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CHAPTER 1

Introduction

Recent decade has experienced an increasing interest in two-dimensional (2D) and quasi-
2D structures. The starting point for such substantial scientific movement was the experi-
mental discovery of graphene in 2004 [1] which raised the hopes for application of these
structures in technology. Among the wide list of these structures, graphene, transition
metal dichalcogenides (TMDs), and monolayer black phosphorus (MBP) have been in the
focus of these studies due to their excellent electronic, mechanical, optical, thermoelectric
and optoelectronic properties[2–9].
Although graphene is the most important candidate because of its high carrier mobility and
excellent mechanical properties [3, 4], the lack of an energy gap [3] in its band structure
limits its performance. These limitations were the motivation for researches on other lay-
ered structures with semiconducting characters which have the potential of being used in
electronic devices. In his regard, the next generation that has been in the focus of attention
is layered TMDs [10].These structures are layered in the form of single MX2 sheets in
which M is a transition metal such as V, W, Mo or Pt and X represents a chalcogen like Se,
S or Te [10]. These single sheets are not single atomic layers; but they are rather formed
in X-M-X configuration in a way that the metal is compacted between two chalcogen lay-
ers. That is why these structures are known as quasi-2D [10]. In this family, molybdenum
disulfide (MoS2) has been in the focus of studies due to its robustness [11]. As a TMD,
MoS2 has a direct band gap of ∼1.8eV [12] and a relatively high on/off ratio (∼108) [13]
which is one of the most important parameters in the transistor industry. Therefore, the
existence of a strong spin-orbit interaction[11] in addition to the desired electronic and
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mechanical properties of this structure have made this material one of the most interesting
candidates of 2D materials for fundamental and applied studies.
However, one of the important drawbacks of MoS2 in comparison with graphene is its
low carrier mobility [9]. The experimental measured charge carrier mobilities of a sus-
pended sheet of monolayer graphene and a sheet of monolayer graphene on a substrate
are ∼ 200,000 cm2V−1s−1, and ∼ 2,000-5,000 cm2V−1s−1, respectively [9]; whereas the
maximum theoretical value for electrons and holes in MoS2 was estimated 320 cm2V−1s−1

and 270 cm2V−1s−1, respectively [9]. Therefore, studies continued to find monolayer
structures with semiconducting character which possess desired mechanical and electronic
properties and also benefit from large carriers mobility in comparison with MoS2. These
researches resulted in the rediscovery of the previously known layered structure of bulk
black phosphorus (BBP) [14].

1.1 Rediscovery of black phosphorus
The explosion of research interest in this structure can be regarded as rediscovery of black
phosphorus. In what follows, the crystal structure of monolayer and few-layer black phos-
phorus (BP) will be introduced and some methods of preparation will be briefly reviewed.

1.1.1 Allotropes of phosphorus

Phosphorus (P) is a multiple valence non-metal element in the nitrogen group. This
element has numerous allotropes with completely different properties [10]. The first
records about the description of a phosphorous compound dates back to 3000 years ago in
China [9]. White, red and black phosphors are among the most famous allotropes of P [9].
White phosphorus is one of the most important stable allotropes of phosphorus which was
discovered in 1669 [9]. It is available in molecular form with tetrahedron P4 structure. In
1914, Percy Bridgman observed a phase transition during high-pressure investigation of
white phosphorus and called the new phase black phosphorus [10]. Although the discov-
ery of BP occurred centuries after the discovery of elemental phosphorous, it is the most
stable allotrope of P [10].

1.1.2 Crystal structure of BP

One of the main properties of 2D materials is the formation of strong covalent bonds be-
tween atoms of each layer, whereas the inter-layer bonds are formed via van der Waals
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(vdW) interaction. In other words, the weak vdW force between layers results in a small
amount of energy for separation of the layers. BP is a 2D layered material similar to
graphite with the difference that the covalent bonds in a graphite layer have sp2 hybridiza-
tion while the hybridization of covalent bonds in a layer of BP is sp3 [9]. This difference
in the hybridization is the reason for the hexagonal structure of graphite while the most
stable structure of BP is base-centered orthorhombic [9]. Figure 1.1 shows the crystal
structure of BBP and its corresponding first Brillouin zone (BZ). Each unit cell contains
eight P atoms with four atoms per layer as indicated by 1-4 and 5-8 in Fig. 1.1 (b). As
shown in Figs. 1.1 (a) and (c), the structure is composed of puckered layers stacked along
the z axis. In other words, the atoms of each layer are not located in the same plane; but
each layer includes an upper and a lower chain of P atoms. We also have shown the lattice
constants of this structure whose experimental values are: a = 4.374 Å, b = 3.313 Å, and
c = 10.473 Å [15]. Due to the existence of two different bond angles 96.34◦ and 103.09◦,
each atom has two neighbors located at distance 2.224 Å and a third one that rests at the
distance of 2.244 Å [9].
Note that BBP layers can exist in three types AA, AB and AC stacking [16]. However,
since the AB stacking is the most stable form in the experimental synthesis, throughout
this thesis, by BP, we refer to the AB stacking.
Based on the nomenclature standards, the appropriate name for MBP is phosphane [17].
However, because it has often called phosphorene in the literature, we will also use this
more well-known name throughout this thesis.
In what follows, the experimental methods for synthesis of BBP and few-layer phospho-
rene (FLP) will be discussed.

1.1.3 Preparation of phosphorene

By applying the pressure of 1.3 Pa to a sample of white phosphorous at 200◦C in a short
time, Bridgman observed a phase transition which was accompanied by a change in the
color of the sample and a reduction in the volume [10]. After his discovery, more attempts
were made by researchers to improve the synthesizing of BBP with the same method.
From late 1960s, increasing interest in superconductivity resulted in focusing on the rich
phase-diagram of phosphorous which then led to the development of experimental meth-
ods for BP synthesis [18]. In 2007, it was revealed that BP can be produced by use of red
phosphorous at lower pressures and 500◦C through adding small amounts of gold, tin and
tin (IV) iodide [19]. Although this method results in good crystallinity, but the process is
time consuming and about 10 to 70 hours are needed for formation of the new phase [9]. In
this regard, development of a safe and efficient method capable of large-scale production
with less time is one of the main challenges for future applications of phosphorene [9].
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Figure 1.1: (a) The crystal structure of BBP. The lattice constants and the eight P atoms of a unit
cell are shown. (b) and (c) show top and side views of BBP lattice structure. (d) Shown is the first
BZ of BBP and some of important points in the reciprocal lattice.

Since BBP is classified as a vdW material, the top-down method which has been used
for graphene synthesis from graphite can be also used for preparation of phosphorene
from BBP. Phosphorene layers isolation was first reported by two research groups in
2014 [20, 21]. Currently, two main methods of Scotch-tape cleavage and liquid exfoli-
ation are used for phosphorene preparation [9, 18, 20–22]. Many other top-down methods
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Figure 1.2: Schematic representation of mechanical exfoliation.

are also developing for this purpose [9]. In the following, we will briefly introduce the
mentioned two main methods of Phosphorene production.

Scotch-tape cleavage

The schematic representation of phosphorene synthesis by Scotch-tape cleavage method
is shown in Fig. 1.2. In this method, first, phosphorene layers are achieved by using tape
to repeatedly peel off phosphorene sheets from BBP crystals. After multiple repetitions of
this process, few-layers of BP are transfered on a SiO2/Si substrate [20]. Then, the sam-
ple will be cleaned by acetone, isopropyl alcohol and methanol to remove any remaining
substances. Finally, the sample will be heated up to 180 to remove the solvents [20]. This
method can lead to the formation of good quality monolayer and FLP [9, 20]. However,
the most important disadvantage of this method is the failure in large-scale production [9].
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Figure 1.3: Schematic representation of liquid exfoliation methods.

Liquid exfoliation

As schematically illustrated in Fig. 1.3, in the liquid exfoliation method, one way to
achieve FLP is as follows [22]: first, BBP will be immersed into the saturated NaOH/NMP
(sodium hydroxide and N-Methyl-2-pyrrolidone) solution. After four hours of ultrasoni-
cation, it will be centrifuged in several steps. First, the centrifugation will be carried out
for ten minutes to separate any non-exfoliated BP; and then the same procedure will be
repeated at higher speeds to separate thicker layers (5 to 10 layers). In the next step, the
remaining floating substance will be centrifuged at higher speed for the exclusion of thin-
ner layers (1-7 layers). Finally, the samples will be cleaned by deionized water and will
be put on SiO2 substrate [22].
This method benefits from the ability to produce large-scale exfoliation of few-layer BP
and it is also more controllable [22].

Experimental challenges

One of the main challenges in phosphorene synthesis is its stability in ambient condition
after preparation [23, 24]. Due to the high reactivity of phosphorene surface, the existence
of water vapor and oxygen in ambient condition will result in fast degradation of phos-
phorene. This leads to the formation of a mixture of oxide and phosphoric acid [9]. This
can drastically affect the properties of this structure and is one of the major challenges
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for future applications of phosphorene. To overcome this problem, numerous researches
have been conducted [23, 24] which are mostly based on sample encapsulation in a neutral
material. For instance, few-layers of phosphorene can be passivated using encapsulation
with multi-layer hexagonal boron nitride (BN) or aluminum oxide (Al2O3) [23, 24]. Al-
though these methods were successful to some extent, but further studies are needed for
establishment of a completely reliable method which can protect different properties of
phosphorene.

1.2 Physical properties of phosphorene
The unique puckered structure of phosphorene crystal has led to anisotropy in many of its
properties which have differentiated it from other 2D structures [9, 10]. In this section we
will briefly review some of these special properties.

1.2.1 Electronic band structure of phosphorene
The electronic structure of BBP has been investigated from early 1950s[26]. According
to these studies, BP has a direct and narrow band gap ranging from 0.3-0.35 eV [26–
28]. Such narrow band gaps have limited its electronic applications. Therefore, till 2014,
studies on this material were not very extensive. But immediately after FLP synthesis in

Figure 1.4: Scanning tunneling spectrum in log scale measured at two different locations on the
surface of phosphorene as marked by red and blue stars on the figure inset [25]. The measurements
gave a band gap of 2.05 eV for MLP. The picture has been taken from [25].
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2014 [20, 21], as a new member in the family of 2D materials, extensive and more precise
studies have been conducted on this structure. Within a short time, the electronic band
properties of monolayer, few-layer and BBP were reported by several research groups
both experimentally and theoretically [20, 25, 29–36].

Experimental band gap of phosphorene

Experimental measurements[25] have revealed that unlike its bulk counterpart, monolayer
phosphorene has a relatively large band gap. Figure 1.4 represents the results of scanning
tunneling spectroscopy (STS) for determination of the band gap of monolayer phospho-
rene (MLP). Based on this method, a typical tunneling spectrum which provides dI/dV as
a function of biased voltage gives a good estimation of the band gap of MLP. These typical
U-shaped spectra were measured in log scale at two different locations on a clean surface
of phosphorene as marked by red and blue stars on the figure inset. The measurements
revealed a band gap of ∼2.05 eV for this structure [25].

Theoretical results

Theoretical calculations have shown that density functional theory (DFT) within the lo-
cal density approximation (LDA) and semi-local approximations are unable to correctly
describe the semiconducting behavior of BBP [29, 31–33]. In other words, LDA and gen-
eralized gradient approximations (GGA) generally underestimate band gaps or even yield
zero for this structure [29, 31–33].
To resolve this problem, the application of hybrid functionals which consider a non-local
contribution for the exact exchange term has been relatively successful [30]. Three main
classes of these approximations are PBE (Perdew-Burker-Ernzerhof), B3LYP (Becke-
three parameter-Lee-Yang-Par) and HSE06 (Heyd-Scuseria-Ernzerhof) functionals. How-
ever, the results of these methods are strongly dependent on the mentioned factors and
empirical parameters which determine the screening range and the contribution of exact
exchange in the system [30]. On the other hand, having a correct estimation of vdW
interactions between layers is crucial in DFT calculations [16]. In this regard, different
considerations in the mentioned factors have resulted in a wide range of different results
in band gap calculations for this structure.
Among them, the GW approximation results in more compatible and reliable outcomes
for electronic properties of this system [29, 33, 35]. This approximation is based on the
calculation of the electron self-energy in a many-body system which could be expressed
as an expansion of the self-energy in terms of the one-particle Green’s function G and the
screened Coulomb interactionW . In this approximation, different terms are representative
of approximation order. In Table 1.1, the calculated energy band gaps (in eV) at different
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Table 1.1: Energy band gaps in unit of eV for monolayer (n = 1), few-layer (n = 2, 3), and BBP
(n = ∞) at different levels of DFT and the TB model. The available experimental data are also
listed. The table has been taken from [30].

GW0@GGA TB Model GW0@HSE G0W0@GGA HSE GGA Expt.
n = 1 1.85 1.84 2.41 1.60 1.00–1.91 0.80–0.91 2.05
n = 2 1.16 1.15 1.66 1.01 1.23– 1.01 0.45–0.60 —
n = 3 0.84 0.85 1.20 0.68 0.73–0.98 0.20–0.40 —
n =∞ 0.35 0.40 0.58 0.10 0.18–0.39 0.00–0.15 0.31–0.35

levels of DFT, tight-binding (TB) model, and experimental measurements for MLP, few-
layer and BBP are provided based on the number of phosphorene layers n [30]. Moreover,
as an example, the electronic band structures of monolayer, 2-layer, 3-layer and BBP cal-
culated with the PBEsol (PBE for solid state and surface systems) functional are shown in
Figs. 1.5 [9]. These electronic band structures have interesting characteristics which will
be pointed out in the following. As Figs. 1.5 (a)-(c) suggest, the band gap of monolayer
and few-layer of phosphorene is located at the Γ point of the BZ. The electronic bands
in the vicinity of the Fermi level and along the Γ-Y direction are quasi-flat; while along
the Γ-X direction, they are almost linear. These features are more clear for the valence
bands (VB) and as we will discuss later, this will result in anisotropy in many of electronic
properties of this structure.
Another appealing property of this structure is that by increasing the number of layers,
the above mentioned properties of bands remain unchanged and only a modification in the
energy gap will be seen due to quantum confinement and vdW forces. Also, the direct
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band gap of its monolayer remains direct for any number of layers and can be considered
as one of the advantages of this structure in comparison with MoS2.
According to theoretical and experimental data, the direct band gap ranges from 0.3 eV
for bulk to 2 eV for MLP [30]. Figure 1.6 shows the energy gap of few-layer BP as a
function of the number of layers using the GW0 approximation and TB model [30]. As
can be seen, the addition of one layer will result in a rapid decrease of the energy band
gap which corresponds to a redshift of the photoluminescence spectra peaks [9]. Using the
GW0 approximation and the TB model [30], the band gap dependence on the number of
layers can be fitted by the expression E(n)

gap = Aexp(−nB)/nC + D where A = 1.71 eV,
B = 0.17, C = 0.73, andD = 0.40 eV. Therefore, when n→∞ , the band gap will reach
E(∞)
gap = 0.4 eV which is very close to its experimentally value [30]. In fact, the variation

of few-layer BP band gap has the fastest variation rate among the layered materials which
have been studied so far which makes this structure very interesting [16].
To explain this feature, it must be mentioned that the interlayer coupling has a crucial
role [37]. Investigation of differential charge density in few-layers of phosphorene (see
Fig. 1.7) reveals that in the interlayer region a covalent-like characteristic is dominant
which can be found using the charge reduction (shown by cold colors) near P atoms; while
in the space between the two neighbor atoms of two adjacent layers, a charge accumu-
lation (shown by warm colors) can be observed [16, 37]. A simpler explanation can be
presented through molecular orbital analysis [16]. In this structure, each atom has four
sp3 hybridized orbitals, three of which form interalayer covalent bonds and the fourth or-
bital with one electron pair is almost perpendicular to the phosphorene plane [16]. This



1.2 Physical properties of phosphorene 11

Figure 1.7: Differential charge density in the interlayer region of 6-layer phosphorene. Electronic
charge density of the middle layer of 6-layer phosphorene obtained from the difference of three
upper and lower layers from the total electron density. Warm colors represent charge accumulation
while cold ones reflect decrease of charge around the atoms. Taken from [37].

results in a strong vdW absorption force between phosphorene layers which brings two
phosphorene layers close enough so that the hybridized electron pairs of two adjacent P
atoms are forced to hybridize, and form bonding and anti-bonding states [16]. These bond-
ing states will result in a sort of covalent-like bond which leads to a fast band gap variation
rate [16].

1.2.2 Optical properties
The anisotropy of phosphorene structure results in unique properties in its optical behavior
which will be briefly reviewed in the following.
Phosphorene exhibits a drastic anisotropy in its optical absorption [16, 32]. In other words,
one can see a dichroism in the optical absorption spectra [32], which means that this struc-
ture absorbs polarized light corresponding to the band gap along armchair direction while
it is transparent along the zigzag direction [32]. The described anisotropy in the optical
absorption is due to the underlying symmetries in the wave functions of valence and con-
ductance bands which determine the type of dipole-allowed transitions [16]. Figure 1.8 (a)
shows the schematic band structure of phosphorene near the Γ point which illustrates the
dipole-allowed transitions obtained from symmetry considerations [38]. In this figure, Pi
represents the ith component of momentum that enters in transitions where red and pink
double arrows show dominant and non-negligible transitions, respectively [38], and the
gray region is the forbidden band gap. As can be seen, along the Γ−X direction, the dom-
inant dipole transition has an energy which corresponds to the system band gap; while
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Figure 1.8: (a) Schematic band structure of phosphorene near the Γ point which illustrates dipole-
allowed transitions using symmetry considerations (adapted from [38]). (b) Schematic representa-
tion of a proposed experimental geometry to use optical absorption spectroscopy to determine the
crystallographic orientations in FLP. (c) and (d) Optical absorption spectra of few-layer and BBP
due to perpendicular incident light which is linearly polarized along x and y directions, respectively.
Figures (b), (c), and (d) have been taken from [32].

along the Γ−Y direction, the dominant allowed transition energy is larger than the energy
gap and results in transparency toward near-gap energies [38]. Since the optical absorption
rate is proportional to the square of the matrix components of dipole transitions between
states |i > and |f > [9], this feature manifest itself in optical absorption as well.
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The described anisotropy in optical properties of phosphorene can be used to determine its
crystallographic axes [32]. Figure 1.8 (b) is a representation of a proposed experimental
geometry to use optical absorption spectroscopy to determine the crystallographic orien-
tations in FLP [32]. It is expected that theoretically predicted optical absorption spectra
shown in Figs. 1.8 (c) and (d) will be in good agreement with experimental results [32].
These figures show the optical absorption of few-layer and BBP due to the perpendicular
incident of light which is linearly polarized along x and y directions, respectively. As seen
along the x axis, the band edge (linear fitting) of the first absorption peak is found at the
system energy gap which results in the fast reduction with the thickness of the sample [32].
But, along the y axis, the first band edge can be seen at 3.14 eV which is slightly shifted
with increasing number of layers and finally, it reaches 2.76 eV for BBP.

1.2.3 Carrier mobility

It is evident that electronic properties of any structure is highly dependent on its carrier
mobilities. Therefore, having a correct estimation of carrier mobilities is inevitable for a
better understanding of these properties. In addition to the effective masses of electron
and hole, there are two other more important factors that determine the carrier mobilities
of FLP [32]. The first factor is deformation potential E1 and the second one is elastic
modulus C2D along the propagation direction of the longitudinal acoustic wave [32].
Under experimental conditions, there are a variety of carrier scattering mechanisms such as
phonon, impurity, and interface scatterings which can limit carrier mobilities [16]. Phonon
scattering is intrinsic in ambient temperature and always exists. But the other factors can
be controlled and their negative impacts can be minimized according to sample synthesis
condition.
In a study [32], the phonon-limited scattering model was considered at T=300 K and
charge carrier mobilities were calculated for monolayer and FLP. Table 1.2 presents the
theoretically calculated amounts of these quantities for FLP. The predicted values for car-
rier mobilities are generally large and are in the range of several hundreds to several thou-
sands of cm2V−1s−1.
Regarding these data, it is clear that except for MLP, the hole mobilities are larger than the
electron mobilities. On the other hand, due to the directional anisotropy, the system shows
anisotropy in these values along x (armchair) and y (zigzag) directions; in a way that for
electrons (holes) the values along x is four times (twice) the values along y [32]. However,
the behavior for MLP is different to some extent. For electrons, the mobility along the x
direction is about 14 times the value along y, which is similar to that of FLP. While, for
holes, the behavior is completely different and their mobility along the x direction is about
16-38 times smaller than the values along y, that is 640− 700cm2V−1s−1, compared with
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Table 1.2: Theoretically calculated values of electron and hole masses, deformation potentials,
Yang modulus, and carrier mobilities for monolayer and FLP along the x and y directions at 300 K.
n denotes the number of layers. The table has been taken from [32].

Carrier type n mx my E1x E1y cx2D cy2D µx2D µy2D
Γ− X Γ− Y (eV) (Jm−2) (103cm2V−1s−1)

1 0.17 1.12 2.72 7.11 28.94 101.60 1.10− 1.14 ∼ 0.08
2 0.18 1.13 5.02 7.35 57.48 194.62 ∼ 0.60 0.140.16

Electron 3 0.16 1.15 5.85 7.63 85.86 287.20 0.76− 0.80 0.20− 0.22
4 0.16 1.16 5.92 7.58 114.66 379.58 0.96− 1.08 0.26− 0.30
5 0.15 1.18 5.79 7.35 146.58 479.82 1.36− 1.58 0.36− 0.40

1 0.15 6.35 2.50 0.15 28.94 101.60 0.64− 0.70 10− 26
2 0.15 1.81 2.45 1.63 57.48 194.62 2.6− 2.8 1.3− 2.2

Hole 3 0.15 1.12 2.49 2.24 85.86 287.20 4.4− 5.2 2.2− 3.2
4 0.14 0.97 3.16 2.79 114.66 379.58 4.4− 5.2 2.6− 3.2
5 0.14 0.89 3.40 2.97 146.58 479.82 4.8− 6.4 3.0− 4.6

10, 000− 26, 000cm2V−1s−1 [32].
Such a larger mobility along the y direction occurs despite the rather high mass of holes
(6.35m0) along y [32]. This is due to deformation potential for MLP along y axis. As
seen in Table 1.2, the value of deformation potential for holes in MLP along y axis is
∼ E1y = 0.15 eV, which is very small in comparison with its typical values for FLP and
other structures such as graphene, MoS2, and BN [32].

1.2.4 Excitons in phosphorene

Excitonic effects occur due to the attractive Coulomb interaction between electrons and
holes. A larger exciton binding energy is expected for a system with stronger Coulomb
interaction. It has been shown that in 2D materials, reduced screening of the Coulomb
attraction and weak dielectric screening result in a drastic enhancement in the exciton
binding energy [39]. In phosphorene, photoluminescence excitation spectroscopy revealed
a quasi-particle bandgap of 2.2 eV, which leads to an estimation of ∼900 meV for exciton
binding energy [40]. This measurement is consistent with theoretical results based on
first principle calculations [40]. The experimental observation of highly anisotropic and
bright excitons with large binding energy not only opens avenues for future explorations of
many-electron physics in this unusual 2D material, but also suggests its promising future
applications in optoelectronic devices [40].
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1.2.5 Mechanical properties of MLP

One of the captivating features of the 2D family of materials is their high stretchability
which provides the possibility of strain engineering [41]. Controlled strain engineering
is an interesting pathway to tune the optical and electronic properties of these materials
which give good grounds for the realization of straintronic devices that are engineered
through the introduction of mechanical deformations [41].
Owing to the puckered structure of phosphorene, it demonstrates superior flexibility with
an order of magnitude smaller Young’s modulus in comparison with other 2D materi-
als [42]. Also, unlike graphene and MoS2, the Young’s modulus in phosphorene shows an
anisotropic behavior and depends on the direction [42]. For example, the Young’s modulus
for graphene, MoS2, and BN, are 1.0 TPa, 0.33 TPa, and 0.25 TPa, respectively, compared
to 0.166 TPa (zigzag) and 0.044 TPa (armchair) for phosphorene [42]. As a result, MLP
can sustain strain very well specially in the zigzag direction up to about 30% [42]. This
makes phosphorene promising for possible applications using strain engineering.
Another interesting mechanical behavior of phosphorene is its negative poisson’s ratio
along the perpendicular direction [43]. This means that tensile strain along a specific di-
rection inside the plane will result in the expansion of BP in the z direction. This unusual
property has been reported for the first time in a 2D structure [43].
The role of uniaxial and biaxial strain in manipulating the electronic structure of FLP has
been investigated via DFT [44–46] and TB approaches [47–49]. Applying tensile or com-
pressive strain in different directions results in different modifications of the electronic
bands. One can observe a direct to indirect gap transition, or a prior direct band gap clos-
ing, depending on the type of applied strain [45, 46, 50].

1.3 Topological properties of phosphorene
An important goal that is pursued by condensed matter physicists is the classification of
the states of matters and identifying their phases. Before 1980, most of our understand-
ing in this field rested on Landau’s paradigm that classifies the states of matters by order
parameters and the concept of spontaneously broken symmetry [51]. Subsequently a new
way of classifying the states of matter based on the mathematical notion of topology was
created. In fact, that was the early days that the mathematical concept of topology became
relevant in condensed matter physics. This new class is beyond Landau’s theory, which
classifies the phases of a matter by topological order parameters instead of an ordinary or-
der parameter [52–55]. That progress was seen as a big boost to material science, and it led
to awarding the 2016 Nobel prize in physics to David J. Thouless, F. Duncan M. Haldane,
and J. Michael Kosterlitz for the theoretical discovery of topological phase transitions and
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topological phases of matters.
In a topological phase, the states are topologically protected in the sense that there exists
a certain invariant quantity which does not change easily with smooth deformations of the
physical parameters of the system. Indeed, this manner of classification of materials is one
of the hallmarks in condensed matter physics, as it provides a new way to discovery and
better understanding many phenomena in material science, and actually can smooth the
path toward future applications.
The integer quantum Hall effect (IQHE), discovered in 1980 [52] is the first example of
a topologically non-trivial quantum state of matter which is induced by a perpendicular
magnetic field [56]. In this effect, the topological invariant is the number of filled Landau
levels (LLs) which is independent of material details [56]. Over the past two decades, con-
densed matter theorists realized that the QHE is just one member of a very larger family of
topologically non-trivial quantum states known as topological insulators (TIs) [56]. Some
examples of this family are the quantum spin Hall (QSH) effect which occurs in a 2D ma-
terial [57, 58], (3D) TIs [59], topological crystalline insulators (TCIs) [60], and recently
identified new class of TIs known as higher order topological insulators (HOTIs) [61].
This relatively new field of research is of great importance not only from a practical point
of view, but because of its role in clarifying fundamental properties of matter. Mele, one
of the pioneers in this field says that “although topological insulators may improve tech-
nology, they’re even more important as a tool for probing quantum electronic properties,
and hence elucidating fundamental properties of matter itself” [62].
As stated before, the strong anisotropy in the crystal structure of phosphorene results in
highly anisotropic electrical, thermal, and optical properties. This provides a new play-
ground for investigating topological properties in this structure that may show distinct
characteristics. In what follows, we proceed by giving a brief introduction of the topolog-
ical properties of monolayer and FLP.

1.3.1 Quantum Hall effect in phosphorene

The quest for samples with higher mobility has motivated the researchers to investigate the
QHE as a prototypical 2D phenomenon in monolayer and few-layer of phosphorene [63].
The LLs and the QHE has been studied both theoretically and experimentally in few-layer
BP [63–73]. The scaling of cyclotron gap in magnetic field B depends on the behavior
of band structure [74]. For example, it was shown that in a system with linear-quadratic
spectrum, the dependence of LLs on the magnetic field is neither linear in the conventional
limit nor as (nB)1/2 in the Dirac limit [68, 74]. For such a dispersion, the LL energies scale
as [(n + 1/2)B]3/2 where n is the LL index [68, 74]. The highly anisotropic physics in
many properties of phosphorene are closely related to its band structure which is Dirac-
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like in one direction and Schrödinger like in the other direction [44, 72, 75, 76]. Therefore,
one might expect to observe a behavior as B2/3 in the Landau-level energies. But, there
exist other theories arguing that such behavior is not correct [63, 69–71, 73]. Within the
framework of the effective k · p Hamiltonian and TB model, they have shown that LLs
in phosphorene behave like conventional semiconductor 2D electron gases [69–71, 73]
which results in an the usual QHE. It has been also argued that the emergence of the
mentioned LLs field dependence can be observed in the presence of large strain or electric
field [44, 71]. However, due to the mentioned highly anisotropic electronic structure,
determining the LLs field dependence is still under theoretical debate.
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Figure 1.9: (a)-(d) Experimental dispersions for K-doped BP films taken at 15K near EF along kx.
The density of dopants is shown at the upper right of each panel. Taken from [77].

Figure 1.10: Calculated conduction and valence bands of K-doped 4-layer phosphorene beyond the
critical dopant density Nc. Taken from [78].
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1.3.2 Topological phase transitions in phosphorene

There exist several works pertinent to the observation of different phases in bulk and mul-
tilayer BP by tuning the lowest energy bands [46, 77–85]. For instance, it was shown that
using an in situ surface doping technique one can tune the band gap in few-layer BP [77].
This report demonstrates that potassium atoms as dopant induce a strong electric field due
to the giant Stark effect [77]. As a result, the vertical induced electric field modulates the
band gap of few-layer BP and eventually gives rise to a band-inverted semimetal which
is Dirac-like in armchair and Schrödinger like in zigzag directions [77]. Figures 1.9 (a)-
(d) show the experimental dispersions of K-doped BP films taken at 15K near EF along
kx for some dopant densities [77]. As seen, at the critical density Nc = 0.36 monolayer
(ML), a band inversion occurs, giving rise to a semimetal phase [77]. In addition, first-
principle calculations showed [78] that beyond this critical dopant density, 2D massless

Figure 1.11: Calculated band structures of 4-layer BP for applied electric field of (a) 0 V/Å, (b)
0.3 V/Å, (c) 0.45 V/Å, and (d) 0.6V/Å. (e) The schematic diagram of the mechanism of band
inversion for energy levels Γ1c and Γ8v and the corresponding magnitude of squared wavefunction
of 4-layer BP. Taken from [79].
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Figure 1.12: (a) The inversion energy ∆inv as a function of applied electric field. (b) Calculation
of the Z2 invariant as a function of applied electric field. Taken from [79].

Dirac Fermions appear in all momentum directions as shown in Fig. 1.10.
The sensitivity of the energy gap to the number of layers and external perturbations make
this material a potential candidate for the investigation of various electronic phases. For
example, the possibility of converting FLP from a normal insulator to a topological phase
using external factors such as strain, electric field, and optical pumping has been ex-
plored [46, 79, 82, 85].
Using DFT calculations it was shown that a thin film of phosphorene experiences a phase
transition from the normal insulator (NI) to a TI and then to a topological metal (TM)
by applying a perpendicular electric field [79]. In this system, the mechanism of band
inversion is entirely explained by the applied electric field rather than by spin-orbit cou-
pling (SOC) [79]. Figures 1.11 (a)-(d) show the band structures of 4-layer phosphorene
for applied perpendicular electric field of (a) 0 V/Å, (b) 0.3 V/Å, (c) 0.45 V/Å, and (d)
0.6V/Å [79]. A schematic diagram of the mechanism of band inversion for energy levels
Γ1c and Γ8v and the corresponding magnitude of squared wavefunctions are illustrated in
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Fig. 1.11 (e) [79]. Here, the inversion energy at Γ point is defined as ∆inv = Γ1c−Γ8v [79].
Figure 1.12 (a) shows the inversion energy ∆inv as a function of applied electric field for
2-, 3-, and 4-layer BP. As seen, by increasing the applied electric field, inversion energies
decrease monotonically and at a critical field the energy gaps become zero [79]. Fur-
ther increasing the field makes the inversion energies negative which correspond to the
change in the symmetries of the shown wavefunctions. The negative inversion energies
which monitor the band inversion are signatures for the existence of nontrivial topological
phases. For 4-layer phosphorene, including the SOC induces a band gap of∼5meV and at
the critical field of ∼0.30 V/Å the material converts to a TI [79]. This topological phase
transition has been confirmed using the Z2 formalism [79] as shown in Fig. 1.12 (b).
Further increasing the electric field to 0.6V/Å leads to the downward shift of another valley
of conduction bands as shown in Fig. 1.11 (d) and thus the system becomes metallic [79].
Since the nature of band inversion does not change, the system converts to a topological
metal [79].
In a different DFT study [46] such phase transitions for various stacked bilayer phospho-
rene under in-plane strain has been explored. The study has reported a strain-induced
topological phase transition from a trivial to QSH state in bilayer phosphorene, accompa-
nied by band-inversion that changes the Z2 invariant from 0 to 1, which is highly dependent
on interlayer stacking [46].

1.3.3 Phosphorene as a higher-order TI

Recently a distinctive new family of topological materials has been added to the conven-
tional TIs [61, 86–88]. These materials are called higher-order topological insulators (HO-
TIs) and are an extended notion of the conventional TIs [88]. They are called topologically
higher-order because the conventional bulk-boundary correspondence is no longer appli-
cable for characterizing their topological features [61, 88]. An nth order d-dimensional TI
is topological because unlike those of conventional TIs does not have gapless edge states
at d− 1 boundaries. Instead, it has (d− n)-dimensional boundary states. For example, in
two dimensions, a second-order TI exhibits gapless corner states which is a manifestation
of nontrivial topology in the bulk [61, 88].
In a recently published paper [88] M. Ezawa predicted that MLP is indeed a perturbed
second-order Wannier-type HOTI. It has been shown that the topological corner states will
appear in the rhombus structure of phosphorene near the Fermi energy around −0.16 eV
as shown in Fig. 1.13 [88].



1.4 Structure of the thesis 21

Figure 1.13: The square root of the local density of states for a rhombus structure of MLP. Taken
from [88].

1.4 Structure of the thesis

The existence of the previously reviewed unusual properties of monolayer and FLP neces-
sitate further research on phosphorene and phosphorene nanostructures. This motivated us
to dedicate the present thesis on the study of some electronic properties of this material.
In this doctoral thesis, within the framework of TB model, we investigate the electronic
properties of phosphorene and phosphorene nanoribbons (PNRs) mainly from the topolog-
ical point of view. For this rather new emerged 2D material, analyzing the band structure,
the characterization of the electronic states, the electronic transport of phosphorene zigzag
and armchair nanoribbons, and the scaling laws of the band gaps versus ribbon width are
interesting subjects that we will deal with. Investigation of the LLs field dependence in
this 2D material which determines the behavior of corresponding QHE as a topological
phenomenon, is another subject of this work. Using the TB approximation with inclusion
of the spin-orbit interaction, we also investigate the possible topological phase transition
in the electronic band structure of phosphorene in the presence of axial strains.
The thesis is organized as follows: In chapter 2, we will briefly review the main aspects
of the QHEs as purely topological phenomena. The different types of field dependence
Landau levels (LLs) and their consequences in the QHE will be discussed. This chapter
will give the reader the basic knowledge to treat the QHE and the LLs field dependence in
phosphorene as a highly anisotropic system.
In chapter 3, a short overview of the physics behind topological band insulators with time-
reversal symmetry will be given. Next, we will proceed by giving a brief overview of
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the ways to distinguish a TI from a NI. Then, we will introduce an efficient algorithm for
lattice computation of the Z2 invariant which provides a numerical method to quantita-
tively distinguish a TI from a NI. The experimental signatures of 2D and 3D TIs will be
addressed at the end of this chapter.
In chapter 4, we start by introducing the TB model of MLP. The band structure and effec-
tive masses of MLP near the gap are presented based on the TB model, and it is shown
that the dispersion is relativistic along the armchair direction and the corresponding Fermi
velocities will be calculated. Then, numerical data for this model are presented for zigzag
phosphorene nanoribbons (zPNRs) and armchair phosphorene nanoribbons (aPNRs), and
the emergence of flat bands in zPNRs are discussed. The scaling behavior of band gaps
with ribbon width is presented and the obtained results are compared with those of the
other methods. In addition, the effect of transverse electric field on the band gap in aPNRs
and the transistor effect in zPNRs are investigated.
In chapter 5, the behavior of MLP in the presence of a perpendicular magnetic field which
breaks the time-reversal symmetry is discussed. The behavior of the system in the QH
regime is in close relation with the characteristics of LLs. The primary goal of this chapter
is to address the debating field dependence of LLs in MLP. Using a simple approach, we
will demonstrate that the LLs dependence on magnetic field is indeed as for conventional
2D semiconductor electron gases. We show that the results are valid up to very high field
regime. Then, we will discuss the conditions for which such a dependence can continu-
ously evolve into another field dependences.
In chapter 6, the effective low-energy TB model Hamiltonian including the SOC terms
for MLP is obtained. Then, we will study the effect of axial strains on the band structure
produced by this model and our results are compared with DFT results. Demonstration of
a topological phase transition in the electronic properties of phosphorene when particular
types of strain are applied and the characteristics of corresponding edge states in zPNRs
are presented in the final part of this chapter.
Finally, a summary of the thesis is given in chapter 7.



CHAPTER 2

Chern insulators

Today’s knowledge about topological quantum matter was first encountered around 1980
with the experimental observation of the integer [52] and then fractional [53] quantum
Hall effects (IQHE and FQHE). In order to realize these effects, the key is to break time-
reversal symmetry (TRS). This can be done by applying strong magnetic fields to a 2D
electron gas at low temperatures.Though, the most important application the QHE is to
provide very precise standards in the field of metrology [89], a topological approach to
treat this phenomenon is very useful for a better understanding of the issue of topological
insulators (TIs).
Herein, we concentrate on broken TRS systems, and the goal is to provide a succinct
background which opens the way toward understanding the subject of TIs.
In what follows, we will briefly discuss the main aspects of the QHEs as purely topological
phenomena and introduce the different types of field dependence Landau levels (LLs)
and their consequences for the QHE. An outstanding question that may arise here is the
functional dependence of Landau level (LL) gaps of phosphorene on magnetic field that
we will answer in chapter 5. Then, we will end the chapter with the answer to the question
how one can define a relevant topological quantity to identify the topology of a system
with broken TRS. To this end, we will introduce an efficient method for computing this
relevant topological invariant, the so-called first Chern number in a discretized BZ [90]
which is very useful for complicated band structures.
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2.1 Quantum Hall effects
One of the most beautiful physical phenomena in the area of condensed matter physics is
the QHE. The phenomenon takes place in a very thin layer of electron gas in the presence
of a very high magnetic field when the system is cooled down near absolute zero. It was
discovered [52] that the values of the Hall resistivity are independent of all the macroscopic
details such as size, shape of the sample, what it is made of, and what kind of impurities
are present in the system. Applying a certain current through the sample leads to the Hall
voltage VH so that the ratio of VH/I is a universal value [52]. This ratio is called the quan-
tized Hall resistivity and the phenomenon is known as IQHE. Such a completely universal
and fundamental phenomenon which occurs in a dirty, not very perfect, and human-made
system, was a big surprise especially from the experimental point of view.
Then, there was a second big surprise: in this system, one can see fractional quantum
numbers [53] under special circumstances where electron interactions are important. This
phenomenon, which is called FQHE was first explained theoretically by Laughlin [55] us-
ing an incompressible quantum state which originates from the strong correlation between
the position of the electrons. These attempts led to a huge advancement in the theoretical
understanding of the mechanism that a large system of interacting electrons form their
rather complex ground states [91].
Further progress after that, led to the realization that these complicated quantum states
may contain some types of quantum vortices that are flowing around each other [92, 93],
and researchers realized that they could be used to form quantum bits. These objects are
topologically protected and thus, are not destroyed by usual perturbations in the system.
Therefore, it would be a promising candidate for quantum computers called topological
quantum computers [94]. This theory [94] uses these objects and braids them around to
do an operation [92, 93]. As mentioned above, the most important reason for using this
idea is that quantum systems are very sensitive to small perturbations, noises and imper-
fections; but this particular type of state is very robust against these factors [92, 93]. For
example, if we make a local perturbation at any spot in the system, nothing happens to the
quantum state and no local perturbation can destroy that information. So, the hope is that
they would be very robust against quantum decoherence, and make them great candidates
for application in quantum computing [92, 93].
Since the physics behind the QHE is very important to better understand the subject of
TIs, in the following, we will briefly discuss the main properties of the phenomenon.

2.1.1 Integer quantum Hall effect
In the classical picture, to drive current through an ordinary piece of metal sheet, one needs
to apply an electric field to push electrons along the sample. This requires having a volt-
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Figure 2.1: (a) The classical Hall resistivity ρxy and the longitudinal resistivity ρxx as a function of
the applied magnetic field B. (b) The experimental measured Hall and longitudinal resistance, ρxx
and ρxy as a function of magnetic filedB in a GaAs/AlxGa1−x heterostructure. Adapted from [95].

age drop along the metal sheet, and the electric field points in the direction the current I
is flowing. Edwin Hall discovered that if we apply a strong magnetic field perpendicular
to the direction of current flow and the plane of the sheet, the electrons would get pushed
sideways by the Lorentz force. Therefore, a voltage drop VH appears at right angles to the
current direction. This voltage is proportional to the applied magnetic fieldB, and thus the
Hall resistivity ρxy = VH/I is expected to be linearly proportional to B. The longitudinal
resistivity ρxx is independent of the applied magnetic field. The behaviors of the classical
Hall resistivity ρxy and the longitudinal resistivity ρxx as a function of the applied mag-
netic field are shown in Fig. 2.1 (a). This classical phenomenon has a number of practical
uses such as Hall sensors.
Now, if we have a two dimensional (2D) sample of high mobility electron gas that is
cooled down near absolute zero, one can see from Fig. 2.1 (b) that it starts to deviate from
the Drude model in both the Hall and the longitudinal resistance. The figure shows a typi-
cal experimental measured Hall and longitudinal resistances, ρxx and ρxy as a function of
magnetic filed in an inverted selectively doped GaAs/AlxGa1−x heterostructures fabricated
by molecular-beam epitaxy [95]. As seen, the Hall resistance starts to develop plateaus,
and the longitudinal one drops down and starts to show a series of drastic oscillations,
which are the signature of what is called the quantized Hall effect. This means that by
varying the strength of the magnetic field, the system experiences a phase transition from
a metal to an insulator, then another metal to the other insulator, and so forth. An impor-
tant feature here is that the Hall resistance seems to favor certain magical values where the
magnetic field alters in a series of special intervals. This feature was first observed by von
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Klitzing [52] and he immediately deduced the formula of ρxy = h/ne2 to describe this
behaviour. This phenomenon which is called IQHE led to his Nobel prize in 1985 for the
recognition of this steps in the unit of the ratio of fundamental constants h and e2.
The IQHE can be understood in the frame of a one-electron picture [96]. The physics be-
hind the mentioned insulating phases and the corresponding quantized Hall conductances
is the formation of Landau levels (LLs) [96]. The quantum mechanical treatment of a 2D
electron gas in the presence of magnetic fields gives rise to the explanation of LLs forma-
tion. In a 2D lattice, electrons or holes feel the periodic potential of the lattice that gives
rise to the formation of energy bands. Therefore, the field dependent LLs and thus the cor-
responding quantized Hall conductances may show different behaviors. Hence, in what
follows we briefly introduce the various types of field dependent LLs and the correspond-
ing Hall conductances which are important from both the theoretical and experimental
points of view.

2.1.2 Conventional QHE
Consider a sample of electrons that are free to move in only a 2D plane. When these
electrons are subjected to a strong perpendicular magnetic fieldB, their continuous energy
spectrum

E(k) =
~2

2m0

k2, (2.1)

is transformed into discrete LLs [96] as

En(k) = ~ωc(n+
1

2
), n = 0, 1, 2, ... (2.2)

where the latter spectrum is a bunch of equidistant flat bands and each level is highly
degenerate (see Fig. 2.2). In the above equations m0 and k, are electron mass and the
magnitude of in-plane wave vector k, respectively, and ωc = eB/m0 is the cyclotron
frequency. In absence of disorder or phonon scattering, the corresponding density of states
(DOS) of this spectrum is a series of delta functions

D(En) =
∑
n

δ(E − En). (2.3)

However, disorders are ubiquitous in any sample of 2D electron gas (2DEG). For weak
disorders that are small compared to the splitting of LLs, perturbation theory can be ap-
plied. Including such perturbations as random potentials in the corresponding Hamiltonian
of the system decrease its symmetries and leads to the lifting of the degeneracies. Thus,
the mentioned levels of DOS broaden to give extended and localized states [96] as shown
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Figure 2.2: (a) Schematic energy spectrum of a 2DEG. (b) The discretized levels of DOS in
Eq. (2.3) broadened to give extended and localized states. (c) The corresponding Hall conduc-
tivity as a function of the chemical potential.

in Fig. 2.2(b). The one-particle states near the exact energy levels (n + 1/2)~ωc are ex-
tended because they spread throughout the whole system and contribute to conductivity.
In contrast, the one-particle states in the LL tails are localized because they cannot con-
tribute to conductivity [91, 97]. The corresponding Hall conductivity of this 2DEG is
shown in Fig. 2.2 (c). As seen, when the chemical potential lies between Landau level
centers, the Hall conductivity is exactly quantized as σxy = n2e2/h where n is the number
of filled LLs [97]. One can also see that, when the chemical potential moves through the
corresponding energy of current carrying states, a transition from a plateau to the other
occurs [97]. This is because the population of these current carrying states is changed.

2.1.3 QHE in an usual 2D semiconductor

In the preceding subsection, we consider the case of free electrons where no lattice poten-
tial is considered. In a 2D lattice, electrons or holes suffer from the periodic potential of
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the lattice that gives rise to the formation of energy bands. Based on the effective mass
theory [98], in an usual semiconductor with parabolic low-energy electronic spectrum, the
effect of lattice potential can be fed into an effective mass. Then, one can use the free elec-
tron model by replacing the electron mass m0 with the effective mass m. In most cases,
this approximation is sufficient to describe the low-energy properties of the system. Since
the electron-hole symmetry is generally absent in semiconductors (see Fig. 2.3 (a)), on can
write the energy of electrons and holes in the vicinity of the conduction band minimum
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Figure 2.3: (a) Schematic of low-energy band structure for an usual semiconductor without
electron-hole symmetry. (b) DOS of an usual semiconductor without electron-hole symmetry in
the presence of a strong magnetic field and weak disorders. The two sets of LLs have differ-
ent cyclotron frequencies due to the lack of electron-hole symmetry. (c) The corresponding Hall
conductivity as a function of the chemical potential. There are two sets of equidistant ladder of
quantum Hall plateaus with different lengths due to the different cyclotron frequencies ωec , and ωhc .



2.1 Quantum Hall effects 29

(CBM) and the valence band maximum (VBM) as

Ee(k) =
Eg
2

+
~2

2me

k2,

Eh(k) = −Eg
2
− ~2

2mh

k2, (2.4)

where me (mh) is the effective mass of electron (hole) and Eg is the electronic energy gap
of the semiconductor.
Now, we consider the case that a strong magnetic field is present in the system. Again, a
simple quantum mechanical treatment as in the case of free electron model gives rise to
the LLs as

Ee,n(k) =
Eg
2

+ ~ωec(n+
1

2
), n = 0, 1, 2, ...,

Eh,n(k) = −Eg
2
− ~ωhc (n+

1

2
), n = 1, 2, ..., (2.5)

where ωec = eB/me and ωhc = eB/mh are cyclotron frequencies of electrons and holes,
respectively. The obtained sets of LLs are separated by the energy gap of Eg as shown
in Fig. 2.3 (b). As seen, these two sets of LLs have different cyclotron frequencies due
to the lack of electron-hole symmetry. As shown in Fig. 2.3 (c), this leads to two sets
of equidistant ladders of quantum Hall plateaus with different lengths as a result of the
mentioned different cyclotron frequencies. The quantized values of the Hall conductivity
are again σxy = ±ne2/~.

2.1.4 QHE in monolayer graphene
Graphene is the most famous allotrope of carbon. It consists of a single layer of car-
bon atoms forming a honeycomb lattice. The corresponding lattice constants and the unit
cell of graphene are shown in Fig. 2.4. Each unit cell includes two carbon atoms that
belong to the A and B sub-lattices, respectively. We choose nearest neighbor vectors
δ1 = a(−

√
3/2, 1/2), δ2 = a(

√
3/2, 1/2), and δ3 = a(0,−1), to define the translation

vectors as a1 = δ1 − δ3, and a2 = δ2 − δ3. The corresponding reciprocal lattice vec-
tors are given by b1 = 2π/3a(

√
3, 1), and b2 = 2π/3a(−

√
3, 1). Some special points

with high symmetry in the BZ are shown with the wave vectors K′ = 4π/3
√

3a(1, 0),
K = 2π/3a(1/

√
3, 1), and M = π/3a(

√
3, 1).

The symmetry of the hexagonal lattice of graphene is a key element for determining many
of the unusual electronic properties not seen in conventional materials [99]. One of the
most important features is its linear energy dispersion in the vicinity of K and K′ in
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Figure 2.4: (a) The honeycomb lattice of graphene with a two-atom basis A (black symbols) and
B (red symbols). Also shown are the basis vectors a1,2, and the space vectors δ1,2,3. (b) The
corresponding reciprocal lattice of graphene. Also shown are reciprocal lattice vectors b1,2 and
high symmetry points in the BZ.

which many of graphene’s properties have origin in it [3]. This implies that the masses
of the formed 2D electron and hole gas are hidden by their interaction with the lattice of
graphene. In other words, electrons and holes in graphene mimic relativistic particles in
which their behaviors are determined by the Dirac equation [3]. Therefore, the experimen-
tal discovery of graphene [1] paved the ground to test some relativistic effects in the realm
of condensed matter physics.
The experimentally observed QHE in monolayer graphene [100] shows a quite different
unconventional character which was a striking phenomenon that is a manifest demonstra-
tion of the relativistic character of charge mobility carriers. Let us briefly discuss the
influence of a strong magnetic field on the electronic properties of graphene.
As we will discuss in Sec 3.2.2, the nearest-neighbor TB approximation of graphene pro-
vides a very good description for its low-energy bands [3]. By expanding the elements of
the TB Hamiltonian 3.8 around the K or K′ points, one can rewrite it as [3]

HK,K′(k) = ~vF
(

0 kx ∓ iky
kx ± iky 0

)
, (2.6)

where vF ≈ 106m/s is the Fermi velocity of Dirac fermions, and k is the distance to the
valley points K or K′. This gives rise to the low-energy spectrum [3]

E(k) = ±~vFk, (2.7)
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Figure 2.5: (a) Schematic view of the low-energy band dispersion of monolayer graphene. (b) DOS
of graphene in the presence of a strong magnetic field and weak disorder. (c) The corresponding
Hall conductivity as a function of the chemical potential.

as shown schematically in Fig. 2.5 (a).
Now, let us consider the effect of applying a uniform perpendicular magnetic field to the
plane of monolayer graphene. Using the Landau gauge A = (0, Bx, 0), and the substi-
tution ky → ky + `−2B x, where `B = eB/~ is the magnetic length, one has to solve the
Dirac-like equations [3]

~vF
(

0 kx ∓ iky + `−2B x
kx ± iky + `−2B x 0

)(
ψA

ψB

)
= E

(
ψA

ψB

)
(2.8)

to obtain the energy spectrum of the system. Solving this equation gives the spectrum
as [3]

En,± = ±~ωc
√
n, n = 0, 1, 2, · · · , (2.9)

which is exactly the same as the well known relativistic LLs [101].
The corresponding DOS of this spectrum is shown in Fig. 2.5 (b) . One can see an im-
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portant difference compared to the case of conventional QHE, where there exists a zero
energy mode which is related to both electron and hole excitations [102]. This led to
the theoretical prediction [103] and then the experimental observation [104, 105] of the
unconventional form of the quantized Hall conductivity

σxy = ±(n+
1

2
)
4e2

h
, n = 0, 1, 2, · · · , (2.10)

which is a set of half-integer plateaus as shown in Fig. 2.5 (c).

2.1.5 QHE in bilayer and multilayer graphene
After introducing a distinct type of IQHE in monolayer graphene [106] which is the rel-
ativistic counterpart of a conventional semiconductor system, a third type of QHE was
observed experimentally [106] that was different from the two previously known cases.
The new character of the IQHE in bilayer graphene adds interesting features [106].
It has been shown [106] that the low-energy spectrum of Bernal stacked bilayer graphene
near the K and K′ points is known to be a parabolic (see Fig. 2.6 (a))

E(k) = k2. (2.11)

Further analysis showed that [107] the corresponding effective Hamiltonian of this disper-
sion can be described as

H = − 1

2m

(
0 (π†)2

π2 0

)
, (2.12)

where π = px + ipy. When a fermion which its properties are determined by this Hamil-
tonian encircles a closed path in the momentum space, it gains a Berry’s phase of 2π [106].
In fact, this Berry’s phase leads to an extra two-fold degeneracy of the zero-energy LL [106].
A similar treatment with Eq. (2.12) as in the case of monolayer graphene results in the en-
ergy spectrum of

En,± = ±~ωc
√
n(n− 1) , n = 0, 1, 2, · · · , (2.13)

for bilayer graphene when it is subjected to a perpendicular uniform magnetic field [106].
This equation shows that for bilayer graphene the two lowest states with zero-energy come
from the LLs of n = 0, and n = 1, which creates an extra two-fold degeneracy [106].
This two-fold degeneracy emerges in the corresponding DOS as schematically shown in
Fig. 2.6 (b). On the other hand, there exist a four-fold degeneracy in all of the LLs due
to the spin and valley degrees of freedom [106]. This form of Landau quantization leads
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Figure 2.6: (a) Schematic view of the low-energy dispersion of bilayer graphene. (b) DOS of
bilayer graphene in the presence of a strong magnetic field and weak disorder. There exists an
extra two-fold degeneracy at zero-energy mode. (c) The corresponding Hall conductivity as a
function of the chemical potential.

to the standard integer position of Hall plateaus except for zero energy states [106]. At
zero energy, one can see the missing plateau and a double step in the Hall conductivity
as shown in Fig. 2.6 (c). Note that this eight-fold degeneracy is a manifestation of the
one-electron picture analysis [106], and if one takes into account the Coulomb interaction
as a many-body effect, then the zero-energy level will split into eight non-degenerate sub-
levels [102].
We now comment on the IQHE in multilayer graphene. It has been shown that the un-
conventional QHE in j-layer graphene [102] has the same general trend as in the case of
bilayer except for the zero energy level. Similar to the bilayer case, when a low-energy
quasi-particle of j-layer graphene encircles a closed contour in reciprocal space, it gains
a Berry’s phase of jπ. This leads to an extra j-fold degeneracy [106] in the zero-energy
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Figure 2.7: Low-energy spectrum for a graphene-like structure with linear dispersion in one direc-
tion and parabolic in the other.

.

level, though for all other levels the degeneracy is 4-fold as in monolayer and bilayer cases.
Again, one can see directly this extra j-fold degeneracy by applying a perpendicular uni-
form magnetic field to a sheet of j-layer graphene where its LLs are given by [102]

En,± = ±~ωc
√
n(n− 1)(n− 2)...(n− j) , n = 0, 1, 2, · · · . (2.14)

Equation 2.14 explicitly shows that the states E0 = E1 = ... = Ej lie at zero energy.
The corresponding Hall conductivity is quantized as [102]

σxy = ±(n+
j

2
)
4e2

h
. n = 0, 1, 2, · · · . (2.15)

2.1.6 LLs for a highly anisotropic band dispersion
We examined in the previous sections the field dependence of the LLs in conventional
semiconductors and j-layer graphene. Dietl et al. [74] put forward a new example where
the dependency of LLs on the magnetic field was neither linear nor has the behavior as
in the case of j-layer graphene. They considered a graphene-like structure in which its
dispersion relation is linear in one direction and parabolic in the other [74] (see Fig. 2.7).
Using the TB method as well as the continuum approximation [74] they showed that this
type of energy spectrum reveals LLs with a different magnetic field dependence

En ∝ [(n+
1

2
)B]2/3 n = 0, 1, 2, · · · . (2.16)
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Figure 2.8: A schematic representation of the parallel transport on a closed path C in the k space.
S is the corresponding enclosed area.

2.2 The role of topology
As many phenomena in both classical and quantum mechanics, the QHE is an example
that topological features play an essential role in explaining the physics behind it [108].
The experimental observation of this topological effect [52] provided extra motivation for
researchers and led to a new paradigm in the way of thinking about the phenomenon.
Therefore, during the last four decades, the condensed matter physics community has en-
countered a great increase in using the geometrical phase concept and the corresponding
appeared topological phases [108]. These topological characteristics emerge as topologi-
cal invariants which remain unchanged under weak continuous perturbations [108].

2.2.1 Berry’s phase
It is well known that the Berry’s phase occupy a special place in quantum mechanics
and solid state physics [109, 110]. Particularly, it plays the key role in topological band
theory [110]. Let us consider an adiabatic evolution of non-degenerate Bloch state |un(k)〉
under parallel transport in momentum space (see Fig. 2.8). The differential displacement
of k −→ k + dk gives

|un(k + dk)〉 −→ |un(k)〉+∇k|un(k)〉 · dk . (2.17)

Using the parallel projection operator P|| = |un(k)〉〈un(k)|, the parallel component is
given by

P|||un(k + dk)〉 = |un(k)〉+ 〈un(k)|∇k|un(k)〉 · dk . (2.18)

We define the Berry connection of nth band as

An(k) = 〈un(k)|∇k|un(k)〉, (2.19)



36 Chern insulators

and link the two Bloch states |un(k)〉 and |un(k + dk)〉 as

〈un(k)|un(k + dk)〉 = 1 +An(k) · dk . (2.20)

It is straightforward to show that finite parallel transport from ki to kf gives the connection
between the corresponding Bloch states as

〈un(ki)|un(kf )〉 = e
∫ kf
ki
An(k)·dk . (2.21)

Therefore, the Bloch state |un(k)〉 acquires a geometrical phase on a closed path in k space
as

eiγn(c) = e
∮
cAn(k)·dk (2.22)

where the corresponding Berry’s phase γn(c) of nth band is given by [110]

γn(c) = −i
∮
c

An · dk . (2.23)

One can easily check that under the transformation

|un(k)〉 −→ eiφn(k)|un(k)〉, (2.24)

the Berry connectionAn(k) transforms as

An(k) −→ An(k) +∇kφn(k). (2.25)

This suggests that An(k) behaves very much like electromagnetic vector potentials and
is therefore called Berry potential. Equation (2.25) means that the Berry connection is
not gauge invariant, but the corresponding magnetic flux (2.23) is gauge invariant. This
motivates us to define the analog Berry field strength or Berry curvature of nth band as

F (n)
xy = (∇k ×An(k))z, (2.26)

which is explicitly gauge invariant. Hence, using Stokes theorem, the Berry phase can be
rewritten as

γn(c) =

∮
S

F (n)
xy d

2k. (2.27)

Note that in the above equation we have limited ourselves to a 2D band.
Our goal in the next subsection is to derive an important formula that provides a general
link between the quantum Hall conductivity and a topological invariant which originates
from the topology of the electronic bands.
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2.2.2 Chern number and Hall conductance
As stated before, the geometrical phase of the system provides the topological features
of the QHE. The first analytical derivation for the quantized Hall conductance in terms
of a topological invariant was given by Thouless, Kohmoto, Nightingale, and den Nijs
(TKNN) [54] which is known as the first Chern number cn. This invariant is in close
relation with the Berry phase of the system. They used the Kubo formula approach for the
electrical conductivity in the context of the QHE [54]. Using time-dependent perturbation
theory, and within the linear response regime, the Kubo formula for zero frequency can be
written as [54].

σxy = −i~
∫
BZ

d2k

(2π)2

∑
En<EF ,Em>EF

nF (En)
jαnmj

β
mn − jβnmjαmn

(En − Em)2
, (2.28)

where EF and nF denote the Fermi energy and the Fermi distribution function, respec-
tively, and En shows the eigenvalue of the corresponding eigenvector |un(k)〉 of the un-
perturbed Hamiltonian H0. Here, the integration is taken over the entire BZ of the system
and the summation runs over all the states below and above the Fermi energy. Also,
jα = e/~∂H0/∂kα is the αth component of the current operator with the element of
jαnm = 〈un(k)|jα|um(k)〉. Using [111]

jαnm =
e

~
〈un(k)|∂H0

∂kα
|um(k)〉 =

e

~
(En − Em)〈∂un

∂kα
|um(k)〉, (2.29)

and the identity condition
∑

En<EF

|un〉〈un|+
∑

Em>EF

|um〉〈um| = 1 one can rewrite Eq. (2.28)

in the zero temperature limit as

σxy = −ie
2

~

∫
BZ

d2k

(2π)2

∑
En<EF

(
〈∂un
∂kx
|∂un
∂ky
〉 − 〈∂un

∂ky
|∂un
∂kx
〉
)
, (2.30)

where the summation runs over only the occupied bands. Using Eqs. (2.19) and (2.26) we
can rewrite Eqs. (2.30) into the form

σxy =
e2

h

∑
En<EF

∫
BZ

d2k

2πi
(∂kxA(n)

y − ∂kyA(n)
x )

=
e2

h

∑
En<EF

1

2πi

∫
BZ

F (n)
xy d

2k

=
e2

h

∑
En<EF

cn, (2.31)
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where we have defined the first Chern number assigned to the nth band as

cn =
1

2πi

∫
BZ

F (n)
xy d

2k. (2.32)

This implies that when the Fermi energy lies in the gap of an insulating system, the Hall
conductivity is quantized in units of e2/h due to the quantization of the assigned total
Chern number [54, 90]. Note that the generalization of Eq. (2.32) to the case of partially
filled bands is given by [112]

σxy(EF ) =
e2

h

∑
α

Cα, (2.33)

with

Cα(EF ) =
1

2πi

∫
BZ

F (α)
xy Θ(EF − Eα(k))d2k, (2.34)

where Θ and α denote the Heaviside function and the band index, respectively. Here, the
Hall conductivity does not show plateaus because there exists a non-quantized contribution
of the partially filled bands in the Chern number [112].

2.3 Lattice computation of the Chern number
From a numerical point of view, the construction of a numerical algorithm to calculate the
Chern number requires to do calculations on a set of discrete points chosen appropriately
within the BZ [90]. Fukui et al. [90] proposed an efficient method of calculating the Chern
numbers to compute the Hall conductivity even on a coarsely discretized BZ. This method
provides a manifestly gauge-invariant description of Chern numbers which is applicable
to the non-Abelian Berry connection [90]. To see how this approach is implemented, we
consider the corresponding BZ of a rectangular lattice as shown in Fig. 2.9. We then mesh
the BZ so that each site of the lattice is defined by

kl =
1

2
(
j1
N1

G1,
j2
N2

G2), (j1(2) = −N1(2), . . . , N1(2)), (2.35)

where G1(2) is the reciprocal lattice constant in the direction x (y), N1(2) is a positive
integer, and l specifies the lth plaquette. Therefore, the lattice version of Eq. (2.32) can be
written as

cn =
1

2πi

∑
kl∈BZ

F (n),l
xy , (2.36)
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Figure 2.9: The lattice mesh on the BZ of a rectangular lattice with reciprocal lattice constants G1

and G2.

where
F (n),l
xy =

∫
plaquette

F (n)
xy d

2k, (2.37)

is the Berry curvature contribution of the lth plaquette in the nth band and can be approx-
imated for small plaquettes as

F (n),l
xy ≈ F (n)

xy (kl)|1̂x||1̂y|, (2.38)

where 1̂x and 1̂y are vectors in the directions of x and y, respectively, which define the
size of a plaquette with dimension G1/2N1 ×G2/2N2.
Using the non-degenerate Bloch state |un(k)〉 which is periodic on the lattice, we define
the corresponding link variables of nth band at the lth plaquette as [90]

Ux(y)(kl) = 〈un(kl)|un(kl + 1̂x(y)〉. (2.39)

This allows us to define a lattice field strength as [90]

F̃xy(kl) = ln
Ux(kl)Uy(kl + 1̂x)

Uy(kl)Ux(kl + 1̂y)
. (2.40)

It has been shown [90] that even for not very large mesh sizes the admissibility condi-
tion |F̃xy(kl)| < π is satisfied. Therefore, the lattice gauge theory is equivalent to the
continuous gauge theory [113, 114] and we have

F (n)
xy (kl)|1̂x||1̂y| ≈ F̃xy(kl). (2.41)
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Hence, the discretized BZ version of Eq. (2.32) for numerical computing the Chern number
of nth band can be rewritten as [90]

cn =
1

2πi

∑
kl

F̃xy(kl), (2.42)

where each plaquette kl in the summation is determined by the counters j1 and j2 which
now run from −N1 to N1 − 1 and −N2 to N2 − 1, respectively to cover all plaquettes in
the BZ.
It is worth mentioning that Eq. (2.42) is applicable for an insulating case with non-degenerate
bands where the corresponding highest occupied energy band is completely filled. The
generalized Eq. (2.33) for cases of partially filled bands can be estimated using the lattice
version as [112]

Cα(EF ) ≈ 1

2πi

∑
kl

F (α),l
xy pαl (EF ), (2.43)

where pαl (EF ) are weighting factors which determine the contribution of a given plaque-
tte in the corresponding Chern number of αth band. To numerically compute the Chern
number Eq. (2.43), we first calculate the contribution F (α),l

xy using the numerical formula
Eq. (2.42). Then, one can generate uniform distribution of random points in the lth plaque-
tte to estimate the weights pαl (EF ) with known and controllable statistical error bars [112]
as

pαl (EF ) =
1

nr

∑
kr

Θ(EF − Eα(kr)), (2.44)

where nr is the number of generated random points kr.
On the other hand, it is very important to note that wherever bands cross or degeneracies
are present in the energy spectrum, the Berry connection and the Berry curvature must
be extended to non-Abelian gauge field analogies [115] associated with a ground state
multiplet |ψ(k)〉 = (|u1(k)〉, ..., |u2M(k)〉) in the equationH(k)|un(k)〉 = En(k)|un(k)〉.
Based on this extension, the modified non-Abelian Berry connection and Berry curvature
are given by [115, 116]

A(k) = Tr ψ(k)†dψ(k), (2.45)

F = dA, (2.46)

whereA is anM×M matrix. In this extension, we substitute the link variable in Eq. (2.39)
by [90]

Ux(y)(kl) =
detψ†(kl)ψ(kl + 1̂x(y))

|detψ†(kl)ψ(kl + 1̂x(y))|
. (2.47)
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It was shown that the described lattice prescription is valid for computing the associated
field strength and the Chern number on the lattice [90]. Note that the Berry field strength
is defined within the branch of Fxy(kl)/i ∈ (−π, π] [90].

2.3.1 The Haldane model
As an example, we consider the Haldane model [117] to show that the described lattice
prescription for computing the Chern number and the Hall conductivity successfully pre-
dicts the realization of both topological and trivial phases in this model. The Haldane
model is a two-band TB Hamiltonian of spinless fermions on a honeycomb lattice [112]
as we introduced its geometrical parameters in Fig. 2.4. The Hamiltonian reads as follows

H =t1
∑
〈ij〉

c†icj + it2
∑
〈〈ij〉〉

νijc
†
icj +M

∑
i

sic
†
ici, (2.48)

where c†i and cj are the creation and annihilation operators of spinless fermions at sites
i and j, respectively. t1 is the real nearest-neighbor hopping integral in which its corre-
sponding term gives rise to the massless Dirac fermions [112]. The second term introduces
an imaginary next-nearest neighbor hopping term with the magnitude of t2 which breaks
the time-reversal symmetry [117]. Here νij takes the value of +1 (−1) if going from the
site i to the next-nearest-neighbor site j be anticlockwise (clockwise) with respect to the
positive z axis. The third term is a staggered sub-lattice potential (si = ±1) with the
strength of M which breaks the inversion symmetry.
The Fourier transform of the Hamiltonian Eq. (2.48) gives the Bloch Hamiltonian in mo-
mentum space as

H =
∑
k

ψ†kHkψk, (2.49)

where we have used the basis spinor ψ†k = {ψ†A, ψ
†
B}, and Hk is given by

Hk =

(
M + g(k) f(k)
f ∗(k) −M − g(k)

)
, (2.50)

where

f(k) = t1[e
ik·a1 + eik·a2 + 1],

g(k) = 2t2[− sin(k · a1) + sin(k · a2)− sin(k · (a2 − a1))]. (2.51)

One can simply diagonalize this Hamiltonian to obtain the two-band energy spectrum

E(k) = ±
√
|f(k)|2 + (M − g(k))2, (2.52)
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Figure 2.10: Conversion of the equivalent (a) rhombus shape of the honeycomb BZ in k space into
a (b) unit square in q space.

which results in the energy gap

Eg = 2|M − 3
√

3t2|, (2.53)

at K and K′ points. For M = 3
√

3t2, a band closure occurs which divides the plane M -
t2 into two regions. The induced gap by the time-reversal breaking hopping term t2 is
topologically non-trivial which signals a possible phase transition [112]. To determine the
topology of each region, we proceed by numerical calculation of the Chern number and
the Hall conductivity for the Haldane model Eq. (2.48) at various Hamiltonian parameters
M and t2 in the unit of t1 as the energy scale.
Equation (2.42) is the formula for computing the Chern numbers in a rectangular lattice.
Therefore, in order to use this formula for the Haldane model with a honeycomb lattice,
one can simply convert the equivalent rhombus shape of the honeycomb BZ in k space as
shown in Figs. 2.10(a) and (b) into a unit square in q space by the following change of
variables

kx =
2π

a
(qx − qy), ky =

2π√
3a

(qx + qy). (2.54)

This, allows us to rewrite Eq. (2.42) as

cn =
1

2πi

∑
ql

F̃xy(ql), (2.55)

where the lattice sites of the BZ are labeled by ql. The unimodular link variable U and the
lattice field strength F̃xy are rewritten in the qx-qy plane, and the numerical calculation is



2.3 Lattice computation of the Chern number 43

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

0.2 0.6 1.6
0

0.1

0.2

EF
EFEF

(b)

(g)

(d)(c)

(a)

(f)(e)

0 0.4 1.41.210.8

M/t1

t /t2 1

s
xy
(

/
)

e
h

2
s

xy
(

/ 
 )

e
h

2

edcb gf

C=0C=1

C=1 C=1C=1

C=0 C=0 C=0

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Eg

M=0.5t
1

M=0.75t
1 M=0.9t

1

M=1.15t
1 M=1.3t

1
M=1.5t

1

Figure 2.11: (a) The equation t2 = 1/(3
√

3)M divides the M -t2 plane in the Haldane model
into two topologically different regions. (b)-(g) The numerically obtained Berry connection in
the Haldane model as a function of the Fermi energy EF for the fixed Hamiltonian parameter
t2 = 0.2t1, and some increasing values of the Hamiltonian parameter M .

done over the lattice version of square BZ in Fig. 2.10 (b).
Now, we discretize this BZ and fix the resolution of the grid (nB = 20) to compute the
associated field strength F̃xy of each plaquette. Next, we fix the Fermi energy at EF =
0 and compute the Chern number (2.55) for Hamiltonian parameters M and t2 so that
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M 6= 3
√

3t2. As shown in Fig. 2.11(a), the M -t2 plane is divided into two topologically
different phases C = 0 and C = 1. Here, C = 0 corresponds to a normal insulating
phase whereas C = 1 demonstrates a topologically non-trivial phase which is known
as anomalous quantum Hall effect [112]. We have also shown in Figs. 2.11(b)-(g), the
numerically obtained Berry connection (2.31) in the Haldane model as a function of the
Fermi energy EF for the fixed Hamiltonian parameter t2 = 0.2t1, and some increasing
values of the Hamiltonian parameter M to clearly show the transition from the non-trivial
phase C = 1 to the trivial phase C = 0. Note that, by varying the Fermi energy, one
encounters with partially filled bands. Therefore, one needs to use Eqs. (2.43) and (2.44)
to correctly consider their contributions. Here, we have chosen nr = 20 to estimate the
contribution of each plaquette in determining the Chern number of αth band. As seen, in
the topological phase and for the the Hamiltonian parameters where the Fermi energy lies
in the gap, the obtained Berry conductivities show plateaus of conductance in which their
widths follow the analytical relation Eg = 2|M − 3

√
3t2|.



CHAPTER 3

Topological insulators with time-reversal symmetry

So far, we have been dealing with the topological properties of systems with broken time-
reversal symmetry (TRS). We showed that the topologically non-trivial nature of such
systems manifests as the quantum Hall states at the boundaries of the sample. However,
in practice, the observation of the usual IQHE requires very low temperature and high
magnetic field. This leads to a rather complex experimental setup that makes it difficult to
control and manipulate the chiral edge modes. This puts a limit on the actual applications
of the IQHE and restricts it usually to fundamental research. These limitations imposed
by the breaking of TRS due to applying an external magnetic field raised the fundamental
question: is there any other topologically non-trivial phase which preserves the TRS?
This question was first theoretically answered by Kane and Mele [57] and Bernevig and
Zhang [58] in two independent works, and soon after was verified experimentally in mer-
cury telluride (HgTe) quantum well systems [118]. This new phase of matter in two dimen-
sions is referred to as the 2D topological insulator or the quantum spin Hall effect (QSHE).
Even though both suggestions of Kane and Mele [57] and Bernevig and Zhang [58] are ex-
cellent proposals for theoretical prediction of the QSHE, however they cannot be realized
experimentally. Kane and Mele proposed their model in a sample of graphene including
spin-orbit (SO) interaction. However, the induced gap due to SOC in graphene is only
of the order of µeV [119] which makes the realization of the QSHE rather unrealistic.
The suggestion of Bernevig and Zhang for experimental realization of the QSH phase
in conventional semiconductors in the presence of a strain gradient is also difficult to be
achieved [120]. In 2006, Bernevig, Hughes, and Zhang [121] proposed that the QSH ef-
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fect can be experimentally observed in a sample of inverted type-III HgTe/CdTe quantum
well. They showed that a phase transition from a normal insulator (NI) to a TI can occur
in this particular system depending on the thickness of the quantum well [121]. Their
prediction was verified one year later by the group of Molenkamp [118] using quantum
transport measurements. These experimental observations quickly caught the attention of
the scientific community during the last decade which resulted in an explosion of studies
on new topological materials.
The growing amount of attention devoted to this field is due to the fact that the physics
behind the topic of TIs is very deep which can give rise to many potential applications
in device technology. There exists already a considerable body of literature on the sub-
ject, [92, 122–132]. The goal of this chapter is to provide a short but comprehensive
overview of the physics behind topological band insulators with TRS. In the first section,
we describe shortly the main characteristics of TIs. The next section will introduce the
QSHE in graphene as a basic example to explain the salient features of TIs starting with
an introduction of the TRS and its consequences on the energy spectrum of a periodic
system. In Sec. 3.3, we proceed by giving a brief overview of the different ways to distin-
guishing a TI from an NI. Then, in Sec. 3.4 we will review an algorithm to compute the
Z2 invariant. This provides a numerical method to quantitatively distinguish a TI from an
NI. Finally, in Sec. 3.5 we will address the experimental signatures of TIs by introducing
the most important methods used in demonstrating the realization of 2D and 3D TIs.

3.1 What makes TIs interesting?
TIs are new quantum states of matter which have attracted a lot of interest within the
condensed matter physics community during the past decade [121–128]. They possess
a bulk insulating gap and conducting edge/surface states [121–128]. These states are
protected by TRS against backscattering which makes them robust against disorder and
non-magnetic defects. In what follows, I will describe shortly the main characteristics of
TIs that makes them interesting for advanced photodetectors, magnetic devices, field effect
transistors and lasers [133, 134].

Low-power electronics

All of us have experiences heating of today’s electronic devices. This is due to the fact
that when electrons are moving through the electronic components, they scatter. They
scatter by lattice atoms, impurities, and phonons, giving rise to resistance. This resistance
leads to heating of the device. Moreover, the complementary metal oxide semiconductors
(COMS) scaling theory is coming to an end [135]. The reason originates from physical
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and technological limitations [135]. One of the most important limitations is the restric-
tion of operating voltage reduction [135]. Without voltage reduction, the scaling will lead
to very high power consumption and heat generation [135].
Therefore, the advent of a new revolution in electronics industry to overcome the men-
tioned limitations is urgently needed. So, the important question is: what will be the next
generation of potential materials to power the next electronics revolution?
An important direction lies in the topological property of new potential materials, what
are known as TIs. Taking into account the possibility that these states of TIs can have
high carrier mobilities, it is important to consider another excellent feature that can be uti-
lized to realize low-power dissipating transistors [135, 136]. This feature is the existence
of topologically protected edge/surface states, a fundamental property of TIs that makes
them immune to non-magnetic perturbations [135, 136]. In fact, this feature has been used
as a basis for designing TI-based devices with high-performance and low-power electronic
circuits [135, 136].

Photon-like electrons with higher mobility

Usually, the dispersion relation in an ordinary conductor is non-linear [136]. In contrast,
the conducting edge/surface states of TIs are usually characterized by linear-like disper-
sion relation which are like the dispersion relation of photons [136]. This feature leads
to improvement in the performance of semiconductor devices by providing higher car-
rier mobilities. As a result, the larger the carrier mobilities, the larger the speed of the
carrier [136]. So, the research field of TIs has a great potential to tailor the mentioned
favorable properties which finally leads to enhancement of semiconductor devices.

Intrinsic spin-polarized electrons

Another salient feature of TIs generated by SOC is the emergence of steady-state spin-
polarized edge/surface electrons at their border [133, 134]. These states obey the massless
Dirac equation which gives rise to unusual spin-momentum locking feature [133, 134].
As a result, one expects novel spintronics effects that can pave the way toward producing
ultralow-power dissipation spintronic memory and logic devices [133, 134].

3.2 Quantum spin Hall effect
We start this section with an introductory to the TRS and its consequences on the energy
spectrum of a periodic system. Then, we will proceed with the introduction of the concept
of band inversion and its role in the appearance of flat-band edge states at the boundary
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Figure 3.1: Part of a typical energy spectrum for a TR invariant system with spin 1/2 which forms a
Kramers pair. For a fixed energy level, +k state and −k state having the same energy. The special
degenerate points are called TR invariant momenta.

of the sample. We then discuss the QSHE in a simple model Hamiltonian as the first
theoretical example of a TI with TRS [57].

3.2.1 Time-reversal symmetry
The TR operator involves a transformation as

Θ : t −→ −t. (3.1)

For a system of spin 1/2, the only possible representation to satisfy the necessary condi-
tions is

Θ = −iσyK, (3.2)

where σy is the y component of Pauli matrices and K is the complex conjugate operator.
The important property of this operator is that two consecutive operations of Θ do not
restore the system to its original configuration; but in fact, for a spin 1/2 particle, it picks-
up a minus sign as Θ2 = −1. For a TR invariant Hamiltonian H , the corresponding Bloch
HamiltonianH(k) satisfies [137, 138]

H(−k) = ΘH(k)Θ−1. (3.3)

This identity implies that for any Bloch state |ψn,I(k)〉 with band index n, there exist
at least another independent Bloch state Θ|ψn,I(k)〉 = |ψn,II(−k)〉 which has the same
energy [138] i.e. En,I(k) = En,II(−k). This leads to the property that energy bands come
in pairs which are called Kramers pairs. Figure 3.1 shows part of a typical energy spectrum
for a TR invariant system with spin 1/2. As seen, for a fixed energy level, +k state and
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−k state have the same energy which requires that one half of the BZ is a mirror image
of the other half. To show that these states are independent, one can rewrite the product
〈Θψn,I(k)|ψn,I(k)〉 as

〈Θψn,I(k)|ψn,I(k)〉 = 〈Θψn,I(k)|Θ−1|ψn,II(−k)〉
= −〈Θψn,I(k)|Θψn,II(−k)〉
= −〈ψn,I(k)|ψn,II(−k)〉∗

= −〈Θψn,I(k)|ψn,I(k)〉
= 0, (3.4)

where we have used the identity 〈Θα|Θβ〉 = 〈α|β〉∗ for anti-unitary operator Θ. These
features imply an important property of Kramers pairs that there is no scattering between
them. In other words, by adding a TR invariant term V with V † = V into the Hamiltonian,
it follows

〈Θψn,I(k)|V |ψn,I(k)〉 = 〈ΘV ψn,I(k)|Θ−1|ψn,II(−k)〉
= −〈ΘV ψn,I(k)|Θψn,II(−k)〉
= −〈V ψn,I(k)|ψn,II(−k)〉∗

= −〈Θψn,I(k)|V |ψn,I(k)〉
= 0. (3.5)

This equality guarantees that if the two corresponding states of a Kramers pair show the
edge modes of a 1D strip, then the single particle elastic backscattering between these
states is forbidden.
Note that, the corresponding cell-periodic eigenfunctions of the Bloch states for a Kramers
pair which are denoted as |un,I(k)〉 and |un,II(−k)〉 are related to each other as [138]

|un,I(−k)〉 = eiχ(k,n)Θ|un,II(k)〉
|un,II(−k)〉 = −eiχ(−k,n)Θ|un,I(k)〉, (3.6)

where χ is a phase.
Moreover, there exist special points in which the Kramers pairs are always degenerate due
to TRS protection. These points are known as TR invariant momenta (TRIM). Applying
Θ on these points map them onto themselves due to the periodicity relation −k = k+G,
whereG is a reciprocal lattice vector. For example, there are four (eight) distinct TRIM in
the BZ of a rectangular lattice (simple orthorhombic lattice) as shown in Fig. 3.2 (a) ((b)).
The QSHE can be understood from its close relation with QH states. Here, unlike the case
of an usual QH system, we take into account the spin of electrons. Figure 3.3(a) shows
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Figure 3.2: TRIM in the corresponding BZs of (a) a rectangular lattice and (b) a simple orthorhom-
bic lattice. There are four (eight) distinct TRIM in the BZ of the rectangular lattice (the orthorhom-
bic lattice) as indicated by the red dots.

a QH system corresponding to spin-up electrons at both edges of the sample. If one has
another QH system with electrons that are moving in the opposite direction, then, they
have spin-down (see Fig. 3.3(b)). In these systems, the direction of electron motion is
determined by the direction of the magnetic field. The counterclockwise (clockwise) mo-
tion of spin-up (spin-down) electrons corresponds to magnetic field pointing up (down),
as schematically illustrated in Fig. 3.3(a) (Fig. 3.3(b)). Putting these two QH systems to-
gether gives rise to the existence of a net spin current, but no charge current, as shown
in Fig. 3.3(c). The existence of the net spin current is due to the forward motion of the
spin-up electrons along one edge and their backward motion along the other edge. The
corresponding conducting edge states are called helical because the propagation direction
depends on the spin of the electrons. Under time reversal operation, the currents reverse
direction and the spin of the electrons is flipped. Thus, as is clear in Fig. 3.3(c), applying
the time reversal operator to the system keeps it unchanged. This implies that there exists
no net magnetic field in the system. In other words, the spin-up and spin-down electrons
exhibit QH effect without applying external magnetic field which is called a QSH sys-
tem [92, 122–132]. Then, important question is whether such a situation can be realized?
In order to respond to this question, it is useful to note that in the case of QH states the

mechanism of separate lanes of electron propagation is provided by applying an external
magnetic field. But, in a QSH system, one has to take into account another reason in order
to have such separation. Kane and Mele [57] and then, Bernevig and Zhang [58] indepen-
dently put forward respectively, in 2005 and 2006 the proposal that these separate lanes of
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Figure 3.3: The QSH system (c) can be imagined as a superposition of two QH systems (a) and (b)
which are related by the time-reversal operator.

electron propagation, and thus the QSH state can be realized in a model including SOC.
They showed that the role of external magnetic fields in a QSH system is indeed played
by SOC. In that sense, the spin-up and spin-down electrons feel opposite magnetic fields
which is produced by an orbiting proton at their sites. Thus, the mentioned scenario of
having two QH system together happens in the same matter, and therefore it can be found
in a real material.
As seen, we have both backward and forward motion of electrons at each edge of a QSH
system. Thus, in order to have dissipationless conducting edge states like in the case of a
QH system, one can raise the question: is there any protection which prevents the mixing
of these states and makes them robust against backscattering?. Fortunately, the answer is
yes, provided that we have no magnetic impurity in the sample. This protection is provided
by TRS.
To better understand the physics behind this protection, in the following we will briefly
introduce the theoretical model proposed by Kane and Mele [57, 139] in order to show the
formation of QSH sates in garphene.

3.2.2 Kane and Mele model

Kane and Mele [57] used graphene as an ideal model which has a rather simple analytical
energy spectrum. They showed the first theoretical realization of QSH state in graphene
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using a TB model including SOC. They proved [139] that in such a system a special protec-
tion can be defined by a different topological invariant. This invariant which corresponds
to a topological protection must be something like the Berry phase which is defined in a
Chern insulator as discussed in the previous chapter. Thus, one may ask whether the Berry
phase is again a relevant quantity to identify the corresponding topological phases of such
systems? Unfortunately, the answer is no! The reason is that the calculation of the Berry
phases of spin-up and spin-down electrons gives +π and−π, respectively. Hence, the total
Berry phase of the system vanishes or is an integer multiple of 2π. This means that the
Chern number does not work well for QSH systems. In Sec. (3.3.3), we will introduce the
alternative topological invariant which is suitable for the classification of a time-reversal
symmetric system.
In the previous chapter we introduced the lattice structure and the low-energy Hamiltonian
of graphene without taking into account the spin degree of freedom. Here, we consider the
Kane and Mele model which is a four-band TB model for a honeycomb lattice containing
the following terms [57, 139]:

H =t
∑
〈ij〉σ

c†iσcjσ + iλso
∑
〈〈ij〉〉σσ′

νijc
†
iσs

zcjσ′

+ iλr
∑
〈ij〉σσ′

c†iσ(s× d̂ij)
σσ′

z cjσ′ + λv
∑
iσ

ξic
†
iσciσ,

(3.7)

where c†iσ is the creation operator of an electron with spin σ at site i. The first term is the
usual nearest-neighbor interaction with hopping integral t where the summation runs over
all the nearest-neighbor sites. The second term is the usual mirror symmetric SOC with
the effective strength of λSO which involves the summation over the second neighbors
as denoted by 〈〈ij〉〉. Here νij takes the value of +1 (−1) if going from site i to the
next-nearest-neighbor site j be anticlockwise (clockwise) with respect to the positive z
axis. In this term, sz is the Pauli matrix that describes the z component of electron’s spin.
The third term is a nearest neighbor Rashba term with the strength of λR that is induced
by a perpendicular electric field or interaction with a substrate [139]. The last term is a
staggered sublattice potential (ξi = ±1) with the strength of λv which breaks the inversion
symmetry.
To proceed, we start with the concept of band inversion and its consequences on the energy
spectrum of a system. Next, we return to Eq. (3.7) to explain the role of SOC in the
formation of QSH states in graphene.
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Figure 3.4: (a) and (c) show schematically the energy spectrum of insulators in the atomic limit in
the absence of any band inversion. (b) and (c) represent the schematic spectrums of two topolog-
ically different band insulators. The deformation of the flat bands (a) to the spectrum (b) requires
no change in the order of bands whereas for having the spectrum (d) one has to reverse the order
of the VB and the CB in a range of k points.
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Band inversion and its consequences

Let’s start with the energy spectrum of atoms or ions of an insulator apart from each other
into the atomic limit which is the simplest example of a trivial insulator. Figures 3.4(a)
and (c) show schematically the corresponding narrow and flat VB and CB of these atoms
or ions. We have also shown schematically the band structure of an insulator in Figs. 3.4
(b) and (d). Based on group theory arguments [140], these VB and CB may have different
symmetries. This property also holds for the VB and CB of many crystalline materials.
The basic idea behind the classification of topological insulators is that the band structure
of two systems are said to be topologically equivalent if one can deform one band structure
smoothly into another without closing the band gap [137, 141, 142]. Now, let’s deform
continuously the corresponding Hamiltonian of atomic insulators with the spectrums in
Figs. 3.4(a) and (c) by changing the inter-atomic distances. As seen, in the crystal limit,
these flat bands start to show dispersion. However, taking the symmetries of VB and CB
into account, one can see that there exist a fundamental difference between the spectrums
in Figs. 3.4(b) and (d). We have shown schematically the symmetries of the bands with
different colors. As seen, the deformation from the flat bands in the atomic limit to the
spectrum in Fig 3.4(b) requires no change in the order of bands. Hence, the resulting in-
sulator is topologically equivalent to atomic insulator. Therefore, in this case, we have a
conventional insulator. On the other hand, going from the atomic limit to the crystal limit
of Fig. 3.4(d) requires that the order of the VB and the CB in a range of k points get re-
versed. This process is called band inversion. In this way, one can not do this deformation
smoothly without closing the band gap. In other words, in order to have such a situation,
one has to close and again open the band gap. Thus, the result is a band inverted insulator
which is not topologically equivalent with a conventional insulator. In this sense, one can
understand the underlying role of the topology and thus has to define a different class of
band insulators, what we previously called TIs.
We proceed by explaining the details of the process of band inversion for the pristine hon-
eycomb lattice of graphene. A carbon atom has four valence electrons with the configura-
tion 2s22p2 (see Fig. 3.5). Let’s see what will happen after putting carbon atoms together
into a hexagonal lattice. It is energetically favorable to excite electrons from 2s state to
the 2p state. Then, the valence orbitals of the carbon atom are able to hybridize to form
sp2 orbitals. As shown in Fig. 3.5, after bringing them close to each other, they broadened
to bonding and anti-bonding bands. Some of the valence electrons occupy strong in-plane
σ bonds. This leads to the corresponding very low bonding and high anti-bonding of σ
and σ∗ bands as illustrated schematically in Fig. 3.5. The remaining pz orbitals are per-
pendicular to the plane of graphene and are occupied by the other valence electrons to
form π bonds. These pz orbitals have two types of ordering. As shown in Fig. 3.6, the
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Figure 3.5: The procedure of forming bonding bonding and anti-bonding bands in graphene. Nu-
merical values for the energy of bonding and anti-bonding bands have been taken from [143].

hybridization with lower energy is the weak π state, and the hybridization with higher en-
ergy corresponds to the weak π∗ bond.
We now proceed to study the band structure of graphene given by the nearest-neighbor TB
model. We rewrite the first term of Eq. (3.7) in the first quantization form as [144]

H = t
∑
〈ij〉

(|φA
j 〉〈φB

i |+ h.c), (3.8)

where |φA
j 〉 and |φB

i 〉 stand for the electronic states at the two nearest-neighbors of (j,A)
and (i,B) that belong to different sub-lattices of A and B (see Fig. 3.7 (a)). Here, t =
−2.67 eV is the nearest-neighbor hopping integral of the π bonds [144]. Now, lets ex-
amine the evolution of the energy bands along the high-symmetry directions as shown
in Fig. 3.7(b) starting from the Γ point. Fourier transforming, one can easily obtain the
energy spectrum of graphene as

E(k) = ±|f(k)|, (3.9)

where the function f is given by

f(k) = t(eik·a1 + eik·a2 + 1). (3.10)

The corresponding eigenfunctions of the above TB Hamiltonian is found to be as [144]

Ψk(r) =
1√
2N

∑
j

eik·Rj
[
φ(r−RA

j )± e−iθ(k)φ(r−RB
j )
]
, (3.11)
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where N is the number of unit cells, φ(r − R
A/B
j ) = 〈φA/Bj |r〉 is the pz atomic orbitals

located at R
A/B
j , and θ(k) = −arg[f(k)]. The + (−) sign corresponds to the eigenfunc-

tion describing the VB (CB). Thus, these eigenfunctions can be interpreted as bonding and
anti-bonding states at a special k point. At Γ point, k is zero. Therefore, the eigenfunction
Ψ is formed from two pz orbitals with no relative phase so that the + and − signs corre-
spond to bonding and anti-bonding states (see Fig. 3.8), respectively.
Now, if we move from the Γ point to the boundary of the BZ, at M point, the second pz

orbital gains a π phase and actually, it flips. Therefore, as shown in Fig. 3.8, it becomes an
anti-bonding case and thus a change of band ordering occurs. As seen, the corresponding
bonding (π) and anti-bonding (π∗) bands disperse up and disperse down, respectively, in
an opposite way. Thus, this trend of band evolution tells us that they should cross some-
where because of the above-mentioned changes in the symmetries of the eigenfunctions.
These crossing points are the so-called Dirac points K and K′ that are topologically dif-
ferent, because they are characterized by opposite Berry phases [144, 145]. As shown in
Fig. 3.8 the interval between these two points is a band inverted region.
What we considered here, is actually a typical case of band inversion process. This band
inversion gives rise to some consequences even without the inclusion of the spin degree
of freedom. To see this, we look at the boundary where graphene is cut into nanoribbons
with different edges. Now, let’s project the dispersion along these edges [146]. Figure 3.7
(b) shows the construction of 1D BZ from the 2D BZ BZ of graphene. Due to the reduced
dimensionality of the system, we show the corresponding points in the new BZ with an
overbar. The corresponding 1D bands for two typical ribbons with zigzag and armchair
edges are illustrated in Figs. 3.9(a) and (b), respectively. We first consider the zigzag case.
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As shown in Fig. 3.9(b), an important consequence of the occurrence of band inversion is
the appearance of some flat-band edge states in the interval of K and K′ where it is a band
inverted region. In the other words, the existence of metallic edge states is in close rela-
tion with the band inversion. Here, we have described the existence of zero-energy edge
states qualitatively. However, the standard method to predict the existence of zero-energy
edge states at different boundaries of a 2D system is the calculation of a 1D winding num-
ber [147–149].
Now, let’s see what will happen for the case of an armchair edge. As shown in Fig. 3.7(b),
after projecting the 2D BZ onto 1D BZ, the two K and K′ points project to the same point.
This results in the formation of a single Dirac cone as illustrated in Fig. 3.9(b). In fact,
moving along the armchair 1D BZ does not change the bands order. Therefore, there exist
no flat-band edge states.
Now, we include the SOC to see what will happen for these zero-energy bands. We solve
Eq. (3.7) for a strip geometry with zigzag edges. Let’s first set λso = λr = λv = 0. Due
to the inclusion of the spin degree of freedom, one has spin degeneracy everywhere in the
1D energy spectrum especially for flat bands (see Fig. 3.10(a)). As shown in Fig. 3.10(b),
when the SOC term λso is turned on, it induces a gap and thus the degeneracy of bands is
lifted except for the points that are TRIM. Therefore, at the Γ point as a TRIM, the edge
bands must touch. This means that they are protected by TRS [124–126, 128, 129]. Note
that, in this system, we have two zigzag boundaries. At each edge there exist two helical
edge modes. Because the system has inversion symmetry, each helical edge band is doubly
degenerate as shown in Fig. 3.10(b).
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Figure 3.9: 1D energy bands for typical graphene nanoribbons with (a) zigzag and (b) armchair
edges without the inclusion of spin degree of freedom.
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Here, we introduced the first example for the theoretical prediction of the QSH phase pro-
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Figure 3.10: (a) 1D energy bands of a zigzag nanoribbon for λso = λr = λv = 0. There exists
spin degeneracy everywhere especially for flat bands. (b) 1D energy bands of a zigzag nanoribbon
for λso 6= 0 and λr = λv = 0. The SOC strength λso induces a gap and thus the degeneracy of
bands is lifted except for the points that are TRIM. (c) 1D energy bands of an armchair nanoribbon
whose bulk bands correspond to the insulating case. The appearance of helical edge states due to
turning on the λso term is a purely topological effect.

posed in the initial paper of Kane and Mele on TIs with TRS [57]. The emergence of
these metallic edge states is a consequence of the topology of the bulk band structure of
graphene which theoretically is classified as a TI [139].
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Now, we consider the case of a strip where the edges are along the armchair direction. As
we know, in the absence of the SOC, the 1D spectrum of a strip geometry with an armchair
edge can be either metallic or insulating depending on the width of the ribbon [150]. Here,
we consider widths which correspond to the insulating case as shown in Fig. 3.9(b). Note
that the reason for having the band gap in the 1D spectrum of armchair nanoribbons is the
effect of quantum confinement.
As stated, we believe that graphene is a TI [139]. Thus, we expect that the helical edge
states should appear at every boundary. So, the armchair edge should not be a kind of
exception. If we turn on the SOC, a gap is induced at the Dirac points in the bulk spec-
trum. However, as shown in Fig. 3.10(c), by increasing the strength of the SOC, one can
see the appearance of edge states in the corresponding armchair spectrum. This is a purely
topological effect which is another demonstration for the existence of the QSH phase in
graphene.
A question that might be raised here is how can we make sure that these states really have
edge nature? In order to check this, one can simply plot the corresponding wavefunction
in real space. Then, the behavior of the wavefunctions can show the localization of the
states near the boundaries and thus establish their edge nature.
So far we have set the parameters λr and λv to be zero. This actually reduced the Kane-
Mele model to two independent copies of the Haldane model [117]. However, varying
these parameters allows us to define different types of phases which gives rise to the phase
diagram of the Kane and Mele model [139]. The exact calculation of such phase diagrams
require to define the topology of bulk bands in a quantitative manner. To this end, in what
follows, we will shortly introduce the different ways to determine the topology of a band
insulator. Then we will return to the Kane and Mele model in the last section of this chap-
ter and obtain the corresponding phase diagram using the numerical method that we have
utilized in this thesis.

3.3 How to distinguish a TI from a normal insulator?

In the previous section, we shortly introduced the QSHE in graphene as a basic exam-
ple. However, a short yet comprehensive description of quantitative classification of TIs
is desirable. On the other hand, as a first step toward paving the way for practical applica-
tions, the material realization of TIs with desired physical properties is of crucial impor-
tance [92, 122–132]. Thus, the search for theoretical prediction of new candidate materials
for TIs is of great significance. As stated, there exist several ways to determine the band
topology of a crystal, and to predict whether it is a TI. In what follows, we proceed by
giving a brief review of the ways to distinguish a TI from a normal insulator.
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3.3.1 Bulk-boundary correspondence

Previously we used the appearance of helical edge states at the boundaries of graphene
nanoribbons to demonstrate the QSH phase in graphene. This is related to a concept
which is called bulk-boundary correspondence [128, 129]. The bulk-boundary correspon-
dence establishes a connection between the topology of bulk bands and the multiplicities
of gapless edge states at the boundary of the system [128, 129]. The classical example of
bulk-boundary correspondence is the existence of gapless chiral edge states at the inter-
face between an IQH system and vacuum [151]. We also conclude from this correspon-
dence that a 2D/3D TR invariant TI has topologically protected edge/surface states [125].
Therefore, based on this correspondence, one way to determine whether an insulator has
non-trivial topology is to check the existence of gapless edge/surface states in the spectrum
associated with the boundary of a TR invariant system [125]. To be more explicit, we now
consider a generic TR-invariant 2D insulator and show the distinct non-trivial bulk insu-
lating phases by looking at different possible configurations of edge states at the boundary
of the system. TRS as a fundamental symmetry leads to some consequences in the energy
spectrum of the system. As shown in Fig. 3.2(a), there are four TRIM in the corresponding
BZ of a simple rectangular lattice. Since the degeneracy at these special points is protected
by TRS, a perturbation that preserves this symmetry, can not break the degeneracy.
Schematic representations of the energy spectrum for a 1D TR invariant strip are shown in
Figs. 3.11. The shown edge states belong to only one boundary. As seen, the points k = 0
and k = π/a are TRIM where the energy levels must be degenerate (see Figs. 3.11(a)).
If we look at mid-gap states, by going away from TRIM points, the degeneracy is lifted
due to SOC. There are three options to connect the mid-gap states at k = 0 and k = π/a:
The first way is to connect the two Kramers degenerate edge states at k = 0 to the same
Kramers pairs at k = π/a (Fig. 3.11(b)). In this case, there are even number of Kramer
pairs at every energy within the mid-gap region. One can easily check that using an edge
potential or TR invariant perturbation which does not close the bulk energy gap, these
edge modes are pushed completely into the bulk spectrum. So, this case corresponds to a
topologically trivial insulator. The second way of pairing is shown in Fig. 3.11(c). Since
there exists no fundamental symmetry to protect the level crossing at point s, a small TR
invariant perturbation can lift its degeneracy and reduce it to the first type of pairing. Thus,
this case also corresponds to a trivial insulator. The third case is a zigzag way. One can
connect the two Kramers degenerate edge states at k = 0 to two different Kramers pairs at
k = π/a from the valence band to the conduction band (Fig. 3.11(d)). In this case, if one
count the number of the right moving states and the left moving states within the energy
gap, it always gives an odd number. These edge states are robust and can not be eliminated
using an edge potential or any other TR invariant perturbation that does not close the bulk
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Figure 3.11: Schematic edge spectrum of a 2D band insulator. The bulk-boundary correspondence
provides a way for understanding the Z2 classification of band insulators. (a) The points k = 0
and k = π/a are TRIM where the energy levels must be degenerate. Away from these points the
degeneracy is lifted due to SOC. There are three options to connect the mid-gap states: (b) The first
way is to connect the two Kramers degenerate edge states at k = 0 to the same Kramers pairs at
k = π/a. (c) The second way of pairing. Since there exists no fundamental symmetry at point s,
it is topologically equivalent with the first way of pairing. (d) The third way is a zigzag method.
One can connect the two Kramers degenerate edge states at k = 0 to two different Kramers pairs
at k = π/a going from the valence band to the conduction band.

energy gap. So, this case corresponds to a topologically non-trivial phase which is called
a QSH phase.
Therefore, the existence of two and only two topologically different ways to connect the
two Kramers degenerate edge states at k = 0 and k = π/a, implies the existence of two
distinct topological phases in a 2D insulating system which are called even or odd Z2 class.
Since 2006, independent theoretical studies [59, 152, 153] discovered that there exists a
natural generalization from a QSH insulator to a 3D counterpart which is called 3D TI.
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This is different from the QHE, which is limited only to 2D systems. The existence of
surface states on a surface of a 3D TI is the higher-dimensional analogy of 1D edge states
at the border of a 2D TI. We shall exemplify this subject by considering the case of a
BZ with cuboid shape. As shown in Fig. 3.2(b), there are eight distinct TRIM in the
BZ of a simple orthorhombic lattice, which are defined by reciprocal lattice vectors as
Γi=(n1n2n3) = (n1G1 + n2G2 + n3G3)/2, with nj = 0, 1 [59]. Similarly, at these points,
the energy spectrum must be degenerate due to Kramers theory. This gives rise to the
formation of Dirac-like 2D states at a surface of a 3D band insulator. To characterize the
non-trivial topology of a 3D TI, a similar manner to the bulk-boundary correspondence
is useful [154]. Suppose that we consider the corresponding surface sates in the (kx, ky)-
plane. This corresponds to open boundary conditions perpendicular to the z-axis. As
shown in Fig. 3.12(a), four TRIM points Γ000, Γ100, Γ010, Γ110 lie in the (kx, ky)-plane.
Figures 3.12(b) and (c) show the previously described two topologically non-equivalent
ways of connecting edge states along the kx and ky axes. Clearly, to have a surface state
one needs to make a connection for both kx and ky directions. Therefore, the ways that (b)
and (c) types of connections are used for both directions lead to three general classifica-
tions: If one connects both directions via (c) type, it leads to a strong TI. If the connection
is done via both (b) and (c) types, then one gets a weak topological insulating phase.
Finally, when a (c)-type of connection is used for both directions, we obtain a trivial insu-
lating phase.
It is very important to note that, there exist an odd number of surface Dirac cones for a
strong TI, while in the case of a weak TI, one always see an even number of surface Dirac
cones [59]. This is a direct consequence of the number of band inversions in the bulk
energy spectrum [155].

3.3.2 Adiabatic continuity

Adiabatic continuity principle is a possible approach to characterize a topological phase
transition [137, 141, 142]. Based on this principle, two band insulator systems belong to
distinct topological classes, if there exists no adiabatic path to connect the Hamiltonian of
a band insulator into one another without closing the band gap [137, 141, 142]. There-
fore, if one can slowly change the band structure of a band insulator to that of another
by some controlling parameters, then they are topologically equivalent. For example, one
can show using the adiabatic continuity that, a material is a band insulator [137]. Because
the atomic limit is a known topological state, finding an adiabatic connection between the
Hamiltonian of the material and this known phase establishes that it is an ordinary band
insulator [137]. Figure 3.4 shows the schematic band structure of a band insulator obtained
by continuous deformation of the corresponding energy levels of atomic level. However,
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Figure 3.12: Schematic surface spectrum of a 3D band insulator in the mid-gap region assuming
open boundary conditions is perpendicular to the z-axis. A similar manner to the bulk-boundary
correspondence provides a way for understanding the Z2 classification of 3D band insulators. (a)
four TRIM points Γ000, Γ100, Γ010 and Γ110 lie in the (kx, ky)-plane. (b) and (c) show the previ-
ously described two topologically non-equivalent ways of connecting edge states along the kx and
ky axes. The ways that (b) and (c) types of connections are used for both directions can lead to a
NI, a weak TI, or a strong TI.

continuously deforming of the topologically known spectrum Fig. 3.4 (a) to the topologi-
cally unknown spectrum Fig. 3.4 (b), requires many intermediate calculations. Therefore,
this approach is computationally demanding, which limits most of its applications [141].

3.3.3 Computing the Z2 invariant

As previously discussed, in the presence of the TRS, the Hall conductance is zero. This
means that the Chern number is not a suitable invariant for dividing systems with TR sym-
metry class [139]. In 2005, Kane and Mele proposed a new way for the classification of
a time reversal symmetric system by introducing a new topological invariant (ν) [139].
They showed that this topological classification which is called a Z2-classification, is used
to distinguish a QSH insulator from a normal insulator. Based on this classification, we
find that all time reversal invariant 2D band insulators can be divided into two distinct
categories: ν = 0 for a normal insulator and ν = 1 for a QSHI [139]. According to this
classification, a 3D band insulator falls into three general categories: an ordinary insulating
phase, a weak topological insulating phase, and a strong topological insulating phase [59].
Therefore, the most straightforward method for determining the topological nature of a
TR band insulator is computing the Z2 invariant. Note that, this invariant characterizes the
topology of the bulk band structure, and the calculations are done over the corresponding
BZ.
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There are several equivalent ways of computing the Z2 invariant [126, 128, 129, 156].
Here, we briefly review the most commonly used ways to determine the Z2 invariant in 2D
and 3D band insulators.

2D band insulators

We start with introducing the sewing matrix [157]

wmn(k) = 〈um(−k)|Θ|un(k)〉. (3.12)

By using equation
|um(−k)〉 =

∑
n

w∗mn(k) Θ |un(k)〉, (3.13)

one can easily show that∑
m

w†lm(k)wmn(k) = 〈un(k)|ul(k)〉 = δnl. (3.14)

This equation implies that wmn(k) is a unitary matrix [157]. Equations (3.13) and (3.14)
lead to the following property

wnm(−k) = −wmn(k), (3.15)

which means that at a TRIM Γi, w matrix becomes antisymmetric, i.e.

wnm(Γi) = −wmn(Γi). (3.16)

We consider 2N occupied bands which formN Kramers pairs. Therefore the matrixw can
be divided into N pairs whose elements are denoted by wI,IImn (k). Using relations (3.36)
we have

wI,IImn (k) = 〈um,I(−k)|Θ|un,II(k)〉 = δmne
−iχ(k,n)

wII,Imn (k) = 〈um,II(−k)|Θ|un,I(k)〉 = −δmne−iχ(−k,n). (3.17)

Therefore, the representation of matrix w at Γi is

w(Γi) =


0 e−iχ(Γi,1) 0 0 . . .

−e−iχ(Γi,1) 0 0 0 . . .

0 0 0 e−iχ(Γi,2) . . .

0 0 −e−iχ(Γi,2) 0 . . .
...

...
...

... . . .

 . (3.18)
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This is a 2N × 2N skew-symmetric tridiagonal matrix, which allows us to define Pfaffian
for it [157]. The Pfaffian of such matrices are related to the determinant by

Pf[w]2 = Det[w], (3.19)

and for matrix (3.18) is obtained as follows [157]

Pf[w(Γi)] = wI,II11 (Γi)w
I,II
22 (Γi) . . . w

I,II
N−1N−1(Γi)w

I,II
NN (Γi) = e−i

∑N
n=1 χ(Γi,n). (3.20)

By using the modern theory of charge polarization [158], Fu and Kane [138] showed that
the topological invariant ν is related to the Pfaffian of matrix w as

(−1)ν =
4∏
i=1

Pf[w(Γi)]√
Det[w(Γi)]

. (3.21)

We define the function δ(Γi) at these four TRIM as

δ(Γi) =
Pf[w(Γi)]√
Det[w(Γi)]

, (3.22)

which using relation (3.19) only takes values ±1. Thus we rewrite the topological invari-
ant (3.21) for a 2D system as

(−1)ν =
4∏
i=1

δ(Γi), (3.23)

which classifies 2D band insulators into topological (ν = 1) and trivial (ν = 0) ones.
Although this equation seems to require only a knowledge of the occupied cell-periodic
eigenfunctions at four TRIM, it also needs a globally smooth gauge choice throughout the
whole BZ, which makes it usually inappropriate for computational implementation [125,
156, 159]. Therefore, developing (almost) gauge-independent methods to calculate the Z2

invariant is more favorable [156]. However, the derivation of this formulation had a central
role, since it paved the way for the extension to higher dimensions [59].
It was shown that the problem of globally smooth gauge choice can be avoided if the
system has an extra symmetry [125]. For example, if perpendicular spin sz is a good
quantum number, then one can define the independent first Chern numbers c↑ and c↓. Since
the system has TRS, we have c↑ + c↓ = 0. However, the spin-Chern number cσ = c↑ − c↓
is quantized and gives the Z2 invariant via [160].

ν = cσ mod2. (3.24)
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It is to be noted that, though c↑ and c↓ become meaningless in the presence of spin non-
conserving Rashba terms, the spin-Chern number cσ is well defined [160–162].
In a system with inversion symmetry, computing the Z2 invariant becomes a greatly sim-
plified procedure [137]. Fu and Kane [137] showed that there exists a simple formula to
calculate δ(Γi) as

δ(Γi) =
N∏
m=1

p2m(Γi), (3.25)

where p2m(Γi) is the eigenvalue of the parity of states at TRIM Γi formth Kramers partner.
Hence, Eq. (3.32) can be rewritten as

(−1)ν =
4∏
i=1

N∏
m=1

p2m(Γi). (3.26)

As proposed in the early work of Fu and Kane [138], the Z2 invariant can also be formu-
lated as an obstruction against defining a globally smooth gauge. They showed that an
equivalent method to calculate the Z2 invariant is as an integral over half the BZ which is
given by

ν =
1

2πi

[∮
∂HBZ

dk · A(k)−
∫

HBZ
d2kF(k)]

]
(mod 2), (3.27)

where HBZ denotes half the BZ. The central quantities are the Berry gauge potential

A(k) =
∑
n

〈un(k)|∇nun(k)〉, (3.28)

and the Berry field strength
F = ∇k ×A(k) |z, (3.29)

where un(k) is the periodic part of the Bloch state with band index n and the summation
runs over all occupied states. According to Stoke’s theorem, it is obvious that if A and
F have the same gauge which is smooth over HBZ, the result will vanish [138]. There-
fore, one needs to fix the gauge with some additional constraints [138, 163]. Starting from
Eq. (3.27), Fukui et al. derived an efficient formula for computing the Z2 invariant for a
lattice BZ which is (almost) gauge-independent, though it requires a TR adapted gauge at
the boundary of half of the BZ [115, 156]. By choosing a gauge, in which the correspond-
ing states fulfills the TRS constraints in addition to the periodicity of the k points, that are
related by a reciprocal lattice G, the gauge fixing procedure is complete and the returned
results of ν = 0 and ν = 1 represents the trivial and topological phases, respectively.
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3D band insulators

The introduced generalization of a QSH insulator to a 3D TI in Sec. (3.3.1) is a milestone
in the development of TIs. As noted, the extension to three dimension defines an insulat-
ing bulk and conducting surface states. Fu, Kane and Mele [59] first made the connection
between the topology of the mentioned insulating bulk and surface states by generalizing
the Z2 invariant to three dimensions. In a 3D band insulator with TRS, there are eight
distinct TRIM in the BZ, which define six planes with corresponding Z2 invariants. How-
ever, since some planes share two TRIMs, the corresponding topological Z2 invariants
are not independent [152]. As a generalization, they [59] suggested that the topological
nature of a 3D band insulator can be characterized by four independent topological invari-
ants (ν0; ν1ν2ν3). Again, similar to Eq. (3.22) the function δ(Γn1,n2,n3) at eight TRIM is
defined as

δ(Γn1,n2,n3) =
Pf[w(Γn1,n2,n3)]√
Det[w(Γn1,n2,n3)]

. (3.30)

Using this definition, the four independent Z2 invariants are given by

(−1)ν0 =
∏

n1,n2,n3=0,1

δ(Γn1,n2,n3) (3.31)

(−1)νi =
∏

nj 6=ni=0,1;ni=1

δ(Γn1,n2,n3) (i = 1, 2, 3). (3.32)

It follows from these equations that a 3D band insulator falls into three general cate-
gories [59]: if all four topological invariants are zero, then the system is a trivial insulator.
The system is called a strong TI when ν0 = 1, where there are an odd number of Dirac
cones on all surface of the system. And it is called a weak TI when ν0 = 0 and at least one
of the invariants νi(1, 2, 3) is nonzero. In this case there is an even number of Dirac cones
on the surfaces [59, 129].

3.3.4 Topological quantum chemistry: the most recent approach
The approaches of quantum physics and quantum chemistry to treat the electronic band
structure of a material are different. The physics approach is based on the extended elec-
tronic states, while chemistry deals with the problem via locally looking at the orbital
bonds in real space. However, finding an interface between chemistry and physics can
provide a better understanding of electronic properties of materials. In other words, the
answer to the question what chemistry does tell us about the universal properties of the
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system, can remedy the disconnection between chemistry and physics. There are some
properties that can be universal due to the existence of a fundamental symmetry. For ex-
ample, the number of energy bands and the ways that they are connected to each other at
special momenta can be universal properties. So, the point in question is that how can we
derive directly these properties using real space chemistry?
The connection between chemical orbitals of elements in real space and the band theory
in momentum space was proposed first by Zak in 1980 [164]. Utilizing the elementary
band representations as mathematical vehicles [165], Zak made the link between the or-
bital representation of electrons that sit in lattice sites and the corresponding energy bands
in momentum space [165, 166]. He introduced his theory for spinless systems, with and
without TR symmetry.
A recent seminal paper by Bradlyn et al. [167], has extended the Zak’s theory to the dou-
ble spinful groups in the presence of TR. The theory exploits the concept of elementary
band representations to provide criteria for determining the topological nature of band
structures. In other words, it classifies the universal global properties of all possible band
structures and materials using group theory [167]. Indeed, their work is a revolutionary
theory for topological quantum chemistry which is the newest formalism to predict novel
topological phases of materials. For all 230 crystal symmetry groups, they classified the
possible energy spectra that arise from local atomic orbitals, and showed which are topo-
logically non-trivial [167]. This is a very strong theory that tells one how materials can
exist from the topological point of view.
Since the novelty of the approach, it is out of the scope of this thesis. We refer to a series
of related papers [166–170] that will allow the reader to obtain the latest information in
the field.

3.4 Lattice computation of Z2 invariant
From a numerical point of view, finding the Z2 invariant requires to do calculations on a set
of discrete points chosen appropriately within the BZ [115]. As mentioned in Sec. (3.3.3),
Fukui et al. derived an efficient formula for lattice computation of Z2 invariant which is
(almost) gauge-independent [115, 156]. That is to say, it only requires a TR adapted gauge
at the boundary of half of the BZ [115, 156]. This numerical method is very convenient to
implement in TB models even in realistic models of 3D systems [115, 159].
To see how this algorithm is implemented, we consider the corresponding BZ of a rectan-
gular lattice as shown in Fig. 3.13. We then mesh the BZ so that each site of the lattice is
defined by

kl =
1

2
(
j1
N1

G1,
j2
N2

G2), (j1(2) = −N1(2), . . . , N1(2)), (3.33)
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where G1(2) is a reciprocal lattice constant, N1(2) is a positive integer, and l specifies the
lth plaquette. As stated before, the Berry field strength F is gauge-invariant, but the Berry
potential A is not [90]. Therefore, any arbitrary choice of gauge for F is relevant and the
gauge fixing procedure should only be done for A. In other words, the formula 3.27 for
ν is made meaningful when a choice of gauge for the corresponding eigenfunctions at the
boundary of half of the BZ is considered.
The gauge fixing procedure is as follows: we have divided the boundary of half of the BZ
into six segments as labeled from 1 to 6, where each segment is separated from others by
TRIM as shown in Fig. 3.13. Since the points on the segment 6 (k′l ∈ 6) are the periodic
image of those on the segment 5 (k′l = kl +G1, kl ∈ 5), the periodic gauge [137] implies

|un(kl +G1)〉 = e−iG1·r|un(kl)〉. (3.34)

Therefore, the contributions of the segments 5 and 6 to the integral of A over HBZ cancel
out. We accept an arbitrary gauge choice along the segments 1 and 3, for example, the
output of our numerical calculations for Bloch eigenfunctions [163]. Then, according to
the TR constraint, the corresponding states of a Kramers pairs along the segments 2 and
4 are constructed, and the translational phase factors must be properly considered. The
points on the segment 2 (−kl ∈ 2) are directly the TR partners of those on the segment 1
(kl ∈ 1). Then the states at −kl are constrained as

|un,I(−kl)〉 = Θ|un,II(kl)〉
|un,II(−kl)〉 = −Θ|un,I(kl)〉. (3.35)

The points on the segment 4 (k′l ∈ 4) are the periodic image of the points which are the
TR partners of those on the segment 3 (k′l = −kl + G2, − kl ∈ 4′,kl ∈ 3). Thus, the
states at k′l ∈ 4 are constrained as

|un,I(−kl +G2)〉 = e−iG2·rΘ|un,II(kl)〉
|un,II(−kl +G2)〉 = −e−iG2·rΘ|un,I(kl)〉. (3.36)

Finally, at the special points Γ1, Γ2, Γ3 and Γ4, we accept an arbitrary gauge for state
|un,I(Γi)〉 and enforce the constraint

|un,II(Γi)〉 = −Θ|un,I(Γi)〉, (3.37)

and the states at Γ5 and Γ6 are constructed via

|un(Γ5(6))〉 = eiG1·r|un(Γ3(2))〉. (3.38)
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Figure 3.13: The lattice mesh on the BZ of a rectangular lattice. The division of the boundary of
half of the BZ into six segments as labeled from 1 to 6.

Now we can use the new obtained set of eigenfunctions to compute the Z2 invariant. The
discretized BZ version [115] of Eq. (3.27) for numerical computing the Z2 invariant, is
written as

ν =
1

2πi

[ ∑
kl∈∂HBZ

Ax(kl)−
∑

kl∈HBZ

Fxy(kl)

]
(mod 2), (3.39)

where Ax(kl) and Fxy(kl) are the modified non-Abelian Berry connection and Berry cur-
vature in Eqs. (3.28) and (3.29), respectively. These modified quantities are defined as

Ax(kl) = lnUx(kl), (3.40)

Fxy(kl) = ln
Ux(kl)Uy(kl + x̂)

Uy(kl)Ux(kl + ŷ)
, (3.41)

where the so-called unimodular link variable Uµ(kl) is given by [115]

Uµ(kl) =
detψ†(kl)ψ(kl + µ̂)

|detψ†(kl)ψ(kl + µ̂)|
. (3.42)

Here, µ̂ denotes a unit vector in x-y plane as shown in Fig. 3.13. Note that the Berry po-
tential and Berry field strength are both defined within the branch of Ax(kl)/i ∈ (−π, π)
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and Fxy(kl)/i ∈ (−π, π) [115].
In what follows, we compare some results obtained by the numerical implementation of
this method with analytic results in order to demonstrate the validity of our algorithm.

3.4.1 Z2 invariants for the Kane and Mele Model
Let us again start with the Kane and Mele model Hamiltonian (3.7). The Fourier transform
of the preceding Hamiltonian gives the general Bloch Hamiltonian in momentum space as

H =
∑
k

ψ†kHkψk, (3.43)

where we have used the basis spinor ψ†k = {ψ†A↑, ψ
†
B↑, ψ

†
A↓, ψ

†
B↓} with Hk being

Hk =

(
Hk(↑↑) Hk(↑↓)
Hk(↓↑) Hk(↓↓)

)
, (3.44)

where each block is a 2× 2 matrix and are given by

Hk(↑↑) = H0
k +Hλν

k +Hλso
k ,

Hk(↓↓) = H0
k +Hλν

k −H
λso
k ,

Hk(↑↓) = Hλr
k , Hk(↓↑) = Hλr

k

†
. (3.45)

Using the lattice vectors shown in Fig. 3.7, the matrices H0
k, Hλν

k , Hλso
k and Hλr

k are
explicitly represented as

H0
k =

(
0 f(k)

f ∗(k) 0

)
,

Hλν
k =

(
λν 0
0 −λν

)
,

Hλso
k =

(
g(k) 0

0 −g(k)

)
,

Hλr
k =

(
0 h(k)
i(k) 0

)
, (3.46)

where

f(k) = t[eik·a1 + eik·a2 + 1],

g(k) = 2λso[− sin(k · a1) + sin(k · a2)− sin(k · (a2 − a1))],

h(k) = iλr[e
i(k·a1+π

3
) + ei(k·a2−π3 ) − 1],

i(k) = −iλr[e−i(k·a1−π3 ) + e−i(k·a2+π
3
) − 1]. (3.47)
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Figure 3.14: (a) Analytic phase transition boundaries of Kane and Mele model obtained from
Eq. (3.50). Calculated phase diagram of Kane and Mele model using numerical formula Eq (3.51).

One can simply diagonalize this Hamiltonian to obtain the energy spectrum of this model.
This gives rise to band insulators in which can be either trivial or topological [139]. The
transition between these trivial and topological phases depends on the values of parame-
ters λso, λν , and λr which result in a phase diagram. At the phase transition boundary, a
band closure occurs which are located at K and K′. The explicit representation of Hamil-
tonian (6.14) at K′ point is

HK =


λν−3

√
3λso 0 0 −3iλr

0 −λν+3
√
3λso 0 0

0 0 λν+3
√
3λso 0

+3iλr 0 0 −λν−3
√
3λso

 , (3.48)

which results in the energy gap

Eg = |6
√

3λso − λν −
√
λ2ν + 9λ2r|. (3.49)

Here, we assume that λso > 0 and rewrite the energy gap in unit of λso as Eg/λso =

|6
√

3 − λν/λso −
√

(λν/λso)2 + 9(λr/λso)2|. Therefore the phase transition boundaries
as shown in Fig. 3.14 are given by

λr
λso

= ±

√
12− 4

√
3

3

λν
λso

. (3.50)

To recognize the topology of each region, we can examine the edge band structure of
graphene strip with zigzag edges for fixed values of parameters. We choose t as the en-
ergy scale and fix the values of the other parameters as Ref. [139] to be λso = 0.06t,
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Figure 3.15: 1D energy bands for a zigzag strip in the Kane and Mele model adapted from [139].
(a) QSH phase with λν = 0.1t and (b) Normal insulating phase with λν = 0.4t. For both cases
λso = 0.06t and λr = 0.05t.

λr = 0.05t, and λν = 0.1t and λν = 0.4t for Figs. 3.15(a) and (b) [139], respectively. As
seen, both energy spectrum have a bulk energy gap and edge states. But, the different be-
havior of the edge states signals the existence of the distinct topological phases. As shown
in Figs. 3.15(a) and (b), in the QSH phase the edge states traverse the energy gap in pairs,
whereas in the insulating state the edge states do not traverse the gap [139]. Therefore, we
can simply classify the separated regions as ν = 1 and ν = 0 (see Fig. 3.14(a)).
As discussed before, the most straightforward way for determining the topology of the
band insulators and obtaining the corresponding phases is the calculation of the Z2 invari-
ant. Here, we proceed by numerical calculation of the Z2 invariant for the Kane and Mele
model and comparing the obtained phase diagram with the analytic expression.
Equation (3.39) is the formula for the Z2 invariants of rectangular lattices. Therefore, in
order to use this formula for the Kane and Mele model with a honeycomb lattice, one can
again simply use the change of variables (2.54 to convert the equivalent rhombus shape of
the honeycomb BZ in k space as shown in Figs. 2.10(a) and (b), into a unit square in q
space (See Fig. 2.10). This, allows us to use the more simple lattice version of Eq. (3.27)

ν =
1

2πi

 ∑
ql∈∂HBZ

Ax(ql)−
∑

ql∈HBZ

Fxy(ql)

 (mod 2), (3.51)

where the lattice sites of the BZ are labeled by ql. Thus, the described gauge fixing pro-
cedure is applied on the equivalent q points. The unimodular link variable U , the Berry
potential A and the Berry field F are rewritten in the qx-qy plane, and the numerical cal-
culations is done over the lattice version of square BZ in Fig. 2.10(b).
In Fig. 3.14(b), we have shown the numerically obtained Z2 phase diagram for the Kane
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and Mele model. We see that the two phases obtained from our numerical calculations
are accurately described by the analytic expression (dotted lines) for the phase transition
boundary.

3.4.2 Z2 invariants for bilayer graphene
As one more example, we consider the TB Hamiltonian for the AB-stacked bilayer graphene
in the presence of Rashba SOC [171]. We also suppose that an interlayer potential differ-
ence 2V is applied by a gate voltage to the planes of bilayer graphene [171]. Hence, the
model Hamiltonian is given by
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Figure 3.16: (a) Phase diagram of Z2 invariants of bilayer graphene as a function of gate voltage and
Rashba SOC at fixed interlayer tunneling t⊥/t = 0.1429. Adapted from [171]. (b) Reproduction
of the phase diagram (a) using numerical formula Eq. (3.51). The dashed line shows the analytic
expression for the boundary of a topological phase transition which exactly matches the obtained
numerical boundary.

HBLG = HT
SLG +HB

SLG + t⊥
∑

i∈T,j∈B,σ

c†iσcjσ

+V
∑
i∈T,σ

c†iσciσ − V
∑
i∈B,σ

c†iσciσ. (3.52)

Here, HT
SLG (HB

SLG) is the single layer Hamiltonian of the top (bottom) graphene layer
including the Rashba SOC [171]

HSLG = t
∑
〈ij〉σ

c†iσcjσ + iλr
∑
〈ij〉σσ′

c†iσ(s× d̂ij)
σσ′

z cjσ′ , (3.53)
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as we have explained in the Kane and Mele model. The third term in Eq. (3.52) is the
interlayer tunneling between the two layers with hopping energy t⊥, and the mentioned
interlayer potential difference 2V is given by the last two terms [171].
Similarly, we can rewrite this model Hamiltonian in the Fourier space and diagonalize it
to obtain the corresponding energy bands. Using the formula Eq. (3.51), we numerically
calculated the Z2 invariants over the honeycomb BZ of bilayer graphene as a function of
V and λr at fixed hopping t⊥/t = 0.1429 to reproduce the obtained phase diagram of the
Z2 invariants in Ref. [171] (see Figs. 3.16(a) and (b)). Using the low-energy Hamiltonian
of bilayer graphene, it was shown [171] that the topological phase transition boundary is
given by

λ2r = V 2 + t2⊥. (3.54)

We have plotted this analytic expression (dashed line) on the numerically obtained bound-
ary of topological phase transition in Fig. 3.16(b). The comparison between the phase
diagrams in Fig. 3.16(a) and Fig. 3.16(b) shows that the results of Fig. 3.16(a) have ac-
curately reproduced which demonstrates the validity of our algorithm to determine the
topology of band insulators.
In the remaining parts of this thesis, we will use this numerical recipe for the calcula-
tion of the Z2 invariants whenever it is required to investigate the topology of bulk band
structures.

3.5 Experimental Signatures of TIs

During the past few years many 2D TI and 3D TI host materials have been theoretically
predicted (A comprehensive review on the 2D and 3D host materials for TIs can be found
in Ref. [132]). However, many of the theoretically predicted TI host materials have not
been realized experimentally [132]. For example, as we mentioned before, the theoreti-
cal predictions of QSH phase in graphene [57] and in conventional semiconductors in the
presence of a strain gradient [58] are very difficult to be realized in experiments. Nev-
ertheless, some of these potential host materials have already been verified by experi-
ments [132]. To the best of our knowledge, the materials realization of 2D TIs is still
limited to only the quantum well systems CdTe/HgTe/CdTe [118] and InAs/GaSb/AlSb
[172]. On the other hand, the movement toward synthesizing 3D TI host materials has
been easier, leading to a wider generation of materials realization including simple ele-
ments, binary compounds, ternary compounds, and quaternary compounds [173]. In what
follows, we introduce briefly the experimental methods to identify the signature of QSHE
in 2D TIs and the existence of topologically protected surface states in 3D TIs.
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Figure 3.17: The first experimental evidence which establishes the existence of QSH phase.
Adapted from [118]. Shown are the four-terminal resistance R14,23 = V23/I12 in a Hall bar geom-
etry as a function of the gate voltage Vg − Vth at temperature 30mk.

3.5.1 Transport measurements

In a further attempt to investigate new materials with non-trivial topology, Bernevig,
Hughes, and Zhang [121] (BHZ) introduced an effective model which provides an ex-
perimental way to achieve a topological phase transition from a normal insulator to a
TI in a sample of inverted HgTe/CdTe quantum well by varying the thickness dc of the
HgTe layer. They showed that in the heterostructure CdTe/HgTe/CdTe the band inversion
in the HgTe thin film necessarily gives rise to a level crossing at the critical thickness
dc ≈ 6.3nm [121]. This is due to the fact that CdTe is a normal insulator with a positive
gap whereas HgTe is a semi-metal with inverted (negative) gap [121]. Therefore, the pre-
dominance of CdTe or HgTe in the sample leads to different electronic band structure of
corresponding heterostructure [121]. For thickness dc < 6.3nm the quantum well is in the
normal phase, because the CdTe is predominant. For thickness dc > 6.3nm the quantum
well is in the topological phase, because the HgTe film dominates [121].
This theoretical prediction of the QSH phase was soon observed in a series of transport

measurements on HgTe quantum wells [118, 174]. Figure 3.17 shows the first experi-
mental evidence which established the existence of the QSH state [118]. As seen, the
four-terminal resistances R14,23 = V23/I12 in a Hall bar geometry have plotted for samples
with different sizes as a function of the gate voltage Vg−Vth. Here, Vth denotes the thresh-
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old voltage which R14,23 takes its maximum value. The transport measurements have been
done in the absence of any magnetic field and at temperature 30mk. Indeed, by varying
the gate voltage one can probe the presence of an energy gap. Then, to establish the exis-
tence of a pair of conducting counter-propagating edge states at one edge, the analysis of
the transport measurement must be done where the Fermi level position is inside the band
gap. Therefore, each one of them shares a conductance of e2/hwhich results in a non-zero
value of conductance 2e2/h for the bulk-insulating regime.
The black curve I and curves II, III and IV (blue, green and red respectively) show the
transport measurements for the well thicknesses dc = 5.5nm and dc = 7.3nm, respec-
tively. The sample sizes are (20.0 × 13.3 µm2) for samples I and II, (1.0 × 1.0 µm2) for
sample III, and (1.0 × 0.5 µm2) for sample IV. As expected, since in the sample I the
thickness of the well corresponds to a normal band ordering, it shows a large resistance if
the Fermi energy is in the band gap. In contrast, the thicknesses of the wells II, III, and IV
correspond to inverted band gaps. Hence, one expects theoretically to observe a conduc-
tance 2e2/h associated with one edge when the Fermi energy is in the band gap. However,
due to the inelastic scattering length (which is estimated at about lin ≈ 1µm [118] for the
temperature used in the measurement) compared to the sample size, the measured conduc-
tance shows an enhanced resistance as seen in curve II. This originate from the fact that in
the presence of TR symmetry elastic scattering is prohibited but it does not protect them
against inelastic scattering which leads to backscattering and contribution in the enhance-
ment of longitudinal resistance [118]. Notably, in curves III and IV where the sample
sizes are shorter than the inelastic scattering length, measurements show a conductance
2e2/h independent of the sample sizes which convincingly demonstrate the existence of
counter-propagating edge states in the QSH phase [118]. Note that some fluctuations are
seen at plateaus which can be explained by the existence of potential fluctuations within
the sample [118].

3.5.2 Angle-resolved photoemission spectroscopy measurements

Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods to
investigate the electronic band dispersion in crystalline solids [176]. In recent years, this
method has been used especially to study the topological characteristics of TIs [175], Dirac
semimetals [177] and Weyl fermions [178]. Among the list of experimentally confirmed
3D TIs, the most famous family is the binary compounds Bi2Te3, Bi2Se3, Sb2Te3, and
their alloys [132, 173]. As an example, we have shown in Fig. 3.18 the obtained ARPES
measurements for the electronic band structure of undoped Bi2Se3 [175]. As can be seen in
Fig. 3.18(a), in addition to the bulk conduction band (BCB) and bulk valence band (BVB),
there exists a surface state band (SSB) which consists of a single Dirac cone demonstrating
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Figure 3.18: Detection of Z2 topological order in Bi2Se3 using ARPES. Adapted from [175]. (a)
In addition to BCB and BVB, there exists a SSB which consists of a single Dirac cone. (b)The
band structure along with some high symmetry points in the hexagonal surface BZ of Bi2Se3.

that Bi2Se3 is a 3D TI [175]. Figure. 3.18(b) shows the band structure along with some
high symmetry points in the hexagonal surface BZ of Bi2Se3. The BCB bottom (EB) is
about 190 meV above the Dirac energy (ED) and 150 meV below (EF).

3.5.3 Scanning tunneling microscope measurements
Scanning tunneling microscopy and spectroscopy (STM/S) measurements are also ex-
pected to play an important role in making progress toward the experimental observation
of 3D TIs [179, 180]. Using this surface sensitive technique whose principle of operation
is based on the idea of quantum tunneling, one can study surface topography (STM mea-
surement) and obtain some information on the electronic structure at a given location in
the sample (STS measurement) [180]. The STS measurements give rise to a plot of the
local density of states as a function of energy of the sample [180] which can be utilized to
establish the realization of topological gapless surface states in a host material [179, 180].
As an example of the experimental demonstration of topological surface states, Zhang et
al. [179] used a scanning tunneling microscope to report direct imaging of standing waves
in 3D TI Bi2Te3 due to scattering of the topological states off Ag impurities [179]. The
existence of standing waves robustly supports the idea of the surface nature of topological
modes [179]. They also studied the gapless surface states of Bi2Te3 by STS which detects
the differential tunneling conductance dI/dV [179]. As depicted in Fig. 3.19(a), their
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Figure 3.19: (a) The differential tunneling conductance dI/dV taken on bare Bi2Te3(111) surface.
Adapted from [179]. (b) The calculated band structure of Bi2Te3(111) along with high symmetry
directions of surface BZ. Adapted from [179].

results showed that the differential conductance in the bulk insulating gap of Bi2Te3 be-
haves linearly with respect to the applied bias in which is attributed to the realization of the
gapless surface states. Figure 3.19(b) shows the calculated band structure of Bi2Te3(111)
along with high symmetry directions of surface BZ which is the theoretical proof of the
observed topological surface states.



CHAPTER 4

Scaling laws for band gaps of phosphorene nanoribbons

In this chapter, we analyze the band structure, the state characterization, and electronic
transport of monolayer zigzag phosphorene nanoribbons (zPNRs) and armchair phospho-
rene nanoribbons (aPNRs), using five-parameter TB approximation. In zPNRs, the ratio
of the two dominant hopping parameters indicates the possibility of a relativistic disper-
sion relation and the existence of a pair of separate quasi-flat bands at the Fermi level.
Moreover, the corresponding states are edge localized if their bands are well separated
from the valence and conduction bands. We also investigated the scaling laws of the band
gaps versus ribbon widths for the armchair and zigzag PNRs. In aPNRs, the transverse
electric field along the ribbon width enhances the band gap closure by shifting the energy
of the valence and conduction band edge states. For zPNRs, a gap occurs at the middle of
the relatively degenerate quasi-flat bands; thus, these ribbons are a promising candidate
for future field-effect transistors (FETs).

4.1 Introduction

2D structures that are inspired by graphene such as hexagonal boron nitride (BN) and
TMDs have attracted considerable attentions owing to their remarkable electronic proper-
ties [1, 3, 181–184]. Graphene is known to have novel electronic and mechanical proper-
ties such as high carrier mobility; however, its zero band gap limits its performance. As a
TMD, MoS2 has a direct band gap of ∼1.8 eV [12] and a relatively high on/off ratio [13].
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However, the carrier mobility of MoS2 is much less than that of graphene. These lay-
ered structures can be etched or patterned as quasi-one-dimensional (1D) strips referred
to as nanoribbons. Graphene nanoribbons (GNRs) and MoS2 nanoribbons are examples
of these 1D strips. These 1D nanoribbons can offer better tunability of their electronic
structures because of quantum confinement and edge effects [185–187].
Monolayer BP has attracted much attention recently because of its remarkable properties
as we reviewed in chapter 1. Experiences with graphene and other 2D materials suggest
the electronic structure and optical properties of PNRs must be studied for future research
on phosphorene-based nanoelectronics.
Numerous studies on electronic properties of MLP and PNRs have focused on first-principle
calculations [188–193]. In this chapter, we first introduce a TB model for describing the
low-energy spectrum of MLP. Then the band structure and effective masses of the MLP
near the gap are presented based on this TB model and it is shown that the dispersion is
relativistic along the a direction and the Fermi velocities along this direction are calcu-
lated. Thereafter, the TB model is applied to zigzag and armchair PNRs to analyze their
band structure and quantum conductance and compare the results with other more sophis-
ticated calculations. The scaling behavior of band gap with ribbon width is presented and
the obtained results are compared with those of the other methods. Then,we examine the
effect of transverse electric field on the band structure and quantum conductance of both
zigzag and armchair nanoribbons.

4.2 Model Hamiltonian
We have illustrated in Fig. 4.1 the crystal structure and the lattice constants of MLP. As can
be seen, the phosphorus sites are grouped in two zigzag layers. The upper and lower sites
are shown with darker and lighter colors, respectively. The proposed TB model for MLP
includes hopping integrals (ti) over five neighbouring sites [29] as shown in Fig. 4.1(a).
The TB Hamiltonian in second quantization formalism is written as [29]

H =
∑
i,j

tijc
†
icj, (4.1)

where the summation is over the lattice sites, and tij are the hopping integrals between
the ith and jth sites. Further, c†i and cj represent the creation and annihilation operators of
electrons in sites i and j, respectively. The connections in the upper or lower layers in each
zigzag chain are represented by t1 hopping integrals, and the connections between a pair of
upper and lower zigzag chains are represented by t2 hopping integrals. Further, t3 denotes
the hopping integrals between the nearest sites of a pair of zigzag chains in the upper or



4.3 TB calculations of electronic properties of MLP 83

A
o

3.27

4.43

0

2.164

(a) (b)

t5
b

a 98.15

A
o

A
o

o

A

x

y

Figure 4.1: (a) Crystal structure and hopping integrals ti of single layer phosphorene for the TB
model. (b) Top view. Note that the dark (gray) balls represent the P atoms in the upper (lower)
layer. The dotted rectangle indicates a primitive unit cell containing four atoms. The parameters
for the bond angles and unit cell lengths are taken from [194].

lower layer, and t4 denotes the hopping integrals between the next nearest neighbor sites
of a pair of upper and lower zigzag chains. Finally, t5 is the hopping integrals between two
atoms on the upper and lower zigzag chains that are farthest from each other. The specific
values of these hopping integrals as suggested in [29] are as follows: t1 = −1.220 eV,
t2 = 3.665 eV, t3 = −0.205 eV, t4 = −0.105 eV, and t5 = −0.055 eV. The special
characteristic of this model is that the second hopping integral is positive. This implies
that the zigzag chains have negative t1 hopping integrals along the chains and positive t2
hopping integrals connecting these chains. For zPNRs, the eigenstates of the transverse
modes, which characterize the behavior of the states as edge or bulk states, are along both
t1 and t2 connections. The role of this behavior in creation of a relativistic band dispersion
along the Γ-X direction will be discussed in the next section.

4.3 TB calculations of electronic properties of MLP

In this section the band structure and effective masses of the electron and hole states of
the bulk MLP is calculated based on the above mentioned TB model and the results are
compared with ab-inito calculations. Since each unit cell of a single layer phosphorene
contains four P atoms [Fig. 4.1(b)], initially, a four band model is created. The band
dispersion along the two periodic directions of Γ-X and Γ-Y are compared and the electron
and hole effective masses are compared along the two directions. In the next subsection it
is argued that the unit cell for the electronic model only contains two P atoms resulting in
a two band model. Finally, the band gap at Γ point is derived as a function of the hopping
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Figure 4.2: Tight-binding energy band structure for bulk phosphorene.

parameters.

4.3.1 Four-band TB model
As shown in Fig. 4.1(b) the unit cell of the MLP is a rectangle containing four P atoms.
Fourier transforming, the general Hamiltonian in momentum space is given by

H =
∑

k

ψ†kH
[4]
k ψk, (4.2)

where ψ†k = (a†k b†k c†k d†k) and H [4]
k is a 4× 4 matrix

H
[4]
k =


0 Ak Bk Ck

A∗k 0 Dk Bk

B∗k D∗k 0 Ak

C∗k B∗k A∗k 0

 , (4.3)

whose elements are given by

Ak = t2 + t5e
−ika

Bk = 4t4e
−i(ka−kb)/2 cos(ka/2) cos(kb/2)

Ck = 2eikb/2 cos(kb/2)(t1e
−ika + t3)

Dk = 2eikb/2 cos(kb/2)(t1 + t3e
−ika).

(4.4)
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Here ka = k·a and kb = k·b, where a = ax̂ and b = bŷ are the primitive translational vec-
tors of the structure displayed in Fig. 4.1(b). Bulk energy bands for the MLP are shown in
Fig. 4.2. The band dispersion is relativistic along the x direction whereas it is nonrelativis-

tic along the y direction. Considering a relativistic band dispersion, E =
√
m2v4F + p2v2F ,

along the Γ-X direction and a parabolic form along the Γ-Y direction near the conduc-
tion band minimum (CBM) and valence band maximum (VBM) the effective masses and
the Fermi velocities are calculated and presented in Table 4.1. It can be deduced from
Table 4.1 that electrons and holes moving along the zigzag direction are more than six
times heavier than those moving along the armchair direction. There is a simple expla-
nation for the reason why this special combination for the dominant hopping parameters
(t1 = −1.220 eV and t2 = 3.665 eV) creates a nearly relativistic dispersion near Γ point
along the x direction. We introduce a lattice model (Fig. 4.3(a)), which is equivalent
to the MLP within the two parameter TB approximation. For this model the dispersion
along the y direction for large wavelengths along x (|ka| ∼ 0 and no dynamics along
the x direction) can be modeled by TB on a linear chain shown in Fig. 4.3(b). Sim-
ilarly, the dispersion along the x direction for |kb| ∼ 0 can be modeled by TB on a
chain shown in Fig. 4.3(c). For the linear chain of Fig. 4.3(b) the dispersion would be
2t1 cos(kb), which near kb ' 0 is −|2t1| + |t1|k2b , and it is parabolic. This dispersion
gives rise to an effective mass of m = 1.17m0, which is consistent with the data in Ta-
ble 4.1. The dispersion for the linear chain of Fig. 4.3(c) along the x direction is given

by ±
√

(2t1)2 + t22 + 4t1t2 cos(ka). In terms of the absolute values of the hopping param-

eters and near the ka ' 0, this relation is reduced to ±
√

(|2t1| − |t2|)2 + 2|t1t2|k2a. When
|t2| is close to |2t1|, we can ignore the first term under the square root and the dispersion
will be linear ±

√
2|t1t2|ka and the constant of proportionality gives a Fermi velocity of

2π
√

2(1.22eV)(3.665eV) × (4.43Å/2)/(12400eVÅ) × c ∼ 106 m/s which is consistent
with the data of Table 4.1. For the model of Eq.(4.1), |t2| ' 3|t1| which does not give an
exactly linear dispersion but it gives a massive relativistic dispersion, and for larger values

Table 4.1: Fermi velocities and effective masses of electron and hole states near the CBM and
VBM along the two directions of Γ-X and Γ-Y.

Band vF (×105 m/s) m/m0

Γ-X (e) 9.71 0.164
Γ-X (h) 8.26 0.179
Γ-Y (e) – 0.873
Γ-Y (h) – 1.175
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Figure 4.3: (a) Topologically equivalent structure to MLP within two parameter TB model. (b)
Equivalent linear chain model along the zigzag direction. (c) Equivalent linear chain model along
the armchair direction.

of ka it is nearly linear.

4.3.2 Two-band TB model
In the TB Hamiltonian of Eq. (4.1), if we project the positions of the upper and lower
zigzag chains on a horizontal plane and keep the previous hopping integrals, the unit cells
of the electronic system is reduced to two P atoms per unit cell. The Fourier transform of
the resulting two band model is given by

H =
∑

k

φ†kH
[2]
k φk (4.5)

where φ†k = (a†k b†k) and H [2]
k is a 2× 2 matrix

H
[2]
k =

(
Bke

i(ka−kb)/2 Ak + Cke
i(ka−kb)/2

A∗k + C∗ke
−i(ka−kb)/2 Bke

i(ka−kb)/2

)
(4.6)

Diagonalizing the above matrix, the energy spectrum is

Ek = |Bk| ± |Ak + Cke
i(ka−kb)/2| (4.7)



4.4 Electronic and transport properties of PNRs 87

The band gap in the Γ point is

Eg = 4t1 + 2t2 + 4t3 + 2t5 = 1.52 eV. (4.8)

4.4 Electronic and transport properties of PNRs
In the following numerical analysis, the commonly used method for determining the width
of graphene nanoribbons [195] is employed to determine the PNR structures. According
to this method, the structure of aPNR is defined by the number of dimmer lines across the
ribbon width (Na-aPNRs), whereas that of zPNR is defined by the number of zigzag chains
across the ribbon width (Nz-zPNRs) [36]. To calculate the band structure and eigenstates
of the nanoribbons, we obtain the eigenvalues and eigenvectors of the following matrix,
which is the crystal Hamiltonian between Bloch sums:

Mαβ(k) = −
∑
ij

tiα;jβe
ik·Rij (4.9)

where i and j denote different unit cells, α and β denote the basis sites in a unit cell.
Further, k is the wave vector, and Rij represents a bravais lattice vector. Moreover, tiα;jβ
are the hopping integrals between the basis site α of unit cell i and the basis site β of unit
cell j, and will be substituted by the five hopping parameters of the model, accordingly.
For nanoribbons, the periodicity is only along the ribbon length; therefore, the number of
basis sites in each unit cell is proportional to the ribbon width.

4.4.1 Edge modes in zPNRs
In order to understand the physics of this model, we study the influence of the ratio of the
two dominant hopping parameters on the behavior of the electronic structure for zPNRs.
We first study the dependence of quasi-flat bands and their corresponding edge states in
zPNRs on the ratio of |t2/t1|. The band structure and probability amplitude of the upper
valence band eigenstates of 100-zPNR for |t2/t1| =1, 2, and 3 for k = 0 are shown in
Fig. 4.4. As can be seen in Figs. 4.4(a), (b), and (c), as the |t2/t1| ratio increases, the two
middle bands (shown with grey lines) are detached from the bulk bands. The critical value
of the ratio for the emergence of edge states at k = 0 is 2, namely, at this ratio, the aver-
age amplitude of |Ψi|2 becomes nearly homogeneous in the bulk. It should be noted that
the states corresponding to the quasi-flat bands that are outside the middle region includ-
ing between Dirac-like points and k = π or k = −π are always localized on the edges.
Fig. 4.4(c) shows the band structure for |t2/t1|=3. In this case, the edge bands are isolated



88 Scaling laws for band gaps of phosphorene nanoribbons

0

-2

0

2

4

E
n
er

g
y
 (

eV
)

t
2
=|t

1
| t

2
=2|t

1
| t

2
=3|t

1
|

0
−π π −π ππ−π kkk

0

(a) (b) (c)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

x
i

0

0.01

0.02

0.03

0.04

0.05

t
2
=3|t

1
|

t
2
=2|t

1
|

t
2
=|t

1
|

0.15

0.2

0.25

0.3

|ψ
i
|
2

20 40 60 80 1000

(d)

Figure 4.4: Top: Band structure of 100-zPNRs (w ∼ 22 nm) for |t2/t1| ratio values of (a) |t2/t1|=1,
(b) |t2/t1|=2, and (c) |t2/t1|=3 for t3 = −0.205 eV, t4 = −0.105 eV, and t5 = −0.055 eV. Note
that the red lines represent the edge bands. Bottom: The probability amplitude of the upper valence
band eigenstate for k = 0 of a zPNR for different ratios of |t2/t1|. Note that the horizontal axis
represents a unit cell in the width of the ribbon.

from the bulk states, and are two-fold degenerate. This degeneracy is lifted in zPNRs with
small widths (Nz < 40) for wave vectors near k = 0. This behavior can be explained by
considering the effect of finite electron tunneling between two opposite edges of zPNRs
with small widths [196]. Fig. 4.4(d) shows the probability amplitude of the upper valence
band eigenstate for k = 0 as a function of the position of P atoms. As can be clearly
seen, for small values of this ratio, the probability amplitude is large for the bulk sites,
whereas for the edge sites, it is minimal or zero. The probability amplitude of the bulk
sites decreases as this ratio is increased. For |t2/t1|=3, only the probability amplitude of
the sites near the edges are non-zero, thus indicating the importance of the |t2/t1| ratio in
the creation of the edge states.
If we refer to the model that was introduced in Fig. 4.3, we can explain the above men-
tioned behavior as follows. The structure shown in Fig. 4.3 is a bipartite lattice, and each
site is connected to three sites of the other sublattice with two t1 links and one t2 link. If
we separate the total wave function to two components, each having amplitudes only on
one sublattice, the local energy contribution of a wave function is proportional to the local
amplitudes of the two component wave functions times ∆ ≡ 2t1+t2. In the case of ∆ < 0
(|t2/t1| < 2), it is energetically more favourable for the two component wave functions to
have maximum overlap, whereas in the case of ∆ > 0 (|t2/t1| > 2), we expect the two
component waves to repel each other and push each other to the two edges of the nanorib-
bon. This is consistent with what is shown in Fig. 4.4(d). It should be mentioned that the
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Figure 4.5: Probability amplitude of the edge band eigenstates of 6-zPNR (w ∼ 1.25 nm) and
14-zPNR (w ∼ 3 nm). Note that the horizontal axis indicates a unit cell in the width of the ribbon.

above discussion is only valid for the small values of the wave vector along the armchair
direction, which corresponds to the quasi-flat bands at the Fermi level.
Clearly, the ribbon width is also important for the creation of the edge states in zPNRs.
In zPNRs, the ribbon width must be greater than around 3 nm, which corresponds to 14-
zPNR, for the edge states to appear. Fig. 4.5 shows the squared wave functions of the
states in the edge band of 6-zPNR and 14-zPNR. For zPNRs with widths greater than 3
nm, the wave function corresponding to the two edges starts to decouple and will localize
on the opposite edges.

4.4.2 Scaling laws of band gaps for PNRs

Fig. 4.6 shows the variation in band gap with ribbon width for zPNRs and aPNRs owing
to the quantum confinement effect [195, 197–199]. In contrast to boron nitride nanorib-
bons (BNNRs) [200], graphene nanoribbons (GNRs) [195], and α-graphdiyne nanorib-
bons [201], the band gap of PNRs decreases monotonically as the ribbon width increases.
Fig. 4.6 shows that the bang gap is larger in zPNRs for the same ribbon width, indicating
that the energy contribution from quantum confinement is higher in zPNRs, thus resulting
in a stronger quantum confinement effect in zPNRs.
The scaling behavior of band gap with increasing ribbon width for both types of PNRs
has been calculated using DFT calculations [36, 188]. They suggested a scaling behavior
of ∼ 1/w2 for aPNRs whereas a ∼ 1/w for zPNRs. We argue that the scaling law for
the zPNRs is not 1/w. In fact, since the electrons along the confinement direction of zP-
NRs, which is the armchair direction, behave like massive-relativistic particles, we fit our
data for zPNRs with Egap =

√
A2/Nz

α +B2 + C (w ' 0.22Nz − 0.08 nm). The fitted
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Figure 4.6: Variation in band gap of zPNRs and aPNRs with ribbon width.

values for the parameters are A = 22.9 eV, α = 2.18, B = 1.10 eV, and C = 0.42 eV.
In this formula, we expect a parabolic scaling law as long as the second term under the
square root is much larger than the first term. This condition for the above fitted values
occurs for w � 3.5 nm. In the massless-relativistic limit, where the energy contribution
to the quantum confinement is proportional to the momentum, the first term is much larger
than the second term, and this condition occurs for w � 3.5 nm. It should be mentioned
that the band dispersion of the DFT calculations near the gap, specially for the Γ-X di-
rection, are very close to our TB calculations, and the above discussion is also applicable
to their scaling graphs. The maximum widths considered in the DFT calculations for the
scaling is 3 nm; therefore, they have not been able to consider the parabolic region. Ac-
cording to the above discussion, we should not expect a 1/w scaling law for zPNRs with
ribbon widths larger than 3.5 nm. For aPNRs we fit the data with Egap = A′/Na

β + C ′

(w ' 0.164(Na − 1) nm), and the fitted values for the parameters are A′ = 20.4 eV,
β = 1.92, and C ′ = 1.52 eV, in agreement with previous results [36, 188]. We have also
calculated the effective masses of the electron and hole states near the VBM and CBM of
PNRs with different ribbon widths. The results are shown if Fig. 4.7. The effective masses
of zPNRs are more than six times larger than aPNRs and for small widths their effective
masses increase even to higher values.

4.4.3 Response of aPNRs to Eext

Next, we analyze the relationship between the electronic properties of aPNRs (periodicity
along the x-direction) and the external electric field (Eext) along the ribbon width. The
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band structure forEext = 0 is shown in Fig. 4.8(a), in which the CBM and VBM determine
the band gap. The electronic states associated with the VBM and CBM are located in the
bulk of the ribbon [Fig. 4.8(b)]. Also, all aPNRs are semiconductors independent of their
ribbon width. When a transverse Eext is applied along the width, the states corresponding
to the CBM, which have a positive band curvature (electron states), will shift to lower
energies owing to Stark effect, whereas the states corresponding to the VBM (hole states)
shift to higher energies. Therefore, the CBM and VBM states will localize on the ribbon
edges (Fig. 4.8(d)). By further increasing the field strength, the two bands approach one
another because of the electrostatic potential difference between the opposite edges, and
the band gap decreases and eventually closes at a critical transverse field, Ec (Fig. 4.8(c)).
This trend in band gap variation with Eext has already been observed in other materials
such as GNRs [195], carbon nanotubes [202], MoS2 nanoribbons [196], and BNNRs [199?
, 200]. It should be noted that in contrast to other compounds such as BN [200], that the
structure have a polarization along the width, the gap closure does not change if we reverse
the direction of the transverse Eext along the width.
We also calculated the variation in band gap of aPNRs with Eext for four different widths
(Fig. 4.9). As the transverse Eext increases, the band gap decreases uniformly. Similar
behavior has been observed in the nanoribbons of BN [199, 200] and MoS2 [196].
As the aPNR width increases, the band gap decreases rapidly with increasing transverse
field Ec, and the gap closure occurs for smaller fields because the electrostatic potential
difference is proportional to the ribbon width. The variation in band gap with ribbon
width and transverse Eext has been calculated recently using DFT [188]. For aPNRs with
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large widths, the results obtained with the TB approach are in good agreement with the
DFT calculations. As the transverse Eext increases, the gap closes directly at k = 0 for
Ec=0.339 V/Å, and the edge band states corresponding to the VBM and CBM states are
localized on the opposite edges of the aPNRs (Fig. 4.8(d)).
As shown in Fig. 4.9, the gap closure of aPNRs with small widths exhibits an interesting
trend. For instance, for the 8-aPNR, the band gap varies slowly under a strongEext, and the
band gap closes for Ec=0.339 V/Å, it opens again and closes at 0.527 V/Å. Note that due
to the rapid progress in modern experimental techniques, a strong electric field up to 0.3
V/Åhas already applied to 2D-materials [203, 204]. The opening up of the band gap after
its closure for very small ribbon widths is related to the finite hopping integrals between
the two opposite edges and the mechanism for a similar behavior in MoS2 nanoribbons
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has been explained elsewhere [196].

4.4.4 Transistor effect in zPNRs
A study based on the TB model has investigated the effect of an external in-plane (Eext)
electric field on the edge modes of zPNRs and the effect of an external electric field (Ez)
perpendicular to the ribbon surface on zPNRs [76]. The results show that the band gap
increases in accordance with (lEz)

2 where l is the separation distance between the upper
and lower layers of phosphorene. Moreover, for Eext greater than a critical strength (Ec),
the degeneracy of the edge bands in Fig. 4.4 (c) is lifted for the quasi-flat bands, and a
transistor effect can be observed. Further, Ec is inversely proportional to the ribbon width
(∝ 1/w).
In this study, we investigated the transistor effect in zPNRs using the Landauer formal-
ism [205, 206]. In this formalism, the conductance σ(E) for nanoscale devices at Fermi
energy (EF ) between a pair of leads p and q is given by

σ(E) = (
e2

h
)Tr[Γp(E)GR

D(E)Γq(E)GA
D(E)] (4.10)

where GR
D(E) is the retarded Green’s function of the device and GA

D(E) = GR
D

†
(E). In

this equation, Γp(q) = i[Σp(q)(E)−Σp(q)
†(E)] where Σp(q)(E) is the self energy related to
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lead p (q). The retarded Green’s function of the device (GR
D(E)) is given by

GR
D(E) = [E −HD − ΣR

p (E)− ΣR
q (E)]−1 (4.11)

We now analyze the conditions under which the transistor effect can be observed in zP-
NRs. The conductance, band structure, and wave functions of a 10-zPNRs for Eext=0 and
0.016 V/Åare shown in Fig. 4.10. As can be seen in Fig. 4.10(b), the degeneracy between
the two edge modes at zPNRs is slightly lifted close to k = 0. Therefore, the conductance
is slightly asymmetric near k = 0. As shown in Fig. 4.10(c), the wave functions of the
upper and lower quasi-flat bands are localized on both the edges. As the external electric
field is increased up to a critical field, the overlap between these two bands vanishes. What
we have is a conductance controlled by the external electric field at Fermi energy, which
is a FET behavior. In this case, the wave functions of the upper and lower edge bands are
localized on the opposite edges (Fig. 4.10(f)).
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The relationship between Ec and ribbon width is shown in Fig. 4.11(a). For zPNRs with
widths greater than Nz = 14, Ec scales as 1/Nz

1.05, which is in good agreement with
the results previously reported by Ezawa [76]. However, for ribbons with widths smaller
than Nz = 14, we found a completely different behavior. To explain this portion of the
graph, we considered the behavior of the edge bands of zPNRs with different widths.
Figs. 4.11(b) and (c) show the quasi-flat bands for 20-zPNR and 6-zPNR, respectively.
For Eext = 0, the quasi-flat bands are different for these two widths. The VBM and CBM
of 20-zPNR are located at k = π and k = 0, respectively. The VBM of 6-zPNR is also
located at k = π whereas the CBM is located at a k between 0 and π. This displacement
of the CBM in 6-zPNR is caused by the finite interaction between the two edge modes.
Therefore, a lower external electric field is needed for observing the transistor effect.

4.5 Conclusion
In summary, we presented the numerical results for the band structure and quantum con-
ductance of zPNRs and aPNRs based on a five parameter TB model. It was shown that the
general form of the electronic structure is controlled by the two dominant hopping param-
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eters. It was discussed that the opposite sign of these two hopping integrals is the origin of
the creation of a relativistic band dispersion along the armchair direction. Our numerical
results for zPNRs predicts a pair of degenerate quasi-flat bands at the Fermi level that are
localized on the ribbon edges, and this degeneracy is lifted for small ribbon widths owing
to finite interactions between the edge states. Additionally, our calculations provide scal-
ing laws of the band gap for PNRs as a function of ribbon width. We discussed that the
band gap scaling law for both nanoribbons with widths much larger than 3.5 nm is always
1/w2. For aPNRs, a semiconducting behavior is predicted, and an insulator-metal tran-
sition can be expected when a transverse electric field is applied. In zPNRs, an external
transverse electric field can remove the overlap between quasi-flat bands. The anisotropy
in the mobility, tunability of the band gap with ribbon width, and the field dependent con-
ductance makes this system a promising candidate for future FET technologies.



CHAPTER 5

Magnetic field dependence of Landau levels in
monolayer phosphorene

In this chapter, the basic aspects of low energy electrons and holes of MLP in the presence
of a perpendicular magnetic field are discussed. The behavior of the system in the QH
regime is in close relation with the characteristics of LLs. The primary goal of this chap-
ter is to address the debating field dependence of LLs in MLP Using a simple approach,
we will demonstrate that the LLs dependence on magnetic field is indeed as for conven-
tional 2D semiconductor electron gases. We show that the results are valid up to the very
high field regime. Then, we will discuss the conditions for which such a dependence can
continuously evolve into another field dependence.

5.1 Introduction
In the broad research area of condensed matter physics, the theoretical and experimental
study of IQHE and FQHE in exotic 2D layered materials is a subject of interest. The in-
tense interest in this field of research owes to the fact that it can pave the way for more
elucidation of many important features of quantum physics and interacting systems. More-
over, it has also provided a new quantum mechanical metric standard that depends only on
the fundamental constants of Planck’s constant, h, and electron charge, e [207].
It has been shown that the behavior of zero-field electronic spectrum of a 2D system affects
dramatically the dependence of LLs on magnetic field [74]. For example, it was shown that
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in a system with linear-quadratic spectrum, the dependence of LLs on the magnetic field
is neither linear in the conventional limit nor as (nB)1/2 in the Dirac limit [68, 74]. For
such a dispersion, the LL energies scale as (n+ 1/2)3/2 where n is the LL index [68, 74].
The quest for samples with higher mobility has motivated the researchers to investigate
the QHE as a prototypical 2D phenomenon in monolayer and few-layer phosphorene [63].
The LLs and the QHE has been studied both theoretically and experimentally in few-layer
black phosphorous [63–73]. The highly anisotropic physics in many properties of phos-
phorene are closely related to its band structure which is Dirac-like in one direction and
Schrödinger like in the other direction [44, 72, 75, 76]. Therefore, one might expect to
observe a behavior as B2/3 in the LLs field dependence. But, there exist other theories
arguing that such behavior is not correct [63, 69–71, 73]. Within the framework of the
effective k · p Hamiltonian and TB model, they have shown that LLs in phosphorene be-
have like conventional semiconductor 2D electron gases [69–71, 73] which results in the
usual QHE. It has been also argued that the emergence of the mentioned LLs field depen-
dence can be observed in FLP in the presence of electric field [71]. However, due to the
mentioned highly anisotropic electronic structure, determining the LLs field dependence
is still under theoretical debate.
In this chapter, we study the debating field dependence of LLs in MLP. Using an effec-
tive low-energy continuum spectrum derived from the TB model of MLP and a simple
approach, we will demonstrate that the LLs dependence on magnetic field is indeed as for
conventional 2D semiconductor electron gases. This is in accordance with the second view
at least up to very high field regime. Next, we will discuss the conditions under which such
a dependence can continuously evolve to the first view.

5.2 Effective low-energy Hamiltonian of MLP

We have shown in Fig. 6.1 the structure parameters of MLP that we have used in this
chapter. We have chosen the x and y axes align to armchair and zigzag directions, re-
spectively and the z axis is in the normal direction to the plane of phosphorene. With this
definition of coordinates, one can indicate the various atom connections ri. The structure
parameters have been taken from [32] which is very close to experimentally measured pa-
rameters [208] for its bulk structure. The components of the geometrical parameters for
bond lengths r1 = 2.240 Å and r2 = 2.280 Å are (r1x, r1y, r1z) = (1.503, 1.660, 0) and
(r2x, r2y, r2z) = (0.786, 0, 2.140). The two in-plane lattice constants are a = 4.580 Å, and
b = 3.320 Å, and the thickness of a single layer due to the puckered nature is r2z = 2.140
Å.
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Figure 5.1: The lattice geometry of phosphorene. The two different colors of the P atoms refer to
upper and lower chains. Lattice constants and the components of geometrical parameters describing
the structure of phosphorene are shown.The hopping parameters t1 and t2 used in our TB model
are indicated in the figure. Green dashed rectangles show the unit cells of phosphorene.

There exist many studies [29, 30, 209] show that the low-energy electron states near the
gap region, are well described by considering only one effective pz-like orbital per lattice
site. The proposed single-orbital TB model of MLP in Ref. [30], involves ten different
hopping parameters that are also usable as intra-layer hopping parameters of the FLP or
its bulk structure. However, it has been shown [29, 30, 76, 209] that the main aspects
of the low-energy spectrum of the MLP, such as energy gap evaluation and bands cur-
vature are well described by only two dominant energy hopping integrals t1 and t2 (see
Fig. 6.1). These parameters are defined as the hopping between the nearest neighbors
align the zigzag and armchair directions respectively. Moreover, the energy bands curva-
ture is a predominant factor that determine the field dependence of LLs in a system [74].
Therefore, it is good enough for our purpose to rewrite the TB Hamiltonian (4.1) as

Ĥ =
∑
i,j

tijc
†
icj, (5.1)

where c†i and cj are creation and annihilation operators of pz-like orbitals at sites ith and
jth, and the hopping parameters tij run only over the two hopping parameters t1 and t2.
As we will see in the following, such an approximation simplifies our analyses in addition
to the fact that it does not affect our results based on the above mentioned reasons.
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The unit cell of MLP is a rectangle containing four P atoms as shown in Fig. 6.1(a). Fourier
transform of the Eq. (5.1) gives the general Hamiltonian in momentum space as

H =
∑
k

ψ†kH(k)ψk, (5.2)

where we have used the basis ψ†k = {A†k, B
†
k, C

†
k, D

†
k} with A†k = N−1/2

∑
i

eik·riA†i , and

so on. Here, k is the Bloch momentum, and ri is the orbital position with respect to the
origin of coordination system located at the position of atom A. The kernel Hamiltonian
H(k) in Eq. (5.2) is represented as

H(k) =


0 h12(k) 0 h14(k)

h∗12(k) 0 h∗14(k) 0
0 h14(k) 0 h12(k)

h∗14(k) 0 h∗12(k) 0

 , (5.3)

whose elements are given by

h12(k) = t2e
ikxr2x

h14(k) = 2t1e
−ikxr2x cos(kyr1y). (5.4)

Using the Eqs. (5.3) and (5.4), we have obtained the two hopping integrals t1 and t2 by
simply fitting the TB bands of phosphorene with the DFT data [30]. The obtained nu-
merical values of these parameters are t1 = −1.170 eV and t2 = 3.267 eV. As shown in
Fig. 5.2, there exist a good agreement between the TB results and the DFT bands for the
low-energy spectrum. This demonstrates the validity of the model near the gap region, al-
lowing us to remarkably simplify our calculations. Due to the D2h point group invariance
of MLP lattice [210], one can reduce the four-band model to a two-band Hamiltonian as

H(k) =

(
0 h12(k) + h14(k)

h∗12(k) + h∗14(k) 0

)
. (5.5)

This form of Hamiltonian allows us to simply do our calculations in order to determine
the field dependence of LLs as follows. By expanding the Hamiltonian matrix elements in
the vicinity of Γ point, one can write a continuum approximation. Retaining the terms up
to the leading non-zero order of kx and ky, the continuum model is given by

H(k) = (α + βk2y)σx − γkxσy, (5.6)
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Figure 5.2: The obtained TB bands (magenta lines) from Eq. (5.1) compared to the DFT bands
(cyan lines) taken from [30].

demonstrating that the spectrum has relativistic nature along the kx direction, while it is
parabolic along the ky direction. In this equation, σx and σy are Pauli matrices and α, β
and γ are given by

α = 2t1 + t2,

β = −t1r21y,
γ = −2t1r1x + t2r2x, (5.7)

whose numerical values are: α = 0.925 eV, β = 3.20 eV·Å2 and γ = 5.765 eV·Å. The
continuum spectrum relations for electrons and holes are then simply given by

E(kx, ky) = ±
√

(α + βk2y)
2 + γ2k2x, (5.8)

with an energy band gap of Eg = 2α = 1.85 eV at the Γ point.
A comparison between the low-energy spectrum of the TB and continuum approximation
is shown in Fig. 5.3. The good agreement between the two approaches for energies in the
range−1.5 to 1.5 eV is clear. Note that, due to ignoring the further hopping terms [30], we
have lost the weak electron-hole asymmetry of the energy spectrum. This, reflects itself as
a small error to the effective masses of electrons and holes [70]. Thus, from the dispersion
relation of Eq. (5.27) the effective masses of electrons and holes for the x and y directions
are estimated as

me,h
x = ± ~2

2γ2
, me,h

y = ± ~2

2β
, (5.9)
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Figure 5.3: The low-energy spectrum of MLP from the continuum approximation and TB model.

where the resulting effective masses in terms of the free electron mass m0 are me,h
x =

±0.11m0 and me,h
y = ±1.19m0 consistent with other results [70, 211]. This implies the

existence of a strong anisotropy in the electronic properties of phosphorene that determines
the main features of the corresponding properties. Therefore, one can neglect the minimum
error arise by the above mentioned reason.

5.3 LLs of MLP
Let us now consider the continuum Hamiltonian of MLP in the presence of perpendicular
magnetic field B. Using the gauge A = (0, Bx, 0) and the substitution ky → ky + `−2B x,
the new Hamiltonian is given by

H(k, B) = (α + βη2x̃2)σx − γkxσy. (5.10)

Here, `B is the magnetic length which is defined as `−2B ≡ η = eB/~, and we have
defined the new variable x̃ = ky/η − x. Squaring the Eq. (5.10), and after some algebraic
calculations we arrive at

H2(k, B) = γ2k2x + (α + βη2x̃2)2 + iβγη[kx, x̃
2]σz, (5.11)

where σz is the z-component of the Pauli matrices. Using the commutation relation
[kx, x̃] = −i, we define the dimensionless variables X = x̃/ε and P = εkx so that
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they satisfy the commutation relation [P,X] = −i. Substituting these new variables in
Eq. (5.11) gives

H2(k, B) = C
(
P 2 + (δ +X2)2 + i[P,X2]σz

)
, (5.12)

where C = (βη2γ2)2/3, δ = α/
√
C, and [P,X2] = −2iX . This implies that it is enough

to solve an effective Schrödinger equation with the effective potential of

Veff (X) = δ2 + 2δX2 +X4 + 2Xσz, (5.13)

where the dimensionless variable δ acts as an effective gap and equals to

δ =
α

[βγ2B2(e/~)2]1/3
=

Eg
2[βγ2B2(e/~)2]1/3

. (5.14)

Thus, the eigenvalues of the Schrödinger equation H(k, B)Ψe,h
n = EnΨe,h

n are simply
related to the eigenvalues En of the square Hamiltonian (5.12) via

En = ±(βη2γ2)1/3
√
En. (5.15)

The quartic form of the effective potential (5.13) in which its low-energy barrier shape is
strongly dependent on the effective gap δ is crucial in determining the field dependence
of LLs. This implies that in addition to the bands curvature, the energy band gap is also
an important factor in determining field dependence of LLs. In order to calculate the LLs
spectra of MLP, one can substitute the magnetic length `B = 256.5/

√
B(Tesla) Å (the

magnitude of B is written in the unit of Tesla), and the numerical values of the structural
parameters (5.7) in Eq. (5.14) to obtain the dimensionless gap δ as

δ ≈ 264.0

B2/3(Tesla)
. (5.16)

This shows that even in the presence of a whopping strength of magnetic field up to∼ 150T
we have δ � 1. Thus, even in the presence of very high magnetic field strengths, one can
use the low-energy limit of effective potential

Vl−eff (X) = δ2 + 2δX2 (5.17)

(see Fig. 5.4) to find the energy levels of

(
− d2

dX2
+ (δ2 + 2δX2)

)
ψn = Enψn. (5.18)
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Figure 5.4: Comparison of the effective potentials Veff (X) and Vl−eff (X).

As seen, Eq. (5.18) has a quadratic form with the spectrum of

En = δ2 + 2
√

2δ(n+
1

2
). (5.19)

Substituting this spectrum in Eq. (5.15) we arrive at

En = ±α
(
1 +

2
√

2

δ
√
δ

(n+
1

2
)
)1/2

≈ ±
(
α +

√
2√
δ

α

δ
(n+

1

2
)
)

= ±
(
α + ωc(n+

1

2
)
)
, (5.20)

where we have used Eq. (5.9) to define ωc = eB/
√
mxmy. This demonstrates that the LLs

dependence on magnetic field is indeed as conventional 2D semiconductor electron gases.
As seen, the results are valid up to very high field regime.

5.4 Effect of strain on LLs
The role of uniaxial and biaxial strain in manipulating the electronic structure of FLP been
investigated via DFT [44–46, 50, 212] and TB approaches [47–49]. Applying tensile or
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compressive strain in different directions results in different modifications of the electronic
bands. One can observe a direct to indirect gap transition, or a prior direct band gap
closing, depending on the type of applied strain [45, 46, 50]. Here, we consider equi-
biaxial compressive strain in the plane of MLP. This modifies the low energy bands so
that the valance and conduction bands approach each other. This band evolution can affect
the behavior of LLs of MLP. Investigating the local density of states of p orbitals [46]
shows that the used one orbital pz-like TB model is still valid in the low energy limit. In
the following, we will first study the bulk band of phosphorene in the presence of equi-
biaxial compressive strains using our low-energy TB approach. Then, we will demonstrate
that this will result to continuously evolution of LLs from a (n + 1/2)B dependence to a
[(n+ 1/2)B]2/3 dependence.
It has been shown that the bond lengths and bond angles of phosphorene both change
under axial strains [45, 213]. Therefore, the hopping parameters will change. According
to the Harisson rule [214], the hopping parameters for p orbitals are related to the bond
length as ti ∝ 1/r2i and the angular dependence can be described by the hopping integrals
along the π and σ bonds. However, our calculations showed that, though the changes in
angles are almost noticeable [45, 213], the modification of the hopping parameters due to
them is much smaller than the effect of changes of bond lengths. Hence, we consider only
changes of the bond lengths in the hopping modulation.
In the following, for simplicity we assume that the strengths of the applied biaxial strains
in the two directions are equal, i.e., εx = εy = ε. When an equi-biaxial strain is applied to
phosphorene, the rectangle shape of the unit cell with lattice constants of a0 and b0 remains
unchanged. Therefore the initial geometrical parameter r0i is deformed as (rix, riy) =
(1 + ε)(r0ix, r

0

iy). In the linear deformation regime, expanding the norm of ri to first order
of ε gives

ri = [1 + (αix + αiy)ε]r
0

i , (5.21)

where αix = (r0ix/r
0

i )
2, and αiy = (r0iy/r

0

i )
2. Using the Harrison relation, we obtain the

strain effect on the hopping parameters as

ti ≈ [1− 2(αix + αiy)ε)]t
0

i , (5.22)

where ti is the modified hopping parameter of deformed phosphorene with new lattice
constants a and b. Let us now study the energy spectrum of strained phosphorene with the
modified hopping parameters t1 and t2 as given by Eq. (5.22). The new k-space Hamilto-
nian of the strained phosphorene is given by

Hstrained(k) =

(
0 h12(k) + h14(k)

h∗12(k) + h∗14(k) 0

)
, (5.23)
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where h12 and h14 are now defined in terms of the modified hopping parameters. Diago-
nalizing this Hamiltonian at the Γ point gives the band gap as

Eg = (4t01 + 2t02)−
∑
j

(8α1
j t

0
1 + 4α2

j t
0
2)ε, (5.24)

where j denotes the summation over x, y components. The first parentheses is the un-
strained band gap i.e. E0

g = 1.85 eV and the second one indicates the structural dependent
values of changes in the band gap due to the applying strain. Using the numerical values
of the structural parameters in Eq. (5.24), the band gap evolution of MLP in the presence
of compressive equi-biaxial strain is a linear function as

Eg = E0

g − s0ε, (5.25)

where s0 = −8.2 eV. This equation shows that by applying compressive equi-biaxial
strain, the band gap decreases which is consistent with DFT calculations [44–46, 50, 212].
Now, the continuum model (5.6) is rewritten in terms of new coefficients αε, βε and γε,
whose values are

αε = α0 −
1

2
s0ε,

βε ≈ β0[1− 2ε(s1 − 1)] ≈ β0,

γε ≈ γ0 + ε[−2(1− 2s1)t
0

1r
0

1x + (1− 2s2)t
0

2r
0

2x], (5.26)

where we have defined s1 = α1
x + α1

y ≈ 1.0, and s1 = α2
x + α2

y ≈ 0.12. This leads to the
strain dependent continuum spectrum of electrons and holes as

E(kx, ky, ε) = ±
√

(αε + βεk2y)
2 + γ2εk

2
x, (5.27)

which is defined over the modified BZ. Therefore, the energy spectra along the Γ-Y and
Γ-X directions are given by

E(ky, ε) = ±(αε + βεk
2
y), (5.28)

and
E(kx, ε) = ±

√
α2
ε + γ2εk

2
x, (5.29)

respectively. Equation (5.28) explicitly shows that for an arbitrary strength of applied
strain, the parabolic nature of bands along the Γ-Y direction remains unchanged. Whereas,
Eq. (5.26) implies that by increasing its strength, the relativistic nature of bands along the
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Figure 5.5: The comparison of the functions f(µ) and f(µ0).

Γ-X direction becomes more rigorous. For the critical strain value εc, the energy gap is
closed and electrons and holes become massless relativistic particles as

E(kx, εc) = ±γεckx. (5.30)

Within the two-parameter TB approximation, such a dispersion corresponds to very large
value of applied strain εc ≈ 22.5% which is experimentally challenging. However, owing
to the puckered structure of phosphorene, it has a high degree of flexibility. Therefore, it
can sustain strain very well specially in the zigzag direction up to about 30% [42, 50]. As
a result, the structure is still stable under such a strain.
Let us now consider the effect of applying a perpendicular magnetic field. In terms of the
new strain modified hopping parameters one can rewrite Eq. (5.14) as

δ(µ) = (µ− 2)f(µ)−1`
4/3
B ,

f(µ) = (r1yr2xµ+ 2r1yr1x)
2/3, (5.31)

where µ = |t2/t1| shows the ratio of two strain modified hopping parameters. For un-
strained phosphorene µ0 ≈ 2.78. By applying strain up to the critical value εc, the values
of µ ranges from 2.78 to 2. As can be seen in Fig. 5.5, the behavior of function δ(µ)/`

4/3
B

in this range of µ is similar to the case in which f(µ) is replaced by f(µ0) . As a re-
sult, by increasing the strength of applied strain, the behavior of strain dependent potential
Vl−eff (X) is mainly determined by the magnitude of µ − 2 which is indeed the gap of
the system. Therefore, in addition to the magnitude of applied magnitude field, the value
of the band gap plays an important role in the shape of effective potential. At the critical
value εc, Eq. (5.32) gives

Veff (X) = X4 + 2Xσz. (5.32)

It has been shown that the effect of the linear term in this potential is negligible [74] and
the effective potential is indeed related to a quartic oscillator which has been discussed in
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Ref. [74]. It has been shown that the quantized energy levels of this system follows the field
dependence of [(n+ 1/2)B]3/2. As a result, we have shown that by applying compressive
equi-biaxial strain, one can continuously evolve the field dependence of LLs from a linear
to B3/2 dependence. We have numerically obtained the LLs of MLP as a function of
equi-biaxial strain as shown in Fig. 5.6. Figures 5.6(b) and (c) show equidistant LLs for
unstrained phosphorene and non-equidistant LLs at the critical value εc, respectively.

5.5 Conclusions
In this chapter, the salient features of the electronic band dispersion of MLP in determin-
ing the dependence of LLs on magnetic field were discussed. The primary goal was to
address the field dependence of LLs in MLP. Using the continuum low energy Hamilto-
nian of the system, we demonstrated that the dependence of the LLs on magnetic field
is indeed as for conventional 2D semiconductor electron gases. We showed that the re-
sults are valid up to very high field. Then, we studied the effect of applying compressive
equi-biaxial strain on the TB Hamiltonian of MLP and obtained a strain dependent low
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energy continuum model. We showed that for an arbitrary strength of compressive strain,
the parabolic nature of bands along the Γ-Y direction remains unchanged. Whereas, by
increasing its strength, the relativistic nature of bands along the Γ-X direction becomes
more clear. For the critical strain value εc, the energy gap is closed and electrons and holes
become massless relativistic particles. Using this continuum model, we demonstrated that
one can continuously evolve the field dependence of LLs from linear to [(n + 1/2)B]3/2

dependence.





CHAPTER 6

Strain-induced topological phase transition in
phosphorene

In this chapter, using the TB approximation with inclusion of the spin-orbit interaction,
we predict a topological phase transition in the electronic band structure of phosphorene
in the presence of axial strains. We derive a low-energy TB Hamiltonian that includes
the spin-orbit interaction for bulk phosphorene. Applying a compressive biaxial in-plane
strain and perpendicular tensile strain in ranges where the structure is still stable leads to
a topological phase transition. We also examine the influence of strain on zPNRs and the
formation of the corresponding protected edge states when the system is in the topological
phase. For zPNRs up to a width of 100 nm the energy gap is at least three orders of
magnitude larger than the thermal energy at room temperature.

6.1 Introduction
In chapter (3), we briefly addressed the theory of topological band insulators. We con-
cluded that the emergence of robust edge states in 2DTIs that are protected by TRS, make
them promising candidates for potential applications in spintronics and quantum comput-
ing [57, 121, 124–126, 137].TIs can exist intrinsically or be driven by external factors such
as electrical field or by functionalization [215]. Strain engineering is a well known strategy
for switching from NI phase to a TI phase [215, 216]. Among the wide list of systems that
possesses such property, 2D materials with fascinating electronic, mechanical and thermal
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properties have been in the focus of attention [57, 217].
In the past few years, phosphorene, a monolayer of black phosphorus, has emerged as
an encouraging 2D semiconducting material for widespread applications. Phosphorene-
based field effect transistors (FETs), show a higher ON/OFF ratio in comparison with
graphene [218, 219] and has a higher carrier mobility with respect to TMDs which have
recently attracted a lot of attention for FET applications [8, 218, 219]. There exist several
works pertinent to the observation of different phases in bulk and multilayer black phos-
phorous by tuning the lowest energy bands [46, 77, 79, 81, 220]. Using DFT it was shown
that few-layers of phosphorene experiences a NI to TI and then a TI to topological metal
(TM) phase transition by applying a perpendicular electric field [79]. In a different DFT
study [46] such phase transitions for various stacked bilayer phosphorene under in-plane
strain has been explored. As we mentioned in the previous chapter the monolayer of phos-
phorene can sustain strain very well up to about 30% [42, 50]. This makes phosphorene
promising for possible applications using strain engineering.
In the present chapter, we investigate the effect of strain on the electronic band structure
of phosphorene within the TB approach. The band gaps of this model [29] are close to the
most reliable DFT and experimental results [25, 33] that predict band gaps of 1 ∼ 2 eV for
phosphorene. In this study, we propose a model Hamiltonian for the SOC for MLP that
can be generalized to FLP. We show that, a model which includes the next-nearest(n-n)
neighbors in the upper or lower chains, is sufficient for capturing the main physics. Then,
strain engineering of this system is investigated through modifying the hopping parameters
of the system. We demonstrate that, by applying particular types of strain, the system can
make a phase transition to a TI. Finally, we show numerically that though the topological
bulk band gaps induced by SOC is about 5 meV, but the highly anisotropic nature of this
material causes the corresponding bulk gaps in large widths zPNRs be at least three order
of magnitude larger than room temperature thermal energy (∼ 26 meV) and makes PNRs
excellent candidates for future applications.
The chapter is organized as follows: the effective low-energy TB model Hamiltonian in-
cluding the SOC terms is obtained in Sec. 6.2 The effect of axial strains on the band
structure produced by this model is calculated and our results are compared with DFT
results in Sec. 6.3. Demonstration of a topological phase transition in the electronic prop-
erties of phosphorene when particular types of strain are applied and the characteristics of
corresponding edge states in zPNRs is presented in Sec. 6.4. The conclusion is given in
Sec.6.5.

6.2 Tight-binding model including spin-orbit interaction
We have shown in Fig. 6.1 the used coordinate system to describe the puckered atomic
structure of phosphorene and its geometrical parameters. x and y axes are the armchair
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Figure 6.1: The lattice geometry of phosphorene. The two different colors of the P atoms refer to
upper and lower chains (a) The hopping parameters t1, t2, ..., t5 used in our TB model are indicated
in the figure. Red dotted arrows represent two types of n-n neighbors and the green dashed rectangle
shows the unit cell of phosphorene. (b) A honeycomb-like ring of phosphorene. The vectors ~di, ~dj ,
~di + ~dj and ~F ∝ (~dj − ~di) are used to derive the SOC. (c) Lattice constants and the components of
geometrical parameters describing the structure of phosphorene.

and zigzag directions, respectively and the z axis is in the normal direction to the plane
of phosphorene. With this definition of coordinates, one can indicate the various atom
connections ri which correspond to various hopping parameters ti that are included in the
TB model. The structure parameters have been taken from [32] which is very close to
experimentally measured parameters [208] for its bulk structure. The components of the
geometrical parameters as shown in Figs. 6.1(b) and (c), for bond lengths r1 = 2.240 Å and
r2 = 2.280 Å are (r1x, r1y, r1z) = (1.503, 1.660, 0) and (r2x, r2y, r2z) = (0.786, 0, 2.140),
and r3, r4, r5 are simply defined by parameters of r1 and r2. The two in-plane lattice
constants are a = 4.580 Å, b = 3.320 Å and the thickness of a single layer due to the
puckered nature is r2z = 2.140 Å.

6.2.1 Tight-binding model
Including the spin degree of freedom and SOC, the Hamiltonian (4.1) is modified into

Ĥ =
∑
i,j,α

tijc
†
iαcjα + ĤSO, (6.1)
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where α denotes the spin of electrons. In ĤSO = ĤSO1 + ĤSO2, the first term is called
the usual effective SOC and the second one is the intrinsic Rashba SOC which will be
introduced in next subsection. Due to the puckered structure of phosphorene, the Rashba
term is rather large as compared to the first term and should be included in our calculations.

6.2.2 Spin-orbit coupling in Phosphorene

The primary goal of this subsection is to introduce a spin-orbit model Hamiltonian for
phosphorene which can capture the most important spin-related phenomenon. There exist
several studies which showed the anisotropic behaviour in the electronic and optical prop-
erties of phosphorene [33, 211, 221, 222] which are due to the anisotropic nature of the
band dispersion of phosphorene. This property is reflected in the effective mass of elec-
trons and holes of phosphorene. As a matter of fact, the corresponding band dispersion of
the zigzag direction in real space, is relatively flat near the Fermi energy while it has an
approximately linear dispersion in the armchair direction [211, 221]. One can define two
types of n-n neighbors in the phosphorene structure. As shown in Fig. 6.1(a), each P atom
has two intra-chain and four inter-chain n-n neighbors, respectively. The effective mass
of electrons in the direction of intra-chain, are at least an order of magnitude larger than
the inter-chain direction [221]. Therefore, electrons usually select the inter-chain path for
circular motion, allowing us to ignore the intra-chain neighbors and only consider the four
n-n inter-chain P atoms in the SOC model.
In general, the SOC term for a 2D system is given by

HSO = − ~
4m2

0c
2
(~F × ~P ) · ~σ, (6.2)

where ~, m0 and c are Plank’s constant, mass of free electron, and the velocity of light,
respectively. ~F is the effective electrostatic force, ~P is the effective momentum and ~σ
denotes the Pauli matrices. As in the cases of graphene and silicene [223], the nearest-
neighbor SOC is zero in phosphorene, but the SOC terms of the n-n neighbors are nonzero.
As shown in Fig. 6.1(b), in a honeycomb-like ring of phosphorene, we can define ~di and
~dj as vectors that connect the nearest P atoms to each other and ~di + ~dj the connecting
vector of n-n neighbors. Using these vectors, the electrostatic force and momentum can
be written as ~F = |~F |(~dj − ~di)/|~dj − ~di| and ~P = −i~~O ≡ −iα(~di + ~dj), with α being a
prefactor. Rewriting the SOC in terms of the above definitions we obtain

HSO = − ~
4m2

0c
2
[
|~F |(−iα)

|~dj − ~di|
(~dj − ~di)× (~di + ~dj)] · ~σ. (6.3)
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Based on experimental and DFT data, |~di| and |~dj| are approximately equal [32, 42, 194,
208], therefore (~di + ~dj) and (~dj − ~di) become perpendicular to each other. This leads to

HSO = −i 2~α|~F |
4m2

0c
2|~dj − ~di|

(~di × ~dj) · ~σ ≡ −iγ(~di × ~dj) · ~σ, (6.4)

where the term 2~α|~F |/4m2
0c

2|~dj − ~di| = γ will be adjusted to obtain the correct value of
SOC as obtained by DFT. Notice that the above approximations reduce the two parameters
of the usual SOC and intrinsic Rashba SOC into a single parameter. Using ~σ = σqâq+σzâz,
where σq (σz) are the in-plane (out of plane) Pauli matrices (matrix), we rewrite Eq. (6.4)
as

HSO = −iγ|~di × ~dj |zνijσz − iγ|(~di × ~dj)q|(~di × ~dj)
0
q · ~σq, (6.5)

where νij ≡ (~di × ~dj)z/|~di × ~dj|z = ±1 and (~di × ~dj)
0

q ≡ (~di × ~dj)q/|(~di × ~dj)q| is a
dimensionless unit vector. The spin-orbit terms in second quantization are given by

ĤSO1 + ĤSO2 = −iλso
∑

�ij�αβ

νijc
†
iασ

αβ
z cjβ − iλr

∑
�ij�αβ

c†iα(~di × ~dj)
0 · ~σαβq cjβ, (6.6)

where λso ≡ γ|~di × ~dj|z and λr ≡ γ|(~di × ~dj)q| are effective intrinsic SOC and intrinsic
Rashba constants, and the summation runs over the inter-chain n-n neighbors. As men-
tioned before, these two parameters are related to one parameter γ, which can be estimated
by adjusting the TB band structure of phosphorene to the one obtained from DFT. It was
shown that in the absence of SOC the energy gap of FLP closes under an external electric
field or strain [46, 79]. However, including the SOC an energy gap of 5 meV [79] remains
in FLP. This results in the value of γ ≈ 6 meV/Å2 in our TB model.

6.3 Phosphorene under strain: electronic band structure
In the previous chapter, we studied the effect of applying a equi-biaxial strain on the energy
spectrum of MLP. In this chapter, we consider global compressive strain in the plane of
FLP [45, 46], and tensile strain in the normal direction [212]. Similarly, this modifies
the low energy bands so that the valance and conduction bands approach each other. By
further increasing strain, the lower band, coming from px orbitals, shifts upward resulting
in a semi-metal phase [45] given that at the band crossing point a mini gap opens due to the
SOC. Investigating the local density of states of p orbitals [46] shows that our one orbital
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pz-like TB model is still valid in the low energy limit before the semi-metal phase appears.
In the following, we will first study the bulk band of phosphorene in the presence of
axial strains using our TB approach and demonstrate that a band inversion occurs in the
energy spectrum of phosphorene in the range where the structure is still stable under strain.
Similar to the previous chapter, here we again use the Harrison rule and write the deformed
geometrical parameter ri in terms of the initial geometrical parameter r0i as (rix, riy, riz) =
((1 + εx)r

0

ix, (1 + εy)r
0

iy, (1 + εz)r
0

iz) where εj is the strain in the j-direction and ri is a
deformed geometrical parameter. In the linear deformation regime, expanding the norm of
ri to first order of εj gives

ri = (1 + αixεx + αiyεy + αizεz)r
0

i , (6.7)

where αij = (r0ij/r
0

i )
2 are coefficients related to the structure of phosphorene which are

simply calculated via the special geometrical parameters given in previous section. Using
the Harrison relation, we obtain the strain effect on the hopping parameters as

ti ≈ (1− 2αixεx − 2αiyεy − 2αizεz)t
0

i , (6.8)

where ti is the modified hopping parameter of deformed phosphorene with new lattice
constants a and b.
Let us now study the energy spectrum of strained phosphorene with the modified hopping
parameters as given by Eq. (6.8). The unit cell of MLP is a rectangle containing four atoms
as shown in Fig. 6.1(a). Fourier transform of the strained Hamiltonian of Eq. (6.1) gives
the general Hamiltonian in momentum space as

H =
∑

k

ψ†kHkψk, (6.9)

where we have used the basis ψ†k = {a†k, b
†
k, c
†
k, d

†
k} ⊗ {↑, ↓} with Hk being

Hk =

(
Hk(↑↑) Hk(↑↓)
Hk(↓↑) Hk(↓↓)

)
, (6.10)

where

Hk(↑↑) = H
(4)
k +Hso

k , Hk(↓↓) = H
(4)
k −H

(so)
k ,

Hk(↑↓) = H
(R)
k , Hk(↓↑) = H†k

(R)
, (6.11)
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are 4× 4 matrices

H
(4)
k =


0 Ak Bk Ck

A∗k 0 Dk Bk

B∗k D∗k 0 Ak

C∗k B∗k A∗k 0

 ,

H
(so)
k =


0 0 Ek 0
0 0 0 −Ek

E∗k 0 0 0
0 −E∗k 0 0

 ,

H
(R)
k =


0 0 Fk 0
0 0 0 Fk

ei(ka−kb)Fk 0 0 0

0 ei(ka−kb)Fk 0 0

 , (6.12)

whose elements are given by

Ak = t2 + t5e
−ika ,

Bk = 4t4e
−i(ka−kb)/2 cos(ka/2) cos(kb/2),

Ck = 2eikb/2 cos(kb/2)(t1e
−ika + t3), (6.13)

Dk = 2eikb/2 cos(kb/2)(t1 + t3e
−ika),

EK = −2λsoe
−i(ka−kb)/2 sin(ka/2) sin(kb/2),

FK = 4λre
(kb−ka)/2(cos(kb/2) cos(ka/2) cos(θ) + i sin(kb) sin(ka) sin(θ)),

with ka = k.a, kb = k.b and θ = arctan(r1y/r1x).
The energy spectrum of pristine phosphorene including the effect of SOC and in the ab-
sence of strain has been obtained by numerical diagonalization of the TB Hamiltonian
Eq. (6.9) in different symmetry directions as shown in Fig. 6.2(a). As can be seen, the
space inversion symmetry and the TRS of phosphorene leads to the double spin degener-
acy of each electronic bands. As seen in Fig. 6.2 the gap of phosphorene is located at the
Γ point. At this point, the valence and conduction bands are degenerate and the change
in the gap due to the SOC is very small as compared to the bulk gap. Since axial strain
doesn’t break TRS, the bands at this point remain degenerate. Therefore, when the bulk
gap is modified by an external factor such as strain, we can safely use the spinless Hamil-
tonian demonstrating the general trend in changes of the gap. All P atoms in a unit cell
have the same on-site energy, so we can project the position of upper and lower chains
of phosphorene on a horizontal plane to reduce the spinless 4 × 4 Hamiltonian H(4)

k into
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Figure 6.2: (a) The TB bands of phosphorene including the effect of SOC. (b), (c) The energy
spectrum right before and after band inversion at 11.5% and 12.5% perpendicular tensile strain,
respectively. The inset shows the gap opening due to the SOC, i.e. ∼ 5 meV.

a two-band TB model [76, 211]. Therefore the new k-space Hamiltonian of the strained
phosphorene in the absence of spin is given by

H
(2)
k =

(
Bke

i(ka−kb)/2 Ak + Cke
i(ka−kb)/2

A∗k + C∗ke
−i(ka−kb)/2 Bke

i(ka−kb)/2

)
. (6.14)

Diagonalizing this Hamiltonian at the Γ point gives the band gap as

Eg = (4t01 + 2t02 + 4t03 + 2t05)−
∑
j

(8α1
jεjt

0
1 + 4α2

jεjt
0
2 + 8α3

jεjt
0
3 + 4α5

jεjt
0
5), (6.15)

where j denotes the summation over x, y and z components. The first bracket is the un-
strained band gap i.e. E0

g = 1.52 eV and the second one indicates the structural dependent
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Figure 6.3: Band gap evolution of phosphorene in the presence of (a) perpendicular tensile strain,
(b) uniaxial compressive strain in armchair direction, and (c) biaxial compressive in-plane strain.

values of changes in the band gap due to the axial strains. Inserting the numerical values
of the structural parameters in Eq. (6.15) we obtain a compact form for the gap equation

Eg = E0

g −
∑
j

ηjεj, (6.16)

where ηx = −4.09 eV, ηy = −5.72 eV and ηz = 12.86 eV. Eq. (6.16) shows that by
applying in-plane compressive biaxial strain and perpendicular tensile strain, the band gap
decreases which is consistent with DFT calculations [44–46, 50, 212]. It is shown that
DFT calculations using the PBE exchange correlation functional anticipate properly the
general trends of the band structure when applying axial strains on phosphorene [45, 50].
A comparison between the band gaps as function of axial strains using available DFT
data [45, 50, 212] and TB model demonstrate that the modification of the hopping pa-
rameters in the linear regime are valid for rather large strains and show that the modified
TB model predicts correctly the variation of the low energy spectrum. Figure 6.3 shows
the band gap values evaluated at the Γ point in the presence of (a) uniaxial perpendic-
ular tensile strain (b) uniaxial compressive strain in armchair direction, and (c) biaxial
compressive in-plane strain, respectively. In both DFT and TB approaches the band gaps
exhibit linear dependence with applied strain. The discrepancy between the values of the
band gaps originate from the specific calculation method. As a particular case we consider
the modification of the energy spectrum under a perpendicular tensile strain. By increas-
ing the tensile strain, a band inversion occurs at the critical value of εcz = E0

g/ηz = 0.118.
This is a signal of a topological phase transition. Figs. 6.2(b), (c) show the low energy
bands just before and after band closing at 11.5% and 12.5% tensile strain, respectively.
As shown in the inset of Fig. 6.2(c), the SOC opens a small gap of about 5 meV after band
closing preventing the formation of a Dirac like-cone.
Notice from Figs. 6.2 that the low energy bands in the armchair direction become more
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Figure 6.4: Calculation of Z2 invariant of phosphorene in the presence of perpendicular tensile
strain. The critical value for the topological phase transition is 11.8%.

linear under strain. This makes the intra-chain n-n neighbours less important justifying the
use of the SOC terms of Eq. (6.6).

6.4 Strain induced topological phase transitions in phos-
phorene

The Z2 classification provides a very strong distinction between two different time reversal
topological and trivial phases. Pristine phosphorene as a trivial insulator when the intrinsic
SOC effect is included preserves the TRS and can exhibit a QSH phase when its electronic
properties is influenced by external factors e.g. electric field or strain.
Equation (3.4) for numerical computing the Z2 invariant, when working in the frame of the
TB model [163] is quite efficient for 2D materials such as phosphorene. In what follows,
we will demonstrate numerically a topological phase transition in strained phosphorene
and calculate the phase diagrams accordingly.
Figure 6.4 shows the obtained numerical results of Z2 corresponding to the energy bands
in Fig. 6.2. As can be seen, at the critical strain of 11.8%, which is consistent with the
condition of εz > E0

g/ηz for band inversion, the Z2 invariant jumps from 0 to 1. This,
demonstrates a topological phase transition in the electronic properties of phosphorene.
According to Eq. (6.16), another way to observe a topological phase transition in phospho-
rene, is by applying in-plane compressive biaxial strain at a fixed value of tensile strain in
the z direction. Figs. 6.5 show the numerically computed Z2 phase diagrams as a function
of εx and εy at a fixed value of εz. As can be seen, there is a linear border between two
distinct topological phases that corresponds to the regimes before and after the gap closing
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condition of ηxεx + ηyεy = E0

g − ηzεcz, where εcz is a fixed value of strain in the direction
of z.
It is worth mentioning that, the relatively large bulk band gap of MLP necessitates a rather
large value of strain in order to observe band inversion. As mentioned before, according to
DFT calculations, this is accompanied by an upward shift of a new VBM. After a critical
percentage of strain, a direct band touching occurs, which is characterized by a TI phase.
However, further increase of strain leads to a metal phase and because the topological
nature does not change, the system may fall into the TM phase. Our model can not pre-
dict the VBM upward shift, hence, in spite of demonstrating the change of the topological
phase, it can not distinguish between the TI and TM phases. Note that our approach can be
simply extended to the case of FLP in which we expect to observe the topological phase
transition at lower strain values, due to the fact that the inter-layers hoppings result in a
smaller gap [34].

6.4.1 Electronic properties of PNRs under strain
In this subsection, we investigate the evolution of the band structure of PNRs in the pres-
ence of in-plane and perpendicular strain. As we showed, a topological phase transition
occurs in the band spectrum of phosphorene. This should lead to the formation of topolog-
ically protected edge states in the band structure of the corresponding nanoribbons. For
a system including the SOC, one can obtain the eigenvalues and eigenvectors using the
following matrix

Miα,jβ(k) =
∑
mn

τmiα,njβe
ik·Rmn , (6.17)

where eik·Rmn are the 1D Bloch wave functions. m, n denote super-cells; i, j are the basis
sites in a super-cell and α, β denote the spin degree of freedom. k is the wave vector, and
Rmn represents a Bravais lattice vector. τmiα,njβ are the hopping integrals with usual SOC
or intrinsic Rashba coupling that are conveniently defined between the basis site i with
spin α of super cell m and the basis site j with spin β of unit cell n.
Note that, Eq. (6.17) is related to the energy spectrum of nanoribbons that are not edge
passivated. The experimental realization of such nanoribbons with pristine edges in low
dimensional materials as graphene is well known [224] and may be extended to the case
of PNRs. However, the stability of such ribbons is important from the experimental point
of view. Formation energy studies [191] showed that pristine PNRs are stable specially for
ribbon widths which we have considered in this paper.
The emergence of quasi-flat bands which are detached completely from the bulk bands
due to the special structure of phosphorene are well known [76, 211, 225]. As shown in
Fig. 6.6 (a), there are topologically non-protected edge modes in the 1D bands of a typical
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Figure 6.5: Phase diagrams of the Z2 invariant as function of εx and εy for different values of εcz .
The linear boundaries distinct the two topologically different phases according to the gap closing
condition of ηxεx + ηyεy = E0

g − ηzεcz .

zPNR (the results are for Nz = 100). These quasi-flat bands have been used to propose
a FET driven by an in-plane electric field [76, 211]. However, since pristine bulk phos-
phorene is a trivial insulator, the existence of topologically non-protected edge modes in
the corresponding nanoribbons which can be affected by environmental conditions such as
disorder or impurities, may not be a good candidate for practical use. As an example, we
consider the zigzag nanoribbon in the presence of perpendicular strain. The behaviour in
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the presence of other types of strain is similar to this case. As can be seen in Figs. 6.6(b)
and (c), by increasing strain the bulk gap of the nanoribbon gradually decreases and after a
critical strain, where a band inversion occurs in the bulk spectrum, the corresponding edge
states in the ribbon cross the gap which demonstrates a topological insulator phase. Owing
to the dependence of the nanoribbon gap on the ribbon width, the critical strain for driving
it to a topological insulator phase depends on the width as well. If we consider ribbons
with very large widths, the critical value approaches the critical strain value of bulk 11.8%
that we have calculated in previous section.
The anisotropic structure of phosphorene results in a large bulk gap for zigzag nanoribbons
with experimentally accessible widths. This makes strained zPNRs ideal systems for ob-
serving topological states even at room temperature. As shown in Fig. 6.6(c) for a zigzag
nanoribbon of width ∼ 23 nm this gap is about 200 meV which is much larger than room
temperature thermal energy. We have calculated numerically these bulk gaps for relatively
large ribbons up to a width of 100 nm and found that the mentioned gaps are at least three
orders of magnitude larger than the thermal energy at room temperature.It is worth men-
tioning that, such a typical ribbon width is wide enough to prevent from overlapping of
edge states living on opposite sides of the ribbon. The corresponding probability ampli-
tude of the topological edge modes of Fig. 6.6(c) which have amplitude on opposite edges
are shown in Fig. 6.6(d) for k = 0. The amplitude of the wave functions drop very quickly
along the width of the ribbon demonstrating that the nanoribbon width is wide enough to
prevent quantum tunneling. Such excellent properties can pave the way for utilizing it in
device applications.

6.5 Conclusions
In summary, we derived a spin-orbit model Hamiltonian based on the structural and elec-
tronic properties of phosphorene that captures the main physical properties of spin-orbit
related subjects. Then we showed in the frame of this TB model that gap engineering
of phosphorene by axial strains can lead to a topological phase transition in the elec-
tronic properties of phosphorene. In spite of the relatively small gap induced by SOC in
bulk MLP, we predict that due to the special puckered structure of phosphorene, zigzag
nanoribbons in the regime of TI have topologically protected edge states with rather large
bulk band gaps of about 200 meV for a typical ribbon of width ∼ 23 nm. Such gaps are
larger that the thermal energy at room temperature and are therefore sufficiently large for
practical device engineering at room temperature.
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Figure 6.6: 1D energy bands for a typical PNR with Nz = 100 (∼ 23 nm) in case: (a) without
strain, (b) εz = 10%, and (c) εz = 14%. (d) The probability amplitude of the topological edge
modes living on opposite edges for k = 0.



CHAPTER 7

Summary

In this thesis, the low energy electronic properties of MLP were theoretically investigated
using the tight-binding (TB) approach. We specially focused on the topological proper-
ties of this system. To investigate these topological features, we have reviewed the basic
theories of systems with and without TRS in chapters 2 and 3. In these chapters, we
introduced efficient numerical methods for computing the relevant topological invariants
which are very useful for characterization of the topology of complicated band structures.
We numerically implemented these methods to the Haldane model, Kane-Mele model, and
the AB-stacked bilayer graphene and compared the obtained topological phase diagrams
with analytic results to demonstrate the validity of our algorithm. Then, we have presented
our findings on some electronic and topological properties of phosphorene and PNRs in
chapters 4, 5 and 6. The main obtained results are summarized as follows.
Chapter 4 was devoted to some basic electronic properties of monolayer phosphorene
(MLP) and its nanoribbons. In this chapter, we first introduced a TB model for describ-
ing the low-energy spectrum of MLP. Then, the band structure and effective masses of
the MLP near the gap were presented based on this TB model and it was shown that the
dispersion is relativistic along the armchair direction and the Fermi velocities along this
direction were calculated. Using this model, we showed that electrons and holes mov-
ing along the zigzag direction are more than six times heavier than those moving along
the armchair direction. We presented a simple explanation for the reason why the special
combination of the dominant hopping parameters creates a nearly relativistic dispersion
along the armchair direction. Our results were in good agreement with first principle cal-
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culations demonstrated the validation of this TB model for theoretical prediction of many
electronic properties of MLP.
Thereafter, the TB model was applied to zigzag and armchair PNRs to analyze their band
structure, the state characterization, and quantum conductance. We showed that in zPNRs,
the ratio of the two dominant hopping parameters indicates the possibility of a relativistic
dispersion relation and the existence of a pair of separate quasi-flat bands at the Fermi
level. Moreover, the corresponding states are edge localized if their bands are well sep-
arated from the valence and conduction bands. We also investigated the scaling laws of
the band gaps versus ribbon widths for the armchair and zigzag PNRs. We found that in
contrast to GNRs, boron nitride nanoribbons and α-graphdiyne nanoribbons the band gap
of PNRs decreases monotonically as the ribbon width increases. We numerically showed
that the bang gap is larger in zPNRs for the same ribbon width, indicating that the energy
contribution from quantum confinement is higher in zPNRs, thus resulting in a stronger
quantum confinement effect in zPNRs. We argued that a DFT study suggested a scaling
behavior of ∼ 1/w2 for aPNRs whereas a ∼ 1/w for zPNRs. But, we demonstrated that
the scaling law for the zPNRs is not 1/w. We argued that one should not expect a 1/w
scaling law for zPNRs with ribbon widths larger than 3.5 nm.
Next, we analyzed the relationship between the electronic properties of armchair and
zigzag PNRs and the external electric field along the ribbon width. We found that in
aPNRs, the transverse electric field along the ribbon width enhances the band gap closure
by shifting the energy of the valence and conduction band edge states. For zPNRs, a gap
occurs at the middle of the relatively degenerate quasi-flat bands; thus, these ribbons are a
promising candidate for future FETs.
In chapter 5, the basic aspects of low energy electrons and holes in MLP exposed to a per-
pendicular magnetic field were studied. We argued that inspired by the the anisotropy of
its band structure one might expect to observe a behavior as B2/3 in the LLs field depen-
dence. The primary goal of the chapter was to address the controversial field dependence
of LLs in MLP. We argued that the energy bands curvature is a predominant factor for
determining the field dependence of LLs. We showed that the main aspects of the low en-
ergy spectrum of MLP are well described by only two dominant energy hopping integrals
t1 and t2. We simplified our four-band TB model to a continuum low energy two-band
Hamiltonian with zero diagonal elements. Then, using this simplification which preserves
the physics of the system in the presence of magnetic field, we demonstrated that the LLs
dependence on magnetic field is indeed as for conventional 2D semiconductor electron
gases. We showed that the results are valid up to very high field.
Then, we discussed the conditions for which such a dependence can be evolved into an-
other field dependence. As an example, we considered equi-biaxial compressive strain in
the plane of MLP. We mentioned that the bond lengths and bond angles of phosphorene
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both change under axial strains. Therefore, the hopping parameters will change. However,
our calculations showed that although the modification of the hopping parameters due to
changes in angles are almost noticeable, the modification of the hopping parameters due
to them is much smaller than the effect of changes of the bond lengths. Therefore, we con-
sidered only changes of the bond lengths in the hopping modulation and used the Harisson
rule ti ∝ 1/r2i to modify the hopping parameter. We discussed that this modifies the low
energy bands so that the valance and conduction bands approach each other. Using the
numerical values of the structural parameters of MLP, we showed that the value of the
band gap depends linearly on compressive equi-biaxial strain, in which is consistent with
DFT calculations. We also demonstrated that this results to continuously evolution of LLs
from a (n+ 1/2)B dependence to a [(n+ 1/2)B]2/3 dependence.
In chapter 6, we proposed a model Hamiltonian for the SOC for MLP that can be gen-
eralized to FLP. We showed that a model which includes the n-n neighbors in the upper
or lower chains in the phosphorene structure is sufficient for capturing the main physics.
We again studied the bulk band of phosphorene in the presence of axial strains using our
TB approach and demonstrated that a band inversion occurs in the energy spectrum of
phosphorene in the range where the structure is still stable under strain. We argued that
pristine phosphorene as a trivial insulator when the intrinsic SOC effect is included pre-
serves the TRS and can exhibit a QSH phase when its electronic properties is influenced
by external factors e.g. electric field or strain. Using our algorithm for lattice computation
of the Z2 invariant, we demonstrated numerically a topological phase transition in strained
phosphorene and calculated the phase diagrams accordingly. We showed that for in-plane
compressive global stain, there is a linear border between two distinct topological phases
that corresponds to the regimes before and after the gap closing condition. We also found
that the relatively large bulk band gap of MLP necessitates a rather large value of strain
in order to observe band inversion. However, our approach can be simply extended to the
case of FLP in which we expect to observe the topological phase transition at lower strain
values due to the fact that the inter-layers hoppings result in a smaller gap.
Finally, we showed numerically that although the topological bulk band gaps induced by
SOC is about 5 meV, but the highly anisotropic nature of this material causes the corre-
sponding bulk gaps in large widths zPNRs be at least three orders of magnitude larger than
room temperature thermal energy (∼ 26 meV) and makes PNRs excellent candidates for
future applications.





CHAPTER 8

Samenvatting

In deze doctoraatsthesis werden de lage energie elektronische eigenschappen van mono-
laag fosforeen (MLP) theoretisch onderzocht gebruikend van de tight-binding (TB) be-
nadering. Speciale aandacht ging naar de topologische eigenschappen van dit systeem.
Om deze topologische kenmerken te onderzoeken, hebben we eerst de basistheorie van
systemen met en zonder TRS gegeven in de hoofdstukken 2 en 3.
In deze twee hoofdstukken werden de numerieke methoden geïntroduceerd om de topolo-
gische invariantie, die zeer geschikt is voor het beschrijven van complexe bandstructuren,
te berekenen. We hebben deze numerieke methoden in de modellen van Haldane, Kane-
Mele, en AB-gestapelde bilaag grafeen gebruikt en de resultaten vergeleken met de topolo-
gische fasediagrammen die verkregen zijn vanuit analytische berekeningen en dus hebben
we aangetoond dat ons algoritme geldig is.
Het vierde hoofdstuk is gewijd aan een aantal elektroneigenschappen van monolaag fos-
foreen en zijn nanoribbons. In dit hoofdstuk werd eerst een TB-model geintroduceerd om
het energiespectrum van monolaag fosforeen te beschrijven. Met behulp van dit model
hebben we aangetoond dat de elektronen en gaten die in de zigzag richting bewegen, meer
dan zes keer zwaarder zijn dan degenen die in de armchair richting bewegen.
Daarna hebben we een eenvoudige verklaring gegeven voor de reden waarom de speciale
combinatie van de dominante hopping parameters, aanleiding geeft tot een relativistische
energie spectrum in de armchair richting. De verkregen resultaten zijn in goede overeen-
stemming met de first-principles berekeningen. Aldus is dit TB-model geldig voor de
theoretische voorspelling van de meeste elektroneigenschappen van monolaag fosforeen.
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Vervolgens hebben we het TB-model toegepast voor zigzag en armchair fosforeen nanorib-
bons, en analyseerde we hun bandstructuur, hun toestand, en hun kwantumgeleidbaarheid.
Andere aspecten die we bestudeerd hebben, zijn o.a. de schaling van energiekloven met de
breedte. DFT-onderzoek suggereerde een schaalgedrag van∼ 1/w2 voor aPNRs en∼ 1/w
voor zPNRs. Maar we hebben aangetoond dat de schaling voor zPNRs niet overeenkomt
met 1/w. Voor nanoribbons met een breedte groter dan 3.5 nm, is het niet mogelijk om
een 1/w schaling van de energiekloof te vinden. In verband met zPNRs, hebben we aange-
toond dat een energiekloof in het midden van de relatief vlakke banden gecreëerd wordt,
en daarom kunnen zo’ne nanoribbons, mogelijke kandidaten zijn voor toekomstige veldef-
fecttransistoren. In het vijfde hoofdstuk werden de fundamentele aspecten van elektronen
en gaten in fosforeen in een verticaal magnetisch veld bestudeerd. We argumenteerde dat
op basis van de relatief hoge anisotropie in de bandstructuur van dit systeem, de Landau-
niveaus een gedrag in de vorm vanB2/3 verwacht wordt. Dus het hoofddoel van dit hoofd-
stuk was om de afhankelijkheid van het Landau-niveau op het magnetisch veld te analy-
seren, die nog steeds ter discussie staat. We hebben het TB-model met vier banden gere-
duceerd tot een Hamiltoniaans model met twee continue banden. Daarna hebben we met
deze vereenvoudiging bewezen dat de afhankelijkheid van het Landau-niveau op het mag-
netische veld, hetzelfde is als van elektronengassen in tweedimensionale halfgeleiders. We
hebben aangetoond dat dit resultaat geldig is tot zeer hoge magnetische velden. Daarna
hebben we de omstandigheden onderzocht waarin deze afhankelijkheid kan omgezet wor-
den in een andere afhankelijkheid.
In het zesde hoofdstuk hebben we een Hamiltoniaan model voor de spinbaan-interactie
in monolaag fosforeen, voorgesteld. We hebben met behulp van het TB-model, de ban-
denstructuur van fosforeen in aanwezigheid van axiale strain bestudeerd en er wordt be-
wezen dat een soort inversie van de banden optreedt in het energiespectrum. Met behulp
van ons algoritme voor het berekenen van de Z2 invariant, hebben we een topologische
fase-overgang van fosforeen onder strain gevonden en overeenkomstige fasediagram werd
berekend. We hebben ook aangetoond, hoewel de geïnduceerde energiekloof door de spin-
baaninteractie ongeveer 5 meV is, dat de grote anisotropie van dit materiaal resulteert in
een groter energiekloof in zigzag-nanoribbons, en dit minstens drie keer groter is dan de
thermische energie van kamertemperatuur. Aldus zijn nanoribbons van fosforeen een zeer
goede kandidaat voor toekomstige toepassingen.
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