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Chapter 1
Introduction

Any change of an external parameter like electric field, magnetic field or pressure leads to
changes in the properties of a system. Sometimes the change of these external parameters,
either small or large, leads to a significant change in the behavior of the system i.e., a
phase transition may happen. Among the different kind of phase transitions, the transition
form a metallic (insulating) state to an insulating (metallic) state has been one of the most
important one both from a fundamental and a technological point of view. Significant ef-
forts have been devoted to phase transitions induced by the application of an electric field,
which could lead to either a magnetic phase transition in multifferoic materials [1] or a
metal insulator transition (MIT). The MIT when induced by an external electric field is
of special importance and it may been exploited in the microelectronic industry as a base
for the production of switching devices. A three terminal device, like the one shown in
Fig. 1.1 is normally used for switching proposes. Upon gating, the active material is either
a metal or an insulator, resulting in a tunable manipulation of the current. The mechanism
which leads to MIT could be different for different kinds of active materials. From the
beginning, since the invention of transistors by Shockley, Brattain and Bardeen in 1948,
silicon has been the most prominent material which is used as an active material. From the
early development of microelectronics, a large effort has been devoted to mak the devices
smaller and more efficient in the sense of e.g. energy consumption. The down-scaling of
the devices has been one of the most important aspects of the industry. This was pointed
out by Intel’s co-founder Gordon E. Moore, in his paper [2], which resulted in Moore’s law.
Moore’s law relies on his observation that since the invention of computing hardware, the
number of transistors in each device doubles in approximately each 2 years as is presented
in Fig. 1.2. Surprisingly, Moore’s law has remained valid and works accurately since that
time. The prediction of Moore’s law is extensively used by the microelectronic industry
to set targets for long-term planning for future research and development. Although this



2 Introduction

Figure 1.1: Schematics of a three terminal device setup, proposed for Mott-MIT devices,
adopted from [4].

historical trend has continued for more than half a century, Moore’s law is only an observa-
tion and not a natural law. In order to keep Moore’s law valid the main trend has long been
the scaling of the devices dimensions according to scaling laws. However semiconducting
devices based on silicon are approaching their fundamental limitations [3]. For example,
by scaling the planar bulk metal-oxide-semiconductor field-effect-transistor (MOSFET),
in order to gain enough control of short-channel effects and to set the threshold voltage
accordingly, one needs to increase the level of doping to very large levels, and as a result
of such high channel doping, carriers (hole or electrons) mobility decrease considerably.
At the same time the junction leakage due to band-to-band tunneling will increase. To
subdue these difficulties several attempts have been made and crucial developments have
been achieved. In particular one of the most recent advancements achieved by Intel found
that a the 22nm TriGate transistor performance is better than that of a 32nm planar tran-
sistor, and therefore it keeps Moore’s law still going [5]. Sources in 2005 expected it to
remain valid until at least 2015 or 2020. However, the 2010 update of the International
Technology Road map for Semiconductors predicted that growth will slow at the end of
2013, when transistor counts and densities are to double only every three years. Therefore
because of the expected limitations of silicon based devices several attempts have been
proposed to replace them by alternations.

1.1 Alternative candidates for silicon devices
Among these are the replacement of silicon by high mobility semiconductors such as Ge
and GaAs, or materials for which the MIT is not doping based, i.e. piezoelectric transis-
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Figure 1.2: Illustration of Moore’s law: Doubling of number of components on a chip
roughly every two years.

tors, where a piezoelectric material is used as channel and the MIT happens by a gate-
induced pressure upon changing the gate voltage [6]. Switching phenomena is not limited
to MIT materials that undergo a metal to insulator transition upon gating, but other kinds
of off/on control of the current have recently also been realized experimentally based on
a superconductor to insulator transition at the interface of LaAlO3/SrTiO2 structures [7].
Another class of materials that has been proposed as channel material are those which ex-
hibit a Mott-metal insulator transition, for which the electronic phase diagram depends on
doping levels and Coulomb interaction strength. The rich phase diagram of these systems
make them a potential candidate for which the amount of the concentration of free carriers
induced by gate voltage could possibly lead to large modulations of free carriers, more
effectively in comparison to conventional field-effect transistors (FET).

Among these correlated materials is V2O3, which is considered as a prototype Mott
insulator which suffers from a first order MIT from a paramagnetic insulator to a para-
magnetic metal without any modification of the point group of the crystal structure [8].
Another commonly used material is VO2 which has been shown to have a more band like
insulating character while correlation effects could not be ruled out [9], and furthermore it
suffers from a MIT due to a structural transition from a monoclinic M1 to a Rutile phase
as function of temperature at room temperature [10]. From the technological point of
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view, thanks to recent advances in fabrication facilities, such as Pulsed Laser Deposition
(PLD) or oxygen-assisted molecular beam epitaxy(MBE), the fabrication of heterostruc-
tures with very high quality has becomes possible. For the specific device in Fig. 1.3(a),
a cross-section of a three terminal device is shown and it consist of a VO2 channel which
is grown on the single crystalline (001) TiO2 substrate by PLD. The main feature which is
common in all three former cases is the presence of transitional metals in their chemical
composition, which have an open shell with d orbitals. The main character of the d-orbitals
is the fact that they are less spread in space in comparison to s or p type orbitals which re-
sults in a weak overlap of orbitals from nearest neighbor atoms. This in turn leads to small
kinetic energy and a narrower band-width . The lower kinetic energy results in a longer
time each electron spends around the specific atom in which it is localized and thus feels
more the presence of other electrons in other orbitals in comparison to wider band-width
materials and therefore stronger local interactions between electrons occurs locally.

Following reference [11], this could be qualitatively explained as follows, considering
that the correlated electrons have a well defined single particle dispersion as εk then the

velocity of this quasi-particles (QP) is defined as vk =
1

~
∇kεk. This velocity could be

estimated as vk ∼ a/τ , where a is the lattice constant and τ is the amount of the time
each electron spends in each atomic site. On the other hand the velocity could be approx-

imated as
1

~
∇kεk ∼

1

~
aW , where W is the band width which is proportional to hopping

amplitude between nearest neighbor sites (the energy overlap between orbitals in nearest
neighbor sites). Finally after combining the two velocities, one achieves an approximate
measure for the amount of time each electron spends at each atomic center as: τ = ~/W .
Therefore smaller band width leads to a larger time each electron spends around the atomic
centers. This implies that when the band-width is narrower, the local interaction between
electrons in the different orbitals is locally enhanced.

While the presence of correlations leads to many exotic phenomena inclusive of high
temperature superconductivity [12], heavy fermions [13], multifferoics [1] and metal in-
sulator transitions [14,15], the presence of strong local interactions also leads to collective
correlated dynamics, i.e. simple single electron approaches do not work properly for this
kind of systems because the electrons are not independent anymore. Correlation effects in
turn lead to significant quantitative and qualitative changes of the physical properties of
the system when compared to materials with weak interactions.

In particular, theoretical predictions imply the presence of different energy scales in the
spectral function, i.e. in the metallic regime the low energy scales near the Fermi surface,
which results in a renormalized QP peak near the Fermi surface. These QP excitations
are well defined at low enough temperatures, and correlation effects lead to an enhanced
effective mass for QP excitations near the Fermi surface with very large life time based
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on the Fermi liquid theory. The other energy scale is the one defined by the lower and
higher Hubbard bands and does not obey Fermi liquid theory. In this case single particle
excitations are significantly scattered and have a small life time. These features are illus-
trated in Fig. 1.4 , which shows that the lower and higher Hubbard bands are reproduced
as the interaction increases. The appearance of the Hubbard bands is simultaneous with
the narrowing of the spectral peak at the center. Finally the QP peak disappears when the
system turns into an insulating state and the effective mass diverges, i.e. a Mott-MIT oc-
curs. Another feature of the spectral function is its non-rigid behavior, showing that, there
are spectral changes due to the changing of the chemical potential. This happens either if
the chemical potential is within the gap of the insulating state at half filling, or for a doped
insulator, or in weakly correlated metallic regimes [16].

The essence of surface effects manifests itself in photo-emission experiments. For
(V1−xCrx)2O3 as a prototype material which shows the Mott transition [8], early photo-
emission experiments failed to uncover the coexistence of a sharp peak near the Fermi sur-
face together with the lower and higher Hubbard bands in the spectral function [17–20],
instead the electronic spectral function was dominated by the lower Hubbard band with
small spectral weight at the Fermi surface towards weak metallization. The same phe-
nomenon was reported much earlier in f-electron materials [21] and later assigned to large
surface effects due to strong correlation effects [22]. In the end, the inconsistency between
theory and experiments was resolved by using photoelectrons with larger kinetic energy
such that they could penetrate deep inside the bulk material and eventually a QP peak co-
existing with the lower and higher Hubbard bands was revealed [23–28].

From a theoretical point of view it is known that the modified parameters of the Hamil-
tonian, i.e. the lower coordination number at the surface, leads to the lack of kinetic energy
for the electrons at the surface which pushes the surface closer to the Mott transition in
comparison with the bulk. Furthermore, noninteracting or weakly interacting correlated
metals do not have any intrinsic length-scale other than the Fermi length scale, therefore
any disorder like surface or interface can only penetrate into the bulk as a power law de-
caying disturbance, which is related to Friedel oscillations. However this is not the case
for the strongly correlated regime, where imperfections could penetrate into the bulk at
very large distances with a length scale that is affected by the proximity to the transition
point. These imperfections, manifest themselves in variations of the coherent part of the
spectral function as function of distance from the surface [29–35]. In other words, when
the parameters of the system are chosen such that it is closer to the Mott-MIT, the cor-
relation length is larger. This length scale is only a function of bulk properties and does
not depend on the strength and type of the perturbation [29,33]. This feature was recently
realized experimentally, and it was shown that the surface region is extended much more
than in the case of a normal metallic system. This becomes important in particular in the
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Figure 1.3: (a) TEM cross section of VO2 film, (b) First order MIT as function of temper-
ature, adopted from [37].

vicinity of the Mott MIT with a length scale that is only a characteristic feature of the
bulk properties [36]. This in turn leads to an extended dead zone layer with very low QP
weight, the signature of an insulating character. The presence of this well defined length
scale which characterizes how a perturbation could penetrate into the bulk by affecting the
QP weight implies the surfaces and interfaces and the thickness of the devices which are
produced with these kind of materials will be important. This behavior is important not
only for the charge neutral systems but also when the system is doped or is subjected to an
external electric field [34].

In order to understand the behavior of this class of systems under the influence of
doping or an external electric field, in addition to bulk calculations, theoretical investi-
gations and numerical simulations based on inhomogeneous systems are vital. Realistic
theoretical calculations based on combined dynamical mean field theory (DMFT) [38]
and electronic structure methods are quite expensive computationally and the complexity
of the calculations is much larger for translational broken systems such that it becomes
almost impossible to perform full realistic LDA+DMFT calculations for heterostructures
(the complexity of the calculations scales linearly at least with the number of sites that one
should consider for DMFT self consistency).

On the other hand it appears that simplified model Hamiltonians based on single band
or two band Hubbard models could capture qualitatively at least the main features of cor-
related electron systems in translational broken configurations [33]. Furthermore, full
DMFT calculations for systems described by single or two band Hubbard models are also
expensive for heterostructures and simplifications could help to reveal the main features of
correlated system while the computational expenses are still manageable. One of the goals
of this dissertation is to investigate and understand the effects of doping, together with the
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effect of an external electric field in the presence of surfaces (interfaces) in strongly corre-
lated materials. The models which we will investigate are slab geometries, motivated by
the presence of a capacitor setup in the normal three terminal field effect transistors, as is
shown in Fig. 1.1.

Another promising class of systems which has recently grasped lots of attention are
2D transition metal dichalcogenide materials [39]. Among this class of materials belong
monolayers of MoS2, which have recently been interested as an active material for FET
applications. The presence of a direct bandgap (∼ 1.8eV ) in monolayer MoS2 make it pos-
sible to use it as a FET with an on/off ratio of about ∼ 108 [40]. The presence of high-κ
dielectrics in these devices leads to an enhancement of their mobility ∼ 100cm2/V s [40],
which is much lower in comparison with graphene but it is high in comparison with lay-
ered semiconductors [39]. Due to the presence of a transition metal element in MoS2 it
is predicted that it acquires a larger ratio rs , i.e. the average electron-electron interaction
energy to the Fermi energy, and therefore larger correlation effects are expected in com-
parison to normal 2D systems like graphene. This enhanced correlation effects therefore
could lead to more exhaustive phenomena/phase transitions such as superconductivity or
superfluidity, unpon gating or equivalently doping. Another promising feature of this ma-
terial is the presence of structural degrees of freedom, i.e. a conventional insulating H
structure (see chapter.7) and a metallic T structure, and therefore a tunable stabilization
of the T structure by using an external perturbation may lead to an enhancement of the
mobility for these kind of devices.

At the end of this section we emphasize again that due to the rich phase diagram of
strongly correlated systems, specially as a function of doping, practical applications of
these systems are not restricted to MIT applications. New many-body phase transitions
could lead to new functionalities for these class of devices, which are not expected from
the conventional FET devices. For instance carrier-mediated ferromagnetic or antiferro-
magnetic transitions, could be interesting for magnetic logic devices.

1.2 Non adiabatic transitions in many body systems

So far our attention has been directed to adiabatic phenomena, in the sense that we only
consider the electric field response of the correlated system subjected to external electric
field such that there in no leakage in the capacitor setup. This approximation is still valid
because these effects are already avoided by either using very strong insulators between
the channel and gate contacts [37] or by using ionic liquids as gate material [42, 43]. This
in turn allows the application of high electric fields in a capacitor setup without large gate
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Figure 1.4: Density of states for a Hubbard model on a Bethe lattice, as a prototype system
which shows a Mott-MIT at finite interaction strength, taken from [41].

leakage and therefore it avoids Joule heating. Another aspect that grasped the attention in
the field of strongly correlated systems are non-adiabatic and non-equilibrium phenomena.
Both from the theoretical and experimental point of view it is well known that there is a
first order MIT as function of temperature in strongly correlated materials as is shown in
Fig. 1.3(b). This first order transition could be accompanied by a structural phase transition
like the one that occurs in VO2 and Ca2RuO4 [44] or it could be a purely electronic one as
seen in V2O3 [8]. The electric breakdown of these kinds of insulators has been the matter
of long lasting debates, and the question is whether the nature of the transition is purely
electronic or that Joule heating is the actual reason for the transition [45–47]. From ex-
perimental investigations it appears that explanations based on combined electro-chemical
phenomena are the most relevant ones [48–52]. Shortly, this mechanism generally relies
on a combined electro-chemical phenomena such that upon the application of a strong
electric field in two terminal devices Joule heating, due to the passage of the current, then
leads to the formation of metallic domains inside the insulating background. The forma-
tion and growth of these metallic domains finally leads to an electric breakdown of the
bridge material. We show this schematically in Fig. 1.5. The nucleation of these metallic
regions inside the insulating domain could be generated by imperfections inside the sam-
ple [48].

While based on the above mentioned discussions the electric breakdown in the strongly
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V

Conductive path

Metallic domain

Insulating background

Figure 1.5: Schematics of the formation of the metallic domains in insulating back-ground.

correlated systems appears to be mostly governed by Joule heating at finite temperatures
and at macroscopic length scales, the breakdown or nonlinear response to an external
electric field should be also connected to a microscopic picture [53]. In particular this
is important when a system is subjected to the sudden turn on of an electric field, where
microscopic-electronic properties dominate the electric field response. From the funda-
mental point of view the problem of electric breakdown or in general electric field re-
sponse to an external electric field for a closed system of interacting fermions could pro-
vide insight about the electric field response in the thermodynamic limit. This is specially
important for understanding short time response of a correlated system to sudden changes
of the electric field. These kind of investigations could be experimentally realized in more
idealized correlated setups i.e.fermionic cold atomic traps [54–56]. The concept of an op-
tical lattice has became experimentally feasible after the invention of laser cooling [57,58]
and it was originally proposed in the context of laser spectroscopy [59, 60]. The idea
behind it is to manipulate ultra cold quantum gases in an optical lattice created by laser
standing waves. Therefore the atoms feel a periodic potential because of the interaction
between the induced electric dipole moment of the atoms with laser standing waves [61].
Furthermore it is possible to tune the dimensionality of the trap by tuning the intensity of
the laser beams, for instance it is possible to have a 1D trap by choosing the laser beam
with large intensity in two directions and a small intensity in the third direction. Therefore,
the quantum atomic species could move only in the direction for which the laser standing
wave has smaller extrema at the anti-nodes. In most experiments the Fermi gas is produced
as a mixture of two spin states, which correspond to magnetic states of the atomic ground
states. Realistic experiments have been performed with fermionic isotopes of potassium
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(40K) and Lithium (6Li) [55]. Subsequently, by using Feshbach resonances [62, 63], it is
possible to tune the collisional interaction between the atoms and therefore the repulsive
or attractive interaction between two atoms with different spins. This in turn gives the
possibility to simulate fermionic or bososnic Hubbard models. For example, the fermionic
Hubbard regime has been achieved for optical lattices constructed with (40)K atoms [55].

1.3 Organization and contribution of the thesis

Motivated by the above mentioned discussions we performed several studies on the elec-
tric field effects on strongly correlated systems based on model Hamiltonians, including
as well realistic effects of dopants and charge transfer on the correlated 2D materials. The
dissertation is organized as follows:

In Chapter. 2, we present and explain the theoretical tools we have used. In particular
we present a brief introduction to the different methods in the field of interacting systems,
in particular we present preliminary information about the Gutzwiller variational method
and the Gutzwiller approximations (GA) as well as DMFT. Furthermore we present a brief
introduction to exact numerical approaches and some implementation hints, and finally we
give some introductory notions about non-adiabatic phenomena and real time propagation
techniques.

In Chapter. 3, the ground state properties of a paramagnetic Mott insulator are inves-
tigated in the presence of an external electrical field using the inhomogeneous GA for a
single band Hubbard model in a slab geometry. The metal insulator transition is shifted
towards higher Hubbard repulsions by applying an electric field perpendicular to the slab.
The spatial distribution of site dependent QP weight shows that the QP weight is maxi-
mum in few layers beneath the surface. Moreover only at higher Hubbard repulsion, larger
than the bulk critical interaction, the electric field will be totally screened only for centeral
cites. Our results show that by presence of an electric field perpendicular to a thin film
made of a strongly correlated material, states near the surface will remain metallic while
the bulk becomes insulating after some critical interaction. In contrast, in the absence of
the electric field the surface becomes insulating before the bulk.

In Chapter. 4, surface effects of a doped thin film made of a strongly correlated mate-
rial are investigated both in the absence and presence of a perpendicular electric field. We
use an inhomogeneous GA for a single band Hubbard model in order to describe correla-
tion effects. For low doping, the bulk value of the QP weight is recovered exponentially
deep into the slab, but with increasing doping, additional Friedel oscillations appear near
the surface. We show that the inverse correlation length has a power-law dependence on
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the doping level. In the presence of an electrical field, considerable changes in the QP
weight can be realized throughout the system. We observe a large difference (as large as
five orders of magnitude) in the QP weight near the opposite sides of the slab. This effect
can be significant in switching devices that use the surface states for transport.

In Chapter. 5, using an extension of the GA for an inhomogeneous system, we study
the two band Hubbard model with unequal band widths for a slab geometry. The aim is to
investigate the mutual effect of individual bands on the spatial distribution of QP weight
and charge density, especially near the surface of the slab. The main effect of the dif-
ference in band width is the presence of two different length scales corresponding to the
QP profile of each band. This is enhanced in the vicinity of the critical interaction of the
narrow band where an orbitally selective Mott transition happens and a surface dead layer
forms for the narrow band. For the doped case, two different regimes of charge trans-
fer between the surface and the bulk of the slab are revealed. The charge transfer from
surface/center to center/surface depends on both the doping level and the average relative
charge accumulated in each band. Such effects could be of importance also when describ-
ing the accumulation of charges at the interface between structures made of multi-band
strongly correlated materials.

In Chapter. 6, the electric-field response of a one-dimensional ring of interacting fermions,
where the interactions are described by the extended Hubbard model, is investigated. By
using an accurate real-time propagation scheme based on the Chebyshev expansion of the
evolution operator, we uncover various non-linear regimes for a range of interaction pa-
rameters that allows modeling of metallic and insulating (either charge density wave or
spin density wave insulators) rings. The metallic regime appears at the phase boundary
between the two insulating phases and provides the opportunity to describe either weakly
or strongly correlated metals. We find that the fidelity susceptibility of the ground state as
a function of magnetic flux piercing the ring provides a very good measure of the short-
time response. Even completely different interacting regimes behave in a similar manner
at short time-scales as long as the fidelity susceptibility is the same. Depending on the
strength of the electric field we find various types of responses: persistent currents in the
insulating regime, dissipative regime or damped Bloch-like oscillations with varying fre-
quencies or even irregular in nature. Furthermore, we also consider the dimerization of the
ring and describe the response of a correlated band insulator. In this case the distribution
of the energy levels is more clustered and the Bloch-like oscillations become even more
irregular.

In Chapter. 7, based on first-principles calculations, we study the relative structural sta-
bility of the metallic T and insulating H phase of monolayer MoS2 upon Li doping, the pri-
mary task was to investigate the problem of relative stability of two system by electrostatic
doping as a result of the application of an electric field. However technical difficulties in
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plan-wave implementations of ab-initio calculations for inducing pure charges, for the lay-
ered structures, forced us to use Lithium atoms as a source for the charge transfer to the
monolayer MoS2. Our calculations show that the H structure of MoS2 is stable for single-
side adsorption for arbitrary concentrations of lithium atoms. However, it is possible to
energetically stabilize the T phase of MoS2 against H phase if Li atoms are adsorbed on
both sides of the MoS2 layer. However, the resulting T structure is dynamically unstable
against distortions towards in-plane clustering of the molybdenum atoms. Two processes
are examined that allow for two-sided adsorption of Li atoms on MoS2 supported by a
substrate. First, the penetration of Li atoms through the MoS2 layer is investigated. Our
calculations show that the amount of energy needed to pass through a pure MoS2 layer is
of the order of ∼ 2 eV, which is too large to make penetration possible. However, when
the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain
to pass the layer is drastically reduced by at least two order of magnitude and penetration
becomes feasible. Another way to achieve two-side adsorption which we investigate is the
migration of Li atoms from the edge of the sample.

Finally I conclude by highlighting the remarkable results of the thesis in chapter 8.
Every chapter is relatively independent of the others, and can be read separately.



Chapter 2
Models and Methods

In condensed matter physics one often (in principle always) encounters the overwhelming
task of explaining the behavior of a system which consists of a large number of interacting
particles. For the energy scales which are relevant in condensed matter physics the parti-
cles are sets of either electrons or atomic nuclei. Due to the quantum mechanical nature of
the problem, the fundamental equation that particles have to satisfy is the time independent
Schrödinger equation,

ĤΨ(~x1, ..., ~xn; ~R1, ..., ~Rn) = EΨ(~x1, ..., ~xn; ~R1, ..., ~Rn), (2.1)

where Ψ(~x1, ..., ~xn; ~R1, ..., ~Rn) is the many body wave function and Ĥ is the Hamiltonian
given by,

Ĥ = −
∑
i

~2∇2
i

2me

−
∑
I

~2∇2
I

2MI

+
1

2

∑
i 6=j

e2

|~xi − ~xj|
+

1

2

∑
I 6=J

ZIZJe
2

|~RI − ~RJ |
−
∑
i,I

ZIe
2

|~xi − ~RI |
,

(2.2)

where ε0 is vacuum perminivity, ~ is Planck quantum divide by 2π, ~xi is the position of
the electrons with index i, ~RI is the position of the atomic nuclei, MI is the atomic mass,
ZI is the atomic charge, me is the electron mass and e is the electron charge. Here the
relativistic contributions are considered at lowest order, which manifest itself as particles
with spin. Hereby, we define the different terms in Eq. (2.2) as follows, the first two terms
correspond to the kinetic energy of the electrons (Te) and nuclei (TN ) respectively, the
third and forth terms indicate the Coulomb interaction between electrons (internal poten-
tial Vee) and between atomic nucleus (VII) respectively, and the last term corresponds to
the electron-nuclei Coulomb interaction (external potential Vext). Therefore, by knowing
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the particles and interactions between them, together with the equation of motion (here
the Schrödinger equation) the problem is completely defined. However, the solution of
the innocent looking eigenvalue problem in Eq. (2.1) is intricate and too complicated to
be solvable. Therefore the central problem in condensed matter physics is to search for
accurate and practical approximations for solving Eq. (2.1) with Ĥ defined in Eq. (2.2).
This was already remarked in the early stages of quantum mechanics by Dirac [64]. The
first approximation which is usually considered arises from the fact that the mass of the
atomic nuclei is much larger than that of the electron (

me

MI

' 10−4), therefore one may

neglect the kinetic energy of the atomic nuclei. This approximation then requires the elec-
trons move in an external potential which is produced by the atomic nuclei that are fixed
in their positions (naturally equilibrium). This is the essence of the Born-Oppenheimer
approximation that in turn leads to the following Hamiltonian,

H = Te + Vee + VII + Vext. (2.3)

Even after the decoupling of the electronic degrees of freedom from the lattice degrees
of freedom the problem is still difficult to solve. Therefore further approximations are yet
to be constructed. The heart of almost all approximations is to map the real problem to an
auxiliary problem that could capture the essential features of the system, while its solution
is manageable. Rather than working with the Schrödinger equation one may favor to work
directly with the total energy as,

E =

∫
d3x1...

∫
d3xNΨ∗(~x1, ..., ~xN)ĤΨ(~x1, ..., ~xN)∫

d3x1...
∫
d3xNΨ∗(~x1, ..., ~xN)Ψ(~x1, ..., ~xN)

. (2.4)

Then by using the variational principle
δE

δΨ∗
= 0, one arrives at the original Schrödinger

equation. In order to evaluate the total energy E, based on the Hamiltonian Ĥ in Eq .(2.2),
we need to perform 2N integrations in 3N spatial dimensions. However, because there are
only either single particle or two particle interactions in Eq. 2.2 then only two relevant
quantities remains. The first one is the single particle density matrix as,

ρ(1)(~x, ~x′) = N

∫
d3x1...d

3xNΨ∗(~x, ~x1, ..., ~xN)Ψ(~x′, ~x1, ..., ~xN), (2.5)

and the two particle density matrix as,

ρ(2)(~x, ~x′) = N(N − 1)

∫
d3x1...d

3xNΨ∗(~x, ~x′, ~x1, ..., ~xN)Ψ(~x, ~x′, ~x1, ..., ~xN), (2.6)

Where Ψ(~x1, ..., ~xN) is the many body wave function which consist of N particles and the
labels ~x1, ..., ~xN are position of particles in real space. Notice that ~x and ~x′ in Eq. (2.5)



15

correspond to the same particle, however ~x and ~x′ in Eq. (2.6) correspond to two different
particles. In other words, the two particle density matrix is the joint probability of finding
two particles at ~x and ~x′, while n(1)(~x) = ρ(1)(~x, ~x) is the probability to find the particle
at the position ~x. By considering the above definitions, one may write the total energy as
the following equation,

E =

∫
d3xd3x′δ(~x− ~x′)(−~2∇2

2me

+ Vext)ρ(~x, ~x′) +
1

2

∫
d3xd3x′

e2ρ(2)(~x, ~x′)

4πε0|~x− ~x′|
. (2.7)

The heart of next approximation is how to find a good approximation for the two par-
ticle density matrix. The simplest approximation to the two-particle density matrix is
to consider that the electrons move independently and they do not satisfy the Pauli ex-
clusion principle, then one may write the many body wave function Ψ(~x1, ..., ~xN) =
φ1(~x1)...φN(~xN), where the φ1(~x1), ...φN(~xN) are single particle wavefunctions. One can
easily check that by considering this approximation we have ρ(2)(~x, ~x′) = n(1)(~x)n(1)(~x′).
Afterwards by using the variational principle for Eq. (2.7), one achieves the following
Schrödinger-like equation for single particle wave functions φ1(~x1), ...φN(~xN),

[
− ∇

2
i

2me

+ Vext(~xi) +
∑
j

∫
d3xjφ

∗
j(~xj)

e2

4πε0|~xi − ~xj|
φj(~xj)

]
φi(~xi) = εiφi(~xi). (2.8)

Due to the fact that the quantum mechanical particles are indistinguishable, the Hamil-
tonian Eq. (2.1) commutes with the permutation operator and thus the many body wave
function is also an eigenstate of the permutation operator. By considering this observation
a more advanced approximation arises if we consider an anti-symmetrized (because of the
fermionic nature of the electrons) wave function which is constructed with single particle
terms. This wave function is nothing but a Slater determinant, which is produced by a
linear combination of all possible mutual permutations P between the different particles
as,

Ψ(~x1, ..., ~xN) =
1√
N !

∑
P

(−1)PφP1(~x1)...φPN (~xN), (2.9)

where the summation over P accounts for the summation over all mutual possible permu-
tations. It is clear that the anti-symmetrized wave function, Eq. (2.9), is an eigenstate of
the permutation operator. Inserting back the above ansatz into the total energy expression
in Eq. (2.7) together with the variational principle, one obtains the following equation for
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the single particle wave functions,[
− ∇

2
i

2me

+ Vext(~xi) +
∑
j

∫
d3xjφ

∗
j(xj)

1

|~xi − ~xj|
φj(~xj)

]
φi(~xi)

−
∑
j

[∫
d3xjφ

∗
j(~xj)

e2

4πε0|~xi − ~xj|
φi(~xj)

]
φj(~xi) = εiφi(~xi)

(2.10)

This is called the Hartree-Fock approximation. Following the Hartree decomposition of
the two particle density matrix one may reorganize Eq. (2.7) as follows. If one particle is
located at the position ~x0, then the amount of charge that an observer charge located at ~x

feels is the conditional density
ρ(2)(~x, ~x0)

n(1)(~x0)
with n(1)(~x0) defined as n(1)(~x) = ρ(1)(~x, ~x).

This conditional charge accounts for the charge which the remaining N-1 particles pro-
duce. Therefore the observer charge does not feel the charge of itself. The Hartree de-
composition of the two particle density matrix makes it more convenient to write the two
particle density matrix as ρ(2)(~x, ~x′) = n(1)(~x)[n(1)(~x′)+h(~x, ~x′)]. Where h(~x, ~x′) is called
the hole function. By substitution of the former expression for the hole function into the
total energy functional Eq. (2.7) one may reorganize the energy functional as,

E =

∫
d3xd3x′δ(~x− ~x′)(−~2∇2

2me

+ Vext)ρ(~x, ~x′) +
1

2

∫
d3xd3x′

e2n(1)(~x)n(1)(~x′)

4πε0|~x− ~x′|

+
1

2

∫
d3xn(1)(~x)

∫
d3x′

e2h(~x, ~x′)

4πε0|~x− ~x′|
. (2.11)

Here we define the second and third terms as EH and UXC . Where the first term is only
the Hartree term and the second is the exchange correlation interaction energy.
Often, considering the many body wave function just as a Slater determinant of single
body wave functions is not a satisfactory approximation and one may need more elaborate
approximations to deal with the many body problem. One of the most successful and
prominent approaches is density function theory (DFT). This theory also maps the full
many body problem on a simplified single particle one, but it uses more sophisticated
ways to approximate the two body density matrix or equally the hole function in the energy
functional in Eq. (2.11), while it does not introduce many computational difficulties.

2.1 Density Functional Theory
The density functional theory relies on two fundamental theorems that were proposed and
proved exactly by Hohenberg-Kohn (HK), which are mentioned in the following:
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• Theorem I : For any system of interacting particles in an external potential Vext(~x)
the potential Vext(~x) is determined uniquely, except for a constant, by the ground
state density n0(~x).
The essential point of this theorem is the fact that ground state electron density
uniquely determines an external potential and the Hamiltonian and therefore all the
properties of the system. The prove of this theorem is as follows. Assume that there
are two different external potentials Vext(~x) and V

′

ext(~x), which both give the same
ground state density n0(~x). Therefore, there are two different Hamiltonians H and
H
′
, two different normalized groundstate wave functions Ψ and Ψ

′
corresponding to

H andH
′
respectively and two ground-state energiesE0 andE

′

0. The the variational
principle, Eq. (2.4), for H with Ψ

′
as a trial wave function leads:

E0 < 〈Ψ
′|H|Ψ′〉 = 〈Ψ′ |H ′ |Ψ′〉+ 〈Ψ′|H −H ′ |Ψ′〉 (2.12)

E0 < E
′

0 +

∫
n0(~x)[Vext(~x)− V ′ext(~x)]d~x (2.13)

Likewise, by considering Ψ as a trial wave function for H ′,

E
′

0 < 〈Ψ|H
′|Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉 (2.14)

E
′

0 < E0 +

∫
n0(~x)[V

′

ext(~x)− Vext(~x)]d~x (2.15)

Summing Eqs. (2.13) and (2.15) yields,

E0 + E
′

0 < E
′

0 + E0 (2.16)

which is a contradiction. Therefore there cannot be two different potentials (and
therefore Hamiltonians) which give the same density for their ground state.

• Theorem II : A universal energy functional FU [n], in terms of the density n(~x) can
be defined, independent of external potential Vext(~x), which the ground state en-
ergy of the system is the global minimum of total energy functional E[n(1)(~x)] =

FÛ [n(1)(~x)] +

∫
d3vext(~x)n(1)(~x), which the density that minimizes the total func-

tional is the exact ground state density n0(~x).

The proof of the second theorem is presented by Levy in his seminal paper [65, 66]. This
in fact could be proven for the ground state of a many-particle system. Suppose that one is
able to construct all normalized fermionic many-particle wavefunctions and calculate for
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each wave function the density n(1)(~x). Now construct for each density n(1)(~x) a subspace
of wave functions that produce the same density profile n(1)(~x), we call this subspace
<[n(1)(~x)]. To proceed with the proof we need to consider only the kinetic energy, T̂ and
the interaction energy, Û , this is because of the fact that the contribution of the Vext is
the same for all the wave functions with the same n(1)(~x). One may construct a universal
energy functional for each n(1)(~x) by searching for a wavefunction in <[n(1)(~x)] as,

FU [n(1)(~x)] = min|Ψ〉∈<[n(1)(~x)]〈Ψ|T̂ + Û |Ψ〉 (2.17)

The same argument also holds for the system with Û = 0. Next one can rewrite the total
energy as,

E[n(1)(~x)] = FÛ [n(1)(~x)] +

∫
d3vext(~x)n(1)(~x). (2.18)

While the above theorems are exact, however it is still necessary to access the full many-
particle wave function to evaluate the energy functional and perform the minimization.
To tackle this difficulty the first approximation which was proposed by W. Kohn and L.
J. Sham(KS) states that rather than doing the minimization with respect to the full many-
particle wavefunction, the minimization could be performed with respect to an auxiliary
non-interacting wave function with kinetic energy part TNI(n(1)(~x)). The minimization
has to be performed with this new non-interacting system such that the density of the
auxiliary system equals to the density of the original interacting one. Then the explicit
form of the Lagrange function that should be optimized will have the following form,

E = {
∑
s

∫
d3xφ∗s(~x)

−~2

2me

∇2φs(~x) +

∫
d3xveff (~x)(

∑
s

φ∗s(~x)φs(~x)− n(1)(~x))

+

∫
d3xvext(~x)n(1)(~x) +

1

2

∫
d3xd3x′

n(1)(~x)n(1)(~x′)

4πε0|~x− ~x′|
+ EXC [n(1)(~x)]−

∑
sk

Λsk(〈φk|φs〉 − δs,k)}. (2.19)

Where EXC is defined as EXC [n(1)(~x)] = UXC +TI −TNI , φs(~x) are single particle wave
functions of the new non-interacting system and summation over s runs over number of
occupied states of non-interacting system. Finally the optimization is performed by search-

ing for the stationary points of the above Lagrange function by
δE

δφ∗
= 0,

δE

δn(1)(~x)
= 0

and
δE

δveff
= 0 one arrives at the following set of equations that have to be solved self
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consistently,

δE

δφ∗
= 0 : [

−h2

2me

∇2 + veff (~x)− εs]φs(~x) = 0, (2.20)

δE

δn(1)(r)
= 0 : veff (~x) = vext(~x) +

∫
d3x

n(1)(~x′)

4πε0|~x− ~x′|
+ vXC [n(1)(~x)], (2.21)

δE

δveff
= 0 : n(1)(~x) =

occupied∑
s=1

φ∗s(~x)φs(~x). (2.22)

With εs = Λss and vXC [n(1)(~x)] = δEXC [n(1)(~x)]/δn(1)(~x). The above set of equations
has to be solved self-consistency until desired convergence is achieved. While the KS
method provides a great simplification of calculations, further approximations are neces-
sary because an exact form of exchange-correlation energy (EXC) is not known. The first
approximation for the exchange-correlation energy is the Local Density Approximation
(LDA). The idea behind it is to assumed that the local XC energy per particle depends on
the local density, and it is equal to the XC energy per particle of a homogeneous electron
gas with the same density, in a neutralizing positive background. Therefore the exchange-
correlation energy EXC is obtained as the following form,

ELDA
XC (n) =

∫
n(~x)εXC(n(~x))d~x, (2.23)

where εXC(n(~x)) is the exchange-correlation energy per particle of a uniform electron
gas of density n(~x). Thus EXC only depends on the value of the local electronic density
at each point. The quantity εXC(n(~x)) could be linearly decomposed into exchange and
correlation contributions as,

εXC(n(~x)) = εX(n(~x)) + εC(n(~x)). (2.24)

where the exchange part εX , represents the exchange energy of an electron in a uniform
electron gas of a particular density and is given by [67],

εX = −3

4

(
3n(~x)

π

)1/3

. (2.25)

Since there is no explicit expression for the correlation part εC , several approaches have
been proposed. Ceperly and Alder used numerical quantum Monte-Carlo simulations for
the homogeneous electron gas in order to find a numerical solution for εC [68]. Moreover,
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another accurate approximation for εC was presented by Perdew and Wang in 1992 [69].
The LDA relays on the local nature of the exchange-correlation potential, this is accurate
as long as the density distribution does not vary too rapidly spatially [70].
The big surprise is that the accuracy of this simple approximation is good and usually
leads to a correct results for the binding energies, structural parameters, bond lengths, vi-
brational energies, phonon spectra. However, there are some drawbacks for this method,
it usually underestimates the band gap, overestimates the binding energy and also under-
estimates the bond lengths [71].

In order to resolve some drawbacks of the LDA, the generalized gradient approxima-
tion (GGAs) is proposed for the exchange-correlation energy. It improves the description
of atoms, molecules, and solids in comparison with LDA. This approximation does not
only consider the local density (n(~x)), but also it considers the density in the neighboring
positions by including the dependence on the gradient (∇n(~x)). Using this approxima-
tion, the non-homogeneity of the electron density is taken into account. Therefore, the XC
energy is written as follows,

EGGA
XC (n) =

∫
n(~x)εXC (n(~x),∇n(~x)) d~x. (2.26)

In general, the GGA method gives better results for bond lengths, binding energies in
comparison with LDA. However, in practice it has some shortcomings. Several investiga-
tions have been made to find out the advantages and disadvantages of LDA versus GGA
[72–74]. For instance, the results of LDA calculation for the lattice constants are in general
2% smaller than the experimental results, on the other hand GGA gives the lattice constants
in most cases in agreement with experiments or it slightly overestimates the experimental
values. The overestimation of lattice constants by GGA, in turn could lead to an under-
estimation of the bond strengths, in contrast to experiments and LDA. There are several
forms for GGA functionals. Among them is the Perdew-Burke-Ernzerhof (PBE-GGA)
form, which is free of empirical parameters and starting from physical principles [72].
The Becke exchange [75] and Lee-Yang-Parr (LYP) correlation [76] (BLYP) uses param-
eters that are fitted to experimental data.

2.2 Models for quantum lattice particles
Representing the interaction term as a single particle term as is normally done in DFT
often fails to describe systems with strong interactions such as transition metal oxides. In
order to subdue this kind of difficulties another kind of simplification of the problem is
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suggested. It relies on the fact that one may be able to simplify the problem by represent-
ing the full problem with few number of important coupling constants while keeping the
full interacting structure of the problem unaffected. Examples of these kinds of simplifica-
tions are the Hubbard models [77] or the Anderson impurity model. To do this it is more
convenient to represent Eq. (2.2) in second quantization form as,

Ĥ =

∫
d3xd3x′δ(~x− ~x′)ψ̂†(~x′)(−~2∇2

2me

+ vext(~x))ψ̂(~x)

+ e2

∫
d3xd3x′ψ̂†(~x)ψ̂(~x)

1

4πε0|~x− ~x′|
ψ̂†(~x′)ψ̂(~x′), (2.27)

where ψ̂†(~x) and ψ̂(~x) create and annihilate one particle at position ~x respectively.
These operators obey (anti-)commutation relations for (fermionic) bosonic particles

as [ψ̂†(~x), ψ̂(~x′)]± = δ(~x − ~x′), ± sign corresponds to fermionic and bosonic fields, re-
spectively. In solid state physics vext is usually a periodic potential that is produced by a
lattice of atomic nuclei. Therefore in order to make Eq. (2.27) more convenient, one uses
a transformation for ψ̂†(~x) and ψ̂(~x) to a basis in which electrons are normally localized
around the center of each atomic nuclei. It is more convenient to expand ψ̂(~x) based on
maximally localized Wannier wave functions, which are defined as,

φγ(~x− ~Xi) =
1√
N

∫
d3ke−i

~k. ~Xiψ~kγ(~x). (2.28)

where the ψ~kγ(~x) are Bloch functions of the noninteracting Hamiltonian and the Xi are
the positions of the atomic nuclei around which the electrons are localized , γ is combined
orbital and spin index. It is easy to check that these kind of localized basis sets are orthog-
onal. By expanding ψ̂(~x) =

∑
iγ

φiγ(~x)ĉiγ , which ĉiγ creates a particle in orbital γ at site i,

and substituting it into Eq. (2.27) one may arrive at the following form for the Hamiltonian
operator,

Ĥ =
∑
ijαβ

tαβij ĉ
†
iαĉjβ +

1

2

∑
ijkl;αβγθ

uαβγθijkl ĉ
†
iαĉ
†
jβ ĉkγ ĉjθ, (2.29)

where the matrix elements are given by,

tαβij =

∫
d3xφ∗α(~x− ~Xi)[−

~2∇2

2me

+ Vext(~x)]φβ(~x− ~Xj), (2.30)

uαβγθijkl =

∫
d3x

∫
d3x′e2

φ∗α(~x− ~Xi)φ
∗
β(~x− ~Xj)φγ(~x− ~Xk)φθ(~x− ~Xl)

4πε0|~x− ~x′|
,(2.31)
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where the Greek letters correspond to combined index of spin and local orbitals and Latin
letters correspond to lattice sites. Hereafter, in all of the following chapters we cosider
e = a = 1, where e is charge of the carrier (here electrons) and a is the lattice constant.
From the Eq. (2.29) one may derive even more simplified models, the most prominent one
is the single band extended Hubbard model,

Ĥ = −
∑
i 6=jσ

tijc
†
iσcjσ +

∑
i 6=j

1

2
vijn̂in̂j +

∑
i

Un̂iσn̂iσ̄, (2.32)

where σ is the spin index, tij is the hopping parameters, vij is long-range Coulomb in-
teraction and U accounts for the local interaction between different spins. Variants of
multi-band Hubbard models can be written as,

Ĥ = −
∑
i 6=j;γγ′

tγγ
′

ij c
†
iγcjγ′ +

∑
iγ

viγn̂iγ +
∑
i

Ĥ int
i , (2.33)

where γ are combined orbital and spin index, tγγ
′

ij are the hopping amplitudes between site
i and j, the local potentials viγ are introduced in order to mimic the crystal field splitting
or the effect of external electric field for the translationally broken systems [78]. And the
interaction part of the Hamiltonian is defined as follows:

Ĥ int
i =

∑
γ1,γ2,γ3,γ4

Uγ1,γ2,γ3,γ4

i c†iγ1
c†iγ2

ciγ3ciγ4 , (2.34)

where γ are combined orbital and spin indices. Even with these simplifications the so-
lution of the Schrödinger equation based on the above mentioned Hamiltonians is not a
trivial task, when one deals with large systems that we have normally in solid state physics.

2.3 Exact diagonalization
Looking at the variants of the Hubbard or Anderson impurity models often one may need
to form the Hilbert-space of clusters containing sites. The number of sites and particle
that could be considered numerically depends on the size of the memory that is acces-
sible given that the memory requirements grow exponentially as function of the number
of sites and particles. On a normal desktop computer, this restricts one to construct the
Hamiltonian with up to 12 or 14 sites at half-filling. Although these numbers are small,
however this has indirect applications to Gutzwiller approximations for the construction
and manipulation of local part of the Hamiltonian, it could be used as a solver for Ander-
son impurity model in a combined exact diagonalization (ED) with DMFT approach, for
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more detailed description see [38], furthermore it is applied for the calculation of the trace
of the local part of Hamiltonian in the continuous time quantum Monte Carlo (CTQMC)
Anderson impurity solver [79, 80]. Moreover, although the number of sites and particles
is small, the number of states is large enough such that these systems could be used for
fundamental investigations of quantum systems such as non-adiabatic behavior of many-
body quantum systems (specially one dimensional systems) and investigation of quantum
statistical mechanics.

2.3.1 Construction of the Hilbert space

For normal systems without any spontaneous symmetry breaking one may exploit the sym-
metries of the system as much as possible. For instance for a normal system without any
superconducting order it is possible to restrict the Hilbert-space only to a fixed number of
particles. For fermions with spin, furthermore, it is also possible to fix the magnetization
of the system by fixing N↑ − N↓ = M when there is not any process which changes the
spin of the particles in the Hamiltonian, or equivalently there are no inelastic scattering
terms in the Hamiltonian. By incorporating the above mentioned considerations one may
write the many body wave function for fermions with spin degrees of freedom as follows,

|ψ(N↑,N↓)〉 =
∑

1≤xi≤L

γx1,...,xN↑ ;xN↑+1,...,xNtot
|x1, ..., xN↑〉↑

⊗
|xN↑+1, ..., xNtot〉↓, (2.35)

with Ntot = N↑ + N↓, |x1, ..., Xi, ...〉σ are configuration state elements for each spin and
x1, ..., Xi, ... are positions of sites or indices of orbitals. Notice here γ coefficients are not
symmetric or anti symmetric against permutation of x1, ..., XNtot . The configuration state
elements of each spin therefore are defined as,

|..., xi, ..., xj, ...〉σ =
∏

...ĉ†xiσ...ĉ
†
xjσ
...|0〉 = −

∏
...ĉ†xjσ...ĉ

†
xiσ
...|0〉

= −|..., xj, ..., xi, ...〉σ. (2.36)

It is best to order all creation and annihilation operators in some way. For instance for a
chain we could consider 1 ≤ x1 < ... < XN↑ ≤ L, where x1 < ... < XN↑ are site indices.
Therefore one may expand the Hilbert space as function of reduced (ordered) configura-
tions as |I〉 = |x1, ..., xN↑〉↑

⊗
|xN↑+1, ..., xNtot〉↓. The dimension of the reduced Hilbert

space restricted to a specific block with fixed N↑, N↓ is the product of the total number of
configurations in which it is possible to distribute the particles with specific spins between
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Table I. The memory requirement for the storage of the full sparse Hamiltonian matrix.

Number of sites(L) N↓ = N↑ = L/2 Number of states Memory requirement
10 5 63,504 10MB
12 6 853,776 500MB
14 7 11,778,624 6GB
16 8 165,636,900 —-

the L sites. Furthermore, because quantum particles are indistinguishable, the total num-
ber of configurations reads,

Dim(H)(N↑, N↓) =

(
L

N↑

)
×
(
L

N↓

)
. (2.37)

In table. I based on Eq. (2.37) we present the dimension of the Hilbert space as func-
tion of the number of sites atN↑ = N↓ = L/2. The exponential growth of the Hilbertspace
therefore imposes sever restrictions on number of the sites and particles which one could
consider. And this is why reliable approximations are necessary in order to deal with prob-
lems for which correlations are important.

In order to implement the above mentioned ideas it is possible to efficiently exploit
the bitwise patterns in computers. This could be easily done by assigning to each configu-
ration state one integer number with bit pattern of length L (now L=10): |x1, ..., xN↑〉σ −→
1100110010. The zeros are representative of empty sites, while ones shows occupied sites.
For instance an element of a full configuration for a system with L = 10 andN↑ = N↓ = 5
could be represented as |x1, ..., xN↑〉↑ ⊗ |xN↑+1, ..., xN〉↓ −→ 1100110010× 1001100110.
The the bitwise patterns are extracted from the assigned integer for each up and down
configuration. In practice we search for integers with a fixed number of non-zero ele-
ments in their bitwise pattern. This should be done according to the number of particles
for each spin, then store all of these integers in two vectors, each vector corresponds to
one spin. These vectors consist of integers as representative of states of each spin and an
index. Therefore the actual index of each state, i, in the full Hilbert space is expressed as
i = i↑ + dim(H↑)× i↓.

The next step is to apply operators that appear in the Hamiltonian on these config-
uration states in order to find the matrix elements of the Hamiltonian. As an example
we consider an extended Hubbard model with periodic boundary conditions and nearest
neighbor hopping elements,



2.3 Exact diagonalization 25

ĤU = −
∑
〈ij〉σ

tijc
†
iσcjσ +

∑
〈ij〉σ

1

2
vijn̂in̂j +

∑
i

Un̂iσn̂iσ̄. (2.38)

In order to construct the matrix element of the above Hamiltonian, we first construct the
matrix element of the hopping terms, i.e. the first term in the Eq. (2.38). For the construc-
tion of these terms one should define the creation and annihilation operators which act
for each spin on different places(sites), moreover the fermionic sign should be considered.
Therefore, the hopping processes acquire an extra sign when it couples between sites i
and j as −(−1)Nij tij , where the Nij counts number of particles between site i and j only
the number of electrons for the spin for which the hopping operation is applied , therefore
non-diagonal parts of the above Hamiltonian acquires ∓tij terms. For our example, the
fermionic signs, which hopping processes acquire, are positive for nearest neighbor hop-
ping processes, however for the hopping between atoms in the boundary, for which the
periodic boundary condition is defined, depends on the number of electrons between two
sites.

The second and third terms in the Hamiltonian mentioned in Eq. (2.38) do not acquire
any sign, and are constructed very easily. In particular for the last term it is necessary to
perform a bitwise "AND" operation between bit pattern of states of spin up and spin down
configurations. This gives the number of overlaps between spin up and spin down config-
urations which easily could be just multiplied with the interaction U in order to produce
the diagonal terms. The terms related to nearest neighbor density-density interactions also
contribute as only diagonal matrix elements and could be simply considered by checking
the nearest neighbor occupations.

Here we notice that the presence of non local interactions which contribute to ex-
change and pair hopping or the cases with hopping elements beyond nearest neighbors,
the fermionic sign contribution should be considered with more care. In our implementa-
tion we also consider a generic case for which we perform exact creation and annihilation
operators on the configurations in order to calculate the matrix elements.

There are ways in which one could perform rigorous checks against the above imple-
mentation. First of all it is possible to check the ground state of the noninteracting system
with the one which could be extracted from the direct diagonalization of the single parti-
cle hopping matrix (the first term in Eq. (2.38)) such that the eigenvalues of the hopping
matrix should be summed up to the number of electrons for each spin. Therefore, if both
cases results in the same ground state energy then the implementation of the hopping ma-
trix construction is correct. On the other side the ground state energy of the system with
only density-density interactions but without hoppings could be calculated without diago-
nalization of the full Hamiltonian matrix in Eq. (2.38), this in turn could be compared with
the ground state energy which is attained by finding the ground state of the full Hamil-
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tonian matrix, these two also have to be equal. We further checked our implementation
for open boundary condition against the DMRG++ code which was written by Alvarez
et. al. [81]. Finally we checked our implementation more rigorously by comparing single
particle spectral function peaks of the full non-interacting Hamiltoian with those obtained
from the diagonalization of the single particle hopping matrix. We show the results in the
following section.

2.3.2 Lanczos Method
Now we know how to construct the Hamiltonian numerically, next we search first for the
ground-state of the Hamiltonian because it is the relevant state for zero temperature and the
exited states are necessary as long as one needs to deal with finite temperatures. Therefore
it is necessary to use methods to be able to deal with selective eigenvalues, rather than the
full diagonalization of the Hamiltonian. Full diagonalization of the Hamiltonian is very
expensive even for L = 10 sites at half filling, furthermore it is not necessary in most
cases. One of the most prominent methods which is devised to find the extreme eigenpairs
of a matrix is the Lanczos [82] method which is based on the Krylov [83] space methods.
The idea is to search for lowest energy in the the span (|v0〉, H|v0〉, H2|v0〉, ..., Hn|v0〉).
This could be understood based on the variational principle. In order to find the ground
state of any matrix H one should minimize the functional E[Ψ] = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉 as,

δE[|Ψ〉]
δ〈Ψ|

=
H|Ψ〉 − E[Ψ]|Ψ〉

〈Ψ|Ψ〉
= |Ψ′〉, (2.39)

where |Ψ′〉 gives the direction of steepest-descent of the functional at |Ψ〉. Therefore,
moving in the opposite direction reduces the energy, E[Ψ − αΨ′] < E[Ψ]. To find the
optimal value of α we have to minimize the energy in a restricted space created by,

|v0〉 = |Ψ〉/
√
〈Ψ|Ψ〉,

|v1〉 =
1√
〈ṽ1|ṽ1〉

|ṽ1〉, (2.40)

with |ṽ1〉 = H|v0〉− 〈v0|H|v0〉|v0〉, therefore the construction of the matrix H in this basis
leads to a 2 matrix as,

Hspan(|v0〉,|v1〉) =

(
a0 b1

b1 a1

)
, (2.41)

with an = 〈vn|H|vn〉, and b1 =
√
〈ṽ1|ṽ1〉. Finally one could diagonalize the above matrix

to find the ground state in this restricted subspace and repeat the procedure by choosing
the new ground state as starting point for the next step. Continuing this process further
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it finally leads to convergence to the actual ground state of H , because we are moving
in the direction which reduces energy at each step. By performing the steepest-descent
minimization N times by starting from a |v0〉 then the resulting minimized vector lies in
span(|v0〉, H|v0〉, ..., HN |v0〉) which is called Krylov space [83]. Therefore, instead of
repeating several steepest-descent searches as one may directly work with Krylov space
and find the ground state in this larger restricted space. In order to do this we construct an
orthonormal basis-set |vn〉 within Krylov space. By starting from any arbitrary vector |v0〉
then the first vector is only a vector in the steepest-descent direction: b1|v1〉 = H|v0〉 −
〈v0|H|v0〉|v0〉, the rest could be orthogonalized as follows,

b1|v1〉 = H|v0〉 − 〈v0|H|v0〉|v0〉,
b2|v2〉 = H|v1〉 − 〈v1|H|v1〉|v1〉 − 〈v0|H|v1〉|v0〉,

...
bn|vn〉 = H|vn−1〉 − 〈vn−1|H|vn−1〉|vn−1〉 − 〈vn−2|H|vn−1〉|vn−2〉,

with bi = 〈vi−1|H|vi〉. By defining an = 〈vn|H|vn〉 and reorganizing terms, we find that
H is tridiagonal when it is represented in this new basis set,

H|vn〉 = bn|vn−1〉+ an|vn〉+ bn+1|vn+1〉, (2.42)

and it can be written as,

H̃ =


a0 b1 0 · · · 0

b1 a1 b2 0
...

0 b2 a2
. . . 0

... 0
. . . . . . bn

0 · · · 0 bn an

 , (2.43)

This tridiagonalization ofH is named the Lanczos method after its inventor by C. Lanczos
[82]. In practice we diagonalize the above mentioned matrix at each step n of the Lanczos
process and compare its ground state energy with the ground state energy E(n−1) of the
previous step, then the convergence criteria is chosen such that |E(n)−E(n−1)| < ε. In our
systems we achieved ground state convergence with ε = 10−12 in less than 100 iterations.
Furthermore, by looking at Eq. (2.42) it is possible to design the algorithm such that only 2
vectors should be stored during the Lanczos iterations. In this case in order to calculate the
ground state wave function it is necessary to restart the Lanczos iteration but the starting
vector should be the same as the one in the first Lanczos process. In order to calculate
the ground state wave function we first need to calculate the ground state of H̃ which is a
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vector with a length equal to the number of Lanczos iterations. By calling this ground state

Ψ̃0, then one could find the ground state of the original matrix H as: |Ψ0〉 =
i=L∑
i=0

Ψ̃
(i)
0 |vi〉,

where Ψ̃
(i)
0 are the elements of Ψ̃0.

2.3.3 Spectral functions and the Lehmann representation
Matrix elements of the Green’s function in the basis set of the combined site-spin or
orbital-spin have the following form,

Giσ(ω) = 〈Ψ0|ĉ†iσ
1

ω + (H − E0 − iη)
ĉiσ|Ψ0〉+ 〈Ψ0|ĉiσ

1

ω − (H − E0 − iη)
ĉ†iσ|Ψ0〉,

(2.44)
where |Ψ0〉 is the groundstate wavefunction and E0 is the groundstate energy. In order to
evaluate the Green’s function it is necessary to calculate the inverse of the matrices of the
form z ±H . To do this it is possible to exploit the Lanczos tridiagonalization. By starting
from an initial state |v0〉 and performing a Lanczos iteration, one may express the matrix
z −H in the following form,

z − H̃ =


z − a0 −b1 0 · · · 0

−b1 z − a1 −b2 0
...

0 −b2 z − a2
. . . 0

... 0
. . . . . . −bn

0 · · · 0 −bn z − an

 . (2.45)

The above mentioned matrix could be reorganized by partitioning it as,

z − H̃ =

(
z − a0 B(1)T

B(1) z − H̃(1)

)
, (2.46)

with B(1)T = [−b10 · · · 0], therefore by inverting the block matrix in Eq. (2.46) we find
that,

[(z − H̃)−1]00 = (z − a0 −B(1)T (z − H̃(1))−1B(1))−1 = (z − a0 − b2
1[z − H̃(1)]−1

00 )−1.

(2.47)

Continuing the above procedure for [z − H̃(1)]−1
00 and so on, finally one may express the

Green’s function in the form of the continued fractions as,
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[(z − H̃)−1]00 =
1

z − a0 − b21
z−a1−...

. (2.48)

With this approximation we are now able to calculate the full spectral function as in
Eq. (2.44). After finding the ground state, two more Lanczos iterations with starting vec-
tors |v0〉 = |Ψ<

0 〉 = ĉiσ|Ψ0〉/
√
niσ and |v0〉 = |Ψ>

0 〉 = ĉ†iσ|Ψ0〉/
√

1− niσ, for the calcu-
lation of the first term and second term in Eq. (2.44), should be performed respectively,
where niσ = 〈Ψ0|ĉ†iσ ĉiσ|Ψ0〉. Finally one has the following expression for the Green’s
function as a continued-fractions,

Giiσ(ω) =
niσ

ω − E0 − iη + a<0 −
b<

2

1

ω−E0−iη+a<1 −...

+
1− niσ

ω + E0 + iη − a>0 −
b>

2

1

ω+E0+iη−a>1 +...

,

(2.49)
where axi and bxi with x =>,<, are the coefficients which are related to Lanczos iteration
that was performed with |Ψ>

0 〉 = ĉ†iσ|Ψ0〉/
√

1− niσ and |Ψ<
0 〉 = ĉiσ|Ψ0〉/

√
niσ respec-

tively. Notice here that the idea behind choosing the first diagonal element of the inverted
matrix as Green’s function arises from the fact that for the calculation of the terms in
Eq. (2.44) we chose |v0〉 = |Ψ<

0 〉 or |v0〉 = |Ψ>
0 〉 which already belong to the basis set in

which the Hamiltonian is tridiagonal. Finally one may express the spectral function A(ω)
as,

A(ω) = − 1

π
ImGiσ(ω). (2.50)

As we state in section 2.3.1 one way to check the validity of the construction of the
matrix elements is to find the eigenvalues of the non-interacting hopping matrix and then
compare these with the peaks of the spectral function, the place of the peaks in the spectral
function in energy axis has to be the same as the eigenvalues of the single particle part
of the Hamiltonian. To show this we present in Fig. 2.1 the spectral function of a system
with L = 10 and N↑ = N↓ = 5 with vij = 0, U = 0 and tij = 1 with periodic boundary
condition. As can be seen in the figure, the position of the peaks in the spectral function
and the eigenenergies of the noninteracting hopping matrix match.

2.4 Gutzwiller wave function and Gutzwiller approxima-
tion

As it is obvious from the former section finding the groundstate and therefore the prop-
erties of a system with the inclusion of correlations is almost impossible except for small
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Figure 2.1: Spectral function for a system with L = 10 and N↑ = N↓ = 5, tij = 1, U =
vij = 0 and with periodic boundary condition. Circles show the place of exact eigenvalues
of the hopping matrix.

clusters. Therefore approximations are necessary. To exemplify, we consider the single
band Hubbard model with only local interaction. As,

ĤU = −
∑
〈ij〉σ

tijc
†
iσcjσ +

∑
i

Un̂iσn̂iσ̄, (2.51)

The most straight forward approximation is the Hartree-Fock approximation which relies
on the fact that one may write the groundstate of the system as the product of single particle
terms,

|Ψ0〉 =
∏
iσ

ĥ†iσ|0〉. (2.52)

This in turn leads to a Hartree-Fock decomposition of the last term in Eq. (2.51). In prin-
ciple there is no rigorous ground for this kind of decomposition (we will address this in
the following sections). Moreover the local charge fluctuations can only be suppressed
by spurious symmetry breaking towards magnetization, therefore it usually overestimates
the phases with broken symmetry. However one may exploit the single particle form of
Eq. (2.52) in order to construct a many body wave function which has more degrees of
freedom and one may approach the true ground state with these new form of the wavefunc-
tion. The standard way is to include a projector, which includes variational parameters and
could project out high energy configurations when acting on |Ψ0〉,



2.4 Gutzwiller wave function and Gutzwiller approximation 31

|ΨJ〉 = P̂J |Ψ0〉, (2.53)

where |ΨJ〉 is the so called Jastrow wavefunction [84]. The Gutzwiller wavefunction is
related to the specific choice of the projector P̂J which was introduced by Gutzwiller
as [85],

|ΨG〉 =
∏
i

P̂i|Ψ0〉, (2.54)

here i is the lattice site index and P̂i = gd̂ii = 1 − (1 − gi)d̂i, with 0 ≤ gi ≤ 1 and
d̂i = n̂i↑n̂i↓. This choice of projector therefore makes it possible to suppress high energy
contributions, i.e., local double occupancies, that are energetically unfavorable when U >
0. In order to perform total energy evaluations based on Eq. (2.51) as,

〈Ĥ〉G =
〈ΨG|Ĥ|ΨG〉
〈ΨG|ΨG〉

, (2.55)

therefore one needs to evaluate the following quantities,

〈ΨG|ĉ†iσ ĉjσ|ΨG〉 = 〈Ψ0|P̂iĉ†iσP̂iP̂j ĉjσP̂j
∏
k 6=i,j

P̂ 2
k |Ψ0〉,

〈ΨG|d̂i|ΨG〉 = 〈Ψ0P̂id̂iP̂i
∏
k 6=i

P̂ 2
k |Ψ0〉,

〈ΨG|ΨG〉 = 〈Ψ0|
∏

P̂ 2
i |Ψ0〉.

(2.56)

Up to now the only approximation we have considered is to use the Gutzwiller wave
function (GWV) to mimic the true groundstate. After this approximation, in principle
the variational energy functional could be calculated numerically exact. As is stated by
Metzner and Volhardt [86–88], these evaluations could be performed by means of Wick’s
theorem because the wavefunction |Ψ0〉 is only a single particle product. In this way any
contribution could be represented by a diagram which consists of internal vertices, related
to P̂ 2

k and external vertices related to P̂i and P̂j in Eqs. (2.56). Moreover these vertices are
connected by contractions which here are nothing but P σσ

ij = 〈ĉ†iσ ĉjσ〉0 the single particle
density matrix elements of |Ψ0〉. However, these evaluations are difficult to perform even
for a single band Hubbard model and an exact analytical evaluation of the groundstate
energy has been achieved only for the 1D Hubbard model [86]. To make the problem even
easier and tractable more approximations are required. One of the most prominent ways
to tackle this problem is to use the inverse of the dimensionality of the system as a per-
turbation parameter. This in turn leads to great simplification of diagrammatic evaluations
when one deals with the infinite dimension limit.
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2.4.1 Mean field treatment
As is already mentioned in the former section the external and internal vertices are con-
nected with lines that are representative of the density matrix of the noninteracting state
|Ψ0〉, therefore for each site i the probability which each particle could hop from a nearest
neighbor site j is proportional to P σσ

ij
2. Because each site has 2d nearest neighbors, there-

fore the condition that the summation of probability contributions to site i has to be finite
leads to P σσ

ij ∼ 1/
√

2d. One may write the Hamiltonian Eq. (2.51) in terms of P σσ
ij as,

ĤU = −
∑
〈ij〉σ

tijP
σσ
ij +

∑
i

Un̂iσn̂iσ̄. (2.57)

By considering the scaling of P σσ
ij and the fact that each site has 2d nearest neighbors,

one may infer that in order to have finite kinetic energy for each site it is necessary to scale
tij = t̃ij/

√
2d, with a fixed t̃ij . A more rigorous justification of this scaling was presented

by Metzner and Volhardt [87]. Moreover based on the above mentioned analysis it is
possible to see that there is no meaningful mean field argument about the local part of
the Hamiltonian, in the other words it is finite in all dimensions and could not be scaled
in this way. This ideas further could be extended to general multiband system such that
tγγ
′

ij ' 1/
√

2d, where γ and γ′ are combined orbital and spin index. By considering the
above scaling for the hopping parameter finally one may infer the general scaling for the

density matrix as P γγ′

ij ' 1/
√

2d
|i−j|

, where |i− j| is the Manhattan metric that counts the
shortest number of lattice steps between sites i and j.

2.4.2 Expectation values in infinite dimensions
As is obvious from the scaling law of the P σσ

ij , the local density matrices do not obey the
scaling law. This is true only for the nonlocal lines in the diagrammatic expansion. Fur-
thermore these local density matrices contribute in the diagrammatic expansion of various
expectation values. This in turn makes the diagrammatic evaluations very difficult even
in the infinite dimension limit. However, as is shown in references [88–90] in detail these
difficulties could be avoided by redefining the projector and the non-interacting wavefunc-
tion |Ψ0〉. Therefore rather than the projector in Eq. (2.54), a new projector is defined
as,

P̂i =
∑

Γ

λΓi |Γ〉ii〈Γ|, (2.58)

where |Γ〉 are the full local eigenstates of the local part of the Hamiltonian and |Γ〉ii〈Γ|
are projectors into specific states. For the specific case of the single band Hubbard model
these local eigenstates are |0〉, | ↑〉, | ↓〉 and | ↑↓〉. By choosing these kind of projectors, as



2.4 Gutzwiller wave function and Gutzwiller approximation 33

is stated in more detail in [89, 90], and by imposing the following set of local constraints
it is ensured that diagrams which contains local Hartree-Fock contributions are discarded,

〈P 2
i 〉0 = 1,

〈P 2
i ĉ
†
iσ ĉiσ′〉0 = δσσ′〈ĉ†iσ ĉiσ〉0. (2.59)

In other words the effect of local diagrams is absorbed into |Ψ0〉 as |Ψ0〉 is a varia-
tional parameter in this new formulation and it is not the simple Hartree-Fock solution of
the non-interacting system. Notice that in general the second equation in the above set of
equations is not diagonal with respect to σ and σ′, this is true in particular for multiband
cases which we will address it in the following. These extra constraints do not restrict
the number of variational parameters because by introducing new definitions for the new
projectors an extra number of variational parameters are already included in the local cor-
relator in Eq. (2.58). Notice here that the elimination of diagrams with local contribution
only happens for the diagrams which contain internal vertices, however for external ver-
tices the local Hartree-Fock contribution should be considered.

In the following sections we use this point in order to calculate the renormalization

factors. By considering the scaling of the P σσ
ij ∼ 1/

√
2d
|i−j|

then it is possible to show
that a diagram vanishes if it contains an internal vertex which is connected to other vertices
by three or more lines. Furthermore, as is shown in [86,89,90] the disconnected terms are
cancelled out by denominators in Eq. (2.55) and only connected diagrams remains.

In short, the evaluation of the expectation values are reduced to the following forms in
the limit of infinite dimensions,

〈ΨG|ĉ†iσ ĉjσ|ΨG〉 =D→∞ 〈Ψ0|P̂iĉ†iσP̂iP̂j ĉjσP̂j|Ψ0〉, (2.60)

〈ΨG|m̂iΓ|ΨG〉 =D→∞ 〈Ψ0|P̂im̂iΓP̂i|Ψ0〉, (2.61)
〈ΨG|ΨG〉 =D→∞ 〈Ψ0|Ψ0〉 = 1. (2.62)

Where m̂iΓ = |Γ〉ii〈Γ|, and |Γ〉 are the eigenbasis of the local part of the Hamilto-
nian. The above set of equations together with equations Eqs.( 2.59), define the so called
Gutzwiller approximation, which is exact in the limit of infinite dimensions. Notice that
the above mentioned analysis about infinite dimension limit is also valid for multiband
systems. In the following we present conventions and GA for generic multiband model.

Convention for the representation of the local term in generic multiband sys-
tem(see Eqs. (2.33) and (2.34)):
In order to fix the convention of the representation of the Hilbert space of the local part of
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the Hamiltonian, like Sec.2.3.1 we define a state corresponding to an ordered configura-
tion as,

|I〉 = ĉ†γ1
· · · ĉ†γ|I||0〉, (2.63)

where γ are the index of local atomic orbitals and spin (or combined site, orbitals and spin
for the cluster version), the creation operators as stated before are ordered operators as
γ1 < · · · < γI . for convenience we therefore define the operator ĈI as a product of the
single particle creation and annihilation operators as,

Ĉ†I = ĉ†γ1
· · · ĉ†γ|I| |0〉, (2.64)

Notice here also that the orbitals are ordered with γ1 < · · · < γI . Likewise the conjugate
operator could be written as,

ĈI = ĉγ|I| · · · ĉγ1|0〉. (2.65)

Following reference [89], we therefore introduce the sign function as,

f(γ, I) = 〈I ∪ γ|ĉ†γ|I〉, (2.66)

which counts for the number of permutations that is required to create a particle in the
correct ordered place in the configuration state. Another necessary definition are local
projectors defined as,

m̂I,I′ = Ĉ†I ĈI′
∏
γ /∈I,I′

(1− n̂γ). (2.67)

For the special case of the diagonal projector,

m̂I = Ĉ†I ĈI
∏
γ /∈I

(1− n̂γ). (2.68)

For the sake of simplicity we only consider that the density matrix of the local non in-
teracting part of the Hamiltonian is diagonal. This does not impose any approximation
because it is always possible to find an orbital basis set which can diagonalize the local
noninteracting part of the Hamiltoninan. This in turn leads to a great simplification for
the evaluation of expectation values, however it leads to a more complicated form of the
local two body interactions. Therefore, we consider the following condition for the local
density matrix,

〈c†iγciγ′〉0 = δγγ′〈c†iγciγ〉0 = nγ0 . (2.69)

After diagonalizing the local part of the Hamiltonian, which is now represented in some
local orbital basis set with diagonal local density matrix, one may write the eigenbasis of
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the local part of the Hamiltonian as a function of local configurations |I〉 as,

|Γ〉 =
∑
I

T Γ
I |I〉, (2.70)

where each eigenstate |Γ〉 corresponds to an eigenvalue EΓ, with ĤLocal|Γ〉 = EΓ|Γ〉. No-
tice that, here each Γ belongs to a subspace of the total local Hilbert space with a fixed
number of particles. For one band, two bands or for systems with only density-density
interactions (with diagonal local orbital basis) the above mentioned diagonalization could
be performed easily by hand. However for a system with larger number of bands, N > 2,
one needs to follow the ideas of Sec.2.3 in order to perform the diagonalization exactly,
and further use the machinery of the ED to perform the action of creation and annihilation
operators.
Afterwards it is possible to design a correlator for a specific problem. In principle a corre-
lator could be an operator, it consist of all mutual combination of eigenstates |Γ〉 as,

P =
∑
ΓΓ′

λΓΓ′ |Γ〉〈Γ′|. (2.71)

By considering that the total number of states of the local Hilbert space is equal to 24N ,
where N is the number of orbitals, this in turn leads to 28N variational parameters for the
correlator. Therefore it is necessary to eliminate some variational parameters based on
symmetries or based on physical arguments. In the following we consider only a diagonal
form for the correlator as,

P =
∑

Γ

λΓ|Γ〉〈Γ|. (2.72)

Hereafter we define m̂Γ = |Γ〉〈Γ|.

Evaluation of the local terms:
Then by choosing the correlator as is defined in Eq. (2.72) the evaluation of the local op-
erators m̂Γ is straight forward,

〈Ψ0|P̂im̂iΓP̂i|Ψ0〉 = 〈Ψ0|P̂im̂iΓP̂i|Ψ0〉0,
= λ2

Γm
0
Γ, (2.73)

where,
m0

Γ =
∑
I

T 2
ΓIm

0
I , (2.74)
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withm0
I =

∏
γ

n0
γ

∏
γ′ /∈I

(1−n0
γ′). Notice here that we use the condition that the local density

matrix is diagonal.

Hopping expectation values:
In order to calculate 〈Ψ0|P̂iĉ†iγP̂iP̂j ĉjγ′P̂j|Ψ0〉, one may first find an expression for P̂iĉ

†
iγP̂i

as,

P̂iĉ
†
iγP̂i =

∑
ΓΓ′

λΓλΓ′〈Γ|c†γ|Γ′〉|Γ〉〈Γ′|. (2.75)

By using Eq. (2.70) for the expression of the local eigenstates as function of local config-
urations, the following equations yields for |Γ〉〈Γ| and |Γ′〉〈Γ′|,

|Γ〉〈Γ| = T ∗ΓI′1TΓI1|I1〉〈I ′1|, (2.76)

|Γ′〉〈Γ′| = T ∗ΓI2TΓI′2
|I ′2〉〈I2|. (2.77)

By substitution of the above expressions into Eq. (2.75), we have,

P̂iĉ
†
iγP̂i =

∑
ΓΓ′

λΓλΓ′

∑
I1I2I′1I

′
2

〈I ′1|c†γ|I ′2〉T ∗ΓI′1TΓI1T
∗
ΓI2
TΓI′2

m̂I1I2 . (2.78)

After substitution of the above equation into the Eq. (2.60), one end up with the calculation
of the following expectation value for the evaluation of the hopping expectation values,

E(I1, I2, J1, J2) = 〈m̂i;I1I2m̂j;J1J2〉0. (2.79)

This quantity could be calculated by means of Wick’s theorem. This is possible because
|Ψ0〉 is a noninteracting single particle product. In general the diagrammatic evaluation of
this quantity leads to diagrams with several lines which connect the sites i and j, however
exploiting the infinite dimension approximation which results in the scaling of counterac-

tions P γγ′

ij ∼ 1/
√

2d
|i−j|

, here |i− j| = 1, together with scaling of the hopping amplitudes
tij ∼ 1/

√
2d, then ensures that all diagrams with two or more lines will be discarded in

the infinite dimension limit. Therefore the only remaining diagram is one which connects
i and j with only one line. This in turn leads to the following form for E(I1, I2, J1, J2) (by
considering Eq. (2.69)),

E(I1, I2, J1, J2) =
∑
α

f(α, I2)δI2∪α,I1
m0
I2

1− n0
α

∑
α′

f(α′, J1)δJ1∪α′,J2

m0
J1

1− n0
α

〈ĉ†i,αĉj,α′〉0

(2.80)
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Finally one obtains the following form for the hopping expectation values,

〈ĉ†i,γ ĉj,γ′〉G =
∑
αα′

qαγ q
α′

γ′ 〈ĉ
†
i,αĉj,α′〉0 (2.81)

with the following expression for the renormalization factors,

qαγ =
1

1− n0
α

∑
ΓΓ′

λΓλΓ′

∑
I1,I2

f(γ, I ′2)f(α, I2)T ∗ΓI′2∪γTΓI2∪αT
∗
ΓI2
TΓI′2

m0
I2
,

=
1

n0
α

∑
ΓΓ′

λΓλΓ′〈Γ|ĉ†γ|Γ′〉〈(|Γ〉〈Γ′|ĉα)〉0,

=
1

n0
α

〈P̂ ĉ†γP̂ ĉα〉0. (2.82)

by considering Eq. (2.69) the explicit form of the constraints will have the following form,

〈P 2〉0 =
∑

Γ

λ2
Γ

∑
I

|TΓ,I |2m0
I = 1,

〈P 2ĉ†γ ĉγ〉0 = 〈ĉ†γP 2ĉγ〉0 =
∑

Γ

λ2
Γ

∑
I(γ∈I)

|TΓ,I/γ|2m0
I ,

=
∑

Γ

λ2
Γ

∑
I(γ∈I)

|TΓ,I |2m0
I = 〈ĉ†γ ĉγ〉0.

(2.83)

where I/γ means configuration which is constructed by removing particle γ from config-
uration I . Notice here that the square of the projector P 2

i could be freely permuted with
ĉ†γ and ĉγ , and this is why we have two different expressions for the second constraint in
Eqs. (2.83), However, it is easy to prove that these two expressions are equivalent. There-
fore, the final form of the energy functional is,

E =
∑

〈ij〉;γγ′;αα′
tαα

′

ij qγαq
γ′

α′〈c
†
iγcjγ′〉0 +

∑
iγ

viγ〈c†iγciγ〉0 +
∑
i

〈H(i)
I 〉G, (2.84)

with 〈H(i)
I 〉G =

∑
Γ

EiΓλ
2
iΓm

0
iΓ. In practice the above mentioned energy functional should

be optimized together with the constraints in Eqs.(2.83). We will address the problem of
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the optimization in the following sections for the cases we have studied. Furthermore we
used an inhomogeneous version of the Gutzwiller approximation in order to investigate
slabs and surfaces which will be addressed in the rest of the thesis.

Single band Hubbard model as example:
We now calculate the normalization factors and energy expectation value of the single
band Hubbard model as the simplest example of correlated system based above mentioned
evaluation of the expectation values. The local Hilbert space of this system consist of |0〉,
| ↑〉, ↓〉, | ↓↑〉 we therefore define the local projectors as,

m̂∅ = |0〉〈0| = (1− n̂σ)(1− n̂σ̄),

m̂σ = |σ〉〈σ| = n̂σ(1− n̂σ̄),

m̂σ̄ = |σ̄〉〈σ̄| = n̂σ̄(1− n̂σ),

m̂d = | ↓↑〉〈↑↓ | = n̂σn̂σ̄, (2.85)

and one may define the correlator as,

P = λ∅m̂∅ + λσm̂σ + λσ̂m̂σ̂ + λdm̂d. (2.86)

The local constraints have the following form,

〈P̂ 2〉0 = λ2
∅m

0
∅ +

∑
σ=↓,↑

λ2
σm

0
σ + λ2

dm
0
d = 1,

〈P̂ 2ĉ†σ ĉσ〉0 = λ2
σm

0
σ + λ2

dm
0
d = 〈ĉ†σ ĉσ〉0. (2.87)

and the renormalization factors could be calculated easily in this way as,

qσ = qσ
σ = λσλ∅〈n̂σ〉0 + λσ̄λd〈n̂σ̄〉0

=
1√

〈n̂iσ〉0(1− 〈n̂iσ〉0)

[√
di(〈n̂iσ〉0 − di) +

√
(〈n̂iσ̄〉0 − di)(1− ni,0 + di)

]
,

(2.88)

with di = λ2
dm

0
d. The final form of the energy functional for a single band Hubbard model

could be written as follows,

E({λΓ}, |Ψ0〉) =
∑
〈ij〉,σ

tijqiσqjσ〈ĉ†iσ ĉjσ〉0 + U
∑
i

di({λΓ}, {〈n̂σ〉0}). (2.89)
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Finally the above mentioned energy functional should be minimized as function of all
variational parameters in the correlator and |ψ0〉, but subjected to constraints in Eqs. (2.87).

Remark. 1: in the chapters 3 and 4, the
√
qσ is the representative of qσ factors here. In

those chapters qσ is directly refered as QP weight, while here q2
σ plays the same rule.

Remark. 2: in the chapters 3-5, we consider paramagnetic solution of the system, while
the true ground state of the system should be magnetic. The main reason for neglecting the
magnetization is because our aim was to simulate the paramagnetic cases which happen
in higher temperatures which is more realistic. This is why we neglect the magnetization
which is true ground-state of the system. The magnetization is expected to occur in very
low temperatures. Because GA works only at zero temperatures, therefore neglecting
magnetization within GA is an extra approximation.

2.5 DMFT for full local correlations

Another promising theoretical tool used for solving the many body lattice problems, is the
so called dynamical mean field theory (DMFT) [38]. This approximation also relies on
the dimensionality of the lattice and is exact in d =∞. Because this theory is formulated
at finite temperature, the central objects in the formulation are imaginary time ordered
Green’s functions. In particular the single particle Green’s function is defined as,

Gαγ(τ) = −〈Tτ ĉγ(τ)ĉ†α(0)〉,
= −θ(τ)〈ĉγ(τ)ĉ†α(0)〉+ θ(−τ)〈ĉ†α(0)ĉγ(τ)〉,
= −Gαγ(τ + β), (2.90)

where α and γ represent combined lattice site, spin and orbital indices, β is the in-
verse of the temperature, the 〈〉 is the average over grand-canonical density matrix oper-
ator e−β(Ĥ−µN̂) and the time dependent operators are defined through the imaginary time
Heisenberg operators as O(τ) = eĤτOe−Ĥτ . The anti-periodicity arises from cyclic prop-
erties of the trace. The Fourier transform of G(τ) to imaginary Matsubara frequencies
could be performed as,

Gαγ(ıωn) =

∫ β

0

dτGαγ(τ)eıωnτ , (2.91)

Gαγ(ıωn) =
1

β

∞∑
−∞

Gαγ(ıωn)e−ıωnτ , (2.92)
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where ωn =
2π

β
(2n + 1). For free particles with spin σ and a Hamiltonian diagonal in

momentum space Ĥ − µN̂ = (εk − µ)ĉ†kσ ĉkσ, the non-interacting Green’s function reads,

G0
kσ(ıωn) =

1

ıωn + µ− εk
, (2.93)

For interacting systems the self energy, Σkσ(ıωn), is defined as the difference between the
inverse of the non-interacting Green’s function and full interacting one as,

Σkσ(ıωn) = G−1
0kσ(ıωn)−G−1

kσ (ıωn). (2.94)

The effect of the interactions is fully encoded in the properties of the self-energy Σkσ(ıωn).
By reorganizing Eq. (2.94) one may express Gkσ(ıωn) as function of Σkσ(ıωn) as,

Gkσ(ıωn) =
1

ıωn + µ− εk − Σkσ(ıωn)
, (2.95)

The equations (2.94) and (2.95) are the so called Dyson equations. In general there is no
explicit form for the self-energy and approximations are necessary.

The aim of any mean-field approximation is to map the lattice problem to a single
site effective problem, which has less degrees of freedom and could be solved with less
difficulties in comparison to the original problem. The meaning of the mean field ap-
proximation is to freeze some wild fluctuations (here we are interested in freezing spatial
fluctuations) and only consider an average of the quantity in order to evaluate expectation
values. In particular, as is stated in the former section the dimensionality of the system
could be used as a measure to indicate in which level the spatial fluctuations are important
i.e. the larger dimensionality leads to less effective spatial contributions. This concept is
already used in the context of Gutzwiller approximations to drive non-trivial mean-field
like static approximation in the limit of infinite dimensions, in that case d = ∞ requires
the evaluation of expectation values only locally.

Another way to drive the mean-field approximations for lattice fermions and in partic-
ular for Hubbard models, is to use again the hopping scaling t/

√
2d, like the scaling of

the density matrices in the section 2.4.1, the Green’s functions also obey the same scaling

properties Gij(ıωn) ∼ 1/
√
d
|i−j|

, where |i − j| is the Manhattan metric which counts the
shortest lattice steps between site i and site j. Therefore, rather than working with single
particle density matrices for the diagrammatic expansion of the Gutzwiller wave func-
tion, one may exploit this scaling in diagrammatic expansions of the Green’s functions
and self-energies. Therefore the limit of d = ∞ (infinite coordination number) has two
consequences:
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First, it leads the self energy being spatially local in this limit [87].
Second, it allows for the mapping of the full lattice problem to an effective single site

problem.
This mapping could be performed most easily by representing the partition function in
the fermionic path integral formalism, in particular we consider the single band Hubbard
model as,

Ξ =

∫ ∏
i

D[c∗iσ(τ), ciσ(τ)]e−S[c∗iσ ,ciσ ], (2.96)

where c∗iσ and ciσ are independent Grassman variables which like Green’s functions obey
the anti-periodic relation c∗iσ(τ) = −c∗iσ(τ + β) [91] and the action is defined as S =
S0 + S(0) + ∆S. S0 contains only the contribution of site 0 and is defined as,

S0 =

∫ β

0

dτ [
∑
σ

c∗0σ(τ)(∂τ + µ)c0σ(τ)] + Uc∗0σ(τ)c0σ(τ)c∗0σ̄(τ)c0σ̄(τ)]. (2.97)

∆S contains the terms which couples site 0 to the rest of the lattice,

∆S = −
∫ β

0

dτ
∑
iσ

[t0iσc
∗
0σ(τ)ciσ(τ) + t0iσc

∗
iσ(τ)c0σ(τ)]. (2.98)

Finally S(0) contains the contribution of lattice sites other than site 0, which reads,

S(0) =

∫ β

0

dτ [
∑
i 6=0σ

c∗iσ(τ)(∂τ + µ)ciσ(τ)−
∑
i,k 6=0,σ

tijc
∗
iσ(τ)ckσ(τ)

+
∑
i 6=0

Uc∗iσ(τ)ciσ(τ)c∗iσ̄(τ)ciσ̄(τ)]. (2.99)

By defining the average of an operator A over S(0) in the following way,

〈A〉0 =
1

Ξ(0)

∫ ∏
i 6=0

D[c∗iσ(τ), ciσ(τ)]i 6=0Ae
−S(0)[c∗iσ ,ciσ ], (2.100)

the partition function is reorganized as follows,

Ξ = Ξ(0)

∫
D[c∗0σ(τ), c0σ(τ)]e−S0[c∗0σ ,c0σ ]〈e−S0[c∗0σ ,c0σ ,c

∗
iσ ,ciσ ]〉0, (2.101)

where Ξ(0) is the partition function of a system from which site 0 is removed. In the next
step one may expand the exponential term which contains the coupling between the site 0
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and the rest of the lattice as,

Ξ = Ξ(0)

∫
D[c∗0σ(τ), c0σ(τ)]e−S0[c∗0σ ,c0σ ]

∞∑
0

1

n!
〈(∆S)n〉(0). (2.102)

Because we do not work with symmetry broken phases therefore 〈c∗iσ〉(0) = 〈ciσ〉(0) =
0, only perturbation series with even expansion exponent contribute and those with odd
expansion exponents are discarded. Thus, the lowest order in the expansion is the second
order term,

1

2!

∫ β

0

dτdτ ′〈∆S(τ)∆S(τ ′)〉(0) =
1

2!

∫ β

0

dτdτ ′
∑
i,k 6=0σ

[tj0tk0〈c∗jσ(τ)ckσ(τ ′)〉0c0σ(τ)c∗0σ(τ ′)

+ tj0tk0〈cjσ(τ)c∗kσ(τ ′)〉0c∗0σ(τ)c0σ(τ ′)], (2.103)

where here the property that 〈c∗iσc∗jσ〉(0) = 〈ciσcjσ〉(0) = 0 is used, which ensures there are
no symmetry broken phases. After reordering and collecting equivalent terms one may
express the second order terms as,

1

2!

∫ β

0

dτdτ ′〈∆S2〉(0) =

∫ β

0

dτdτ ′
∑
i,k 6=0σ

[tj0tk0G
(0)
ij (τ − τ ′)c∗0σ(τ)c0σ(τ ′)], (2.104)

where G(0)
ij (τ − τ ′) = 〈cjσ(τ)c∗kσ(τ ′)〉(0) is the two time correlation function. Similarly,

one obtains expressions which contains higher order correlation functions by performing
higher order expansions in Eq. (2.102). Finally, by using the linked-cluster theorem one
may achieve the following effective action,

Seff = S0 +
∞∑
n=1

∑
i1···in

∫ β

0

dτ1dτ
′
1 · · ·

∫ β

0

dτndτ
′
nG

(0)
i1j1···injn(τ1 · · · τn; τ ′1 · · · τ ′n)t0i1t0j1 ,

× · · · t0int0jnc∗0σ(τ1)c0σ(τ ′1) · · · c∗0σ(τn)c0σ(τ ′n), (2.105)

where G(0)
i1j1···injn(τ1 · · · τn; τ ′1 · · · τ ′n) = (−1)n〈ci1σ(τ1)c∗j1σ(τ ′1) · · · cinσ(τn)c∗jnσ(τ ′n)〉0 is the

2n time correlation function. Notice again here that the 1/n! terms are canceled by re-
ordering and collecting the similar terms in the perturbation series.

As is stated before the scaling of t/
√

2d ensures the scaling of the two time correlation

functions G(0)
ij ∼ 1/

√
2d
|i−j|

. Because i and j are nearest neighbors of site 0 therefore
|i − j| ≥ 2, moreover ti0tj0 ∼ 1/d, this in turn implies ti0tj0G

(0)
ij ∼ 1/d2 . By consider-

ing the fact that there are two summations over lattice sites the first order term survive in
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Eq .2.105 in the limit of infinite dimensions. By using the same arguments it is inferred
that higher order terms fall off at least as 1/d and are discarded in the limit of infinite
dimensions [38]. Finally, one may rewrite Seff in the limit of infinite dimensions as,

Seff = −
∑
σ

∫ β

0

dτdτ ′c∗0σ(τ)g−1
0σ (τ − τ ′)c0σ(τ ′), (2.106)

where g−1
0σ (τ − τ ′) is defined as,

g−1
0σ (τ − τ ′) = (∂τ + µ)δ(τ − τ ′)−

∑
i,j 6=0

t0it0jG
(0)
ijσ(τ − τ ′),

g−1
0σ (ıωn) = (ıωn + µ)−

∑
i,j 6=0

t0it0jG
(0)
ijσ(ıωn). (2.107)

For a general lattice the following relation holds between G(0)
ij and full lattice Green’s

function Gij [38],
G

(0)
ij = Gij −Gj0G

−1
00σG0i, (2.108)

where G00 is the local Green’s function (the Green’s function of site 0). Inserting back
the above equation in to Eq. (2.107), after some algebra one obtains the following relation
between the g−1

0σ (Weiss field) and local self-energy and Green’s function as,

g−1
0σ (ıωn) = Σ0σ(ıωn) +G−1

00 (iωn), (2.109)

Notice that the spatial locality of the lattice self energy is assumed and was proven to be
exact in the limit of infinite dimensions [87]. Therefore it is proven that in the limit of
infinite dimensions it is possible to focus only on a single site problem which the effect of
the other sites only contribute as a bilinear term term in the effective action in Eq. (2.106).
This in turn implies the similarity between the effective action and the action of an An-
derson impurity model [38]. By fixing the Weiss field g−1

0σ this auxiliary problem could be
solved by means of non-perturbative numerical schemes the most prominent ones are vari-
ants of CTQMC methods [79,92], Hirsch-Fye quantum Monte Carlo methods [93], meth-
ods based on ED [94] or semi-analytic methods based on perturbation expansions around
atomic limit or around non-interacting limits [14]. In particular, the impurity Green’s func-
tion could be calculated as,

G(imp)
σ (ıωn) =

∫
D[c∗0σ, c0σ]c0σ(ıωn)c∗0σ(ıωn)e−Seff [c∗0σ ,c0σ ]. (2.110)

This impurity Green’s function has to be coincide with the local lattice Green’s func-
tion at the solution. The local Green’s function of the lattice has to be evaluated by means
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of the Fourier or Hilbert transform of the lattice Green’s function as,

GLocal,σ(ıωn) =
1

Nk

∑
k

1

ıωn + µ− εk − ΣLocal,σ(ıωn)

=

∫
ρ(ε)

ıωn + µ− ε− ΣLocal,σ(ıωn)
dε, (2.111)

where ρ(ε) the density of states of the non-interaction system (related to dispersion εk).
The above equation finally closes the sets of required equations. Neither the Weiss field
nor the local self energy are known a priori. In practice, the sets of equations (2.109),
(2.110) and (2.111), have to be solved self consistently, the procedure consist of the fol-
lowing steps,

I. Starting from a guess for the local lattice self-energy (often Σ(ıωn) = 0) the local
lattice Green function is evaluated by using Eq. (2.111).

II. The Weiss field is evaluated by using local Green’s function and Eq. (2.109).
III. The Weiss field which is evaluated in the step II has to be used for the evalua-

tion of impurity Green’s function by solving impurity problem through Eq. (2.110), then a
new self energy has to be calculated by means of impurity Dyson equation Σ(imp)

σ (ıωn) =
g−1

0σ (ıωn) − G−1(imp)
σ (iωn). By inserting back the new self-energy into step I the whole

procedure should be repeated until desired convergence is achieved.
Following reference [95], the real space version of the DMFT equations for systems

which are not translational invariant follows the same as translational invariant one, how-
ever there are some small differences. First, in general, the non-interacting part of the
Hamiltonian is a matrix with a dimension equal to number of inequivalent sites. Therefore
the lattice Green’s function has to be evaluated by using a matrix version of the Dyson
equation from which the local Green’s function is directly accessible by using the follow-
ing matrix inversion procedure,

Ĝiiσ(ın) = [(ıωn + µ)I − Ĥ0 − Σ̂σ(ıωn)]−1
ii . (2.112)

Here Ĥ0 is the non-interacting part of the Hamiltonian with a dimension equal to num-
ber of inequivalent lattice sites, I is the unit matrix, and Σ̂(ıωn) is a diagonal self energy
matrix. The second difference is that the impurity problem has to be solved for all in-
equivalent lattice sites independently by using a site dependent Weiss field giiσ(ıωn)−1 =
Giiσ(ıωn)−1 + Σiiσ(ıωn) and the corresponding self-energy has to be solved by means of
impurity Dyson equation for the impurity embedded to each site. After forming the diag-
onal self-energy matrix Σ̂σ(ıωn) it should be fed back into step I in the DMFT equations.
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2.5.1 Mott insulator thin film subjected to an electric field
Here we show results of DMFT equations for an insulating thin film described by the

single band Hubbard model. Our system consists of a simple cubic lattice system which
has translational invariance in (100) and (010) directions, with L = 24 number of layers
in the direction of (001). Therefore the Hamiltonian has the following form in a combined
momentum and layers index representation,

ĥσ(k‖) =
∑
i

(εσk‖ + vi)ĉ
†
iσk‖

ĉiσk‖ − t⊥
∑
〈ij〉

ĉ†iσk‖ ĉjσk‖ , (2.113)

where k‖ = (kx, ky), εσk‖ = −2t‖(cos kx+cos ky), t‖ and t⊥ are inter-layer and intra-layer
hopping elements and vi are local potentials to mimic the effect of external electric field.
The lattice Dyson equation for the above mentioned Hamiltonian reads,
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Figure 2.2: Spectral function for a system with L = 24 layers, U = 12.5, and β = 30.
Inset: imaginary part of the self energy for different layers.

Giiσ(ıωn) =
1

Nk‖

∑
k‖

[(ıωn + µ)I − ĥσ(k‖)− Σ̂σ(ıωn)]−1
ii , (2.114)

with Nk‖ = NkxNky . In the following we consider t‖ = t⊥ = 1 and every other coupling
constants are scaled by t⊥, moreover we consider a system at half filling µ = U/2 and we

This study is in progress, the results presented in this section were obtained in collaboration with group
of Prof. Dr. Jean-Pierre Locquet at KULeuven.
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focus on paramagnetic solution which means the spin symmetry Σ̂σ = Σ̂σ̄ is considered
in the following. We have implemented our real space DMFT based in Toolbox for Re-
search on Interacting Quantum Systems (TRIQS) library, in particular we used CTQMC
hybridization expansion [96] as impurity solver. For the spectral functions we employed
the maximum entropy method for the analytic continuation of the local imaginary time
Green’s function to real energies [97]. Here we show the results for a system with L = 24
layers, β = 30/t‖. In addition we apply a linear potential profile from +v/2 to −v/2,
in the z-direction ( (001) direction ), with v = 3.0 and v = 0.0, moreover we used the
interaction strength U = 12.5. We therefore stabilize an insulating solution for these set
of parameters.

In Fig. 2.2, we present the spectral function at the surface layer and central layers,
when the electric field is not applied to the system. As stated before this system is insu-
lating and both spectral functions of the central layer and surface layers show a gap. It
is possible to recognize the differences between the two spectral functions such that the
spectral function of the surface layer has more pronounced Hubbard bands in comparison
to the central layer spectral function this is a signature of the larger correlation effects at
the surface. This is further supported by the inset which shows the imaginary part of the
self energy as a function of Matsubara frequencies. It is again possible to recognize, that
in both cases the imaginary part of the self energies shows insulating behavior (almost di-
vergent, but not real divergence because we work with finite temperature). For the surface
layer this behavior is more pronounced.
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Figure 2.3: (a) The distribution charge density for systems with L = 24 layers, U = 12.5,
β = 30 and different v, (b) Double occupancy distribution for systems with the same
parameters.
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In Fig. 2.3, we show the charge density and double occupancy distribution for a system
with v = 0 and v = 3.0. It is possible to see that for the case with v = 0, in Fig. 2.3(a), all
the layers are at the half filling due to particle hole symmetry.

Furthermore, in Fig. 2.3(b), the double occupancy is suppressed at the surface due to
the lower coordination number for the surface layer. Upon application of the electric field
with v = 3.0, as is shown in Fig. 2.3(a), the local charge distribution is away from half
filling for the edge layers. The maximum deviation from the half filling is not exactly
at the surface but at the layer subsequent to the surface. This is also due to the lower
coordination number at the surface (we will address this in Chapter.3 with Gutzwiller ap-
proximation in more details). Furthermore, the electric field effects appears to be screened
out upon approaching the central layers, where the local charge is at half filling and the
electric field has no effects on these sites (from the charge redistribution point of view).
Different from the charge distribution the double occupancy distribution is not symmetric
around the center, as is obvious in Fig. 2.3(b). The reason for this is the fact that for the
places with larger density the double occupancy is pronounced due to the presence larger
number of particles together with reduced correlation effects due local over doping, how-
ever for the places with lower particle density the double occupancy is only pronounced
due to suppression of correlation effects due to local under doping while the reduced occu-
pations reduces the double occupancy in comparison with over doped regions. The double
occupancy shows the same layer dependent feature as v = 0.0 case, it is suppressed at the
surface due to the low coordination number.

In Fig. 2.4(a), we present the spectral function for different layers for the system sub-
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Figure 2.4: (a) Layer dependent spectral functions for different layers, starting from below
1,4,7,10 and 12, (b) Layer dependent imaginary part of the self-energy.

jected to electric field. As seen from the figure there is a QP peak at the Fermi level for the
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spectral functions of the surface layers up to the layer number 7. The QP peak disappears
in the subsequent layers. By looking at the imaginary part of the self-energy in Fig. 2.4(b),
it is seen that the ImΣ(ıω0) has divergent behavior only for the layer number 12 where
the electric field has the lowest effect. Moreover, a comparison between the ImΣ(ıω0)
shown in the inset of Fig. 2.2 for central layer (v = 0.0) and the ImΣ(ıω0) at the central
layer for the case with electric field shows that the effect of electric field is to suppress the
insulating behavior although a MIT is not happened for this layer. Here, we emphasize
that the above mentioned results appear to support the Gutzwiller approach we used in the
analysis of slabs with larger sizes for describing the QP and charge distribution, which we
will present in the following sections. Finally, I acknowledge that the DMFT results are
obtained with collaboration with Petar Bakalov, a member of the group of Professor Jean
Pierre Locquet at KULeuven.

2.6 Different gauges for electric field
It is possible to consider the electric field in two different gauges. One way is by consid-
ering time dependent vector potentials. This could be considered as Peierls substitution
as,

Ĥφ(t) = −
∑
〈ij〉σ

[hije
ie
~c

∫ xj
xi

A(x,t)dxĉ†iσ ĉjσ + h.c.] +Hint, (2.115)

where 〈..〉 represents a summation over the nearest neighbor sites. ĉ†iσ and ĉjσ are the
creation and annihilation fermion operators. The fermion density is defined as usual, as
n̂i = n̂i↑ + n̂i↓ with n̂iσ = ĉ†iσ ĉiσ. This gauge is appropriate for both translationally invari-
ant system or translational broken system. However for a translational broken system one
may write the effect of the electric field as,

ĤF = −
∑
〈ij〉σ

[hij ĉ
†
iσ ĉjσ + h.c.] +

∑
i

vin̂i +Hint, (2.116)

For an uniform constant electric field the potential could be written as vs = xsF , where
xs = sa and a is the lattice constant. For translational broken systems (one dimensional
chains) it is possible to map between the two gauges for the uniform constant electric field.

This could be performed by considering φij(t) =

∫ xj

xi

A(x, t)dx = φ(t) = −Ft, therefore

by expressing Ĥφ(t) as,
Ĥφ(t) = B̂†(t)Ĥφ(0)B̂(t), (2.117)
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with B̂(t) = e−i
∑s=L
s=1 xsn̂sφ(t), we can define,

|Ψ(t)〉 = B̂†(t)|Ψ̃(t)〉. (2.118)

By substituting the above equation into the time dependent Schrödinger equation, Ĥφ(t)|Ψ(t)〉 =
i∂t|Ψ(t)〉, here we set ~ = 1, one may find the following equation for |Ψ̃(t)〉,

Ĥφ(0)|Ψ̃(t)〉 = iB̂(t)∂t(B̂
†(t)|ψ̃(t)〉) = iB̂

˙̂
B†(t)|ψ̃(t)〉+ i∂t|ψ̃(t)〉. (2.119)

By substitution of B̂(t) = e−i
∑s=L
s=1 xsn̂sφ(t) into the former equation, finally one may

arrive at the following effective Hamiltonian ˆ̃H = Ĥφ(0) +
∑
i

xiFn̂i for a system with

uniform constant electric field. However this gauge is not consistent with a system with
periodic boundary conditions because the unitary transformation B(t) already breaks the
translational symmetry. Therefore, as it appears from the form of the effective Hamilto-
nian, the effect of an uniform electric field for a finite chain system could be mapped to
the evolution of a time independent system.

2.7 Landau-Zener tunneling

In the field of quantum non-adiabatic transitions one of the most prominent models which
has been extensively studied and used in different fields is the simple two level Hamilto-
nian, with parabolic band dispersion as,

H =

(
−λ(t) ∆

∆ λ(t)

)
, (2.120)

where the diagonal terms are time dependent. Therefore the time dependent eigen energies
areE±(t) = ±

√
∆2 + λ2(t). This simplified system was studied by Landau and Zener for

the first time [98,99]. For this simplified two level system the time dependent Schrödinger
equation could be solved analytically under certain conditions. As initial boundary condi-
tions we consider that the system is in its ground state at t = −∞when the time dependent
perturbation is absent. By setting ~ = 1 the time dependent Schrödinger equation has the
following form, (

−λ(t) ∆
∆ λ(t)

)(
ψ1(t)
ψ2(t)

)
= i

(
ψ̇1(t)

ψ̇2(t)

)
. (2.121)
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By using the following set of gauge transformations,

ψ1(t) = ei
∫ t
0 λ(τ)dτ ψ̃1(t) (2.122)

ψ2(t) = e−i
∫ t
0 λ(τ)dτ ψ̃2(t), (2.123)

the following set of equations is obtained for the ψ̃1(t) and ψ̃2(t),

˙̃ψ1(t) = −i∆e−2i
∫ t
0 λ(τ)dτ ψ̃2(t) (2.124)

˙̃ψ2(t) = −i∆e2i
∫ t
0 λ(τ)dτ ψ̃1(t). (2.125)

Notice here for the first component ψ̃1(t), because at t = −∞, |λ| >> δ the system could
be considered as unperturbed. Therefore at t = −∞, |ψ̃1| = 1 and |ψ̃2| = 0. By removing
the ψ̃2(t) in the latter set of equations one may achieve the following equation for ψ̃1(t)
as,

i ¨̃ψ1(t) + 2iλ(t) ˙̃ψ1(t) + ∆2ψ̃1(t) = 0. (2.126)

Again we use the gauge transformation ψ̃1(t) = e−i
∫ t
0 λ(τ)dτψ1(t) to find a differential

equation for ψ1(t) as,

ψ̈1(t) + (λ2(t) + ∆2 − iλ̇(t))ψ1(t) = 0. (2.127)

There is no analytical solution for Eq. (2.127) for a generic λ(t). However if λ(t) = (α/2)t
then the differential equation, Eq. (2.127), becomes,

ψ̈1(t) + (
α2

4
t2 + ∆2 − iα

2
)ψ1(t) = 0. (2.128)

The aim is to find the asymptotic values of ψ1(∞) and ψ2(∞), such that the transition
probability is defined as PLZ = |ψ1(∞)|2 = 1 − |ψ2(∞)|2. Zener in his paper [98] used
the asymptotic properties of Weber functions and concluded that the transition probability
has the following asymptotic form,

PLZ = e−2π∆2

|α| . (2.129)

Therefore, the transition probability is large as long as the Landau-Zener parameter
∆2/|α| is small, which could arise from a large rate with which two states approach each
other or from the smaller gap at the anti-crossing. The dependence of the transition prob-
ability on the gap at the anti-crossing in turn implies that the largest probability transfer
should happen at the time at which the two states are closest. However, the Landau-Zener
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(LZ) formula does not provide any clues for this. This could be understood by using the
instantaneous eigen-basis of the LZ Hamiltonian rather than the unperturbed eigenstates
at −∞. This in turn gives the opportunity to study the change of the eigen-basis as func-
tion of an external parameter. The generic form of the solution of the time dependent
Schrödinger equation H(λ(t))|ψ(t)〉 = i ˙|ψ(t)〉 could be written as a superposition of the
instantaneous eigenstates of the time-dependent Hamiltonian as,

|ψ(t)〉 =
∑
n

cn(t)|nλ(t)〉, (2.130)

where |nλ(t)〉 are the instantaneous eigenstates of H(λ(t)) with,

H(λ(t))|nλ(t)〉 = En(t)|nλ(t)〉. (2.131)

By substituting |ψ(t)〉 as expressed by Eq. (2.130) into the Schrödinger equation and by
using the change of variables c̃n(t) = cn(t)eiθn(t), with,

θn(t) =

∫ t

0

En(τ)dτ − i
∫ t

0

〈nλ(τ)|ṅλ(τ)〉dτ, (2.132)

one obtains the following set of coupled differential equations for the coefficients cn(t),

˙̃cn(t) = −
∑
m 6=n

eiθnm(t)c̃m(t)〈nλ(t)|ṁλ(t)〉, (2.133)

where θnm(t) = θn(t) − θm(t), this change of variables is in fact a gauge transformation
because θnm(t) is purely real [100]. The change of basis set as function of time mani-
fests itself in the 〈nλ(t)|ṁλ(t)〉 term in the right-hand side of Eq. (2.133). By starting
from an eigenstate of the Hamiltonian at t = 0 with |cn(0)| = 1, as long as the terms
〈nλ(t)|ṁλ(t)〉 ' 0 during the evolution, then one arrives at the adiabatic regime where
|ψ(t)〉 only follows the eigenstate of the instantaneous Hamiltonian and the coefficients
|cn(t)| = 1 only consist of a phase that is a combination of a geometrical Berry and a
dynamical phase. For the non adiabatic regime, Eq. (2.130) not only ensures the change
in the magnitude of cn(t) but each coefficient further accumulates a complicated phase
consisting of dynamical and Berry phases produced by the other states. If we consider
the ground-state as the starting state for the time evolution, the quantity that measures the
change of basis set as function of the external parameter λ is the ground-state fidelity [101]
which is defined as

Ξ(λ) = |〈ψ0(λ)|ψ0(λ+ δλ)〉|. (2.134)
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By using perturbative arguments it is possible to see that there is a close relationship
between the ground-state fidelity and the coefficients that appear in the right hand side of
Eq. (2.133),

〈n(t)| ˙m(t)〉 = λ̇
〈nλ(t)|∂λH(λ(t))|mλ(t)〉

(En − Em)
. (2.135)

Therefore the change in the ground-state wave-function under an infinitesimal change of
flux can be written as:

|ψ0(λ+ δλ)〉 = Λ

[
|ψ0(λ)〉+ δλ

∑
n 6=0

〈nλ|∂λH(λ)|ψ0(λ)〉
E0 − En

|nλ〉

]
, (2.136)

where Λ is the normalization factor as,

Λ = 1 +
∑
n6=0

δλ2 〈n|∂λH(λ)|m〉2

(E0 − En)2
. (2.137)

After normalization and considering δλ << 1 one obtains that

|〈ψ0(λ)|ψ0(λ+ δλ)〉|2 ' 1− (δλ)2χΞ(λ), (2.138)

where χΞ(λ) is the fidelity susceptibility which is defined as [102, 103],

χΞ(λ) =
1− Ξ2(λ)

(δλ)2 =
∑
n 6=0

〈ψ0(λ)|∂λH(λ)|nλ)〉2

(E0 − En)2
. (2.139)

The leading term in the fidelity expansion is of the order of δλ2. When comparing the
terms in the right-hand side of Eq. (2.135) with the terms that appear in the right-hand side
of Eq. (2.139) one may infer that a larger χΞ(λ) leads to a more non-adiabatic character
of the transition due to the driving of the system by an external electric field. For a simpli-
fied two level system the instantaneous eigenstates of the Hamiltonian in Eq. (2.120) with
eigenvalues E±(λ) = ±

√
λ2 + ∆2 could be written as,

|ψ±〉 =
1√

(E± − λ)2 + ∆2

(
∆

E± − λ

)
. (2.140)
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Therefore one arrives at the following expression for the fidelity susceptibility,

χΞ(λ) =
〈ψ−|∂λH(λ)|ψ+〉2

(E− − E+)2
,

=
∆2 − (λ− E−(λ))(λ− E+(λ))

(E− − E+)
√

[(E+(λ)− λ)2 + ∆2][(E−(λ)− λ)2 + ∆2]

=
∆2

(∆2 + λ2)2
. (2.141)

Therefore at anti-crossing χΞ(0) = 1/∆2. As is obvious if the gap vanishes the fidelity
susceptibility diverges and the transition to the exited state of instantaneous Hamiltonian
happens. Furthermore, the fidelity susceptibility is largest at the anti-crossing λ = 0.
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Chapter 3
Electric shift of the Mott metal insulator
transition in thin films

The ground state properties of a paramagnetic Mott insulator at half-filling are investigated
in the presence of an external electric field using the inhomogeneous GA for a single band
Hubbard model in a slab geometry. We find that the metal insulator transition is shifted
towards higher Hubbard repulsions by applying an electric field perpendicular to the slab.
The main reason, is the accumulation of charges near the surface. The spatial distribution
of site dependent QP weight shows that it is maximal in few layers beneath the surface
while the central sites where the field is screened have a very low QP weight. Our results
show that above a critical field value, states near the surface will be metallic while the bulk
QP weight is extremely suppressed but never vanishing, even for large Hubbard repulsions
above the bulk zero field critical value. Below the critical field value, our results hint
towards an insulating state in which the electric field is totally screened and the slab is
again at half-filling.

3.1 Introduction
The rich physics of strongly correlated materials in combination with the need to overcome
the scaling limits of current silicon based semi-conductor materials in microelectronic in-
dustry has resulted in an increased activity in this field. Special attention has been focused
on vanadium dioxide (V O2) which shows an abrupt MIT near room temperature due to a
structural phase transition [104]. One has found that an electric field is able to trigger MIT

The results of this chapter were published as: Davoud Nasr Esfahani, L. Covaci and F. M. Peeters, Phys.
Rev. B. 85, 085110 (2012).
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in V O2, without any structural transition, which is mostly dominated by electron correla-
tions rather than a Peierls distortion [105]. Also, a first order MIT is observed by applying
an electric field in a two terminal model of V O2 [7, 106] without electrical breakdown of
the material. Note that an, electric field driven MIT and metal-superconductor transitions
have been observed at the interface between LaAlO3 and SrT iO3 [7].

These kind of transitions may be related to a charge transfer mechanism. A nonlin-
ear dependence of the conductivity on the electric field is reported for the highly corre-
lated transition metal chalcogenide Ni(S, Se)2 and a continuous MIT is observed in this
case [107].

In this chapter we investigate the behavior of the ground state of a single band Hubbard
model [77] in the presence of a perpendicular electric field by using the GA [85]. Origi-
nally GA is rooted in the Gutzwiller wave function used to reduce the contribution of high
energy states due to Hubbard repulsion and it was shown to be exact in the limit of infinite
dimensions. [86–88] While an analytical solution exists only for one dimension [108], in
comparison to other approximate methods the GA is equivalent to a slave boson mean field
theory (SBMFT) [109] for zero temperature but in contrast to DMFT [38], it is not able to
give any information about higher and lower Hubbard bands. Instead it gives a reasonable
understanding about the low energy excitations near the Fermi surface [110] by supplying
the QP weight of electrons such that one is then able to describe the mobility of electrons.
Also, GA cannot give any information about the insulating state, instead we are only able
to investigate the properties of the system by approaching the transition point, Uc, from
below [88].

This method was used by Brinkman-Rice [111] to investigate the MIT of the single
band Hubbard model and it allowed them to predict the critical Hubbard repulsion which
is finite in two and three dimensions (Uc = 16t for 3D). While not as accurate as DMFT,
GA is less computationally intensive and thus allows the description of inhomogeneous
systems such as thin films subjected to a perpendicular electric field. Although our sim-
plified approach is only qualitative, it gives important information about how one may be
able to spatially tune the QP weight distribution near surfaces and interfaces. This could be
relevant for future studies; for example for an inhomogeneous bad metal-superconductor
transition by the charge transfer mechanism which may be responsible for the SC-Insulator
transition observed at the interface of a band insulator and a strongly correlated mate-
rial [7]. We will show that by applying a perpendicular electric field, charges will be
trapped at the surface of the Mott insulator and shift the MIT for the surface states.

The outline of the chapter is as follows. In section 3.2 we review the concept of GA
and how the inclusion of on site potentials change the situation. In section 3.3 we intro-
duce our model for the slab geometry, present the numerical scheme used and analyze the
corresponding results. Finally in section 3.4 we present our conclusions.
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3.2 GA in the presence of an electric field
In order to address the narrow band effects in transition metals with d or f orbitals for which
correlation effects play a major role in the behavior of the system the simplest model that
is able to explain the most important terms of the Coulomb interaction between electrons
is the well known Hubbard model,

ĤU = −
∑
〈ij〉σ

tij(c
†
iσcjσ + c†jσciσ) +

∑
i

Un̂iσn̂iσ̄, (3.1)

Where 〈〉 means the summation over nearest neighbor sites. c†iσ and ciσ are creation and
annihilation operators at site i for spin index σ. tij is nearest neighbor hopping amplitude
and U is the local interaction between spin up and spin down, with n̂iσ = c†iσciσ and
σ =↑, ↓.

We will describe the ground state properties of the Hubbard model by using the GA
which suppresses the contribution of high energy configurations (here configurations with
higher number of double occupancies). This is done by introducing a trial wave function
which contains variational parameters to be used subsequently to minimize the total energy
of the system. Our aim is to investigate the properties of a strongly correlated system in
the presence of an external electric field which will appear in the Hamiltonian as a position
dependent potential. The induction of such an inhomogeneity is not random and we still
have translational invariance in the direction perpendicular to the applied field. To study
the ground state properties in the absence of the electric field, the Gutzwiller wave function
is defined as:

|ψG〉 =
∏
i

gD̂ii |ψ0〉 =
∏
i

[
1− (1− gi) D̂i

]
|ψ0〉, (3.2)

where the double occupancy operator is D̂i = n̂iσn̂iσ̄, the variational parameters gi are in-
troduced to reduce the contribution of high energy configuration’s in the many body wave
function |ψG〉, and |ψ0〉 is the unprojected non-interacting (Fermi sea) single particle many
body wave function. Although it is obvious that by the inclusion of on site potentials no
new variational parameters are needed because they do not induce any new correlations
since the term is a single body interaction, nevertheless we will prove it rigorously. To ob-
tain the normalization factors in the limit of spatial infinite dimensions, for which the GA
is exact [87,88], we have to remove spatial correlations which occur in infinite dimensions
together with on-site Hartree contributions which remain in the d = ∞ limit. This can
be done by introducing a new expansion parameter following the guidelines of [88]]. If
we include on-site potentials for capturing the effects of external fields, the Hamiltonian
becomes:

Ĥ = ĤU +
∑
iσ

vin̂iσ. (3.3)
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In order to find the ground state of the Hamiltonian in Eq. (3.3) we introduce new vari-
ational parameters, ζiσ and ζiσ̄, to decrease the weight of the occupancy of the sites with
higher on-site energy. The Gutzwiller wave function now becomes:

|ψG〉 = [1− (1− ζiσ)n̂iσ] [1− (1− ζiσ̄)n̂iσ̄]×[
1− (1− gi)D̂i

]
|ψ0〉. (3.4)

The standard way of removing on-site Hartree contributions is to introduce the fugacity
factors µiσ and µiσ̄ [88], the expansion parameter xi and the non interacting state |ϕ0〉.
Then the Gutzwiller wave-function can be written as:

|ψG〉 =
∏
i

ζiσ
n̂iσζiσ̄

n̂iσ̄gi
2(γi−µiσ̄n̂iσ̄−µiσn̂iσ+D̂i)|ϕ0〉 (3.5)

=
∏
i

(1 + xi(D̂i − D̂i

HF
))|ϕ0〉, (3.6)

The Hartree double occupancy operator can be defined as D̂i

HF
= n̂iσ〈n̂iσ̄〉0 +〈n̂iσ〉0n̂iσ̄−

〈n̂iσ〉0〈n̂iσ̄〉0 and it is the result of the usual mean field decomposition n̂iσ → n̂iσ−〈n̂iσ〉0.
By defining ζiσ = gi

βiσ , ζiσ̄ = gi
βiσ̄ , µiσ ′ = βiσ + µiσ and µiσ̄ ′ = βiσ̄ + µiσ̄ we have:

|ψG〉 =
∏
i

gi
2(γi−µiσ̄ ′n̂iσ̄−µiσ ′n̂iσ+D̂i)|ϕ0〉. (3.7)

Therefore by using the above change of variables it is possible to obtain the same
renormalization factors for the infinite dimensions limit as stated in [88]. In the minimiza-
tion procedure we need to minimize the energy with respect to |ϕ0〉 together with local
variational parameters gi that one needed to describe the correlation effects. In short, the
addition of on-site potentials does not add any new variational parameters and the pro-
cedure of finding the ground state is the same as in the conventional Gutzwiller method.
Thus the expectation value of the Hamiltonian over Gutzwiller wave function:

〈Ĥ〉G = −
∑
〈ij〉σ

√
qiσ
√
qjσtij〈ϕ0|ĉ†jσ ĉiσ + h.c.|ϕ0〉

+
∑
i

vi〈ϕ0|n̂i|ϕ0〉+
∑
i

Udi, (3.8)

has to be minimized only with respect to gi and |ϕ0〉, where 〈〉G means the expectation
values over |ψ〉G. Here the renormalization factors qiσ depend on the local density of the
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non-interacting state |ϕ0〉 and gi:

qiσ =
1

〈n̂iσ〉0(1− 〈n̂iσ〉0)
×[√

di(〈n̂iσ〉0 − di) +
√

(〈n̂iσ̄〉0 − di)(1− ni,0 + di)

]2

,

(3.9)

where di is the double occupancy expectation value over Gutzwiller wave function in the
limit of infinite dimensions and ni,0 = 〈n̂iσ〉0 + 〈n̂iσ̄〉0, with 〈〉0 is defined as expectation
over |φ0〉, while gi are described by the following equations which holds in infinite dimen-
sions [88]:

gi
2 =

di(1− ni,0 + di)

(〈n̂iσ̄〉0 − di)(〈n̂iσ〉0 − di)
. (3.10)

Moreover, 〈n̂iσ〉0 = 〈n̂iσ〉G holds in the limit of infinite dimensions [88]. In practice
minimizing the expectation value of the Hamiltonian is difficult because of the existence
of a large number of variational parameters in |ϕ0〉 together with the dependence of the
renormalization factors on |ϕ0〉. This will lead to a highly nonlinear set of equations. In
order to alleviate some of the difficulties it is possible to allow local densities, 〈n̂iσ〉0 ,
and |ϕ0〉 to vary independently in the minimization procedure. This could be performed
by introducing some new niσ which plays the rule of local densities in which appears in
renormalization factors and double occupancies. Then by introducing λiσ as Lagrange
multipliers it is possible to ensure that these new variables are equal to the local charge
densities of the non interacting state at the solution. Other multipliers, Λ and ENI , are
introduced in order to ensure total charge conservation and guarantee that |ϕ0〉 is normal-
ized. Therefore the final form of the Lagrange function that has to be optimized is as
follows:

〈Ĥ〉G = −
∑
〈ij〉σ

tij〈ϕ0|ĉ†jσ ĉiσ + h.c.|ϕ0〉+
∑
i,σ

vi〈ϕ0|n̂iσ|ϕ0〉+
∑
i

Udi

+
∑
i,σ

λiσ(〈n̂iσ〉0 − niσ) + Λ(N −
∑
iσ

nσi) + ENI(1− 〈ϕ0|ϕ0〉), (3.11)

where tij =
√
qiσ
√
qjσtij are the renormalized hopping amplitudes and N is the total

number of particles (or total number of states that has to be filled). To find the optimum
energy first of all we vary the |ϕ0〉 for which we have the following Schrödinger like
equation: ∑

〈ij〉

−tij(ĉ†jσ ĉiσ + h.c.)|ϕ0〉+
∑
i

(vi + λiσ)n̂iσ|ϕ0〉 = Eσ|ϕ0〉, (3.12)
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which has to be diagonalized for both spins. Then |ϕ0〉 is substituted in Eq. (3.11) and the
expectation value becomes:

〈Ĥ〉G = ENI +
∑
i

Udi + Λ(N −
∑
i,σ

niσ)−
∑
i,σ

λiσniσ, (3.13)

with ENI =

occupied∑
sσ

Esσ and |ϕ0〉 =

occupied∏
sσ

ĉ†sσ|0〉, where s is the quantum number for

the eigenstates of Eq. (3.12). ENI depends on the variational parameters gi, niσ, λiσ and
|ϕ0〉. |ϕ0〉 is now a function of the variational parameters λiσ, niσ and gi, and the above
energy functional has to be optimized in accordance to all these parameters. This leads to
the following set of saddle point conditions:

∂〈Ĥ〉G
∂Λ

= 0,
∂〈Ĥ〉G
∂λiσ

= 0,

∂〈Ĥ〉G
∂niσ

= 0,
∂〈Ĥ〉G
∂gi

= 0. (3.14)

Notice that we consider that during the optimization |φ0〉 is updated throught Eg. 3.12
during the optimization for each change of variational parameters. In general the on site
potential profile is a functional of the spatial density distribution due to the effects of long
range electron-electron and electron-ion interactions. This effect should be addressed by
considering an additional Poisson equation in the set of equations. Although the effect
of charge redistribution due to long range interactions has major effects in weak Hubbard
coupling it has minor effects in intermediate and strong coupling regimes due to very large
screening effects of Hubbard interaction in half filling.

3.3 Model and Numerical scheme

3.3.1 Model

Our model is a slab geometry in which we have translational invariance in x and y direction
and finite size in z direction. In addition we apply a linear potential profile from −v/2
to +v/2, in the z-direction. With the above assumptions the expectation value of the
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Hamiltonian can be written as:

〈Ĥ〉G =
1

Nk‖
〈ϕ0|

∑
i,k‖,σ

[−2tqiσ(coskx + cosky) + vi + λiσ)ĉ†ik‖σ ĉik‖σ

− 1

Nk‖

∑
〈ij〉k‖σ

√
qiσ
√
qjσt(ĉ

†
ik‖σ

ĉjk‖σ + ĉ†jk‖σ ĉik‖σ)]|ϕ0〉

−
∑
iσ

λiσniσ + Λ(
∑
iσ

niσ −
N

Nk‖

) + ENI(1− 〈ϕ0|ϕ0〉)

+
∑
i

Udi, (3.15)

where i and j correspond to atoms in the z direction andNk‖ = NkxNky is the total number
of k points. First we optimize the Lagrange function Eq. (3.15) with respect to |ϕ0〉 which
leads to the following eigenvalue problem:∑

i

(−2tqiσ(coskx + cosky) + vi + λiσ)ĉ†ik‖σ ĉik‖σ|ϕ0〉

−
∑
〈ij〉

√
qiσ
√
qjσt(ĉ

†
ik‖σ

ĉjk‖σ + ĉ†jk‖σ ĉik‖σ)|ϕ0〉 = Ek‖,σ|ϕ0〉. (3.16)

Eq. (3.16) has to be solved for each k‖ point and and spin component σ, in order to find
the non-interacting ground state the eigenvalues will be summed up to the desired filling
level:

ENI =
1

Nk‖

occupied∑
k‖,nσ

Ek‖,nσ,

|ϕ0〉 =

occupied∏
k‖,nσ

ĉ†k‖,nσ|0〉, (3.17)

where n is the quantum number for the energy levels of each k point. In the next step
the above non-interacting state |ϕ0〉, which is now an implicitly function of all variational
parameters λiσ , niσ, gi and Λ, should be inserted into Eq. (3.15):

〈Ĥ〉G = ENI [λiσ, niσ, gi, Λ]−
∑
i,σ

λiσniσ + Λ(
∑
i,σ

niσ −
N

Nk‖

) + U
∑
i

di. (3.18)

By using the Hellman-Feynman equation:

∂

∂λ
〈ψ[λ]|H[λ]|ψ[λ]〉 = 〈ψ[λ]| ∂

∂λ
H[λ]|ψ[λ]〉, (3.19)
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which holds when the wave-function is an eigenfunction of the non-interacting Hamil-
tonian, we obtain the following set of saddle point equations for the paramagnetic case
(〈n̂iσ〉0 = 〈n̂iσ̄〉0):

∂〈Ĥ〉G
∂gi

=
2

Nk‖

∂qiσ
∂gi
〈ϕ0|

∑
k‖

[−2t(coskx + cosky)ĉ
†
ik‖σ

ĉik‖σ −
∑
j

δi,j±1
1

2

√
qjσ
qiσ

× t(ĉ†ik‖σ ĉjk‖σ + ĉ†jk‖σ ĉik‖σ)]|ϕ0〉+ U
∂di
∂gi

= 0, (3.20)

∂〈Ĥ〉G
∂niσ

=
2

Nk‖

∂qiσ
∂niσ
〈ϕ0|

∑
k‖

[−2t(coskx + cosky)ĉ
†
ik‖σ

ĉik‖σ −
∑
j

δi,j±1
1

2

√
qjσ
qiσ

× t(ĉ†ik‖σ ĉjk‖σ + ĉ†jk‖σ ĉik‖σ)]|ϕ0〉 − 2λiσ − 2Λ+ U
∂di
∂niσ

= 0, (3.21)

∂〈Ĥ〉G
∂λiσ

=
1

Nk‖

〈ϕ0|
∑
k‖

ĉ†ik‖σ ĉik‖σ|ϕ0〉 − niσ = 0, (3.22)

∂〈Ĥ〉G
∂Λ

= (2
∑
i

niσ −
N

Nk‖
) = 0. (3.23)

Notice, here we work at half filling in the following. This means half number of states
are occupied in |φ0〉 i. e. number of occupied states is Noccupied = N = Nk‖Nz, which
is half of the total number of states 2Nk‖Nz, where factor 2 is related to number of spin
components, and Nz is number of layers in z direction. Moreover in order to impose para-
magnetic condition we consider Noccupied,σ = Noccupied,σ̄ = Noccupied/2, where Noccupied,σ

is the number of occupied states with spin σ in |φ0〉 (notice that there is not any hopping
process in single particle part of the Hamiltonian which hop between states with different
spin).

In addition to the above equations, the electrostatic stability of the system should be
considered by the inclusion of the Poisson equation. The effects of long range electron-
electron and electron-ion interactions on the electric potential could be evaluated by con-
sidering a simple version of the Poisson equation for slab geometry as follows:

vi = v
(0)
i −

∑
j,i6=j

α|zi − zj|(nj − 1), (3.24)

where zi is the position of plane i. Here α =
e2

2aε0εr
where ε0 is vacuum permittivity,

εr is relative permittivity, a is lattice constant, e is electron charge and nj = njσ + njσ̄.
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We considered three values of the Poisson coupling parameter, α = 0, 0.02 and 0.2. For
α < 0.02 the effect of the Poisson term on the relevant quantities is negligible while for
larger values, α > 0.2, additional screening occurs but we observe the same qualitative
behavior. Experimental data show that for transition metal oxides the relative permittiv-
ity is usually very large [112]. Therefore, because εr = ∞ is a good approximation for
strongly correlated materials, we choose α = 0 and neglect the additional screening of
charges induced by the Poisson term.

In order to numerically solve the above set of non-linear equations (3.20)-(3.23), we
use MinPack.1 [113, 114] which uses a trust-region-dogleg method, while for the k-space
summation we choose a 16×16 Monkhorst-Pack [115] k-grid for which the energy is well
converged for this kind of grid. From the above equations it is obvious that the Jacobian
matrix required by the nonlinear solver has to be calculated by a finite difference method
because no analytical evaluation of the Jacobian matrix is possible. Notice that |φ0〉 is
implicitly function of all variational parameters and is updated through Eq. (3.16) dur-
ing each variation of variational parameters and Lagrange multipliers during optimization
process. Also note that the Jacobian matrix is dense and all of its elements are nonzero.
We also tried to implement another approach by solving Eqs. (3.16) and (3.20)-(3.23) it-
eratively by starting from an estimation of the variational parameters and a calculation of
|ϕ0〉 which are then supplied to the set of Eqs. (3.20)-(3.23) to find a new set of variational
parameters and then repeat the whole procedure. The iterative approach did not converge
for values of U > 4t which could be because of the high non-linearity of the equations for
large U . Other authors also reported similar problems with such an iterative scheme [116].
Although the second approach is less costly, because the Jacobin matrix in the first method
is updated at each variation of the parameters through Eq. (3.16) it is more likely that the
first method converges better particularly for large U when we have a large dependence
of |ϕ0〉 on the variational parameters. In the next sections we report results for qi as the
position dependent QP weight which is an indication of the mobility of the electrons in
Fermi liquid theory. It is possible to show that the inverse of this factor is proportional
to the mass renormalization which is divergent for qi = 0 and which corresponds to an
insulating phase [117]. The quantity ṽi = vi +λiσ + Λ is considered as an effective poten-
tial which acts effectively only on |ϕ0〉. The parameters U and v are scaled with the tight
binding parameter t. Furthermore, we set e = a = 1 where e is charge of the particles
and a is the lattice constant. Hereafter, the reported value of charge densities consist of the
summation of charge density of both spin components.
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Figure 3.1: (a) QP weight distribution for U < 16, Nz = 100, and v = 2 and 0; (b) charge
distribution for U < 16, Nz = 100, and v = 2. Note that for v = 0, the system is at local
half-filling ni = 1.

3.3.2 Numerical results

We solve the set of Eqs. (3.20)-(3.23) for a slab geometry and a linear distribution of the
potential along the direction perpendicular to the slab in order to investigate its effect on
the strong correlations. The spatial distribution of the QP weights and the charge densities
are shown in Figs. 3.1(a) and 3.1(b) and Figs. 3.2(a) and 3.2(b) for different values of the
Hubbard repulsion U for a slab of width Nz = 100 and Nz = 90 respectively. The pres-
ence of a potential profile causes charge distortion in the system, and because of the nature
of the Gutzwiller renormalization factors that are minimum at half-filling (ni = 1.0), it
is predicted that any local deviation from half-filling may lead to larger QP weights when
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Figure 3.2: (a) QP weight distribution, (b) charge distribution, and (c) effective potential
for v = 2.0 for Nz = 90. Notice the U/2 contribution is subtracted from the effective
potential.

compared to the case without electric field.
In the presence of an electric field, for both U < Uc and U > Uc (where Uc = 16 for

bulk), the maximum QP weight is achieved in few layers beneath the surface as is obvious
from Figs.3.1(a) and 3.2(a). For U < Uc akin to the zero electric-field case, the minimum
QP weight is achieved at the surface sites. In contrast, for U > Uc, the QP weight of
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Figure 3.3: QP weight of various sites versus Hubbard repulsion for Nz = 90, (a) v = 0,
and (b) v = 2.

the central atoms starts to dramatically drop to extremely low values and creates a dead
region as is indicated in Fig. 3.2(a). This is presented more clearly in Figs. 3.3(a) and
3.3(b) where we show the QP weight versus the Hubbard repulsion for three significant
locations (surface, near surface, and bulk) for both v = 0.0 and 2.0. The formation of the
dead zone leads to charge being trapped near the surfaces of the slab because the tunnel-
ing through the bulk is suppressed. This charge trapping prevents the system to exhibit a
metal-insulator transition even for values of the Hubbard repulsion larger than the bulk Uc.
This result is contrary to the zero-field case where for U close to Uc , the surface region
forms a dead zone instead of the central region. Therefore, in the absence of an electric
field, the QP weight is maximal in the central parts as shown in Fig. 3.1(a). This is due
to the fact that the surface sites have a lower kinetic energy (due to lower coordination



3.3 Model and Numerical scheme 67

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 10  20  30  40  50  60  70  80  90

Q
u
a

s
i 
P

a
rt

ic
le

 w
e

ig
h
t

Position of atoms in z direction

v=2.0000
v=1.6000
v=1.4046
v=1.1221

Figure 3.4: QP weight distribution for various potential difference for U = 16.0602 where
Nz = 90.

number at the surface). Interestingly, surface sites will always have a finite (but low) QP
weight, as long as the bulk QP weight is finite. The surface sites are always able to gain
kinetic energy from the central sites that have the highest QP weight, which act as a source
of kinetic energy [118, 119] .

In Figs. 3.2(b) and 3.2(c), the spatial distribution of the charge densities and the ef-
fective potential are shown for different values of U > Uc. Both of these two quantities
behave similarly to the QP weight. The charge density is maximum in the same location
in which we have the maximum QP weight, while for the sites with charge density near
local half-filling (ni = 1.0), we have the lowest QP weight and this is where the electric
field has the weakest effect. The deviations of the carrier densities from half-filling cor-
respond to larger electron density for sites with lower effective potential and hole density
for sites with higher effective potential as shown in Fig. 3.2(c). The charge frustration is
responsible for the nonzero QP weight for these sites near the surfaces of the system even
for U > Uc.

Figure 3.4 shows the change of QP weight throughout the system as the potential
(v) difference is increased for U = 16.0602. Notice that the location of the maximal QP
weight slowly shifts toward the surface and at the same time its value increases with elec-
tric field. As a consequence, the size of the central dead zone reduces with increasing
applied potential (v) difference. One should note that when measuring an I-V curve, only
the in-plane conductivity will exhibit metallic behavior because the z-axis conductivity
will be dominated by the bulk insulating layer.

In order to better understand the formation of the dead zone with suppressed QP
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Figure 3.5: QP weight at the center of the slab versus width for v = 1.8, 2, and two values
of the Hubbard repulsion U = 15.75, 16.025.

weight, we plot in Fig. 3.5 the dependence of the central QP weight on the thickness
of the slab. This is shown for two values of the potential difference, v = 1.8 and 2, and
for two values of the Hubbard repulsion, above and below the critical Uc, U = 15.75 and
16.025, respectively. As discussed previously, in the presence of an electric field, sites
near the surface will always have larger QP weight due to the accumulation of surface
charge. This will ensure that the central region will always have its QP weight enhanced
due to its proximity to regions with increased kinetic energy. As shown in Fig. 3.5, we can
distinguish two regimes, depending whether the Hubbard repulsion is above or below the
critical value obtained in the absence of the electric field. When U < Uc, the QP weight
of the central sites converges toward a finite value since even in the absence of the elec-
tric field, the system is still metallic, albeit with a small QP weight. When U > Uc, the
homogeneous system should be insulating with vanishing QP weight. Instead, even if the
electric field is screened in the central region, the QP weight will never exactly vanish be-
cause it is in contact with a doped region with finite QP weight. We can infer that for large
enough electric fields and as long as the slab is finite, the QP weight will never vanish.

Next, we discuss the possible appearance of a critical field value above which the
system is metallic. We plot in Fig. 3.6(a) the maximum and central QP weights for four
values of δU = U − Uc as a function of potential difference v. Note that for larger Hub-
bard repulsions, the minimization procedure is not stable if the maximum QP is strongly
suppressed, and thus we have converged solutions only above certain field strengths. We
observe that as the electric field increases, the difference between the maximal and central
QP weights increases in all situations since the maximum will be near the surface.

This can be also seen in Fig. 3.6(b), where the location of the maximum QP weight
is plotted as a function of electric field. For low-field values, the maximum is located at
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Figure 3.6: (a) Maximum and central QP weight, (b) position of maximum QP weight,
(c) average charge accumulation versus v for δU = U − Uc = 0.0226, 0.0026, 0.0, and
−0.0174 with Nz = 90.

the center of the slab not only due to the vanishing charge accumulation near the surface

( naccumulated = 1/Nz

∑
σ

Nz∑
i=1

|niσ − 0.5| ) [shown in Fig. 3.6(c)], but also due to the in-
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Figure 3.7: Critical Hubbard repulsion for which the maximal QP weight isZ = 5.0×10−3

versus slab thickness for different electric fields.

crease in the correlation length near vanishing charge distortion (charge accumulation).
Although the electron density might have a local maximum/minimum near the surface due
to the presence of the electric field, a long correlation length will ensure that the suppres-
sion due to the existence of the surface recovers only deep into the central regions.

It is important to note that for δU = −0.0174, the QP weight recovers its bulk value
when the electric field goes to zero, while for δU > 0.0, it decreases rapidly at a finite
critical vc . Although our method breaks down when the QP weight is very small, the re-
sults hint toward a true metal-insulator phase transition when the Hubbard repulsion totally
screens the electric field. Next, we discuss the effect of slab dimensions and in Fig. 3.7
we show as a function of thickness the value of the Hubbard repulsion for which the max-
imum QP weight is Z = 5.0 × 10−3. This will give a lower bound for the slab critical
Uc in the presence of a perpendicular electric field. We observe that Uc is larger for larger
thicknesses and stronger fields v. Again, this is related to the amount of charges localized
near the surfaces. When U increases, the QP weight corresponding the probability of the
electrons to tunnel through the central parts is being reduced, which makes charge relax-
ation more difficult. In other words, by increasing the Hubbard repulsion, the system tries
to screen the charges in order to lower the energy, while on the other hand, the increase of
U suppresses the metallic behavior of the central part and thus hinders the charge relax-
ation. This can be better understood by considering the average charge density in half of

the slab (naverage = 2/Nz

∑
σ

Nz/2∑
i=1

niσ), which increases slowly with the slab’s thickness
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Figure 3.8: (a) QP weight distribution of different sites for various slab thicknesses. (b)
The charge density averaged over half of the slab for different thicknesses. Here, U =
15.956 and v = 2.

as indicated in Fig. 3.8(b). The numerical calculations indicate that even for U > Uc, we
did not obtain a clear asymptotic behavior for maximum QP weight by increasing the slab
width. One may expect that an asymptotic solution is reachable for thicker slabs, but this
turns out to be beyond our numerical resources.

3.4 Conclusions
In conclusion, we described the Mott metal insulator in a slab geometry in the presence of
a perpendicular external electric field by calculating the site-dependent QP weight. This
is done by using an inhomogeneous GA, which is exact in the limit of infinite dimensions.
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Figure 3.9: Sketch of the possible electric-field-induced changes on the phase diagram.
The two metallic regions differ only in the location of the maximum QP weight: center of
slab in region 1 and near surface in region 2.

Increasing the Hubbard repulsion in the presence of an external electric field leads to
the formation of a dead insulating zone at the center of the thin film. The formation of
the dead zone for U > 16 occurs before complete screening of the electric field and,
therefore, charge trapping occurs at the surface. This causes the MIT to be shifted in
the presence of the external field. We therefore show that even though the QP weight of
the central region is (bulk) strongly suppressed for U > Uc , the surface layers remain
metallic and with larger QP weight. Although our calculation can not give a definitive
answer on whether a critical value vc/Nz of the electric field exists, below which the slab
becomes insulating, it shows that a rapid change in the maximum QP weight and charge
accumulation will occur above vc. The resulting phase diagram is sketched in Fig. 3.9 and
shows the electric-field-induced shift of the metal-insulator transition. We uncover two
metallic regions, depending whether the maximum QP weight is achieved in the center
of the slab (region 1) or near the surface (region 2). Analytical or numerical methods,
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which can accurately probe the insulating region, will shine light on the exact nature of
this transition. From an experimental point of view, our results are relevant for transport
measurements in thin films. In the presence of an external electric field perpendicular to
an insulating film, one could use the surface states for transport since the charge transfer
at the surface creates two-dimensional underdoped and overdoped regions. In the same
time, transport perpendicular to the thin film is suppressed due to the dead insulating zone,
thus protecting the surface states from leakages. The electric field needed to create the
surface states is also much lower than the breakdown field needed to pass current across
the insulating zone.
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Chapter 4
Field effect on surface states in a doped
Mott-Insulator thin film

Surface effects of a doped thin film made of a strongly correlated material are investigated
both in the absence and presence of a perpendicular electric field. We use an inhomoge-
neous GA for a single band Hubbard model in order to describe correlation effects. For
low doping, the bulk value of the QP weight is recovered exponentially deep into the slab,
but with increasing doping, additional Friedel oscillations appear near the surface. We
show that the inverse correlation length has a power-law dependence on the doping level.
In the presence of an electrical field, considerable changes in the QP weight can be realized
throughout the system. We observe a large difference (as large as five orders of magni-
tude) in the QP weight near the opposite sides of the slab. This effect can be significant in
switching devices that use the surface states for transport.

4.1 Introduction
The MIT based on carrier doping of a Mott insulator has been investigated experimen-
tally and theoretically [14, 38]. Recently, the formation of a superconducting phase was
observed at the interface of a Mott and band insulator and the possible tuning of these
transitions by an external electric field was reported [7]. Moreover a three terminal setup
was implemented by Son et al. who induced hole doping in a thin Mott insulator film from
a doped band insulator through the application of a voltage difference between the drain
and the gate terminals [120].

The results of this chapter were published as: Davoud Nasr Esfahani, L. Covaci and F. M. Peeters, Phys.
Rev. B. 87, 035131 (2013).
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For the above class of phenomena inhomogeneities and proximity effects play an es-
sential role. In order to deal with such systems one needs a theoretical model that is able
to include correlation effects in heterostructures while not being too computationally ex-
pensive such that one has the possibility to consider large enough system sizes. This is
crucial especially for the investigation of systems where surfaces and finite size effects are
significant such as thin films made of strongly correlated materials. The interface between
a band insulator and a strongly correlated system has been studied theoretically with a two
site DMFT [121] and the SBMFT [116]. Such studies predict the formation of a two di-
mensional electron gas at the interface which arises due to charge reconstruction. Surface
correlation effects were studied theoretically in half filled heterostructures modeled by a
single band Hubbard model [122]. Also the penetration of metallic behavior into a Mott
insulator was studied both within the GA and DMFT for the half filled case [29,118]. Sur-
face correlation effects of a doped semi-infinite Hubbard model were investigated within
an embedded DMFT for both single band and multi-band systems [119, 123]. Within this
method, due to numerical limitations, only few surface layers (up to 6) can be used in
order to address site dependent correlation effects. When the correlation length is large,
this method is not reliable any more.

In order to describe position dependent electronic correlation effects in a slab geometry
we employ the GA. While GA works only for the metallic phase, it gives reliable infor-
mation about the QP weight of particles at different spatial locations. For heterostructures,
GA was found to be in good qualitative agreement with the more refined DMFT method for
the half filled case [118]. While GA and SBMFT are equivalent for zero temperature [110],
in two site DMFT, like GA, the bulk QP weight is governed by a simple power law and
there is only a correction to Uc when compared with the linearized DMFT [89,124]. Gen-
erally, GA over-estimates the QP weight at all dopings but it is considered to be accurate
enough to describe low energy excitations and is routinely used for interpolations in com-
bination with DMFT methods [14].

The aim of this chapter is to investigate the spatial dependence of the charge density
and the QP weight of a doped correlated slab and to understand the correlation effects in
the presence of an external electric field. We predict significant changes in the QP weight
throughout the system. This study is motivated by potential applications in nanoscale
switching devices with spatial controllable conductivity through the application of an ex-
ternal electric field.

The outline of the chapter is as follows: after a brief derivation of the saddle point
equations for a slab geometry (section 4.2) the results for a doped correlated slab are pre-
sented in section 4.3.1. Next the effect of an electric field is discussed in section 4.3.2 and
finally we present our conclusions in section 4.4.
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4.2 Model and Method

The simplest Hamiltonian that is able to capture the essential physics of strongly correlated
systems is the single band Hubbard model,

ĤU = −
∑
〈ij〉σ

tijc
†
iσcjσ +

∑
i

Un̂iσn̂iσ̄, (4.1)

where tij are the hopping amplitudes, 〈ij〉 is summation over nearest neigthbour sites and
U is the Hubbard energy describing the Coulomb interaction between two particles with
opposite spin located on the same site (σ =↑, ↓). In the presence of an external electric
field the model becomes [78]:

Ĥ = ĤU +
∑
iσ

vin̂iσ, (4.2)

where vi is the position dependent potential. In spite of the simple form of the Hubbard
model, exact solutions exist only for d = 1 and d = ∞ [38, 86, 108] and therefore we are
forced to work with approximations. If one is only concerned about ground state properties
or low energy excitations [125], one of the choices is the GA (GA) which is the infinite
dimension limit of the Gutzwiller wave function (GWF) [85, 88]. GWF is a many body
wave function with an additional degree of freedom used to reduce the weight of higher
energy configurations. In the single band Hubbard model these configurations are on-site
double occupancies obtained when two particles with opposite spin reside on the same
site. The GWF is written as:

|ψG〉 =
∏
i

P̂i|φ0〉, (4.3)

where i is the lattice site index and the projector operators are defined as P̂i = ge,iêi +

gσ,iŝσ,i + gσ̄,iŝσ̄,i + gd,id̂i. The operators ê = (1 − n̂iσ)(1 − n̂iσ̄), ŝσ = n̂iσ(1 − n̂iσ̄) and
d̂ = n̂iσn̂iσ̄ are local projectors of zero, singly and doubly occupied states, |ϕ0〉 is a nonin-
teracting Fermi sea and consist of both spin up and spin down states and the g coefficients
are variational parameters. The following local constraints have to be satisfied in order
to remove the local contributions in the diagrammatic expansion of various expectation
values [89],

〈P̂ †i P̂i〉0 = 1, (4.4)
〈P̂ †i P̂ic

†
iσciσ〉0 = 〈c†iσciσ〉0. (4.5)



78 Field effect on surface states in a doped Mott-Insulator thin film

Where 〈. . . 〉0 represents the expectation value with respect to |ϕ0〉. The explicit form of
the above constraints is the following:

giσ
2〈êi〉0 +

∑
σ

giσ
2〈siσ〉0 + gd,i

2〈d̂i〉0 = 1, (4.6)

giσ
2〈siσ〉0 + gd,i

2〈d̂i〉0 = 〈n̂iσ〉0. (4.7)

In the limit of infinite dimensions the effect of the projectors Pi requires the renormal-
ization of the hopping amplitudes between different sites. These renormalization factors
can be written as:

√
qiσ =

ge,igσ,i
√
〈êi〉0〈ŝσ,i〉0 + gd,igσ̄,i

√
〈d̂i〉0〈ŝσ̄,i〉0√

〈niσ〉0(1− 〈niσ〉0)
. (4.8)

By substituting Eqs. (4.6) and (4.7) into Eq. (4.8) one arrives at an expression for
√
qiσ

that is only a function of gd,i, 〈n̂iσ〉0 and 〈n̂iσ̄〉0 as:

√
qiσ =

√
(1− 〈n̂i〉0 + di)(〈n̂iσ〉0 − di) +

√
di(〈n̂iσ̄〉0 − di)√

〈niσ〉0(1− 〈niσ〉0)
,

where di = g2
d,i〈n̂iσ〉0〈n̂iσ̄〉0 is the probability of double occupancy that is calculated

within |ψG〉 and 〈n̂i〉0 = 〈n̂iσ〉0 + 〈n̂iσ̄〉0. Moreover, in addition to Eq .(4.8) the rela-
tion 〈n̂iσ〉gutzwiller = 〈n̂iσ〉0 holds in the limit of infinite dimensions. By considering the
above relations the total energy functional of an inhomogeneous system has the following
form,

〈Ĥ〉G =
∑
〈ij〉,σ

−tij
√
qiσ
√
qjσ〈ĉ†iσ ĉjσ〉0 +

∑
i,σ

vi〈n̂iσ〉0,

+
∑
i

Ug2
d,i〈n̂iσ〉0〈n̂iσ̄〉0, (4.9)

Where 〈〉G means expectation over Gutzwiller wave finction. The conditions 〈ψG|ψG〉 =
〈ϕ0|ϕ0〉 and 〈ϕ0|ϕ0〉 = 1 are used in the above relation, the first relation itself is a conse-
quence of the infinite dimensional limit and the second relation is just the normalization
condition for |φ0〉. Away from half filling the problem of minimizing the energy functional
is difficult because the renormalization factors, qiσ, are functions of 〈n̂iσ〉0. Therefore it
is impossible to simply vary the above energy functional with respect to 〈φ0|. A possible
approach, similar to DFT, is to start with an arbitrary value for 〈n̂iσ〉0 and then to expand
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the energy functional as function of 〈n̂iσ〉0 up to linear order around the starting 〈n̂iσ〉0.
This allows us to vary the energy functional with respect to 〈φ0|, moreover this variation
together with the normalization condition for |φ0〉 leads one to solve an eigenvalue prob-
lem, and a new value of 〈n̂iσ̄〉0 can be calculated by using the resulted wave function. This
should be done until the desired convergence of the wave-function or energy functional is
achieved. However, to avelliate this complication, instead of calculating the expectation
value 〈n̂iσ〉0, we introduce a set of new variational parameters niσs that will play the role
of local noninteracting occupancies (local noninteracting density matrices) which appear
in the renormalization factors and double occupancies. It is then possible to let niσ vary
independently from |φ0〉. The energy functional that should be optimized has now the
following form for a simple cubic slab geometry with periodic boundary conditions in the
x− y plane with free (001) surfaces:

〈Ĥ〉G =
1

Nk‖

∑
i,k‖,σ

(qiσεk‖ + vi)〈φ0|ĉ†ik‖σ ĉik‖σ|φ0〉

− 1

Nk‖

∑
〈ij〉k‖σ

√
qiσ
√
qjσt〈φ0|ĉ†ik‖σ ĉjk‖σ|ϕ0〉

+
∑
iσ

λiσ(
1

Nk‖

∑
k‖

〈φ0|ĉ†ik‖σ ĉik‖σ|φ0〉 − niσ)

+Λ(
∑
iσ

niσ −
Ntotal

Nk‖

) + ENI(1− 〈ϕ0|ϕ0〉),

+
∑
i

Ug2
d,iniσniσ̄, (4.10)

where εk‖ = −2t(cos kx + cos ky), the Lagrange multipliers λiσ are introduced to fix
niσ to 〈n̂iσ〉0. Λ is introduced to fix the total number of particles ( Ntotal or equivalently
total number of occupied states ), ENI is considered to make sure that |ϕ0〉 is normalized,
i and j are index of layers in the z direction and Nk‖ = NkxNky is the total number
of k-points. The optimization of the Lagrange function is performed through an iterative
procedure, starting with a minimization with respect to |ϕ0〉, which leads to a Schrödinger-
like eigenvalue problem that has to be solved for each k-point and spin component σ:∑

i

(qiσεk‖ + vi + λiσ)ĉ†ik‖σ ĉik‖σ|ϕ0〉−∑
〈ij〉

√
qiσ
√
qjσtĉ

†
ik‖σ

ĉjk‖σ|ϕ0〉 = Ek‖,σ|ϕ0〉,
(4.11)
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The resulting non-interacting many-body ground state energy and wave-function are com-

puted in the following way: ENI =
1

Nk‖

occupied∑
k‖,nσ

Ek‖,nσ and |ϕ0〉 =

occupied∏
k‖,nσ

ĉ†k‖,nσ|0〉, where

n is the quantum number for the energy levels of each k point. The above non-interacting
state |ϕ0〉, which is now implicitly a function of all the variational parameters λiσ, niσ, gi
and Λ, should be inserted into Eq. (4.10) which becomes,

〈Ĥ〉G = ENI(niσ, λiσ, gd,i, |ϕ0〉)−
∑
i,σ

λiσniσ + Λ(
∑
i,σ

niσ −
Ntotal

Nk‖

) +
∑
i

Ug2
d,iniσniσ̄.

In the next step we search for the stationary points of the above Lagrange function of a
slab geometry for a paramagnetic system with niσ = niσ̄ = ni and 〈n̂iσ〉0 = 〈n̂iσ̄〉0 as:

∂〈Ĥ〉G
∂gd,i

=
2

Nk‖

∂qiσ
∂gd,i

(t̃i +
∑
j

δi,j±1

√
qjσ
qiσ

t̃ij) + 2Uni
2gi,d = 0, (4.12)

∂〈Ĥ〉G
∂ni

=
2

Nk‖

∂qiσ
∂ni

(t̃i +
∑
j

δi,j±1

√
qjσ
qiσ

t̃ij) + 2(Λ− λi) + 2Ugi,d
2ni = 0,(4.13)

∂〈Ĥ〉G
∂λi

=
2

Nk‖

〈ϕ0|
∑
k‖

ĉ†ik‖σ ĉik‖σ|ϕ0〉 − 2ni = 0, (4.14)

∂〈Ĥ〉G
∂Λ

= (2
∑
i

ni −
Ntotal

Nk‖
) = 0, (4.15)

where the spin index of renormalization factors and λiσ is droped due to paramagnetic
condition, t̃i =

∑
k‖

εk‖〈ϕ0|ĉ†ik‖σ ĉik‖σ|ϕ0〉, t̃ij = −t
∑
k‖

〈ϕ0|ĉ†ik‖σ ĉjk‖σ|ϕ0〉 and Ntotal is the

total number of particles. t̃i,i+1 and t̃0,1 are equal to zero at edge of the slab. This set of
nonlinear equations can be solved by using a nonlinear solver based on Newton and/or
Quasi-Newton methods. Notice that |φ0〉 is still implicitly a function of the variational
parameters and has to be updated again through Eq.( 4.11) during the evaluations of the
saddle point equations throughout the optimization procedure. This means that we are all

the time working with a |φ0〉 which satisfies the condition
δ〈Ĥ〉G
δ〈φ0|

= 0.

It should be noticed that together with the saddle point equations the electrostatic forces
due to long-range electron-electron and electron-ion interactions should be in principle
considered. However since the back ground permitivity of strongly correlated materials is
usually very high [112], we tested the solutions with various high values of background
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permitivity and observed that long-range screening is negligible. We therefore set the value
of the back ground permitivity to infinity in our calculations and ignore these effects. In
order to numerically solve the set of saddle point equations, we use a 16× 16 Monkhorst-
Pack [115] k-grid for which the total energy is well converged. We report results for qi
as being the position dependent QP weight, which is a measure of the mobility of the
particles within Fermi liquid theory. The inverse of the QP weight is proportional to the
mass renormalization which becomes divergent for qi = 0 corresponding to an insulating
phase [117]. We further consider a potential difference v between two sides of the slab (in
z direction), which results in a linear potential profile throught the slab between −v/2(for
layer number 1) to v/2 (for layer number Lz). The parameters U and v are scaled by the
tight binding parameter t, furthermore, we set e = a = 1 where e is charge of the particles
and a is the lattice constant. The doping value δ is defined as δ = 1 − Ntotal/Nhalffilled,
with Nhalffilled = Nk‖ × Lz which is half of the total number of states 2 × Nk‖ × Lz,
where the factor 2 is related to the number of spin components. Moreover, in order to
impose paramagnetic condition we consider Noccupied,σ = Noccupied,σ̄ = Ntotal/2, where
Noccupied,σ is the number of occupied states with spin σ in |φ0〉 (notice that there is not any
hopping process in single particle part of the Hamiltonian which hop between states with
different spin). Hereafter, the reported values for charge densities consist of summation
of the charge density of both spin components. Throughout this work the thickness of the
slab is taken Lz = 90 in units of the lattice constant.

4.3 Results

4.3.1 Hole doped correlated slab
In Fig. 4.1(a) we depict the charge distribution near the surface for different values of
doping and U = 16.2, which is larger than the bulk critical U for the half-filled case, i.e.
U bulk,hf
C = 16. The surface region in which the charge density recovers its bulk value is

doping dependent, resulting in the doping dependent correlation length. Higher doping
corresponds to lower correlation length.

In the inset of Fig.4.1(a) we present the charge transfer from the bulk to the surface
(nsurface − nbulk). The doping dependence of this charge transfer is non-monotonic and is
maximum around δ = 0.15. While our results for the charge transfer are in agreement with
recent DMFT calculations for a hole doped semi-infinite single band Hubbard model [119]
in the limit of large enough doping, our scaling analysis shows that considering only few
layers for the QP calculation may not be enough, specially for values of doping near half
filling for which the correlation length is larger that 6 lattice constants. In Fig. 4.1(b) the
spatial distribution QP weights (qi − qbulk) are plotted for different values of doping and
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Figure 4.1: (a) Charge distribution for different dopings. Inset: charge transfer from bulk
to surface as a function of doping; (b) QP weight relative to the bulk QP weight near the
surface for different dopings. Inset shows the doping dependence of the bulk QP weight.

U = 16.2. Like in the half-filled case [118] the QP of particles near the surface sites is
suppressed due to the reduced coordination number together with the charge transfer to
the surface sites from the bulk, which in turn results in a lack of kinetic energy and an
enhancement of correlation effects. One can also observe Friedel oscillations which are
more pronounced for higher doping due to lower correlation lengths.

The inset of Fig. 4.1(b) shows the doping dependence of the bulk QP weight, qbulk,
which is in agreement with previous works and shows that by increasing the doping, cor-
relation effects are weaker. The correlation length can also be extracted from the spatial
distribution of the QP weight near the surface. Similar to the dependence of the charge den-
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Figure 4.2: Inverse correlation length as function of doping for values of U =
16.2, 16.5, 17.0, 18.0. The inset shows the inverse of the correlation length as function
of U for four values of δ=0.009, 0.013, 0.017, 0.032 from buttom to top curves.

sity, the QP weight recovers its bulk value within a characteristic length scale that depends
on the correlation length. Friedel oscillations can also be observed but are suppressed for
lower doping. Following [33] we observe that the spatial distribution of

√
q(x) −√qbulk

is well fitted by an exponential decay for different values of the Hubbard repulsion and
doping: √

q(x) =
√
qbulk + (

√
qsurface −

√
qbulk)e

− 1
ξ

(x−1), (4.16)

where ξ is the correlation length and x the number of layer, starting from x = 1. Since
the correlation length, ξ, depends on both U and δ, by fitting separately the spatial distri-
bution of the QP weight we extract the corresponding correlation lengths. The results are
summarized in Fig. 4.2, where 1/ξ is plotted as a function of doping for different values
of the Hubbard repulsion. We can extract a simple power-law dependence for the inverse

correlation length:
1

ξ
= Aδη, with a mean-field-like exponent [29, 118], η = 0.5 ± 0.07,

and a prefactor A that is only a function of U . The inset of Fig. 4.2 shows the inverse
correlation length as a function of U for different dopings and, as expected, it is enhanced
for higher Hubbard repulsions. The power law dependence of the correlation length versus
doping shows that for half-filling the correlation length diverges which is a signature of the
MIT that occurs for U > U bulk,hf

c . A similar dependence of the correlation length versus
Hubbard repulsion is observed for half-filling but when U < U bulk,hf

c [118]. In the latter
case the criticality is governed by the Hubbard repulsion rather than the doping level.
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Figure 4.3: QP weight distribution and charge distribution (inset) for U = 16.2, δ = 0.002
and three different values of the electric field.

4.3.2 The effect of electric field

The effect of an external electric field perpendicular to the slab on the spatial distribution
of the QP weight is shown in Fig. 4.3 for U = 16.2, δ = 0.002 and different values of
the potential difference (v). The inset shows the charge distribution for the same param-
eters. The main effect of the electric field is to redistribute the charges within the slab,
however in the strongly correlated regime when the Hubbard repulsion exceeds a certain
crossover value, correlation effects enhance the charge transfer from less correlated sites
to more correlated ones. This correlation enhanced charge redistribution results in the ac-
cumulation of charges near the surface layers, bringing one side of the slab very close to
half-filling. This effect is largest for U > U bulk,hf

c . To better clarify the correlation effects
on the surface states of a correlated slab in the presence of an electric field we depict in
Fig. 4.4 the charge and QP distribution of a slab consisting of 90 layers thick and a po-
tential difference v = 0.88. The charge distribution for U = 15.22 shows peaks near the
surfaces, as expected, however this behavior disappears for U = 15.74 and U = 16.2. This
shows a clear crossover regime related to the enhancement of correlation effects. On the
other hand the naive expectation that the effect of an increased Hubbard repulsion is only
to screen out the electric field, fails to explain the behavior of the system in the presence
of the electric field in the strong coupling regime. As shown in Fig. 4.4 by increasing the
Hubbard repulsion, the charges do not go away from the surface but instead are accumu-
lated at the surface. This mechanism of charge transfer from the places with enhanced
delocalization to the places with enhanced correlations leads to a non-trivial enhancement
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Figure 4.4: Charge distribution; the inset shows the charge transfer as function of U for
fixed v = 0.88 and δ = 0.002

of QP difference between the surfaces for large Hubbard repulsions.
To further understand the charge redistribution enhancement due to correlation ef-

fects, we present in the inset of Fig. 4.4 the charge difference between the layers with
highest charge density and the layers with lowest charge density as function of U . This
can be considered as a measure of the charge transfer throughout the system. As is clear
from the inset of Fig. 4.4 there is a crossover value for U , given a fixed doping δ = 0.002
and potential difference v = 0.88. Above this value the effect of the U plays a different
role in the charge redistribution in the system. While below the crossover interaction the
Hubbard repulsion competes with v to prevent charge redistribution due to potential differ-
ence, above the crossover it enhances the charge redistribution in favor of v. As is obvious
from Fig. 4.3 the maximum QP weight is already achieved after a few layers from the sur-
face on that side of the slab where the deviation of the charge density from half-filling is
maximal. The reason that the QP weight is not maximal exactly at the surface is because
of the suppression of the kinetic energy near the surface. On the other side of the slab, for
larger electric fields the charge transfer assures that the charge density is near half-filling.
Therefore, due to local correlation effects the QP weight is strongly suppressed. While the
charge density near the surface is very close to half-filling (i. e. n − 1 ' 10−7) one may
infer that the residual QP indicated in Fig. 4.3 for x = 1 is mostly due to the proximity of
the surface site to sites with higher QP weight rather than due to the local doping effect of
these regions. In order to better understand the dependence of the QP weight on opposite
sides of the slab, in Fig. 4.5 we show the QP weight for layers x = 1 and x = 90 as
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function of potential difference for three different values of doping.
The QP weights on the two surfaces differ by many orders of magnitude. For larger

doping, higher electric fields are needed in order to achieve the same QP weight differ-
ence. This is because of the competing influence of doping and Hubbard repulsion on the
correlation effects. The huge difference in QP weight near the two surfaces could be used
for creating a transistor-like device made of strongly correlated materials. By using the
surface states to conduct current one can simply switch on/off the device by switching the
polarity of the gate. Thus, turning on/off the electric conduction is now a consequence of
the surface resistance ratio of the two sides.

4.4 Conclusions
By using an inhomogeneous Gutzwiller approach applied to the paramagnetic single band
Hubbard model for a slab geometry we described a hole doped Mott thin-film. In the
absence of applied electric field we calculated the position dependent charge density and
QP weight and showed that the inverse correlation length has a power law dependence on
doping.

When a perpendicular electric field is applied, charges will accumulate on one side
of the slab. This correlation enhanced charge redistribution will in turn induce a large
difference in the QP weight on the two sides of the slab, which was found to be as large
as five orders of magnitude. We propose that a three terminal device with surface contacts
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can take advantage of this effect. For resistance switching purposes one would expect
large on/off ratios of surface resistances when the electric field switches polarity.
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Chapter 5
Surface correlation effects in two band
strongly correlated slabs

Using an extension of the Gutzwiller approximation for an inhomogeneous system, we
study the two band Hubbard model with unequal band widths for a slab geometry. The
aim is to investigate the mutual effect of individual bands on the spatial distribution of QP
weight and charge density, especially near the surface of the slab. The main effect of the
difference in band width is the presence of two different length scales corresponding to
the QP profile of each band. This is enhanced in the vicinity of the critical interaction of
the narrow band where an orbitally selective Mott transition happens and a surface dead
layer forms for the narrow band. For the doped case, two different regimes of charge
transfer between the surface and the bulk of the slab are revealed. The charge transfer
from surface/center to center/surface depends on both the doping level and the average
relative charge accumulated in each band. Such effects could be of importance also when
describing the accumulation of charges at the interface between structures made of multi-
band strongly correlated materials.

5.1 Introduction

The surface depletion of the QP weight of strongly correlated materials has been studied
both theoretically and experimentally [33,36,126,127]. The reduced QP weight at the sur-
face of V2O3, a prototype material that exhibits a successive Mott transition at finite critical

The results of this chapter were published as: D Nasr Esfahani, L Covaci, F Peeters, J. Phys.: Condens.
Matter 26, 075601 (2014).
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interaction, was also studied experimentally [36]. It was shown that the perturbation in-
duced by the surface propagates exponentially deep inside the bulk material with a well
defined length scale which is only a function of bulk properties and not the strength of the
perturbation [33]. Moreover the effect of the charge transfer from less correlated to more
correlated regions has been studied for both single and two band Hubbard models, and
was shown to be more pronounced when an external electric field is applied [34,119,123].

On the other hand, for a multi-band system with different band widths, the existence
of an orbital selective Mott transition emerges as a new promising degree of freedom in
the system [128–132]. This in turn gives a hint on the influence of the inter-orbital charge
transfer and crystal field effects on the charge transfer from the bulk to surface. From a the-
oretical point of view there has been a broad range of studies for inhomogeneous systems,
based on single band [29, 32, 34, 118, 133] and multiband [123] Hubbard models, in order
to investigate the effects of surfaces and interfaces. It was found that correlation effects
that emerge as propagation of perturbation in the QP weights and the charge transfer play
an important role for the understanding of the behavior of the system near the surfaces.

Since the strength of the interactions and charge doping lead to the enhancement of
the correlation length near the Mott transition [33, 34], one needs a theoretical tool that is
able to deal with large enough system sizes in order to properly consider the effect of sur-
faces/interfaces on the charge density and QP profile as function of the interaction strength
and doping level of the system.

In order to describe the position dependent electronic correlation effects in a slab ge-
ometry we employ the Gutzwiller approximation (GA). While GA works only for the
metallic phase, it gives reliable information about the QP weight of electrons at different
spatial locations. For inhomogeneous systems, GA was found to be in good qualitative
agreement with the more refined dynamical mean field theory (DMFT) in the half filled
case [118]. GA and SBMFT are equivalent for zero temperature [110], moreover it was
found that GA is qualitatively in agreement with linearized DMFT (it uses one bath site
impurity solver) in which the inclusion of more bath sites does not change the overall be-
havior of the QP structure as function of interaction [134].

Throughout this chapter we only include density-density interactions in the Hamilto-
nian, in this case the QP weight structure of GA is in qualitative agreement with more ac-
curate methods based on DMFT combined with a numerical renormalization group (NRG)
as impurity solver [135]. The inclusion of full rotationally invariant terms not only changes
the structure of QP profile quantitavely but it also induces qualitative differences, i.e. un-
like density-density interaction the order of transition is not first order when full rota-
tional terms are included. However, the inclusion of rotationally invariant terms within the
Gutzwiller approximation does not capture the same behavior as NRG/DMFT calculations
and it only slightly changes the critical interaction in comparison to the density-density
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case [136]. Generally, GA over-estimates the QP weight at all doping values but it was
considered to be accurate enough to describe low energy excitations and is routinely used
for interpolations in combination with DMFT methods [14].

In this chapter we systematically investigate the spatial dependence of the charge den-
sity and the QP weight of the different bands of a two band Hubbard model and further
describe the correlation effects of individual bands as a function of doping. The outline of
this chapter is as follows: a derivation of the saddle point equations for a doped correlated
slab and the numerical scheme is briefly explained in section 5.2. The numerical results
of a half filled correlated slab are presented in section 5.3.1 and the effect of doping is
discussed in section 5.3.2. Finally we present our conclusions in section 5.4.

5.2 Model and Method
We consider a simple two band Hubbard model that is able to capture the essential physics
of multi-band strongly correlated systems,

ĤU = −
∑

〈ij〉mm′σ

tmm
′σ

ij c†imσcjm′σ

+
∑
imσ

vimσn̂
mσ
i +

∑
i

Ĥ int
i , (5.1)

where m and σ are the orbital and spin index (σ =↑, ↓) respectively, tmm
′σ

ij are the hopping
amplitudes between site i and j, 〈ij〉 indicates summation over nearest neighbor sites,
the local potentials vimσ are introduced to mimic the crystal field splitting or the effect
of external electric field for a translationaly broken system [78] and n̂mσi = c†imσcimσ.
For a two band model, the interaction part of the Hamiltonian with only density-density
interactions is defined as follows:

Ĥ int
i =

∑
m=1,2;σ

U

2
n̂mσi n̂mσ̄i +

∑
m6=m′;σσ′

U ′

2
n̂mσi n̂m

′σ′

i (5.2)

−
∑

m 6=m′;σ

J

2
n̂mσi n̂m

′σ
i ,

where U is the intra-orbital coulomb interaction between electrons in a single orbital, J
is Hund coupling and U ′ = U − 2J is inter-orbital Coulomb interaction. Notice, here
we neglect the exchange and pair hopping terms. As is explained in the introduction we
choose this choice for interacting part because in this case the results of GA are in quali-
tative agreement with NRG/DMFT [135]. Because we are only interested in ground state
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properties we employ the Gutzwiller approximation (GA) which is suitable for ground
state properties and low energy excitations [125]. GA is the infinite dimension limit of
the Gutzwiller wave function (GWF) [89], which is a many body wave function with an
additional degree of freedom that is introduced in order to reduce the weight of higher
energy configurations. The GWF is written as:

|ψG〉 =
∏
i

P̂i|φ0〉, (5.3)

where i is the lattice site index and the projector operators are defined as,

P̂i =
∑
ΓΓ′

λiΓΓ′ |Γ〉i i〈Γ′|, (5.4)

{|Γ〉} is a complete eigen basis for the local part of the Hamiltonian, and the operators
|Γ〉i i〈Γ′| act as local projectors at each site i. The way to choose these projectors and
consequently the relative variational parameters depends on the problem at hand. For our
case the number of variational parameters for a two band system with a diagonal non-
interacting density matrix is equal to 16 (see section 5.2.1). |ϕ0〉 is the non-interacting
Fermi sea and consists of a Slater determinant of all flavors of the system. Local constraints
have to be satisfied in order to remove local contributions in the diagrammatic expansion
of various expectation values. These constraints have the following form when the density
matrix of |φ0〉 is diagonal [88, 89, 137],

C
(0)
i ({n̂mσ}, {λΓ}) = 〈P̂ †i P̂i〉0 − 1 = 0, (5.5)

C
(mσ)
i ({n̂mσ}, {λΓ}) = 〈P̂ †i P̂iĉ

†
imσ ĉimσ〉0

− 〈ĉ†imσ ĉimσ〉0 = 0. (5.6)

Where 〈. . . 〉0 represents the expectation value with respect to |ϕ0〉. In the limit of infinite
dimensions the effect of the projectors Pi requires the renormalization of the hopping
amplitudes between different sites. When the density matrix of the local non-interacting
part of the Hamiltonian is diagonal one may write these renormalization factors as [89,
137]:

qmσm′σ′ = δmm′δσσ′
1

nm
′σ′

i

〈P ĉ†imσP †ĉim′σ′〉0. (5.7)

Moreover, the relation 〈n̂mσi 〉G = 〈n̂mσi 〉0 holds in the limit of infinite dimensions for
our case, where 〈〉G means expectation over Gutzwiller wave function. By considering the



5.2 Model and Method 93

above relations the total energy functional of an inhomogeneous system becomes of the
following form,

〈Ĥ〉G =
∑

〈ij〉,mm′σ

−tmm′σij qmσi qm
′σ

j 〈ĉ
†
imσ ĉjm′σ〉0 (5.8)

+
∑
imσ

vimσ〈n̂mσi 〉0 +
∑
i

H int
i ({λΓ, 〈n̂mσi 〉0}),

The conditions 〈ψG|ψG〉 = 〈ϕ0|ϕ0〉 and 〈ϕ0|ϕ0〉 = 1 has to also be satisfied, the first
relation itself is a consequence of the infinite dimensional limit and the second relation is
just the normalization condition for |φ0〉. For the evaluation of the renormalization factors
and other expectation values in the system we use the relations Eq. (5.5)-(5.7). The ex-
plicit form of the renormalizations, constraints and the local interaction part is presented
in section 5.2.1. In addition one should notice that in the former energy functional relation
we consider that the constraints C(0)

i ({n̂mσ}, {λΓ}) and C(mσ)
i ({n̂mσ}, {λΓ}), are satisfied

by substituting the exact form of the constraints. This should be done by expressing some
of the variational parameters as function of the others by solving explicitly the constraints.
By doing so, the number of independent variational parameters is reduced by the number
of constraints. This leaves us with an energy functional as a function of some independent
variational parameters and local density matrices. As is obvious from the form of the en-
ergy functional Eq. (5.8) it has two different components, which have to be optimized, the
Slater part |φ0〉 and the variational parameters {λΓ}. Moreover due to the presence of the
local densities in the Hamiltonian we end up with a nonlinear eigenvalue problem. One
straight way to optimize the energy functional is to use an explicit form of the constraints
in the renormalization factors, then fix the variational parameters and perform an opti-
mization with respect to the Slater part of the functional, |φ0〉. This part should be done
similar to self-consistent DFT calculations (by choosing a trial wave function and solving
the eigenvalue problem iteratively). After fixing |φ0〉, and therefore the local densities, an
optimization with respect to the variational parameters should be performed. This two-
step optimization has to be done iteratively until one reaches the convergence of |φ0〉 or
of the variational parameters. However, we choose a different way to deal with the opti-
mization problem. Instead of calculating the expectation value 〈n̂mσi 〉0 , we introduce a set
of new variational parameters nmσi that will play the role of local noninteracting occupan-
cies 〈n̂mσi 〉0 (local noninteracting density matrices) which appear in the renormalization
factors and the expectation value of the local interaction. It is then possible to let nmσi
vary independently from |φ0〉. The Lagrange function that should be optimized has now
the following form for a simple cubic slab with periodic boundary conditions in the x− y
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plane and free (001) surfaces:

L =
1

Nk‖

∑
ik‖,mm′σ

(qmσi qm
′σ

i εmm
′σ

ik‖
+ δm,m′vimσ)〈φ0|ĉ†imk‖σ ĉim′k‖σ|φ0〉

− 1

Nk‖

∑
〈ij〉k‖,mm′σ

qmσi qm
′σ

j tmm
′σ

⊥i 〈φ0|ĉ†imk‖σ ĉjm′k‖σ|ϕ0〉+ Λ(
Ntotal

Nk‖

−
∑
imσ

nmσi )

+
∑
imσ

ηimσ(
1

Nk‖

∑
k‖

〈φ0|ĉ†ik‖mσ ĉik‖mσ|φ0〉 − nmσi ) + ENI(1− 〈ϕ0|ϕ0〉)

+
∑
i

H int
i ({λΓ, n

mσ}) +
∑
imσ

γ
(mσ)
i C

(mσ)
i ({λΓ, n

mσ})

+
∑
i

γ
(0)
i C

(0)
i ({λΓ, n

mσ}), (5.9)

where εmm
′σ

ik‖
= −2tmm

′σ
‖i (cos kx + cos ky), the Lagrange multipliers ηimσ are introduced

to fix nmσi to 〈n̂mσi 〉0, Λ is introduced to fix the total number of electrons ( Ntotal, or
equivalently total number of occupied states ), E is considered to make sure that |ϕ0〉
is normalized, i and j are layer indices in the z direction, Nk‖ = NkxNky is the total
number of k-points, γ(mσ) and γ(0) are introduced in order to satisfy the local constraints.
The optimization of the Lagrange function Eq. (5.9) is performed through an iterative
procedure, starting with a minimization with respect to |ϕ0〉, which leads to a Schrödinger-
like eigenvalue problem that has to be solved for each k-point and spin component σ:

∑
imm′

(qmσi qm
′σ

i εmm
′σ

ik‖
+ δmm′(vmiσ + ηimσ))ĉ†ik‖mσ ĉik‖m′σ|ϕ0〉

−
∑
〈ij〉mm′

qmσi qm
′σ

j tmm
′σ

ij ĉ†ik‖mσ ĉjk‖m′σ|ϕ0〉 = Ek‖,σ|ϕ0〉. (5.10)

The resulting non-interacting many-body ground state energy and wave-function are

computed in the following way: ENI =
1

Nk‖

occupied∑
k‖,nσ

Ek‖,nσ and |ϕ0〉 =

occupied∏
k‖,nσ

ĉ†k‖,nσ|0〉, n

is the quantum number for the energy levels of each k-point. The above non-interacting
state |ϕ0〉, which now is an implicit function of all the variational parameters ηimσ, nmσi ,
λΓi and Λ should be substitute back into the equation Eq. (5.9), by doing this the Lagrange
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Table I.The configuration state and relative interaction energies.

No. State Energy No. State Energy
1 |0〉 0 9 | ↓, ↓〉 U − 3J
2 | ↑, 0〉 0 10 |0, ↑↓〉 U
3 | ↓, 0〉 0 11 | ↑↓, 0〉 U
4 |0, ↑〉 0 12 | ↑, ↑↓〉 3U − 5J
5 |0, ↓〉 0 13 | ↓, ↑↓〉 3U − 5J
6 | ↑, ↑〉 U − 3J 14 | ↑, ↑↓〉 3U − 5J
7 | ↑, ↓〉 U − 2J 15 | ↓, ↑↓〉 3U − 5J
8 | ↓, ↑〉 U − 2J 16 | ↑↓, ↑↓〉 6U − 10J

function has the following form,

L = ENI({nmσi }, {ηimσ}, {λΓi}, {γ
(0)
i }, {γ

(mσ)
i }, |ϕ0〉)

−
∑
i,mσ

ηimσn
mσ
i + Λ(

Ntotal

Nk‖

−
∑
i,mσ

nmσi ) (5.11)

+
∑
i

H int
i ({λΓ, n

mσ}) +
∑
imσ

γ
(mσ)
i C

(mσ)
i ({λΓ, n

mσ})

+
∑
i

γ
(0)
i C

(0)
i ({λΓ, n

mσ}).

In the next step we search for the stationary points of the above Lagrange function.

5.2.1 Renormalization factors and constraints

We present here detailed expressions for the normalization factors and local expectation
values used in the functional Eq. (5.9). In our calculations we consider only density-
density interactions. Moreover the local density matrix is diagonal as can be seen from
Eqs. (5.2) and (5.1). By considering these assumptions it is apparent that the configura-
tion states of the local Hamiltonian Eq. (5.2) are the eigenvectors of the local part of the
Hamiltonian. These are summarized in the Table.I. Therefore, the Gutzwiller projector
can be expressed as a function of the projectors onto the configuration states of the local
Hamiltonian as follows,

P̂ =
∑
I

λI |I〉〈I|, (5.12)
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where I belongs to the configurations that are shown in Table I and the projectors |I〉〈I|
are defined as follows [89],

m̂I = |I〉〈I| =
∏
mσ∈I

n̂mσ
∏
mσ/∈I

(1− n̂mσ). (5.13)

Considering the above assumptions, a straightforward algebra leads to the following
expression for the renormalization factors (by using Eqs.(5.7) or (2.82) ).

qmσm′σ′ = δmm′δσσ′
1

1− nmσ
∑
I

λIλI∪mσm0I , (5.14)

Where m0I = 〈φ0|m̂I |φ0〉 .The constraints and local interaction parts are given by the
following expressions respectively,

C
(0)
i :

∑
I

λ2
Im0I − 1 = 0, (5.15)

C
(mσ)
i :

∑
I:mσ∈I

λ2
Im0I − 〈nmσ〉0 = 0,

〈Ĥint〉 =
∑
I

EIλ
2
Im0I .

5.2.2 Saddle point equations and numerical scheme
Here we present the explicit form of the saddle point equations. Starting from Eq. (5.11)
the following equations are obtained by using the Hellman-Feynman relation:

∀ λΓi : ∂λΓi
L =

1

Nk‖

KλΓi
+ ∂λΓi

H int
i ({λΓ, n

mσ}) + ∂λΓi
Fi({λΓ, n

mσ}) = 0, (5.16)

∀ nirσ : ∂nirσL =
1

Nk‖

Knirσ + ∂nirσH
int
i ({λΓ, n

mσ}) + ∂nirσFi({λΓ, n
mσ})− ηirσ = 0,

(5.17)

∀ ηirσ : ∂ηirσL =
1

Nk‖

〈ϕ0|
∑
k‖

ĉ†imσk‖σ ĉimσk‖σ|ϕ0〉 − nmσi = 0, (5.18)

∀ γ
(rσ)
i : ∂γirσL = C

(rσ)
i ({λΓ, n

rσ}) = 0, (5.19)

∀ γ
(0)
i : ∂γi0L = C

(0)
i ({λΓ, n

mσ}) = 0, (5.20)

∂ΛL = (
Ntotal

Nk‖

−
∑
imσ

nmσi ) = 0, (5.21)
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where,

KλΓi
=

∑
mm′σ

[t̃mm
′σ

i (qmσi ∂λΓi
qm
′σ

i + qm
′σ

i ∂λΓi
qmσi )

+
∑
j

2δi,j±1t̃
mm′σ
ij ∂λΓi

qmσi qm
′σ

j ],

Knirσ =
∑
mm′σ

[t̃mm
′σ

i (qm
′σ

i ∂nirσq
mσ
i + qmσi ∂nirσq

m′σ
i )

+
∑
j

2δi,j±1t̃
mm′σ
ij qjm

′σ∂nirσq
imσ],

Fi({λΓ, n
mσ}) = γ

(0)
i C

(0)
i ({nmσ, λΓ}) +

∑
rσ

γ
(rσ)
i C

(rσ)
i ({nmσ, λΓ})

with t̃imm′σ =
∑
k‖

εmm
′σ

ik‖
〈ϕ0|ĉ†ik‖mσ ĉik‖m′σ|ϕ0〉, t̃mm

′σ
ij = −tmm′σij

∑
k‖

〈ϕ0|ĉ†ik‖mσ ĉjk‖m′σ|ϕ0〉

and Ntotal is the total number of electrons. t̃i,i+1 and t̃0,1 are equal to zero at the edge of
the slab. This set of nonlinear equations can be solved by using a nonlinear solver based
on Newton and/or quasi-Newton methods. Notice that |φ0〉 is still implicitly a function
of the variational parameters and has to be updated again through ( 5.10) during the eval-
uation of the saddle point equations throughout the optimization procedure. This means

that we are at all times working with a |φ0〉 which satisfies the condition
δL
δ〈φ0|

= 0. It

should be noticed that together with the saddle point equations the electrostatic forces due
to the long-range electron-electron and electron-ion interactions should be in principle
considered. However since the back ground permittivity of strongly correlated materials
is usually very high [112], we tested the solutions with various high values of background
permittivity and observed that long-range screening is negligible [133]. We therefore set
the value of the back ground permittivity to infinity in our calculations and ignore these
effects. The above set of equations are useful as long as we are sure that there is charge
transfer between different sites and orbitals. Otherwise if for some reason (for instance
when the system is half filled) the density matrix is fixed, the optimization procedure will
be much more simple than what was discussed here. If this is the case then it will be more
efficient to minimize the energy functional as function of λΓ in one step, this should be
done by using a constrained minimizer like sequential quadratic programming (SQP) [138]
or doing minimization by moving along a constrained steepest descent direction [139], and
calculate |φ0〉 through Eq. (5.10) in the next step. These two steps should be done itera-
tively until one reaches the convergence of variational parameters. At least for half filling
the parameters ηimσ are homogeneous for all sites and both bands and does not affect the
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Figure 5.1: (a) QP weight of WB (solid) and NB (dashed) as function of interaction for
J = 0.1U and different band differences; (b) QP weight of QP weight of WB (solid)
and narrow band (dashed) as function of interaction for J = 0.1U ∆ = 0.4 and different
in-plain mixing parameter β.

optimization. We compared the results of the later approach and those achieved from the
direct solution of saddle point equations,they confirmed each other with great accuracy.

To solve the saddle point equations it is best to find a rough solution with a lower
number of k-point mesh (for instance 8 × 8) and use this solutions as starting point to a
denser k-points. In order to numerically solve the set of saddle point equations, we use a
32 × 32 Monkhorst-Pack [115] k-grid for which the total energy is well converged. We
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Figure 5.2: Critical interaction (Uc) as function of different band width differences.

finish this part with a hint that using a Monkhrost-Pack grid with a shift is very beneficial
to ensure convergence to an accurate solution when it fails to find solutions for un-shifted
k-grid.

5.3 Numerical results

In this section we report results for Qmσ
i = (qmσi )2 as being the position dependent QP

weight of different bands, which is a measure of the mobility of the electrons within
Fermi liquid theory. The inverse of the QP weight is proportional to the mass renormal-
ization which becomes divergent for Qmσ

i = 0 corresponding to an insulating phase [117].
Throughout this work the thickness of the slab is taken to be Lz = 50 in units of the lattice
constant, furthermore we consider paramagnetic condition is imposed which means spin
symmetry is considered in the rest i. e. Nσ = Nσ̄ = Ntotal/2, which Nσ is the number of
occupied states for spin component σ in |φ0〉 (notice that there is not any hopping process
in single particle part of the Hamiltonian which hop states with different spin). Moreover,
total number of particles at half filling is Ntotal = NHalffilled = 2 × Nk‖ × Lz, which is
half of total number of states 4×Nk‖×Lz for a two band model with spin. The correlation
length, ξ, is defined as the length scale over which the surface QP recovers its bulk value.
This can be extracted by fitting the position dependent square root of the QP weight with
the following formula [118],

q(x) = qbulk + (qsurface − qbulk)e−
1
ξ

(x−1), (5.22)
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where q(x) is the square root of the position dependent QP weight in the perpendicular
direction to the slab. ∆ is defined as the bandwidth difference such that the hopping
amplitude of wide band (WB) being t⊥,WB = t‖,WB = t0 + ∆ and the hopping amplitude
of narrow band (NB) being t⊥,NB = t‖,NB = t0 −∆. β is defined as the in-plane mixing
such that t‖WB,NB = β, t⊥WB,NB = 0. The parameters U , J , β and ∆ are scaled with
t0 = 1. Furthermore, in the following we consider e = a = 1 where e is charge of the
particles and a is the lattice constant. Hearafter, the repoted values for the charge densities
consist of summation over both spin components.

5.3.1 Correlated slab at half filling

We first present in Fig. 5.1, the bulk QP weight of different band width differences at half
filling as a function of interaction strength. Notice here bulk means the center of a large
slab or a translationaly invariant simple cubic system with nearest neighbor hopping ele-
ments, where the QP weight of both coincides when the slab thickness is large enough.
For our case with a slab size with 50 layers the QP of the central layer is almost equal to
that of the bulk. These results agree with those obtained in other works using different
approaches [129,130]. As expected from previous works, a two band Hubbard model with
density-density interactions shows a first order phase transition if J is finite.

In Fig. 5.1(a) the QP weight of both bands is plotted as function of interaction for
different values of ∆. As is clear from the figure, for small values of ∆ both the WB and
NB exhibit a first order phase transition at a single critical interaction. On the other hand
for sufficiently large band width differences a second order MIT occurs for the NB at val-
ues of the interaction significantly lower from those of the WB. The difference between
the critical values of the interaction for the NB and WB is shown in Fig. 5.2 for different
values of ∆. In Fig. 5.1(b) the influence of the off-site hybridization is considered. We ob-
serve that, due to a gain of kinetic energy from the WB, the MIT for the NB is suppressed.
This effect is more pronounced for larger values of the hybridization mixing parameter, β.
We can conclude here that any mixing between the bands will transfer energy from one
band to the other and the band-selective Mott transition will be suppressed.

We next show in Fig. 5.3 the spatial dependence of the QP weight profile for a system
with equal band width and for different values of the interaction U while we choose the
values of J such that the system is in the vicinity of the Mott transition. As can be seen
from the inset of Fig. 5.3, the diverging correlation length (that is a signature of MIT for
systems with continuous phase transition) is not seen here and only for very small values
of J one may see a large correlation length near the Mott transition point, although still
finite at the transition point. As expected, the reason for this behavior is the existence of
the first order phase transition, which occurs for the bulk and presents a finite QP weight
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at the transition point. To better see the effect of finite J on the QP weight profile we plot
in the inset of Fig. 5.3 the correlation length as function of J for different values of U . We
find that the correlation length is enhanced by increasing the value of J . End points at the
top of each line (related to individual U in the inset) are the places in which by even a tiny
increase of J a MIT happens for the slab.

In Fig. 5.4 the QP weight profile of the WB is plotted for different values of U with
J = 0.1U,∆ = 0.4 and β = 0. By considering these parameters the NB suffers from a
Mott MIT at U ' 12.2. When approaching UNB

c one can observe, in the inset of Fig. 5.4,
the depletion of the QP weight of the NB near the surface. The proximity to UNB

c not only
causes a QP weight reduction but also leads to an enhancement of the correlation length
for NB. By approaching UNB

c one may recognize that the correlation length of WB is also
increased (QP of WB recovers its bulk value in larger distances from the surface) due to
enhanced correlations induced from the NB. To quantify the correlation effects as usual
we fit the resulting correlation lengths to a power law as ξNB = A(U − UNB

c )−ν , with
the resulting value of the exponent being a mean-field-like ν ' 0.5. The fittings were
performed for different values of band differences ∆. We found that both the exponent
and the pre-factor in the fitting are insensitive to the parameters of the system, within the
accuracy of our numerical results. Similar mean field behavior was seen before for the
single band Hubbard model [118], which also undergoes a continuous phase transition at
the critical interaction strength.
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Figure 5.6: The charge distribution of NB as function of doping with U = 12.3, J = 0.1U ,
∆ = 0.4 and β = 0.0. Inset: Charge distribution for WB with the same parameters of NB.

Next we study the effect of the hybridization on the QP profile. In Fig. 5.5 we depict
the ratio of correlation length of both NB and WB with respect to the values obtained for
zero hybridization. As discussed before, the effect of the hybridization is to remove the
MIT for NB by transferring kinetic energy from the WB. This then leads to a reduction of
the correlation length for NB in comparison with the zero hybridization case. On the other
hand the WB shows only a small enhancement of the correlation length in comparison
with the change of the NB correlation length, which is due to the loss of kinetic energy
and therefore the small enhancement of correlation effects. The WB acts as an energy
reservoir for the NB.

5.3.2 Doped correlated slab

Another interesting aspect is the effect of doping on the QP weight and the charge transfer
between the bands and between surface and bulk. For the separated band case due to
absence of hybridization, we find that it is more numerically efficient to fix the charge
density for each band individually and to consider separate equations for satisfying the
charge conservation for each band. In this case if we consider the Lagrange multipliers
ΛWB and ΛNB for fixing the total densities NNB,total and NWB,total for each band, then the
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Figure 5.7: The charge distribution of NB as function of doping with U = 12.0, J = 0.1U ,
∆ = 0.4 and β = 0.001. Inset: Charge distribution for WB with the same parameters of
NB.

chemical potential can be calculated as

Λ = 1/(1 + a)ΛNB + a/(1 + a)ΛWB, (5.23)

where a = NNB,total/NWB,total. For the separated bands Ntotal could be written as
Ntotal = NNB,total +NWB,total that NNB,tot and NWB,tot are known beforehand, in the rest
of paper equally doped bands means NNB,total = NWB,total, where Ns,total = Ns,σ + Ns,σ̄

with s = WB,NB.
Here we define δ = 1−Ntotal/NHalffilled. For mixed bands the average occupation

of each band is not known apriori and these can be calculated only after solving equations
Eq. (5.16)-(5.21).

For equally doped bands, Fig. 5.6 shows that there is a charge transfer from the center
of the slab to the surface for the NB, while for the WB the opposite happens. This im-
plies that when the two bands are equally doped, for the NB both the reduced coordination
number and charge transfer from the center to the surface lead to an enhancement of the
correlation effects at the surface. For the WB correlation effects are only enhanced due to
the reduced coordination number while the charge transfer from the surface to the center
decreases the correlation effects at the surface. As usual, by measuring the correlation
length of the NB one can find a power law relation for correlation length as function of
NB doping as ξNB = δ−νNB, which extrapolates to infinity in the vicinity of δNB = 0 as long
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as
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as U > UNB,Halffilled
c . By fixing the charge density of each band, a potential difference

between two bands, ΛWB − ΛNB, is induced. This in turn shows the tendency of the sys-
tem to have charge transfer from the WB (less correlated band) to the NB (more correlated
band) in the absence of this potential difference (not shown here).

To better understand this, we consider a small value of off-site hybridization between
the bands, β = 0.001. The resulting charge density profile is presented in Fig 5.7 where
the NB is near half filling due to general charge transfer from the WB to the NB [128,131].
The spatial distribution of the charge density of the NB shows a similar behavior to the
no-hybridization case, i.e. there is charge transfer from the center to the surface for NB.
Contrary to equaly doped case, for the WB there is charge transfer from the center to the
surface when β = 0.001.

In order to scan the evolution of the charge transfer between the bands and its influ-
ence on correlation effects we now impose a potential difference between the two bands in
order to mimic possible crystal field splitting or local polarization effects of the bands.
The evolution of the charge density distribution as function of crystal field potential,
vσcr = vWB,iσ − vNB,iσ, is depicted in Fig. 5.8 for both the WB and NB. It shows a
clear dependence of the charge transfer between surface and bulk for both WB and NB
on the relative average charge density accumulated in the different bands. This could be
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better understood from the inset of Fig. 5.8, where the relative doping of the two bands

α =
1− 〈nNB〉
1− 〈nWB〉

is shown as function of vcr. Here we define 〈ns〉 = (1/NLayers)
∑
iσ

〈nisσ〉

for s = NB,WB. When α → 1 the system approaches to the equally doped bands case
where the system is in a less correlated regime, alternatively when α → 0 the NB is near
half filling and system is switches to a more correlated regime.

To see this, we finally depict in Fig. 5.9 the effect of vcr on the QP profiles of the WB
and NB near the surface. This also shows that when α ' 1 (vcr ' −0.55) the system
is in a less correlated regime since the QP of NB is larger and the QP profile of the NB
recovers its bulk value in a smaller distance from the surface, i.e. the correlation length is
short. The QP of the WB shows clear Friedel-like oscillations. On the other hand, when
α ' 0.0 (vcr ' 0.2), both the NB and WB have larger correlation length and the Friedel
oscillations seen in the WB are more suppressed, therefore signaling the enhancement of
correlation effects.

5.4 Conclusions
In conclusion we studied the influence of correlation effects on the charge and QP weight
profile of a two band Hubbard model with density-density interactions. We found that as
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long as the values of the Hund’s coupling J is finite, due to the existence of a first order
MIT, no diverging correlation length, even very near the transition point is seen. As a
consequence, due to the short correlation length, the surface QP weight recovers very fast
its bulk value even very near transition point. Only when the value of J is very small, a
long correlation length could be seen near the critical point while it is still finite. When
the band widths are not equal, for sufficiently large band width difference, the NB suffers
from a continuous MIT at a smaller critical interaction UNB

c , well before the first order
transition. Due to the continuous nature of this band selective transition, the NB shows a
diverging correlation length at the transition point which follows an expected mean-field-
like power law behavior as function of the interaction strength with an exponent insensitive
to the band width difference. This in turn leads to the formation of an extended surface
dead zone layer for the NB. For the doped system we reveal two different mechanisms of

charge transfer to the surface for the WB. When α =
1− 〈nNB〉
1− 〈nWB〉

� 1 interaction effects

near the surface are enhanced due to reduced coordination number and charge transfer
from the center to the surface for both bands. In this case the NB is near half-filling and
the system is in a more correlated regime. However in the limit α ' 1, there is charge
transfer from the center to the surface for NB, while for the WB charges are repelled from
the surface to the center of the slab. Such effects could be of importance not only near at
surfaces but also at interfaces with other insulating materials.
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Chapter 6
Non-linear response to electric field in
extended Hubbard models

The electric-field response of a one-dimensional ring of interacting fermions, where the
interactions are described by the extended Hubbard model, is investigated. By using an
accurate real-time propagation scheme based on the Chebyshev expansion of the evolution
operator, we uncover various non-linear regimes for a range of interaction parameters that
allows modeling of metallic and insulating (either charge density wave or spin density
wave insulators) rings. The metallic regime appears at the phase boundary between the
two insulating phases and provides the opportunity to describe either weakly or strongly
correlated metals. We find that the fidelity susceptibility of the ground state as a function of
magnetic flux piercing the ring provides a very good measure of the short-time response.
Even completely different interacting regimes behave in a similar manner at short time-
scales as long as the fidelity susceptibility is the same. Depending on the strength of
the electric field we find various types of responses: persistent currents in the insulating
regime, dissipative regime or damped Bloch-like oscillations with varying frequencies or
even irregular in nature. Furthermore, we also consider the dimerization of the ring and
describe the response of a correlated band insulator. In this case the distribution of the
energy levels is more clustered and the Bloch-like oscillations become even more irregular.

The results of this chapter submited to Phys. Rev. B.
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6.1 Introduction

The investigation of real time dynamics of a closed system consisting of interacting parti-
cles is important not only for the evaluation of experimentally relevant quantities, but also
supplies reliable information about the general properties of the Hamiltonian as long as
one measures an appropriate set of observables throughout the propagation process [140].
This is of interest especially when the dimension of the Hilbert space is very large and
accessing the whole energy spectrum is not possible. There exist several approaches to
face the problem of real time propagation of closed interacting systems. Among them are
the numerically exact polynomial expansions [141] or the approximate Lanczos propaga-
tion method [142], the state of art time dependent density matrix renormalization group
(tDMRG) [143] and non-equilibrium dynamical mean field theory (nDMFT) [144, 145].
The common thread for all these methods is that it is not necessary to access the whole
spectrum in order to evaluate time dependent expectation values, hence this makes it fea-
sible to investigate a large class of interacting systems.

There exist several theoretical investigations on the real time dynamics of the Hubbard
Hamiltonian as a standard model for interacting lattice fermions, part of which focused on
real time quench dynamics [146–150], real time studies based on the relaxation dynam-
ics of specifically prepared exited states [151] as well as the effect of an external electric
field [144, 152–158]. The electric break down of a one-dimensional Mott insulator has
been theoretically investigated [159, 160] and the analysis was based on a LZ [98, 99]
mechanism, which showed an exponential decay of the probability of the initial ground-
state as function of time in short time scales. The decay rate is a function of an exponential
function with an exponent proportional to square of the charge gap of the system [160],
however this is not universal and the dependence of the exponent on the charge gap could
deviate from quadratic type for specific cases [161]. We found there are situations in which
the breakdown is not simultaneous with the overlap of ground-state with only the first ex-
cited state but also with higher energy states (see Fig. 6.3)(b) ). This happens especially for
insulating systems with larger charge gaps. This therefore makes inappropriate the use of
a simple two level approximation and the LZ parameter as a basis for comparing different
insulating systems. In order to alleviate these discrepancies of the two level approximation
we employ the recently proposed fidelity susceptibility [102] as a measure for the change
of basis-set as function of external field. This quantity is unbiased and can be calculated
numerically exact. Throughout this work we use it as a basis for comparing the response
of different insulating systems to a constant electric field for short time scales.

Beyond the short time-scale ground-state decay, a question that grasped the attention
is how much does the electric field response at longer time scales depends on ground-state
properties and/or interaction parameters. A notable phenomenon that definitely depends
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on longer time scales and is beyond the ground state decay mechanism based on the LZ
tunneling is the appearance of Bloch oscillations (BO). The existence of Bloch oscilla-
tions has already been proven experimentally in semiconductor super-lattices [162–165].
Furthermore, the damping of Bloch oscillations in a closed interacting system subjected
to an uniform electric field has been described theoretically within the Falikov-Kimbal
model [144], the one-dimensional Hubbard spin-less model [166], where it is shown an
integrable system shows current oscillations with frequencies smaller than the normal BO
when subjected to uniform weak field, and in the one dimensional Holstein model [167],
where authors report the presence of an stationary state which carries a finite current.
Furthermore BO in electric break down of a 3-dimensional Hubbard model [155] is in-
vestigated. By using an extended Hubbard model one has the opportunity to design the
interaction parameters in order to have better understanding about the mechanism of the
break down in short time scales and formations of BO in larger time scales. It is the aim
of this chapter to investigate the differences between the non-linear response of different
kinds of closed systems of interacting fermions both in the insulating and the metallic
regimes. We achieve this by employing a real time propagation scheme together with the
ground-state and spectral analysis. Based on our analysis it appear to be impossible for a
closed system to have an stationary state which carries finite stationary current.

Notice here that from the experimental point of view, the special case of electric break-
down of 1D Mott insulators has been realized experimentally either with a strong electric
field [168,169] or through photo-induced metal insulator transitions in pump probe exper-
iments [170, 171]. Further interest was recently triggered by the realization of fermionic
optical lattice experiments, where the electric field effect on systems with designed inter-
actions could be realized [55, 56, 172, 173].

This chapter is organized as follows: in sectrion 6.2 we present our model under study
together with a brief description of the theoretical and numerical schemes. In section 6.3.1
we present our analysis of the response to constant electric field for a system of weakly
interacting fermions, while in section 6.3.2 we perform the same study but for strongly
interacting fermions. Finally, in section 6.4 we give our conclusions.

6.2 Model and Method

Our model under investigation is a one-dimensional closed system of interacting charged
fermions with periodic boundary conditions. It can be described in the second-quantization
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formalism by an extended Hubbard model as follows:

Ĥ = −
∑
〈ij〉σ

[hij(t)ĉ
†
iσ ĉjσ + h.c.] +

∑
〈ij〉

1

2
Vijn̂in̂j

+
∑
i

Un̂iσn̂iσ̄, (6.1)

where 〈..〉 represents the summation over the nearest neighbor sites. ĉ†iσ and ĉjσ are the
creation and annihilation fermion operators. The fermion density is defined as usual as
n̂i = n̂i↑ + n̂i↓ with n̂iσ = ĉ†iσ ĉiσ. The first term in Eq. (6.1) represents the kinetic
energy, where the hopping amplitude is taken to be time-dependent and by using the Peierls
substitution becomes hij(t) = hij(0)e

ie
~ φ(t) with hi,i+1(0) = [h0 + (−1)iη]. φ = φtot/L

is the total magnetic flux piercing the ring divided by the number of sites and η models
a dimerization term. Hereafter we consider ~ = e = a = 1, where a is lattice constant.
Interactions are either local between fermions with opposite spins, described by U , or non-
local between fermions sitting on neighboring sites, described by Vij . All of the coupling
constants which are reported in the following are scaled with h0 = 1. Throughout this
work we consider an electric field, which is given by the time derivative of the flux, F̃ =
−φ̇(t)/a, in units of h0/(ea). In the following the time values are presented in units of
~/h0, and all of the cases we consider are at half filling with N↑ = N↓ = L/2.

Starting from parameters at t = 0 we find the ground state of the resulting Hamiltonian
and propagate it while considering the change of the coupling parameters as function of
time. To find the solution of the time-dependent Schrödinger equation,

H(φ(t))|ψ(t)〉 = i ˙|ψ(t)〉, (6.2)

one may write it as a superposition of the instantaneous eigenstates of the time-dependent
Hamiltonian as,

|ψ(t)〉 =
∑
n

cn(t)|nφ(t)〉, (6.3)

where |nφ(t)〉 are the instantaneous eigenstates of H(φ(t)) , with,

H(φ(t))|nφ(t)〉 = En(t)|nφ(t)〉. (6.4)

By substituting |ψ(t)〉 as expressed by Eq. (6.3) into the Schrödinger equation and by using
the change of variables as c̃n(t) = cn(t)eiθn(t), with,

θn(t) =

∫ t

0

En(τ)dτ − i
∫ t

0

〈nφ(τ)|ṅφ(τ)〉dτ, (6.5)
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one obtains the following set of coupled differential equations for the coefficients c̃n(t),

˙̃cn(t) = −
∑
m 6=n

eiθnm(t)c̃m(t)〈nφ(t)|ṁφ(t)〉, (6.6)

where θnm(t) = θn(t) − θm(t), this change of variables is in fact a gauge transforma-
tion because θnm(t) is purely real [100]. The change of basis set as function of time
manifests itself in the 〈nφ(t)|ṁφ(t)〉 term in the right-hand side of Eq. (6.6). By starting
from an eigenstate of the Hamiltonian at t = 0 with |cn(0)| = 1, as long as the terms
〈nφ(t)|ṁφ(t)〉 ' 0 during the evolution, then one arrives at the adiabatic regime where
|ψ(t)〉 only follows the eigenstate of the instantaneous Hamiltonian and the coefficients
|cn(t)| = 1 only consist of a phase that is a combination of a geometrical Berry and a
dynamical phase. For the non adiabatic regime, Eq. (6.6) not only ensures the change
in the magnitude of cn(t) but each coefficient further accumulates a complicated phase
consisting of dynamical and Berry phases produced by the other states. If we consider
the ground-state as the starting state for the time evolution, the quantity that measures the
change of basis set as function of the external parameter φ is the ground-state fidelity [101]
which is defined as

Ξ(φ) = |〈ψ0(φ)|ψ0(φ+ δφ)〉|. (6.7)

By using perturbative arguments it is possible to see that there is a close relationship
between the ground-state fidelity and the coefficients that appear in Eq. (6.6),

〈nφ(t)| ˙mφ(t)〉 = φ̇
〈nφ(t)|∂φH(φ(t))|mφ(t)〉

(En − Em)
. (6.8)

Therefore the change in the ground-state wave-function under an infinitesimal change
of flux can be written as:

|ψ0(φ+ δφ)〉 = Λ

[
|ψ0(φ)〉+ δφ

∑
n6=0

〈nφ|∂φH(φ)|ψ0(φ)〉
E0 − En

|nφ〉

]
, (6.9)

where Λ is a normalization factor. After normalization and considering δφ << 1 one
obtains that

|〈ψ0(φ)|ψ0(φ+ δφ)〉|2 = 1− (δφ)2χΞ(φ), (6.10)

where χΞ(φ) is the fidelity susceptibility which is defined as [102, 103],

χΞ(φ) =
1− Ξ2(φ)

(δφ)2 =
∑
n6=0

|〈ψ0(φ)|∂φH(φ)|nφ)〉|2

(E0 − En)2
. (6.11)
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The leading term in the fidelity expansion is of the order of δφ2. When comparing
the terms in the right-hand side of Eq. (6.11) with terms that appear in the right-hand side
of Eq. (6.6) one may infer that a larger χΞ(φ) leads to a more non-adiabatic character of
the transition due to the driving of the system by an external electric field. We will use
the ground-state fidelity susceptibility in the following sections as a basis for the com-
parison of the short term response of different kinds of interacting fermions modeled by
Eq. (6.1). We do this in particular when the system is subjected to a constant and uniform
electric field. Although the instantaneous eigenstate representation of the time-dependent
Schrödinger equation is very insightful, the solution of Eqs. (6.6) is either very difficult
or outright impossible for systems where the Hilbert space is very large and having the
eigenstates at each moment is very computationally expensive. For the case of interacting
fermions with spin the dimension of the Hilbert space for a small system which consists
only 10 sites at half filling is ∼ 63000, which makes solving Eqs. (6.6) almost impossible.
An alternate way to deal with the time-dependent Schrödinger equation is to exploit the
form of the unitary time evolution operator:

Û(t) = T e−i
∫ tf
0 Ĥ(τ)dτ '

N∏
k

e−iĤ(tk)δt, (6.12)

where δt = tf/N . Therefore, the problem is reduced to a stepwise change of the Hamil-
tonian and relaxation of the system with a time step equal to δt. Over each time-step the
Hamiltonian is considered to be time-independent and the relaxation of the wave function
can be easily performed, by using the Chebyshev propagation method [174], which con-
siders an expansion of the evolution operator. The wave-function at ti + δt can now be
written as:

|ψ(tk + δt)〉 = e−ibδt[J0(aδt)I

+
∞∑
s=1

2(−i)sJs(aδt)Ts(H̃)]|ψ(tk)〉, (6.13)

where H̃ = (Ĥ − bI)/a with b = (Emax + Emin)/2 and a = (Emax − Emin)/(2− ε). Js
are s-th order Bessel functions of the first kind and Ts(x) are the Chebyshev polynomials
which obey the recursion relation, Ts(x) = 2xTs−1(x)− Ts−2(x). ε is introduced in order
to make sure that the absolute value of the extreme eigenvalues of H̃ is less than 1. This
is crucial for the Chebyshev method because the arguments of Chebyshev polynomials
accept only values in the interval [−1, 1]. We truncate the series in Eq. (6.13) such that the
propagated wave function becomes normalized up to machine accuracy in order to reduce
error accumulation during the stepwise propagations. Moreover this also ensures that the
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propagation operator is unitary up to machine accuracy. Having the wave function at each
time-step, then the coefficients from Eq. (6.1), cn(t) = 〈nφ(t)|ψ(t)〉, could be calculated
for analysis purposes only whenever it is necessarily or possible to do so. In order to
have some insight about the nature of the wave-function, |ψ(t)〉, we further calculate the
structure factors that are defined as,

CX(q) =
2

L2

L∑
i=1

L/2∑
j=1

eiqri,i+jX̄i,i+j, (6.14)

where X̄s,k = 〈X̂sX̂k〉 − 〈X̂s〉〈X̂k〉, s and k are the site indices (summation over L/2 for
j is introduce because X̄s,k is symmetric around X̄s,s+L/2 due to the periodic boundary
condition we considered)and rs,k is the distance between site s and site k. We report spin
density wave (SDW) order parameter OSDW = CŜ(π) with Ŝs = 1/2(n̂sσ − n̂sσ̄) and
charge density wave (CDW) asOCDW = Cn̂(π), where n̂s = n̂sσ+ n̂sσ̄ is the local density
operator. We also report the value of the current as function of time, which is defined as

the expectation value of the current operator, Ĵ =
i

L

∑
〈sk〉σ

[hsk(t)ĉ
†
sσ ĉkσ − h.c.].

6.3 Results
In the following we set h(0) = h0 = 1 and all the coupling constants are scaled with
h0. Moreover we define the uniform electric field, F̃ , as φ(t) = −F̃ t. For the sake of
simplicity we define F = F̃ /2π. We consider the time steps to be δt = 0.005. We have
tested all the results against a finer time grid in order to ensure that there is no quantitative
difference over the parameter range considered here.

We start by showing in Fig. 6.1 the fidelity susceptibility, χΞ(φ), at φ = 0.1π for a
system consisting of 10 sites at half-filling for different values of U and as a function of
V , we use δφ = 10−3 for the calculations presented in Fig. 6.1. As is clear from the inset
of Fig. 6.1, χΞ(φ) acquires the largest value at φanti = 0.1π, which is an anti-crossing
point between the ground-state and an excited state. Notice that here we calculate χΞ(φ)
numerically exact with the use of the Lanczos method and do not use the perturbative form
introduced in Eq. (6.11).

Notice that the susceptibility is largest, almost diverging, at specific values of V for
each U , whenever the relation U ' 2V is satisfied. This relation represents the boundary
which separates the SDW and CDW phases [175], and was obtained within the DMRG
approach for 1D chains of larger dimensions. However, it is obvious that χΞ(φanti) can
provide a good estimate on the location of the SDW-CDW phase boundary, although it
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Figure 6.1: Fidelity susceptibility for a ring withLsites = 10 andN↑ = N↓ = 5 at φ = 0.1π
as function of interactions. The inset shows the fidelity susceptibility as function of φ/2π
for different sets of parameters. The points represent specifically chosen pairs of parame-
ters U, V in order to model a weakly interacting metal (circle), a SDW insulator (triangle),
a CDW insulator (upside down triangle) and a strongly interacting metal (diamond).

does not provide any information about the details of the wave-function (whether it de-
scribes SDW or CDW).

In order to compare the non-linear response of different kinds of interacting systems
we analyze different sets of interaction and hopping parameters. In particular we study
three different cases: first we consider a system with U = 1.5 and V = 0.82, marked
with a circle in Fig. 6.1, which shows an almost diverging χΞ(φanti) and has a vanishingly
small charge gap, ∆charge(φanti) ' 10−3, and therefore could be considered as a weakly
interacting metal. Secondly, we use a dimerization parameter η = 0.4, which opens up a
gap (∆charge(φanti) = 1.74) and the system behaves as a correlated band insulator (BI).
Finally, we choose a stronger interacting system with U = 4.0 and three different values of
V =0.94, 2.56 and 2.16. Two values, V = 0.94 (a SDW insulator, marked with a triangle
in Fig. 6.1, ∆charge(φanti) = 1.44) and V = 2.56 (a CDW insulator, marked with an up-
side down triangle in Fig. 6.1, ∆charge(φanti) = 1.36) are chosen such that χΞ(φanti) is the
same. We also consider V = 2.16 on the phase boundary between SDW and CDW with
an almost diverging χΞ(φanti) (marked with a diamond in Fig. 6.1). The latter case also
has a vanishingly small charge gap but it should be considered as a strongly interacting
metal.
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Figure 6.2: Current as function of time for a ring with U = 1.5, V = 0.82, Lsites = 10,
N↑ = N↓ = 5 and for different electric field strengths. Inset: the frequency of the BO for
different electric fields and the same parameters of the main graph with ωb = F .

6.3.1 Weakly interacting system

In Fig. 6.2 we show the current as function of time for a system withU = 1.5 and V = 0.82
for different electric field strengths. For illustrative purposes we start the analysis of the
graph from the largest field, F = 0.4, where it shows a regular damped BO in the time
domain of interest. As we stated previously, χΞ(φanti) is largest at the anti-crossings, thus
the probability transfer from the ground-state to excited states (also in analogy with LZ
theory) is enhanced. Therefore at each anti-crossing there is a high probability of transfer
from a right going wave (−∂En(φ)/∂φ > 0) to another right going wave. When the field
is strong enough this transfer is very efficient such that the wave-function has a significant
overlap with only one of the eigenstates of the instantaneous Hamiltonian. Finally when
the maximum energy is reached, the wave-function will start having significant overlap
with left-going states and the current will change sign. This reflection for the high field
case happens exactly at t = (2F )−1.

To better understand the above description of the large field response, we plot in
Fig. 6.3(a) the eigenstates of the instantaneous Hamiltonian as a function of time for a
smaller system, with L = 6 at half-filling, for F = 0.4 and the same interaction pa-
rameters. Both the size of the points and their color code represent the magnitude of
the overlap of the time-dependent wave-function with the instantaneous eigenstates of
Ĥ(t). Note that the spectrum is periodic with 2π/L, thus the first anti-crossing happens
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at tF = 0.5/L = 0.833. This smaller ring shows very similar behavior to the one pre-
sented in Fig. 6.2 when subjected to a strong field, except that the magnitude of the current
is smaller. The formation of a coherent path for the probability transfer throughout the
spectrum and the reflection at the topmost state when t = (2F )−1 can be clearly seen.
However, a dissipative loss of the probability to both left-going and right-going waves is
possible and the current becomes damped as function of time. For higher fields the proba-
bility transfer is more efficient, which means that the damping of BO is suppressed.

Weak fields. Looking back to Fig. 6.2, the weakest field response, for F = 0.025,
is comprised of two non-linear effects. First, the state with high probability is reflected
sooner, well before it arrives at the other edge of the spectrum. This could be inferred
from the fact that the current changes sign sooner than in the high field case. Second,
when the field is weak the probability transfer to excited states is smaller, which means
that at each higher energy anti-crossing there is a finite probability of remaining in the
state with lower energy, which will contribute with a negative sign to the total current.
Therefore after an initial increase in current, the wave-function will overlap with equally
right-going and left-going instantaneous states and one ends up with a quasi-stationary
regime in which the current is very small and fluctuates around zero.

We further elucidate this behavior by expressing the current as function of instanta-
neous eigenstates of Ĥ(t),

〈Ĵ〉 =
∑
n

cn(t)2〈n|Ĵ |n〉+
∑
n6=m

cn(t)cm(t)ei(γn−γm)〈m|Ĵ |n〉 (6.15)

where cn(t) = |〈nφ(t)|ψ(t)〉| describes the magnitude of the overlaps of the time-dependent
wave-function with the instantaneous eigenstates and γn = arg(〈nφ(t)|ψ(t)〉) describe the
phases acquired by the wave-function. We plot in Fig. 6.4(a), for F = 0.025 and L = 8,
cn(t) as function of the current for each eigenstate at time tF = 2.51. Observe that
the probability amplitudes as function of current are approximately symmetrically dis-
tributed between left-going and right-going states, this in turn implies that the first term
of Eq. (6.15), i.e. the diagonal expectation value of the current, becomes approximately
equal to 0. Moreover, the phases, γn, which are presented in Fig. 6.4(b) are distributed
uniformly between 0 and 2π therefore leading to the dephasing of non-diagonal terms in
Eq. (6.15), and finally the total current is approximately equal to zero.

One should notice that for the case with L = 8 the current is not completely equal
to zero, but it acquires a small but finite value that fluctuates around zero, indicating the
fact that the number of eigenstates that contribute is small due to finite size effects. These
fluctuations are suppressed for larger systems as we show in the following sections.

Intermediate fields. We next analyze the response to intermediate fields between
the full dissipative case for F = 0.025 and the full oscillating one for F = 0.4. When
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Figure 6.3: (a) Eigenvalues of the instantaneous Hamiltonian as function of time for a
system with L=6 at half filling, U=1.5,V=0.82, F=0.4. The colors and the size of the
points are given by the overlap of the time-dependent wave-function with the instantaneous
eigenstates, |〈nφ(t)|ψ(t)〉|; (b) The same as (a) but with a dimerization parameter η = 0.4
and F=4.0.

the electric field strength is increased the reflection of the high probability state gradually
approaches the largest eigenstate of the spectrum. This could be clearly recognized in
Fig. 6.2 where the time, tF , for which the current changes its sign approaches 0.5. At the
same time the BO period, which is generally less than F−1, gradually approaches F−1.
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Figure 6.4: (a) |〈nφ(t)|ψ(t)〉| for Lsites = 8 and N↑ = N↓ = 4, U = 1.5, V = 0.82
and F=0.025 at tF = 2.51, |nφ(t)〉 are the eigenstates of instantaneous Hamiltonian; (b)
γn = arg(〈nφ(t)|ψ(t)〉) for the same parameters.

This is shown in the inset of Fig. 6.2 where we plot the frequency of BO as function of
field strength. A similar behavior was also reported in metallic spin-less systems subjected
to an uniform electric field [166]. Our investigation should also be relevant to that case.

Here, we mention that similar to the electric breakdown case, where a mapping to a
quantum random walk [176] on a semi-infinite chain was proposed, here the problem of
BO damping also could be mapped to a quantum random walk but on a chain with two
edge states. However, as we will present in the following, the actual long time response
to an electric field depends strongly on the probability transfer between subsequent states
throughout the whole spectrum. It is therefore necessary to design a random walk for
which the probability transfer is also randomized but taken from specific distributions,
which could be chosen based on the level statistics of the Hamiltonian [177].

Dimerization. In Fig. 6.5, we show the current as function of time for a system with
the same interactions as in the metallic case but with a dimerization parameter η = 0.4.
We call this state a correlated band insulator (BI). The general arguments presented for the
metallic case hold here, however there are also differences, which we explain in the fol-
lowing. As expected, dimerization induces the opening of a charge gap (∆charge(φanti) =
1.74) and the electric field breakdown is postponed to larger fields. Additionally, a dissi-
pative regime appears only at F = 0.2. At this field strength the breakdown has already
happened and the instantaneous ground state has a very small contribution to |ψ(t)〉. For
larger fields, i.e. F = 0.4, first the current starts to show irregular oscillations, then at
F = 0.6 the current becomes oscillatory but with a frequency of the BO larger than F .
Finally, at even larger fields, F = 4.0, the current is oscillatory with ω = F . This is



6.3 Results 121

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5

J

time × F

F=0.2

F=0.4

F=0.6

F=4.0

1.00

1.10

1.20

 1  2  3  4

ω
/ω

b

F

Figure 6.5: Current as function of time for a dimerized ring with Lsites = 10 and
N↑ = N↓ = 5, U = 1.5, V = 0.82, η = 0.4 (see the definition of the hopping parameter
following Eq. 6.1) and for different electric field strengths. The inset shows the frequency
of the Bloch oscillations for different electric fields and the same parameters of the main
graph with ωb = F .

achieved for much larger fields than the ones presented for the weakly interacting metal,
as shown in the inset of Fig. 6.5. The first notable difference between the metal and the
correlated BI is that here BOs with smaller frequencies survive for longer times. This is
different from the metallic case where BOs with smaller frequencies are strongly damped.
Furthermore, one may expect that the dimerization may only postpone the breakdown and
the transition to the oscillatory behavior should not be affected as long as the dimeriza-
tion only affects the low energy part of the spectrum by opening up a ground-state charge
gap. However, the presence of long lasting BO with the period less than F−1 implies the
presence of states with small χΞ in the middle of the spectrum and which reflects a high
probability state back.

Roughly speaking, these states could be at the edge of a cluster of eigenstates, and
are separated by a large gap from the next subsequent state and therefore play the rule of
an edge state. However, we emphasize that not only the gap but also the actual value of
χΞ of each eigenstate are important factor that affect the non-adiabatic behavior of the
system. In order to visualize again the overlap of the time-dependent wave-function with
the whole spectrum, we turn back to Fig. 6.3(b), where the overlap with the instantaneous
eigenstates of Ĥ(t) is plotted as function of time for a smaller dimerized system with
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L = 6, η = 0.4 and F = 4.0. Again the smaller ring behaves the same as a larger system
with L = 10 when subjected to strong fields. As is clear from the plot the recurrences of
the ground-state and the state with largest energy occur periodically at F−1. A noticeable
feature of the propagation in the dimerized systems is the fact that the overlap of |ψ(t)〉
with the instantaneous eigenstates is very nonlocal in the energy domain, meaning that
the path of high probability transition is broadened in comparison to the metallic system.
Noticeably, the wave-function starts to have finite overlap around the first anti-crossing
not only to the first excited state but also with the second excited state. Therefore, a two
level approximation (LZ-like) is not appropriate for the ground-state breakdown.

The dimerization leads to a stronger insulator not only in the sense that it postpones
the electric field breakdown, but it also largely affects the overlap with states located in the
middle of the spectrum. In short, while the breakdown and the appearance of the dissipa-
tive behavior mostly depends on the low energy part of the spectrum, the transition from
the dissipative to the oscillatory behavior largely depends on the clustering of eigenstates
in the middle of the spectrum.

6.3.2 Strongly interacting system

For the cases with strong interactions, as stated before, we choose U = 4.0 and three
different nearest neighbor interactions, V = 0.94 (SDW insulator), V = 2.56 (CDW in-
sulator) and V = 2.16 (metallic case). For the insulating cases we choose the interaction
parameters such that both cases acquire the same ground state χΞ(φanti) as seen in Fig. 6.2.

We plot, in Fig. 6.6(a), the current as function of time for a very small electric field,
i.e. F = 0.002, for a ring of size L = 10. Both insulating systems appear to be in the adia-
batic regime, where the current shows an oscillatory behavior with a period equal to F/L.
However, the metallic case shows oscillations with a doubled period, 2F/L. The main
reason for this comes from the fact that for the metallic case the probability is transfered
completely to the first excited state due to very large χΞ(φanti), i.e. it cannot be considered
in the adiabatic regime even at these small fields. This is illustrated in Fig. 6.6(b), where
the energies of the first three states of the Ĥ(t) are shown as function of time (and implic-
itly as a function of flux), together with the overlap of |ψ(t)〉 to these three states. As is
obvious, because of the very large χΞ , there is a very large overlap to the first excited state
after the first anti-crossing, however the field is very small such that it cannot overcome the
gap between the first excited and second excited state. |ψ(t)〉 only has an extremely small
overlap with second excited state, which leads to the fact that the probability is reflected
back to the ground state and one ends up with current oscillations with a period twice of
the adiabatic expectation. The breakdown field is now achieved when the gap between the
first and second excited states is overcome.
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Figure 6.6: (a) Current as function of time for very small field F = 0.002 for different
interactions; (b) The energy dispersion of the first three exited states of instantaneous
Hamiltonian together with the overlap of these states with |ψ(t)〉 the as function of time for
U=4.0,V=2.16. The inset of panel (b) shows a zoom-in into the into anti-crossing region.
Colors represent the overlap of the time-dependent wave-function with the instantaneous
eigenstates.

We next describe the response of strongly interacting systems to larger fields. In
Fig. 6.7 we present the current as function of time for different field strengths and for the
three interaction choices introduced previously. For F = 0.1 all the cases shows a dissipa-
tive behavior, however the insulating ones show small peaks in the current before it arrives
at the quasi-stationary zero-current state. The period of these peaks is approximately equal
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Figure 6.7: Current as function of time for different interactions and different field
strength. The inset shows the square of the overlap of |ψ(t)〉with the instantaneous ground
state of H(t) for different interactions and F = 2.0.

to F/L, which therefore implies that the overlap of |ψ(t)〉 with the instantaneous ground
state does not vanish quickly and manifest itself as small peaks in the current. This is not
the case for V = 2.16 where the overlap with the ground state is lost immediately at the
anti-crossing (see the inset of Fig. 6.7 for F = 0.2) and the current behaves smoothly from
the beginning of the evolution. For stronger fields, F = 0.2, the change of the current
is large, such that the current fluctuations due to the finite overlap with the ground-state
disappear.

In the inset of Fig. 6.7 we show the square of the overlap of |ψ(t)〉 with the ground-
state of the instantaneous Hamiltonian. It is clear that for the two insulating cases for which
we set χΞ(φanti) to be equal, the decay of the ground-state is identical. Furthermore, in
the dissipative cases for F = 0.1 and F = 0.2 both insulating cases behave almost in the
same way even for larger times even though the interaction strengths are very different
and one describes an SDW insulator while the other one an CDW insulator with different
excitation. This means that by setting χΞ(φanti) the same, not only the ground-state decay
is identical but also the tunneling to the lower part of the spectrum behaves very similarly.
When the field is increased to F = 0.8, the SDW insulator with V = 0.94 starts to show
Bloch-like oscillations with large amplitude. On the other hand the metallic and CDW
cases are still in the dissipative regime with a vanishingly small long-time current. For
even larger fields, F ' 1.6 (not shown here), all three cases show oscillations with large
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Figure 6.8: Current as function of time for different interactions and different field
strengths and different sizes.

amplitude but which are irregular. It is only when the strength of the electric field is very
large, F = 10.0, that all the cases show regular BO as shown in Fig. 6.7.

Finite size effect. To see the effect of the size of the system on the transition from
a dissipative to an oscillatory pattern, we plot in Fig. 6.8 the current as function of time
for different sizes for V = 0.94 (SDW insulator) and V = 2.56 (CDW insulator). We
observe that for all cases the fluctuations of the current in the dissipative regime (F = 0.2)
are suppressed for larger sizes. This is due to the fact that |ψ(t)〉 acquires overlap with a
much larger number of states when the size is increased. This implies that a more efficient
dephasing of the current is achieved (see the discussion following Eq. 6.15). However, in
the strong-field regime, once the transition to oscillatory behavior occurs, the size effect is
negligible, showing that the sizes of the gaps in the middle of the spectrum do not depend
strongly on the size, at least not for the strong interactions considered here.

Order parameters. In Fig. 6.9, we show the SDW and CDW order parameters as func-
tion of time for the two insulating cases. As is clear from Fig. 6.9(b) for the SDW ordered
system, OSDW only drops gradually as function of time, however at the same time OCDW

is enhanced at the beginning of the evolution ( see Fig. 6.9(a) ). This further implies the
presence of a CDW state near the bottom of the spectrum [178]. Finally at longer times
both order parameters dissipates during the evolution arriving at a quasi-stationary state
with almost vanishing value for larger times. The CDW ordered system shows a similar
behavior but with reversed OCDW and OSDW contributions ( see Fig. 6.9(a) and (b) ).
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Figure 6.9: (a) CDW order parameter as function of time for a system with L=12 at half
filling derived with F = 0.2; (b) SDW order parameter as function of time and the same
parameters as in plot(a).

Therefore , the transient regime shows that since the two order parameters are in competi-
tion, the mechanism of destroying the dominant order is the proliferation of the competing
one.

6.4 Conclusions

In conclusion we investigated the nonlinear response of a closed interacting fermionic sys-
tem as modeled by an extended Hubbard model. Weakly interacting metallic system at the
boundary of SDW-CDW, shows a dissipative behavior for low fields. The main reason for
this is the fact that |ψ(t)〉 acquires overlap with large number of left going and right going
states. This in turn implies that the quasi-stationary state acquires zero current. Bloch
oscillations start smoothly with a frequency larger than F . The main reason for this is
the fact that the reflection happens at the lower part of the spectrum, thus effectively de-
creasing the bandwidth. Upon increasing the field strength the probability transfer at each
anti-crossing is more efficient. This leads to a more regular recurrences of the ground state
and the topmost excited state with period of F−1, which can be seen from the oscillations
in the current.

Upon dimerization of the metallic system, the formation of the dissipative regime is
postponed to larger fields due to the formation of a charge gap. However, the main differ-
ence between the dimer case and the metallic system resides in the fact that, first, it shows
irregular current oscillations before they turn into regular BO and second, the BO with
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larger frequencies survive for large times, in analogy with the metallic case subjected to
strong field. This implies the existence of states at the middle of the spectrum with low
χΞ(φ) (or roughly speaking the formation of large mid gaps in the relevant excitations)
that play the role of a band-edge state and reflect back the overlap probability at the mid-
dle part of the spectrum even for large electric fields. Finally, the dimerized system also
shows regular BO with period equal to F−1 for large enough electric fields. The value for
which the dimerized system shows regular BO are much larger than those found for the
metallic system even though the interactions are identical.

For stronger interacting systems when the interactions are chosen such that the ground-
state χΞ(φanti) is the same for both cases, then the ground state decay for both CDW in-
sulator and SDW insulator behaves exactly the same. This similarity of the ground-state
decay manifests itself even for larger times and for both low and high field dissipative
regimes. However significant differences arise between the two cases for large electric
fields. While SDW shows oscillatory behavior with large magnitude the CDW insulator
and strong interacting metallic system only shows irregularities with small oscillations.
Different from the weakly interacting metallic system and the dimer case, in the strongly
interacting regime these irregularities are extended to intermediate fields and only for very
large fields, F = 10.0, regular BO with a period of F−1 are observed. This effect ap-
pears to be little affected by size, since the SDW and CDW insulators, for L=10 and L=12,
show the same qualitatively and even quantitatively behavior. This implies that the reor-
ganization of the spectrum is affected much more by the interaction than by the finite size
induced discreteness.
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Chapter 7
Structural transitions in monolayer MoS2
by lithium adsorption

Based on first-principles calculations, we study the relative structural stability of the T and
H phase of monolayer MoS2 upon Li doping. Our calculations show that the H structure
of MoS2 is stable for single-side adsorption for arbitrary concentrations of lithium atoms.
However, it is possible to energetically stabilize the T phase of MoS2 against H if Li
atoms are adsorbed on both sides of the MoS2 layer. However, the resulting T structure is
dynamically unstable against distortions towards in-plane clustering of the molybdenum
atoms. Two processes are examined that allow for two-sided adsorption of Li atoms on
MoS2 supported by a substrate. First, the penetration of Li atoms through the MoS2 layer
is investigated. Our calculations show that the amount of energy needed to pass through
a pure MoS2 layer is of the order of ∼ 2 eV, which is too large to make penetration
possible. However, when the MoS2 layer is covered with Li atoms the amount of energy
that Li atoms should gain to pass the layer is drastically reduced by at least two order of
magnitude and penetration becomes feasible. Another way to achieve two-side adsorption
which we investigate is the migration of Li atoms from the edge of the sample.

7.1 Introduction

In recent years transition metal dichalcogenides (TMDs), such as MoS2, have gained re-
newed interest due to their layered structures. The weak van der Waals interaction be-
tween these layers make it possible to exfoliate monolayers [179] from the bulk. These

The results of this chapter submited to Journal of Physical Chemistry.
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monolayers consist of an hexagonally-packed sheet of metal ions sandwiched between
two hexagonal layers of chalcogen atoms. Consequently, the monolayers come in two
varieties, called T and H, in which the metals have octahedral or trigonal prismatic co-
ordination, respectively (see Fig. 7.1). Due to their two-dimensional (2D) nature, TMDs
exhibit a broad range of properties which make them attractive for potential applications
in nanoelectronics. A notable example is the potential use of MoS2 monolayers to over-
come the scaling problem of the current semiconductor electronic FET which is attracting
an increasing amount of interest from the scientific community [40, 180–183]. Other ap-
plications for MoS2 are in lithium-ion batteries, since it was recently shown that MoS2

mono- and multilayers exhibit a large lithium storage capacity [184–187], or as ultrasen-
sitive photodetectors [188].

A large amount of theoretical work on MoS2 has arisen in the last couple of years. A
tight-binding model has been developed for monolayer and multilayered structures [189],
and numerous ab initio calculations have appeared. These studies mainly correspond to
properties of semiconducting H (see Fig. 7.1) phase of MoS2 and metallic T structure has
been less noticed. An example of the former is the theoretical investigation of the magnetic
properties of H-MoS2 in the presence of non-metallic adatoms [190], where authors stud-
ied the geometric and magnetic properties of only H phase of MoS2, when non-metallic
adatoms H, B, C, N, O, and F are adsorbed on monolayers H-MoS2, spatially extended
magnetic ordering was reported, in comparison to their work we consider geometrical as-
pects of both T and H phase under influence of metallic Li adatoms. Another example is
the incorporation of Li atoms at MoS2/graphene interfaces [191], where authors studied
adsorption properties of Li-adatoms at the interface of MoS2/graphene for H phase. They
further studied the penetration of Li adatoms from Mo site to V site ( see Fig. 7.6 ) for H
phase at the interface, in contrast, here we consider the diffusion of Li atoms through the
monolayer MoS2 in different conditions.

For pure MoS2 the semiconducting H structure was found to be more stable than the
metallic T structure, both in bulk and monolayer form [192]. However, experimental and
theoretical research on the structural stability of different MoS2 bulk allotropes shows that
the intercalation of Li atoms can stabilize the metallic 1T structure [193–195], in contrast,
here we study possible stabilization of 1T for monolayers. Stable 1T structures can also
be realized by substitutional doping of MoS2 with Re atoms [196]. The main reason for
this appears to be the charge doping caused by the Re donor atoms, differ from this work
we consider stabilization of 1T MoS2 monolayer by including Li adatoms.

In this chapter, we investigate the possibility of obtaining a H→T transition in mono-
layer MoS2 through Li adsorption using ab initio calculations. We systematically investi-
gate the effect of the concentration of Li atoms on the structural properties of monolayer
MoS2. We also examine the possibility of a two-sided adsorption process in which Li
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Figure 7.1: Top and side views of the H (a) and T (b) structures of MoS2. The Li adsorption
sites are marked with black dots.

atoms penetrate through the MoS2 layer or diffuse from the edge of the sample to arrive
at the adsorption sites of the other side. Our work is organized as follows. First we give
the computational details of our first-principles calculations. Then we examine the most
stable configurations of isolated Li atoms on MoS2 for the two different phases, H and
T. Next we investigate how the concentration of Li atoms on one side of the MoS2 layer
changes the relative stability of the H and T crystal structure. We also perform ab initio
molecular dynamics calculations to support our findings. These calculations are followed
by an examination of two-sided adsorption. Two ways to achieve this two-sided adsorp-
tion are investigated: (i) by the diffusion of Li atoms through the MoS2 layer and (ii) by
diffusion along the other side of the sample. Finally we examine the actual transition from
the H structure to the T structure and calculate the energy barrier for this process.

7.2 Computational details

Our first-principles calculations are based on DFT as implemented in the Vienna ab initio
simulation program (VASP) [197]. The exchange-correlation energy is described by the
Perdew-Burke-Ernzerhof (PBE) [72] functional and the single-particle Kohn-Sham equa-
tions are solved by using the projector-augmented wave (PAW) method [198, 199]. An
energy cutoff of 400 eV is used for the plane-wave basis and a 12×12 Monkhorst-Pack
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Figure 7.2: Li adsorption for different concentrations. (a) The energy difference between
the H and T structure for one Li atoms per n × n MoS2 supercell. (b) A 2 × 2 MoS2

supercell with one Li atom adsorbed at the Mo site.

k-point grid is used for Brillouin zone integrations. All the structures are relaxed with
residue forces of less than 0.01 eV/Å. Due to periodic boundary conditions, artificial in-
teractions between neighboring layers are present in the calculations. These are reduced
by a vacuum layer of 30 Å and dipole corrections. We also perform ab initio molecular-
dynamics simulations. The basis cutoff energy is lowered to 300 eV in that case to increase
the speed of the simulations and the supercell size is taken constant. The Verlet algorithm
is used to integrate Newton’s equations of motion and we make use of a microcanonical
(NVE) ensemble with velocities assigned according to the Maxwell-Boltzmann distribu-
tion at a temperature of 300 K.

7.3 Results

First we look for the most stable position of an isolated Li atom on top of a MoS2 mono-
layer for the two phases, H and T. For this we investigated 3 different adsorption sites (see
Fig. 7.1), namely on top of a S atom (S), on top of the Mo atom (Mo), and above the
vacancy in the H phase or the S atom at the other side of the T structure (V). Li atoms
adsorbed at other positions were found to relax into one of the 3 previous adsorption sites.
The binding energies were calculated in a 3×3 supercell and are given in Table 7.1. In this
table, we also provide the distance from the Li atom to the Mo layer, dMo, and the short-
est Li-S bond lengths, dS. The most stable adsorption site for the H phase is found to be
above the Mo atom, while for the T structure the vacancy site, V, is preferred. Additional
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calculations showed that at higher concentrations (one Li atom per 2 × 2 supercell), the
Mo adsorption site is more favorable for both the H and T structures.

Table 7.1: The adsorption energy Ea (in eV), the adsorption distance from the Mo layer,
dMo, and the Li-S bond lengths, dS, for Li adsorption in a 3×3 MoS2 supercell.

S Mo V
Ea -1.162 -1.917 -1.755

H dMo 3.800 3.000 3.065
dS 2.268 2.361 2.384
Ea -4.801 -4.350 -5.410

T dMo 3.374 3.051 3.092
dS 2.376 2.213 2.367

We can now use these most stable configurations to investigate the relative stability of
the H and T phase as a function of Li concentration. In order to model different concentra-
tions, we place single Li atoms into various MoS2 supercells, namely a 4× 4, 3× 3, 2× 2,
and 1 × 1 supercell. In this way, the Li atoms form a triangular monolayer on the MoS2

with decreasing lattice parameters (see Fig. 7.2(b)). The variation of the energy difference
between the H and T structure as a function of the supercell size is shown in Fig. 7.2(a).
It is clear that the energy difference between the two structures (divided by the number of
unit cells in each supercell) decreases with increasing concentrations. However, we do not
observe any H to T transition for adsorbed Li atoms at any concentration. To be sure that
our triangular model of Li adatoms is not too restrictive, we also performed unrestricted
molecular dynamics simulations in a large rectangular supercell (16×16.5 Å

2
) with initial

randomly placed Li atoms (see Fig. 7.3(a)). After a while, the Li atoms relax into a tri-
angular lattice, corresponding to 1 Li atom per Mo atom (see Fig. 7.3(b)). This indicates
that adsorbed Li atoms will tend to cluster into triangular monolayers of the same size as
the underlying MoS2 substrate. This structure corresponds to the highest concentration of
Li atoms that we investigated before(see Fig.7.2(a)) and was shown to be insufficient to
cause a H→T transition. Therefore, more Li atoms are needed to induce this transition.
Starting from the highest concentration of a single layer of Li atoms on MoS2 (i.e. 1 Li
atom per MoS2 unit cell), we can add more Li atoms to the system in order to enhance
the stability of the T structure. In Table 7.2, we show the formation energies of different
configurations for both phases of the MoS2 crystal with two adsorbed Li atoms per unit
cell. We find that by increasing the concentration of Li atoms at one side of the MoS2

layer, the H→T transition does not occur. However, our calculations show also that the
most stable configuration for both H and T structures are those with one Li atom at each
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Figure 7.3: Molecular dynamics simulation of Li atoms on MoS2: the initial (left) and
final (right) structure. Note that one Li atoms appears to be caught at a V adsorption site.

side of the layer. Moreover, the T structure becomes energetically more stable than the
H structure in that case. The difference in energy between the two most stable H and T
Li2MoS2 structures (No. 5 and 11 in Table 7.2) becomes EH − ET = 437 meV upon
two-sided Li adsorption. The adsorption energy and the Bader [200, 201] charges of the
Li atoms for the different configurations are presented in Table 7.2. The adsorption energy
is defined as Ea=Etot − (EMoS2 + n.ELi), where n is the number of adsorbed Li atoms.
For one-sided (OS) adsorption, the Bader charges show that the Li atoms that are closest
to the MoS2 layer are strong electron donors (≈ 0.8e/Li atom) while the other ones are
less important (except for configurations 2 and 3 which do not follow this general trend).
For two-sided (TS) adsorption, both Li atoms can donate electrons equally so that the total
charge transfer to the MoS2 layer is much larger in that case (about twice as large).

Although two-sided Li adsorption is possible for a free-standing MoS2 monolayer, it
might be difficult to achieve if the MoS2 is placed on a substrate, as is usually the case in
an experimental setup. In the latter case, the Li atoms should be able to penetrate the MoS2

layer or migrate from the edges of the sample between the substrate and the MoS2 mono-
layer. In the present analysis we limit ourselves to perfect MoS2 layers without defects.
We first look at the possibility for Li atoms to pass through the MoS2 layer. To do this we
examine whether the Li atoms can penetrate through the H structure by passing through
the center of a Mo-S hexagon (position V in Fig. 7.1). In practice, we calculate the binding
energy of a single Li atom at a fixed distance from the MoS2 layer in a 3× 3 supercell (the
distance is kept constant during relaxation by taking the out-of-plane coordinates of the Li
and the 3 closest Mo atoms fixed, while the other coordinates and the supercell size are
relaxed). This binding energy is defined in a similar way as the adsorptions energy (see
above) and vanishes for infinite separation. The binding energy of the Li atom at various
distances from H-MoS2 are presented in Fig. 7.4 (squares). As can be seen from the the
figure, the energy is reduced when the Li atom moves from infinity towards the surface
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Table 7.2: The adsorption energy Ea and the Bader charges of Li atoms for different con-
figurations of Li2MoS2. Results for both one-sided (OS) and two-sided (TS) adsorption
are shown.

No. struct. Li pos. OS/TS Ea(eV) charge (|e|)
1 H (Mo, Mo) OS -3.599 (+0.7,-0.1)
2 H (Mo, S) OS -3.701 (-0.1,+0.6)
3 H (Mo, V) OS -3.691 (+0.0,+0.5)
4 H (Mo, V) TS -3.606 (+0.8,+0.8)
5 H (Mo, Mo) TS -3.727 (+0.8,+0.8)
6 T (Mo, Mo) OS -3.409 (+0.7,-0.1)
7 T (Mo, V) OS -3.401 (+0.8,-0.2)
8 T (Mo, S) OS -3.322 (+0.8,-0.1)
9 T (V, V) OS -3.301 (+0.8,-0.2)
10 T (V, S) OS -3.244 (+0.8,-0.2)
11 T (Mo, Mo) TS -4.164 (+0.8,+0.8)
12 T (Mo, V) TS -4.000 (+0.8,+0.8)
13 T (V, V) TS -3.906 (+0.8,+0.8)

of the the MoS2 layer. A bound state is found at approximately 3 Å from the (middle of
the) MoS2 layer with an energy of 1.735 eV. Further approaching the surface and passing
through the layer is difficult due to an energy barrier of 2.509 eV. This barrier is too large
to make penetration of Li atoms possible at room temperature or even at larger accessible
temperatures. One can imagine that Li atoms that arrive at the MoS2 surface will first
adsorb at a single side with the formation of triangular clusters as describedabove. The
presence of this adsorbed layer can have a significant impact on the penetration barrier of
other Li atoms. This can be anticipated from the observed charge transfer which causes a
lateral expansion of the MoS2 crystal. Consequently, the holes (the empty space around
V positions, see Fig. 7.1(a)) in the crystal become wider and a decrease in the penetra-
tion barrier can be expected. To examine this process, we apply the same procedure as
described above to calculate the binding energy of a Li atom at fixed distances from a
H-MoS2 monolayer with Li atoms located on top of all Mo atoms. The results are also
presented in Fig. 7.4 (circles) and it can be seen that the situation has drastically changed
with respect to the pure MoS2 case. Multiple bound states are found to exist when the Li
atom approaches the system and eventually passes through. A first bound state is observed
when the approaching Li atom adsorbs on the Li layer. A second one, when the Li atom
passes through the Li layer and stabilizes between this Li layer and the upper S atoms of
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Figure 7.4: The binding energy of a Li atom when it approaches and penetrates a pure and
Li-covered MoS2 layer from infinity (right).

the MoS2 crystal.
A final stable state is reached when the Li atom passes through the MoS2 layer and

adsorbs at the other side of the crystal. The difference between this case and the pure case
is that a much smaller energy gain is needed to pass through the MoS2 layer. The energy
barrier is only ∼ 2 meV and allows the Li atoms to penetrate the slab. As stated before,
one of the reasons for this is that when the Li atoms are deposited on top of the MoS2,
an increase of the lattice constant of about ∼ 1 % is observed. This increase in the lattice
constant makes it easier for the Li atoms to pass through the MoS2 layer. An additional
cause for the decrease in barrier size is found in the flexibility of the material after Li ad-
sorption. In Fig. 7.5, we show the energy as a function of strain for pure MoS2 and MoS2

with Li atoms adsorbed on one side. The last system appears to be substantially more easy
to stretch, especially for the large distortions that are required to get the Li through the
layer. Besides diffusion through the MoS2 layer, Li atoms might also be able to migrate
from the edges of the sample and adsorb at the other side of the MoS2 monolayer. For this
to happen, the in-plane migration barriers should be small enough to allow the Li atoms to
jump from one unit cell to the other. In Fig. 7.6 the migration barrier is shown along the
line from Mo to V. The height of the barrier is 0.24 eV which is small enough for migration
to occur and it is in agreement with previous calculations [202]. Note, however, that this
calculation does not take into account the influence of the underlying substrate. This effect
is difficult to include because it depends on the actual composition and roughness of the
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Figure 7.5: Variation of the energy as a function of surface expansion with the equilibrium
unit cell surface area and ∆S is the difference of unit cell surface area from S0. Inset: the
same graph but zoomed close to zero strain.

surface of the substrate.
Now that we showed how two-sided adsorption might occur and how this stabilizes

the T structure over the H structure, we will investigate the actual structural transition for
a Li covered MoS2 layer in the following. The barrier for the transition is calculated for
both pure MoS2 and Li2MoS2 (i.e. MoS2 with 2 Li atoms per unit cell). The transition can
be regarded as a shift of one S layer in the H structure to the position V (see Fig. 7.1(a)).
Therefore, we calculate the barrier energy of the H → T by fixing the Mo atoms and
shearing one S layer from the H structure towards the T structure, while the other atoms
and the cell parameters are allowed to relax.

The results of these calculations are shown in Fig. 7.7. The transition barrier is sig-
nificantly reduced from 1.55 eV for the pure MoS2 layer to 130 meV for the Li-covered
MoS2 layer. Also note that the T structure becomes significantly more stable after Li ad-
sorption. An interesting process is observed during the transition from the H to T structure
Li2MoS2. When the S layer of one side is shifted to the V position, the Li atoms at that
side tend to follow the S layer for some time and then gradually go back to their initial
position. This observation suggests that the Li atoms mediate the transition and reduce the
barrier considerably.
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Figure 7.6: Diffusion of Li atom along the MoS2 surface. (a) The diffusion barrier to go
from adsorption site Mo to V. (b) The dashed line shows the line along which the barrier
in (a) was calculated while the dotted line shows the preferred diffusion path to go from
one unit cell to another.

Figure 7.7: Energy of intermediate configurations of the H→T structure as a function of
the reaction coordinate for pure and Li-covered MoS2.

Finally, we examine whether the resulting two sided Li adsorbed T structure is dy-
namically stable. To do this we calculate phonon dispersions based on small displacement
method as is implemented in "phon" code [203]. This analysis relies on properties of
phonon dispersions which is calculated based on force constant matrix. This force con-
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Figure 7.8: Phonon dispersion for the T Li2MoS2 along selected directions, configuration
number 11 in 7.2.

stant matrix has to be calculated for a larger super-cell than the primitive unit cell. The
size of the super-cell should be large enough such that the elements if force constant ma-
trix has fallen off at the boundary of the super-cell. For the stability analysis of the T
Li2MoS2, we therefore choose a 4 × 4 super-cell and we calculate the phonon disper-
sions. The resulting dispersion is presented in Fig .7.8. Clearly the presence of large
imaginary eigenfrequency in phonon spectrum in Fig. 7.8 is the signature of dynamical
instability of perfect T Li2MoS2, even thought it is energetically more favorable against
two side adsorbed H structure. By considering this fact, we therefore performed an unre-
stricted lattice optimization for a 2× 2 super lattice of T Li2MoS2 (configuration number
11 in 7.2). The resulting optimized structure is presented in Fig. 7.9 with lattice constants
a = 6.830Å, b = 6.716Å with the angle between them γ = 60.

As is clear from the Fig. 7.9(a) the Mo atoms form diamond like clusters which are
marked with A, B, C and D, with the bond lengths dMo(AB) = dMo(DC) = 2.958Å,
dMo(AD) = dMo(BC) = 2.993Å, dMo(BE) = 3.892Å and dMo(BF ) = 3.725Å. Another
feature of the distorted T structure is the fact that the Li atoms slightly deviate from their
high symmetry positions on the top of Mo atoms as clearly could be seen in Figs. 7.9 (a)
and (b). This deformations further leads to reduction of total energy 285 meV/Mo in com-
parison with perfect T Li2MoS2 (configuration number 11 in 7.2). In short based on our
analysis, the perfect T structure could not be stabilized at least by Li adsorptions although
it is energetically more favorable than Li adsorbed H structure.



140 Structural transitions in monolayer MoS2 by lithium adsorption

Figure 7.9: Top view (a) and side view (b) of the two sided Li adsorbed distorted T struc-
ture (distorted version of configuration number 11 in 7.2).

7.4 Conclusions
In conclusion, we studied the possibility of stabilizing the naturally unstable T structure
of MoS2 monolayers by adsorption of Li adatoms. We found that adsorption of Li atoms
on one side of the layer could not lead to a H → T transition. However, it does lead to
a general trend of stabilizing the T structure when including more Li adatoms. We found
that the T structure could be stabilized against the H structure energetically as long as two
adatoms are included on both sides of the layer. However, phonon calculations shows that
this structure is unstable against distortions towards clustering of the molybdenum atoms.
To examine a realization of this structure we studied whether it is possible for the Li atoms
to pass through the MoS2 layer and arrive at the other side. By choosing the V site (see
Fig. 7.1(a)) as the penetration path of Li atoms, we found the penetration barrier for pure
MoS2 to be 2 eV. The penetration barrier for a system that is covered with one layer of
Li atoms on one side drastically reduces the barrier to almost 0 eV. The main reason for
this observation appears to be the reduction in stiffness of MoS2 in the presence of Li
adsorbates. This reduction in stiffness is most clear at the larger distortions which are
required for the penetration of Li atoms. For very small distortions the stiffness does not
show much difference between pure and Li-covered MoS2. Finally we calculate the energy
barrier of H→T for a pure and completely covered MoS2 structure. The transition barrier
of 1.5 eV for the pure case is reduced to 130 meV for Li2MoS2, which is low enough for
the transition to occur. The Li atoms were shown to play a crucial role in the reduction of
the barrier size by mediating the transition.



Chapter 8
Summary and future prospects

8.1 Concluding remarks of the thesis

Recent limitations on the application of silicon devices force the community to replace
silicon based devices by new materials. One of the attractive class of materials are com-
pounds that they consist transition metal elements in their chemical composition, thanks
to recent fabrication advancements new mono-layer or multilayer artificial materials could
be designed for specific purposes. In my thesis I used different many-body techniques in
order to understand the general behavior of thin-films made of strongly correlated materi-
als as well as the effect of external electric field in adiabatic and non-adiabatic regimes.

In chapter 3, we extend the inhomogeneous Gutzwiller approximation (GA) [33, 118]
to a more generic case, which gives the opportunity to include local potentials for large
translationaly broken systems. This in turn allows us to exploit this feature to mimic
the effect of external electric field in slab geometries. By using our extension of GA
we described the Mott metal insulator transition in a slab geometry in the presence of a
perpendicular external electric field by calculating the site-dependent quasi-particle (QP)
weight. Increasing the Hubbard repulsion in the presence of an external electric field leads
to the formation of a dead insulating zone at the center of the thin film. The formation of
the dead zone for interactions larger that critical interaction (Uc) , where Uc is the critical
bulk metal to insulator transition interaction without electric field, occurs before complete
screening of the electric field and, therefore, charge trapping occurs at the surface. This
causes the metal insulator transition (MIT) to be shifted in the presence of the external
field. We therefore show that even though the QP weight of the central region is (the bulk)
strongly suppressed for U > Uc, the surface layers remain metallic and with larger QP
weight. Although our calculation can not give a definitive answer on whether a critical
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value for the electric field exists, below which the slab becomes insulating, it shows that
a rapid change in the maximum QP weight and charge accumulation will occur above a
finite electric field. Analytical or numerical methods, which can accurately probe the insu-
lating region, will shine light on the exact nature of this transition. From an experimental
point of view, our results are relevant for transport measurements in thin films. In the
presence of an external electric field perpendicular to an insulating film, one could use the
surface states for transport since the charge transfer at the surface creates two-dimensional
underdoped and overdoped regions. In the same time, transport perpendicular to the thin
film is suppressed due to the dead insulating zone, thus protecting the surface states from
leakages. The electric field needed to create the surface states is also much lower than the
breakdown field needed to pass current across the insulating zone.

In chapter 4, by using an inhomogeneous GA applied to the paramagnetic single band
Hubbard model for a slab geometry we described a hole doped Mott thin-film. By consid-
ering a large system with number of layers equal to 90, we therefore performed a scaling
analysis for QP weight profile and correlation length as function of doping. In the ab-
sence of applied electric field we calculated the position dependent charge density and
QP weight and showed that the inverse correlation length has a power law dependence on
doping as long as U > Uc. This differs from the results in [118] and [33] where authors
found a power low scaling as function of interaction. In terms of experimental realization
our doping dependent correlation length is easier to observe [36].

When a perpendicular electric field is applied, charges will accumulate on one side
of the slab, which differ from a naive expectation that charges should be repelled from
the places with larger interaction, the charge redistribution is enhanced after increasing
the interaction. This correlation enhanced charge redistribution will in turn induce a large
difference in the QP weight on the two sides of the slab, which was found to be as large
as five orders of magnitude. We propose that a three terminal device with surface contacts
can take advantage of this effect. For resistance switching purposes one would expect
large on/off ratios of surface resistances when the electric field switches polarity.

In chapter 5, we studied the influence of correlation effects on the charge and QP
weight profile of a translationaly broken system (slab geometry) which is modeled by a
two band Hubbard model with density-density interactions. To do this, we extend for
the first time the problem of inhomogeneous GA to multiband systems. This extension
therefore allow us to study large systems while the computational effort is much less than
dynamical mean field theory (DMFT) for multi band inhomogeneous systems [119] where
authors considered only 6 layers in their study. By using this extension further we studied
cases where there are two bands with different band widths. We did this calculations both
at half filling and away from half filling. By using our inhomogeneous GA for multi band
systems, we therefore consider the proximity to orbital selective Mott transition [129–131]
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point for slab geometries, where there are two different length scales for correlation length
corresponding to NB (narrower band) and WB (wider band). We found that as long as
the values of the Hund’s coupling J is finite, due to the existence of a first order MIT, no
diverging correlation length, even very near the transition point is seen. As a consequence,
due to the short correlation length, the surface QP weight recovers very fast its bulk value
even very near transition point. Only when the value of J is very small, a long correlation
length could be seen near the critical point while it is still finite. When the band widths are
not equal, for sufficiently large band width difference, the NB suffers from a continuous
MIT at a smaller critical interaction (UNB

c ), well before the first order transition. Due to
the continuous nature of this band selective transition, the NB shows a diverging corre-
lation length at the transition point which follows an expected mean-field-like power law
behavior as function of the interaction strength with an exponent insensitive to the band
width difference. This in turn leads to the formation of an extended surface dead zone
layer for the NB. For the doped system we reveal two different mechanisms of charge

transfer to the surface for the WB. When α =
1− 〈nNB〉
1− 〈nWB〉

� 1, the 〈〉 means average

charge density accumulated at each band, interaction effects near the surface are enhanced
due to reduced coordination number and charge transfer from the center to the surface for
both bands. In this case the NB is near half-filling and the system is in a more correlated
regime. However in the limit α ' 1, there is charge transfer from the center to the surface
for NB, while for the WB charges are repelled from the surface to the center of the slab.
Such effects could be of importance not only near at surfaces but also at interfaces with
other insulating materials.

In chapter 6, we investigated the nonlinear response of a closed interacting fermionic
system as modeled by a 1D extended Hubbard model with periodic boundary conditions.
In this study, we investigated the nonlinear response of the system for both short time and
large time scales by using Chebishev propagation method [174]. In contrast to previous
studies [159, 160, 176], where they used Landau-Zener [98, 99] Hamiltonian in order to
study the breakdown criteria, for gapped systems we used fidelity susceptibility [102] as
a measure for comparison of short time response between different systems with differ-
ent interaction strengths. For many body systems such as Hubbard models which there
are large number of states in their spectrum, this quantity ( the fidelity susceptibility
), is unbiased against two level approximation which often has been used in previous
works [159, 160, 176]. For larger time scales we analyze the problem of Bloch oscilla-
tions (BO). In our analysis we linked the variation of BO frequencies as function of field
strength in a convincing way to particular properties of the spectrum.

We therefore, proceeded our study first by looking at weakly interacting metallic sys-
tem at the boundary of spin density wave (SDW) and charge density wave (CDW). This
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system shows a dissipative behavior for low fields, when the wavefunction acquires over-
lap with large number of left going and right going states. This in turn implies that the
quasi-stationary state acquires zero current. BO start smoothly with a frequency larger
than F , where F is equal to the electric field used in Peierls substitution divided by 2π.
The main reason for this is the fact that the reflection happens at the lower part of the spec-
trum, thus effectively decreasing the bandwidth. Upon increasing the field strength the
probability transfer at each anti-crossing is more efficient. This leads to a more regular re-
currences of the ground state and the topmost excited state with period equal to 1/F , which
can be seen from the oscillations in the current. Upon dimerization of the metallic system,
the formation of the dissipative regime is postponed to larger fields due to the formation of
a charge gap. However, the main difference between the dimer case and the metallic sys-
tem resides in the fact that, first, it shows irregular current oscillations before they turn into
regular BO and second, the BO with larger frequencies survive for large times, in analogy
with the metallic case subjected to strong field. This implies the existence of states at the
middle of the spectrum with low fidelity susceptibility (or roughly speaking the formation
of large mid gaps in the relevant excitations, that play the role of a band-edge state and
reflect back the overlap probability at the middle part of the spectrum even for large elec-
tric fields. Finally, the dimerized system also shows regular BO with period equal to 1/F
for large enough electric fields. The value for which the dimerized system shows regular
BO are much larger than those found for the metallic system even though the interactions
are identical. For stronger interacting systems when the interactions are chosen such that
the ground-state fidelity susceptibility is the same for both cases, then the ground state
decay for both CDW insulator and SDW insulator behaves exactly the same. This simi-
larity of the ground-state decay manifests itself even for larger times and for both low and
high field dissipative regimes. However significant differences arise between the two cases
for large electric fields. While SDW shows oscillatory behavior with large magnitude the
CDW insulator and strong interacting metallic system only shows irregularities with small
oscillations. Different from the weakly interacting metallic system and the dimer case,
in the strongly interacting regime these irregularities are extended to intermediate fields
and only for very large fields, regular BO with a period of 1/F are observed. This effect
appears to be little affected by size, since the SDW and CDW insulators, for L = 10 and
L = 12, show the same qualitatively and even quantitatively behavior. This implies that
the reorganization of the spectrum is affected much more by the interaction than by the
finite size induced discreteness.

In chapter 7, by using first principle calculations based on density functional theory
(DFT) we studied the possibility of stabilizing the naturally unstable metallic T structure
of MoS2 monolayers against insulating H structure by adsorption of Li adatoms. For pure
MoS2 the semiconducting H structure was found to be more stable than the metallic T
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structure, both in bulk and monolayer form [192]. However, experimental and theoretical
research on the structural stability of different MoS2 bulk allotropes shows that the interca-
lation of Li atoms can stabilize the metallic 1T structure [193–195]. Stable 1T monolayer
structures can also be realized by substitutional doping of MoS2 with Re atoms [196]. We
found that adsorption of Li atoms on one side of the monolayer MoS2 could not lead to a
H → T transition. However, it does lead to a general trend of stabilizing the T structure
when including more Li ad-atoms. In contrast we found that the T structure could be en-
ergetically stabilized against the H structure as long as two adatoms are included on both
sided of the layer. However, we found that two sided Lithium absorbed T structure is still
dynamically unstable and it was distorted toward a distorted T structure which contains
in-plane clustering of Molybdenum atoms ( see Fig. 7.9 ). To examine the possibility to
this new structure we studied whether it is possible for the Li atoms to pass through the
MoS2 layer and arrive at the other side. By choosing the V site (see Fig. 7.1(a)) as the
penetration path of Li atoms, we found the penetration barrier for pure MoS2 to be 2 eV.
The penetration barrier for a system that is covered with one layer of Li atoms on one side
drastically reduces the barrier to almost 0 eV. The main reason for this observation appears
to be the reduction in stiffness of MoS2 in the presence of Li adsorbates. This reduction
in stiffness is most clear at the larger distortions which are required for the penetration of
Li atoms. For very small distortions the stiffness does not show much difference between
pure and Li-covered MoS2. Finally we, calculated the energy barrier of H→T for a pure
and completely covered MoS2 structure. The transition barrier of 1.5 eV for the pure case
is reduced to 130 meV for Li2MoS2, which is low enough for the transition to occur. The
Li atoms were shown to play a crucial role in the reduction of the barrier size by mediating
the transition. The main mechanism for this stabilization appear to be the charge transfer
from the Li atoms to the MoS2 layers, therefore this study hints toward a tunable stabiliza-
tion of metallic T structure by using electric field for insulating H structure which partially
is modified with ad-atoms.

8.2 Future prospects

In chapters 3, 4 and 5, I studied proximity effects in the paramagnetic phase of the differ-
ent translationaly symmetry broken systems, furthermore we considered the effect of an
external electric field. One interesting ongoing problem is to study magnetism in strongly
correlated thin film systems, in particular the proximity effect in systems with magnetic
ordered phases. As an example one may consider the interface between a magnetic or-
dered phase and a non-ordered phases, in order to see how magnetism could penetrate in
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the non-ordered phase. The effect of external fields, either magnetic or electric fields, is
very important, and may further lead to new ways of tuning magnetic phases with external
electric field and vice versa. Again the GA is one of the ways one may use to perform
these investigations. While it is much less expensive computationally in comparison to
other methods, it could capture the essence of correlation effects, which makes it a good
candidate for these kind of studies, which throughout this thesis I gained experience on the
formulation and implementation of the GA and I implemented a code that could perform
the Gutzwiller projections for generic local interactions.

Another interesting problem is the effect of non-local correlations beyond the infinite
dimension approximation. This also could be performed based on a real space version of
the diagrammatic expansion of Gutzwiller wave function by following the guidelines in
reference [204].

In chapter 6, I used the fidelity susceptibility for the short time comparison of real
time dynamics of a closed interacting system. Although the fidelity susceptibility does
not provide any information about the nature of the phases, it could be used as a generic
order parameter in order to uncover the transition points when an external parameter is
changed. While this concept is mostly used for 1D systems, it is an interesting problem to
extend it for strongly correlated systems in two or three dimensions. In particular, the im-
plementation of the fidelity calculation in the dynamical mean field (DMFT) frame work
is an interesting problem. For zero temperature this is straightforward by using the exact
diagonalization (ED) combined with DMFT approach, that I already implemented. How-
ever, for finite temperature a new definition of the fidelity should be realized based on the
guidelines from reference [102]. Another important aspect is the real time dynamics of
inhomogeneous systems subjected to time dependent external electric or magnetic fields.
These investigations also could be performed by using a real space version of time depen-
dent GA [205].

In chapter 7, I studied the possible stabilization of the T structure of the MoS2 against
the H structure. I performed this by inclusion of Lithium ad-atoms. However the problem
was designed to find out the effect of electrostatic doping of MoS2, but in the plane wave
implementation of DFT calculations inducing charge into the monolayers is technically
impossible. The reason for this is the fact that the energy is proportional to the distance
of the two charged layers and therefore total energy calculations for the charged slabs de-
pends on the amount of the vacuum and therefore is not unique. This is only an artifact of
repeating layers in the direction perpendicular to the layer, and is specific to the plane wave
implementation. Therefore, it is interesting to resolve this technical problem of plain wave
implementations by using the ideas of reference [206]. Furthermore, specific to the MoS2

problem, it is also interesting to perform a stability analysis based on non-repeating cell
DFT implementations. Another interesting problem for the MoS2 is mobility engineering
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of carriers by using different substrates and/or adatoms combined with an external electric
field. These combinations further may lead to tunable stabilization of the T structure and
therefore improving the mobility of the carriers.
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Chapter 9
Samenvatting en toekomstperspectieven

9.1 Afsluitende bemerkingen

Recente tekort komingen in micro-elektronia apparaten gelaseert om silicium dwingen
de gemeenschap om silicium te vervangen door andere materialen. Een van de meest
aantrekkelijke zijn samengestelde materialen die transitiemetalen bevatten in hun chemis-
che samenstelling. Dankzij recente fabricatieverbeteringen kunnen nieuwe éénlagige en
meerlagige artificiële materialen ontworpen worden voor specifieke doelen. In mijn thesis
gebruik ik verschillende veel-deeltjes-technieken om zowel het algemene gedrag te be-
grijpen van dunne films van sterk gecorreleerde materialen als het effect van elektrische
velden in adiabatische en niet-adiabatische regimes.

In hoofdstuk 3, breiden we voor de eerste keer de Gutzwiller-benadering (GA) [33,
118] uit naar algemenere gevallen wat de mogelijkheid geeft om lokale potentialen mee
te nemen voor systemen met gebroken translatiesymmetrie. Dit laat op zijn beurt toe
om deze eigenschap te gebruiken om het effect van uitwendige elektrische velden na te
bootsen in een ’slab’-geometrie. Met onze uitbreiding van GA hebben we de Mott-metaal-
isolatorovergang beschreven in een slab-geometrie in de aanwezigheid van een loodrect
elektrisch veld door het berekenen van het plaatsafhankelijke quasideeltjes (QP) gewicht.
Het verhogen van de Hubbard-afstoting in de aanwezigheid van een uitwendig elektrisch
veld leidt tot de vorming van een dese isolerende zone in het centrum van de dunne film.
De vorming van dese zone voor interacties groter dan de kritische interactie (Uc), waar
Uc de kritische bulk metaal-isolator transitie interactie voorstelt, gebeurt voor de volledige
afscherming van het elektrisch veld waardoor er lading kan opgesloten geraken aan het
oppervlak. Daarom tonen we dat hoewel het QP-gewicht van het centrale deel sterk onder-
drukt is voor U>Uc de opervlaktelagen metallisch blijven met hoger QP-gewicht. Hoewel



150 Samenvatting en toekomstperspectieven

onze berekeningen niet eenduidig aantonen dat er een kritische waarde voor het elektrisch
veld bestaat, waaronder de slab isolerend wordt, laten ze wel zien dat er een snelle ve-
randering optreedt in de maximale QP- waarde en dat er ladingsophoping zal optreden
boven een eindig elektrisch veld. Analytische en numerieke methoden waarmee de isol-
erende delen goed onderzocht kunnen worden kunnen verduidelijking brengen over de
juiste aard van deze overgang. Vanuit experimenteel standpunt zijn onze resultaten van
belang voor transportmetingen in dunne filmen. In de aanwezigheid van een uitwendig
elektrisch veld loodrecht op de isolerende film, kan men gebruik maken van oppervlakte-
toestanden voor transport omdat de ladingsoverdracht aan het oppervlak tweedimension-
ale onder- en overgedopeerde gebieden creëert. Tezelfdertijd wordt transport loodrecht
op de dunne film onderdrukt door de geïsoleerde zone zodat de oppervlaktetoestanden
beschermd zijn tegen lekkage. Het elektrisch veld dat nodig is om de oppervlaktetoes-
tanden voort te brengen is ook veel kleiner dan het veld dat nodig is om stroom door het
isolerende gebied te sturen.

In hoofdstuk 4, beschreven we een gatengedopeerde dunne Mott-film met behulp van
een inhomogene GA toegepast op het paramagnetische enkelbands Hubbard-model voor
een slab-geometrie. Om grote systemen te bekijken met 90 lagen hebben we daarom een
schalingsanalyse uitgevoerd voor het QP-gewichtsprofiel en de correlatielengte als functie
van de dopering. We berekenden de posistie-afhankelijke ladingsdichtheid en QP-gewicht
in de afwezigheid van een elektrisch veld en toonden aan dat de inverse correlatielengte
een machtswet volgt als funcite van de dopering zolang dat U > Uc. Dit resultaat is
verschillend van de resultaten in [118] en [33] waar de auteurs een machtswet-schaling
vonden als funcite van de interactie. Experimenteel gezien is onze doperingsafhankelijke
correlatielengte gemakkelijker te observeren.

Wanneer een loodrecht elektrisch veld wordt aangebracht zullen de ladingen opge-
hoopt worden aan een kant van de slab. Deze door correlatie versterkte ladingsherverdel-
ing zal op haar beurt een groot verschil in QP-gewicht teweeg brengen tussen de twee
kanten van de slab. Dit verschil kan wel vijf grootteordes bedragen. We suggereerden
dat een toestel met drie uitgangen en oppervlaktecontacten gebruik kan maken van dit
effect. Voor toepassingen met grote weerstandswisselingen kan men grote aan/uit-ratios
verwachten van de oppervlakteweerstand als de polariteit van het elektrisch veld omge-
draaid wordt.

In hoofdstuk 5, bestudeerden we de invloed van correlatie-effectenop het ladings-
en QP-gewichtsprofiel van systemen met gebroken translatiesymmetrie (slab-geometrie)
welke gemodelleerd worden met een tweebands Hubbard-model met dichtheid-dichtheid
-sinteracties. Om dit te verwezenlijken hebben we voor de eerste keer het probleem van
inhomogene GA uitgebreid naar veelbandensystemen. Deze uitbreiding laat ons daardoor
toe om grote systemen te bestuderen terwijl de computationele kosten veel kleiner bli-
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jven dan de dynamische gemiddelde-veldentheorie (DMFT) voor mutibandsystemen [119]
waar de auteurs slechts 6 lagen konden bekijken in hun studie. Door deze uitbreiding
verder te gebruiken, hebben we gevallen bestudeerd waar er twee banden zijn met ver-
schillende bandbreedtes. We deden deze berekeningen zowel voor halfgevulde banden
en bandvullingen weg van half gevulde banden. Met behulp van onze inhomogene GA
voor multibandsystemen beschouwen we the nabijheid tot het orbitaalselectieve Mott-
transitiepunt [129–131] voor slabgeometrieën, waar er twee verschillende lengteschalen
zijn voor de correlatielengte corresponderend met de NB (smallere band) en WB (wijde
band).

We vonden dat de waarde van de Hund-koppeling J eindig is door een eersteorde MIT,
zolang er geen divergerende correlatielengte waargenomen werd en dit, zelfs dichtbij het
overgangspunt. Als gevolg van de korte correlatielengte wordt de waarde van de opper-
vlakte QP zeer snel hersteld tot de bulkwaarde, zelfs in de buurt van het overgangspunt.
Enkel als de waarde van J zeer klein is wordt er een lange correlatielengte waargenomen
nabij het kritische punt waar het nog steeds eindig is. Als de bandbreedtes niet gelijk
zijn zal, wanneer het verschil groot genoeg is, de NB (nauwe band) lijden onder de con-
tinue MIT bij een kleinere waarde voor de kritische interactie UNB

c , ruim voor de eerste-
orde overgang. Door de continue aard van deze bandselectieve overgang, toont de NB
een divergerende correlatielengte nabij het transitiepunt welke een verwachte gemiddelde
veld-achtige machtswet volgt als functie van de interactiesterkte met een exponent die
ongevoelig is voor de bandbreedte. Dit leidt op zijn beurt tot de vorming van een uitge-
breid doods gebied voor de NB. Voor het gedopeerde gebied ontvouwen we twee verschil-
lende mechanismen voor de ladingsoverdracht naar het oppervlak van de WB (wijdere

band). Wanneer α =
1− 〈nNB〉
1− 〈nWB〉

� 1, 〈〉 betehent de gemiddelde ladingsdichtheid is in

elke band, dan worden interactie-effecten in de buurt van het oppervlak versterkt door het
gereduceerde coördinatiegetal en de ladingsoverdracht van het centrum naar het oppervlak
voor beide banden. In dat geval is de NB bijna half bezet en bevindt het systeem zich in
een meer gecorreleerd regime. Maar in de limiet α ' 1 is er een ladingsoverdracht van het
centrum naar het oppervlak voor NB terwijl voor de WB de ladingen afgestoten worden
van het oppervlak naar het centrum van de slab. Zulke effecten kunnen niet enkel van be-
lang zijn aan oppervlakken maar ook aan tussenvlakken met andere isolerende materialen.

In hoofdstuk 6, hebben we de niet-lineaire respons onderzocht van een gesloten in-
teragerend fermionsysteem met een eendimensionaal uitgebreid Hubbard model met pe-
riodische randvoorwaarden. In de studie onderzochten we de niet-lineaire repons van
het systeem voor zowel korte als lange tijsschalen met de Chebishev-popagatiemethode
[174]. In tegenstelling tot vorige studies [159,160,176], waar men gebruik maakte van de
Landau-Zener [98,99] hamiltoniaan on de afbraakcriteria te bestuderen voor systemen met
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een bandkloof, gebruikten wij de betrouwbaarheidssusceptibiliteit [102] als een maat voor
de vergelijking van de korte-tijdsrepons tussen verschillende systemen met verschillende
interacties. voor veeldeeltjessystemen zoals Hubbard-modellen waarbij er veel toestanden
zijn is deze grootheid niet beïnvloed door de twee-niveaubenadering die vaak in vroegere
studies gebruikt werd [159, 160, 176]. Voor grotere tijdschalen analyseren we het prob-
leem van Bloch-oscillaties (BO). In onze analyse maakten we een link tussen de variatie
van de BO-frequenties als een functie van de veldsterkte op een overtuigende manier en
de specifieke eigenschappen van het spectrum.

We zetten onze studie daarom eerst voort door te kijken naar een zwak interagerend
metallisch systeem aan de grens van ladingsdichtheidsgolf (CDW) en spindichteheidsgolf
(SDW). Dit systeem, vertoont dissipatief gedrag voor kleine velden als de golffuncties
overlappen met grote hoeveelheden links- en rechtsgaande toestanden. Dit impliceert op
zijn beurt dat de quasistationaire toestand overeenkomt met een verdwijnende stroom.
Bloch-oscillaties (BO) beginnen glad met een frequentie groter dan F , waar F gelijk is
aan het elektrisch veld gebruikt in de Peierls substitutie gedeeld door 2π. De hoofdreden
hiervoor is het feit dat de reflectie gebeurt aan het lagere deel van het spectrum, zodat de
bandbreedte effectief verkleind wordt. Door de veldsterkte te vergroten wordt de waarschi-
jnlijkheidsoverdracht aan elke anti-kruising effciënter. Dit leidt tot een meer regelmatig
voorkomen van de grondtoestand en de bovenste geëxciteerde toestand met periode F−1,
wat kan worden waargenomen in de stroomschommelingen. Dimerizatie van het met-
allisch systeem zorgt ervoor dat de vorming van het dissipatieve regime verschoven wordt
naar sterkere velden door de vorming van een ladingskloof. Maar het grootste verschil
tussen het dimeer- en het metallisch geval ligt in het feit dat het, ten eerste, onregel-
matige stroomschommelingen toont voordat het verandert in een regelmatig BO en dat,
ten tweede, de BO met grotere frequenties voor langere tijden overleeft, analoog aan het
metallisch geval onderworpen aan sterke velden. Dit impliceert dat het bestaan van toe-
standen in het midden van het spectrum met lage betrouwbaarheids susceptibiliteit (of,
ruwweg gezegd, de vorming van grote mid-gaptoestanden in de relevante excitaties) een
rol spelen de in randtoestanden van de band en die de overlapwaarschijnlijkheid terug re-
flecteren in het middelste deel van het spectrum, zelfs voor grote elektrische velden. Ten
slotte toont het gedimerizeerde systeem ook regelmatige BO met een periode gelijk aan
F−1 voor elektrische velden die sterk genoeg zijn. De waarde waarvoor dit gebeurt zijn
veel groter dan die voor het metallisch systeem hoewel de interacties identiek zijn. Wan-
neer voor sterker interagerende systemen de interacties zo gekozen worden dat de suscep-
tibiliteit van de grondtoestand hetzelfde is voor beide gevallen, dan gedraagt het verval
van de grondtoestand voor zowel de CDW (ladingsdichtheidsgolf) isolator als de SDW
(spindichtheidsgolf) zich op dezelfde manier. Deze gelijkenis van het grondtoestandver-
val manifesteert zich zelfs voor langere tijden en voor zowel zwakke als sterke veld dissi-
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patieve regimes. Er duiken echter belangrijke verschillen op tussen de twee gevallen voor
sterke elektrische velden. Terwijl SDW een schommelend gedrag met grote amplitude
vertoont, tonen de CDW-isolator en het sterk interagerende metallische systeem enkel on-
regelmatigheden met kleine schommelingen. In tigenstelling met het zwak interagerende
metallisch systeem en het dimeer geval, zijn deze onregelmatigheden in het sterk inter-
agerende regime uitgebreid naar intermediaire velden en enkel voor zeer sterke velden,
F = 10.0, wordt een regelmatig BO met een periode F−1 waargenomen. Dit effect blijkt
nauwelijks te worden beïnvloed door de grootte, want de SDW- en CDW-isolatoren, voor
L = 10 en L = 12, tonen hetzelfde kwalitatief en zelfs kwantitatief gedrag. Dit impliceert
dat de reorganisatie van het spectrum meer beïnvloed wordt door de interactie dan door de
discreetheid die veroorzaakt wordt door de eindige afmeting.

In hoofdstuk 7, onderzochten we met behulp van ab initio-berekeningen gebaseerd
op dichtheidsfunctionaaltheorie (DFT) de mogelijkheid om de onstabiele T-structuur van
enkellaags MoS2 te stabiliseren door adsorptie van Li atomen. Voor pure MoS2, werd
gevonden dat de halfgeleidende H-structuur stabieler was dan de metallische T-structuur,
zowel in enkellaags als bulk toestand [192]. Maar experimenteel en theoretisch onderzoek
naar de stabiliteit van verschillende MoS2 bulkallotropen toont aan dat de intercalatie van
Li atomen de metallische T-structuur kan stabiliseren [193–195]. Stabiele 1T enkellagige
structuren kunnen ook gerealiseerd worden substitutionele dopering van MoS2 met Re
atomen.

We vonden dat adsorptie van Li atomen aan één zijde van de laag niet kon leiden tot
een H→T overgang. Er was echter wel een algemene trend naar stabiele T-structuren
wanneer er meer Li atomen aanwezig waren. In tegenstelling hiermee, vonden we dat de
T-structuur wel gestabiliseerd kon worden indien er twee adatomen aan beide kanten aan-
wezig waren. Maar we vonden wel dat de T-structuur met Li geadsorbeerd aan 2 kanten
nog altijd dynamisch onstabiele is en dat het vervormt tot een gestoorde T-structuur waar-
bij Mo atomen clusteren. Om de realisatie van deze structuur te onderzoeken, bestudeer-
den we de mogelijkheid dat de Li atomen door de laag heen geraakten om de andere zijde
te bereiken. Door de V-plaats (zie Fig. 7.1(a)) als doorgangspad te kiezen voor de Li
atomen vonden we een barrière van 2 eV voor puur MoS2. De barrière voor een systeem
dat reeds bedekt is met Li atomen verdween vrijwel helemaal. De hoofdreden voor deze
observatie bleek de vermindering in stijfheid van de MoS2 in de buurt van Li atomen.
Deze reductie in stijfheid is het meest zichtbaar voor de grote vervormingen die nodig zijn
om de Li atomen door te laten. Voor zeer kleine vervormingen is er weinig verschil in
stijfheid tussen puur en met Li bedekte MoS2. The transitiebarrière van 1.5 eV voor het
onbedekte geval wordt gereduceerd tot 130 meV voor Li2MoS2, wat laag genoeg is om de
transitie te laten gebeuren. We toonden aan dat de Li atomen een regulerende rol spelen in
het verminderen van de hoogte van de barrière.
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9.2 Toekomstperspectieven

In hoofdstukken 3, 4 en 5 heb ik de nabijheidseffecten in de paramagnetische fase van ver-
schillende systemen met gebroken translatiesymmetrie besproken alsook het effect van een
uitwendig elektrisch veld. Een interessant onopgelost probleem is magnetisme in syste-
men van sterk gecorreleerde dunne filmen en in het bijzonder de nabijheidseffecten in sys-
temen met magnetisch geordende fasen. Als voorbeeld kan men de scheiding tussen een
magnetisch geordende en ongeordende fase beschouwen, om te zien hoe het magnetisme
in de ongeordende fase doordringt. Het effect van externe velden, zowel elektrische als
magnetische, is heel belangrijk en kan leiden naar nieuwe manieren om magnetische fases
te manipuleren met een elektrisch veld en omgekeerd. Men kan opnieuw de Gutzwiller-
benadering gebruiken om dit onderzoek uit te voeren. Terwijl het computationeel veel vo-
ordeliger is dan andere methodes, kan het toch de essentie van correlatie-effecten beschri-
jven wat het tot een goede methode maakt voor dit soort studies. Doorheen deze thesis heb
ik ervaring opgeilaan met het formuleren en implementeren van de Gutzwiller-benadering
en heb ik een code gemaakt die Gutzwiller-projecties kan maken voor algemene lokale
interacties. Een ander interessant probleem is het effect van niet-lokale correlaties voor-
bij de oneindige-dimensies-benadering. Dit kan ook gedaan worden met een reële ruimte
versie van de diagrammatische expansie van de Gutzwiller-golffunctie door de richtlijnen
in ref. [204] te volgen.

In hoofdstuk 6 heb ik de fideliteitssusceptibiliteit gebruikt voor een vergelijking op
korte tijd van de reële tijds dynamica van gesloten interagerende systemen. Hoewel de
fideliteitssusceptibiliteit geen informatie levert over de aard van de fases kan het gebruikt
worden als een algemene ordeparameter om overgangspunten te ontdekken als de externe
parameter veranderd wordt. Hoewel dit concept meestal gebruikt wordt voor 1D systemen
is het een interessant probleem om dit uit te breiden naar twee of drie dimensies. In het
bijzonder vormt de implementatie van de betrouwbaarheidsberekening in het dynamische
gemiddelde velden theorie (DMFT)-kader een interessant probleem. Voor de nulpuntstem-
peratuur is het vanzelfsprekend om de exacte diagonalisatie (ED) te gebruiken in combi-
natie met de DMFT-benadering die ik reeds geïmplementeerd heb. Maar voor eindige
temperaturen moet een aangepaste definitie voor de betrouwbaarheid ontwikkeld worden
op basis van de richtlijnen die gegeven werken in Ref. [102]. Een ander belangrijk aspect
is de dynamica van inhomogene systemen die onderworpen worden aan tijdsafhankelijke
elektrische of magnetische velden. Deze studie kan ook gedaan worden door gebruik te
maken van ruimteversies van de tijdsafhankelijke Gutzwiller-benadering [205].
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In hoofdstuk 7 heb ik de mogelijkheid onderzocht om de T-structuur van MoS2 t.o.v.
de H-structuur te stabiliseren. Deze studie werd gedaan met het toevoegen van Li atomen,
maar het probleem had oorspronkelijk te maken met het elektrolytisch doperen van MoS2.
Maar in de vlakke-golven-implementatie van de DFT-berekeningen is het technisch on-
mogelijk om ladingen in de lagen te introduceren. De reden hiervoor is het feit dat de
energie tussen twee geladen lagen recht evenredig is met de afstand tussen de lagen waar-
door de energieberekeningen van de geladen lagen afhankelijk zijn van de hoeveelheid
vacuum er tussen en dus niet uniek zijn. Dit is enkel een artefact van de periodische la-
gen in de richting loodrecht op de laag en is specifiek voor vlakke-golven-implementaties.
Daarom is het interessant om deze technische moeilijkheden op te lossen met behulp van
de ideeën van Ref. [206]. Bovendien kan het ook interessant zijn om niet-periodische DFT-
implementaties te gebruiken. Een ander interessant probleem voor MoS2 het is veranderen
van de mobiliteit van de ladingsdragers door gebruik te maken van verschillende substraten
en/of adatomen gecombineerd met een elektrisch veld. Deze combinaties kunnen verder
leiden tot een aanpasbare stabilisatie van de T-structuur en daardoor het verhogen van de
mobiliteit.
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[152] Marcin Mierzejewski, Janez Bonča, and Peter Prelovšek. Phys. Rev. Lett.,
107:126601, Sep 2011.

[153] M. Mierzejewski, L. Vidmar, J. Bonča, and P. Prelovšek. Phys. Rev. Lett.,
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