as in the HTS.From Table 1.2 one can see a
substantial difference between the upper critical magnetic field in and out of the basal plane, both at
zero temperature,Hc2(0). Similar anisotropic behavior that is also found in other superconducting
parameters such as the coherence lengthξ(0), the penetration depthλ(0), and the GL parameterκ.
Based on the GL parameter the superconductivity is of type IIindependently of the crystallographic
direction. However, while out of the basal plane SRO is a strong type II superconductor, in the basal
plane it is soft type II.
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Parameter ab c

Tc (K) 1.50
µ0Hc2(0) (T) 1.50 0.075
ξ(0) (Å) 660 33
λ(0) (Å) 1900 3.0 x 104

κ 2.6 46
ξab/ξc 20

Table 1.2: Superconducting parameters for strontium ruthenate. Tc is the critical temperature,Hc2 is the
upper critical field,ξ is the superconducting coherence length,λ is the penetration depth, andk=λ/ξ is the
Ginzburg-Landau parameter.
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Figure 1.17: (a) Device with two opposite junctions of strontium ruthenate and a spin-singlet superconductor
to test if the former is a spin-triplet superconductor (Geshkenbein-Larkin-Barone experiment). Critical cur-
rents as a function of the applied magnetic field for an opposite and a same-direction junctions are shown in
panels (b) and (c) respectively. From Ref. [49].

The Knight-shift effect provides an estimate of the local magnetic field at the ions of a crystal
produced by the magnetization of the conduction electrons,i.e. it indirectly measures the mag-
netic susceptibility of the conduction electrons. When a material becomes superconducting, in the
conventional case and the cuprates, singlet states arise due to the formation of Cooper pairs. As a
function of temperature the spin susceptibility of the superconductor decreases as the temperature
decreases belowTc [see dashed line in Fig. 1.16(d)]. This happens because the singlet states are
first destroyed than polarized. However, for a spin-tripletsuperconductor the electronic spin sus-
ceptibility, as a function of temperature, across the superconducting critical temperature is expected
to remain constant for an in-plane external magnetic field [48]. Interestingly, Fig. 1.16(d) shows
exactly that behavior. The Knight-shift effect at two different oxygen ions in theab plane reveals
that the spin susceptibility, for an external field parallelto this plane, remains constant above and
belowTc, indicating spin-triplet superconductivity in SRO.

Another experiment that demonstrated the spin-triplet superconductivity in strontium ruthen-
ate used a Geshkenbein-Larkin-Barone (GLB) interference device [49]. The principle behind this
experiment relies on the Josephson effect between a spin-singlet (SS) and a spin-triplet (ST) super-
conductor. In a junction of SS and ST superconductors the Josephson current was demonstrated to
be [50,51],

js = 〈Re(c21s∗21)Im
{
∆∗d·(n̂×k)

}
〉
FS

(1.75)

wherec21 ands21 represent the transmission amplitudes stemming from the spin-orbit and the spin-
independent interactions,∆ is the gap of the SS superconductor,d is a vector perpendicular to the
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Figure 1.18: (a) Setup of the muon spin relaxation spectrometer enabling one to measure the internal magnetic
fields inside a material, after statistically analyzing thedecay of implanted muons into positrons. (b) For
strontium ruthenate the muon-spin relaxation measurements reveal the existence of a spontaneous magnetic
field that coincides with the emergence of superconducting order. From Ref. [52]

spin of the Cooper pairs in the ST superconductor,n̂ is the vector normal to the boundary,k is the
wave vector, and〈 〉FS denotes average over the Fermi surface.

In an experiment where the direction of the normal vectors ina GLB device is the opposite, such
as shown in Fig. 1.17(a), the Josephson currents at the junctions will be opposite as well, sincejs is
odd under mirror symmetry of vectorn̂. This leads to destructive interference in the critical current.
On the other hand, in a GLB device where the normal vectors of the junctions point in the same
direction, from Eq. 1.75 one expects constructive interference in the critical current. Interestingly,
what has been reported in experiments agrees well with the previous analysis. Fig. 1.17(b) shows
a minimum in the critical current for a GLB experiment with the two Josephson junctions opposite
to each other (see the small inset for a depiction). The minimum is not localized exactly at zero
field due to minor issues with trapped vortices and self-inductance of the device. On the other hand,
for the GLB experiment with two junctions pointing in the same direction [see Fig. 1.17(c)], the
maximum of the critical current remains close to zero, within the accuracy of the experiment, thus
confirming the constructive interference. These two interference patterns then prove that the super-
conductivity in SRO is of the spin-triplet type.

Time reversal symmetry

Another interesting experiment that shed light on the unconventional properties of SRO is the test
of time-reversal symmetry (TRS), carried out with the muon-spin relaxation (µSR) technique [52].
Muons are fundamental particles that decay into one positron and two neutrinos. In aµSR experi-
ment muons are implanted in a sample and after they decay the positrons are registered in a detector
[see Fig. 1.18(a)]. The positrons, which carry informationabout the magnetic order inside the sam-
ple, are statistically analyzed, and for the case of SRO theyrevealed the existence of a magnetic
distribution at zero external field and for the two polarizations of the muons (Pµ ‖ c andPµ ⊥ c)
[see Fig. 1.18(b) and (c)]. This means that the TRS is broken,since spontaneous magnetic fields
arise when this symmetry breaks. Another experiment that confirmed the breaking of TRS in SRO
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(a) (b) Tc

Figure 1.19: (a) Tunneling conductance in SRO as a function of the bias voltage for different positions of
the STM tip over the sample. From Ref. [54]. (b) Differentialconductance in SRO as a function of the bias
voltage, and for temperatures between 200 mK and 1.5 K. From Ref. [55].

exploited the effect that samples with broken TRS have on circularly polarized beams of light, the
magneto-optical Kerr effect [53]. To date the experiments with theµSR and the Kerr effect remain
the most convincing evidence of TRS breaking in SRO.

Gap structure

It was discussed in Sec. 1.5.1 that the linear dependence ofλ−2 with T at low temperatures was
a consequence of a line node in the superconducting gap. Another physical quantity that reveals
the existence of a line node in the superconducting gap is thespecific heat. At low temperatures
the dependence of the specific heat is exponential for nodeless superconducting gaps, while for
superconductors with line nodes is that of a power law. The physical quantity that is behind the tem-
perature dependence of penetration depth and the specific heat is the quasiparticle density of states
(DOS). In superconductors the DOS can be directly measured with STM or point contact tunneling
microscopy. For strontium ruthenate the STM measurements found in the literature seem to be con-
tradictory. While Ref. [54] reported a nodeless, or equivalently a fully open, superconducting gap,
Ref. [55] indicated the existence of a linear node or a near node in the superconducting gap of SRO
[see Figs. 1.19(a) and (b)]. These two reports of STM measurements are therefore inconclusive
about the gap structure in SRO and more studies are required,or another experiment where valuable
information of the DOS can be obtained indirectly.

The evidence available to date about SRO indicates that it isan unconventional superconductor
of the spin-triplet type, which apparently breaks TRS. The breaking of TRS is a controversial issue,
since its manifestation has not been confirmed in any of the magnetic imaging experiments carried
out to date [59–62]. Faced with this worrying history and theinconclusive results with STM, mea-
surements of the penetration depth and the specific heat appear to indicate a depletion rather than a
supression in the superconducting gap. In Fig. 1.20(a), thedependence ofλ−2 with T , at low temper-
atures, shows that the superconducting gap in SRO is neitherof a conventional BCS superconductor
(s-wave), nor of a superconductor with line nodes (d-wave). The specific heat measurements of
SRO, shown in Fig. 1.20(b), present similar conclusions. The behavior of the gap in SRO is not
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Figure 1.20: (a) For strontium ruthenate (SRO), the inversesquare of the penetration depth (λ−2) shows that
the superconducting gap is neither of a conventional BCS (s-wave) superconductor, nor of a superconductor
with line nodes (d-wave). Adapted from Ref. [56]. (b) Temperature dependenceof the specific heat for SRO.
At low temperatures the behavior is not exactly of an isotropic gap, neither of a gap with line nodes. From
Ref. [57]. (c) Specific heat measurements depending on the orientation of the magnetic field, revealing an
oscillating behavior with the polar angleφ that can be well fitted with the functionf4(φ) = 2| sin 2φ| − 1.
From Ref. [58].

exactly of an isotropic gap, neither of a gap with line nodes.In that respect, measurements of the
field-orientation-dependent specific heat go further in this dichotomy, and suggest an anisotropic gap
with a mininum along the crystallographic [100] direction [58, 63]. At values ofH between 0.15
T and 0.90 T, Fig. 1.20(c) shows four-fold oscillations in the specific heat, well described by the
functionf4(φ) = 2| sin 2φ|−1, that imply the emergence of a modulated superconducting gap in the
γ band [58]. On the other hand, below 0.15 T the field dependenceof the specific heat, not shown in
the figure but presented in Ref. [58], reveals superconducting order in theα andβ bands. That su-
perconducting order is passive, being induced by theγ band. Thus, the field-orientation-dependent
specific heat measurements indicate multiband superconductivity in SRO. More works are expected
in the future to corroborate these findings.

The 3K phase

Single crystals of SRO are grown by the floating-zone method [57]. The onset of superconduc-
tivity in crystals with the lowest concentration of imperfections is found at temperature of 1.5 K.
To date the majority of experiments reported in the literature have been conducted in crystals with
dimensions in the mm scale. Thin films of SRO appear difficult to synthesize. Only one work has
reported the fabrication of a thin film to date [64]. The ubiquitous presence of disorder in SRO was
demonstrated to affect the superconducting properties. For example, in crystals where Ru atoms are
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Figure 1.21: (a) Crystalline islands of Ru embedded in a matrix of strontium ruthenate. The islands appear
bright. The islands of Ru form a periodic pattern characteristic of eutectic solidification. From Ref. [65].
(b) In strontium ruthenate two adjacent layers of RuO are dislocated by the insertion of a third one. The
dislocation appears as a dark line in transmission electronmicroscopy (TEM). (c) TEM image of strontium
ruthenate showing a crystalline islands of Ru and a large number of dislocations. From Ref. [68].

in excess, theTc is twice larger and the superconducting properties are substantially changed [65].
This new phase, known as the 3K phase, was shown later to be composed by crystalline islands of
Ru embedded in SRO. The islands of Ru form a periodic pattern characteristic of eutectic solidifi-
cation [see Fig. 1.21(a)]. Despite of a couple of theoretical works explaining the origin of the 3K
phase [66,67], there are some features that remain unsolved. Thus, more extensive works providing
an unifying explanation of the reported phenomena are expected.

Another type of imperfection in SRO forms when two adjacent layers of RuO are dislocated
by a third one, as shown in Fig. 1.21(b). These dislocations break the symmetry of the crystal
and simultaneously increase the critical temperature up toabout twice the bulkTc [68]. The dis-
locations appear in transmission electron microscopy (TEM) as dark lines owing to the peculiar
scattering of electrons. Dislocations and crystalline islands of Ru are simultaneously found in SRO
[see Fig. 1.21(c)]. Both imperfections reveal an increase in the critical temperature. A fact that
demonstrates the superconductivity in SRO is unconventional since this behavior is expected in spin
triplet superconductors, known to have multi-component order parameters.

1.5.3 Topological superconductors

In conventional (s-wave) superconductors the superconducting gap is isotropic in the phase space.
That means that in order to destroy Cooper pairs, or conversely create quasiparticle states, one needs
to provide the condensate with an energy at least greater than∆ for all the possible directions of the
wave vectork [see the top panels of Fig. 1.22]. In topological superconductors a gap also exists,
like in the conventional case, but it is limited to the bulk ofthe sample [69, 70]. At the edges of the
sample the gap vanishes and allows the formation of surface bound states having a linear dispersion
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Figure 1.22: (a) Comparison of the superconducting gaps for(i) the conventional BCS case [top panel],
and (ii) the 2D chiral p-wave case [bottom panel]. The Fermi surface in both cases is shown in gray. (b)
Comparison of the corresponding density of states.

relation in the energy as shown in Fig. 1.22(b) (bottom panel) [71, 72]. The phenomenon is similar
to that of topological insulators, which behave as insulators in the bulk of the sample and as metals
at the edges [73]. However, the two phenomena are noteworthydifferent, since the nature of the gap
in two cases is completely distinct.

One of the archetypal examples of topological superconductivity is the model for spinless (spin
polarized)p-wave superconductors, which besides of breaking the time-reversal symmetry is known
as the chiralp-wave model [69]. The bottom panel of Fig. 1.22(a) shows the gap corresponding to
this model for a cylindrical Fermi surface. The chiralp-wave model differs from the spinfull case
(known as helical), which is the archetypal example of a time-reversal-symmetric topological su-
perconductor. The edge states in these cases are different.While in the helical superconductors two
counterpropagating modes exist, with the spin of the quasiparticles locked perpendicular to the direc-
tion of motion, in the chiral case only one mode exists (owingto the break of TRS) [73]. Fig. 1.23(a)
shows the differences between chiral and helical superconductivity, as well as the comparison with
the quantum/quantum-spin Hall effect (QH/QSH). The edge states in the chiralp-wave model have
spontaneous magnetic fields [76, 77], and in finite samples these fields should be detectable with
the state-of-the-art magnetic probes. However, none of these spontaneous fields have been directly
detected in SRO, the leading candidate to have chiralp-wave superconductivity [59–62], although
the edge states have been measured in tunneling spectroscopy [78]. To explain the discrepancies
between theory and experiment in SRO many works have considered the effects of multigap super-
conductivity [55, 79–81], disorder [82], and “robustness”[83, 84], on the edge states, but consensus
has not been reached yet. On the other hand, STM measurementshave recently detected edge states,
but in a hybrid device rather than in a bulk superconductor [74]. The device consisted of magnetic
Co adatoms forming a cluster under the surface of as-wave superconductor, monolayer Pb on Si
[see Fig. 1.23(b)]. Owing to the Zeeman field created by the Cocluster, the superconductivity in
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(d)(b)

(a)

Figure 1.23: (a)Analogies between chiral/helical superconductors (SC), and the quantum/quantum-spin Hall
effect (QH/QSH). Despite of the similarities of the edge states in the topological superconductors and the
quantum Hall systems, the fact that in the former the particle-hole symmetry is present and in the latter not,
makes them crucially different. From Ref. [73]. (b) Magnetic adatoms (Co) deposited on the surface of a
monolayer of Pb grown on top of Si. (c) Conductance map over the hybrid device of panel (b) showing the
experimental observation of the edge states of a topological superconductor. From Ref. [74]. (d) Semicon-
ductor nanowire situated on top of a conventionals-wave superconductor. This hybrid device is predicted to
realizep-wave superconductivity, where two Majorana quasiparticles emerge at the edges of the nanowire.
From Ref. [75].

the monolayer of Pb/Si becomes topological. The edge statesare shown in Fig. 1.23(c) in the
conductance map of the hybrid device.

The search for topological superconductivity in materialswithout the need of any external drive
(bulk TS), or in hybrid structures where topological superconductivity can be induced [85–88], is
motivated by the prediction of Majorana quasiparticles [70]. These are excitations that resemble
the particle introduced by the Italian physicist Ettore Majorana [89], and which has the exotic char-
acteristic of being its own antiparticle. One hybrid devicepresenting topological superconducting
order is shown in Fig. 1.23(d). The figure depicts a semiconductor nanowire situated on top of
a conventionals-wave superconductor. The combination of the superconducting proximity effect,
strong spin-orbit coupling in the nanowire, and an externalmagnetic field, results in the emergence
of p-wave superconducting order in the nanowire [86, 87]. This system can be described according
to the Kitaev model, where Majorana quasiparticles are demonstrated to exist at their two edges [90].

Majorana quasiparticles are predicted to exist in the coresof vortices of chiralp-wave supercon-
ductors [91, 92]. The energy of a Majorana quasiparticle is zero due to its duality between particle
and antiparticle [69]. In 2D, Majorana quasiparticles present statistical properties distinctly different
from those of fermions. For example, when two fermions (bosons) are interchanged they acquire
a phaseeiθ, whereθ = π (θ = 0). Strictly speaking, the interchange affects the quantum state of
the pair (|ψ1ψ2〉) yielding |ψ1ψ2〉 = eiθ |ψ2ψ1〉. For a set of degenerate Majorana quasiparticles the
phase becomes a matrix and the statistics that stems from this peculiar phase is non-Abelian [91].
That implies that interchanging Majorana quasiparticles changes the state of the system in a way
that depends only on the way that the exchange is executed. The importance of the realization of
Majorana quasiparticles in a topological superconductor relies on the aplication of its non-Abelian
statistical property to provide a set of robust quantum gates with topological protection [91–93].
Such gates are crucial for fault-tolerant quantum computation. Therefore, topological superconduc-
tivity is an active research field with outlooks that if materialized could revolutionize the technology
as we know today.
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1.6 Organization and contribution of the thesis

As discussed above, superconducting pairing is not solely of thes-wave type. There is a large num-
ber of unconventional superconductors being investigatedby the broad community, and interested
in unraveling novel phenomena with potential applicationsto technology. One of those examples is
strontium ruthenate, the spin-triplet superconductor that breaks time-reversal symmetry (TRS), and
in which evidence suggests the symmetry of the gap is of the chiral p-wave type. Interestingly, this
type of gap is proven to be the archetypal example of a topological superconductor breaking TRS.
This feature draws a lot of interest since zero-energy modes(the condensed matter equivalent of Ma-
jorana fermions) are predicted to emerge in the cores of vortices of chiralp-wave superconductors.
Such and similar predictions form the bridge between unconventional superconductivity and techno-
logical applications owing to the idea of using Majorana fermions to build a fault-tolerant quantum
computer. However, the materialization of a quantum computer based on the unconventional super-
conductivity of SRO is yet to be confirmed since the spontaneous magnetic fields predicted to exist
in this superconductor due to TRS breaking have remained elusive so far.

In this thesis, we study chiralp-wave superconductivity to reveal the novel superconducting
configurations that emerge in mesoscopic samples, where confinement is of particular importance.
Furthermore, we discuss how the revealed magnetic, electronic and electric properties of the states
reported in this thesis facilitate the identification of chiral p-wave superconductivity in a candidate
material. These features, namely the magnetic profile, the density of states, and the voltage-current
characteristic, can be compared with results from Hall probe microscopy, scanning tunneling mi-
croscopy, and resistance measurements. The approach used in this thesis comprises the phenomeno-
logical Ginzburg-Landau theory and the microscopic Bogoliubov-de Gennes formalism. Since we
consider single band superconductivity, the phenomenological and microscopic theories employed in
this thesis are a minimal model of unconventional superconductivity in SRO. More elaborated mod-
els for SRO, including superconducting order in multi-bands, have been recently proposed. However,
consensus in this respect has not been reached yet.

The thesis is organized as follows.
In chapter 1, we present an introduction to superconductivity, where we described its main

properties and two fundamental theories, one phenomenological (Ginzburg-Landau) and one micro-
scopic (Bardeen-Cooper-Schrieffer). Next, we presented an overview of mesoscopic superconduc-
tivity where the dimensions of the sample are comparable to the characteristic length scalesξ and
λ. Finally, we concluded the chapter with a brief descriptionof superconductors that do not obey
the conventional picture of the original Bardeen-Cooper-Schrieffer (BCS) theory, i.e. the unconven-
tional superconductors.

In chapter 2, we employ the mean-field approach to calculate the BCS Hamiltonian of spin-
triplet superconductivity. Then, we derive the corresponding Bogoliubov-de Gennes (BdG) equa-
tions which later on are required for the calculations in thespecific case of chiralp-wave supercon-
ductivity. Finally, the phenomenological theories for three cases of unconventional superconductiv-
ity are obtained using group theory analyses and the self-consistent equations for the superconduct-
ing gap. Among the cases considered, there exist two that break the time-reversal symmetry (chiral
p-wave ands+id-wave), and one that preserves it (d+s-wave).

In chapter 3, we describe the numerical methods used in this thesis to solve the BdG and the
Ginzburg-Landau (GL) equations of chiralp-wave superconductivity. The description of the algo-
rithm that solves the phenomenological equations for thed+s anda+id types of superconductivity
is also provided.

In chapter 4, we solve the GL equations for mesoscopic chiralp-wave superconducting samples
in absence of any applied magnetic field. We reveal stable multichiral states with domain walls
separating regions with different chiralities, as well as monochiral states with spontaneous currents
flowing along the edges. The effect of confinement on these states is investigated - we show that it
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provides stabilization to the multichiral states, but at the same time it can overshadow the magnetic
signatures characteristic of chiral domain walls.

In chapter 5, we continue investigating mesoscopic chiralp-wave superconducting samples with
the GL theory, but this time with an out-of-plane applied magnetic field. The states that we ob-
tain at finite magnetic field are composed of several unique configurations of conventional vortices,
edge states and skyrmions, all of them identified not only by their magnetic signatures, but also
by their topological properties. Moreover, the reconfiguration of the states with varied magnetic
field and the anisotropy parameters of the Fermi surface is also discussed. Finally, novel temporal
and field-induced transitions between vortical and skyrmionic states reveal the remarkable role that
confinement has on the stabilization of states, but also on the reported novel transitions.

In chapter 6, motivated by the stabilization of skyrmions reported in chapter 5, we solve the self-
consistent BdG equations of chiralp-wave superconductivity, and show the electronic properties of
the reported states, namely edge states, conventional vortices, and skyrmions. We reveal the link
between the local density of states (LDOS) of the novel topological states and the behavior of the
domain wall that separates regions with different chiralities, enabling direct identification of those
states in scanning tunneling microscopy. Finally, the magnetic field and temperature dependence
of the properties of a skyrmion show that this topological defect can be surprisingly large in size,
and can be pinned by an artificially indented non-superconducting closed path in the sample, thus
facilitating the experimental observation of skyrmionic states.

In chapter 7, we investigate the dynamic response of the topological states reported in chapters 4
and 5 to an external applied current. Using the time-dependent GL equations we obtain voltage-
current characteristics for nano-bridges of chiralp-wave superconductors that enable us to reveal
new fingerprints for the identification of these novel topological states.

Finally we conclude the thesis inchapter 9 and present an outlook for future studies.



2
Theories of chiralp-wave superconductivity

2.1 BCS theory of spin-triplet superconductors

The generalization of the reduced Hamiltonian for spin-singlet Cooper pairs to the spin-dependent
case reads [94,95],

H =
∑

k,s

ξkc
†
kscks +

1

2

∑

k,k′

∑

s1,s2,s3,s4

Vk,k′; s1,s2,s3,s4c
†
ks1
c†−ks2

c−k′s3ck′s4 , (2.1)

where, unlike in Eq. (1.52),Vk,k′; s1,s2,s3,s4 is a spin-dependent atractive potential defined within an
energy range around the Fermi surfaceEF by a cutoffεc, i.e. Vk,k′; s1,s2,s3,s4 is nonzero for−εc <
ξk, ξk ′ < εc, andεc ≪ EF. The spin subindicessi, with i = 1 − 4, are either↑ or ↓. Moreover,
this potential satisfies the following properties, owing tothe fermionic anticommutation rules of the
creation and annihilation operators,

Vk,k′; s1,s2,s3,s4 = −V−k,k′; s2,s1,s3,s4 = −Vk,−k′; s1,s2,s4,s3 = V−k,−k′; s2,s1,s4,s3. (2.2)

The Hamiltonian of Eq. (2.1) is treated within the mean field approach, where the products
of two creation and annihilation operators are replaced by the following mean values plus a small
deviation, denoted in parentheses,

c−k′s3ck′s4 = bk′,s3s4 +
{
c−k′s3ck′s4 − bk′,s3s4

}
,

c†ks1c
†
−ks2

= b∗k,s2s1 +
{
c†ks1c

†
−ks2

− b∗k,s2s1
}
. (2.3)

The following correlation function has been introduced in last equations,

bk,ss′ = 〈c−kscks′〉 , (2.4)

with 〈A 〉 denoting the statistical averagetr[e−βH A]/tr[e−βH ], andβ = 1/kBT . The effective or
BCS Hamiltonian resulting from Eq. (2.1) after the mean-field treatment reads [94,95],
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Heff =
∑

k,s

ξkc
†
kscks +

1

2

∑

k,s1s2

[
∆k,s1s2c

†
ks1
c†−ks2

−∆∗
−k,s1s2

c−ks1cks2
]

− 1

2

∑

k,s1s2

∆k,s1s2b
∗
k,s2s1

, (2.5)

where

∆k,ss′ =
∑

k′,s3s4

Vk,k′;s,s′,s3,s4bk′,s3s4 , (2.6)

and
∆∗

−k′,ss′ = −
∑

k,s1s2

V−k′,k;s,s′,s2,s1b
∗
k,s2s1

. (2.7)

Using the symmetry properties of the two-pair potential, Eq. (2.2), one can derive that the gap
holds the following relation,

∆k,ss′ = −∆−k,s′s, or in matrix notation ∆̂(k) = −∆̂T (−k). (2.8)

2.1.1 Parity of the superconducting gap

Since the superconducting gap is related to the correlationfunction of two electrons with zero total
momentum [see Eqs. (2.4) and (2.6)], i.e. the Cooper pairs, one can decompose it into an orbital
and a spin part. For the spin part, one finds two possibilites,namely singlet and triplet states. While
the singlet state is asymmetric under the exchange of the spin indexes, the triplet state is symmetric.
These two states read

|Singlet〉 = 1√
2
(|↑↓〉 − |↓↑〉), (2.9)

|Triplet〉 =





|↑↑〉
1√
2
(|↑↓〉+ |↓↑〉)

|↓↓〉
. (2.10)

On the other hand, in the orbital part there are also two possible states with a well defined
symmetry, namely the parity. These states are the odd and theeven parity states and their properties
are [94],

ψ(k) = ψ(−k), for the even case, (2.11)

and

d(k) = −d(−k), for the odd case. (2.12)

In order to satisfy the Pauli principle the superconductinggap has to be antisymmetric under particle
interchange. This is achieved by the combination of a singlet and an even parity state, or a triplet
and an odd parity state. In the literature, the spin-singletand even-parity superconductivity, as well
as spin-triplet and odd-parity superconductivity, are terms which are used interchangeably.

To sum up, the superconducting gap satisfies the following properties,
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Figure 2.1: Orientations of thed vector, the spins of the Cooper pairs, and the angular momentum (L), in
spin-triplet superconductors. The spins of the Cooper pairs are defined orthogonally to the direction ofd. (a)
Thed vector is orthogonal to vectorL. (b) Thed vector is parallel to vectorL. From Ref. [96].

∆k,ss′ = −∆−k,s′s =

{
∆−k,ss′ = ∆k,ss′, even parity,
∆−k,ss′ = −∆k,ss′, odd parity,

(2.13)

which lead to the following parametrizations of the gap, useful to dinstinguish the even and odd
parity states, respectively,

∆̂k =

(
∆k,↑↑ ∆k,↑↓
∆k,↓↑ ∆k,↓↓

)
=

(
0 ψ(k )

−ψ(k ) 0

)
= iσ̂yψ(k ), (2.14)

and

∆̂k =

(
∆k,↑↑ ∆k,↑↓
∆k,↓↑ ∆k,↓↓

)

=

(
−dx(k )+idy(k ) dz(k )

dz(k ) dx(k )+idy(k )

)
= i

(
d(k ) · σ̂

)
σ̂y. (2.15)

In last equationsψ(k ) andd(k ) are even scalar and odd vectorial functions. Moreover, the plane
where the spins in the triplet pairing case lie is defined orthogonally to the direction ofd(k ) [57,96].
Fig. 2.1 illustrates two cases of the orientations taken by thed vector and the spins of the Cooper pair.
In Fig. 2.1(a), thed vector is in-plane (denoted by yellow arrows), while the spins are out-of-plane
(denoted by red arrows). In Fig. 2.1(b) the case is the opposite, where thed vector is out-of-plane,
and the spins are in-plane. VectorL, denoted by the largest arrow in the figure, is the orbital angular
momentum and in both cases is out-of-plane. If the spin-triplet superconductor under consideration
possesses a layered structure, vectorL is perpendicular to the layers.

Defining the square magnitude of the gap as half the trace of the matrix product, i.e.|∆̂k|2 =
1
2
tr(∆̂k ∆̂

†
k), one obtains for the even parity and odd parity states,

∆̂k ∆̂
†
k = |ψ(k )|2σ̂0,

∆̂k ∆̂
†
k = |d |2σ̂0 + i(d× d ∗) · σ̂. (2.16)

Note that for the even and for certain odd parity states the last matrix product is proportional
to σ0. In literature these types of states are widely known as unitary pairing states. On the other
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Figure 2.2: Phase diagram of3He showing two superfluid phases, namely A (Anderson-Brinkmann-Morel),
and B (Balian-Werthamer).

hand, the states withd ∗ 6=d are known as non-unitary states since the product∆̂k ∆̂
†
k is no longer

proportional toσ0 [57, 94–96]. In what follows, some examples of odd parity states, unitary and
non-unitary, will be presented.

Balian-Werthamer state

3He is an isotope of helium having two protons and one neutron [95]. Due to the odd number of
fermions that compose it,3He is a fermion, unlike4He (or helium) which is a boson due to its two
protons and two neutrons. Helium is widely known for its superfluid properties at low temperatures
that stems from its bosonic properties. However, and despite of its fermionic nature,3He is also a
superfluid at extremely low temperatures and high pressures[95]. The superfluidity in helium relies
roughly on the Bose-Einstein condensation, meanwhile in3He it relies on the instability of the Fermi
surface towards the formation of Cooper pairs.

In Fig. 2.2 the pressure vs. temperature diagram of bulk3He shows two superfluid phases,
namely the A or Anderson-Brinkmann-Morel (ABM) phase, and the B or Balian-Werthamer (BW)
phase. The superfluid gap in the BW phase is represented in thed-vector notation by [31,95],

d(k ) =
∆0

kF
(x̂kx + ŷky + ẑkz), (2.17)

wherekF is the Fermi wave vector, and where the corresponding magnitude of the gap is,

|∆̂k|2 =
1

2
tr
(
∆̂k ∆̂

†
k

)
= |∆0|2, (2.18)

meaning that the BW phase is fully gapped in its phase space.

Anderson-Brinkmann-Morel state

Another example of a unitary state of odd parity is provided by the superfluid ABM phase of
3He. In this phase the correspondingd-vector is [31,95],

d(k ) =
∆0

kF
ẑ(kx ± iky), (2.19)

and the magnitude of the gap becomes
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|∆̂k|2 =
1

2
tr

{ |∆0|2
k2F

|kx ± iky|2σ̂0

}
= |∆0|2 sin2 θ. (2.20)

This gap has point nodes atk = (0, 0,±1), and a finite orbital angular momentum along theẑ direc-
tion [31], from which originates its widely used label as a chiral p-wave state.

Non-unitary state

One example of a non-unitary state in odd parity superconductivity is given within thed-vector
representation as,

d(k ) =
∆0

kF
(x̂− iŷ)kz, (2.21)

with the corresponding gap

∆̂k =
2∆0

kF

(
0 0
0 kz

)
. (2.22)

Comparing last equation and Eq. (2.15) one can see that this state has pairing only in the spin
down-down channel, so it is an example of a spin-polarized coupling state.

The phase diagram of3He confined to mesoscopic scales differs from the phase diagram of bulk
3He. The main feature that appears in the diagram is the stabilization of more phases between the
bulk BW and ABM phases [97]. The novel phases, possessing Cooper pairing different from the
bulk phases, can be identified with nuclear magnetic resonance spectroscopy [97,98].

2.1.2 The Bogoliubov-Valatin transformation in unitary states

Returning to the Hamiltonian of Eq. (2.5), one can write it ina more compact form useful to find the
quasiparticle states of this Hamiltonian,

H =
1

2

∑

k

(c†k↑, c
†
k↓, c−k↑, c−k↓)




ξk ∆k,↑↑ ∆k,↑↓
ξk ∆k,↓↑ ∆k,↓↓

∆∗
k,↑↑ ∆∗

k,↓↑ −ξk
∆∗

k,↑↓ ∆∗
k,↓↓ −ξk







ck↑
ck↓
c†−k↑
c†−k↓




+ K, (2.23)

where

K =
∑

k

ξk −
1

2

∑

k,s1s2

∆k,s1s2b
∗
k,s2s1, (2.24)

and where for convenience the subindex “eff” has been removed. The BCS Hamiltonian of the
spin-dependent Hamiltonian of Eq. (2.1) thus becomes [94],

H =
1

2

∑

k

C
†
kÊkCk +K, (2.25)

where

Êk =

[
ξkσ̂0 ∆̂k

∆̂†
k −ξkσ̂0

]
, and Ck = (ck↑, ck↓, c

†
−k↑, c

†
−k↓)

T . (2.26)
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Seeking a vector transformation, namelyÛk, one can diagonalize the matrix̃Ek, simplifying the
complexity of the bilinear form in the Hamiltonian (2.25). The matrix that represents this transfor-
mation introduces a new vector, namelyAk = (ak↑, ak↓, a

†
−k↑, a

†
−k↓)

T , which is related to the old
vector as

Ck = ÛkAk . (2.27)

If Ûk is an unitary matrix, i.e.̂U †
kÛk = ÛkÛ

†
k = 11, the diagonalized Hamiltonian becomes

Êk = Û †
kÊkÛk,=




Ek+

Ek−
−E−k+

−E−k−


 , (2.28)

and the elements of the new four vectorAk are identified as the generalization for spin-dependent su-
perconductors of the Bogoliubov-Valatin operators [95]. Moreover, these new operatorsaks anda†ks
satisfy the same algebra ascks andc†ks, i.e. the transformation is canonical. The BCS Hamiltonian
in a diagonal base therefore reads

H =
∑

k

A
†
kÊkAk +K, (2.29)

whereÛk is composed of four2× 2 submatrices,

Ûk =

[
ûk v̂k
v̂∗−k û∗−k

]
. (2.30)

These submatrices, and the diagonal elements ofÊk, are calculated from the slightly modified Eq.
(2.28), [ÛkÊk = ÊkÛk], and the assumption of unitary pairing. They read

ûk =
(Ek + ξk)σ̂0√
2Ek(Ek + ξk)

, v̂∗−k =
∆†
k√

2Ek(Ek + ξk)
, (2.31)

whereEk+ = Ek− = Ek =
√
ξ2k + |∆k|2, or in more elegant way,

Ek =

√
ξ2k +

1

2
tr
(
∆̂k∆̂

†
k

)
. (2.32)

With the expressions for the submatrices that compose matrix Ûk, the gap equation (Eq. 2.6) be-
comes

∆k,ss′=
∑

k′,s3,s4,θ,γ

Vk,k′;s,s′,s3,s4

[
uk′, θs3vk′,s4γ 〈a−k′θa

†
−k′γ〉 − vk′, θs3uk′,s4γ 〈a†k′θak′γ〉

]
. (2.33)

Replacing the two statistical averages (the terms in brakets), by the Fermi distribution function
f(Ek) = 1/(eβEk + 1), yields

〈a†k′θak′γ〉 = δθγf(Ek), 〈a−k′θa
†
−k′γ〉 = δθγ(1− f(Ek)) (2.34)

and the gap equation reduces to

∆k,ss′ = −
∑

k′,s3,s4

Vk,k′;s,s′,s3,s4

∆k′,s4s3

2Ek′

tanh
( Ek′

2kBT

)
, (2.35)

where the fact that̂uk andv̂k commute has been used.
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2.2 Bogoliubov-de Gennes equations

To describe inhomogeneous superconducting systems, one can use the equations derived by Bogoli-
ubov and de Gennes, where a Schrödinger-like equation has to be solved for the space-dependent
functionsu andv, along with a self-consistency condition for the superconducting gap. In what
follows, the derivation of these equations for spin-triplet superconductors is shown.

2.2.1 General case

Within the second quantization formalism, i.e. within the space defined by the field operatorsψ̂†
α(r )

andψ̂β(r ′), which satisfy the following algebra,

ψ̂†
α(r )ψ̂β(r

′) + ψ̂β(r
′)ψ̂†

α(r ) = δαβδ(r− r ′),

ψ̂α(r )ψ̂β(r
′) + ψ̂β(r

′)ψ̂α(r ) = ψ̂†
α(r )ψ̂

†
β(r

′) + ψ̂†
β(r

′)ψ̂†
α(r ) = 0, (2.36)

the Hamiltonian for a system of fermions interacting through a pairwise potentialV (2)
δ,γ,α,β(r, r

′)
reads [31]

Ĥ =

∫
d3r ψ̂†

α(r )H0ψ̂α(r )

+
1

2

∫ ∫
d3rd3r′ψ̂†

δ(r )ψ̂
†
γ(r

′)V
(2)
δγ,α,β(r, r

′)ψ̂α(r
′)ψ̂β(r ), (2.37)

where the pairwise potential remains invariant under particle interchange in order to satisfy the
algebra of the field operators,

V
(2)
δ,γ,α,β(r, r

′) = V
(2)
γ,δ,β,α(r

′, r ). (2.38)

Introducing the spin and space dependent correlation function,

bα,β(r
′, r ) = 〈ψ̂α(r ′)ψ̂β(r )〉 , (2.39)

and treating the interaction term within the mean field approach, i.e. replacing the product of two
creation and annihilation operators by the respective correlation function plus a deviation term in
parentheses,

ψ̂α(r
′)ψ̂β(r ) = bα,β(r

′, r ) +
{
ψ̂α(r

′)ψ̂β(r )− bα,β(r
′, r )

}
,

ψ̂†
δ(r )ψ̂

†
γ(r

′) = b∗γ,δ(r
′, r ) +

{
ψ̂†
δ(r )ψ̂

†
γ(r

′)− b∗γ,δ(r
′, r )

}
, (2.40)

one obtains the following effective many-body Hamiltonianafter discarding second-order terms in
the deriviation [31],

Ĥeff =

∫
d3r ψ̂†

α(r )H0ψ̂α(r )

+
1

2

∫ ∫
d3rd3r′

[
∆αβ(r, r

′)ψ̂†
α(r )ψ̂

†
β(r

′) + ∆∗
αβ(r, r

′)ψ̂β(r
′)ψ̂α(r )

]

− 1

2

∫ ∫
d3rd3r′∆∗

βα(r, r
′)bα,β(r

′, r ), (2.41)
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where

∆∗
βα(r, r

′) = V
(2)
δ,γ,α,β(r, r

′)b∗γ,δ(r
′, r ), (2.42)

and
∆αβ(r, r

′) = V
(2)
α,β,δ,γ(r, r

′)b δ,γ(r
′, r ). (2.43)

After a straightforward calculation, one can show that owing to the Eqs. (2.36) and (2.38) the gap
satisfies the following property,

∆αβ(r, r
′) = −∆βα(r

′, r ). (2.44)

Expanding the field operators as

ψ̂α(r ) =
∑

n,β

un(r )αβγ̂n,β + v∗n(r )αβγ̂
†
n,β, (2.45)

ψ̂†
θ(r

′) =
∑

m,τ

u∗m(r
′)τθγ̂

†
m,τ + vm(r

′)τθγ̂m,τ , (2.46)

whereγ̂n,β and γ̂†m,τ are annihilation and creation operators of Bogoliubov quasiparticles [95], i.e.
(i) the operators satisfy the typical algebra of fermions, and (ii) they diagonalize the Hamiltonian
(2.41) [Ĥ = E0s+

∑
m,α εmαγ̂

†
mαγ̂mα], one can easily demonstrate that the commutator between the

Hamiltonian and the Bogoliubov quasiparticle annihilation operator is

[Ĥ, γ̂nβ] = −εnβγ̂nβ. (2.47)

On the other hand, the commutator between the Hamiltonian ofEq. (2.41) and the annihilation field
operator gives

[Ĥ, ψ̂α(r )] = −H0ψ̂α(r )−
∫
d3r′∆αβ(r, r

′)ψ̂†
β(r

′). (2.48)

Replacing the expansions of the field operators according toEqs. (2.45) and (2.46), one obtains
the following equations for the componentsun(r )ατ andvn(r )ατ ,

εnτun(r )ατ = H0un(r )ατ +

∫
d3r′∆αβ(r, r

′)vn(r
′)τβ, (2.49)

−εnτvn(r )ατ = H
∗
0 vn(r )ατ +

∫
d3r′∆∗

αβ(r, r
′)un(r

′)τβ, (2.50)

where the self-consistent condition (2.43) for the superconducting gap becomes

∆αβ(r, r
′) = Vαβ,δγ(r, r

′)
∑

nθ

un(r
′)δθ v

∗
n(r )γθ(1− fn)+v

∗
n(r

′)δθ un(r )γθfn, (2.51)

or in a more convenient way, after using the symmetry properties of the pairwise interaction potential
and the gap, Eqs. (2.38) and (2.44),

∆αβ(r, r
′) =

1

2
Vαβ,δγ(r, r

′)
∑

nθ

(1−2fn)
[
un(r

′)δθ v
∗
n(r )γθ−v∗n(r ′)δθ un(r )γθ

]
. (2.52)
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To sum up, the Bogoliubov-de Gennes equations for spin-triplet superconductors are composed
of the set of integro-differential equations (2.49) and (2.50), along with the self-consistent condition
(2.52). Notice that the equations are for each spin index, sothere are indeed four coupled integro-
differential equations. The complexity of these equationsis high and to circumvent this problem one
needs more insight into the coupling paring in order to simplify them. In the next section that will be
done after discussing what is the most convincing pairing inSRO that agrees well with the majority
of experiments performed to date.

2.2.2 Chiral p-wave superconductivity

In superconductors the spin susceptibility of the electrons provides a powerful method to distinguish
spin-singlet from spin-triplet superconductivity. Moreover, it can also determine the structure of the
gap, i.e. the representation of the correspondingd-vector. As a function of temperature the spin
susceptibility for the chiral phase:d(k ) = ∆0ẑ(kx+iky), reads [48,99]

χ(T ) = χP

{
Y ABM(T ) H || ẑ

1 H⊥ ẑ , (2.53)

whereχP = 2µ2
BN0 is the Pauli spin susceptibility of the normal state, andY ABM(T ) is the Yoshida

function for the ABM phase after integration over the Fermi surface. For a spin-triplet supercon-
ductor in the ABM phase the plot of the Knight shift [a technique that indirectly reveals the spin
susceptibility function (2.53)], is depicted in the right panel of Fig. 2.3. The dots, representing the
experimental measurements for SRO [47], match the theoretical lineχ(T ) = χP and thus suggest
that SRO is a chiralp-wave superconductor. For comparison, the left panel showsthe Knight shift
of YBCO, and reveals the typical behavior of the spin susceptibility for a singlet state.

Experimental data of the spin susceptibility in SRO, with the applied magnetic field along theẑ
direction, seems to contradict all the evidence pointing towards chiralp-wave superconductivity. The
spin susceptibility remained constant beforeTc, when the magnetic field was applied perpendicularly
to the basal plane [100]. One is of course aware that the low upper critical fieldHc2 can affect
the measurements due to the screening effect of the Meissnercurrents. However, this unexpected
behavior was attributed to weak spin-orbit coupling that was unable to sustain the spins of the Cooper
pairs into the basal plane [96]. More accurate and sophisticated techniques are required to confirm
the role of the spin-orbit coupling or other possibilities in the spin susceptibility measurements.

This thesis primarily considers the case of chiralp-wave superconductivity. Therefore, it requires
the derivation of the BdG equations for chiralp-wave superconductors. In such equations, the gap
matrix that corresponds to thed-vector representation of the chiralp-wave phase [see Eq. (2.19)],
reads

∆̂(r, r ′) =

(
0 ∆↑↓

∆↓↑ 0

)
, (2.54)

where∆↑↓ = ∆↓↑. The replacement of the superconducting gap (2.54) into theBdG equations (2.49)
and (2.50) of spin-triplet superconductors, leads one to remove the spin indexes

εnun(r ) = H0un(r ) +

∫
d3r′∆(r, r ′)vn(r

′), (2.55)

−εnvn(r ) = H
∗
0 vn(r ) +

∫
d3r′∆∗(r, r ′)un(r

′). (2.56)

Transforming the coordinates of the two particles to the relative and center of mass coordinates,
respectively,
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H ab

H || ab

Figure 2.3: The Knight shift, an indirect measurement of theelectronic spin susceptibility, shows here that
the superconducting pairing for the Ytrium-Barium-Copper-Oxygen compound is of the singlet type, while for
strontium ruthenate the pairing is suggested to be of the triplet type since the data (black dots) matched the
theoretical prediction for the spin susceptibility with anin-plane field. From Ref. [101].

X = r− r ′, R =
r+ r ′

2
, (2.57)

one can see that the following expression for the superconducting gap in the center of mass and
reciprocal space coordinates is appropriate for chiralp-wave superconductivity,

∆(R,k) =
∆x(R)kx + i∆y(R)ky

kF
, (2.58)

wherekF is the Fermi surface wave vector. The gap in terms ofR andX consequently becomes,

∆(R,X) =
1

(2π)3

∫
d3keik·X∆(R,k), (2.59)

or after a straightforward calculation,

∆(R,X) =
i

kF

[
∆x(R) ∂x′ + i∆y(R) ∂y′

]
δ(r−r ′). (2.60)

Replacing last expression of the gap back in Eqs. (2.55) and (2.56), one obtains the Bogoliubov-de
Gennes equations for chiralp-wave superconductors,

εnun(r ) = H0un(r ) − i

kF

{
∆x(r )∂x + i∆y(r )∂y

+
1

2

[
∂x∆x(r ) + i∂y∆y(r )

]}
vn(r ), (2.61)

and

− εnvn(r ) = H
∗
0 vn(r ) +

i

kF

{
∆∗
x(r )∂x−i∆∗

y(r )∂y

+
1

2

[
∂x∆

∗
x(r )−i∂y∆∗

y(r )
]}
un(r ). (2.62)
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The self-consistency condition of the gap in the chiral caseis derived from Eq. (2.52) by dropping
out the spin labels in the matricesun(r ′)δθ andv∗n(r )γθ, i.e.

∆(r, r ′) =
1

2
V (r, r ′)

∑

n

(1−2fn)
[
un(r

′) v∗n(r )−v∗n(r ′) un(r )
]
. (2.63)

Moreover, one can reduce further this expression by relabelling the coordinates in the last term,
and bearing in mind the asymmetry property of the potential when particles are interchanged, i.e.
V (r, r ′) = −V (r ′, r ),

∆(r, r ′) = V (r, r ′)
∑

n

tanh
(En
2T

)
un(r

′) v∗n(r ). (2.64)

Within the weak-coupling approach and the odd-parity attractive interaction (Vp > 0), the two parti-
cle potential in the reciprocal space reads,

V (k−k ′) = −Vp
k · k ′

k2F
. (2.65)

On the other hand, the corresponding attractive potential in the real space is given by the Fourier
transform ofV (k−k ′)|k ′→k,

V (r, r ′) = − VpΩ

(2π)3

∫
d3keik·X

k2

k2F
, (2.66)

with Ω being the volume of the system. Defining for convenience the factor that multiplies the
attractive potential in the self-consistency equation (2.64) as

D(r, r ′) =
∑

n

tanh
(En
2T

)
un(r

′) v∗n(r ), (2.67)

the superconducting gap in terms of the center of mass and reciprocal space coordinates becomes

∆(R,k ) =

∫
d3Xe−ik·X∆(r, r ′) (2.68)

= −VpΩ
∫
d3k′

k′ 2

k2F

(
1

2π

)2∫
d3Xei(k

′−k)·XD
(
R+

X

2
,R−X

2

)
.

Expanding the functionD (defined in 2.67) in a Taylor series and taking the first two terms,

D
(
R+

X

2
,R−X

2

)
≈ D(R,R) +

[
∂D(R,R ′)

∂R
− ∂D(R,R ′)

∂R′

]∣∣∣∣
R′→R

·

X

2
, (2.69)

one obtains for the superconducting gap the zero and first order expansions,

∆0(R,k ) = −VpΩ
k2

k2F

∑

n

tanh
(En
2T

)
un(R ) v∗n(R ), (2.70)

∆I(R,k ) = −iVpΩ
k

k2F
·

[ ∂

∂R
− ∂

∂R′

]∑

n

tanh
(En
2T

)
un(R ) v∗n(R

′)
∣∣∣
R′→R

. (2.71)

Here the zero order term is discarded since we are considereing only purep-wave paring, and the
first order term is compared with Eq. (2.58) to obtain the self-consistent condition for the two
components of the gap
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∆x(r ) = −VpΩ
i

kF

(
∂x−∂x′

)∑

n

tanh
(En
2T

)
un(r ) v

∗
n(r

′)
∣∣
r ′→r

, (2.72)

∆y(r ) = −VpΩ
1

kF

(
∂y−∂y′

)∑

n

tanh
(En
2T

)
un(r ) v

∗
n(r

′)
∣∣
r ′→r

. (2.73)

Finally, to conclude this section the calculation of the superconducting current densityj(r ) is
provided. Defining it as proportional to the real part of the statistical average of the kinetic momen-
tum operatorp, one obtains

j(r ) =
e

m
Re 〈ψ̂†

α

(~
i
∇− e

c
A
)
ψ̂α〉 ,

=
e~

2im

∑

n

{[
u∗n(r )∇un(r )− c.c.

]
fn +

[
vn(r )∇v∗n(r )− c.c.

]
(1− fn)

}

− e2

mc

∑

n

[
|un(r )|2fn + |vn(r )|2(1− fn)

]
A, (2.74)

where the field operators(ψ̂†
α andψ̂α) have been replaced by their corresponding expansions (2.45)

and (2.46) in the chiral case. The Ampère’s law is thus introduced in its standard form

∇×∇×A =
4π

c
j(r ), (2.75)

but with the current density stemming from the probability current of the quasiparticle states in the
superconductor.

The BdG equations for chiralp-wave superconductivity are thus complemented with the self-
consistent conditions (2.72) and (2.73), and Ampère’s law(2.75). Their numerical solutions are
computationally demanding and in the next chapter the procedure employed in this thesis to solve
them is described.

2.3 Phenomenological theory

In this section the superconductivity of unconventional superconductors will be treated within the
phenomenological formalism. The treatment is different from the microscopic one discussed in the
previous sections, although the starting point is the self-consistent condition [see Eq. (2.35)] derived
whithin the microscopic formalism.

2.3.1 Linearized gap equations

Superconductivity arises after the temperature of a material in its normal state is lowered belowTc,
making the material undergo a second order (continuous) transition. The superconducting phase is
characterized by an order parameter that represents the density of the Cooper pairs, and is vanish-
ingly small closed to the critical temperature, as is the superconducting gap. One can then linearize
the self-consistent gap equation (2.35) and thereby obtainthe superconducting order parameter.

Replacing the spin-singlet superconducting gap of Eq. (2.14) into the self-consistent condition
(2.35), yields
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Bethe Mulliken Basis function Direction ofd TRSB
Γ−
1 A1u x̂kx + ŷky, ẑkz d||ab, d||c No

Γ−
2 A2u x̂ky − ŷkx d||ab No

Γ−
3 B1u x̂kx − ŷky d||ab No

Γ−
4 B2u x̂ky + ŷkx d||ab No

Γ−
5 Eu {ẑkx, ẑky}, {x̂kz, ŷkz} d||c, d||ab Yes

Table 2.1: Table of the basis functions for theD4h symmetry group within thed-vector representation for
spin-triplets. The first two rows denotes the notations of Bethe and Mulliken, respectively.

ψ(k) = −
∑

k′

Vk,k′

ψ(k′)

2Ek′

tanh
( Ek′

2kBT

)
. (2.76)

In a first-order approach in terms of the superconducting gap, the quasiparticle energyEk′ is replaced
by the kinetic energyǫk′ . Moreover, owing to the assumption that the attractive potential is nonzero
only within the Debye window, one can transform the sum into an integral and separate it into a
surface and an energy part,

ψ(k) = −N(0)
∫
dΩVk,k′ψ(k′)

∫ ǫc

−ǫc
dǫ

tanh
(

ǫ
2kBT

)

2ǫ
, (2.77)

whereN(0) is the density of states at the Fermi surface andǫc is a cuttoff energy. In a more conve-
nient way the linearized gap equation becomes

ΛSψ(k) = −N(0) 〈 Vk,k′ψ(k′) 〉FS , (2.78)

where the average is over the Fermi surface and

1

ΛS
=

∫ ǫc

0

dǫ
1

ǫ
tanh

( ǫ

2kBT

)
. (2.79)

In a similar way, replacing the spin-triplet superconducting gap of Eq. (2.15) into the self-
consistent condition (2.35), one obtains

d(k) = −
∑

k′

Vk,k′

d(k′)

2Ek′

tanh
( Ek′

2kBT

)
, (2.80)

where the linearization process, described above for the spin-singlet case, can be applied again
yielding

ΛTd(k) = −N(0) 〈 Vk,k′d(k′) 〉FS . (2.81)

Eqs. (2.78) and (2.81) are eigenvalue equations with each eigenvalueΛaS andΛaT corresponding to
an eigenvectorψa(k) andda(k), respectively. The eigenvalues define different critical temperatures
{T (1)

c , T
(2)
c , . . . }, and the eigenvectors the corresponding representations of the gap.

Finding the eigenvectors of the linearized equation requires detailed knowledge of the interaction
potentialVk,k′, which in many cases is not available. Then, in order to circumvent the problem, one
has to appeal to symmetry considerations and obtain the representations of the gap phenomenologi-
cally. For example, many of the HTSs as well as SRO have a tetragonal crystal structure represented
by theD4h symmetry group. One can then use the basis functions of this group and form an expan-
sion of any physical quantity having this symmetry.
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For the superconducting gap the same procedure applies, although one has to bear in mind that
other symmetries need to be fulfilled such as: (i) the group ofrotations generated by the total angular
mometumJ = L + S, whereL andS denote the orbital and spin angular momenta, and (ii) the
continuous group of the gauge transformationsU(1),

G = D(J ) ×D4h × U(1). (2.82)

Let us consider first the basis functions of the groupD4h within thed-vector notation and leave
the discussion of the gauge symmetry for later. There exist five different irreducible representations
for this group (see Table 2.1). Among them four are one-dimensional and one two-dimensional, i.e.
one that breaks the time-reversal symmetry. Since the basisfunctions of Table 2.1 are given within
thed-vector notation, the symmetry generated by the total angular momentum (J ) is included on
them. The superconducting gap is thus given by an expansion in the irreducible representations of
the group,

d(k ) =
∑

m

ψ(Γ, m)d(Γ, m;k ), (2.83)

whereψ(Γ, m) are complex order parameters transforming like coordinates in the basis functions.
When the expansion includes one single irreducible representation the gap is said to be in a “pure”
state. This can happen when among the critical temperaturesthere is one that dominates the others,
i.e. the highestTc is much larger than the remainingTc ′s. On the other hand, when the critical tem-
peratures of the irreducible representations are similar,an admixture of two or more representations
may be realized. As the main example of the phenomenologicaltheory of unconventional supercon-
ductors, the representation of theD4h symmetry group breaking the time-reversal symmetry will be
considered first, and the case of a gap with an admixture of twoirreducible representations will be
discussed later.

2.3.2 Chiral p-wave superconductivity

According to Table 2.1 the expansion of the superconductinggap in the basis of the irreducible
representationEu reads

d(k) = (ψxkx+ψyky)ẑ. (2.84)

The calculation of the order parameters for this representation breaking the TRS has been reported
elsewhere, so we only briefly outline the procedure. Following Landau’s theory of second-order
phase transitions, the order-parameter componentsΨx andΨy are demanded to minimize the free
energy density

F = FN +

∫
d3r

[
Fcond + Fkin +

B2

8π

]
, (2.85)

whereFN is the free energy of the normal state,Fcond denotes the energy density of the conden-
sate,Fkin the kinetic energy density, andB the magnetic field.Fcond is a combination of second
order and fourth order terms in the order parameter, fulfilling the properties of the groupG, and
with phenomenological parameters temperature-dependentor independent as dictated by Landau’s
theory:

Fcond = α
(
|ψx|2 + |ψy|2

)
+ β1

(
|ψx|2 + |ψy|2

)2
+ β2

(
ψ∗
xψy − ψxψ

∗
y

)2
+ β3|ψx|2|ψy|2. (2.86)

The phenomenological parametersα andβi, with i = 1−3, are material dependent constants, and
one can demonstrate that microscopic quantities such as theshape of the Fermi surface, the Fermi
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Figure 2.4: Contour plot of the condensation free energy density (Fcond) for chiral p-wave superconductors.
The energy density in panel (a) is bound from below and has twodegenerated ground states, i.e. breaks the
time-reversal-symmetry. On the other hand the energy density of panel (b) is not bound from below.

velocity and the electronic density of states define them [77, 102, 103]. In this section they will
be treated as independent parameters and rather discussed based on general grounds. For example,
writing the condensate free energy density in terms of the new order parametersψ± = ψx ± iψy, as

Fcond = α
2

(
|ψ+|2 + |ψ−|2

)
+ β1

4

(
|ψ+|2 + |ψ−|2

)2
(2.87)

−β2
4

(
|ψ+|2 − |ψ−|2

)2
+ β3

16

[(
|ψ+|2 + |ψ−|2

)2 −
(
ψ+ψ

∗
− + ψ−ψ

∗
+

)2]
,

one can show in Fig. 2.4 two distinct shapes ofFcond for two different combinations of the phe-
nomenological parameters. For ilustration purposes we took β3 = 0, and extended the contour
plot from the quadrant where|ψ±| > 0 to the entire Cartesian plane. Whenβ2 < β1, Fcond is
bound from below and has two local minima at: (i)(|ψ+|, ψ−) = (

√
|α|/(β1−β2), 0), and (ii)

(ψ+, |ψ−|) = (0,
√
|α|/(β1−β2)). On the other hand, whenβ2 > β1, Fcond has only a saddle point

atψ+ = ψ− = 0 and consequently it is not bound from below.
The kinetic energy density of Eq. (2.85) is obtained following the same procedure that was

applied previously to the condensation free energy density. However, one has to bear in mind that
these terms contain gradients of the order parameters, suchas in the conventional case [see Eq. (1.3)],
that one has to treat properly in order to make them invariantunder the set of operations of the group
G. For example, let us consider the covariant derivativeD = ~

i
∇ − e∗

c
A, and try to build aU(1)

invariant term out of it and the two order parametersψx,y. A first guess isDiψj(Dmψn)
∗, where one

can easily check that this term is indeed invariant under thetransformationψa = e−i
e∗

~c
χψ̃a, provided

that the vector potential transforms as:Ãa = Aa − ∂aχ. However, the termDiψj(Dmψn)
∗ is not
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invariant under the set of operations of the groupD4h. The list of terms which are invariant are
shown below, taken from Ref. [94]. They read

Fkin = k0
[
|Dxψx|2 + |Dyψy|2

]
+ k1

[
|Dxψy|2 + |Dyψx|2

]
+ (2.88)

k2
[
(Dxψx)

∗(Dyψy) + c.c.
]
+ k3

[
(Dxψy)

∗(Dyψx) + c.c.
]
+

k4
[
|Dzψx|2 + |Dzψy|2

]
,

whereki, with i = 0 − 4, are phenomenological constants related to microscopic quantities, but
treated here as independent variables. The method that relates the phenomenological parameters to
the microscopic quantities uses Gor’kov’s theory of weaklycoupled superconductors. This method,
besides providing an alternative derivation of the free energy density of chiralp-wave superconduc-
tors, yields

α(T )=−N (0)

2
ln
( T
Tc

)
,

β1
3
=β2=

7ζ(3)

64

N (0)

(πkBTc)2
,

k0
3
=k1=k2=k3=

7ζ(3)

128

( ~vF
πkBTc

)2

N (0),

(2.89)
whereN (0) is the density of states per spin at the Fermi level, andζ(s) is the Riemann zeta function.
In order to see that the kinetic energy density possesses thesymmetry of the groupG, one can
integrate this density over the sample volume

(∫
Fkind

3r = Fkin

)
to subsequently transform the

resultant free energy (Fkin) to the reciprocal space. The transformation, conveniently applied in the
notation of the new order parameters, requires the kinetic energy density given in this notation,

Fkin=
k0+k1

4

{
|Dψ+|2+|Dψ−|2

}
+(k2+k3)Re

{
Π+ψ−(Π−ψ+)

∗}+ (2.90)

k2−k3
2

Re

{
i
[
Dxψ+(Dyψ+)

∗−Dxψ−(Dyψ−)
∗
]}

+ k4
2

{
|Dzψ+|2+|Dzψ−|2

}
,

whereΠ± = (Dx ± iDy)/
√
2. The Fourier transform ofFkin at zero magnetic field yields

Fkin=
~2

4

∫
d2k

(
ψ̃∗
+(k), ψ̃

∗
−(k)

)[ (k0+k1)k
2 (k2+k3)k

2
+

(k2+k3)k
2
− (k0+k1)k

2

](
ψ̃+(k)

ψ̃−(k)

)
, (2.91)

wherek± = kx ± iky, k2 = k3, the dimension of the problem has been reduced to two, andψ̃±(k)
are the Fourier transforms ofψ±(r),

ψ̃±(k) =
1

(2π)2

∫
d2reik·rψ±(r). (2.92)

The integrand of Eq. (2.91) is a complex bilinear form. Finding it reduces to solve the following
algebraic equation,

[
(k0+k1)k

2 − ω p
]2 − (k2+k3)

2(k+k−)
2 = 0, (2.93)

derived from the eigenvalue problem̂AX=ω pX, withX = (ψ̃+(k), ψ̃−(k))
T , and

Â =

[
(k0+k1)k

2 (k2+k3)k
2
+

(k2+k3)k
2
− (k0+k1)k

2

]
. From the two roots of Eq. (2.93) we pick up the positive one,

i.e. ω p
+ =

∑3
i=0 ki k

2, and we plot it in Fig. 2.5(a). One can see that this kinetic contribution to the
free energy is isotropic, resembling to what is expected ins-wave superconductors. However, there
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Figure 2.5: (a) Plot of one of the eigenvalues stemming from the bilinear form of the kinetic energy density
for chiral p-wave superconductors after Fourier transformation (see main text). The plot, revealing that
this eigenvalue is isotropic, is complemented with panel (b), which shows the relative phase between the
components̃ψ+(k) and ψ̃−(k).

is an inherent phase which is the main characteristic of the chiral p-wave case, and which one can
obtain by replacingω p

+ back in the eigenvalue problem. This solution, not uniquelydefined, is only
given as the ratio

ψ̃+(k)

ψ̃−(k)
=
k2+
k2

= e2iφ, (2.94)

meaning that although the magnitude of the gap is constant (fully gapped), the phase of it is changing
[see Fig. 2.5(b)].

2.3.3 d+s-wave superconductivity

The phase-sensitive experiments of Refs. [18,19] showed that the symmetry of the superconducting
gap in the HTS was of thed-wave type. This fact subsequently raised the question of how this
symmetry was reflected in the vortex matter. The first answerscame from theoretical works [104,
105], which suggested that thed-wave symmetry component was not the only component present
in the HTS. In fact, they pointed out that an admixture of as-wave component complemented the
dominantd-wave order parameter.

Among the implications on the vortex matter of having a superconductor with multiple order
parameters one can name two: (i) the lattice that form the vortices and which differs from the con-
ventional Abrikosov lattice, and (ii) the bound states thatemerge inside the cores of the vortices
and which are distinct from the Caroli-Matricon bound states. Works have demonstrated that the
vortex lattice is oblique for thed-wave order parameter with the admixture of as-wave compo-
nent [106,107], namely thed+s-wave superconductor. Moreover, it has also been shown for asingle
vortex that the shape of the superconducting density from the s-wave component is not rotational
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Bethe Mulliken Basis function Location of line nodes TRSB
Γ+
1 A1g 1, k2x + k2y, k

2
z · · · No

Γ+
2 A2g kxky(k

2
x−k2y) x=y=0, y=±x No

Γ+
3 B1g k2x−k2y y=±x No

Γ+
4 B2g kxky x=y=0 No

Γ+
5 Eg {kxkz, kykz} z=0 Yes

Table 2.2: Table of the basis functions for theD4h symmetry group within thed-vector representation for
spin-singlets. The first two rows denotes the notations of Bethe and Mulliken, respectively.
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Figure 2.6: Plots of the two irreducible representationsΓ+
3 andΓ+

4 of Table 2.2, characterized for possessing
d-wave symmetry. Panel (a) shows nodes aty = ±x and panel (b) aty = 0, andx = 0.

invariant, unlike in the conventional case. This density component showed a four-lobe profile rather
than the cylindrical symmetric structure of the Abrikosov vortices [107,108]. Huge efforts have been
devoted to see this peculiar feature in HTSs, and thus confirmthed+s-wave pairing, however the
task has been challenging due to the dominance of the cylindrical symmetric structure of thed-wave
component.

In order to study phenomenologicallyd+s-wave superconductivity, one can start by finding the
irreducible representations of the corresponding symmetry group. In this case, bearing in mind that
the HTS Bi2Sr2CaCu2O8+δ possesses the tetragonal crystal symmetry and its pairing is of the singlet
type, the symmetry group behind this analysis is theD4h. The list of the irreducible representations
of this group for the gap parameterψ [see Eq. (2.78)] is shown in table 2.2. Among the five
representations two have thed-wave symmetry and one thes-wave symmetry, namely the pair (Γ+

3 ,
Γ+
4 ), andΓ+

1 , respectively. In Fig. 2.6, the plot of the two representations with thed-wave symmetry
is shown. The figure clearly shows that both representationshave line nodes, and that their locations
correspond to those listed in the fourth column of Table 2.2.

According to the irreducible representations of theD4h symmetry group, the expansion of the
superconducting gap for ad+s-wave superconductor reads [108]

ψ(k ) = ηs + ηd(k
2
x − k2y), (2.95)

whereηs andηd are the order parameters transforming like coordinates according to the irreducible
representationsΓ+

1 andΓ+
3 , respectively. These order parameters are obtained following the same

process that was applied toΨx andΨy in the chiralp-wave case, i.e. using Landau’s theory of second
order phase transitions. The condensation free energy density for d+s-wave superconductivity thus
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Figure 2.7: Contour plot of the condensation free energy density (Fcond) for d + s-superconductors. The
energy density in panel (a) is bound from below and has its minimum at (ηd = 0,|ηs| = αs+β3). On the other
hand the energy density of panel (b) is not bound from below.

reads

Fcond = αs|ηs|2 + αd|ηd|2 + β1|ηs|4 + β2|ηd|4 + β3|ηs|2|ηd|2 + β4
(
η∗s

2ηd
2 + η∗d

2ηs
2
)
. (2.96)

The coefficientsαs, αd, andβi with i = 1 − 4 , are treated here phenomenologically. However
they can be related to microscopic quantities such as the shape of the Fermi surface, the Fermi
velocity and the electronic density of states [109]. Since the order parameterηd is the dominant
one [107, 108], one assumes that itsTc is higher than the corresponding one toηs. That means that
while αd is considered negative,αs is either positive or negative provided that it can be largerthan
αd. In Fig. 2.7 the contour plot of the condensation energy is shown for two different combination
of phenomenological coefficients. For simplicity it has been chosen thatβ1 = αs andβ2 = |αd|. In
panel (a) one can see that for the condition|β4| < αs + β3/2, Fcond is bound from below and has
one physical minimum atηs = 0 and|ηd| = β3/β1 + αs. On the other hand, panel (b) shows that
Fcond has a saddle point when|β4| > αs+β3/2. The local minimum of panel (a) will be considered
further in this work since we are interested only in stable solutions of thed-wave at zero external
field.

The terms of the kinetic energy density ford+ s-wave superconductivity have been reported
extensively in the literature [106–109]. They are calculated such as the corresponding terms for
chiralp-wave superconductors, outlined in the previous section. They read

Fkin = γs|D ηs|2 + γd|D ηd|2 + γν
[
(Dyηs)

∗(Dyηd)− (Dxηs)
∗(Dxηd) + c.c.

]
, (2.97)

where the coefficientsγs, γd, andγν are treated phenomenologically here, although one can relate
them to the inverse masses of the electrons in thes andd bands, and their corresponding coupling
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Figure 2.8: Plots of one of the eigenvalues stemming from thebilinear form of the kinetic energy density for
d+s-superconductors after Fourier transformation (see main text). The eigenvalue has the four lobe estructure
of theΓ+

3 irreducible representation, but it also has other four lobes at the line nodes of this representation
due to the admixture of thes-wave component.

[106,107]. In order to see that these terms indeed reflect thed+s-wave symmetry, one can calculate
the kinetic free energy (Fkin) using the Fourier transform, as done in Eq. (2.91) and the text therein,

Fkin=~2

∫
d2k

(
η̃∗s(k), η̃

∗
d(k)

)[ γsk
2 γν(k

2
y − k2x)

γν(k
2
y − k2x) γdk

2

](
η̃s(k)
η̃d(k)

)
, (2.98)

where

η̃s(d)(k) =
1

2π

∫
d2reik·rηs(d)(r). (2.99)

The roots of the secular equation derived from the eigenvalue problemB̂ Y = ωd+sY , where

Y = (η̃s(k), η̃d(k))
T , andB̂ =

[
γsk

2 γν(k
2
y − k2x)

γν(k
2
y − k2x) γdk

2

]
, are

ωd+s± = ±γsk2 − γν |k2y − k2x|, (2.100)

where for ilustrative reasonsγs = γd was chosen. In Fig. 2.8 we plot the eigenvalueωd+s+ in polar
coordinates. There is shown thatωd+s+ , and consequentlyFkin, has the four lobes symmetry of the
Γ+
3 irreducible representation plus another four lobes arising at the line nodes of this representation

and owing to the admixture of ans-wave component.

2.3.4 Relevance to other superconductors with multi-component order pa-
rameter

The Fermi surface of the iron-based superconductor Ba1−xKxFe2As2 is complex and contains many
sheets, as shown in Fig. 1.5 forx = 0.4. Theoretical and experimental works suggest that at moderate
doping (x ≈ 0.4) the superconductor possessess-wave symmetry, and at maximum doping (x = 1)
it possesses boths-wave andd-wave symmetries [110,111]. Many works have therefore claimed that
at x ≤ 1 an admixture of the two distinct pairings is possible [112, 113]. However, this particular
combination of symmetries is distinct from the previously discussed case (d+s-wave), since it breaks
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the time-reversal symmetry. The community name its+id to distinguish it from the time-reversal
preserving pairingd+s-type. On the other hand, the GL free energy fors+ id superconductivity
resembles that ofd+s-wave superconductors. It reads

F = αs|ηs|2 + αd|ηd|2 + β1|ηs|4 + β2|ηd|4 + β3|ηs|2|ηd|2 + β4
(
η∗s

2ηd
2 + η∗d

2ηs
2
)

+ γs|D ηs|2+γd|D ηd|2+γν
[
(Dxηs)

∗(Dxηd)− (Dyηs)
∗(Dyηd) + c.c.

]
, (2.101)

where it is assumed that the parametersαi andβi of the condensate free energy density are such
that the ground state is degenerate [113], i.e. breaks the time-reversal symmetry. Thes+id pairing
is therefore another example of an unconventional superconductor with particular relevance in the
study of multiband superconductivity in the iron-based superconductors and can be addressed using
similar theoretical tools to the ones discussed in this thesis.





3
Numerical methods

3.1 Numerical solution of the Bogoliubov-de Gennes equations

The numerical solution of the Bogoliubov-de Gennes (BdG) equations for chiralp-wave supercon-
ductivity presented in this thesis follows the same procedure that was applied to conventional super-
conductivity in Refs. [114] and [115]. In this section a brief description of this procedure is provided.
Instead of solving Eqs. (2.61) and (2.62), the BdG equationsare solved in the representation where
the components of the gap∆x,y are substituted by∆± = (∆x ±∆y)/2. They read

[
H0(r ) Π(r )
−Π∗(r ) −H ∗

0 (r )

](
un(r )
vn(r )

)
= εn

(
un(r )
vn(r )

)
, (3.1)

where the single particle HamiltonianH0 is

H0(r ) =
1

2m

[~
i
∇− e

c
A
]2

− EF, (3.2)

and,

Π(r ) = − i

kF

{
∆+(r )∂+ +∆−(r )∂− +

1

2

[
∂+∆+(r ) + ∂−∆−(r )

]}
, (3.3)

with A being the vector potential,∂± = ∂x±i∂y, andkF (EF) being the Fermi wave length (energy),
respectively. The self-consistent conditions (2.72) and (2.72) are correspondingly changed to the∆±
representation, and yield

∆±(r ) = −VpΩ
i

2kF

∑

n

[
v∗n(r )∂∓un(r )− un(r )∂∓v

∗
n(r )

]
tanh

( εn
2T

)
. (3.4)

The sample that we consider in this section is a cylinder of radiusR and thicknessd. However,
in the limit of d≪λ, physical quantities such as the superconducting current and the magnetic field
remain constant along the sample (see Fig. 3.1). As a result,one can treat the system as a quasi-two
dimensional sample. Therefore, we can choose polar coordinates for convenience, for this particular
geometry. Moreover, we also assume that the cylindrical symmetry of the sample is imposed on
the superconducting gap, i.e. we consider the following ansatz for the gap:∆±(r ) = ∆±(r)e

iL±θ.
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(a) (b) (c)

Figure 3.1: Cartoons of superconducting disks showing the side view of three samples with different thickness.
The line profiles of their magnetic fields are also shown. The set of samples reveal that the demagnetization
effects are smaller for the thinner disks.

This assumption leads to the subsequent expression for the non-diagonal operatorΠ(r ) in polar
coordinates,

Π(r ) = − i

kF

{
ei(L++1)θ

[
∆+

( ∂

∂r
+
i

r

∂

∂θ

)
+

1

2

(∂∆+

∂r
− L+

r
∆+

)]

+ ei(L−−1)θ
[
∆−

( ∂

∂r
− i

r

∂

∂θ

)
+

1

2

(∂∆−
∂r

+
L−
r
∆−

)]}
. (3.5)

On the other hand, in the Coulomb gauge the single-particle Hamiltonian reads

H0(r ) =
1

2m

[
−~2∇2 − 2e~

ic
A ·∇+

e2

c2
A2

]
−EF, (3.6)

where the set containing all the eigen-functions stemming from the Hamiltonianh0 = − ~2

2m
∇2 forms

a complete basis that one can use for the expansion of the quasiparticle wavefunctions of the BdG
equations,

un(r ) =
∑

µ,j

cnµ,jφj,µ(r ), vn(r ) =
∑

µ′,j′

dnµ′,j′φj′,µ′(r ). (3.7)

The eigen-functionsφj,µ(r ) = ϕj,µ(r)
eiµθ√
2π

, which are composed of separate radial and azimuthal

parts are demanded to be orthonormal, i.e.
∫
d2rφ∗

j′,µ′(r )φj,µ(r ) = δµ
′

µ δ
j′

j . They have the eigen-
energiesǫj,µ = ~2α2

j,µ/2mR
2, whereαj,µ are the zeros of theµth Bessel function of the first kind

[Jµ(r)]. The radial part of the eigen-functions reads

ϕj,µ(r) =

√
2

RJµ+1(αj,µ)
Jµ

(
αj,µ

r

R

)
. (3.8)

Replacing the expansions of the quasiparticle wavefunctions back into the BdG equations (3.1),
and projecting the resultant quantum state into the base vector φl,ν(r ), one obtains the following set
of linear equations

∑

µ,j

〈l, ν|H0|j, µ〉cnµ,j+
∑

µ′,j′

〈l, ν|Π|j′, µ′〉dnµ′,j′ =
∑

µ,j

εncnµ,jδ
l
jδ
ν
µ, (3.9)

−
∑

µ,j

〈l, ν|Π∗|j, µ〉cnµ,j−
∑

µ′,j′

〈l, ν|H ∗
0 |j′, µ′〉dnµ′,j′ =

∑

µ′,j′

εndnµ′,j′δ
l
j′δ

ν
µ′ ,
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where

〈l, ν|H0|j, µ〉 =

∫
d2rφ∗

l,ν(r )H0(r )φj,µ(r ), (3.10)

〈l, ν|Π|j′, µ′〉 =

∫
d2rφ∗

l,ν(r )Π(r )φj,µ(r ), (3.11)

and〈l, ν|Π∗|j, µ〉, 〈l, ν|H ∗
0 |j′, µ′〉 can be obtained in a similar way straightforwardly.

In the quasi-two dimensional limit (d≪ λ) the magnetic field is constant along the sample and
one can obtain that the vector potential becomesA = H×r

2
, or A = Hr

2
θ̂, in polar coordinates.

This expression reduces the complexity of the problem and facilitates the calculation of the matricial
elements deriving from the single particle Hamiltonian andits complex conjugate,

〈l, ν|H0|j, µ〉 =
{[~2α2

j,µ

2mR2
−EF − ~e

mc

H

2
µ
]
δlj

+
e2

2mc2
H2

4

∫
drr3ϕl,ν(r)ϕj,µ(r)

}
δνµ, (3.12)

and

〈l, ν|H ∗
0 |j′, µ′〉 =

{[~2α2
j′,µ′

2mR2
−EF +

~e

mc

H

2
µ′
]
δlj′

+
e2

2mc2
H2

4

∫
drr3ϕl,ν(r)ϕj′,µ′(r)

}
δνµ′ . (3.13)

On the other hand, the matricial elements deriving from the operatorΠ, and its complex conjugate
Π∗, read

〈l, ν|Π|j′, µ′〉 = (3.14)

− i
kF

∫
drrϕl,ν

[
∆+

∂ϕj′,µ′

∂r
+

ϕj′,µ′

2
∂∆+

∂r
−∆+

ϕj′,µ′

r

(
µ′ + L+

2

)]
δνµ′+L++1

− i
kF

∫
drrϕl,ν

[
∆−

∂ϕj′,µ′

∂r
+

ϕj′,µ′

2
∂∆−

∂r
+∆−

ϕj′,µ′

r

(
µ′ + L−

2

)]
δνµ′+L−−1,

and,

〈l, ν|Π∗|j, µ〉 = (3.15)
i
kF

∫
drrϕl,ν

[
∆∗

+
∂ϕj,µ

∂r
+

ϕj,µ

2

∂∆∗
+

∂r
+∆∗

+
ϕj,µ

r

(
µ− L+

2

)]
δνµ−L+−1

+ i
kF

∫
drrϕl,ν

[
∆∗

−
∂ϕj,µ

∂r
+

ϕj,µ

2

∂∆∗
−

∂r
−∆∗

−
ϕj,µ

r

(
µ− L−

2

)]
δνµ−L−+1,

where one can easily note that due to the separable form of theansatz for the gap,L− − L+ = 2.
This fact leads to the reduction of the number of independentparameters existing in the model and
subsequently to the speed up of the numerical algorithm. Moreover, from the comparison of the
nonzero elements of Eqs. (3.12) and (3.14) [or (3.13) and (3.15)], another reduction of independent
parameters is obtained for the BdG equations. That reduction follows from the equationµ′ = µ −
L+ − 1.

In order to demonstrate how the numerical algorithm works wecalculate the Hamiltonian and
the eigen-vector arising from the set of linear Eqs. (3.9) when(L+, L−) = (0, 2). They read
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H =




Ĥ0
. . .

Ĥ1 Π̂1,0
. . .

Ĥ2 Π̂2,1
. . .

Ĥ3 Π̂3,2
. . .

. . . . . . . ..
. . . −Π̂∗

0,1 −Ĥ∗
0

. . . −Π̂∗
1,2 −Ĥ∗

1
. . . −Π̂∗

2,3 −Ĥ∗
2

. . . . . . −Ĥ∗
3

. . . . ..




, (3.16)

and
ψn =

(
cn 0, cn 1, cn 2, cn 3, · · · ,dn 0, dn 1, dn 2, dn 3, · · ·

)T
, (3.17)

with Ĥα, Π̂α,α−1, Ĥ∗
α, andΠ̂∗

α,α+1, being the submatrices〈l, α|H0|j, α〉, 〈l, α|Π|j′, α− 1〉,
〈l, α|H ∗

0 |j′, α〉, and〈l, α|Π∗|j, α + 1〉, respectively. Moreover,cnα anddnα are subvectors with the
corresponding components(cnα,0, cnα,1, cnα,2, · · · )T and(dnα,0, dnα,1, dnα,2, · · · )T , respectively.
Owing to the particular block structure of the Hamiltonian (3.16), one can decompose this large
matrix into a set of 2×2 matrices and write the BdG equations as

[
Ĥα Π̂α,α−1

−Π̂∗
α−1,α −Ĥ∗

α−1

](
cnα

dnα−1

)
= εn

(
cnα

dnα−1

)
. (3.18)

The expansion of the quasiparticle wavefunctions [see Eq. (3.7)] is infinite, and consequently
so is the dimension of matrix (3.16), rendering the BdG equations impractical to solve for any
numerical algorithm. However, due to the instability of theFermi surface toward the formation of
Cooper pairs, only states within the Debye window make majorcontributions to the superconducting
gap. Thus, one can select a finite number of basis states that lie within this window and obtain a
reliable approximation of the gap. Precisely, this is obtained iteratively after the eigenvectors and
eigenvalues of the set of BdG Eqs. (3.18) are calculated. Theiteration starts with a trial gap and ends
when the relative convergence between two neighbor iterations is below some limit, typically10−5

meV. The BdG equations have a discrete symmetry that is worthmentioning since it allows one to
speed up the numerical algorithm. It is the time reversal relation

{u−εn, v−εn} = {v∗εn , u∗−εn}, (3.19)

which enables us to obtain the quasiparticle excitation spectrum for negative angular momenta from
that with positive angular momenta.

3.2 Finite difference method for the Ginzburg-Landau equations
of p-wave superconductivity

In this thesis the GL equations for chiralp-wave superconductivity are solved using the time-
dependent (TDGL) approach. TDGL equations introduce temporal evolution in the stationary GL
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equations of conventional superconductors [see Eqs. (1.4)and (1.5)], and for chiralp-wave super-
conductivity they read

~2

2m∗D

( ∂
∂t

+ i
e∗

~
ϕ
)
Ψ = − δF

δΨ∗ , (3.20)

σ

c

(1
c

∂A

∂t
+∇ϕ

)
= −δF

δA
− 1

4π
∇×∇×A , (3.21)

where the free energyF = Fcond+Fkin is given by Eqs. (2.87) and (2.90),D is a phenomenological
diffusion coefficient,σ the normal conductivity, andϕ the electrostatic potential. The TDGL equa-
tions are strictly valid only for gapless superconductors [116]. However, for conventional supercon-
ductivity they have proven to describe well the slow moving vortices in the mixed state regime [117].
For dirty superconductors there exists another generalized TDGL equation, taking into account the
inelastic scattering [118].

The TDGL equations are gauge invariant, i.e. under the transformation(
Ψ′,A ′, ϕ′) =

(
Ψe

ie∗

~c
χ,A + ∇χ, ϕ − 1

c
∂χ
∂t

)
they remain invariant for any arbitrary functionχ.

That allows one to simplify the TDGL equations by properly chosing the arbitrary function (gauge
fixing). In what follows we present the two gauge choices considered in this thesis.

3.2.1 Zero-electrostatic potential gauge

The zero-electrostatic potential gauge is the most convenient choice for the TDGL equations when
neither charges nor external currents are considered in thesuperconducting sample. From the orig-
inal fields

(
Ψ,A, ϕ

)
the arbitrary functionχ is required to satisfy the equation1

c
∂χ
∂t

= ϕ. This
choice imposes the transformed electrostatic potential tovanish,ϕ′ = 0, reducing considerably the
complexity of the TDGL equations for the transformed fields:

~2

2m∗D

∂Ψ′

∂t
= −δF

[
Ψ′,Ψ′∗,A

]

δΨ′∗ , (3.22)

σ

c2
∂A′

∂t
= −δF

δA′ −
1

4π
∇×∇×A′ . (3.23)

For the numerical algorithm that solves the TDGL equations it is convenient to work with di-
mensionless quantities. That is achieved by scaling the distance in units of the coherence length

ξ =
√

~2

2m∗|α| , time in units of the GL timet0 = ξ2/D, the magnetic field in units of the bulk upper

critical fieldHc2 = ~c
e∗ξ2

, the order parameter scaled to its bulk value in absence of magnetic field

∆0 =
√

|α|
β1−β2 , and the free energy density toF0 =

~2∆2
0

2m∗ξ2
. The dimensionless TDGL equations in

the zero-electrostatic potential gauge thus become

∂Ψ

∂t
= − δF

δΨ∗ , (3.24)

σ
∂A

∂t
= −1

2

δF

δA
− κ2∇×∇×A , (3.25)

where for convenience we have dropped all the primes andσ is the dimensionless normal conduc-
tivity, scaled toσ0 = c2t0

4πλ2
. The dimensionless free energy density reads
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F = k0+k1
4

{
|Dψ+|2+|Dψ−|2

}
+(k2+k3)Re

{
Π+ψ−(Π−ψ+)

∗} + (3.26)

k2−k3
2

Re

{
i
[
Dxψ+(Dyψ+)

∗−Dxψ−(Dyψ−)
∗
]}

+ k4
2

{
|Dzψ+|2+|Dzψ−|2

}

−1
2

(
|ψ+|2 + |ψ−|2

)
+ 1+τ

4

(
|ψ+|2 + |ψ−|2

)2 − τ
4

(
|ψ+|2 − |ψ−|2

)2
,

whereτ = β2
β1−β1 , the dimensionless covariant derivative isD = ∇− iA and we tookβ3 = 0 [103].

The geometry of the sample to be solved with TDGL equations ofchiral p-wave superconductivity
is rectangular and thin. Moreover, an external magnetic field is applied perpendicularly to the plane
of the sample. Assuming the demagnetization field is vanishing due to the small thickness of the
sample in comparison toλ, one can treat the system as quasi-two-dimensional. In thiscase the
dimensionless TDGL equations read

∂Ψ

∂t
=

1

2

[
k0+k1

2
D2 + k2−k3

2i
[Dx, Dy] (k2 + k3) Π

2
+

(k2 + k3) Π
2
−

k0+k1
2

D2 − k2−k3
2i

[Dx, Dy]

](
ψ+

ψ−

)

+ Ψ
(1
2
− 1 + τ

2
|Ψ|2 ± τ

2
Ψ∗σ̂zΨ

)
, (3.27)

σ
∂A

∂t
= J− κ2∇×∇×A , (3.28)

where[ ] denotes the commutator andJ the superconducting current density

J = Im

{
k0+k1

4

(
ψ∗
+Dψ++ψ

∗
−Dψ−

)
+
k2+k3

2
√
2

(
Ψ∗

[
Π+σ̂++Π−σ̂−

]
Ψı̂ (3.29)

+ iΨ∗
[
Π+σ̂+ −Π−σ̂−

]
Ψ ̂

)}
− k2−k3

4
Re

{
k̂×

(
ψ∗
+Dψ+ − ψ∗

−Dψ−
)}
.

Here σ̂± = (σx ± iσy)/2 are pseudospin or chiral operators acting on the space span by ψ±. The
boundary conditions for the TDGL Eqs. (3.27) and (3.28), andcompatible with the existence of
spontaneous edge currents, are [94]

ψ+ − ψ− = 0
Dyψ+ +Dyψ− = 0

}
at the north and south sides,

ψ+ + ψ− = 0
Dxψ+ −Dxψ− = 0

}
at the east and west sides,

(∇×A) · n̂ = H, (3.30)

wheren̂ is the unitary vector normal to the sample surface. With these boundary conditions the
problem is well posed and one can solve the TDGL equations with a numerical algorithm. In this
thesis we use the finite difference method and the link variables technique. The discretization of
kinetic terms such asD2ψ± has been reported elsewhere [119, 120], but that ofΠ2

±ψa was not. It
reads
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Figure 3.2: Comparison of (a) the five-point stencil discretization of the operatorD2, and (b) the nine-point
stencil ofΠ2

±.

Π2
±ψ∓ =

1

2
(Dx ± iDy)(Dx ± iDy)ψ∓, (3.31)

=
1

2

(
D2
x −D2

y ± i
[
DxDy +DyDx

])
ψ∓,

=
Ux
i,jψ∓, i+1,j − 2ψ∓, i,j + Ūx

i−1,jψ∓, i−1,j

2δ2x

− Uy
i,jψ∓, i,j+1 − 2ψ∓, i,j + Ūy

i,j−1ψ∓, i,j−1

2δ2y

± iUx
i,j

Uy
i+1,jψ∓, i+1,j+1 − Ūy

i+1,j−1ψ∓, i+1,j−1

8δxδy

∓ iŪx
i−1,j

Uy
i−1,jψ∓, i−1,j+1 − Ūy

i−1,j−1ψ∓, i−1,j−1

8δxδy

± iUy
i,j

Ux
i,j+1ψ∓, i+1,j+1 − Ūx

i−1,j+1ψ∓, i−1,j+1

8δxδy

∓ iŪy
i,j−1

Ux
i,j−1ψ∓, i+1,j−1 − Ūx

i−1,j−1ψ∓, i−1,j−1

8δxδy
+O(δr 3),

whereUx
i,j = e−iδxAx, i,j , andUy

i,j = e−iδyAy, i,j are the link variables,̄Ux
i,j andŪy

i,j their complex con-
jugates, andδx, δy the widths of the mesh shown in Fig. 3.2. There one can see thatthe second-order
finite difference approach forΠ2

±ψa contains nine grid points, unlike the five points stencil approach
for D2ψ±. The commutator term in Eq. (3.27) can be simplified further with a straightforward cal-
culation,[Dx, Dy]=−i(∂xAy − ∂yAx)=−iBz, and thus its discretization becomes simpler. Finally,
the discretization of Eq. (3.28) reads

An+1
x, i,j −Anx, i,j =

∆t

σ
Jx, i,j −

κ2∆t

σδy

(
Bn
z, i,j − Bn

z, i,j−1

)
, (3.32)

An+1
y, i,j − Any, i,j =

∆t

σ
Jy, i,j +

κ2∆t

σδx

(
Bn
z, i,j − Bn

z, i−1,j

)
, (3.33)

where
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Jx, i,j = Im
∑

α=±

{
k0+k1

4
ψ∗
α, i,j

[Ux
i,jψα, i+1,j − Ūx

i−1,jψα, i−1,j

2δx

]
+
k2+k3

4
ψ∗
α, i,j

×
[Ux

i,jψ−α, i+1,j−Ūx
i−1,jψ−α, i−1,j

2δx
+iα

Uy
i,jψ−α, i,j+1−Ūy

i,j−1ψ−α, i,j−1

2δy

]}

+ Re
∑

α=±
α
k2−k3

4
ψ∗
α, i,j

Uy
i,jψα, i,j+1 − Ūy

i,j−1ψα, i,j−1

2δy
, (3.34)

Jy, i,j = Im
∑

α=±

{
k0+k1

4
ψ∗
α, i,j

[Uy
i,jψα, i+1,j − Ūy

i−1,jψα, i−1,j

2δx

]
+
k2+k3

4
ψ∗
α, i,j

×
[
α
Ux
i,jψ−α, i+1,j−Ūx

i−1,jψ−α, i−1,j

2δx
+i
Uy
i,jψ−α, i,j+1−Ūy

i,j−1ψ−α, i,j−1

2δy

]}

− Re
∑

α=±
α
k2−k3

4
ψ∗
α, i,j

Ux
i,jψα, i,j+1 − Ūx

i,j−1ψα, i,j−1

2δx
, (3.35)

andBn
z, i,j is the local magnetic field calculated using first-order finite differences,

Bz, i,j =
Ay, i+1,j −Ay, i,j

δx
− Ax, i,j+1 −Ax, i,j

δy
. (3.36)

In Eqs. (3.32) and (3.33) the superindexn stands for the discretized time index. That means that
An+1
x, i,j andAnx, i,j are two subsequent local values of the vector potential separated by the time inter-

val ∆t. The solution of these equations can be done within an implicit method e.g. the Crank-
Nicolson one, semi-implicit or explicit. In this thesis we opted for an explicit method, where
∆t ≤ min

{O2

4
, O2

4κ2

}
, with O2 = 2

δ−2
x +δ−2

y
.

3.2.2 Coulomb gauge

The Coulomb gauge, unlike the zero-electrostatic potential gauge, is the most convenient choice
when an external current is applied to the superconducting sample [121, 122]. In this case the ar-
bitrary function is required to satisfy the equation∆χ + ∇ · A = 0, which makes the transformed
vector potentialA ′ divergence-free. This fact, combined with the operation oftaking the divergence
of Eq. (4.3) leads to the TDGL equations in dimensionless units for the Coulomb gauge

( ∂
∂t

+ iϕ
)
Ψ = − δF

δΨ∗ , (3.37)

σ∆ϕ = ∇·J, (3.38)

where the second TDGL equation is for the electrostatic potential rather than the vector potential
such as in Eq. (3.28). The vector potential in this case is obtained from the gauge choice∇·A =
0. The boundary conditions for the fieldsΨ andϕ in a superconducting nanobridge linking two
normal leads located at the north and south sides, and which are used to apply current into the
superconducting sample are
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ψ± = 0
∂yϕ+ jn = 0

}
at north and south sides,

ψ++ψ−=0
Dxψ+−Dxψ−=0

∂xϕ=0



 at east and west sides, (3.39)

wherejn denotes the normal current density. The TDGL equations (3.37) and (3.38) are numeri-
cally solved with finite differences and the link variable technique, where the discretization of the
operators appearing in the first TDGL equation follows that of the previous section. The second
equation is solved using the highly optimized Intel MKL routines for Fourier transformation, with
the discretization for the superconducting current density as given in Eqs. (3.34) and (3.35).

3.3 Finite difference method for the Ginzburg-Landau equations
of d+s-wave superconductivity

Although this thesis is devoted to the study of chiralp-wave superconductivity, the GL equations
for d+s-wave superconductors provide an example of a gap symmetry with admixture of two dis-
tinct Cooper pairings. These GL equations can be solved following a procedure similar to that for
p-wave superconductors, and the description of the numerical algorithm has value to several super-
conducting compounds outside the ones considered in the thesis. In this case the TDGL equations
in dimensionless units read

γd

(
∂

∂t
+ iϕ

)
ηd = γdD

2ηd + γν(D
2
y −D2

x)ηs

+ ηd − |ηd|2ηd −
τ3
2
|ηs|2ηd − τ4η

2
sη

∗
d , (3.40)

γs

(
∂

∂t
+ iϕ

)
ηs = γsD

2ηs + γν(D
2
y −D2

x)ηd

− νηs − τ1|ηs|2ηs −
τ3
2
|ηd|2ηs − τ4η

2
dη

∗
s , (3.41)

σ

(
∂A

∂t
+∇ϕ

)
= J− κ2∇×∇×A , (3.42)

where

J = Im {γdη∗dDηd + γsη
∗
sDηs}

− Im
{
γν [η

∗
dDxηs + η∗sDxηd] ı̂−γν [η∗dDyηs + η∗sDyηd] ̂

}
, (3.43)

and the dimensionless phenomenological parameters are:ν = αs

|αd| , andτi =
βi
β2

, with i=1, 3, 4. In

Eqs. (3.40) - (3.42) the distance is measured in units of the coherence lengthξd =
√

~2

2m∗|αd| , time in

units of the GL timet0d =
ξ2d
D

, the magnetic field is scaled to the bulk upper critical fieldHc2 =
~c
e∗ξ2d

,

the electrostatic potential toϕ0d =
~

e∗t0d
, the order parameter to its bulk valueηd0 =

√
|αd|
2β2

, and the

free energy density toF0d =
~2η2d0
2m∗ξ2d

. Moreover,κ = λd
ξd

is the GL parameter whereλd =
√

m∗c2

4πe∗2η2d0
is
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the London penetration depth. The boundary conditions for the components of the order parameter
and the vector potential in the sample considered here, namely a thin rectangular sample with an
external magnetic field applied perpendicularly, read

γdDyηd + γνDyηs = 0
γsDyηs + γνDyηd = 0

}
at the north and south sides,

γdDxηd − γνDxηs = 0
γsDxηs − γνDxηd = 0

}
at the east and west sides,

(∇×A) · n̂ = H. (3.44)

Finally, the discretization of the TDGL equations ford+s-wave superconductors in the zero-
electrostatic potential gauge and within the finite-difference and the link-variable technique read,

γd
ηn+1
d,i,j−ηnd,i,j

∆t
= γd

[
Ux
i,jη

n
d,i+1,j − 2ηnd,i,j + Ūx

i−1,jη
n
d,i−1,j

δx2

+
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i,jη

n
d,i,j+1 − 2ηnd,i,j + Ūy

i,j−1η
n
d,i,j−1

δy2

]

+ γν

[
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i,jη

n
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i,j−1η
n
s,i,j−1

δy2

− Ux
i,jη
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s,i+1,j − 2ηns,i,j + Ūx
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n
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2
|ηns,i,j|2ηnd,i,j−τ4ηns,2i,jη
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(3.45)
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n
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+
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δy2

−
Ux
i,jη
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− νηns,i,j−τ1|ηns,i,j|2ηns,i,j−
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n
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.

(3.46)
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4
Multichiral ground states in mesoscopicp-wave

superconductors

Using Ginzburg-Landau formalism we investigate the effectof confinement on the ground state of
mesoscopic chiralp -wave superconductors in absence of magnetic field. We reveal stable multichi-
ral states with domain walls separating the regions with different chiralities, as well as monochiral
states with spontaneous currents flowing along the edges. Weshow that multichiral states can exhibit
identifying signatures in the spatial profile of the magnetic field, if those are not screened by edge
currents in the case of strong confinement. Such magnetic detection of domain walls in topological
superconductors can serve as a long-sought evidence of broken time-reversal symmetry.

4.1 Introduction

In a topological superconductor besides the bulk gap that separates the normal and the supercon-
ducting phases, there exist gapless edge states carrying spontaneous currents along the boundaries
of the sample [70]. Theoretical works have classified the topological superconductors in two types
according to whether or not they break the time-reversal symmetry (TRS), namely (i) chiral, and
(ii) helical [69, 73], respectively. In a chiral superconductor the Cooper pairs are spin polarized, i.e.
spinless owing to the broken TRS, and its edge states resemble those of the quantum Hall state [73].
On the other hand, in a helical superconductor the Cooper pairs are in a spin-triplet state, i.e. spinful
owing to the TRS, and its edge states resemble those of the quantum spin Hall state [73].

The archetypal example of a topological superconductor breaking (satisfying) the TRS in two
dimensions is the chiral (helical)p -wave model of superconductivity. In ap -wave superconductor
the orbital part of the superconducting gap (∆) has odd parity, i.e. the Cooper pairs have angular
momentuml = 1 since the parity (P ) is defined by:P = (−1)l. Moreover, the spin part of the
gap is either spin polarized for the chiral case or spinful with a triplet state for the helical case.
Microscopic and phenomenological models of chiralp -wave superconductivity in two dimensions
(2D) have reported intriguing states comprising (i) the edge states arising from the topological nature
of the model [77], (ii) chiral domain walls separating regions with different chiralities [76], and (iii)
coreless vortices (skyrmions) with topology and electronic properties distinctly different from that
of conventional Abrikosov vortices [123–125]. However, despite the numerous works revealing the
vast novel physics behind chiralp -wave superconductivity, none of the three previously mentioned
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hallmarks have been confirmed experimentally in strontium ruthenate (SRO) [59–62], the leading
candidate to display chiralp -wave superconductivity [101].

Strontium ruthenate, Sr2RuO4, is a layered perovskite with a Fermi surface containing three
sheets [57, 96]. Among them two are one-dimensional (α andβ) and arising from the dxz and dyz
orbitals of Ru, whereas the remaining one is two-dimensional (γ) and arising from the dxy orbitals
of Ru. Chiralp -wave superconducting order was suggested to emerge in theγ band of SRO as a
consequence of strong Hund’s rule coupling [48]. The evidences ofp -wave order in SRO to date
comprise (i) the detection of spontaneous fields in muon spinresonance (µSR) experiments [52],
(ii) the enhancement and suppression of the Josephson critical current depending on the direction of
the junction plane [49, 126], and (iii) the observation of a state breaking the TRS in the polar Kerr
effect (PKE) [53]. However, measurements of the spin susceptibility below the critical temperature
(Tc) for magnetic fields applied either parallel or perpendicularly to thec axis could not demonstrate
that the spins remained in the basal plane independently of the direction of the field [47,100], as one
expects in chiralp -wave superconductivity. Then, the debate about whether ornot SRO is a chiral
superconductor remains open, with an increasing number of works suggesting that superconducting
order also develops inα andβ bands and that those play an essential role in the physical properties
of this material [55,79–81].

In this chapter we employ the phenomenological Ginzburg-Landau (GL) model to describe chiral
p -wave superconductors [94]. The set of coupled and nonlinear differential equations that we solve
numerically for the two component superconducting order parameter,Ψ = (ψ+, ψ−)

T , and the
vector potentialA, depends on four phenomenological parameters, defined by the shape of the Fermi
surface of the material under consideration [77, 102]. We then use the microscopic information
available for SRO to calculate the four phenomenological parameters, and present striking results
useful to explain the elusive detection of chiral domain walls (DWs). From our simulations we
present the ground-state phase diagram as a function of the size and aspect ratio of the mesoscopicp -
wave superconducting samples, in absence of any applied magnetic field. Among the stable phases,
we reveal the multichiral states with domain walls separating the regions with different chiralities,
as well as monochiral ones with spontaneous currents flowingalong the edges.

The chapter is organized as follows. Sec. 4.2 presents the theoretical formalism and the discus-
sion of the gauge invariance in the GL equations. From there we derive the equations that describe
the considered system, namely mesoscopic rectangular samples without an external magnetic field.
Sec. 4.3 then summons our findings, in a phase diagram of ground states, showing the stability and
relationship between the superconducting configurations composed of multiple chiral domains as
well as the monochiral states. Our findings and conclusions are summarized in Sec. 4.4.

4.2 Theoretical Formalism

Based on the point symmetry of the crystal structure under consideration, one can obtain the GL
functional, and subsequently by its minimization, the time-dependent Ginzburg-Landau (TDGL)
equations, which describe the spatial distribution of the magnetic inductionB, and the superconduct-
ing order parameterΨ. Within an analysis for unconventional superconductivity, a GL functional
with a state breaking the TRS and of thep -wave type has already been reported for a tetragonal
lattice [94]. Thus, the dimensionless GL functional,F = F ′/F0, whereF0 = ~2∆2

0/2mξ
2, for
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chiralp -wave superconductors reads

F =
K+k1

4

(∣∣Dψ+

∣∣2 +
∣∣Dψ−

∣∣2
)

+
(
k2+k3

)
Re

{
Π+ψ−(Π−ψ+)

∗
}

− 1

2

∣∣Ψ
∣∣2+1+τ

8

∣∣Ψ
∣∣4− τ

8
(Ψ∗σ̂zΨ)2 , (4.1)

whereξ =
√

~2

2mα
is the superconducting coherence length, and∆0 =

√
α
2β1

is the magnitude of

the degenerate zero-field solution,ψ0 = ∆0(1,±i)/
√
2, in the fieldsψx = (ψ−+ψ−)/2 andψy =

(ψ+−ψ−)/2i. In Eq. (4.1),ki, α, andτ = β2/β1, with i = 1, 2, 3, are parameters microscopically
derived depending on the Fermi surface of the material. For SRO Refs. [77] and [102] give detailed
calculation of these parameters assuming chiral superconductivity develops in the cylindricalγ band.
K =

∑
ki , D is the covariant derivative, andΠ± = 1√

2
(Dx ± iDy) are creation and annihilation

operators of Landau levels, respectively. In dimensionless units where time is scaled to the GL time
t0 = ξ2/D, with D a diffusion phenomenological coefficient, distance to the coherence lengthξ,
the magnetic field to the upper critical fieldHc2, and the electrostatic potential toϕ0 = Hc2ξ

2/ct0,
wherec is the speed of light, the TDGL equations become [119]

( ∂
∂t

+ iϕ
)
Ψ = − δF

δΨ∗ , (4.2)

σ
(∂A
∂t

+∇ϕ
)

= −δF
δA

− κ2∇×B . (4.3)

In Eqs. (4.2) and (4.3)B is the magnetic induction,ϕ the electrostatic potential,σ the conductiv-

ity in units ofD/αt0, andκ=λ/ξ the GL parameter, whereλ =
√

mc2

8πe2∆2
0

is the London penetration

depth.
The gauge invariance of the TDGL equations allows one to simplify them owing to the freedom

of the arbitrary functionχ in the transformation
(
Ψ′,A ′, ϕ′) =

(
Ψeiχ,A+∇χ, ϕ− ∂χ

∂t

)
. Whenχ

is properly chosen (gauge fixed), it provides a supplementary equation for the transformed fields that
simplifies the form of the TDGL equations. In what follows we present the gauge choice considered
in this chapter.

4.2.1 Zero-electrostatic potential gauge

The zero-electrostatic potential gauge is the most convenient choice for the TDGL equations when
neither charges nor external currents are considered in thesuperconducting sample [124]. From the
original fields

(
Ψ,A, ϕ

)
the arbitrary functionχ is required to satisfy the equation∂χ

∂t
= ϕ. This

choice renders vanishing the transformed electrostatic potential,ϕ′ = 0, reducing considerably the
complexity of the TDGL equations for the transformed fields,

∂Ψ

∂t
=

(K+k1
2

D2 + (k2+k3)
[
Π2

+σ̂++Π2
−σ̂−

])
Ψ

+
(
1− 1 + τ

2
|Ψ|2 ± τ

2
Ψ∗σ̂zΨ

)
Ψ, (4.4)

σ
∂A

∂t
= J− κ2∇×B, (4.5)

where for convenience we have dropped all the primes andσ̂± = (σ̂x ± iσ̂y)/2 are pseudo-spin or
chiral operators acting on the space span byψ±. It is straightforward to show in Eq. (4.4) that by
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considering: (i) the stationary regime, i.e.∂Ψ
∂t

= 0, and (ii) the proximity of the superconducting
to the normal phase, i.e. discarding the nonlinear terms, the first GL equation transforms to the
eigenvalue problem:

[
K+k1
2

D2 + (k2+k3)
(
Π2

+σ̂++Π2
−σ̂−

)]
Ψ = −Ψ. The analytical solutions

to the latter equation have been obtained from Landau level states (φn) satisfying the equations
Π±φn ∝ φn±1 [94, 102, 127]. Thus, in the linearized case for chiralp -wave superconductors the
order parameter is given byΨ = (φn, φn−2)

T , wheren becomes the vorticity.
Finally, with {ı̂, ̂} being canonical base vectors in Cartesian coordinates, thedimensionless

superconducting density currentJ, given in units ofJ0 = e~
mξ

∆2
0, reads

J = Im

{
K+k1

4

(
ψ∗
+Dψ+ + ψ∗

−Dψ−

)
(4.6)

+
k2 + k3

2
√
2

(
Ψ∗

[
Π+σ̂+ +Π−σ̂−

]
Ψ ı̂+ iΨ∗

[
Π+σ̂+ − Π−σ̂−

]
Ψ ̂

)}
.

4.2.2 Boundary conditions

Eqs. (4.4) and (4.5) are solved in this chapter for mesoscopic rectangular samples with an external
magnetic fieldH applied perpendicularly to the sample plane. The required boundary conditions
that pose the problem well and that are compatible with the existence of spontaneous edge currents
are: [77,94,124]

ψ+−ψ−=0
Dyψ++Dyψ−=0

}
at north and south sides,

ψ++ψ−=0
Dxψ+−Dxψ−=0

}
at east and west sides.

(∇×A ) · n̂ = H, (4.7)

wheren̂ is the unitary vector normal to the sample surface.
The equations (4.4) and (4.5) are numerically solved using finite differences and the link variables

technique of Refs. ([119], [120]), with the corresponding boundary condition (4.7).
Before concluding this section, we give the reduced (hence more convenient) expression for the

dimensionless free energy density, obtained by transformation of Eq. (4.1):

f

f0
=− 1

V

∫
dV

{1 + τ

8
|Ψ|4 − τ

8
(Ψ∗σ̂zΨ)2 − κ2B 2

}
. (4.8)

The energetic considerations enable us to find not only the lowest energy (ground) states but also
other stable states with higher energies (metastable states).

4.3 Ground-state phase diagram

In this section we solve the TDGL equations using the zero-electrostatic potential gauge for rect-
angularwx×wy mesoscopic samples with sizes in the range[3.5ξ, 23ξ]. We consider no external
magnetic field and obtain the superconducting ground statesaccording to the following procedure.
(i) For taken size of the sample we numerically solve Eqs. (4.4) and (4.5) with different initials
inputs, e.g. one domain wall (DW) at half-width of the sample,

Ψ=

(
1
0

)
0 ≤x≤0.5wx, Ψ=

(
0
1

)
0.5wx<x≤wx.
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Figure 4.1: The phase diagram of the ground state of rectangular p -wave samples in absence of external
magnetic field. Five (I)-(V) different phases are clearly distinguished and exhibit distinct magnetic responses.
The phases are labeled according to the number of domain walls they contain, e.g. phases I and II have one
and two domain walls, respectively. State V is an exception to the previous rule being free of domain walls
(the monochiral state).

Other initial inputs in the set have two, three and four DWs distributed in the sample either horizon-
tally or vertically. Moreover, initial inputs without DWs are considered as well, such asΨ = (1, 0)T

andΨ = (0, 1)T throughout the sample. (ii) After the numerical simulations using different initial in-
puts, we compare the energies of all found solutions, using Eq. (4.8), and identify the lowest-energy
solution. (iii) The process is repeated for all the samples with sizes in the rangewx, wy ∈ [3.5ξ, 23ξ].

Fig. 4.1 shows the phase diagram of the ground state at zero external magnetic field for meso-
scopic rectangular samples of different sizes. For the phenomenological parameters, microscopic
calculations have demonstrated thatk1 = k2 = k3 = 1/3 andτ = 1/2, for chiral superconductivity
developing in a cylindrical Fermi surface [77, 102]. The remaining two parameters (κ andσ) are
taken1.25 and1, respectively. The value ofκ was chosen to weakly deviate from the in-plane bulk
GL parameter (κab) of SRO [57,96], in order to compare our results with previously reported works
based on the BCS model for chiralp -wave superconductivity [77]. The value ofσ was set to one
as typically used [119]. This choice has weak implications on the stationary solution of the Eqs. 4.4
and 4.5, as it predominantly influences the dynamical regimeby determining the distribution of the
electrostatic potential in the presence of applied current. The diagram shows five different phases
denoted by Roman numerals clearly distinguished accordingto their magnetization, and labeled ac-
cording to the number of domains walls that they contain, theexception being phase V which is free
of DWs.

Fig. 4.2 shows a superconducting state belonging to the phase I of the diagram of Fig. 4.1, i.e.
a state with one domain wall as seen in the contour plots of|ψ±|2. Note that the two-component
order parameterΨ can also be expressed in terms of its Cartesian componentsψx andψy (asψx =
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Figure 4.2: Contour plots of the superconducting density components |ψ±|2, the phase difference
cos (θx − θy), and the magnetic inductionBz of a ground state with one domain wall.θx,y are the angu-
lar phases ofψx,y, whereψx = (ψ++ψ−)/2 and ψy = (ψ+−ψ−)/2i. The spatial distribution of the
superconducting current densityJ is superimposed on the contour plot ofcos (θx − θy).

ψ++ψ−

2
andψy = ψ+−ψ−

2i
), whose phasesθx and θy can be employed for better identification of

topological defects inp -wave superconductors (see Ref. [124]). The quantitycos (θx − θy), from
now on simply called the phase difference, conveniently indicates the exact position of the DWs
(the interface separating the regions where the chirality is dominated byψ+ in one side and byψ−
in the other side). The spatial distribution of the superconducting current densityJ [see Eq. (5.7)]
is also plotted in Fig. 4.2. It is superimposed on the contourplot of the phase difference, and it
shows (i) the currents of the DW flowing from the south to the north side, and (ii) the spontaneous
currents of the edge states flowing clockwise and counterclockwise on the west and east sides of
the sample, respectively. Consequently, the contour plot of the magnetic inductionBz shows (i)
the typical dipole profile expected from a DW at the sample center, and (ii) the magnetic induction
arising from the spontaneous currents on the left and right sides [76, 77, 124]. It is noteworthy that
by slightly increasing the ratio between the sample height (wy) and width (wx), one can shift the
vertical position of the DW. This fact leads us to the discussion of the following states.

Changing the aspect ratior = wy/wx away from one, the phase II becomes the ground state.
We show in Fig. 4.3 one of the ground states belonging to this phase. It exhibits in the contour
plots of |ψ±|2 and cos (θx − θy) two horizontal DWs located close to the north and south sides
of the sample. However, the contour plot of the magnetic induction, which is expected to show
characteristic dipole-like profiles at each DW, does not show any clear signature of DWs. This is
caused by (i) the vorticity of this state (ν+=0 andν−=−2) and (ii) the shape of the superconducting
sample (rectangular), which causes the two DWs to reside close to the north and south sides of the
sample. As a consequence the current on one side of the DW interacts (annihilates) with the edge
current, which diminishes the magnetic response on that side and the characteristic dipolar signature
is lost.

When making the aspect ratior of the sample more acute, one obtains as the ground state three
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Figure 4.3: Same quantities as in Fig. 4.2 but for a ground state with two domain walls. The two pairs of
boxes with different colors are displayed in the figure in order to highlight the regions where the shape of the
sample strongly affects the order parameter components andbreaks the mirror symmetry of the domain wall.
Consequently, only one quasi-circular clockwise stream ofcurrent is preserved in the vicinity of the domain
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Figure 4.4: Same quantities as in Fig. 4.2 but for a state withthree domain walls. A pair of boxes are
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|ψ−|2, related to the current distribution in the vicinity of the domain walls.
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Figure 4.5: Row (a) shows the same quantities as in Fig. 4.2 but for a state with four domain walls. Row (b)
shows the line profiles of the superconducting density components|ψ±|2 along the line defined byx = 2ξ.

DWs, i.e. phase III. In Fig. 4.4 we show a state belonging to this phase. Again, the contour plot
of the magnetic induction confirms that top and bottom DWs do not show their characteristic dipole
profiles, whereas the central DW does. The dipole profile on the central DW is maintained because of
its weak interaction with the edge currents, so that the local symmetry between the two components
|ψ+|2 and|ψ−|2 is maintained (see the regions enclosed by boxes in Fig. 4.4).

In the ground-state phase diagram of Fig. 4.1, the phase containing four DWs is obtained only for
extreme aspect ratios of the sample (r > 5). One state belonging to this phase is shown in Fig. 4.5 for
a narrow sample withwx=4ξ. According to the contour plot of the phase difference, the four DWs
appear almost equidistantly distributed along the sample.However, the typical magnetic responses
for the DWs expected in the contour plot of the magnetic induction are absent. The reason for this
behavior is the imbalance between the superconducting components|ψ+|2 and|ψ−|2, which one can
clearly see in the line profiles alongx = 2ξ, shown in panel (b). Namely, the strong confinement
in x direction has stronger influence onψ+ thanψ−, which affects the balance between the two
components required for the formation of the DW currents andconsequently diminishes the dipolar
profile of the DW in the magnetic induction.

Finally, in what follows we discuss the phase that is free of DWs, i.e. the phase V. It is the most
present phase in the diagram of Fig. 4.1, as it spans samples ranging from size (wx×wy)=(7ξ×7ξ) up
to (23ξ×23ξ). Based on the transformation of dimensionless units to real units (using the temperature
dependence of the coherence lengthξ = ξ(0)/

√
1− T/Tc, choosingξ(0) to fit SRO andT =
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Figure 4.6: (a) Magnetic induction of a square sample with dimensions (22ξ× 22ξ) at zero external magnetic
field. The spontaneous currents flowing clockwise give rise to the negative values ofBz. (b) Line profiles of
the magnetic induction of different square samples along the central cut through the sample.

0.95Tc), the ground state of ap -wave superconducting sample with size20ξ×20ξ (approximately
6µm×6µm) will be free of DWs in the ground state. However, this does not mean that the magnetic
response of the ground states belonging to the phase V is negligible. On the contrary, the contour plot
of the magnetic induction in Fig. 5.5(a) shows a significant magnetic response of this monochiral
state, with spontaneous currents flowing along the edges. The characteristic scale for the magnetic
response of the spontaneous currents isζ = 1.6875ξ, slightly different from the natural scale for
the magnetic inductionλ = 1.25ξ, presumably due to weak confinement effects. Then, in order
to describe further the effects of confinement on the ground state in phase V, panel (b) shows line
profiles of the magnetic induction of square samples with sizes10ξ, 13ξ, 16ξ, 19ξ, and22ξ. Here
one can notice that owing to the confinement, the left and right edge currents interact strongly in
the square samples smaller than19ξ×19ξ, i.e. in the central region of the sample the value of
the magnetic induction becomes notably nonzero below certain sample size, due to the overlap and
interaction of spontaneous currents stemming from opposite edges of the sample.

4.3.1 Influence of the parameters on the ground-state phase diagram

The phase diagram shown in Fig. 4.1 was obtained for the phenomenological parameters adjusted to
represent a chiralp-wave superconductor with a cylindrical Fermi surface (presumably SRO falls in
this category). However, the fact that the spontaneous currents in SRO have remained elusive so far,
questions the emergence of chiral order in this material. Large efforts have been made to reconcile
the experiments with theory, including works analyzing theeffect of disorder on the spontaneous
currents [82,84], as well as the possibility of chiral non-p-wave order in SRO [83].

Recent works have also considered that superconductivity can develop in the other two bands of
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Figure 4.7: Diagram of ground states for different values ofthe phenomenological parametersκ andτ . The
color scales indicate the corresponding magnetization of the ground states. The panels enclose a region
containing the phases I, II, and V, and demonstrate the influence that the parameters have on these phases.

SRO (α andβ) [55, 79–81]. Surprisingly, in this scenario of multi-bandsuperconductivity one of
the predictions is that the spontaneous currents are strongly suppressed owing to the existence of the
α andβ bands. Quantitatively, the suppression is due to a considerable reduction of thek2 andk3
parameters [81] (see in Eq. 5.7 that the term that supports the chiral currents is multiplied by the sum
of k2 andk3). The effect of such changed values ofki, i.e. ki 6= 1/3, on the superconducting states
of mesoscopic samples has already been discussed elsewhere[123, 124]. However, little is known
about the robustness of multichiral states against the variation of parametersκ andτ . In Fig. 4.7
we focus on one part of the phase diagram to illustrate the influence that these parameters have on
the transitions between states I, II, and V, and then draw generic conclusions. As a first important
finding, one can see in the sequence of Fig. 4.7(a) that the phase having the multichiral state of Fig.
4.2 expands asκ is increased, i.e. the magnetic response of the sample is disfavored. The expansion
of phase I occurs at the expense of phases II and V, since they become less favorable owing to their
nonzero magnetization.

To understand the influence of the parameterτ on the phases I, II, and V, before looking at the
actual results, one can analyze the condensation energy of Eq. (4.1) (the last three terms), to have
an insight into the expected behavior. The minima ofFcond = −1

2

∣∣Ψ
∣∣2+ 1+τ

8

∣∣Ψ
∣∣4− τ

8
(Ψ∗σ̂zΨ)2

are the degenerate states: (|ψ+| =
√
2, ψ− = 0) and (ψ+ = 0, |ψ−| =

√
2). These states are

separated by a barrier which is proportional toτ . One can obtain the shape of this barrier by replacing
|ψ+| =

√
2 cos θ, and|ψ−| =

√
2 sin θ, so the condensation energy expression becomes[Fcond =

τ−1
2

− τ
4
cos2 (2θ)]. One should notice that the barrier disappears whenτ = 0, leading to the removal

of the degeneracy of the ground state. That means that one should not expect the formation of
domain walls ifτ is close to zero. However, in the sequence of Fig. 4.7(b) one sees that phase I is
the most dominant one atτ = 0.1. The reason of this seemingly counterintuitive result is that the last
term ofFcond is not the only one that breaks TRS. In fact, the second term inthe kinetic energy of
Eq. (4.1) also breaks TRS and in this case is the term that favors the multichiral over the monochiral
states.

From Fig. 4.7(b) one can also deduce that the effect on phase Iof increasingτ is the opposite
of increasingκ. As τ is increased, phases I and II give way to the expansion of phase V. This effect
can be attributed to the increase of the barrier separating the degenerate ground states. When the
barrier is high such that the spatial fluctuations (real or inour case numerical) can not overcome it,
combination of degenerate states becomes energetically unfavorable, leading the system to prefer
the monochiral state of phase V.
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4.4 Conclusions

In summary, we have employed the time-dependent Ginzburg-Landau equations to study in detail
chiral p -wave superconductivity in mesoscopic rectangular samples, with a goal to stabilize mono
and multichiral states in the absence of any magnetic field. We have reported the ground-state phase
diagram of rectangular mesoscopic samples with sizes ranging from3.5ξ to 23ξ, whereξ is the su-
perconducting coherence length, and classified the states according to the number of chiral domain
walls they contain. The monochiral state has no domain walls, but contains spontaneous currents
flowing along the edges. We also noticed that the multichiralphases are made stable owing to the
strong confinement, but that same confinement can overshadowthe typical dipole-like magnetic
field profile of the domain walls. Nevertheless, the imaging of the reported spatial profile of stray
magnetic field of the multichiral states can serve as a clear evidence of the time-reversal symmetry
breaking in topological superconductors.

Publication The results of this chapter were published in:

• V. FernándezBecerra and M. V. Milošević,Multichiral ground states in mesoscopicp-wave
superconductors, Phys. Rev. B94, 184517 (2016) (10 pages).





5
Vortical versus skyrmionic states in mesoscopic

p-wave superconductors

In this chapter, we reveal the properties of the superconducting states that arise as a consequence of
mesoscopic confinement and a multi-component order parameter in the Ginzburg-Landau model for
p -wave superconductivity. Conventional vortices, but alsohalf-quantum vortices and skyrmions are
found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied.
The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf
invariant and for vortices by the circulation of the superconducting velocity. We show several unique
states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field,
as well as the novel temporal and field-induced transitions between vortical and skyrmionic states.

5.1 Introduction

Strontium ruthenate, Sr2RuO4, is according to theoretical predictions the best candidate to date to
hostp -wave superconductivity. Generally speaking, the order parameter in superconductors de-
scribes the spatial profile of the gap function,∆ij(k). The order parameter inp -wave superconduc-
tivity is an odd function of the wave vectork, unlike the s-wave superconductors where it is an even
function ofk [101]. Following the notation of Balian and Werthamer, thep -wave order parameter
reads [48,94]

∆̂(k) =

[
−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

]
, (5.1)

or in a short notation̂∆(k) = i (d(k) · σ̂) σy, whered(k) transforms as a vector under rotations and
σi are Pauli matrices. Microscopic calculation of the superconducting gap is a highly demanding
task that requires a detailed knowledge of the pairing mechanism which in many cases is not avail-
able. What remains then is to exploit all the symmetries (continuous and discrete) exhibited by the
material under consideration and build a model that will depend on certain number of parameters.
The possible superconducting order parameters that have been reported forp -wave superconductors
required a detailed description of the crystal structure ofthe considered material [48, 94]. In that
respect, strontium ruthenate (SRO) is a layered perovskitewith a crystal structure similar to the well
known high-Tc superconductor (La,Sr)2CuO4, where oxygen ions at the corners of an octahedron
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surround the body-centered Ru ion [57, 101]. The planar layers of RuO2 are separated by Sr layers
that stack along the highly symmetric axisc. The Fermi surface of strontium ruthenate contains
three sheets arising from the binding of the Ru and O ions within the same layer [128]. Bindings
between the RuO2 layers are weak due to the long separation of the interplanarRuO6 octahedra.
The Fermi sheetsα andβ are both one dimensional (1D), while theγ sheet is two dimensional
(2D). A rigorous analysis found that among the five irreducible representations for vectord(k) in
the lattice point groupD4h, there are four 1D,d = kxx̂ ± kyŷ andd = kyx̂ ± kxŷ, and one 2D,
d = (kx ± iky)ẑ [48, 94]. These 1D and 2D representations, namely helical and chiral, are the
electronic analogues of the B and A phases of the superfluid3He [48], respectively. Knight shift
measurements were not able to discern the chiral from the helical contributions, since they detected
constant spin susceptibility (χc) for external field either within the RuO2 plane or perpendicular to
it [47, 100]. On the other hand, muon-spin relaxation (µSR) and the optical Kerr effect experiments
have detected spontaneous magnetic fields [52, 53], only possible in the chiral phase that breaks the
time-reversal symmetry (TRS) [76].

To confirm or discard SRO as a chiral superconductor, magnetic response experiments have been
carried out on single crystals, but have failed to convincingly detect the spontaneous currents pre-
dicted to exist in chiral domain walls and close to sample edges [59–62]. In these works, numerical
simulations of evenly distributed chiral domains estimated a minimal domain wall length of 2µm
≈ 30ξ0 (whereξ0 is the zero-temperature coherence length of SRO) to be detectable in scanning
SQUID setup. Such domains are energetically costly in a bulksystem, but are likely to stabilize in a
mesoscopic sample of comparable size.

Therefore, to provide further insights in chiral physics ofp -wave superconductors, in this work
we employ the chiralp -wave GL model [77, 94, 102, 129], to report distinct mesoscopic effects of
chirality in the superconducting state and related experimental observables, which in turn can serve
to discriminate chiral from helical contributions in superconductors like SRO. We report the stabi-
lization of various topological entities, full vortex (FV), half-quantum vortex (HQV) and skyrmion
states. Skyrmion states, carrying topological charge defined by the Hopf invariant [123, 130, 131],
are one of the distinct hallmarks of chiral superconductivity, and can be stable in bulkp -wave su-
perconductors. It is well known in conventional s-wave superconductivity that confinement can sta-
bilize superconducting configurations which in bulk systems are energetically unfavorable or even
unattainable, e.g. non-Abrikosov vortex lattices, or vortices with phase windingφ = 2πn, with
n > 1 (giant vortices) [39–41, 132]. In mesoscopic spin-tripletsuperconductors HQVs have been
predicted to exist, owing the reduction of their otherwise divergent energy to the low dimension-
ality of the system [133]. They carry unscreened spin currents and half the vorticity of a full vor-
tex [133,134]. Despite of the fact that in the chiral phase vectord is locked to thêz axis [94,129], we
found analogous HQVs defined by: (i) the2π−phase winding of one of the chiral superconducting
components, and (ii) the anisotropic screening that causestheir attraction to the edges of the meso-
scopic sample. We present the found HQV states in multiple forms, but also FV and skyrmionic
states and transitions between them as a function of the external magnetic field applied perpendic-
ularly to the sample. We employed the time-dependent theoretical formalism, which allowed us to
observe novel temporal transitions as well, related to peculiar entry and arrangement of HQVs and
their temporal transformations into other topologies. TheHQVs that were found to reside at the
sample edges are the realization of the quasi-1D periodic array of domains discussed in Ref. [61].

The chapter is organized as follows. Sec. 5.2 presents the theoretical formalism and our analytical
analysis of the first GL equation and the superconducting current. The boundary conditions imposed
on our equations are derived from the latter expression. Sec. 5.3 then summarizes our findings for
the superconducting configurations composed of HQV, FV and skyrmion states, obtained at weak
coupling and considering a cylindrical Fermi surface. The transitions between states of interest as
a function of the magnetic field are discussed in Sec. 5.4, while the temporal transformations are
shown in Sec. 5.5. The effect of anisotropy on the topological, vortical and skyrmionic entities is
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analyzed in Sec. 5.6. Our findings and conclusions are summarized in Sec. 7.5.

5.2 Theoretical Formalism

After the above brief general description of strontium ruthenate, in what follows we show the
Ginzburg-Landau (GL) equations that the order parameter,Ψ = (ψx, ψy)

T must satisfy. The or-
der parameter has two components (is chiral) as a consequence of the 2 dimensional representation
(Γ±

5 ) of the tetragonal groupD4h [94]. The expansion of the GL free energy density up to fourth
order inψx,y, that fulfills the group symmetries, reads

F = K
(
|Dxψx|2 + |Dyψy|2

)
+ k1

(
|Dxψy|2 + |Dyψx|2

)

+ 2Re
{
k2Dxψx(Dyψy)

∗ + k3Dxψy(Dyψx)
∗
}
−α |Ψ|2

+ β1|Ψ|4 + β2(ψ
∗
xψy − ψxψ

∗
y)

2 + β3|ψx|2|ψy|2 , (5.2)

whereα, ki andβi, with i = 1, 2, 3, are parameters that depend on the details of the Fermi surface
of the material under consideration.K =

∑
i ki, andDx,y denote the components of the covariant

derivative. The time-dependent Ginzburg-Landau (TDGL) equations, used in our numerical ap-
proach [120], are the set of coupled differential equationsfor the superconducting order parameter,
Ψ, and the vector potentialA, [119]

~2

2msD

( ∂
∂t

+
2ie

~
ϕ
)
Ψ = − δF

δΨ∗ , (5.3)

σ

c

(1
c

∂A

∂t
+∇ϕ

)
= −δF

δA
− 1

4π
∇×B , (5.4)

whereϕ is the scalar electric potential,B is the magnetic induction,ms is the effective mass,D is
the phenomenological diffusion coefficient, andσ the electrical conductivity. For convenience we
set~ = 1 andms = 1/2. The second GL equation [Eq. (5.4)] is discarded in this worksince the
diamagnetic effects of superconductors are vanishingly small for a thin (effectively 2D) mesoscopic
geometry. We use the symmetric gauge for the vector potential, A = (r×H)/2, with the magnetic
field (H) directed alonĝz. The scalar electric potential is set to zero since neither charges nor
external currents are considered in this work. In dimensionless units, where distance is scaled to

the coherence length,ξ =
√

1
α
, time to t0 = ξ2

D
, magnetic field to the upper bulk critical field

Hc2 = c
2|e|ξ2 , and the superconducting order parameter to∆+ =

√
α
2β1

, the first TDGL equation

becomes

∂Ψ

∂t
=

[
K+k1

2
D2 + k2−k3

2i
[Dx, Dy] (k2 + k3) Π

2
+

(k2 + k3) Π
2
−

K+k1
2

D2 − k2−k3
2i

[Dx, Dy]

](
ψ+

ψ−

)

+ Ψ
(
1− 1 + τ

2
|Ψ|2 ± τ

2
Ψ∗σ̂zΨ

)
, (5.5)

whereΠ± = 1√
2
(Dx ± iDy), ψ± = ψx ± iψy, β3 = 0 [103], andτ = β2/β1. A straightforward

calculation reveals the following important result,[Dx, Dy] = iH, which leads the operatorsΠ±
to satisfy the commutator:[Π+,Π−] = H. The external magnetic field, being constant, can be
factored out from the above commutators, leading to[Π̃+, Π̃−] = 1, which defines the algebra behind
the Landau levels;̃Π± = Π±/

√
H. This algebra is defined through the following commutators:

[N̂, Π̃+] = −Π̃+, [N̂ , Π̃−] = Π̃−; whereN̂ = Π̃+Π̃− is the particle number operator. Within the
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weak-coupling limit and considering a cylindrical Fermi surface (γ sheet), all theki parameters are
equal to〈v2xv2y〉/〈v4x〉 = 1/3, where brackets〈 〉 denote averaging over the Fermi surface [103], and
τ = 1/2. For this case the first GL equation reads

∂tΨ =
2

3

[
D2 +Π2

+σ̂+ +Π2
−σ̂−

]
Ψ +Ψ

(
1− 3|Ψ|2

4
± Ψ∗σ̂zΨ

4

)
, (5.6)

where σ̂± = (σ̂x ± iσ̂y)/2, are pseudospin or chiral operators acting on the space spanby ψ±.
Ignoring the nonlinear terms (linearized case), it is straightforward to show that the superconducting
order parameter must be of the form:Ψ = (φN , φN−2)

T , whereφN is the state corresponding to the
Landau levelN [77,102,103,127,129,135,136]. Within the superconducting formalism the number
N turns out to be the vorticity of the order parameter. Then, one concludes that for chiralp -wave
superconductors there is a vorticity difference two between the components of the superconducting
order parameter. The full GL equations, i.e. the linearizedequation plus the nonlinear terms, are
a complicated set of partial differential equations with restricted analytical solutions [103, 127].
Therefore, in this work we solve this problem numerically. Due to the mesoscopic dimension of the
sample under consideration, proper boundary conditions must be incorporated in the GL equations
in order to pose the problem well. In what follows, the superconducting current is calculated for the
general case, which includes the specific case where allki’s are equal to 1/3, and from this expression
the boundary conditions for the first GL equation are derived. The superconducting current density,
defined as the negative functional derivative of the GL free energy density with respect to the vector
potential, for chiralp -wave superconductors is

J = Im

{
K+k1

4

(
ψ∗
+Dψ+ + ψ∗

−Dψ−

)
+
k2 + k3

2
√
2

(
Ψ∗

[
Π+σ̂+ +Π−σ̂−

]
Ψ ı̂

+ iΨ∗
[
Π+σ̂+ − Π−σ̂−

]
Ψ ̂

)}
− k2 − k3

4
Re

{
k̂×

(
ψ∗
+Dψ+ − ψ∗

−Dψ−
)}
, (5.7)

wherêı, ̂ form the canonical base in Cartesian coordinates. The set ofoperators (̂σ± andσ̂z) act on
ψ±, while Ŝy acts on{ı̂, ̂}. The superconducting current contains mainly three contributions defined
by the following factors,(K + k1)/4, (k2 + k3)/2

√
2, and(k2 − k3)/4. The first one arises from the

conventional termD2 in Eq. (5.5), the second one (we name chiral) is due to the internal degree of
freedom (chirality) that appears in Eq. (5.5) in the form of two nondiagonal terms. Finally, the third
contribution arises from the diagonal terms (±[Dx, Dy]) in Eq. (5.5), and accounts for the chiral
polarization introduced by the orbital Zeeman interaction. Within the weak coupling limitk2 andk3
are equal [102, 127, 135, 136], but if the the density of states (N(0)) weakly depends on the energy
derivative(N ′(0)) at the Fermi surface,k2 andk3 slightly differ [77]. The boundary conditions
imposed on Eq. (5.5) for our square mesoscopic sample are given as:

ψ+ − ψ− = 0
Dyψ+ +Dyψ− = 0

}
at north and south sides,

ψ+ + ψ− = 0
Dxψ+ −Dxψ− = 0

}
at east and west sides. (5.8)

It is straightforward to show that the boundary conditions of Eq. (7.5) set the perpendicular current
at the edges to zero, i.e. they impose specular reflection in the chiralp -wave superconductor [77,
94, 135, 136]. It is important to remark also that they are parameter-independent, so they provide
the proper boundary conditions for Eq. (5.6) but also for themost general case of Eq. (5.5). With
Eq. (7.5) we have completed the set of equations needed for the GL description of a chiralp -wave
mesoscopic superconductor. Eq. (5.5) is numerically solved using finite differences and the link
variables technique of Ref. [119] on a square lattice with mesh gridhx = hy = 0.1. On the other
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hand, the temporal derivative is discretized using the Runge-Kutta method of first order. Before
concluding this section, we give the reduced expression forthe dimensionless free energy, since it
allows us to find not only the lowest energy (ground) states but also the stable states with slightly
higher energies (metastable states) The free energy reads:

F

F0
=

1

2

∫
dV

{
(1 + τ)|Ψ|4 + τ(Ψ∗σ̂zΨ)2

}
, (5.9)

whereF0 = ∆2
+/ξ

2 is the bulk free energy at zero field.

5.3 Isotropic Case (Cylindrical Fermi surface)

The results obtained using Eq. (5.6) for a square 8ξ×8ξ sample are summarized in Fig. 5.1, showing
the dimensionless free energy and the vorticity of vectorΨ as a function of the external magnetic
field H. Panels (b) and (c) show the vorticity of the ground states ofour superconducting sample,
labeleda-j in Fig. 5.1 (a), whereν+(−) is the vorticity of componentψ+(−). Note that bothν+
andν− remain constant along the stability curves of each state in panel (a), and as such are good
identification numbers for these states. Contour plots in Fig. 5.2 show the order parameterΨ
corresponding to the ground statesa - d. While the left and central columns of Fig. 5.2 show
contour plots of the superconducting density of each component,|ψ+|2 and|ψ−|2, respectively, the
third column shows the difference between the angular phases of the components, i.e.θ+ − θ−.

The ground statea of Fig. 5.2 shows one anisotropic vortex in each component, i.e. vorticity
ν+ = −1 in componentψ+ andν− = 1 in componentψ−. The contour plots of the ground stateb in
Fig. 5.2, show the vortex free state in componentψ+ and the giant vortex [39–41,132] with vorticity
ν− = 2 in componentψ−. The subsequent ground statec has vorticityν+ = 2 andν− = 4, where
|ψ−|2 contains four vortices close to the corners, meanwhile|ψ+|2 shows a pronounced depletion
around the center of the sample. The corresponding phase difference figure reveals that the depletion
in componentψ+ is a consequence of two vortices and two vortex-antivortex pairs there. The ground
stated has six vortices in|ψ−|2 in full agreement with the vorticity reported in Figs. 5.1 (b) and (c)
(ν+ = 4 andν− = 6). However, the density|ψ+|2 fails to convincingly show any signature of a
vortex. The vorticityν+ = 4 of componentψ+ is visible in the phase difference figure 2 (d), where
10 discontinuities are found along the edges as a consequence of six vortices fromψ− and four from
ψ+. Four vortex-antivortex pairs at the center of the sample are also visible in this contour plot, but
do not affect the total vorticity.

From the comparison between Figs. 5.2 (c) and (d) one sees that with increasing the mag-
netic field the componentψ− dominates its partner componentψ+. The dominance ofψ− overψ+,
especially at high fields impedes the proper description of the vortex configuration in the latter com-
ponent. In order to describe the components of the order parameter on an equal footing, a more
suitable representation is in terms ofψx andψy. Fig. 5.3 show contour plots of|ψx|2, |ψy|2 and
cos(θx − θy) for ground statesa - j of Fig. 5.1. Fig. 5.3 (a) showscos(θx − θy) for ground state
a (from now on called the phase difference figure), and revealsa linear domain wall. Its extension
across the sample coincides with the stripe where density|ψy|2 vanishes. On the other hand, the part-
ner component,ψx, is free of vortices. Ground statesb andc look similar in both densities, although
from the comparison between their phase difference figures in Fig. 5.3 (b) and (c) respectively, we
see four domain walls in statec and none in stateb. The domain walls (DWs) of ground statec
define a path where the difference between the angular phasesof componentsψx andψy are0 or π,
i.e. θx − θy = 0, π. Ground stated shows two vortices in density|ψx|2 and none in|ψy|2, while its
corresponding phase difference figure shows the four domainwalls of ground statec plus two other
alternating domain walls that weakly connect the former ones. The contour plots of Fig. 5.3 (e), for
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Figure 5.1: (a) Free energy in units of the bulk condensationenergy at zero field (F0) as a function of the
external magnetic field in units of the bulk upper critical field (Hc2), for a square mesoscopic sample of size
8ξ×8ξ. Letter labels denote different found ground states. Some metastable states (not labeled) are also
shown in this figure. Vorticity of componentsψ+ andψ− of the ground states of panel (a) are shown in (b)
and (c) respectively. The difference in vorticity (ν+−ν−=2) between the components is in perfect agreement
with the analytically predicted solutionΨ = (φN , φN−2)

T .

stateeshow clearly two vortices in each component. They look indistinguishable just from the anal-
ysis of their densities, but their phase difference figure reveals that there are two vortices, one in each
component, that combine to produce a different signature from the remaining vortices. While the
uncorrelated vortices lead to the formation of the alternating domain walls towards sample edges,
the pair of correlated vortices align their cores and do not show any domain wall between them.
The alternating domain wall is therefore the signature of a half quantum vortex (HQV) defined by
the2π−phase winding of one of its superconducting components, in contrast to the other signature
without domain wall that corresponds to the full vortex (FV).

The remaining ground statesf - j of Fig. 5.1 are shown in the right column of Fig. 5.3. Both
densities in ground statef clearly show two vortices in each component, which are indeed four HQVs
according to the corresponding phase difference figure. Ground statesg andh show one common
feature, having different number of vortices per component, but all of them aligned vertically in
componentψx and horizontally in componentψy. On the other hand, the corresponding phase
difference figures for statesg andh show that: (i) two vortices, one per component, combine to form
one FV in stateg, and (ii) four vortices, two per each component, combine to form one skyrmion
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Figure 5.2: Ground statesa - dof Fig. 5.1. Left and central columns show the contour plots of the supercon-
ducting densities components|ψ+|2 and |ψ−|2, respectively. Right column shows the difference between the
angular phases of the components, i.e.θ+ − θ−.

in stateh. The signature of the skyrmion is shown here for the first time: four alternating domain
walls which are connected into a circular structure [137, 138]. The skyrmion state here of course
differs from those of magnetic materials due in physics and the formation mechanism [131, 139,
140]. Nevertheless, their topological properties remain similar, as will be presented later. The phase
difference figure of the ground statei shows four DWs around the corners, four HQVs close to the
edges and three FVs in the center. What draws attention in allthree contour plots of Fig. 5.3 (i) is that
there are five vortices in each component (fractional vortices), and among them three align their cores
to form FVs according to the corresponding phase differencefigure. The triangular array formed by
them resembles the consequences of vortex-vortex repulsion in conventional type II superconductors.
Therefore, this supports our initial premise that the FV in our analysis is the usual Abrikosov vortex
of conventional superconductivity. Finally, the phase difference figure of the ground statej shows
four DWs, six HQVs and two FVs. One systematic comparison of the phase difference figure of
ground statesf - j clearly shows that HQV and FV are indeed very different states. While FVs
are formed in the sample center, being favored by confinement, all the HQVs remain close to the
sample edges. In order to explain this difference the following subsection discusses the calculated
superconducting currents in the sample.

So far, DWs, HQVs, FVs and skyrmions have been distinguishedin this work according to
their signatures in the phase difference plots. The superconducting current, the physical quantity
intertwined with the magnetic field, also allows us to identify more characteristic features of the
novel topological solutions. Figs. 5.4 (a)-(d) show the supercurrents around one DW, HQV, FV and
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Figure 5.3: Ground statesa - j of Fig. 5.1, plotted correspondingly in panels (a) - (j). Left and central
columns show the contour plots of the superconducting densities components|ψx|2 and |ψy|2, respectively.
Right column showscos (θx − θy), whereθx,y are the angular phases of componentsψx andψy.

skyrmion, respectively. Fig. 5.4 (a) zooms in the supercurrents around the right-top DW of Fig.
5.3(c). One can see two streams flowing in opposite senses at the upper right and lower left corners,
respectively. The DW currents arise when these superconducting currents with opposite chiralities
meet. In order to understand better the origin of the DW currents, Fig. 5.5(a) shows the line profiles
of the corresponding superconducting densities|ψ±|2 along the diagonal line defined byy = x.
Light (green) arrows point towards the already seen vortex cores of componentψ− in Fig. 5.2(c).
Dark (blue) arrows indicate the center of two DWs defined by the intersection where the densities
|ψ−|2 and |ψ+|2 become equal. Whereψ+ = 0, in the center of the sample, the other component
(ψ−) is non-zero and contributes to the chiral superconductingcurrent. On the other hand, where
ψ− = 0, ψ+ is non-zero and its current represents the chiral current flowing close to the corners of
the sample.

The magnetic induction that corresponds to the DW supercurrents of Fig. 5.4(a) is shown in
panel (a) of Fig. 5.6. It is calculated using the Maxwell equation,

κ̃ 2∇×B = J, (5.10)

whereκ̃ 2 = κ2/d, with κ = 2.3 being the GL parameter reported for SRO along theab plane [57],
andd being the sample thickness which we suitably choose to be2ξ. The contour plot of Fig.
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Figure 5.4: Superconducting currents around: (a) the upperright DW of Fig. 5.3(c), (b) the upper HQV of
Fig. 5.3(d), (c) the FV of Fig. 5.3(g), and (d) the skyrmion ofFig. 5.3(h).

5.6(a) shows that the magnetic induction corresponding to the DW is weak and strongly screened by
the Meissner effect. This fact represents an obstacle for the detection of DWs signatures in direct
measurements of their magnetic response such as in magneticforce microscopy (MFM) or scanning
Hall probe microscopy (SHPM).

Fig. 5.4(b) zooms in the supercurrents around the upper HQV of Fig. 5.3(d). It shows two
adjacent counter-flowing streams with the bottom one flowingclockwise and belonging to the HQV
supercurrents, while the top one flows counter-clockwise and represents the screening currents. The
Meissner effect for the HQV is anisotropic due to the boundary conditions of Eq. (7.5). From
the supercurrent equation (5.7), and the local approximationψy ≈ 0, orψ+ ≈ ψ−, drawn from Fig.
5.3(d), one easily obtains:J ≈ Im{ψ∗

+Dxψ+ı̂+
1
3
ψ+Dyψ+̂}. After straightforward calculations and

replacing the covariant derivative once again one obtains:J ≈ |ψ+|2
[
(∂xθ ı̂+

1
3
∂yθ ̂)+

Hr
2
(sinφ ı̂−

1
3
cos φ ̂)

]
, which draws attention since the screening currents are defining elliptical equipotential

lines. Thus, the anisotropic screening of the superconductor towards the HQVs causes them to move
along the easy-screening direction which in this case is along ŷ. The contour plot of the magnetic
induction corresponding to the supercurrents of Fig. 5.4(b) is shown in Fig. 5.6(b). As expected
from the two counter-flowing streams seen in the HQV supercurrents, the magnetic induction also
shows adjacent local maximum and local minimum.

Fig. 5.4(c) zooms in the superconducting currents around the FV of Fig. 5.3 (g), and shows
that the FV currents flow clockwise and vanish as we move away from the FV core. This vanishing
is due to the spatially isotropic Meissner effect, unlike ina HQV, that screens the FV currents. As
expected, its magnetic induction signature [see Fig. 5.6(c)] agrees well with that of the Abrikosov
vortex.

The superconducting currents around the skyrmion of Fig. 5.3 (h) are shown in Fig. 5.4 (d).
Unlike the FV, the skyrmion supercurrents clearly show outer and inner structures. The supercurrents
of the outer structure flow clockwise while the supercurrents of the inner flow counter-clockwise.
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The skyrmionic DW of Fig. 5.3(h) along with its supercurrents in Fig. 5.4(d) shows cylindrical
symmetry, and one easily deduces that the same symmetry is present in densities|ψ±|2. Line profiles
of |ψ±|2 then provide enough information to unveil the skyrmion supercurrents [see Fig. 5.5 (b)].
The inner structure of the skyrmion is defined by:ψ− = 0 andψ+ 6= 0, i.e. the counter-clockwise
currents at the core of the skyrmion arise from the chiral componentψ+. However, away from the
skyrmion core the scenario changes since the circular DW of Fig. 5.3 (h) is met, as indicated by
arrows in Fig. 5.5 (b). Close beyond the circular DW, we find that while componentψ+ drops
to zero,ψ− becomes non-zero. Replacing in Eq. (5.7)ψ+ = 0 and bearing in mind that one
giant vortex is hosted in componentψ−, the supercurrent in cylindrical coordinates becomes:J ≈
K+k1

4
|ψ−|2(−2

r
+ H

2
r))φ̂. The magnetic induction corresponding to the skyrmionic supercurrents of
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Figure 5.7: Representation of the spaces where the projection acts (C ×C) and where it projects (R3).

Fig. 5.4(d) is shown in the contour plot of Fig. 5.6(d). It clearly shows one local minimum at the
skyrmion core surrounded by one circular stripe of local maxima, and as such can be directly imaged
in magnetic measurements.

5.3.1 The topology of the skyrmion

In a two-component order parameter system, a 2D skyrmionic texture is not obviously seen in the
order parameter configurations. However, it can be well understood by projecting the system onto
a pseudospin space. This projection, defined by the Pauli matricesσi, with i = x, y, z, reads [123,
130,141]

n = (nx, ny, nz) =
Ψ†

σ̂Ψ

Ψ† ·Ψ , (5.11)

where the complex spacesC× C of componentsψx, ψy are mapped into the real spaceR3 [see Fig.
5.7]. A straightforward calculation yields

n = (sinα cosφ, sinα sin φ, cosα), (5.12)

wheresinα = 2|ψx||ψy|
|ψx|2+|ψy|2 , cosα = |ψx|2−|ψy|2

|ψx|2+|ψy|2 , andφ = θy−θx. As one can easily see from Eq. (5.12)

the target space of mapping (5.11) is the 2-dim sphere of radius one,S2 [142, 143]. The topological
invariant of the spaces that result from mapping (5.11) is defined by the integral [123,130,131]

Q =
1

4π

∫
n · (∂xn× ∂yn) dx dy, (5.13)

which is widely known as the Hopf invariant. One convenient interpretation of this topological
invariant is that it counts the number of times that the 3-dimreal field (n) wraps around the 2-dim
sphere (S2). Since the panel(h) of Fig. 5.3 reveals an additional topological possibility beyond the
conventional vortex, the description of the superconducting configuration by the topological charge
Q besides the vorticity per component of the order parameter (ν+, ν−), arises naturally.

Left and right panels of Fig. 5.8 show the texturen for ground statesh andg of Fig. 5.3, re-
spectively. The texture for the skyrmion (left panel) differs from the texture for the FV (right panel)
owing to the alternating circular DW characteristic of the former state. While at the skyrmion core,
fieldn points towards−̂, outside the skyrmion it points towards̂. Along the DW that separates the
skyrmion core from the outside, the field texture whirls, therefore providing to the space the topo-
logical chargeQ = −2. The field texture that corresponds to the FV shows four lobesC4 symmetric
profile wheren changes smoothly. Unlike the skyrmion and in agreement withour earlier results,
the field texture for the FV does not show any signature of a domain wall separating unequivalent
outer and inner regions. Hence, its topological chargeQ is zero.
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5.4 Field-driven transitions between skyrmionic and Vortical
states

In bulk and type II superconducting samples vortices with phase windings higher than2nπ, where
n is integer, are energetically disfavored. The superconductor prefers two distant vortices each with
phase winding2π rather than one single vortex (giant vortex) with phase winding 4π. Neverthe-
less, in samples with dimensions of the order of the superconducting coherence length (mesoscopic
samples), giant vortices can appear as stable configurations. The stabilization is provided mainly by
the confinement due to the small sample size, although the external magnetic field also contributes
through the screening currents and the confining force they exert on vortices. Field driven transitions
from states with multiple distant vortices to giant vortices have been widely reported. [39–41,132]

In this work we first report the field-driven transitions fromHQV to FV states. Fig. 5.9 (a)
shows the energy of statef of Fig. 5.1 (a), along with some of its neighboring states. Panel (b)
shows the second derivative of the energy with respect to theexternal field only for statef . While
the energy of statef is continuous, its second derivative shows discontinuities indicating transitions
between distinct states. Three different states can be easily distinguished, which we labeled by a
circle, square and triangle marker. The corresponding distributions of the superconducting order
parameters are also shown in the figure: logarithmic contourplots of |ψx|2 and|ψy|2 are shown in
the left and central columns, while the cosine of the phase difference is shown in the right column.
State (©) shows two fractional vortices in each component renderingfour HQVs according to the
phase difference contour plot. State (�) shows two HQVs and two FVs. The FVs are composed of
two fractional vortices belonging separately to each component. The fractional vortices composing
the FVs are slightly misaligned as can be seen in the density figures. This makes the FVs display a
small closed domain wall in the phase difference contour plot. At high fields the screening currents
confine even more the superconducting configuration of state(�) transforming it into one state with
three HQVs and one FV (△). Due to the strong screening currents the upper FV of state (�) loses
one of its fractional vortices which renders one HQV in state(△). The strong confinement also
forces the alignment of the fractional vortices composing the FV of state (△).
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Figure 5.9: Field-driven transition from HQV to FV due to confinement in a square mesoscopic sample of
size 8ξ×8ξ. (a) Energy of the statef of Fig. 5.1 (a), along with some of its neighboring states. (b) Second
derivative of the energy with respect to the external field showing three distinct states indicated by circular,
squared and triangular symbols. The corresponding components of the superconducting order parameter are
shown in panels (©), (�) and (△). Displayed quantities are logarithmic contour plots of|ψx|2 and |ψy|2 in
left and central columns, respectively, while the cosine ofthe phase difference is shown at the right column.

Another field-driven transition from skyrmion to FV state ispresented in Fig. 5.10. Panel (a)
shows the energy of statej of Fig. 5.1, along with some of its neighboring states. Panel(b) shows the
first and second derivatives of the energy with respect to theexternal field only for statej. Unlike in
Fig. 5.9 (b), here the second derivative is continuous as well as the first derivative. Nevertheless, this
does not mean that there are no distinct states along the stability curve of statej. Circle, square and
triangle markers (©, � and△) indicate three states at weak, intermediate and strong confinement,
respectively. At weak confinement the phase difference figure shows six HQVs and one skyrmion
(see Fig. 5.10 (©)). At intermediate confinement, state (�) shows in|ψx|2 that two out of the four
fractional vortices composing the skyrmion of panel (©) have merged into one single discontinuity.
This merger of initially distant fractional vortices renders the domain wall of the skyrmion asymmet-
ric. At strong confinement (△) the former fractional vortices split their cores along thehorizontal
axis. According to the phase difference figure they join two other fractional vortices in density|ψy|2
to form two horizontal FVs in the center of the sample. As can be easily seen, the vorticity of the
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Figure 5.10: Another example of a field-driven transition between skyrmionic and vortical states along the
statej of Fig. 5.1. Displayed quantities are the same as in Fig. 5.9 with the only exception that in panel (b)
the first derivative of the energy with respect to the external field is also shown.

superconducting components along this field-driven transition is constant, unlike in Fig. 5.9 where
it was not. This fact explains why the second derivative is continuous here and discontinuous in Fig.
5.9.

5.5 Temporal Dynamic transitions

To date, no works have treated the time-dependent phenomenawithin the GL formalism for chiralp -
wave superconductors. Here we benefit from the temporal evolution included in the TDGL equations
to report for the first time dynamic transitions involving vortices and skyrmions.

The dimensionless free energy as a function of the external field for statesi and j is shown
in panel (a) of Fig. 5.11. Unlike in Fig. 5.1 the sample size here is 12ξ×12ξ rather than the
8ξ×8ξ, which was a suitable choice to study the evolution of the superconducting configuration.
Panel (b) shows the temporal evolution of the free energy at the discontinuous step in energy in
panel (a). Three states, initial, intermediate and final, are denoted by circle, square and triangle
markers. The corresponding superconducting order parameters are shown in panels (©), (�) and
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Figure 5.11: Temporal vortex-skyrmion transition in a square mesoscopic sample of size 12ξ×12ξ. Panel (a)
shows the free energy of statesi and j containing 10 and 12 fractional vortices per component, respectively.
The energy of statei is discontinuous atH ≈ 1.06Hc2 reflecting a first order transition. Panel (b) shows
the temporal evolution of the energy at the latter transition. Three states, initial, intermediate and final are
denoted by circle, square and triangle markers, respectively. The components of the superconducting order
parameter corresponding to each state are shown in panels (©), (�) and (△).

(△), respectively. The displayed quantities in the latter panels are the same as in those of Fig. 5.9.
The initial state (©) is a multi-vortex-skyrmion state containing two pairs of skyrmions and FVs,
surrounded by eight HQVs at the sample edges. This state was not obtained for sample size 8ξ×8ξ
mainly due to the strong confinement there. At the intermediate state (�) two fractional vortices
nucleate in each component of the superconducting order parameter forming two FVs according to
the phase difference contour plot. The four FVs of the intermediate state then combine following the
inverse process of the one described in Fig. 5.10, to form twoskyrmions as depicted in state (△). It
is noteworthy here that all field-driven transition from HQVor skyrmion to FV states and vice-versa
are essentially driven by HQV penetration and recombination into other topological entities.

Finally we note that the above principles hold also for larger mesoscopic samples, though with
more multi-vortex-skyrmion states found inside the sample, as well as more HQVs at the sample
edges. Effectively, the edges of a large mesoscopic sample support realization of the quasi-1D
periodic distribution of chiral domains discussed in Ref. [61], with domain walls of length≈ 3ξ(T ),
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Figure 5.12: The free energy as a function of the external magnetic field, showing ground statesb - j plus one
metastable statea, from the numerical simulations using Eq. (5.14) withδk = 0.03. The parameterski thus
only slightly deviate from the value1/3 obtained when a cylindrical Fermi surface is considered. Panels (a)
and (b) show the superconducting density components|ψ+|2 and |ψ−|2 of the statesa andb, respectively.

i.e. ≈ 600 nm for T = 0.9 Tc. This length is already matching the limits of scanning SQUID and
Hall probe microscopies, explaining why spontaneous currents remained elusive in experiments to
date, always performed on larger samples than considered inthis work.

5.6 Anisotropic case

5.6.1 Strong chiral limit

This far, the ground states of ap -wave mesoscopic superconductor with size8ξ × 8ξ have been
obtained under the assumption of weak coupling and with a cylindrical Fermi surface, which led
us to set theki parameters to1/3 [77, 103, 135, 136]. However, several works have reported or
suggested other scenarios for SRO such as: (i) multiband superconductivity with the 1D Fermi
sheets developing superconducting order [63,79,80,144],or (ii) anisotropy in the cylindrical Fermi
surface [103, 123, 130]. In order to include just anisotropyin the Fermi surface, while preserving
single-band superconductivity, and electron-hole symetry [77,102,127], in this section we introduce
the parameter (δk), which sets theki’s to: k1 = 1/3 + 2δk, andk2 = k3 = 1/3− δk. The motivation
behind this choice is that the theoretical values for theki parameters corresponding to the three Fermi
sheets (γ, α andβ) lie between1/3 < kγi ≤ 1 and0 ≤ kα,βi < 1/3 [103], respectively. The GL
equation forp -wave superconductors with anisotropy in the Fermi surfacebecomes:

∂tΨ =
2

3

[
D2+Π2

+σ̂++Π2
−σ̂−

]
Ψ+Ψ

(
1−3|Ψ|2

4
±Ψ∗σ̂zΨ

4

)

+ δk
[
D2 − 2

(
Π2

+σ̂+ +Π2
−σ̂−

)]
Ψ. (5.14)
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Figure 5.13: (a) Superconducting currents corresponding to the statea of Fig. 5.12. These currents, which
were obtained at zero field, are composed of two edge currentswith different chiralities and flowing in opposite
senses. (b) Contour plot of the magnetic induction (Bz) calculated from the supercurrents of panel (a). (c)
Line profiles ofJy andBz along the liney = 4ξ. (d) Line profiles of|ψ±|2 corresponding to the stateaof Fig.
5.12. (e) Line profiles of the angular phases of componentsψ± along the linex = 4ξ.

By tuningδk within the interval[0, 1/3], the strength of the non-diagonal (chiral) terms of Eq. (5.5)
is changed, therefore driving the system between two limiting cases: the left limiting case being
at δk = 0 and given by Eq. (5.6), and the right limiting case being atδk = 1/3 where the chiral
coupling between the superconducting components is set to zero.

Fig. 5.12 summarizes the results obtained from the simulations that numerically approach Eq.
(5.14) withδk = 0.03. The energy against field plot of Fig. 5.12 shows nine ground states labeled
by letters. The comparison between Figs. 5.12 and 5.1 reveals one important fact: the energy of the
statea is higher than the energy of its adjacent stateb. Actually, statea here is no longer the ground
state at low fieldsH ≈ 0, unlike in Fig. 5.1 where it was. Contour plots of the superconducting order
parameter (Ψ) that correspond to the statesa andb of Fig. 5.12 are depicted in insets (a) and (b),
respectively. The comparison between the insets of Fig. 5.12 and the corresponding states in Fig.
5.2 shows that despite of the small anisotropy introduced inthe GL equation, the superconducting
configuration of these states is practically identical in both cases.

Two decades have passed since the discovery of the unconventional properties of strontium
ruthenate, but to date there has not been a consensus whetheror not it is a chiralp -wave super-
conductor [59–62]. The main experimental results that support unconventional superconductivity
in SRO are provided by the set of measurements carried out using techniques such as the Knight
shift [47, 100],µSR [52], the optical Kerr effect [53], and cantilever magnetometry [134]. The
smoking gun evidence that lacks, and which, if found, would convince the scientific community is
the finding of the theoretically predicted spontaneous currents in Sr2RuO4 [71,76,77]. Interestingly,
what we just found in this work is that the state with spontaneous currents is no longer the ground
state when the GL model slightly deviates from the isotropiccase atH ≈ 0, i.e slightly deviated
from the cylindrical Fermi surface. This energy lift of the state with spontaneous currents makes it
even harder to be detected. Fig. 5.13(a) shows the supercurrent distribution corresponding to the
statea of Fig. 5.12. We note that the currents displayed there were obtained atH = 0, thus those
are the spontaneous currents widely sought in experiments.The spontaneous currents are composed
mainly of two counter-flowing streams at left and right sidesof our sample. They are the chiral edge
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currents predicted by Matsumoto and Sigrist [76]. Along theline x = 4ξ, the linear domain wall
(DW) of Fig. 5.3(a) separates the left and right sides showing an enhancement in the supercurrents
around the center. The magnetic induction corresponding tothe supercurrents of panel (a) is shown
in panel (b) of the same figure.

Panel (c) of Fig. 5.13 shows line profiles of the magnetic induction and they-component ofJ
along the liney = 4ξ. This plot agrees well with the result of Matsumoto and Sigrist which showed
thatJy (Bz) is an even (odd) function ofx along the line perpendicular to the DW [76]. Finally,
panels (d) and (e) provide important information that allowus to calculate the supercurrent along the
DW. From panel (d) the DW is defined by|ψ+| = |ψ−| atx = 4ξ, but along this line panel (e) tells
us that not only the magnitudes of the superconducting components are equal but also their angular
phases. Then, from Eq. (5.7) our estimation for the superconducting current along the linear domain
wall is simplyJy(x = 4ξ) = k1|ψ+|2∂yθ+.

5.6.2 Strong Zeeman limit

Microscopy with superconducting quantum interference devices (SQUIDs) and scanning Hall probes
(SHPs) have recently detected vortex coalescence in singlecrystals of strontium ruthenate [145,
146]. One possible explanation for this behavior is the existence of at least two different coherence
lengths arising from multigap superconductivity, and which lead to attractive (repulsive) interaction
at long (short) ranges [144]. Refs. [60] and [146] have reported that within their corresponding
resolutions no convincing evidence for spontaneous currents and DWs has been found yet. In order
to explore more superconducting configurations, comprising DWs, HQVs, FVs and skyrmions as
the fundamental entities, in what follows a different set oftheki parameters is defined by:k1 = 1/3,
k2 = 1/3 + δk andk3 = 1/3 − δk. Such a choice of parameters enables one to keep constant the
strength of the chiral terms while varyingδk. The first GL equation for this particular choice of
parameters reads

∂tΨ =
2

3

[
D2 +Π2

+σ̂+ +Π2
−σ̂− − 3δk

2
Hσ̂z

]
Ψ

+ Ψ
(
1− 3|Ψ|2

4
± Ψ∗σ̂zΨ

4

)
. (5.15)

The fourth term in the right side of Eq. (5.15) represents theorbital Zeeman interaction. It is zero
whitin the weak-coupling limit wherek2 = k3 [77, 127]. In this subsection, we consider a possible
assymetry between electron and hole that leads to slightly different k2 andk3. In order to study
the dependence of the superconducting configuration on the anisotropy parameter, in Eq. (5.15) the
magnetic field is kept fixed whileδk is varied. Fig. 5.14(a) plots the free energy of the states, solving
Eq. (5.15), as a function of the anisotropy parameterδk. Circle, square and triangle markers denote
three states whose|ψ+|2 and|ψ−|2 diagonal (y = x) line profiles are shown in panels (b) and (c),
respectively. From panel (c), and unlike in panel (b), one clearly sees that for high values ofδk the
density|ψ−|2 diminishes. Our explanation for this behavior is through the definition of two effective
coherence lengths, one for each superconducting component. Defining them as the coefficients in
front of the linear termsψ+ andψ− in Eq. (5.15), they read:ξ+ = 1 − δkH andξ− = 1 + δkH, re-
spectively. WithH fixed andδk increasing,ξ+ (ξ−) becomes smaller (larger) therefore leading to an
effective reduction (increase) of confinement in componentψ+ (ψ−). Concerning the phase, contour
plots ofθ+, θ− andcos (θx − θy) corresponding to the states denoted by circle, square and triangle
markers are shown in rows(©), (�), and(△). According to the phase difference figure, state (©)
is composed of two concentric skyrmions, one circular and one rhomboidal. From the contour plot
of θ− one sees that the circular skyrmion arises from the formation of one giant vortex inψ− with
phase winding4π. The phase difference figure corresponding to state (�) shows one irregular closed
domain wall emerging from the intersection of the circular and rhomboidal skyrmions. Its formation
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Figure 5.14: (a) Free energy as a function of the anisotropy parameterδk with the external magnetic field
fixed atH = 0.530[Hc2]. Three distinct states are indicated by circular, square and triangular markers (©,
� and△). (b) and (c) show line profiles of|ψ+|2 and |ψ−|2, respectively, along the diagonal line (y = x)
corresponding to the states of panel (a). Columns (©), (�) and (△) show contour plots ofθ+, θ− and
cos (θx − θy) corresponding to the denoted states of panel (a).

is determined by the annihilation of the giant vortex inθ− that has split into two fractional vortices.
Finally, the phase difference figure of state (△) shows four FVs with cores slightly asymmetric as
can be seen from the small circular DWs present there. Due to the density|ψ−|2 has been substan-
tially depleted at this value ofδk, the superconducting state is completely defined by componentψ+.
Hence, what we have achieved by considering assymetry between electron and hole in the chiral
p -wave model of Eq. (5.5), is a chiral polarization enhanced due to the strong confinement present
in a mesoscopic sample.

5.7 Conclusions

In summary, we have studied in detail the Ginzburg-Landau model that describes chiralp -wave
superconductors [77, 94, 102, 103, 129, 135, 136], and all the possible states of a mesoscopic super-
conducting sample as a function of the external magnetic field and the anisotropy parameters of the
material. Due to odd parity and breaking of the time-reversal symmetry, the order parameter is a
two-component complex vector [48, 94] and the fundamental solutions of the corresponding TDGL
equations, that we obtained numerically, are fractional vortices, i.e. solutions where the phase wind-
ing 2π is found in one component but not in the other one. In two- and three-band superconductors
similar fractional vortices were obtained between components, but for different reasons [147–149].
Fractional vortices in different components can combine toform a cored/full-vortex state, as well as
a coreless/skyrmion state seen in phase difference and magnetic response figures. Skyrmions arise
when same number of fractional vortices in each component combine to form a closed domain wall
that separates distinct intercomponent phase difference (θx − θy) regions [137, 138]. Alternating
segments between1 and−1 in thecos (θx − θy) between fractional vortices along the domain wall



96 VORTICAL VERSUS SKYRMIONIC STATES IN MESOSCOPICp-WAVE SUPERCONDUCTORS

is the main signature for skyrmions. While for skyrmions thetopological charge (Q) is defined by
the Hopf invariant [123,130,131], for vortices it is definedby the circulation of the superconducting
velocity. Despite of the fact that vectord is strongly pinned alonĝz in the chiral representation
d = (kx± iky)ẑ [94,129], we also obtained half-quantum vortices analogous to those of spin-triplet
superconductors [133]. The screening currents of half-quantum vortices are anisotropic and in Carte-
sian coordinates we have analytically shown that the equipotential lines of the screening currents are
ellipsoidal rather than circular as in full vortices. This anisotropic screening causes the attraction of
the half quantum vortex towards the sample edges. The mesoscopic size of our samples provides
stability to the half quantum vortices and theQ=2 skyrmions, in contrast to larger systems where
larger values ofQ were considered [123, 130], and bulk systems where the half quantum vortices
have been usually regarded as high-energy states. Actuallythe mesoscopic size of the sample plays
a remarkable role in the stability of skyrmions as well as in the here reported novel transitions (e.g.
from a skyrmion to a full vortex). At high external fields, above theHc1 critical field, states with dif-
ferent configurations of skyrmions and half quantum vortices gradually transform into full vortices
owing to the increased screening currents and confinement effects.

To date, the only superconductor expected to bep -wave is strontium ruthenate, with enough ev-
idence demonstrating its unconventional behavior [47, 52,53, 100, 134]. Nevertheless, many works
have failed to convincingly detect spontaneous currents, half-quantum vortices and skyrmions in
large samples [59–62]. What we have demonstrated here is that: (i) even by slight anisotropy in the
Fermi surface, the state with spontaneous currents is no longer the ground state atH ≈ 0, (ii) for
large mesoscopic samples quasi-1D periodic distribution of chiral domains is realized at the edges
of the sample, with half-quantum vortices residing on domain walls with length of several coherence
lengths, with magnetic features detectable in scanning SQUID and hall probe microscopy, and (iii)
distinct field-driven transitions between half-quantum vortex, full vortex, and skyrmions, provide
alternative method to indirectly prove the existence of these exotic states in magnetic measurements.

Publication The results of this chapter were published in:

• V. FernándezBecerra, E. Sardella, F. M. Peeters, and M. V. Milošević,Vortical versus skyrmio-
nic states in mesoscopicp-wave superconductors, Phys. Rev. B93, 014518 (2016) (13 pages).



6
Electronic properties of emergent topological

defects in chiralp-wave superconductivity

Chiral p-wave superconductors in an applied magnetic field can exhibit more complex topological
defects than just conventional superconducting vortices,due to the two-component order parameter
and the broken time-reversal symmetry. In this chapter, we show the electronic properties of those
exotic states, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes
equations. We reveal the link between the local density of states (LDOS) of the novel topological
states and the behavior of the chiral domain wall between thecomponents of the order parameter,
enabling direct identification of those states in scanning tunneling microscopy. Finally, we present
the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this
topological defect can be surprisingly large in size, and can be pinned by an artificially indented non-
superconducting closed path in the sample. These features are expected to facilitate the experimental
observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging
superconducting materials.

6.1 Introduction

Spin-triplet chiralp-wave superconducting states attract great interest because of their exotic prop-
erties and the possibility to have topologically protectedquantum states [150]. Such unconventional
pairing is realized in the A-phase of superfluid3He and may be attributed also to the layered ruthenate
superconductor Sr2RuO4 [151]. The order-parameter (OP) of thep-wave pairing state is necessarily
multi-component due to the nonzero orbital angular momentum of the Cooper pairs. This fact has
profound consequences, namely the breaking of time-reversal symmetry [48,152], and results in rich
topological defect states, of different types, with often nontrivial vorticity.

First, there exist domain walls with spontaneous supercurrent separating domains with different
degenerate time-reversal-symmetry-broken ground states[76]. Second, half-quantum vortices arise
due to the extra spin freedom in OP and are predicted to be thermodynamically stable in mesoscopic
samples and have been detected in Sr2RuO4 [134, 150]. It is also expected that the half-quantum
vortices in two-dimensional superfluids will host Majoranastates at exactly zero energy as bound
states inside the vortex cores [153]. The Majorana zero modegives rise to non-Abelian statistics and
thus can be utilized to make topological quantum computation [154].



98
ELECTRONIC PROPERTIES OF EMERGENT TOPOLOGICAL DEFECTS IN CHIRAL p-WAVE

SUPERCONDUCTIVITY

Third, in p-wave superconductivity, there exist two types of singly quantized vortices due to
the broken time-reversal symmetry [155]. The Cooper pairs of chiral p-wave pairing have internal
orbital angular momentum, i.e. the paired electrons are rotating. Then, the vortex can have either
the vorticity in the same direction to the angular momentum of the rotating Cooper-pair (parallel
vortex), or in the opposite direction (anti-parallel vortex). These two types of vortices have different
angular momenta, causing different properties in electronic states [156] leading to different optical
absorption [155], vortex charging effect [157], and surface sensitivity effect [158].

Lastly, the chiralp-wave pairing state allows the existence of coreless vortices (CLVs) with
nonzero vorticity in only one OP component [159], which are very different from conventional
singular-core vortices. The CLVs result from the extra orbital and spin degree of freedom in the
OP. The CLV with doubly quantized flux has been detected in liquid 3He [160]. In chiralp-wave
superconductors, this doubly quantized vortex state is predicted to be energetically favorable when
compared to the state with two singly quantized vortices [123,130], and should be further stabilized
in the presence of mesoscopic boundaries [124]. The Ginzburg-Landau simulations reported the
magnetic field distributions of the CLV states [130], that are still to be been observed experimentally.

Such CLVs are extremely interesting, exhibiting a variety of different aspects: (i) they are anal-
ogous to a giant vortex ins-wave superconductors [39] since they contain multiple fluxquanta, but
exhibit a larger size. (ii) The CLV is similar to a domain wallseparating domains where different
OP components dominate [159]. (iii) Thel-vector texture of a coreless vortex was characterized as
a 2D skyrmion [143], where a pseudo-spin texturen of a two-component OP exhibits 2D skyrmion
texture for the coreless vortex [130,141]. Although these previous studies revealed important aspects
of the coreless vortices, there is still a need for a systematic study in order to enhance understand-
ing on the coreless vortices and skyrmionic topological defects especially concerning their bound
electronic states.

In this chapter, we study the possible topological defect states in chiralp-wave superconductors,
ranging from domain walls, and vortices, to coreless vortices and skyrmions, by solving the micro-
scopic Bogoliubov-de Gennes (BdG) equations self-consistently. The purpose of this chapter is to
clarify their topological properties and also to reveal their detailed electronic properties. The bound
electronic states in e.g. vortices are known to be importantfor many applications [161–165]. For
example, they determine the low-temperature behavior of the specific heat [166]. In this chapter,
the shown results on characteristic quasiparticle excitation spectra and details of the local density of
states (LDOS) of each state (especially the states associated with the skyrmion), enable their iden-
tification in e.g. scanning tunneling microscopy (STM). Modern STM operates at spatial resolution
up to 0.1 nm, and has successfully detected to date the zero bias conductance peak at the vortex
core [167], phase transition between multi- and giant vortex states [41], proximity effect [168],
Josephson vortices [169, 170], etc. Hence our results will provide valuable info for direct detection
of novel topological states, which can in turn serve as a ‘smoking gun’ forp-wave superconductivity
in the studied system.

The chapter is organized as follows. In Sec. 6.2 we introduceour theoretical methodology for
chiral p-wave superconductors. In Sec. 6.3 we collect the results for three distinct states without a
skyrmionic topology. Those are the vortex-free state, the parallel vortex state and the anti-parallel
vortex state. In Sec. 6.4 we present results on coreless vortex states. Their OP structures, super-
current distribution, energy spectra and LDOS are discussed. We show that they are associated
with skyrmionic topological defects in relative OP space. In Sec. 6.5 we reveal the magnetic field
and temperature dependence of the properties of the skyrmion, followed by the investigation of an
effective skyrmion pinning in Sec. 6.6. Finally, our findings are summarized in Sec. 6.7.
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6.2 Bogoliubov-de Gennes equations for chiralp-wave super-
conductors

We consider chiralp-wave superconductors whose order parameter (OP) is expressed as

∆(r,k) = ∆+(r)Y+(k) + ∆−(r)Y−(k). (6.1)

Here the∆±(r) are the real spatialpx±ipy-wave OP andY±(k) = (kx±iky)/kF are the pairing func-
tions in relative momentum space. We consider a disk geometry with radiusR. The corresponding
px ± ipy-wave BdG equations are written as: [157]

[
He(r) Π(r)
−Π∗(r) −H∗

e (r)

] [
un(r)
vn(r)

]
= En

[
un(r)
vn(r)

]
, (6.2)

where

He(r) =
1

2m

[~
i
∇− e

c
A(r)

]2
− EF (6.3)

is the single particle Hamiltonian withm being the electron mass,EF the Fermi energy andA(r)
the vector potential (we use the gauge∇ · A = 0). For simplicity, we take the cylindrical two
dimensional Fermi surface. The termΠ(r) is written as

Π(r) = − i

kF

∑

±
[∆±�± +

1

2
(�±∆±)], (6.4)

with �± = e±iθ(∂r ± i
r
∂θ) in cylindrical coordinates.un(r)(vn(r)) are electron(hole)-like quasipar-

ticle eigen wavefunctions with the normalization condition
∫ {

|un(r)|2 + |vn(r)|2
}
dr = 1, (6.5)

andEn are the corresponding quasiparticle eigenenergies. The boundary conditions for the wave-
functions areun(r = R) = 0 and vn(r = R) = 0. The∆±(r) satisfy the self-consistent gap
equations

∆±(r) = −i g
2kF

∑

En<~ωD

[v∗n(r)�∓un(r)− un(r)�∓v
∗
n(r)]× [1− 2f(En)], (6.6)

wherekF =
√

2mEF/~2 is the Fermi wave length,g the coupling constant andf(En) = [1 +
exp(En/kBT )]

−1 is the Fermi distribution function. The summations in Eq. (6.6) are over all the
quasiparticle states with energies in the Debye window~ωD. The supercurrent density is calculated
by

j(r) =
e~

2mi

∑

n

{
fnu

∗
n(r)

[
∇− ie

~c
A(r)

]
un(r)

+ (1− fn)vn(r)
[
∇− ie

~c
A(r)

]
v∗n(r)− h.c.

}
.

(6.7)

In order to perform the self-consistent simulation, we include the contribution of the supercurrent
to the total magnetic field. Then, the vector potentialA(r) in Eqs. (6.3) and (6.7) has two parts,
i.e. A(r) = A0(r) + A1(r), whereA0(r) = 1

2
H0reθ corresponds to the applied magnetic field

H = H0ez and theA1(r) is induced by the supercurrent and obey the Maxwell equation

∇×∇×A1(r) =
4π

c
j(r). (6.8)
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However, we find that theA1(r) is negligible due to the very thin superconducting sample. As a
result, the contribution of the supercurrent to the total magnetic field can be completely neglected in
this type of simulation.

In this chapter, we only consider vortex and skyrmion stateswith cylindrical symmetry. There-
fore, thepx ± ipy components of the order parameter are expressed as∆±(r) = ∆±(r)e

iL±θ with
winding numbersL±, respectively. Due to operators�± in Eqs. (6.2)-(6.6),∆± have a±1 Cooper-
pair phase winding, respectively, leading toL− = L+ + 2. This also breaks the time-reversal
symmetry, resulting in chiral states.

In a cylindrical system, the quasiparticle wavefunctionsun(r) and vn(r) can be expanded in
terms of the following Bessel set [114]:

(
un(r)
vn(r)

)
=

∑

j

(
cnµjϕjµ(r)e

iµθ

dnµ′jϕjµ′(r)e
iµ′θ

)
, (6.9)

wherecnµj anddnµ′j are coefficients,µ,µ′ ∈ Z are angular quantum numbers corresponding to the
angular momentum, and

ϕjµ(r) =

√
2

RJµ+1(αjµ)
Jµ(αjµ

r

R
), (6.10)

with Jµ theµth Bessel function andαjµ the jth zero ofJµ. Note thatµ′ = µ − L+ − 1 because
of the phase winding in∆±, i.e. L− = L+ + 2. Then, the BdG equations are reduced to a matrix
eigenvalue problem and can be solved separately in each subspace of fixedµ andµ′.

After the self-consistent solutions are obtained, we calculate the LDOS as usual

A(r, E) =
∑

n

[|un(r)|2δ(E − En) + |vn(r)|2δ(E + En)]. (6.11)

For each quasiparticle state, we can define the spectral weightZn:

Zn =

∫
|un(r)|2dr. (6.12)

Zn ∈ [0, 1] and it represents the contribution of the electronic part ofthe wave function of a Bo-
goliubov quasiparticle state. A state withZn < 0.5 indicates a hole-like state whileZn > 0.5 is
an electron-like state. A Bogoliubov quasiparticle state is well formed when it couples between
half-electron and half-hole, i.e. forZn = 0.5.

Next, we remark that the quasiparticle states have the following time-reversal relation:

{u−En, v−En} = {v∗En
, u∗En

}. (6.13)

It indicates that a state having energyEn and angular momentum(µ, µ′) carries the same information
as a state having energy−En and angular momentum(−µ′,−µ). This allows us to reduce half of
the computational time by only considering half of the angular momentum(µ, µ′). Due to this, it is
sufficient to display the quasiparticle excitation spectrum with both positive and negative energyEn
but with only positive angular momentumµ or µ′.

We also remark that our chiralp-wave BdG equations are invariant under the time-reversal oper-
ations:

{∆±,B} → {∆∗
∓,−B}, (6.14)

whereB is the magnetic field. In the bulk the two degenerate ground states are thepx + ipy and
px−ipy-wave states. At zero temperature, their OP(∆+,∆−) = ∆0(1, 0) and∆0(0, 1), respectively,
where∆0 ∈ R is the bulk OP at zero temperature. These two states can be mirrored by Eq. (6.14).
The situation is the same for vortex states. For example, when one knows the∆+ dominant vortex
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Figure 6.1: Vortex-free state(L+, L−) = (0, 2) with ∆+ dominant. (a) Profile of∆±(r) at θ = 0. (b)
Azimuthal supercurrent densityjθ(r). (c) The quasiparticle excitation spectrumEn as a function of the
positive angular momentumµ. The negative part of the spectrum can be obtained by the time-reversal relation
of Eq. (6.13). The color coding indicates the spectral weight Zn. (d) The LDOS near surface as a function of
radiusr and bias energyE.

states with winding numbers(L+, L−), one can easily obtain the∆− dominant vortex states with
winding numbers(−L−,−L+) by using Eq. (6.14). The complete study requires to considerboth
∆+ dominant and∆− dominant states for all possible (positive and negative) winding numbers.
However, with the time-reversal operations of Eq. (6.14), it is equivalent to consider only half of the
possible winding numbers but for both∆+ dominant and∆− dominant states.

Next we define thepx andpy-wave OP∆x and∆y. They often show interesting properties and
can provide important information about the vortex and skyrmion states. The OP expressed by∆x

and∆y can be written as
∆ = (∆xkx +∆yky)/kF. (6.15)

Eq. (6.1) can also be expressed as

∆ = {[∆+ +∆−]kx + i[∆+ −∆−]ky}/kF. (6.16)

By comparing Eqs. (6.15) and (6.16), we find

∆x = ∆+ +∆−,

∆y = i(∆+ −∆−).
(6.17)

6.3 Structure of vortex states without skyrmionic topology

In this section, we investigate three prominent vortex states not exhibiting a skyrmionic topology:
Vortex-free state(L+, L−,Q) = (0, 2, 0), parallel vortex state(1, 3, 0) and anti-parallel vortex state
(−1, 1, 0). SinceQ, defined by Eq. 5.13, is zero for all these states, we omit it inthis section.
The OP structures, supercurrent density, quasiparticle excitation spectrumEn, and LDOS for the
considered states will be presented, where some findings coincide with previous works [72, 76]. In
our analysis, we found that thepx andpy OP components∆x and∆y are very useful, and will be
employed in the analysis of the found vortex states. The calculations are performed for the sample
of radiusR = 51ξ0, whereξ0 = ~vF/π∆0 is the BCS coherence length at zero temperature, with
vF the Fermi velocity and∆0 the bulk OP at zero temperature.EF = ~ωD and~ωD/∆0 ≈ 14,
resulting inkFξ0 = 9. We also set the applied magnetic field toH = 0, so the reported properties
are surly not a consequence of the magnetic field. The considered temperature isT = 0.1Tc. The
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Figure 6.2: Two types of∆+-dominant singly-quantized vortex states:(L+, L−) = (1, 3) and (−1, 1), re-
spectively shown in panels (a) and (b). Plots on the left showprofiles of∆±(r) and the azimuthal supercurrent
densityjθ(r). Central plots show both amplitude and phase of OP components∆x(r) and∆y(r), their rela-
tive phasecos(θx− θy), and the total OP amplitude|∆(r)|. Note that the winding numbers of∆x and∆y are
Lx = Ly = 1 for the(L+, L−) = (1, 3) state andLx = Ly = −1 for the (L+, L−) = (−1, 1) state. Plots
on the right show the quasiparticle excitation spectrumEn as a function of the angular momentumµ (with
color coding indicating the spectral weightZn), and the LDOS around the vortex core as a function of radial
distancer and bias energyE.

results remain qualitatively the same when we change the magnetic fieldH and temperatureT .
We first introduce the vortex-free state(L+, L−) = (0, 2), with ∆+ as a dominant component.
The results are summarized in Fig. 6.1. The state is analogous to the Meissner state ins-wave
superconductors, therefore it is the first step for understanding vortex and skyrmion states. In bulk,
the ground state is(∆+,∆−) = ∆0(1, 0). However, the physical properties significantly change
near a surface [76]. As seen from Fig. 6.1(a), the|∆+| suppresses and|∆−| rises at the surface,
where an anticlockwise supercurrent is also induced [see Fig. 6.1(b)]. The quasiparticle excitation
spectrum shown in Fig. 6.1(c) reveals chiral surface stateswith a linear dispersion around the Fermi
energy [71,72,76]. These are Andreev bound states induced by the chirality of the superconducting
state [77]. The states cross the Fermi energy but there is no exact-zero energy Majorana mode [71].
They contribute to the low-bias LDOS distributions near thesurface, as shown in Fig. 6.1(d). Note
that the LDOS and the supercurrentjθ(r) show Friedel-like oscillations with a wave vector2kF near
the surface.

Here we note that the spontaneous surface supercurrent is the major characteristic of the super-
conducting state with broken time-reversal symmetry. Experiments to date have observed the surface
bound states [78] but failed to capture the surface supercurrent [59–62]. One possible explanation
is that the supercurrent depends on exact geometry and band structure of the sample, [171] but that
discussion is out of the scope of this paper.

Next we present the case of two types of singly quantized vortex states with∆+ dominant: the
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parallel vortex state(L+, L−) = (1, 3) and the anti-parallel vortex state(L+, L−) = (−1, 1), shown
in Fig. 6.2(a) and (b), respectively. Here we remind the reader that the vortex and the anti-vortex
states exhibit very different properties due to the broken time-reversal symmetry [72,155,157].

The left plots in Fig. 6.2(a,b) show∆±(r) and the supercurrent density profilejθ(r). Compared
to the vortex-free(L+, L−) = (0, 2) state shown in Fig. 6.1,∆+(r) exhibits a singular vortex core
in the center of the sample. At the same time,∆−(r) is induced near the vortex core and also
exhibits singularity there, so the cores in∆± overlap. However, the two possible singly-quantized
vortex states have different vortex core structures. For the parallel vortex(1, 3) state,∆±(r) show
different asymptotic behavior:∆+(r) ∝ r while∆−(r) ∝ r3. For the anti-vortex(−1, 1) state, both
|∆±(r)| ∝ r. In addition, the states have different supercurrent density distributions. The parallel
vortex (1, 3) state has the positive vorticity, leading to the clockwisejθ(r) around the vortex. In
contrast, the anti-vortex(−1, 1) state has the negative vorticity, leading to the anti-clockwisejθ(r)
around the vortex core.

Previous works concerning vortex states in chiralp-wave superconductors rarely presented thepx
andpy OP components∆x and∆y. We actually found that they can be very useful in the analysis of
interesting properties, especially related to the vorticity of the sample. The central plots in Fig. 6.2
show the profiles of∆x, ∆y, the relative phase between themθx − θy, and the total OP∆. We
find the winding numbersLx = Ly = 1 for the parallel vortex(1, 3) state andLx = Ly = −1
for the anti-vortex(−1, 1) state, thus better describing the vorticity of the sample than the angular
momenta of∆±. The vortex cores in∆x and∆y are at the sample center and they overlap. Unlike
the cylindrical vortex core structures in∆±, the vortex cores are deformed in∆x and∆y, and exhibit
different profiles for the(1, 3) and(−1, 1) states. It is interesting that∆y can be obtained by rotating
∆x with 90 degrees clockwise for the(1, 3) state and anticlockwise for the(−1, 1) vortex state. It
is also interesting to note that the relative phaseθx − θy twirls twice for both cases, exhibiting a
cloverleaf profile. For the(−1, 1) vortex state,∆x and∆y alternate between being fully in-phase
and fully out-of-phase around the vortex core.

The right hand side plots in Fig. 6.2 show the quasiparticle excitation spectrumEn(µn) and the
LDOS. Comparing to the vortex-free(L+, L−) = (0, 2) state, one more branch of bound states
appears within the gap energy∆0 in the excitation spectrum. Those are the vortex bound states,
localized around the vortex core [155]. The vortex bound states for the(1, 3) and(−1, 1) states are
different. For(1, 3) vortex states, the bound states reside in the negative energy range for positive
angular momentumµn. However, for the(−1, 1) state they have positive energy for positiveµn, due
to opposite vorticity.

It was demonstrated in Refs. [172–174] that there exists a pair of zero-energy Majorana modes
for a single vortex with odd vorticity in the chiralp-wave superconductivity. The energy levels of
the vortex bound states appear at integer pointsEn ∼ nEδ, wheren is an integer andEδ is the
level spacing of the order of∆2

0/EF [175]. For the state withEn = 0, the time-reversal relation of
Eq. (6.13) prescribes the zero-energy state appearing as a pair, and the quasiparticle wave functions
keep the relationun(r) = v∗n(r). Thus, the quasiparticle creation operator is equivalent to the annihi-
lation of a quasiparticle, which corresponds to the Majorana fermions [173]. However, the Majorana
zero mode splits when there exists vortex-vortex interaction or/and vortex-surface interaction [176].
In our case whereR = 51ξ0, the energies of the lowest vortex bound state of both cases are of the
order of10−7∆0. It indicates the existence of the Majorana zero mode and thevortex-surface in-
teraction being negligible. With sample radiusR decreasing, the energy of the lowest vortex bound
state oscillates and its envelope increases with exponential law. The vortex bound states of both
cases are the well-formed Bogoliubov quasiparticle stateswith Zn = 0.5, which is also supporting
the Majorana zero mode.

The LDOS showing in Fig. 6.2 reveals the zero-bias peak at thevortex core, corresponding to
the same characteristic of vortex states with odd winding number ins-wave superconductors. It is
worth noting that the LDOS is asymmetric forE ↔ −E for the (1, 3) state and symmetric for the
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Figure 6.3: Topological structure of the skyrmion state(L+, L−,Q) = (0, 2, 2). (a) Profiles of∆±(r) and
the azimuthal supercurrent densityjθ(r). (b) The amplitude and the phase of∆x(r) and∆y(r), their relative
phasecos(θx − θy), and the total OP amplitude|∆(r)|. Note that the winding numbers of∆x and∆y are
Lx = Ly = 2. (c) The texturen(r) of the relative OP space, calculated using∆± (upper panel), and using
∆x and∆y (lower panel). The colors show the amplitude of thez-component ofn(r). Both shown pseudospin
textures give topological charge densityQ(r) shown in panel (d) and the topological chargeQ = 2.

(−1, 1) state.

6.4 Structure of skyrmionic topological defects

Coreless vortices are one of the most striking states emerging in the chiralp-wave superconductivity.
They exhibit an additional topology which is skyrmionic. The one known coreless vortex state is
the doubly quantized one [156, 159], having the topologicalchargeQ = 2 [123]. In this section,
we investigate the topological structure and the electronic properties of the doubly quantized core-
less vortex state (skyrmion state)(L+, L−,Q) = (0, 2, 2) and the vortex-skyrmion coexisting state
(L+, L−,Q) = (1, 3, 2). We set parameters the same as in the previous section to facilitate the direct
comparison of the results. Note that we choose the∆−-dominant states for convenience, so that the
skyrmion corresponds to positive vorticity. The∆+-dominant counterpart with negative vorticity
can be obtained equivalently by using Eq. (6.14).

We first present the topological structures of the state(L+, L−,Q) = (0, 2, 2) in Fig. 6.3.
Fig. 6.3(a) shows∆±(r) and the supercurrent density profilejθ(r). Comparing to the results for
the vortex free state(L+, L−,Q) = (0, 2, 0) shown in Fig. 6.1, a domain wall appears in∆±(r)
at r = 12ξ0 separating outer∆− and inner∆+ regions. In addition, the winding numbers of∆±
areL+ = 0 andL− = 2, respectively. There is therefore a4π-phase difference between∆± along
the domain wall, which breaks the time reversal symmetry leading to thechiral domain wall. A
supercurrentjθ(r) is induced around the chiral domain wall, and changes sign atthe domain wall -
flowing clockwise inside the domain wall but anti-clockwiseoutside of it [124].

The region inside the chiral domain wall is sometimes thought of as a vortex core. However, this
is not correct. Different from the singular vortex which is apoint-like topological defect, the coreless
vortex is a loop-like topological defect. Fig. 6.3(b) showsthe results expressed using∆x and∆y.
We found that∆x and∆y components of the OP contain two vortices each, thus having winding
numbersLx = Ly = 2, so this state carries a total of 2 flux quanta. The vortices are not at the
sample center but on the chiral domain wall and align orthogonally in ∆x compared to∆y. All four
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Figure 6.4: Electronic structure of the skyrmion state(L+, L−,Q) = (0, 2, 2). (a) The quasiparticle excita-
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The profiles of the LDOS(E) as a function of bias energiesE at several radial distances. The peaks labeled
by triangles (diamonds) are induced by the domain-wall bound states (Andreev bound states).

vortices are spatially separated and play the same role in this (0, 2, 2) state, as seen from Fig. 6.3(b).
Therefore they are the one-component vortices (in∆x-∆y space) and each of them carries half of
the flux quantum, analogously to the half-quantum vortex [154]. Finally, the chiral domain wall is
formed by anenclosed chain of all one-component vorticesand carries 2 flux quanta. The total OP
is cylindrically symmetric, and it is suppressed (though not completely) on the chiral domain wall.
The relative phaseθx − θy alternates between 0 andπ along the domain wall, indicating that∆x

and∆y are respectively in- and out of phase. Note that the relativephase alternates exactly 4 times
along the domain wall, where each node corresponds to the location of one-component vortices on
the chiral domain wall.

Actually, thechiral domain wallin ∆± and theenclosed chain of one-component vorticesin ∆x

and∆y are two different but both relevant aspects of askyrmionic topological defectin the relative
OP space. This can be seen clearly from Fig. 6.3(c) where we map both∆± and∆x,y decompositions
of the OP onto the pseudo-spin fieldsn. As seen from the upper panel, where the results are obtained
by using OP components∆±, the fieldn rotates at the domain wall which separates the central region
wheren points up and the region outside of the domain wall wheren points down. In addition, the
fieldn rotates along the domain wall by4π, resulting in the nontrivial topological charge density on
the chiral domain wall [see Fig. 6.3(d)]. The net topological chargeQ = 2 indicates that the fieldn
wraps twice on the surface of the sphere. The lower panel of Fig. 6.3(c) shows the results obtained
by using OP components∆x and∆y. The fieldn also rotates at the domain wall. In this case,
the domain wall separates the central region wheren points in positivey-direction and the outside
region wheren points in negativey-direction.n also rotates by4π along the domain wall, leading
to the net topological chargeQ = 2. In fact, this pattern can be reached by rotating the previousn
field by an angle90◦ about they-axis. The topological charge density and the net topological charge
are invariant under this operation. As a result, one concludes that(0, 2, 2) state is a skyrmionic
topological defect withQ = 2 in the relative OP space, and that such topological structures retain
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the skyrmionic character under the transformation between(∆+,∆−) and(∆x,∆y) representations.
Next we present the electronic properties of this skyrmionic topological defect in the(0, 2, 2)

state in Fig. 6.4. Previous studies revealed low energy excitations at the domain wall [156, 159].
However, the complete picture of excitations and LDOS is still lacking. Here, our self-consistent
calculations provide the more details of the quasiparticleexcitation spectra and LDOS, enabling
their identification in e.g. scanning tunneling microscopy(STM).

Fig. 6.4(a) shows the quasiparticle excitation spectrumEn(µn) and the corresponding LDOS(r, E)
near the domain wall. As seen from Fig. 6.4(a), there are three distinct branches of bound states.
These are the surface bound states (S), the domain-wall bound states (DW) and the Andreev bound
states (A). The surface bound states are the same as those found in the vortex free states(0, 2, 0),
which were shown in Fig. 6.1. The domain-wall bound states and the Andreev bound states are
typical for the skyrmion, i.e. chiral domain wall.

The domain-wall bound states cross zero energy with the lowest energy level having a small gap
of the order∆2

0/EF [156, 174]. Thus, the zero-energy Majorana states do not appear. However, the
domain-wall bound states cause two effects in LDOS: a zero-bias peak at the domain wall, and the
peak splitting with increasing or decreasing the bias. One of those peaks shifts towards the interior
of the domain wall, while the other shifts outward. This feature can be seen clearly in Fig. 6.4(d),
where we display the profile of the LDOS(r) for bias energiesE/∆0 = 0.3, 0, and−0.3.

The Andreev bound states are induced near the gap energiesE ≈ |∆0|, leading to peaks in LDOS
at the domain wall, as seen from Fig. 6.4(c). They are essentially similar to the quantum rotor state
which is induced by multiple Andreev reflections at the normal/superconducting interface [177]. In
that case, due to the time-reversal symmetry, Andreev boundstates appear near bothE = ±|∆0|.
However, the chiral domain wall breaks the time-reversal symmetry so that the Andreev bound states
nearE = −|∆0| are suppressed.

In addition, we found that the domain-wall bound states are electron-dominant (with spectral
weightZn < 0.5) when they cross the zero bias, while the Andreev bound states are hole-dominant
(with spectral weightZn > 0.5), as seen from Fig. 6.4(a) where the color coding indicates the
spectral weightZn. This feature can be seen clearly in Fig. 6.4(b), where we displayed the spec-
tral weightZn for all three types of bound states. The domain wall bound states and the Andreev
bound states are different from the surface bound states whose spectral weight isZn = 0.5. These
two branches of bound states are also different from the singly-quantized vortex bound states of
(L+, L−,Q) = (1, 3, 0) and(L+, L−,Q) = (−1, 1, 0) shown in Fig. 6.2, which are fully coupled
Bogoliubov quasiparticles with spectral weightZn = 0.5.

Due to the electron-dominant domain-wall bound states and the hole-dominant Andreev bound
states, the LDOS near the domain wall exhibits asymmetry forbias energyE ↔ −E, as visible in
Fig. 6.4(c). This feature can be seen clearly in Fig. 6.4(e),where we displayed the LDOS(E) as a
function of bias energy at several radial distancesr. When we scan the LDOS far away from the
chiral domain wall, e.g. atr/ξ0 = 5, the superconducting coherence peaks are well establishedat the
gap energy∆0 and there is no LDOS peak when|E| < ∆0. Whenr/ξ0 = 11 (near the domain wall
at rskyr/ξ0 = 12), there are four peaks inside the gap energy|E| < ∆0. Two of them are induced
by the domain wall bound states [labeled by solid and open triangles in Fig. 6.4(e)]. The other two
are induced by the Andreev bound states [labeled by diamondsin Fig. 6.4(e)]. Due to the electron-
dominant domain-wall bound states, the peaks labeled by solid triangle have a higher amplitude than
the ones labeled by the open triangle, which results in the asymmetric profile in LDOS. At larger
r, the two peaks labeled by triangles move towards each other and merge at the domain wall where
r/ξ0 = 12. Simultaneously, the Andreev peak in negativeE labeled by diamond is significant due to
the hole-dominant Andreev bound states, leading to anotherasymmetric profile in the LDOS. When
r is further increased, the peaks labeled by triangles continue shifting and finally merge into the
coherence peaks at gap energy|E| = ∆0.

Since the skyrmionic topological defect appears in the relative OP space, whereas the vortex
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appears in the OP space, a vortex can be added to the(L+,L−,Q) = (0, 2, 2) state leading to the
skyrmion-vortex coexisting state(L+, L−,Q) = (1, 3, 2). The results for such a topological “hybrid”
are presented in Fig. 6.5(b). Comparing to the skyrmion(0, 2, 2) state, one sees the superposition
of a singly quantized vortex and the chiral domain wall, withthe vortex being located at center of
the sample. The supercurrentjθ(r) flows clockwise around the vortex core, gradually changing to
anti-clockwise on the inner side of the domain wall, and flipsthe direction again to clockwise outside
the domain wall.∆x and∆y have winding numbersLx = Ly = 1 + 2 = 3 in this case, 1 for the
central vortex, and 2 for the one-component vortices on the domain wall. The chiral domain wall is
larger than that of the skyrmion in the(0, 2, 2) state, because of the repulsion between the vortex at
the center and the one-component vortices on the domain wall.

The quasiparticle excitation spectrumEn(µn) also shows the superposition of the vortex bound
states and the chiral domain wall bound states. Since the domain wall is now larger, the domain wall
bound states and the Andreev bound states shift to largerµn. In addition, we find that the domain
wall bound states become even more electron-dominant and the Andreev ones more hole-dominant,
resulting in more pronounced electron-hole asymmetry in LDOS around the domain wall compared
to the skyrmion(0, 2, 2) state. The LDOS of the coexisting skyrmion-vortex state exhibits distinctly
strong zero-bias peak at the vortex core, and a significantlyweaker one at the domain wall.

Finally, we mention that the skyrmion-anti-vortex coexisting state(L+,L−,Q)= (−1, 1, 2) is
unstable. Due to the attractive interaction between the anti-vortex and the skyrmion, such state
evolves into the parallel vortex state(L+, L−,Q) = (1, 3, 0).

6.5 Magnetic field and temperature dependence of the proper-
ties of the skyrmion

The skyrmion is a chiral domain wall in∆± and an enclosed chain of one-component vortices in
∆x,∆y representation of the two component OP. In either case, the skyrmion is a loop-like structure
in OP space and it has very different properties from the vortex as a point-like defect. For example,
the size of the vortex depends solely on the superconductingcoherence lengthξ. However, the size of
the skyrmion depends also on the applied magnetic field because the chiral domain wall is expected
to move under the influence of the magnetic field. We thereforereport in this section the magnetic
field and temperature dependence of the size of the skyrmion in the(L+, L−,Q) = (0, 2, 2) state,
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and the consequences of varied skyrmion size on the energy spectrum.

Fig. 6.6 shows the radiusrs of the∆−-dominated(0, 2, 2) skyrmion, as a function of the magnetic
flux φ through the sample, at temperaturesT = 0, 0.3, 0.5, and0.8Tc. Theφ = H0S whereH0

is the magnetic field strength andS = πR2 the area of the sample. We find that the skyrmion
expands with increasing temperatureT , but shrinks with increasing applied magnetic field. The
skyrmion consists of the one-component vortices, with sizerelated to the coherence lengthξ. Since
ξ increases with temperature, so does the vortex-vortex interaction, and the size of the skyrmion can
duly increase. However, it is crucial here that the skyrmionis a chiral domain wall, balanced by the
clockwise supercurrntjθ in the interior and the anti-clockwise at the exterior of thedomain wall.
With increasing applied magnetic field, the anti-clockwisepart ofjθ is enhanced and the clockwise
part is weakened, shrinking the domain wall to smaller equilibrium radiusrs. Inversely, the skyrmion
expands withφ decreasing. Interestingly, the skyrmion survives even at negative magnetic field,
i.e. for φ < 0, likely due to the finite energy needed to break the domain wall so that vortices
can leave the sample. As a consequence, at negative fields, the skyrmion continues to expand to
surprisingly large sizes. The inset in Fig. 6.6 shows that actually the square ofrs(φ) depends linearly
on φ, i.e. ∝ 1/φ2, so that magnetic flux inside the skyrmion is roughly constant. This is a very
important finding, indicating that existing skyrmions in a given sample can be made larger, hence
easier to detect in experiment, if the polarity of the applied magnetic field is reversed. Furthermore,
the stability at reversed field clearly distinguishes skyrmions from vortices, since there is nothing
preventing individual vortices from leaving the sample (apart from the ever-present disorder) if the
polarity of the field is changed. Last but not least, our findings indicate that skyrmions are in general
an order of magnitude largerthan the conventional vortices.

The electronic structure is of course affected by the changein the size of the skyrmion. Fig. 6.7
shows the quasiparticle excitation spectrumEn(µn) of the skyrmion at zero temperature, for mag-
netic flux through the sampleφ/φ0 = 10, 0, and−3, for whichrs/ξ0 = 8, 11.7 and17.1, respectively.
The domain-wall bound states move to large angular momentumµ whenrs increases, which is ex-
pected since the bound states are confined to the domain wall.In addition, the cusped energy lines
of the Andreev bound states become more significant aroundE = |∆0|. The continuous spectrum
above the gap energy|E| > |∆0| tilts as a function ofµn because of the supercurrent induced by the
applied magnetic field favoring one chirality over the other.
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6.6 Pinning the skyrmion

Vortex matter in superconductivity is known to be pinned where the OP is suppressed, which can
have technological relevance for e.g. increasing the maximal current a superconductor can sustain
without the onset of vortex motion and related onset of resistance and heating. The skyrmion matter
is a chain of enclosed one-component vortices according to the OP representation using∆x and
∆y, implying that skyrmions can be pinned in an analogy to vortices. If so, then the size and the
position of the skyrmion could be controlled artificially, which may be beneficial for the observation
of skyrmions and for further fluxonic manipulations. In thissection, we therefore consider the
possibility to pin the skyrmion by an embedded normal-metalring in the superconductor, where
the superconducting coupling constantg is suppressed to zero, leading to|∆| = 0 inside the ring.
The median radius of the ring is labeledrp, and the width of the ring is0.5ξ0. Such narrow rings
do not break the phase coherence between the superconductivity inside and outside of the ring.
We investigate the OP profile, energy spectrum and LDOS when the skyrmion is pinned by such a
normal-metal ring. The calculations are performed self-consistently forT = 0.1Tc and in absence
of the magnetic field, since we do not want the competing effects to shadow the conclusions.
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Fig. 6.8 presents the OP profiles (top row), quasiparticle excitation spectrum (central row) and
LDOS (bottom row) for the radii of the normal-metal ringrp/ξ0 = 14.5, 22, 36.5, 44 (from left to
right respectively). A seen in the OP profiles in Fig. 6.8, thechiral domain walls are trapped in the
normal-metal ring in every considered case. With increasing radius of the ringrp, the skyrmion cor-
respondingly expands. As a result, the domain wall bound states shift to larger angular momentum
µn in the energy spectrum, and the zero-bias peak in LDOS shiftsas well. Note that the domain
wall bound states become increasingly hole-dominant with the expansion of the skyrmion. At the
same time, the Andreev bound states aroundE = |∆0| become more significant and increasingly
electron-dominant.

The surface bound states are not affected by our exercise until the skyrmion gets close to the
sample surface. As seen from the panels forrp/ξ0 = 44, the OP profiles at the surface are strongly
affected by the domain wall. The supercurrents induced by the domain wall and ones running near
the surface combine, causing interactions between the domain wall bound states and the surface
bound states. As seen from the energy spectrumEn(µn), these two branches of bound states avoid
crossing each other. Finally, we note that the quasiparticles interference above the gap energy|E| >
∆0 is enhanced with therp increasing. The quasiparticles interference effect is known to result in
additional BCS-like energy gaps and more Bogoliubov quasiparticle states withZn = 0.5 above
the gap energy∆0 [178]. Here, it is induced by the inhomogeneous OP profile stemming from the
normal-metal ring, the skyrmion and the surface.

6.7 Summary

In summary, we have studied the topological and electronic properties of characteristic vortical and
skyrmionic states in chiralp-wave superconductors, by solving Bogoliubov-de Gennes equations
self-consistently. We have presented the distribution of the two-component order parameter, the
supercurrent, quasiparticle excitation spectra, and LDOS, for each of the typical states. We pointed
out that the chiral order parameter representation using components∆± = px ± ipy is ideal to study
the properties of chiral domain walls in the given state, while thepx- andpy-components of the order
parameter conveniently reveal the properties of vortices.

While conventional vortices are rather well understood in the literature (as point-like topological
defects, with core in the order parameter, supercurrent flowaround it, and the vortex bound states
and LDOS peaks at the core), the topological defects comprising one-component vortices, and/or
chiral domain walls as well as their interaction with conventional vortices, are an entirely new topic.
Moreover, a chain of one-component vortices (half the vorticity of a complete vortex, analogous to
half-quantum vortices of spin-triplet superconductors [133]) on a chiral domain wall can be charac-
terized as a skyrmion, and can be seen in the total order parameter as loop-like topological defect
without a fully developed core. Such defects carry multipleflux quanta, but are entirely different
from “giant” vortices ins-wave superconductors [39, 41, 162]. Such skyrmion exhibits a chiral do-
main wall in∆±, whereas a vortex does not. Unlike vortices, they are characterized not only by the
angular momentum, but also by the topological charge in the relative order parameter space, where
both the relative amplitude and relative phase between the two components of the order parameter
play a role. A skyrmion traps bound states at the chiral domain wall, leading to zero-bias LDOS
peaks at the domain wall. In addition, the LDOS exhibits electron-hole asymmetry, which is differ-
ent from the electron-hole symmetric LDOS of usual multi-quanta vortex states. We also show the
possibility to have a topological defect with a vortex inside a skyrmion, with superimposed features
of both topological constituents.

Accounting for variations of the magnetic field and temperature, our analysis shows that the
size of the skyrmion can be strongly tuned, being increased by increasing temperature and by de-
creasing applied magnetic field. The size of the skyrmion is typically an order of magnitude larger
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than a vortex. Furthermore, contrary to conventional vortices, a skyrmion survives changing the
polarity of the applied magnetic field, due to the finite energy cost of breaking the chiral domain
wall so that vortices within the skyrmion can leave the sample. As a consequence, the skyrmion
can significantly increase in size at negative magnetic field, since the decreasing energy of currents
flowing inside the skyrmion compensates the increasing energy of the longer chiral domain wall.
Finally, we have shown that even in the absence of the magnetic field the size of the skyrmion can
be manipulated by pinning on a normal-metal ring of prescribed size. Considering that due to recent
experimental achievements in e.g. superconductor-ferroelectric hybrids one can draw practically at
will the normal-metal paths inside the superconductor [179, 180], this opens up a broad playground
for novel phenomena in fluxonics. We expect that our findings related to stability of skyrmionic
topological defects in superconductors, manipulation of their size, and their distinct signatures in for
example LDOS, will enable their experimental identification in scanning tunneling microscopy and
spectroscopy, which can be further used to prove particularpairing symmetry in the superconductor
of interest.

Publication The results of this chapter were published in:

• L.-F. Zhang,V. FernándezBecerra, L. Covaci, and M. V. Milošević,Electronic properties of
emergent topological defects in chiralp-wave superconductivity, Phys. Rev. B94, 024520
(2016) (13 pages).





7
Dynamics of skyrmions and edge states in the

resistive regime of mesoscopicp-wave
superconductors

In a mesoscopic sample of a chiralp -wave superconductor, novel states comprising edge states,
skyrmions, mono and multichiral states have been stabilized in out-of-plane applied magnetic field.
Using the time-dependent Ginzburg-Landau equations we shed light on the dynamic response of
such states to an external applied current, thereby providing new fingerprints for identification of
p -wave superconductivity.

7.1 Introduction

Edge states, appearing where the condensate homogeneity isbroken, and domain walls, separating
regions with different chiralities, are the main characteristics of chiralp -wave superconductivity
[76,77]. They arise as a consequence of breaking the time-reversal symmetry in an order parameter
with two components, i.e.Ψ = (ψ+, ψ−)

T [94]. Besides the edge states and the domain walls
another topological entity (the skyrmion) has recently emerged in chiralp -wave superconductivity
[123]. Unlike the Abrikosov vortex that has a core due to the discontinuity of its phase, the skyrmion
is coreless and defined by a loop domain wall [124].

Chiral p -wave superconductivity is realized in spin-triplet superconductors. In such materials
two electrons pair up forming a triplet rather than a singletas in conventional superconductivity. In
order to fulfil the Pauli principle, the orbital part of the wave function in spin-triplet superconductors
has odd parity, i.e. angular momentumL = 1 (p -wave). As a consequence of the spin of the
electronic pairs, another topological entity, the half-quantum vortex (HQV), arises in these materials.
HQVs are expected to be unscreened by the Meissner effect dueto their spin currents, i.e. they are
likely to be found at the lateral borders of the sample [133].

Substantial evidence has been provided over the years that strontium ruthenate, Sr2RuO4 (SRO),
is a chiralp -wave superconductor [49, 52, 53]. However, the lack of direct observation of states
carrying spontaneous currents around space homogeneitiesundermines the candidacy of SRO to the
p -wave class of superconducting materials [59–62]. In this chapter we study the electrical response
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of edge states, skyrmions, mono and multichiral states in a mesoscopic chiralp -wave superconduc-
tor sample when an external current is applied to the sample.The distinct behavior reported for
the states with and without domain walls in the current-voltage characteristic provides an indirect
method for their differentiation. Furthermore, the three different regimes, namely, superconducting,
resistive and normal, seen in the current-voltage characteristic, coincides with those of conventional
superconductivity. However, the temporal evolution of thetwo-component superconducting order
parameter (Ψ) is found to provide rich physics, and depending on the magnitude of applied-current,
the skyrmionic and edge states must present different behavior from kinematic vortices in conven-
tional superconductors [121,181,182]. This in turn provides new possibilities for resistive stages in
the sample behavior, and indirect means to identifyp -wave superconductivity.

7.2 Theoretical Formalism

Within the weak-coupling limit and considering a cylindrical Fermi surface, the dimensionless
time-dependent Ginzburg-Landau (TDGL) equations for the two component order parameterΨ=
(ψ+, ψ−)

T and the vector potentialA , in chiralp -wave superconductors reads
(
∂
∂t
+iϕ

)
Ψ = 2

3

[
D2 Π2

+

Π2
− D2

](
ψ+

ψ−

)
+Ψ

(
1− 1+τ

2
|Ψ|2 ± τ

2
Ψ∗σ̂zΨ

)
, (7.1)

κ2∇×(∇×A) +
(
∇ϕ + ∂A

∂t

)
= J , (7.2)

whereϕ is the electrostatic potential,D = (∇ − iA) is the covariant derivative, andΠ± = (Dx ±
iDy)/

√
2 are creation and annihilation operators of Landau levels, satisfying the commutator

1
H
[Π+,Π−] = 1. τ is a phenomenological parameter that depends solely on the shape of the Fermi

surface of the material under consideration (for SRO calculations yieldτ = 1/2, owing to cylin-
drical Fermi surface [77, 102]). Finally,̂σz is a Pauli matrix,κ is the GL parameter, andJ is the
superconducting current density,

J =
1

3
Im

{
ψ∗
+Dψ+ + ψ∗

−Dψ−

}

+
1

3
√
2
Im

{
Ψ∗

[
Π+σ̂++Π−σ̂−

]
Ψ ı̂+iΨ∗

[
Π+σ̂+−Π−σ̂−

]
Ψ ̂

}
, (7.3)

whereσ̂± = (σ̂x ± iσ̂y)/2, and{ı̂, ̂} is the canonical base in Cartesian coordinates. In Eqs. (7.1)-
(7.3) distances are scaled to the superconducting coherence lengthξ, time to the GL timet0, and
the vector and electrostatic potentials toA0 = ~c/2eξ andϕ0 = A0/ct0, respectively. Similarly,
the order parameter is scaled to its bulk zero-field value|Ψ(A = 0)|, and the current density to
J0 = (e~/mξ)|Ψ0|2. In order to study the dynamical properties of mesoscopic chiral p -wave super-
conductors, we adopt the Coulomb gauge, i.e. the arbitrary function of Sec. 3.2 is required to satisfy
the equation∆χ = −∇ ·A, which makes the transformed vector potentialA ′ divergence-free at all
times. This gauge choice thereby provides the equation for the electrostatic potential,

∇2ϕ = ∇·J . (7.4)

For the vector potential and because of an out-of-plane applied magnetic field, we chooseA=
−(r×H)/2. The boundary conditions imposed at the superconductor-vacuum and superconductor-
normal-metal interfaces are,

Ψ = 0
∂yϕ + j = 0

}
at N and S sides,

ψ++ψ−=0
Dxψ+−Dxψ−=0

∂xϕ=0



 at E and W sides, (7.5)
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Figure 7.1: The voltage as a function of the applied current density for two nanobridges of same length
(wy = 20ξ), and with different widths:wx = 6ξ (a), andwx = 10ξ (b). The lower inset of panel (a) shows
the nanobridge, along with the normal leads used to apply thecurrent, and the points where the voltage is
measured, namely,yf =17.5ξ andyi=2.5ξ. Another two insets show the opening (a) and the absence (b) of
the hysteretic loop of the voltage vs. current density in thesuperconducting phase, i.e. the phase with nearly
zero voltage drop.

respectively. N, S, E and W stand for the cardinal points. Current j is applied at contacts located
at N and S. Eq. (7.5) completes the TDGL equations for chiralp -wave superconductors which we
solve using the finite-difference technique.

7.3 Transport signatures of domain walls in multichiral states

In this section we solve the TDGL equations using the Coulombgauge, for nanobridges with normal
leads at the north and south sides [see the lower inset of Fig.7.1(a)]. These leads are used to
apply an external current densityjn to the superconducting sample in order to measure the voltage
drop between two voltage contacts, namelyyi andyf . In dimensionless units and at zero external
magnetic field, the voltage versus the current density (jn-V characteristic) is plotted in Fig. 7.1
for two nanobridges of length20ξ and widths6ξ (a) and10ξ (b), respectively. The obtainedjn-V
characteristics are apparently similar, with two different critical currents forjn > 0 (jc↓ < jc↑)
depending on whetherjn is decreased (ramped down) or increased (ramped up). However, a zoom
in of the superconducting phase i.e. the phase with nearly zero measured voltage, shows a distinctly
different behavior, as seen in the two upper insets. The hysteretic loop in the superconducting phase
opens in Fig. 7.1(a), while being absent in Fig. 7.1(b). In order to understand the origin of the
hysteresis within the superconducting phase, in what follows we describe the order parameters that
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Figure 7.2: Four representative states during the ramp down(a-f) and ramp up (g-l) of the current in the V
vsj plot of Fig. 7.1(a). The quantities shown are the contour plots of the superconducting order parameters
(|ψ±|2) and the vectorial flow of the current density (J).

correspond to these cases.
Fig. 7.2 directly shows the superconducting states responsible for the opening of the hysteretic

loop in thejn-V characteristic of Fig. 7.1(a). The top row in Fig. 7.2 shows two representative states
corresponding to the ramp down ofjn, whereas the bottom row shows two representative states
corresponding to the ramp up ofjn. From the top (bottom) row one can easily see that by ramping
down (ramping up) the current from the normal phase, one vertical DW with chiral currents flowing
downward (upward) is formed. Subsequently, as the externalcurrent is further decreased (increased)
the vertical DW transforms to a horizontal DW with leftward (rightward) currents. Furthermore, one
can also notice that the states with vertical DWs, as well as the states with horizontal DWs, form
the pair of degenerate states owing to the broken TRS. That means that under the transformation
|ψ+|d → |ψ−|h and|ψ−|e → |ψ+|g, the reduced expression of the free energy [Eq. (4.8)] remains
unchanged. Thus, we claim that the combination of degenerate superconducting states with opposite
currents (vertical DWs), and the fact that the voltage in thenanobridge is measured transversally to
them, leads to the hysteretic behavior seen in the inset of Fig. 7.1(a).

However, when the width of the nanobridge is changed, e.g. tow = 10ξ, the degenerate states
become monochiral, allowing the formation of spontaneous currents flowing along the edges of the
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Figure 7.3: Same quantities as in Fig. 7.2 but for the states in the superconducting phase for the ramp down
(top row) and ramp up (bottom row) paths of the V vs.j plot of Fig. 7.1(b).

sample for each case, but with opposite directions [clockwise as in Fig. 7.3(c) and counterclockwise
as in Fig. 7.3(f)]. The corresponding voltage drop, reported in Fig. 7.1(b) for the latter case does
not reveal any hysteretic opening of thejn-V characteristic in the superconducting phase. Then,
it is noteworthy that at zero external magnetic field hysteretic behavior can be used to distinguish
monochiral states with spontaneous currents along the edges from multichiral states containing DWs.

Finally, we apply an external magnetic field perpendicularly to the nanobridge of width6ξ and
report the differential resistivitydV/djn as a function of the applied current densityjn/j0, for several
values of applied field. In Fig. 7.4 the differential resistivities for different external magnetic fields
H have been linearly shifted for clarity. In all curves, at thecritical current densities±jc↓, two dis-
continuities are clearly seen, indicating the transition point from the normal to the superconducting
phase.

It is known that degenerate states such as those of Figs. 7.2 and 7.3 split up when an external
magnetic field is turned on [124]. Thus, one expects that as a consequence of the lifted degeneracy,
a nonzero fieldH can close the hysteretic loop of the inset of Fig. 7.1(a). We confirm this pre-
diction in Fig. 7.4(a), although we notice that the hysteretic opening survives up to some threshold
field, labeledHch. BelowHch one can see pronounced dips in the differential resistivity, a direct
consequence of the discontinuities seen in the voltage plotof Fig. 7.1(a)(upper inset), arising due
to applied current pushing the vertical DWs of Fig. 7.2 (f,i)out of the sample and allowing the
formation of the horizontal DWs of Fig. 7.2(c,l). Since the sample is narrow (wx = 6ξ), a weak
applied magnetic field is sufficient to push out the vertical DWs and favor horizontal DWs as the
ground state of the system, so that the hysteretic behavior in applied current is lost.

AboveHch in Fig. 7.4(a) the applied current densityjn can only stabilize one ground state,
i.e. one of the two non-degenerate states, independently ofthe polarity of applied current. As a
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Figure 7.4: (a) Differential resistivity,dV/dj, as a function of the applied current density,j/j0, for several
values of the applied magnetic fieldH, for the nanobridge with size6ξ×20ξ. For clarity the differential
resistivities have been linearly shifted as a function of the external fieldH. The visible dips in the curves arise
due to the discontinuities in the voltage vs. current density characteristic [see upper inset in Fig. 7.1(a)]. (b)
One representative state aboveHch at zero applied current density. The displayed quantities are the same as
in Fig. 7.2.

consequence, the hysteretic loop in the voltage vs. currentdensity characteristic is closed. In order
to show the lifted degeneracy of the ground state, in Fig. 7.4(b) we show one representative non-
degenerate state aboveHch at zero applied current. There one can see that the edge currents on one
side of the DW are annihilated by the screening currents of the external magnetic field, and enhanced
on the other side, so that it becomes energetically favorable to displace the horizontal DW off the
center (downwards in this case).

7.4 Transport signatures of skyrmions and edge states

In Sec. 5.3 we saw that in mesoscopic samples an out-of-planeapplied magnetic field stabilized states
containing edge states, vortices and skyrmions. The skyrmion is the topological entity originally con-
ceived in particle physics but appearing also as a characteristic topological defect in different areas
of condensed matter physics, such as Bose-Einstein condensates (BEC) [183–185], unconventional
superconductivity [123, 124], and magnetism [139, 186]. Strictly speaking, skyrmions are defined
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by the integral

Q =
1

4π

∫
n·(∂xn×∂yn) dxdy, (7.6)

which measures in discrete units their topological charge.In magnetic materials, more specifically
in chiral magnets [139, 186],n stands for the magnetization density, while in unconventional su-
perconductivity and BECsn is a pseudospin field obtained from the projection of the superfluid
(superconducting) order parameters into the Pauli matrices [123,124,183,185]

n =
Ψ†

σ̂Ψ

Ψ†
·Ψ

. (7.7)

In this work we stabilize skyrmions with topological chargetwo and the edge states in a meso-
scopic sample of size10ξ×12ξ by applying an external magnetic fieldH = 0.8Hc2 out of plane
of the sample. Although skyrmions can be stabilized also in bulk samples [123], the edge states
(containing one vortex just in componentψ+, i.e. a half-quantum vortex for the system1) appear
only where the space homogeneity is broken, thus are characteristic of mesoscopic samples [124].
In what follows, we examine the response of such states to applied current. In our study, the external

1In the literature half-quantum vortices arise inp -wave spin-triplet superconductors when only one of the twospin
components hosts a quantum of flux, i.e.Ψ = ∆(p )

[
eiθ| ↑↑> +| ↓↓>

]
. In the chiralp -wave model considered

here the spin of the Cooper paris has been polarized and subsequently they behave as spinless particles. Nevertheless,
nucleation of vortices only in one component (half-quantumvortices) is still possible due to the nonzero orbital angular
momentum of the Cooper pairs now playing the role of the spin and requiring an order parameter with two components,
i.e.Ψ = (ψ+, ψ−

)T .
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Figure 7.6: Contour plots of|ψ+|2 (a), |ψ−|2 (b), the cosine of the intercomponent phase difference
cos (θx−θy) (c), and the density of the topological charge (d) [see Eq. (7.6)]. The current distributionJ
is superimposed over the contour plot of panel (c), where thephase difference(θx−θy) was obtained from
the fields:ψx = (ψ++ψ−)/2 andψy = (ψ+−ψ−)/2i. According to panels (c) and (d) the superconduct-
ing state is composed of one skyrmion inside the sample and the edge state formed by the connection of six
half-quantum vortices at the borders and four chiral domainwalls around the corners.

current densityj is increased adiabatically from zero up to certain valuejf , streaming from the north
to the south side of the sample.

The plot of voltage against current for a mesoscopic chiralp -wave superconductor is shown in
Fig. 7.5, with the voltage defined as:V = ϕ̄|yi− ϕ̄|yf , where the bar over the electrostatic potential
denotes average, andyi = 1.5 ξ and yf = 10.5 ξ. To date, for chiralp -wave superconductors
only the stationary GL equations have been derived either phenomenologically or microscopically
[77, 94, 102]. The TDGL equations (7.1) and (7.2), obtained as an extension of the stationary ones
after imposing full gauge invariance are conceived for gapless superconductors, but are expected to
capture the evolution of static and dynamic states in the here studied cases.

Three different regimes can be identified from the current-voltage characteristics of Fig. 7.5,
namely the superconducting (stationary), resistive (non-stationary), and normal (ohmic) regime. At
low currents the superconducting regime can exhibit weak resistance, consequence of the normal
contacts (see the inset of Fig. 7.5). Fig. 7.6 shows the superconducting phase atj = 0 in contour
plots of|ψ+|2 (a), |ψ−|2 (b), the cosine of the intercomponent phase differencecos (θx−θy) (c) [from
here on called the phase difference], and the density of the topological charge (d) [see Eq. (7.6)]. For
clarity the current distributionJ is superimposed over the contour plot of the phase difference, where
the angular phasesθx andθy were obtained from the redefined order parametersψx = (ψ++ψ−)/2
andψy = (ψ+−ψ−)/2i, respectively.

The superconducting state, according to panels (c) and (d) of Fig. 7.6 and the pseudospin texture
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Figure 7.7: Texture of the pseudospin fieldn corresponding to the superconducting state of Fig. 7.6 and
obtained from the projection of the superconducting order parameterΨ into the Pauli matrices{σ̂x, σ̂y, σ̂z}
[see Eq. (7.7)].

of Fig. 7.7 is composed of (i) one skyrmion inside the sample,and (ii) the edge state enclosing
the sample and formed by the connection of six HQVs at the borders and four chiral domain walls
around the corners. The topological charge of the skyrmion is 2 as obtained from Eq. (7.6) with the
domain area indicated by the rectangle in Fig. 7.6 (d). Unlike the skyrmion, the topological charge
of one isolated HQV is difficult to estimate due to the ill definition of its boundaries in the edge state
(see in Fig. 7.6(d) that delimiting one single HQV is not straightforward). However, by comparing
qualitatively the local density of the topological charge of one HQV with that of the skyrmion and
with that of a vortex molecule, composed of a vortex-antivortex pair in different components, i.e.
a meron pair [183, 185], one realizes that all those topological defects are distinctly different. This
suggest that a convenient general description of the superconducting state is in terms of the bulk and
surface states, namely the skyrmion/vortex and the edge state.

As one increases the external current the superconducting state of Fig. 7.6 shifts to the right due
to the reduction of the superconducting currents in the eastside compared to the west side (due to
compensation of the Meissner currents with applied current, see e.g. [187]). The resistive regime
thus appears at currents where the flux motion drives the superconductor to a non-stationary state.
From Fig. 7.5 one can see that such regime exhibits sequential jumps in the voltage as current is
increased, which we attribute to different non-stationarystates (labelled there by letters). In order to
study the temporal evolution of the two-component superconducting order parameter in the resistive
regime, we choose the statea of Fig. 7.5 since it summarizes all the rich properties that amesoscopic
chiralp -wave superconductor presents.
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Figure 7.8: Temporal evolution of the non-stationary statea of Fig. 7.5 (j=0.022j0), seen in the voltage vs.
time plot (a), and four snapshots of the phase differencecos (θx−θy), (•), (�), (N) and (⋆), respectively. The
snapshots describe the states associated with the three peaks clearly seen in the voltage plot (a).

The plot of Fig. 7.8(a) reveals that the voltage in statea of Fig. 7.5 is a periodic function of time.
Moreover, one can clearly see that there exist three distinct modes that correspond to a special flux
motion. Contour plots of the phase difference show the superconducting state at these modes. From
panel (•) to (�) one can distinguish three events: (i) the bottom skyrmion is heading towards the E
side, (ii) one HQV at the E side left the sample at the south-east corner, and (iii) one HQV at the
W side acquired a quantum of flux from componentψ− to form a full vortex. Next, the skyrmion
having two quanta of flux broke into two HQVs and one of these went to the E side while the other
fused with another quantum of flux to form a second full vortex[see panels (�) and (N)]. Another
mechanism of skyrmion annihilation, displayed in statef (see the supplementary section), consist
of one skyrmion losing its two quanta of flux in the form of two concentric HQVs. Finally, panels
(N) to (⋆) show the fusion of two full vortices into a skyrmion and the nucleation of a HQV at the W
side from the west-south corner. There exists another mechanism of skyrmion creation, consisting
of two quanta of flux being pumped inside the sample from the edge state, more precisely the W
side.

The role of the normal contacts in the one dimensional movement of the HQVs is crucial. Owing
to the superconducting-normal-metal interfaces the barrier for HQV exit/entry is cancelled on the
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N/S sides of the sample. Further, there also exists a barrierformed by Meissner currents on the E/W
sides, that prevents the HQVs to leave the edge state or conversely that prevent the HQV to get in the
sample. Altogether, the HQV at the E and W sides experience the easy direction for motion along
the superconducting-vacuum interfaces.

7.5 Conclusions

In summary, using the time-dependent Ginzburg-Landau equations for chiralp -wave superconduc-
tors, we have shown some characteristic dynamics of the edgestate, skyrmions, mono and multichi-
ral states in a mesoscopicp -wave superconductor. When an external current is applied to the sam-
ple, we reported novel features in the voltage versus current characteristics, which show a hysteretic
behavior in the superconducting phase when domain walls areformed due to confinement. This be-
havior persisted even when a weak out of plane magnetic field was applied, providing a useful new
hallmark for indirect confirmation of the presence of domainwalls in the superconducting state and
thereby offering a proof of chiralp -wave superconductivity in the material of interest. Furthermore,
the resistive state shows much richer behavior compared to conventionals-wave superconductors.
For example, depending on the strength of the external current, we found that the half-quantum
vortices in the edge state can move along the direction of theapplied current, contrary to standard
kinematic vortices which always move perpendicularly to the current flow [121, 181, 182]. We also
observe in the resistive regime that under the applied current skyrmions either nucleate the sample
directly from the edge state or arise from the recombinationof two full vortices. These findings
combinatorially increase the possibilities for differentresistive states in mesoscopic superconduc-
tors, worthy of further exploration.

Publication The results of this chapter were published as:

• V. FernándezBecerra and M. V. Milošević,Multichiral ground states in mesoscopicp-wave
superconductors, Phys. Rev. B94, 184517 (2016) (10 pages).

• V. FernándezBecerra and M. V. Milošević,Dynamics of skyrmions and edge states in the
resistive regime of mesoscopicp-wave superconductors, Physica C533, 91 (2017) (4 pages).





8
Summary and Outlook

8.1 Summary

Strontium ruthenate is an unconventional superconductor where the Cooper pairs form spin-triplets
and break the time-reversal symmetry (TRS). Moreover, evidence suggests the symmetry of the gap
is of the chiralp-wave type. Interestingly, this type of gap is proven to be the archetypal example
of a topological superconductor breaking TRS. Vortex coresin chiral p-wave superconductors are
expected to host zero-energy modes (the condensed-matter equivalent of Majorana fermions), that
are predicted to be the key element for the future quantum computation. Then, the interest in SRO to
develop a technological application from its topological properties appears well justified. However,
the materialization of a quantum computer based on the topological superconductivity of SRO is yet
to be confirmed since the spontaneous magnetic fields predicted to exist in this superconductor due
to TRS breaking remained elusive so far.

In this thesis, we studied chiralp-wave superconductivity to reveal the novel superconducting
configurations that emerge in mesoscopic samples where confinement is of importance. The ap-
proach used in this thesis comprises the phenomenological Ginzburg-Landau theory and the micro-
scopic Bogoliubov-de Gennes formalism, solved self-consistently. We discussed the novel magnetic,
electronic and electric properties of the emergent states in order to facilitate the identification of chi-
ral p-wave superconductivity in a candidate material. These features, namely the magnetic profile,
the density of states, and the voltage-current characteristic, can be compared with results from Hall
probe microscopy, scanning tunneling microscopy, and resistance measurements.

With these goals, we first studied chiralp-wave superconductivity in mesoscopic rectangular
samples in absence of any applied magnetic field, in order to stabilize mono and multichiral states.
We reported the ground-state phase diagram of rectangular mesoscopic samples with sizes ranging
from3.5ξ to23ξ, whereξ is the superconducting coherence length. We classified the states according
to the number of domain walls separating the regions with different chiralities. The monochiral state
has no domain walls, but contains spontaneous currents flowing along the edges. We also noticed that
the multichiral phases are made stable owing to the strong confinement, but that same confinement
can overshadow the typical dipole-like magnetic field profile of the domain walls. Nevertheless, the
imaging of the reported spatial profile of stray magnetic field of the multichiral states can serve as a
clear evidence of the time-reversal symmetry breaking in topological superconductors. Finally, we
show that our conclusions and results are robust as a function of the phenomenological parameters
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τ andκ, describing the possible variation of fermiology and magnetic properties in a given material.
After describing the multichiral states, as an entirely novel configuration compared to the avail-

able studies of mesoscopics-wave superconductors, we have studied in detail all other possible
states that arise in a mesoscopic chiralp -wave superconductor, as a function of out-of-plane applied
magnetic field and the anisotropy parameters of the material. Due to odd parity and breaking of the
time-reversal symmetry the fundamental solutions of the TDGL equations are fractional vortices, i.e.
solutions where the phase winding2π is found in one component of the order parameter but not in
the other one. Fractional vortices in different componentscan combine to form a cored/full-vortex
state, as well as a coreless/skyrmion state -clearly seen inthe spatial profiles of the phase differ-
ence and the magnetic response. Skyrmions arise when same number of fractional vortices in each
component combine to form a closed domain wall that separates the outer and inner region with dif-
ferent chiralities. On the other hand, we also obtained half-quantum vortices analogous to those of
spin-triplet superconductors, despite of the fact that vector ~d is strongly pinned alonĝz in the chiral
representation~d = (kx ± iky)ẑ. Actually the mesoscopic size of the sample plays a remarkable
role in the stability of skyrmions as well as in the here reported novel transitions (e.g. formation of
skyrmions from the edge states, or transitions from a skyrmion to a full vortex).

Once we have identified these novel states and configurations, we have studied the topological
and electronic properties of characteristic vortical and skyrmionic states in chiralp-wave supercon-
ductors. The distribution of the two-component order parameter, the supercurrent, quasiparticle
excitation spectra, and LDOS, for each of the typical stateshave been presented. Special attention
is devoted to the skyrmion, exhibiting a closed domain wall where the Cooper-pair density is sup-
pressed, but core is not fully developed, unlike conventional vortices. Moreover, the skyrmion is
found to be characterized not only by the angular momentum, but also by its topological charge,
and the bound states that are trapped at the chiral domain wall. These bound states lead to zero-bias
LDOS peaks at the domain wall, and electron-hole asymmetry in the LDOS, which is different from
the electron-hole symmetric LDOS of usual multi-quanta vortex states. We also show the possi-
bility to have a topological defect with a vortex inside a skyrmion, with superimposed features of
both topological constituents. Finally, the analysis in varied magnetic field and temperature shows
that the size of the skyrmion can be strongly tuned, being increased by increasing temperature and
by decreasing applied magnetic field. Moreover, contrary toconventional vortices, a skyrmion sur-
vives changing the polarity of the applied magnetic field, that leads to the significant enlargement
of skyrmions at negative magnetic field. Nonetheless, skyrmions can be manipulated also in the
absence of the magnetic field, by pinning on a normal-metal ring of prescribed size, opening a broad
playground for novel phenomena in fluxonics. We expect that our findings will enable the experi-
mental identification of these novel states in scanning tunneling microscopy and spectroscopy, and
that those can be further used to prove particular pairing symmetry in the superconductor of interest.

Finally, we addressed some characteristic dynamics of the edge state, skyrmions, mono and mul-
tichiral states in a mesoscopicp -wave superconductor. When an external current is applied to the
sample, we reported novel features in the voltage versus current characteristics, which show a hys-
teretic behavior in the superconducting phase when domain walls are formed due to confinement.
This behavior persisted even when a weak out-of-plane magnetic field was applied, providing a use-
ful new hallmark for indirect confirmation of the presence ofdomain walls in the superconducting
state and thereby offering a proof of chiralp -wave superconductivity in the material of interest.
Furthermore, the resistive state shows much richer behavior compared to conventionals-wave su-
perconductors. For example, depending on the strength of the external current, we found that the
half-quantum vortices can move along the direction of the applied current, contrary to standard
kinematic vortices which always move perpendicularly to the current flow. We also observe in the
resistive regime that under the applied current skyrmions either nucleate the sample directly from the
edge state or arise from the recombination of two full vortices. These findings combinatorially in-
crease the possibilities for different resistive states inmesoscopic superconductors, worthy of further
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exploration.
In conclusion, this thesis shows a comprehensive analysis of novel vortical and skyrmionic states

in mesoscopicp-wave superconductors, with emphasis on their experimentally verifiable properties,
magnetic and electronic, as well as their behavior under applied current. The shown new features
are potentially useful in technology, either for detectionand manipulation of Majorana states, or by
creation of more versatile nanoengineered circuits and devices. More importantly, we hope that this
thesis presents the opening chapter in the further investigation of novel states in superconducting
systems with a multicomponent order parameter, wherep-wave case is only a particular example.

8.2 Outlook

In chapters4 - 7, I investigated the novel superconducting configurations that appear in mesoscopic
chiral p-wave superconductors. I revealed not only monochiral and multichiral states in absence of
an out-of-plane applied field, but also skyrmions, conventional vortices and edge states in a non-zero
external magnetic field. These novel states, characterizedowing to their magnetic, electronic and dy-
namic properties, emerged as the signature of superconductivity of the p-wave type and breaking the
TRS. However, superconductivity breaking the TRS can also manifest in other pairing symmetries,
as for examples+id ands+is. These symmetries are worthy of investigation since theoretical and
experimental works have suggested that in the iron-based superconductor Ba1−xKxFe2As2, between
the moderate (x ≈ 0.4) and maximum (x = 1) doping, thes+id ands+is pairing symmetries are
the leading candidates [112,113]. Therefore, as a future continuation of my work it will be interest-
ing to investigate these pairing symmetries phenomenologically and microscopically in mesoscopic
samples, in order to reveal magnetic, electronic and dynamic properties of their superconducting
configurations.

In chapters5 and 7, I reported edge states containing half-quantum vortices (HQVs) analogous
to those of spin-triplet superconductors where the direction of the~d vector is allowed to rotate, unlike
chiralp-wave superconductivity where~d remains fixed along thêz axis. HQVs have been predicted
to be more favorable than conventional vortices when an in-plane field is applied [133, 188, 189].
However, the theoretical approach for the study of these HQVs is not chiral, and I plan to upgrade
the methods to address the emergent physics.

In chapter 7, I showed some characteristic dynamics of the edge state, skyrmions, mono and
multichiral states in a nanobridge of a mesoscopicp -wave superconductor linking two normal leads.
I revealed novel features in the voltage versus current characteristics when an external current was
applied. The extension to a doubly connected superconductor, although not finished and included in
this thesis, is already developed. The importance of this lies in our collaboration with experimental
teams in Leiden and Penn State University, working on measurements of the nontrivial oscillation of
the superconducting transition temperature with the applied magnetic flux (the Little-Parks effect),
as well as the magnetoresistance of the ring-like SRO samples. Therefore, the study of the mag-
netoresistance in a doubly connected mesoscopic chiralp-wave superconductor is the immediate
extension of this work.
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Samenvatting

9.1 Samenvatting

Strontium ruthenaat (SRO) is een onconventionele supergeleider waarin de Cooper paren spin-
triplets vormen en de tijdsomkeersymmetrie (TRS) breken. Bewijs suggereert dat de symmetrie van
de bandgap van het chiralep-golf type is. Het is bewezen dat dit type van gap een archetypisch voor-
beeld is van een topologische supergeleider die de TRS breekt. Er wordt verwacht dat vortices in een
chiralep-golf supergeleider modes met energie nul bevatten (het gecondenseerd materie equivalent
van Majorana fermionen), waarvan voorspeld wordt dat ze eensleutelelement zijn in toekomstige
kwantum computationele berekeningen. Daarnaast lijkt de interesse in SRO, voor de ontwikkeling
van toekomstige technologische applicaties, omwille van zijn topologische eigenschappen gerecht-
vaardigd. De materialisatie van een kwantumcomputer, gebaseerd op de topologische supergeleid-
ing van SRO, moet echter nog steeds bewezen worden, aangezien het spontane magnetisch veld, dat
voorspeld werd te moeten bestaan in deze supergeleider omwille van de breking van de TRS, echter
afwezig blijft.

In deze thesis bestuderen we de chiralep-golf supergeleiding om de nieuwe supergeleidende con-
figuraties die zich voordoen in mesoscopische samples, waaropsluiting belangrijk is, te onthullen.
De methode die in deze thesis toegepast wordt, omvat de fenomenologische Ginzburg-Landau the-
orie en het microscopische Bogliubov-de Gennes formalisme. De vergelijkingen worden daarbij op
een zelf-consistente manier opgelost. We bespreken de nieuwe magnetische, elektronische en elek-
trische eigenschappen van de toestanden, om de identificatie van de chiralep-golf supergeleiding
in een kandidaat materiaal mogelijk te maken. Deze eigenschappen, zoals het magnetisch profiel,
de toestandsdichtheid, en de spanning-stroom eigenschappen, kunnen vergeleken worden met resul-
taten van Hall probe microscopie, scanning tunneling microscopie, en weerstandsmetingen.

Met deze doelstellingen in het achterhoofd, bestudeerden we eerst de chiralep-golf supergelei-
ding in rechthoekige mesoscopische samples, in afwezigheid van een magnetisch veld, om zo de
mono- en multi-chirale toestanden te stabiliseren. We rapporteren het grondtoestand fasediagram van
rechthoekige mesoscopische samples met groottes gaande van 3.5ξ tot 23ξ, waarbijξ de supergelei-
dende coherentie lengte is. We classificeerden de toestanden volgens het aantal domeingrenzen die
de regio’s met verschillende chiraliteit van elkaar scheiden. De monochirale toestand heeft geen
domeingrens, maar bevat spontante stromen die langs de randvloeien. We hebben ook ontdekt dat
de multichirale fasen stabiel gehouden worden dankzij de sterke opsluiting, maar dat deze opsluit-
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ing het typische dipool magnetisch veld profiel van de domeingrenzen kan overschaduwen. Toch
kunnen afbeeldingen van het ruimtelijk profiel van het demagnetiserend veld van de multichirale
toestanden dienen als een duidelijk bewijs van de tijdsomkeersymmetrie breking in topologische
supergeleiders. Uiteindelijk tonen we dat onze conclusie en resultaten robuust zijn als functie van
de fenomenologische parametersτ enκ, die de mogelijke variaties van fermiologie en magnetische
eigenschappen van een bepaald materiaal beschrijven.

Na het beschrijven van de multichirale toestanden, als een volledig nieuwe configuratie in vergeli-
jking met de beschikbare studies van mesoscopisches-golf supergeleiders, maakten we een gede-
tailleerde studie van andere mogelijke toestanden die ontstaan uit mesoscopische chiralep-golf su-
pergeleiders, als functie van een loodrecht aangelegd magnetisch veld en de anisotropische param-
eters van het materiaal. Dankzij oneven pariteit en een breking van de tijdsomkeersymmetrie zijn
de fundamentele oplossingen van de TDGL vergelijkingen fractionele vortices, i.e. oplossingen
waar de fase omwinding2π teruggevonden wordt in één van de componenten van de ordeparame-
ter, maar niet in de andere. Fractionele vortices in verschillende componenten kunnen combineren
omcored/full vortex toestanden te vormen, net zoals kernloze/skyrmion toestanden, duidelijk geob-
serveerd in het spatiale profiel van het faseverschil en de magnetische reactie. Skyrmionen komen
voor wanneer een gelijke hoeveelheid van fractionele vortices in elke component combineren om
gesloten domeingrens te vormen die de binnenste en buitenste regio’s met verschillende chiraliteit
van elkaar gaat scheidt. Langs de andere kant verkregen we ook half-kwantum vortices, analoog
aan de spin-triplet supergeleiders, ondanks het feit dat devectord sterk vastgepind is langŝz in de
chirale voorstellingd = (kx ± iky)ẑ. De mesoscopische grootte van het sample lijkt een merk-
waardige rol te spelen in de stabiliteit van de skyrmionen, alsook in de hier gerapporteerde nieuwe
overgangen (bv. vorming van skyrmionen van randtoestanden, of overgangen van skyrmion tot een
volledige vortex)

Eens we de nieuwe toestanden en configuraties hebben geı̈dentificeerd, bestudeerden we de
topologische en elektronische eigenschappen van karakteristieke vortex en skyrmion toestanden in
chiralep-golf supergeleiders. De distributie van de twee-component ordeparameter, de superstroom,
quasideeltje excitatie spectra en LDOS worden voor elk van de typische toestanden voorgesteld. Er
wordt extra aandacht besteed aan het skyrmion, dat een gesloten domeingrens heeft waar de coop-
erpaar dichtheid onderdrukt wordt, maar waar de kern niet volledig ontwikkeld is, in tegenstelling
tot conventionele vortices. Bovendien werd er ontdekt dat het skyrmion niet enkel door angulair
moment gekarakteriseerd kan worden, maar ook door zijn topologische lading, en de gebonden toe-
standen die vast zitten aan de chirale domeingrens. Deze gebonden toestanden leiden totzero-bias
LDOS pieken aan de domein grens, en elektron-gat asymmetriein de LDOS, dat verschillend is van
de elektron-gat symmetrische LDOS van gebruikelijke multi-kwanta vortex toestanden. We tonen
ook de mogelijkheid om een topologisch defect te verkrijgenmet een vortex binnenin een skyrmion,
met gesuperponeerde kenmerken van beide topologische constituenten. Ten slotte toont de anal-
yse in verschillende magnetische velden en bij verschillende temperaturen aan dat de grootte van
het skyrmion sterk gevarieerd kan worden, waarbij deze toeneemt bij toenemende temperatuur en
bij afnemend aangelegd magnetisch veld. Daar tegenover kunnen skyrmionen ook gemanipuleerd
worden in afwezigheid van een magnetisch veld, dankzij pinning op een normaal-metaal ring van
bepaalde grootte, waarbij een groot veld van nieuwe fenomenen influxonicsgeopend kan worden.
We verwachten dat onze bevindingen een experimentele identificatie van deze nieuwe toestanden
met behulp van scanning tunneling microscopie en spectroscopie in staat kunnen stellen, en dat deze
verder gebruikt kunnen worden om specifieke paringssymmetrie in een relevante supergeleider te
kunnen bewijzen.

Ten slotte bestudeerden we enkele karakteristieke dynamieken van de randtoestanden, skyrmio-
nen, mono- en multichirale toestanden in een mesoscopischep-golf supergeleider. Wanneer een
externe stroom wordt aangelegd op het sample, rapporteerden we nieuwe eigenschappen in de span-
ning versus stroom karakteristieken, die een hysteresischgedrag vertonen in de supergeleidende
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fase, wanneer de domeinsgrens gevormd worden door opsluiting. Dit gedrag bleef behouden wan-
neer een zwak loodrecht magnetisch veld aangelegd werd, zorgend voor een handig nieuw keurmerk
voor indirecte bevestiging van de aanwezigheid van domein grenzen in de supergeleidende toestand
en daarbij bewijs leverend voor chiralep-golf supergeleiding in het beschouwde materiaal. Verder
toont de resistieve toestand een veel rijker gedrag in vergelijking met de conventioneles-golf su-
pergeleiders. Zo vonden we bijvoorbeeld dat, afhankelijk van de kracht van de externe stroom, de
half-kwantum vortices kunnen bewegen langs de richting vande aangelegde stroom, in tegenstelling
tot standaard kinematische vortices die altijd loodrecht bewegen ten opzichte van de richting van de
stroom. We observeerden in het resistieve regime ook dat onder aangelegde stroom skyrmionen het
sample ofwel direct vanuit de randtoestanden kunnen nucle¨eren, ofwel ontstaan vanuit de recombi-
natie van tweefull vortices. Deze bevindingen zullen de mogelijkheden in het vormen vanresestieve
toestanden in mesoscopische supergeleiders combinatorisch doen toenemen, en zijn daarbij verder
onderzoek waardig.

In conclusie, deze thesis toont een uitgebreide analyse vannieuwe vortex en skyrmion toestanden
in mesoscopischep-golf supergeleiders, waarbij de nadruk gelegd wordt op hunexperimenteel te
verifiëren eigenschappen, magnetisch en elektronisch, alsook hun gedrag onder aangelegde stroom.
De getoonde nieuwe kenmerken zijn potentieel van belang in technologie, ofwel voor de detectie
en manipulatie van Majorana toestanden, ofwel bij de creatie van meer veelzijdige nano-ontworpen
circuits en apparaten. Verder hopen we dat deze thesis een openingshoofdstuk is in toekomstig
onderzoek naar nieuwe toestanden in supergeleidende systemen met een multicomponent ordepa-
rameter, waarbij hetp-golf geval enkel een specifiek voorbeeld is.

9.2 Toekomstperspectieven

In hoofdstuk 4 - 7, onderzoek ik de nieuwe supergeleidende configuraties die zich voordoen in
mesoscopische chiralep-golf supergeleiders. Ik onthul niet enkel monochirale en multichirale toe-
standen in afwezigheid van een loodrecht aangelegd veld, maar ook skyrmionen, conventionele
vortices en randtoestanden in externe magnetische velden verschillend van nul. Deze nieuwe toe-
standen, gekarakteriseerd door magnetische, elektronische en dynamische eigenschappen, komen
naar voor als de signatuur van supergeleiding van hetp-golf type en de breking van de TRS. Echter,
supergeleiding die de TRS breekt kan zich ook manifesteren in andere paringssymmetrieën, zoals bi-
jvoorbeelds+id ands+is. Deze symmetrieën zijn verder onderzoek waardig, aangezien theoretisch
en experimenteel werk suggereert dat in ijzer-gebaseerde supergeleider Ba1−xKxFe2As2, tussen de
gematigde (x ≈ 0.4) en de maximum (x = 1) doping, des+id ands+is pairingssymmetrieën de
leidende kanidaten zijn [112, 113]. Als een toekomstige voortzetting van mijn werk zou het inter-
essant zijn om deze paring symmetrieën verder fenomenologisch en microscopisch te bestuderen in
microscopische samples, om zo de magnetische, elektronische, en dynamische eigenschappen van
hun supergeleidende configuraties te kunnen onthullen.

In hoofdstukken 5 en 7 rapporteerde ik over randtoestanden die half-kwantumvortices (HQVs)
bevatten, analoog aan deze van spin-triplet supergeleiders waar de richting van ded vector kan
roteren, tegengesteld aan chiralep-golf supergeleiding waard gefixeerd blijft langs dêz as. Er wordt
voorspeld dat HQVs gunstiger zijn dan conventionele vortices wanneer een parallel veld aangelegd
wordt [133, 188, 189]. De theoretische aanpak voor de studievan deze HQVs is echter niet chiraal
en ik ben van plan om deze methodes te verbeteren om de nieuwe fysica te kunnen behandelen

In hoofdstuk 7 toon ik karakteristieke dynamica van de randtoestanden, skyrmionen, mono-
en multichirale toestanden in een nanobrug van een mesoscopisch p-golf supergeleider die twee
metalen met elkaar verbindt. Ik onthulde nieuwe kenmerken in de spanning versus stroom eigen-
schappen wanneer een extern veld aangelegd werd. De uitbreiding naar een dubbele aaneengesloten
supergeleider, hoewel nog niet afgewerkt en ingesloten in deze thesis, is reeds ontwikkeld. Het
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belang hiervan ligt in onze samenwerking met experimenteleteams in Leiden en Penn State Uni-
versity, waar zowel gewerkt wordt aan metingen van niet-triviale oscillaties van de supergeleidende
transitie-temperatuur met aangelegde magnetische flux (het Little-Parks effect), alsook aan magne-
toresistentie van ringachtige SRO samples. Daarom is de studie van de magnetoresistentie in een
dubbel verbonden mesoscopische chiralep-golf supergeleider een directe extensie van dit werk.
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[148] R. Geurts, M. V. Milošević, and F. M. Peeters, “Vortex matter in mesoscopic two-gap su-
perconducting disks: Influence of josephson and magnetic coupling,” Phys. Rev. B, vol. 81,
p. 214514, Jun 2010.
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