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Preface

This thesis focuses on multi-component quantum systems such as multi-
band superconductors, superconductors in which multiband physics arises
due to quantum confinement, and multi-component Bose-Einstein conden-
sates (BECs). Such multicomponent systems are of high interest today,
since they harbor plethora of nontrivial phenomena unattainable in their
single-component counterparts. In case of multiband superconductors one
can e.g. point out the highly-debated nonstandard vortex configurations
recently observed in MgB2 [1, 2], the BCS-BEC crossover revealed in exper-
iments on, e.g., FeSexTe1−x [3, 4], theoretically predicted chiral supercon-
ducting states [5, 6], the hidden criticality [7], significant broadening of the
type-I/type-II transitional domain [8], etc.

Still, the most convenient tool to study all the mentioned phenomena is
a generalized Ginzburg-Landau (GL) theory for multiband superconductors.
The generalization of the GL theory to the multiband case is still a highly
debated issue. The theory represents a system of nonlinear GL-type equa-
tions, one for each band gap, coupled via the linear Josephson-type terms,
and the corresponding multicomponent functional. The generalization of the
GL theory appears intuitively justified, partially by a familiar structure of
the obtained equations. However, it was reported [19, 20, 216] that the gen-
eralized GL theory contains a few shortcomings. Therefore, the objective of
this thesis is to revise the generalized Ginzburg-Landau theory for multi-band
superconductors.

Superconductors under quantum confinement attract a lot of research in-
terest nowadays. It is mostly due to the quantum-size resonance effects in
superconducting characteristics [21], i.e., oscillations of the critical tempera-
ture Tc, enhancement of the critical magnetic field Hc (thermodynamic, but
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upper and lower), and the excitation gap. Until recently there was no suitable
theory to calculate the complex magnetic response of such superconductors,
and for example, investigate complex configurations of vortices taking into
account the multiband physics. The standard Ginzburg-Landau theory is
not applicable to superconductors under quantum confinement (nanofilms),
since the thickness of such superconductors is much smaller than the bulk
BCS coherence length. Therefore, the next objective of the thesis is to derive
a manageable multiband theory for nanofilms.

On the other hand, the interest in multi-component BEC originates from
the successful experimental realization of rotating BECs of two hyperfine spin
states of atoms of the same kind [9, 10, 11, 12, 13, 14]. Afterwards, it was
shown that already in a two-component Bose-Einstein condensate (BEC)
case, rotating atomic gases host nontrivial vortex lattices [15, 16], vortex
sheets [17], and skyrmions [18]. More components, and nontrivial coupling
between them, are bound to lead to further rich physics. Therefore, another
objective of the thesis is to study nontrivial coupling between the components
of multi-component BECs and to which interesting vortex physics this can
lead.

This thesis is therefore divided into two main parts, one part devoted to
the derivation of manageable theories and study of multiband superconduc-
tors and nanofilms, and the other to the study of rotating multi-component
Bose-Einstein condensates. The thesis is organized as follows.

Chapter 1 gives the historical overview of superconductivity, outlines
theoretical aspects relevant for the further considerations in the thesis and
presents the hallmark properties of multi-band superconductors. A brief in-
troduction to superconductivity under quantum confinement is also provided,
such as in nanofilms. Then Bose-Einstein condensation is reviewed giving a
theoretical basis for further calculations and a computational method is de-
scribed which is used in further calculations. The fundamental description of
topological defects is given such as vortices and skyrmions which are studied
in the thesis.

In Chapter 2, the Ginzburg-Landau formalism for multiband supercon-
ductors is derived from the generalized BCS Hamiltonian by applying the
Green’s function technique developed by Gor’kov. Two scenarios are exam-
ined here, when the solution for the critical temperature is non-degenerate
and when it is degenerate. In accordance with the type of a solution, the
Ginzburg-Landau theory is constructed. The particular case of a three-band
superconductor is considered, and it is found that this system exhibits de-
generated solutions for the critical temperature, which leads to a non-trivial
phase difference between the bands, often called chiral solutions. The possi-
bility of having the chiral states as the ground state, and their relevance to
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recent materials, are discussed.
Chapter 3 presents derivation of the Ginzburg-Landau theory for su-

perconductors under quantum confinement. First, the derivation starts with
the construction of a suitable BCS Hamiltonian for nanofilms by integrat-
ing out the dependence of a coordinate in which the electronic motion is
restricted and causes formation of discrete electron subbands. Afterwards,
the same technique is applied similar to one used in the derivation of the
Ginzburg-Landau theory for the multiband superconductors. Finally, the
range of applicability of the derived formalism and the consequences on well
established phenomena in thin films are discussed.

Chapter 4 concerns the study of a rotating harmonically trapped Rabi-
coupled three-component Bose-Einstein condensate. It is shown that this
system can host unconventional vortex lattices in its ground state, all of
which have skyrmionic topology. The discovered lattices comprise square and
zig-zag patterns, vortex dimers and chains, and doubly quantized vortices.
In view of the Rabi energy suppression and the global phase frustration,
parametric regions in the equilibrium phase diagram are identified where the
three-component condensate starts to behave as a two-component condensate
with only density–density interactions. The study focuses on intermediate
Rabi coupling strengths, where the unique vortex physics is found which
occurs neither in the two-component counterpart nor in the purely density–
density-coupled three-component system.

In Chapter 5, a rotating harmonically trapped two-component Bose-
Einstein condensate based on the mixture of atoms of two kinds with the
atomic mass imbalance was studied in three distinctly different regimes. Ac-
cording to the common paradigm, giant vortices are not supported by a
rotating harmonically trapped single component BEC. In the case of two-
component BECs, giant multi-quantum vortices as ground-state solutions
are discovered in all three regimes. In two of the regimes, skyrmionic solu-
tions are found and corresponding pseudospin textures are plotted.

Finally, the results are summarized and outlook of the thesis is provided
in Chapter 6.
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CHAPTER 1

Introduction

1.1 Historical overview of superconductivity

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes in Lei-
den [22]. Using previously developed refrigeration technique to reach temper-
atures of a few Kelvin, Onnes expected that in ultra-clean metals the resis-
tance gradually reduces to zero at ultralow temperatures, and performed ex-
periments on mercury to prove that hypothesis. Instead, Kamerlingh Onnes
observed that resistance of the sample abruptly dropped to zero at 4.2 K
[Fig. 1.1(a)]. Later on, this phenomenon of perfect conductivity was termed
superconductivity, and the temperature at which a sample became supercon-
ducting, was named critical temperature Tc. For many years the phenomenon
remained unexplained, despite the further established characteristics, such as
the perfect diamagnetism via the so-called Meissner effect [Fig. 1.1(b)] [23].

The first theories to explain the phenomenon of superconductivity were
phenomenological and based on the Maxwell equations. One of those theories
was proposed by brothers London in 1935 to describe the distribution of fields
and currents [24]. Pippard subsequently developed the nonlocal generaliza-
tion of the London theory in 1953 [25]. The disadvantage of these approaches
was their inability to address the spatial distribution of the carriers of su-
perconductivity, or to explain how nonlinear effects of fields could deplete
the density of carriers to zero at the critical temperature. Known charac-
teristics of superconducting materials suggested that superconductivity was
a macroscopic manifestation of quantum effects occurring on a microscopic
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Figure 1.1: Hallmark characteristics of superconducting materials: (a) re-
sistance (in this case of mercury) drops to zero at Tc (4.2 K); (b) expulsion
of the magnetic field at T < Tc.

scale in a material, when it enters the superconducting regime. Therefore,
developing of a new theory, which would take into account quantum effects
and would help to address the issues which the London and Pippard theo-
ries could not, was crucially important. Encouraged by the success of the
quantum mechanics in explanation of metallic behavior, many prominent the-
orists of the time, such as Bohr, Pauli, Heisenberg, Bloch, Landau, Frenkel,
Brillouin and Kronig, started to apply quantum mechanical tools to explain
superconductivity [26]. There were two main concepts developed. The first
were the spontaneous current theories of Bloch, Landau and Frenkel based
on the notion of a current-bearing equilibrium state (1929-1933) [26]. The
second was the electron-lattice or electron-chain theory of Bohr and Kronig
(1932-1933) [26]. The idea of the first theory was that in equilibrium the
thermodynamically favored superconducting ground state, corresponding to
a minimum of the free energy, bears a finite spontaneous current below the
critical temperature, while at higher temperatures current-free equilibrium
states have statistically greater probability [26]. In other words, it was the
theory of a ground state with finite current. The second concept premised
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that the interactions between electrons lead to appearance of a rigid lattice
intermeshed with the ionic lattice [26]. Superconductivity results, in this
theory, from the coherent quantum motion of a lattice of electrons. However,
these two theories failed to fully agree with existing experiments.

Another phenomenological theory was proposed by Ginzburg and Landau
in 1950 [27]. The Ginzburg-Landau (GL) theory was based on the expansion
of a complex order parameter ψ, describing the superconducting state, in
the proximity of the critical temperature, within Landau’s general theory
of second-order phase transitions. The advantage of the GL theory was in
its elegant and convenient formulation, although it was a phenomenological
theory. A major significance of the theory was its ability to describe the
intermediate state of superconductors in which superconducting and normal
domains coexist at the thermodynamic critical field [28, 29].

One of the crucial experiments that pointed towards the correct approach
to understand superconductivity was the isotope effect [30, 31], showing that
the transition temperature depends on the mass of the atoms of the super-
conducting material. Motivated by this discovery, theorists suggested that
superconductivity should be related to lattice vibrations (phonons). As a
result, an electron-phonon mediated interaction theory of superconductivity
was proposed by Bardeen, Cooper, and Schrieffer in 1957, which was received
with enthusiasm [32]. The BCS theory showed that even a weak attractive
electron-phonon interaction induces an instability of the Fermi-sea ground
state of the electron gas, favoring the formation of the bound pairs of elec-
trons, occupying states with equal and opposite momentum and spin near
the Fermi surface. The bound pairs were called Cooper-pairs. Being bosons,
the Cooper-pairs can condense into same ground state, i. e. they form the su-
perconducting condensate. Thus, this theory could explain the appearance
of a gap in the energy spectrum of a superconductor, which was observed
before the theory was proposed [33, 34, 35].

It should be emphasized that Gor’kov showed in 1959 that the GL theory
can be derived from the BCS theory and, in fact, is a limiting form of the mi-
croscopic theory, valid near Tc, in which the order parameter is proportional
to the gap parameter [36].

Between 1950 and 1980 many different superconducting intermetallic com-
pounds were discovered. The highest superconducting transition temperature
was observed in Nb3Ge with Tc = 23 K. All these superconducting materi-
als exhibited common features, such as the isotope effect, existence of the
energy gap which followed the BCS behavior, the Cooper-pair creation stem-
ming from the electron-phonon interaction, and pairing of s-wave symmetry.
These superconductors were named conventional.

However, the discovery of copper oxide-based ceramic superconductors
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with Tc = 30 K by Bednorz and Müller [37] in 1986 prompted a new era [38,
39, 40, 41, 42]. Later it was shown that Tc of the cuprates can exceed liquid
nitrogen temperature. As a result, copper oxide-based ceramic supercon-
ductors were named high-temperature superconductors (HTS). The cuprate
family offered not only new horizons in transition temperature but also a
plenty of interesting phenomena like d-wave pairing symmetry [43, 44], pseu-
dogap [45], charge stripes [46, 47], and exotic pairing mechanisms [48, 49, 50],
so were named unconventional. Conventional wisdom suggests that these new
horizons were enabled by the complexity of multielement compounds. It was
evident that a search for new superconductors should be held in complex
compounds.

Another breakthrough happened in 2001 with realization that magne-
sium diboride becomes superconducting at ≈ 39 K [51]. Although 39 K
was much lower than 160 K, this finding reveled a possibility of relatively
high critical temperature for an intermetallic and conventional superconduc-
tor and meant that MgB2 can be cooled to an operational temperature by
either liquid hydrogen or readily available, fairly inexpensive, closed-cycle
refrigerators [51]. The initial interest in MgB2 arose simply from its high
Tc, however, further experiments and theoretical works showed that magne-
sium diboride offers a new ground for superconductivity originating from its
multi-band and two-gap nature and hosting plethora of remarkable features
different from intermetallic superconductors known before [51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62].

Recently, a new family of superconducting materials was discovered con-
taining iron arsenide layers [63, 64, 65, 66, 67]. The critical temperature of
these superconductors varies from 26 up to 52 K. A great deal of informa-
tion has been collected on these materials in a relatively short time, but, as
for the copper oxide-based ceramic superconductors, there is still no clear
agreement over the pairing mechanism. There are strong indications that
magnetism may have an important role in these materials [68, 69]. It has
been shown that the order parameter is not a simple s-wave state but is
unconventional [68, 69, 70, 71] and changes sign between different parts of
the Fermi surface [70, 71]. There is also strong evidence that iron-based
superconductors are predominantly multi-band superconductors [72, 73, 74],
which makes them relevant for this thesis.

Another example of multi-band superconductivity is found in supercon-
ductors under quantum confinement (superconducting nanofilms), which were
shown to form the quantum-well states (QWSs) [76] due to limited motion
of electrons in one of the dimensions. The initial interest for these materials
arose due to the thickness-dependent quantum-size oscillations of the critical
temperature and the energy gap [76, 77, 78, 79, 80, 81]. The subsequent stud-
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ies revealed that in superconducting nanofilms the long-range superconduct-
ing order is frustrated due to proliferation of superconductive fluctuations
when the film thickness is reduced, and the Berezinskii-Kosterlitz-Thouless
physics [82, 83] governs the global phase coherence in the system [84].

This thesis concerns the theory of multiband superconductors. Before
getting to that, we first recall the fundamental theories on superconductiv-
ity, presented in Sections 1.2 and 1.3. Subsequently, in Section 1.4 we review
and compare essential characteristics of MgB2 and iron-based superconduc-
tors, to prepare the grounds for our theoretical considerations of multiband
superconductors.

1.2 Ginzburg-Landau theory for single band

superconductors

The Ginzburg-Landau theory was the first formalism for superconductivity
that took into account the quantum effects, and suggested that the supercon-
ductivity was a transition into an ordered state at the critical temperature
Tc. The GL theory is based on the theory of second-order phase transitions
developed by Landau [198]. Such transitions are always occurring with a dis-
continuous reduction of the symmetry, while the state of a system changes
gradually. Moreover, the ordered state exhibits lower symmetry. The ex-
amples of the second-order transitions are: the ferromagnetic transition at
the Curie point, the transition of helium into superfluid state, a number of
order-disorder transitions in alloys, and superconductivity.

1.2.1 Free energy expansion

In order to describe the ordered state, one can introduce an order parameter
ψ(r) which is non-zero at T < Tc, and vanishes at T ≥ Tc. Then the free
energy density of the superconducting material can be expanded in powers
of |ψ|2 and |∇ψ|2 in proximity of the critical temperature Tc as

Fs = Fn + α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣

∣

∣

∣

~

i
∇ψ − e∗

c
Aψ

∣

∣

∣

∣

2

+
B2

8π
, (1.1)

where Fn is the free energy density in the normal state, m∗ is the mass of
the carrier, e∗ is the carrier charge, c is the speed of light, and α and β
are phenomenological expansion coefficients, the meaning of which will be
given later; B is magnetic field at a given point of the superconductor, with
corresponding vector potential A. It should be noted that Eq. (1.1) was
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proposed under assumption that |ψ|2 and |∇ψ|2 are small near the critical
temperature, which imposes a restriction on the expansion to be valid in
proximity of the critical temperature Tc.

(a) Fs − Fn

ψ

α > 0

(b) Fs − Fn

ψ

α < 0

ψ∞

H2

c

8π

Figure 1.2: The free energy density difference between the normal state and
superconducting state: (a) for α > 0 at T > Tc; (b) for α < 0 at T < Tc.
Solid dots correspond to equilibrium states. The order parameter is taken
real for, simplicity. The figure is adapted from [28].

Eq. (1.1) is presented as it done originally by Ginzburg and Landau [27].
The form of the kinetic energy density in Eq. (1.1) was constructed in analogy
with the quantum mechanical kinetic energy of a particle with the mass m∗

as
1

2m∗ | − i~∇ψ|
2. Then for a carrier of charge e∗ moving in a field with the

vector potential A, the kinetic energy should be modified to −i~∇ − e∗

c
A,

where − i~

m∗−
e∗

cm∗A becomes the velocity operator. At the time when the GL

functional was proposed, it was not yet known that two electrons participate
in the formation of a bound state. Later, when the microscopic BCS theory
was developed and the idea about electron-phonon interaction was suggested,
it was clear that in Eq. (1.1) the massm∗ should be replaced by 2m, wherem
is the mass of electron, and the charge by 2e, where e is the electron charge.
Therefore, the kinetic energy density in Eq. (1.1) modifies to

1

4m

∣

∣

∣

∣

~

i
∇ψ − 2e

c
Aψ

∣

∣

∣

∣

2

. (1.2)

Now the question arises: how the phenomenological coefficients α and
β depend on temperature? One can address this question by considering
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the simplest case, i. e., a homogeneous superconductor without external
magnetic field, for which ψ is spatially uniform. Then one can find the value
of |ψ|2 which minimizes the free energy Fs, after differentiating dFs/d|ψ|2,
as

|ψ|2 = −α
β
, (1.3)

the free energy density difference between the normal and superconducting
states becomes

Fs − Fn = −α
2

2β
. (1.4)

This difference equals also to −H2
c /8π, which is nothing else but the conden-

sation energy of the superconducting state with Hc being the thermodynamic

critical field. Accordingly, one obtains that α = Hc

√

β

4π
. Expansion of the

thermodynamic critical field into the Taylor series to the first order in tem-
perature around Tc shows that α ∝ (T −Tc). Then one concludes that α = 0
at T = Tc, otherwise ψ will not vanish at Tc. In order to obtain finite ψ for
T < Tc, it follows from Eq. (1.3) that α should be negative in the supercon-
ducting state. Coefficient β is in turn positive and temperature-independent,
therefore it can be assumed to be constant. In Fig. 1.2 two kinds of solutions
of Eq. (1.4) are illustrated schematically for the order parameter ψ, depend-
ing on the sign of α. If α is positive, then a specimen is in the normal state
[Fig. 1.2(a)]. When α is negative, Eq. (1.4) hosts two equilibrium solutions
ψ∞ [Fig. 1.2(b)] showing that the system is in the superconducting state, for
order parameter approaching ψ∞.

1.2.2 Ginzburg-Landau equations

By integrating the free energy density given by Eq. (1.1) over the entire
volume of superconductor and the environment, we arrive at the free energy
functional:

Fs = Fn +
∫

d3r

[

α|ψ|2 + β

2
|ψ|4 + 1

4m

∣

∣

∣

∣

(

~

i
∇ψ − 2e

c
Aψ

)∣

∣

∣

∣

2

+
B2

8π

]

, (1.5)

where Fn is the free energy of the normal state. In order to find an equi-
librium value of ψ which minimizes the free energy functional, one has to
variate Eq. (1.5) with respect to ψ∗. The variation yields:

δψ∗Fs =
∫

d3r

[

αψδψ∗ + βψ|ψ|2δψ∗

+
1

4m

(

~

i
∇ψ − 2e

c
Aψ

)(

− ~

i
∇δψ∗ − 2e

c
Aδψ∗

)]

. (1.6)
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We have to modify the last term in Eq. (1.6) in order to take δψ∗ out of
(~/i)∇δψ∗ and then out of brackets. Therefore, we write

d =
~

i
∇ψ − 2e

c
Aψ, (1.7)

and use the identity ∇(δψ∗d) = d∇δψ∗ + δψ∗∇d, to obtain
∫

d3r∇δψ∗d = −
∫

d3r δψ∗∇d+

∫

d3r∇(δψ∗d). (1.8)

Applying the Gauss’ theorem to the last integral, which is converted into a
surface integral, one obtains

∫

d3r∇(δψ∗d) =

∮

S

d2r δψ∗d. (1.9)

Substituting Eq. (1.9) into Eq. (1.6), we obtain

δψ∗Fs =
∫

d3r

[

αψ+βψ|ψ|2 + 1

4m

(

~

i
∇− 2e

c
A

)2

ψ

]

δψ∗

+

∮

d2r

[

~

i
∇ψ − 2e

c
Aψ

]

δψ∗. (1.10)

To reach δψ∗Fs = 0 for an arbitrary δψ∗, both integrals in Eq. (1.10) should
tend to zero. Thus, we arrive at the first Ginzburg-Landau (GL) equation
from the volume integral:

αψ + βψ|ψ|2 + 1

4m

(

~

i
∇− 2e

c
A

)2

ψ = 0, (1.11)

and the surface integral in Eq. (1.10) gives the boundary condition for Eq.
(1.11):

n

(

~

i
∇ψ − 2e

c
Aψ

)

= 0, (1.12)

where n is the unit vector normal to the superconductor surface. The bound-
ary condition given by Eq. (1.12) means that superconducting current across
the boundary of a superconductor is zero. One can easily verify that min-
imization of Eq. (1.5) with respect to ψ leads to the complex-conjugate of
Eq. (1.11).

Variation of the free energy in Eq. (1.5) with respect to A produces the
GL equation for the vector potential. Recalling that B = rotA one obtains:

δAFs =
∫

d3r

{

1

4m
δA

[(

~

i
∇ψ − 2e

c
Aψ

)(

− ~

i
∇ψ∗ − 2e

c
Aψ∗

)]

+
1

4π
rotArotδA

}

=
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=

∫

d3r

{

1

4m

(

− 2e

c
ψ∗δA

)(

~

i
∇ψ−2e

c
Aψ

)

+
1

4m

(

− ~

i
∇ψ∗ − 2e

c
Aψ∗

)

×
(

− 2e

c
ψδA

)

+
1

4π
rotArotδA

}

.

(1.13)

Using the following property

∫

d3r rotA rotδA =

∫

d3r δArot rotA−
∫

d3r div[δA× rotA]

=

∫

d3r δArot rotA−
∮

S

d2r [δA× rotA], (1.14)

one then modifies the last term rotA rotδA in Eq. (1.13) to rot rotA δA.
Since δA|S = 0, the surface integral of Eq. (1.14) turns to zero. Subsequently,
one obtains:

δAFs =
∫

d3r

{

i~e

2mc
(ψ∗∇ψ − ψ∇ψ∗) +

2e2

mc2
A|ψ|2 + 1

4π
rot rotA

}

δA.

(1.15)

By leading δAFs = 0 for an arbitrary δA, we arrive at the second GL equation
for the vector potential A:

js = −
i~e

2m
(ψ∗∇ψ − ψ∇ψ∗)− 2e2

mc
A|ψ|2, (1.16)

where, by Maxwell’s equation, the current density in the superconductor is

js =
c

4π
rot rotA.

1.2.3 Two characteristic length scales in the GL theory

There are two fundamental characteristic lengths associated with the GL
equations (1.11) and (1.16). Let us recast those equations by introducing a
dimensionless function f = ψ/ψ∞, where ψ∞ = |α|/β, and assuming one-
dimensional case, i. e. f(x), such that f(x) → 1, when x → ∞. Then
dimensionless first GL equation will take the form:

− ξ2d
2f

dx2
− f + f 3 = 0, (1.17)
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where ξ2 =
~
2

4m|α| , and the equation for the vector potential becomes:

rot rotA = −i Φ0

4πλ2
(f ∗∇f − f∇f ∗)− |f |

2

λ2
A, (1.18)

where Φ0 =
hc

2e
is the flux quantum, and λ2 =

mc2β

8π|α|e2 .
Let us consider the case of a superconductor in absence of external mag-

netic field. The function f becomes real, because the vector potential A = 0.
Substituting f(x) by 1− ε(x), where ε(x)≪ 1, Eq. (1.17) modifies to:

ξ2
d2ε(x)

dx2
− 2ε(x) = 0, (1.19)

where only linear term in ε(x) was kept. When x→∞, ε(∞)→ 0, therefore
the solution of Eq. (1.19) is:

ε(x) = ε(0)e−
√
2x/ξ. (1.20)

The solution given by Eq. (1.20) shows that ξ is the characteristic scale over
which f varies. This length is called the coherence length. Since ξ depends
on α, therefore it also depends on temperature as

ξ ∝ (Tc − T )−1/2. (1.21)

From this dependence follows that the coherence length is discontinuous at
T = Tc.

Another quantity λ, introduced in Eq. (1.18), is the London magnetic
field penetration depth. This characteristic length shows how the magnetic
field falls off inside the superconductor, measured from the surface. In GL
theory, the penetration depth depends on α, hence also temperature, as

λ ∝ (Tc − T )−1/2. (1.22)

It is also discontinuous at T = Tc. Therefore, it is convenient to introduce
the ratio of the two length scales κ = λ/ξ, which is finite at T = Tc. This
ratio is called the GL parameter.

Introduction of the GL parameter κ allows to conveniently classify su-
perconductors according to their response to the external magnetic field. If
one considers the normal metal(N)-superconductor(S) interface, and how the
order parameter ψ(x) and the magnetic field H vary in the vicinity of the
interface, then one can distinguish two cases: κ ≪ 1 (λ ≪ ξ) [Fig. 1.3(a)]
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(a)

N S

λ
ξ

H
ψ(x)

(b)

λ
ξ

x

N SH ψ(x)

Figure 1.3: Spatial variations of the order parameter ψ(x) and the magnetic
field H in the vicinity of the normal metal (N) - superconductor (S) interface
for: (a) κ≪ 1; (b) κ≫ 1. Adapted from [86].

and κ ≫ 1 (λ ≫ ξ) [Fig. 1.3(b)]. When κ ≪ 1 [Fig. 1.3 (a)], it implies
that the magnetic field penetrates into superconductor on a small length λ
and falls over this length rapidly. The surface energy of the NS interface
is positive for κ ≪ 1, and negative for κ ≫ 1 and equals zero exactly at
κ = 1/

√
2. Accordingly, if κ ≪ 1/

√
2, then a superconductor is of type I,

otherwise (κ≫ 1/
√
2) it is of type II.

The Ginzburg-Landau theory is a phenomenological theory and was pro-
posed before the microscopic BCS theory for superconductivity was formu-
lated [32]. The exact expressions for the phenomenological coefficients α and
β were unknown. At first the theory was accepted with skepticism. Seven
years later the microscopic BCS theory was proposed, and two years after
that Gor’kov developed the Green’s function technique [36] to show that
the Ginzburg-Landau theory is the limiting case of the BCS theory in the
proximity of the critical temperature and for slowly varying electromagnetic
fields. In the next Section, we introduce the BCS theory, its Hamiltonian
and show how the GL equation can be derived from the BCS theory based
on the Green’s function technique.

1.3 The BCS theory

Although superconductivity was discovered in 1911, the explanation on how
the superconducting state arises was given only 46 years after. In under-
standing the phenomenon, the experimental discovery of the isotope effect
was instrumental. Different isotopes of the same superconducting metals
were found to have different critical temperatures Tc ∝ M−α, where M is
the mass of an isotope and α is the isotope coefficient. For Hg, Pb, Sn, and
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Zn the isotope coefficient α was found experimentally to be close to 1/2.
Then it became clear that the ion lattice participated in the formation of
superconducting state, which was beyond understanding of the theoretical
approaches at that time, since superconductivity occurred at low tempera-
tures, and it was difficult to believe that at such low temperatures the ion
lattice can contribute.

(a)

k1

k′

1

−q

k2

k′

2

(b)

kF
h̄ωD

h̄ωD

Figure 1.4: (a) Diagram showing electron-electron interaction by emitting
and subsequent absorbing of a phonon with momentum q; (b) Fermi sphere
of radius kF near to which electron-phonon interaction occurs in the band
layer proportional to ~ωD above and below of the surface.

Indeed, if we consider a metal at T = 0K, then ions of the crystalline
lattice cannot oscillate. However, free electrons can transport freely through
the lattice, and nothing prevents electrons from creating regions of increased
negative charge in a metal after some time. Suppose an electron with mo-
mentum k1 causes an excess negative charge. The surrounding ions feel the
negative charge and will be attracted to the location of increased electron
density trying to compensate the negative charge. The positive ions moving
towards the negative charge will create an excess positive charge. As a result,
another electron with k2 passing by the positive charge will be attracted to it.
This results in two electrons with momenta k1 and k2 to be attracted to each
other via lattice movement (i.e. phonon) with momentum q. The electron
with momentum k1 will transit to another state with momentum k′

1, while
the second electron with momentum k2 will transit to the state with k′

2 due to
the phonon exchange. The first electron emits the phonon k1−q = k′

1, while
the second absorbs it k2 + q = k′

2. Thus, the electron-phonon interaction
proceeds with the momentum conservation:

k1 + k2 = k′
1 + k′

2. (1.23)

This process is illustrated in Fig. 1.4(a). Such attraction arises only if the
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lattice vibrations are in phase with the electron density oscillation with the
frequency ω = (εk1

− εk′

1
)/~. The characteristic frequency of the ion lattice

vibration is the Debye frequency ωD. Therefore, two electrons will attract
each other if the electron density oscillation has frequency ω < ωD.

The idea about electron interacting with another electron via phonon was
a major breakthrough in understanding of superconductivity. The question
left to address was which electrons participate in the electron-phonon inter-
action? At T = 0 K electrons occupy all the states up to the Fermi level with
kF in the Fermi sphere in the momentum space. Since all the states with
k < kF are occupied, the electrons can scatter only to the states above the
Fermi level with k > kF , due to the Pauli exclusion principle. Hence, it was
proposed that electrons with energies that differ from the Fermi energy by
no more than ~ωD are attracted to each other and participate in the phonon
mediated electron-electron interaction. The last forms the foundation of the
BCS theory [32]. The interaction between electrons is replaced by a potential
Vkk′ in the BCS theory, where

Vkk′ =

{

−V, |εk − εF| ≤ ~ωD, |εk′ − εF| ≤ ~ωD

0, |εk − εF| > ~ωD, |εk′ − εF| > ~ωD

, (1.24)

i. e. it is attractive in the layer of thickness ∼ ~ωD above and below of the
Fermi level [Fig. 1.4(b)], otherwise it is zero. Attraction between electrons
near the Fermi surface arises even at a very weak V causing the instability of
the ground state of the Fermi sea. This attractive interaction will decrease
the ground state energy of previously non-interacting electrons leading to a
new state. In order to find the ground state energy of the emerged state,
one needs to construct a Hamiltonian which incorporates electron-electron
interaction satisfying Eqs. (1.23) and (1.24).

1.3.1 Emergence of an energy gap

Hamiltonian of free electrons is known and it contains only the kinetic energy
which can be written in terms of operators of the second quantization as

H0 =
∑

kα

~
2k2

2m
a+kαakα, (1.25)

where
~
2k2

2m
is the energy of an electron in the state k, and α denotes the spin

index in the summation. The operators a+kα and akα are the second quantiza-
tion operators. Operating by a+kα on a vacuum state |ψ0〉 creates an electron
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in the state kα, while the operator akα will annihilate an electron in the
state kα. The creation and annihilation operators satisfy the anticommuting
rules:

a+kαa
+
lβ + a+lβa

+
kα = 0,

a+kαalβ + alβa
+
kα = δklδαβ, (1.26)

akαalβ + alβakα = 0.

(a)

k1

k2

q2h̄ωD

(b)

k1

k2

2h̄ωD

Figure 1.5: (a) The diagram shows that if the total momentum of coupled
electrons is q, then the interaction occurs only between the electrons in the
dashed area; (b) If q = 0, then the interaction area increases significantly
meaning that electrons with the same magnitude but oppositely directed
momenta couple near the Fermi surface in the band of thickness 2~ωD.

However, when a small attraction arises between the electrons occupying
the states near the Fermi surface, the electrons cannot be considered free
anymore, and Hamiltonian, given by Eq. (1.25) needs modifying to describe
the emerged instability. On the other hand, Eq. (1.23) implies that electron-
electron scattering occurs with the momentum conservation. If we consider
two electrons with oppositely directed momenta k1 and k2, and associate
a sphere with each electron as shown in Fig. 1.5(a), then only electrons
occupying the sates in dashed regions can satisfy Eq. (1.23). If we decrease
q, the dashed areas will grow thus increasing the interaction region. Two
spheres will tend to coincide when q → 0 [Fig. 1.5(b)]. It is not difficult
to see that k2 = −k1, when q = 0. Thus, we conclude that electrons with
the same magnitude but oppositely directed momenta k and −k pair near
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the Fermi surface in the band of thickness ∼ ~ωD and they scatter to a new
state (k′,−k′) in the band ∼ ~ωD. By instability of the Fermi sea one means
pairing of electrons, i. e. formation of so-called Cooper pairs.

Taking into account the foundation of the BCS theory given by Eq. (1.24),
and that electrons with oppositely momenta pair, the corresponding interac-
tion energy can be formulated as

Hint =
1

2

∑

k,k′,α,β

Vkk′a+k,αa
+
k′,βak′,βak,α, (1.27)

where β is the spin index. Then the full Hamiltonian of the system is:

H =
∑

kα

~
2k2

2m
a+kαakα +

1

2

∑

k,k′,α,β

Vkk′a+k,αa
+
k′,βak′,βak,α. (1.28)

Eq. (1.28) shows that pairing is energetically favorable, because it leads to
rearrangement of the ground state and decreases its energy. The system
should spend a finite energy to excite electrons, allowing them to pair. Due
to this an energy gap appears in the energy spectrum which is equal to the
pairing energy. By operating Hamiltonian given by Eq. (1.28) on the ground
state, one can find the energy gap.

The trail function of the interacting electrons can be chosen in the form as
it was introduced by Bardeen, Cooper and Schrieffer in their seminal paper
of 1957 [32, 29]:

ψ̃ =
∏

k

(uk + vka
+
k↑a

+
−k↓)ψ0, (1.29)

with
vk
uk

= gk, u2k + v2k = 1, (1.30)

where Eqs. (1.30) assure the normalization of ψ̃, i. e.

∫

V

|ψ̃|2dr = N , where

N is the number of electrons in the system. With the choice of the trail
function given by Eq. (1.29), one has to minimize a Lagrange multiplier:

Es = 〈ψ̃|H|ψ̃〉 − EF 〈ψ̃|N |ψ̃〉, (1.31)

because the number of particles is not fixed in this case, and the Fermi energy
EF serves as the Lagrange multiplier.

The contribution of the kinetic energy along with the Lagrange multiplier
in Eq. (1.31) is:

〈ψ̃|H0|ψ̃〉 − EF 〈ψ̃|N |ψ̃〉 =
∑

kα

v2k ζk =
∑

k

2 v2k ζk, (1.32)
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where ζk =
~
2k2

2m
− EF is the energy of an electron in the state k measured

from the Fermi level EF (the summation over the spin index was done, and
counted in the sum as factor 2). This matrix element means that in the state
ψ̃ the probability to find a state with k occupied is v2k.

The matrix element for the interaction part is:

〈ψ̃|Hint|ψ̃〉 =
1

2

∑

k,k′,α,β

Vkk′vk′ukvkuk′ =
∑

k,k′

Vkk′vk′ukvkuk′ , (1.33)

where summation over the spin indices was done. In Eq. (1.33) we considered
only matrix elements which give contribution into transition of a pair from
the state (k ↑,−k ↓) to the state (k′ ↑,−k′ ↓).

Thus, we find that the total energy of a superconductor in the state
described by Eq. (1.29) is:

Es =
∑

k

2 v2k ζk +
∑

k,k′,q

Vkk′vk′ukvkuk′ . (1.34)

Minimizing Eq. (1.34) with respect to v2k leads to the equation:

2ζk − V
(1− 2v2k)

vkuk

∑

k′

uk′ vk′ = 0, (1.35)

where the summation occurs only over the states near the Fermi surface
satisfying Eq. (1.24). Therefore the matrix element Vkk′ was replaced by its
approximation value −V . As a result from the previous equation it follows

vkuk
(1− 2v2k)

=
∆k

2ζk
, (1.36)

where

∆k = V
∑

k′

uk′ vk′ (1.37)

defines the energy gap. Expressing v2k from Eq. (1.36) leads to a quadratic
equation for it:

v4k − v2k +
∆2

k

4E2
k

= 0, (1.38)

where

Ek =
√

ζ2k +∆2
k, (1.39)



1.3 The BCS theory 17

is the energy of excitation showing that the occupied states are separated
from the first excited state by the energy gap ∆k. Then

v2k =
1

2

(

1− ζk
Ek

)

. (1.40)

The minus sign in Eq. (1.40) stems from a general argument that, as k→ 0,
v2k → 1, while ζk → −EF . Eq. (1.40) shows that the total energy of the
system reaches its minimum when the electron distribution in the vicinity of
the Fermi level is “smeared out” over the energy interval ∼ 2∆. This occurs
at 0 K.

Inserting Eq. (1.40) into Eq. (1.37) and taking into account Eq. (1.39),
one obtains:

∆k = V
∑

k′

∆k′

2
(

ζ2k′ +∆2
k′

) . (1.41)

This equation always has the trivial solution ∆k′ , corresponding to

vk′ =

{

1, ξk′ < 0

0, ξk′ > 0
. (1.42)

Then

∆k′ = 0 for |ξk′ | > ~ωD,

∆k′ = ∆ for |ξk′ | < ~ωD. (1.43)

(1.44)

We can then rewrite Eq. (2.26) as

1 = V
∑

k′

1

2
(

ξ2k′ +∆2
) . (1.45)

Using the formula
∑

k

· · · =
∫

~ωD

−~ωD

. . . N(ζ)dζ, (1.46)

to go from the summation over k to an integration over ζ, where N(ζ) is
the density of states at the energy ζ. Since we are interested in an energy
interval of width ~ωD ≪ EF , we can replace N(ζ) by its value at the Fermi
level N(0) = mkF/2π

2
~
2. Then Eq. (1.45) reduces to:

1 =
N(0)V

2

∫

~ωD

−~ωD

(ζ2 +∆2)−1/2dζ. (1.47)
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We are interested in the weak coupling limit N(0)V ≪ 1, therefore the
solution of Eq. (1.47) is:

∆ ≃ 2~ωD exp
(

− 1

N(0)V

)

. (1.48)

This is the fundamental result of the BCS theory stating that the energy gap
is proportional to the Debye temperature ~ωD = kBθ, and depends only on
the point like interaction V and the density of states at the Fermi level N(0).

Once ∆ is known explicitly, we can calculate the kinetic and potential
energies. Then, one obtains that the kinetic energy is equal to:

〈ψ̃|H0|ψ̃〉 = 2
∑

k<kF

ξk +
∆2

V
− N(0)∆2

2
, (1.49)

where the first term is the energy of the normal state where ∆ = 0. Inserting
∆ into Eq. (1.33) gives the interaction energy:

〈ψ̃|Hint|ψ̃〉 = −
∆2

V
. (1.50)

Then the energy difference between the normal and the superconducting state
is:

〈ψ̃|H|ψ̃〉 − 〈ψn|H|ψn〉 = −
N(0)∆2

2
, (1.51)

from which follows that the energy of the condensed state is lower than that
of the normal state. Thus, instability in the Fermi sea due to pairing of
electrons leads to emerging of a new state with lower total energy and a gap
in the energy spectrum.

1.3.2 The GL equation from the BCS theory

In this Subsection we demonstrate how the GL equation for a single band
superconductor can be derived from the BCS theory. We recall that the GL
formalism works near Tc, therefore we use the assumption that the energy gap
is small and varies slowly near to the critical temperature Tc. The derivation
is founded on the method proposed by Gor’kov [36] and based on the Green’s
function formalism at arbitrary temperatures and fields.

First we rewrite Hamiltonian given by Eq. (1.28) in terms of new opera-
tors Ψα(r) and Ψ†

α(r) by performing transformation from the second quanti-
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zation operators to new operators as

Ψα(r) =
∑

k

eikrakα,

Ψ†
α(r) =

∑

k

e−ikra†kα. (1.52)

Basically, this is a transformation from the momentum representation to the
real space. The new operators satisfy anticommuting rules:

Ψα(r)Ψβ(r
′) + Ψβ(r

′)Ψα(r) = 0,

Ψ†
α(r)Ψ

†
β(r

′) + Ψ†
β(r

′)Ψ†
α(r) = 0, (1.53)

Ψ†
α(r)Ψβ(r

′) + Ψβ(r
′)Ψ†

α(r) = δαβδ(r− r′).

After substituting Eqs. (1.52) into Eq. (1.28), Hamiltonian of the supercon-
ducting state modifies to:

HS =

∫ {

−
∑

α

Ψ†
α(r)
∇2

2m
Ψα(r) +

Λ

2

∑

αβ

Ψ†
α(r)Ψ

†
β(r)Ψα(r)Ψβ(r)

}

dr,

(1.54)

where we replaced the interaction term Vkk′ by Λ and further we assume that
Λ < 0. The new operators do not incorporate time-dependence, therefore one
has to carry out a new transformation to the Heizenberg representation, in
which operators acquire the time-dependence:

Ψ̃α′(r) = eiHStΨα′(r)e−iHSt. (1.55)

The new operators Ψ̃α′(r) and Ψ̃†
α′(r) satisfy the equation:

i
∂Ψ̃α′(r)

∂t
= [Ψ̃α′(r), HS],

i
∂Ψ̃†

α′(r)

∂t
= [Ψ̃†

α′(r), HS]. (1.56)

Inserting Eqs. (1.55) and (1.54) into Eq. (1.56) and using the anticommuting
rules given by Eq. (1.53), one arrives at the equation of motion for the
operators Ψ̃α′ and Ψ̃†

α′ :
(

i
∂

∂t
+
∇2

2m

)

Ψ̃α′ − ΛΨ̃†
αΨ̃αΨ̃α′ = 0,

(

i
∂

∂t
− ∇

2

2m

)

Ψ̃†
α′ + ΛΨ̃†

α′Ψ̃
†
αΨ̃α = 0. (1.57)
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One can obtain the Green’s function from Eq. (1.57) by multiplying the first
equation, for example, by −iΨ̃†

β(r
′) and applying the time-ordering operator

T as
(

i
∂

∂t
+
∇2

2m

)

Gαβ(r, r
′) + iΛ〈T

(

Ψ̃†
αΨ̃αΨ̃α′Ψ̃†

β

)

〉 = δ(r− r′), (1.58)

where Gα′β(r, r
′) = −i〈T

(

Ψ̃α′(r)Ψ̃†
β(r

′)
)

〉 is the Green’s function.

The term 〈T
(

Ψ̃†
αΨ̃αΨ̃α′Ψ̃†

β

)

〉 in Eq. (1.58) represents an average of four-
fermion attractive potential. We can apply the Wick’s theorem to the term
and find this average. According to the Wick’s theorem, the average of four
operators generates averaged pairs of operators Ψ̃† and Ψ̃. From all the
generated pairs we are interested only in pairs which correspond to creation
of a pair 〈T

(

Ψ̃†Ψ̃†)〉 and annihilation of a pair 〈T
(

Ψ̃Ψ̃
)

〉. As a result, the
average splits into:

〈T
(

Ψ̃†
αΨ̃αΨ̃α′Ψ̃†

β

)

〉 = Ψ̃†
αΨ̃

†
β〈T
(

Ψ̃αΨ̃α′

)

〉+ 〈T
(

Ψ̃†
αΨ̃

†
β

)

〉Ψ̃αΨ̃α′ . (1.59)

Moreover, 〈T
(

Ψ̃†Ψ̃†)〉 corresponds to 〈N + 2|T
(

Ψ̃†Ψ̃†)|N〉, where N is the

number of electrons in the system, while 〈T
(

Ψ̃Ψ̃
)

〉 satisfies 〈N |T
(

Ψ̃Ψ̃
)

|N+2〉.
One can rewrite the pair averages as

〈N |T
(

Ψ̃α(r)Ψ̃β(r
′)
)

|N + 2〉 = e−2iµtFαβ(r− r′),

〈N + 2|T
(

Ψ̃†
α(r)Ψ̃

†
β(r

′)
)

|N〉 = e2iµtF †
αβ(r− r′), (1.60)

where 〈T
(

Ψ̃α(r)Ψ̃β(r
′)
)

〉 = Fαβ(r−r′) is the anomalous Green’s function [87]
and µ is the chemical potential. After inserting Eq. (1.59) into Eq. (1.58)
and employing the expression for the anomalous Green’s function, Eq. (1.58)
modifies to

(

i
∂

∂t
+
∇2

2m

)

Gαβ(r, r
′)− iΛFαβ(0+)F †

αβ(r, r
′) = δ(r− r′), (1.61)

where Fαβ(0+) = e2iµt〈N |
(

Ψ̃αΨ̃β

)

|N + 2〉. Performing similar arithmetical
operation with respect to the second equation of Eq. (1.57), one obtains
equation for the anomalous Green’s function Fαβ(r, r

′):

(

i
∂

∂t
− ∇

2

2m
− 2µ

)

F †
αβ(r, r

′) + iΛF †
αβ(0+)Gαβ(r, r

′) = 0. (1.62)

The properties of Gαβ(r, r
′) and Fαβ(r, r

′) are described in detail in Ref. [87].



1.3 The BCS theory 21

We can apply the Wick’s theorem to the four-fermion attractive potential
in Eq. (1.54) and rewrite the interaction term in Hamiltonian via averaged
pairs 〈T

(

Ψ̃†Ψ̃†)〉 and 〈T
(

Ψ̃Ψ̃
)

〉 as

HBCS = H0 −
∫

{

Ψ̃†
α(r)Ψ̃

†
β(r)∆(r) + ∆(r)∗Ψ̃α(r)Ψ̃β(r)

}

dr, (1.63)

where we introduced the gap ∆(r) = |Λ|〈T
(

Ψ̃α(r)Ψ̃β(r)
)

〉 = |Λ|Fαβ(r, r′),
and replaced the kinetic energy by H0. Eq. (1.63) represents the BCS
Hamiltonian.

Eqs. (1.61) and (1.62) were derived in absence of the magnetic field. In
order to study the response of superconductor to the magnetic field, we have
to include the magnetic field into Eqs. (1.61) and (1.62). Therefore, we
modify the kinetic term in the equations as

∇2

2m
→ 1

2m

(

∂r − ieA(r)
)2

.

It is also convenient to perform the Fourier transform of the Green’s functions
from the time dependence in Eqs. (1.61) and (1.62) to the summation over
frequency. After those alterations [87], we can rewrite Eqs. (1.61) and (1.62)
as
{

iω +
1

2m

(

∂r − ieA(r)
)2

+ µ

}

Gω(r, r′) + ∆(r)F †
ω(r, r

′) = δ(r− r′),

{

− iω +
1

2m

(

∂r + ieA(r)
)2

+ µ

}

F †
ω(r, r

′)−∆∗(r)Gω(r, r′) = 0, (1.64)

where Gω(r, r′) and F †
ω(r, r

′) are Fourier components of the Green’s functions.
We redefined the gap function in Eq. (1.64) as

∆∗(r) = |Λ|T
∑

ω

F †
ω(r, r

′). (1.65)

It was shown by Gor’kov [36] that Eq. (1.65) can be expanded in powers
of ∆ in the vicinity of the critical temperature 1 − T/Tc ≪ 1, since as
∆(r) is small near Tc. We assume that the characteristic length scale is
the correlation radius of electrons ξ0 ∼ vF/Tc, where vF is the velocity of
electrons at the Fermi level, and this length scale is much smaller than the
magnetic penetration depth δ. Thus, all the quantities, including the field,
vary on the length scales exceeding the principal length scale of the theory.

Fourier components Gω(r, r′) and F †
ω(r, r

′) are unknown. Assuming that
the magnetic field is small near Tc, we can find the expressions for them by
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expanding the components as [36, 87]

Gω(r, r′) = G(0)ω (r, r′)−
∫

G(0)ω (r, l)∆(l)F †
ω(l, r

′)dl,

F †
ω(r, r

′) =

∫

G(0)−ω(l, r)∆
∗Gω(l, r′)dl, (1.66)

where G(0)ω and F †(0)
ω are the known Fourier components in the absence of

the magnetic field [87]. Substituting the first equation of Eq. (1.66) into the
second equation, and afterwards inserting the obtained expression into Eq.
(1.65), one arrives at the expansion [36, 87]:

∆∗(r) =|Λ|T
∑

ω

∫

G(0)ω (l, r)∆∗(l)G(0)−ω(l, r)dl− |Λ|T
∑

ω

∫ ∫ ∫

G(0)ω (l,m)

×∆(m)G(0)ω (s, r)∆∗(s)G(0)−ω(s,m)∆∗(l)G(0)−ω(l, r)dl dm ds. (1.67)

In fact, the expansion given by Eq. (1.67) represents a long series of in-
tegrals. However, we are interested only in two first terms shown in the
expansion, because they produce at the end the final result in the form of
the GL equation. The first integral in Eq. (1.67) generates the result [36, 87]:

(

1

4m

(

∂r + 2ieA(r)
)2

+
1

η

(Tc − T )
Tc

)

∆∗(r), (1.68)

where η =
7ζ(3)

6(πTc)2
εF . The second integral in Eq. (1.67) yields [36, 87]:

7ζ(3)

8(πTc)2η
∆∗(r)|∆(r)|2. (1.69)

Combining the results for both integrals leads to equation:

{

1

4m

(

∂r + 2ieA(r)
)2

+
1

η

(

Tc − T
Tc

− 7ζ(3)

8(πTc)2
|∆(r)|2

)}

∆∗(r) = 0. (1.70)

Eq. (1.70) describes the behavior of a superconductor in the vicinity of the
critical temperature 1− T/Tc ≪ 1.

Let us now introduce a new function ψ(r) proportional to ∆(r) as

ψ(r) =

√

7ζ(3)N(0)

8(πTc)2
∆(r), (1.71)
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where N(0) is the density of states at the Fermi level [36, 87]. By taking the
complex conjugate of Eq. (1.70) and inserting ψ(r) into the equation, Eq.
(1.70) modifies to a new form as

{

1

4m

(

∂r − 2ieA(r)
)2

+
1

η

(

Tc − T
Tc

− 1

N(0)
|ψ(r)|2

)}

ψ(r) = 0. (1.72)

Eq. (1.72) is the Ginzburg-Landau equation and we can rewrite it in a more
familiar way:

αψ(r) + βψ(r)|ψ(r)|2 + 1

4m

(

~

i
∇− 2e

c
A

)2

ψ(r) = 0, (1.73)

where we found explicit expressions for the previous phenomenological coef-
ficients α and β:

α =
(T − Tc)
η Tc

, β =
1

η N(0)
. (1.74)

Eq. (1.72) acquired the form similar to the quantum mechanical equation
characterizing behavior of a particle with the mass 2m and the charge 2e.
Then the gap function ∆(r) can be interpreted as the quantity which is
proportional to the wave function of the paired electrons or the wave function
with respect to the center of inertia of the pair.

This remarkable result was important, because it proved the correctness
of the phenomenological Ginzburg-Landau theory, showed that supercon-
ductors are well described by the Ginzburg-Landau equations near Tc, and
provided the microscopic expressions for the previously phenomenological
coefficients in the GL theory.

1.4 Multiband superconductors

The fundamentals of the BCS theory are established on the facts that elec-
trons near the Fermi surface form Cooper pairs and then condense into a
common quantum state, with which an energy gap is associated. However,
a real superconducting specimen can comprise more than one Fermi surface
resulting in appearance of multiple energy gaps. Each of these gaps is asso-
ciated with charge carriers which form Cooper pairs. If in the BCS theory
pairing was due to electron-phonon interaction near the Fermi surface and
the Debye frequency ωD was dependency range over which the interaction
occurred, for multiband superconductors formation of the Cooper pairs does
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not necessarily occur only due to the electron-phonon interaction and ωD is
no longer the single characteristic quantity for the pairing.

The idea that a superconductor can possess multiple gaps was suggested
by Moskalenko [88] and simultaneously by Suhl [89] in 1959, shortly after
the BCS theory was proposed, by generalizing the BCS theory for a two-gap
superconductor. Afterwards, in 1966 Leggett suggested existence of a new
kind of collective excitations for two-gap superconductors [90]. His idea was
that if a system contains two coupled gaps then a Cooper pair of one gap
can scatter into a Cooper pair of the second gap thus causing a counterflow
between these two gaps. The counterflow of the two gaps leads to small
oscillations of the relative phase of the two condensates. The Leggett mode
is gapped. Although these collective excitations were predicted in 1966, the
experimental observation of the Leggett mode was achieved only in 2007 [62],
after the discovery of a two-gap superconductor MgB2 [51]. In the experiment
the gap of these oscillations was measured [62].

This discovery of MgB2 was the result of the search for higher Tc values
motivated by a basic desire to find an intrinsic limiting temperature and
by technological interest to make superconducting devices. In conventional
superconductors, there are three parameters on which the value of critical
temperature depends: the phonon energy, the density of states, and the
electron-phonon coupling strength. Experimentally, it is possible to tune
the density of states by varying the chemical composition in an isostructural
series of compounds. In addition, using light elements can raise ωD. Based on
these features, labs around the world pursued superconductivity in ternary
or quaternary compounds that were rich in light elements such as lithium,
boron, carbon, and magnesium. In 2001 it was reported that MgB2, having
four electronic bands crossing the Fermi level and two distinct gaps, entered
superconducting regime at Tc = 39 K [51].

A few years later iron-pnictide superconductors were discovered [63, 64,
66, 52, 73, 100, 67, 101, 102, 65, 103, 104, 72, 105] which are also multiband
superconductors [73, 74]. Unlike MgB2, iron-arsenides are not intermetal-
lic compounds and there is evidence that superconductivity co-exists with
antiferromagnetism in these compounds. Thus, iron-based superconductors
present an even richer platform for further study [68, 69].

However, it had been the discovery of MgB2 that gave initial rise to a new
epoch in superconductivity stemming from the multigap nature. The concept
of two gaps in a single superconductor has been considered theoretically ear-
lier [88, 89] but MgB2 was the first example of distinct two-gap superconduc-
tivity found in experiment. Over the last decade multiband superconductors
have been intensely studied, and were found to exhibit significantly richer
characteristics compared to their single-band counterparts [91]. Therefore,



1.4 Multiband superconductors 25

in what follows, we discuss the crystal structure of MgB2 and an iron-based
superconductor, their complex Fermi surface appearance, the isotope effect
measurements, evidence of existence of multiple gaps in those materials and
pairing mechanisms.

1.4.1 The crystal structure of MgB2 and some of pnic-
tides

Magnesium diboride undergoes the transition to superconducting state at
Tc = 39 K [51]. MgB2 is a binary intermetallic compound with a simple
crystal structure incorporating hexagonal Mg planes interlayered with hon-
eycomb B sheets, as shown in Fig. 1.6(a). This crystal structure leads to non-
trivial links between the arrangement of the Mg atoms and the B atoms and
the resulting band structure and the electronic states [56]. MgB2 incorporates
two distinct bands: a two-dimensional σ band and a three-dimensional π one.
The σ band involves electrons of the B plane creating a two-dimensional net-
work of delocalised electrons which can conduct only in the basal plane of B.
On the other hand, the π band forms a three-dimensional network and links
neighboring B layers through the inert Mg ions allowing electrons to conduct
perpendicularly to the B planes as well as parallel to the B sheets [56].

(a)

Mg

B

(b)

Figure 1.6: (a) Crystal structure of MgB2: hexagonal planes of magne-
sium (blue) interlayered with honeycomb layers of boron (pink) (adapted
from [51]); (b) Charged (Ba)δ+ layers alternating with layers of (FeAs)δ− in
the crystal structure of BaFe2As2 (adapted from [66]).

Iron-based layered pnictide superconductors exhibit more complex crys-
tal structure. The superconductivity has first been discovered in oxygen
containing compounds like RFeAsO, where R can be La, Nd or Sm, as well
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as in oxygen-free compounds AFe2As2 (where A=Ba,Sr,Ca). The critical
temperature of these compounds ranges from 26 to 52 K. For example, the
crystal structure of BaFe2As2 is shown in Fig. 1.6(b). BaFe2As2 has a quasi-
two-dimensional tetragonal structure, which consists of charged (Ba)δ+ layers
alternating with layers of (FeAs)δ− as shown in Fig. 1.6(b). The parent mate-
rials of iron-based superconductors show antiferromagnetic long-range order
below 150 K [64, 100, 67, 102], and superconductivity occurs upon doping of
either electrons [64, 65, 103, 104] or holes [66] into the FeAs layers.

1.4.2 The Fermi surface of multiband superconductors

Since the exemplified multiband superconductors incorporate intricate crys-
tal structure, it is not surprising that they do not exhibit an individual Fermi
surface but rather an intricate collection of Fermi sheets separated in the
momentum space and centered around the symmetry points of the Brillouin
zone. The Fermi sheets corresponding to MgB2 are shown in Fig. 1.7(a). The
vertical sections of cylinders at the corners are associated with the σ band of
MgB2 while the three-dimensional network of tunnels and caves in the center
of the zone is linked with the π band. The letters designate the symmetry
points of the hexagonal Brillouin zone in momentum space.

(a) (b)

Figure 1.7: (a) Fermi surface of MgB2. The vertical sections of cylinders at
the corners are associated with the σ bands; the 3D network of tunnels and
caves in the center of the zone is associated with the π bands. The letters
designate the symmetry points of the hexagonal Brillouin zone in momentum
space (adapted from [55]); (b) Fermi surface of BaFe2As2 (adapted from [72]).

The Fermi surface of BaFe2As2 is shown in Fig. 1.7(b). It consists of
an inner and outer hole pockets centered at Γ (denoted by G in Fig. 1.7(b))
point of the Brillouin zone, and four pairs of inner and outer electron pockets
at X points.
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1.4.3 The isotope effect measurements

The next important ingredient in understanding multiband superconductors
is the presence of the isotope effect as in the case of the single band super-
conductors. The isotope coefficient αi, where i is the index of the elemental
component in the compound, is defined as

αi = −
d lnTc
d lnMi

, (1.75)

where Mi is the magnetization of a component. For the conventional super-
conductors for the full isotope effect α = 1/2, and is the characteristic of
electron-phonon pairing mechanism.

(a)
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Figure 1.8: Isotope effect in MgB2. (a) Magnetization divided by applied
field as a function of temperature for Mg10B2 and Mg11B2 (adapted from
[52]); (b) Magnetization divided by applied field as a function of tempera-
ture for Mg10B11B and sum of Mg10B2 and Mg11B2 data shown in panel (a)
(adapted from [52]); (c) Magnetization divided by applied field as a function
of temperature for combination of aMgbB2 where a = 24, n, 26 and b = 10, 11;
nMg indicates samples with natural Mg (adapted from [53]).

The first measurements of the isotope effect in MgB2 [52, 57, 58, 59, 60]
showed that when 11B was replaced by 10B the critical temperature was in-
creased by 1 K, as shown in Fig. 1.8(a). The isotope coefficient for B was
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Figure 1.9: The temperature dependence of derivative of the resistivity
dρ/dT in Ba1−xKxFe2As2 (with x = 0.4) showing the increase of critical
temperature upon substitution of 56Fe atoms by 54Fe. Inset features the
temperature dependence of the resistivity (adapted from [105]).

found to be αB = 0.26(3) [52]. However, substitution of 24Mg for 26Mg
showed almost no shift in Tc [53] [Fig. 1.8(c)]. αMg was found to be 0.02(1).
The total isotope effect for Mg and B together also exhibited a small effect
in the temperature shift [52] [Fig. 1.8(b)]. We recall that there are three de-
terministic quantities for the critical temperature: the characteristic phonon
energy ~ωD, the density of states at the Fermi level N(EF ), and the strength
of the electron-phonon interaction V . The phonon energies of MgB2 were
found to be high but not especially different from other diboride compounds
that have much lower values of Tc. MgB2 does not have d-electrons result-
ing in low density of states. There is only one key characteristic left which
is the electron-phonon coupling strength, prompting the idea of a selective
electron-phonon interaction in MgB2. The large isotope effect for B indicates
that phonon associated with B vibrations play a more significant role in the
superconductivity of MgB2.

The isotope effect was also measured in iron-pnictide superconductor
Ba1−xKxFe2As2 at substitution of 56Fe by 54Fe, as depicted in Fig. 1.9 [105].
This substitution showed a significant isotope effect with αFe = 0.35. Al-
though the isotope effect is a feature of electron-phonon pairing in a su-
perconductor, theoretical calculations indicated that the electron-phonon in-
teraction is not strong enough in this compound to give rise to such high
transition temperatures observed in numerous experiments [63, 64, 66, 52,
73, 100, 67, 101, 102, 65, 103, 104, 72, 105]. The exact pairing mechanism in
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iron-pnictides is currently in dispute. However, it is evident that supercon-
ductivity in these compounds emerges from specific structural and electronic
conditions in the (FeAs)δ− layer.

1.4.4 Experimental evidence of multiple gaps

The knowledge of the symmetry and shape of the superconducting gap in
momentum space is essential for constructing the correct model of the pairing
mechanism and further theoretical considerations.
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Figure 1.10: Temperature dependence of two energy gaps in MgB2. (a)
Symbols stand for the experimental data. ∆S(T ) denoted by solid symbol
corresponds to the π band, while ∆L(T ) designated by open symbols is associ-
ated with the σ band. The solid lines represent BCS predictions. The sample
entered the superconducting regime at Tc = 39.5 K (adapted from [93]); (b)
Filled and open circles represent the smaller ∆S(T ) and larger ∆L(T ) gaps
respectively. Broken and dotted lines show the predicted temperature de-
pendence of superconducting gaps from BCS theory. MgB2 underwent the
transition at Tc = 36.5 K (adapted from [95]).

The multigap nature of superconductivity in MgB2 had been first theo-
retically predicted [54] and then experimentally established by a number of
spectroscopies [93, 94, 95]. The two gaps in MgB2 arise naturally from the
different strengths of the electron-phonon coupling in the σ and π bands.
The gaps were observed in the superconducting tunneling behavior measure-
ments [93, 94, 95]. Fig. 1.10 shows the experimental results taken with a
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Figure 1.11: The image illustrates the evidence of three distinct gaps in
Ba0.6K0.4Fe2As2 shown in inset, all gaps appear at the same temperature
Tc = 37 K. Experimental data shown by dots, while solid lines are predicted
by the theory. The main image demonstrates the complex structure of Fermi
surfaces in this compound (adapted from [73]).

scanning tunneling microscope on a polycrystalline sample of MgB2. Both
gaps arise at the same critical temperature [93, 94, 95], which indicates sig-
nificant interaction between them. The two gaps are however not increasing
equally at lower temperature, since there is a weaker gap denoted by ∆S(T )
which corresponds to the weak π band, and a larger gap ∆L(T ) associated
with the σ band. As shown in Fig. 1.10, the temperature dependence of both
gaps follows the BCS behavior.

The situation becomes somewhat more complicated with respect to the
iron-based superconductors. One of the most vital questions is whether the
mechanism of superconductivity in these materials is similar to that in con-
ventional superconductors or the cuprate high temperature superconductors.
Or this family of materials offers a completely new route to the supercon-
ducting state? On the experimental side, angle-resolved photoelectron spec-
troscopy (ARPES) for Ba0.6K0.4Fe2As2 indicated three nearly isotropic and
nodeless superconducting gaps of different values [73] [shown in Fig. 1.11].
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Similar ARPES measurements of the superconducting gap in NdFeAsO0.9F0.1

single crystals [106] showed a nodeless superconducting gap in the hole pocket
around the Γ point of Brillouin zone. A nodeless gap was also observed in
SmFeAsO0.85F0.15 measured by Andreev spectroscopy [107]. On the other
hand, NMR studies of the superconducting properties of iron-arsenide based
compound PrFeAsO0.89F0.11 showed two gaps opening below Tc, with nodes
in the gap function [74].

1.4.5 The pairing symmetry

Specific heat measurements [96, 97] and the isotope effect [52] indicate that
MgB2 is an conventional superconductor with s-wave pairing. In conven-
tional superconductors, the electron-phonon interaction creates Cooper pairs
of approximately equal pairing strength, distributed uniformly over the Fermi
surface. However, in MgB2 there is one high-energy phonon (≈ 570 meV),
associated with the in-plane motion of the B atoms, coupling strongly to
electrons of σ band. Therefore, the σ band hosts more Cooper pairs becom-
ing the stronger band, while the π band will host lower density of Cooper
pairs. Thus, MgB2 involves two bands with different electron-phonon cou-
pling [57, 58, 59, 60, 53, 98]. This explains the isotope effect stemming mostly
from the B atoms. Moreover, the electron-phonon coupling strength in the
σ band exceeds significantly the characteristic phonon energy ~ω. The lat-
ter feature sheds light on found high critical temperature Tc = 39 K for a
conventional superconductor. The temperature behavior of gaps in MgB2

nevertheless follows the BCS trend.
In case of the iron-based superconductors, the pairing mechanism and

the gap symmetry are still in dispute. There is experimental evidence of
the isotope effect in Ba1−xKxFe2As2 [105], but the electron-phonon pairing
cannot explain the observed high critical temperatures of iron-pnictide su-
perconductors. The NMR measurements in LaFeAs(O1−xFx) indicated that
the spin-lattice relaxation rate changed with temperature as 1/T1 ∝ T 3,
which is the evidence of a d-wave, unconventional superconductor [68, 69].
T1 is the longitudinal (or spin-lattice) relaxation time, the characteristics of
NMR being the mechanism by which the component of the magnetization
vector along the direction of the static magnetic field reaches thermodynamic
equilibrium with its surroundings (by which a lattice are meant) in nuclear
magnetic resonance. In superconductivity the quantity 1/T1 is measured. If
the behaviour of 1/T1 follows the T 3 trend in a superconducting material,
where T is the temperature, then the superconductor has the d-wave pairing
symmetry. If 1/T1 follows the exponential trend, then the superconductor is
conventional. However, d-wave superconductors do not host nodeless gaps
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nor multiple gaps [73, 74]. On the other hand, the theoretical result of the
gap calculation [70, 71] showed that the T dependence of 1/T1 in a dirty s±
superconductor mimics T 3 behavior over a wide range of T , and becomes
exponential (the BCS behavior) only at very low temperatures. It was also
shown in Ref. [70] that the gap changes sign between different parts of the
Fermi surface suggesting presence of electron- and hole-like pockets. Such gap
behavior follows s±-wave symmetry and is considered to be unconventional.

Albeit pairing in iron-based superconductors does not follow the s-wave
symmetry, we can generalize the BCS theory for superconductors with s±-
wave symmetry and associate a scalar function ∆k with each gap, i. e.
with the gap which corresponds to the singlet pairing and involving a unique
temperature transition. Then one can introduce BCS Hamiltonian for a
multi-band superconductor similar as in Ref. [88, 89]:

HBCS = Hc +
∑

i

∫

d3r
[

∑

σ

ψ̂†
iσ(r)Ti(r)ψ̂iσ(r)

+ ψ̂†
i↑(r) ψ̂

†
i↓(r)∆i(r) + h.c.

]

, (1.76)

where Ti(r) is the single-electron energy, ψ̂†
i↓(r) is the creation operator, and

ψ̂i↓(r) is annihilation operator. Hc represents the c-number term [75], which

is a quadratic form of anomalous averages 〈ψ̂i↑(r) ψ̂i↓(r)〉. We also introduced
in Eq. (1.76) the gap definition for a multi-band superconductor as

∆i(r) =
∑

j=1,2,...

gij〈ψ̂i↑(r)ψ̂i↓(r)〉, (1.77)

where gij is the coupling matrix and the gap was defined through anomalous
pairing as usual in the BCS theory. The coupling matrix is the analogue
of the electron-phonon interaction matrix in the BCS theory defined by Eq.
(1.24). The coupling matrix assumes an interval within which pairing takes
place. The diagonal elements of the coupling matrix are associated with the
pairing inside of each band, while the non-diagonal elements are accounting
for the interband interaction.

Hamiltonian given by Eq. (1.76) along with the gap definition (1.77) will
be employed in subsequent derivation of the Ginzburg-Landau theory for the
multi-band superconductors in Chapter 2 .
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1.5 Superconductors under quantum confine-

ment

When superconductors are under strong quantum confinement, the electronic
motion in the direction in which the confinement is applied (vertical in the
case of nanothin superconducting film) is restricted. This leads to quantized
quasi-momentum component corresponding to the motion perpendicular to
the film plane. As the result, the Fabri-Pérot modes (or, in other words,
the quantum-well states (QWSs)) are formed, as indicated first by Blatt and
Thompson [76]. In the presence of the QWSs the band gap can separate
into several two-dimensional (sub)band gaps, the number of which changes
with decreasing or increasing the film thickness [76, 108]. The emergence
of (sub)band gaps can be explained in the following way. In films, the en-
ergetic positions of the QWSs exhibit the scaling 1/d2, where d is the film
thickness [21]. When the film thickness is varied, QWSs can cross the Fermi
surface.

Figure 1.12: Illustration of the locations of quantum-well states for various
thicknesses (5-18 ML) in Pb film. The dashed line shows the position of the
Fermi level. The red color is for even numbers of MLs and the blue is for
odd numbers of MLs (adapted from [109]).

Each time when a QWS crosses the Fermi surface, the relevant density of
states (DOS) increases, and a new 2D band emerges. At each resonance, a
new 2D gap starts to contribute. For example, figure 1.12 illustrates QWSs
which were observed in Pb film in Ref. [109]. The dashed line in Fig. 1.12
indicates the position of the Fermi surface. As seen in Fig. 1.12 three QWSs
cross the Fermi surface at 6, 11 and 13 ML, while the QWS at 9 ML ap-
proaches the Fermi surface, thus creating three additional (sub)bands and



34 Introduction

the resonance should occur at 9 ML thickness. The corresponding oscilla-
tions of DOS are depicted in Fig. 1.13. It was also shown in Ref. [109] that
gaps for 5 and 7 ML have the same gap value but the gap for 6 ML is larger.
Afterwards the three gaps at 5, 6 and 7 ML were probed at the temperature
T = 6.24 K which resulted in vanishing gaps at 5 and 7 ML, while the gap
at 6 ML still persisted. Note that the oscillations of DOS in Fig. 1.13 are
shifted with respect to the positions where QWSs cross the Fermi surface.
This phase shift was generated by the interface film-substrate on which the
film was grown [109].

Figure 1.13: Estimated density of states (DOS) near the Fermi level as a
function of the film thickness in Pb film (adapted from [109]).

The oscillations of DOS lead to quantum-size resonance effects in su-
perconducting characteristics, i. e., oscillations of the critical temperature
Tc as shown in Fig. 1.14, enhancement of the critical magnetic field Hc

(thermodynamic, but upper and lower), and the excitation gap. Such size-
dependent enhancement in the mean-field characteristics is termed supercon-
ductive quantum-size oscillations [21].

The quantum-size effects on the energy gap and the critical temperature
were in focus of intensive theoretical works in 60s [76, 77, 78, 79, 80, 81].
Experimentally, the oscillations of the energy gap on variation of the film
thickness were observed in early experiments on tin films [110, 111]. How-
ever, subsequent experiments on metallic films could not confirm those re-
sults [21]. Recent advances in nano-fabrication allowed to produce single-
crystalline metallic nanofilms with atomically uniform thickness [112, 113,
114, 115, 116, 117, 118, 119, 120], in which quantum-size oscillations were
reported.

The fabrication of such nanofilms was not without difficulties. Most of the
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Figure 1.14: Variation of critical temperatures Tc from the film thickness
in Pb film. Determined from temperature-dependent gap measurements for
the film in ultra thin regime of 5-18 ML (adapted from [109]).

metallic films grow in a polycrystalline fashion, in forms of coupled grains.
Typically, dimensions of the grains are significantly smaller than the film
thickness d. If the coupling between grains is strong enough, the charac-
teristic size of such grains restricts the electronic mean free path l. If the
grains are too small, with the diameters of order ∼ λF , where λF is the Fermi
wavelength, then it can happen that due to l ∼ λF the system becomes an
insulator before reaching the quasi-2D regime. However, Pb was found to
grow into smooth single-crystalline nanofilms. This valuable finding opened
completely new prospects in fabrication of ultrathin metallic films and led
eventually to first results on the coherent behavior of Pb single-crystalline
nanofilms [112]. For Pb films growing in 〈111〉-direction one monolayer (ML)
corresponds to thickness of 0.287 nm. If the thickness of a fabricated film is
d ≈ 5− 9 nm, then the film has d = 17− 30 ML.

Today many experimental groups around the world work with atomi-
cally flat nano-thin superconductors. In particular, a number of experiments
have been performed for Pb single-crystalline nanofilms with the number
of atomic layers varying from 1 to 30 ML. As a consequence, many impor-
tant achievements were reported, such as appearance of the multiple sub-
bands [112, 109, 119], quantum-size oscillations of Tc [112, 113, 109, 119]
[shown in Fig. 1.14], and the upper critical field Hc2 (perpendicular to a
nanofilm) [113]. Vortices were also observed by mapping the zero-bias tun-
neling conductance in the presence of a magnetic field [114, 115, 118].
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1.6 Multi-component Bose-Einstein conden-

sation

In this Section we outline another example of a multi-component quantum
system - the multi-component Bose-Einstein condensates. Those were cre-
ated shortly after the experimental realization of Bose-Einstein condensation
(BEC). Therefore, we begin with a short historical overview of Bose-Einstein
condensation, difficulties in the experimental realization, the first successful
experimental realizations of Bose-Einstein condensate, the theory applicable
to study BEC and then move to fundamentals of multi-component Bose-
Einstein condensation.

1.6.1 Achievement of Bose-Einstein condensation

Superconductivity and superfluidity are intimately related to the macroscopic
occupation of a single quantum state by bosons. Electrons are fermions,
thus cannot condense into a single quantum state. For bosons, the appear-
ance of a condensate is natural, because bosons can occupy the same ground
state at low temperatures. This phenomenon was pointed out by Einstein
after studying Satyendra Nath Bose’s statistical derivation of Planck’s law
for photons [121] to extend it to systems with a conserved number of par-
ticles [122, 123]. According to this theory, when a gas of bosonic atoms
is cooled below a critical temperature Tc, a phase transition would occur
and a large fraction of the atoms would occupy the lowest-energy quantum
state. This phenomenon was subsequently termed Bose-Einstein condensa-
tion. The reasoning for occurrence of BEC was straightforward and based
on the wave-particle duality, when particles with mass m at temperature T
can be considered as quantum-mechanical wave packets with a spatial extent

of the order of a thermal de Broglie wavelength λdB =
( 2π~2

mkBT

)1/2

. Accord-

ingly, the value of λdB is the position uncertainty associated with the thermal
momentum distribution which increases with decreasing temperature. When
atoms are cooled to the temperature where λdB is comparable to the inter-
atomic separation n−1/3 (where n is the number of atoms per unit volume),
the atomic wave packets start to overlap creating a system of indistinguish-
able particles. At this point, bosons undergo a quantum-mechanical phase
transition and form a Bose-Einstein condensate. Thus, the task on creation
of Bose-Einstein condensation was very simple to cool bosonic particles un-
til the wave packets start to overlap. However, it was not experimentally
feasible with the experimental techniques at hand at that time.
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In 1938 London suggested the connection between the then recently dis-
covered superfluid 4He [124, 264] and the Bose-Einstein condensation [126,
127]. Superfluid 4He is considered as the prototype of Bose-Einstein conden-
sation. However, the interaction between helium atoms is strong, reducing
the number of atoms in the lowest-energy state. As a result, it was difficult to
measure directly the occupancy of the lowest-energy state. The latter led to
the conclusion that Bose-Einstein condensation should be sought in weakly
interacting Bose gases with higher condensate fraction. It required, however,
to find an atomic system which would stay gaseous until it undergoes the
transition, and to develop the cooling and trapping techniques in order to
reach the required temperatures and densities.

As an example of such weakly interacting bosonic system, spin-polarized
hydrogen atoms were proposed by Hecht in 1959 [128]. The conclusion of
the study done by Hecht was that this system would be a good candidate,
because the attractive interaction between two hydrogen atoms with their
aligned electronic spins was estimated to be so weak that they do not tend
to create a bound state. Thus, the spin-polarized hydrogen atoms would not
form a liquid but remain gaseous at sufficiently low temperatures. Stwal-
ley and Nosanow also studied the same system in 1976 [129], and argued
that hydrogen atoms would be a superfluid as well as Bose-Einstein conden-
sate. This theoretical prediction stimulated several experimental groups over
the world to experimentally achieve Bose-Einstein condensation in hydrogen
atoms. After more than two decades of experimental work, Bose-Einstein
condensation of spin-polarized hydrogen atoms was achieved in 1998 [130].

As it was remarked by Ketterle [131], those studies of spin-polarized hy-
drogen atoms were important because they showed that hydrogen atoms can
remain in a metastable gaseous state close to Bose-Einstein condensate con-
ditions. The theory of cold collision processes developed for hydrogen atoms
was used afterwards for alkali atoms, and advanced technique in evaporative
cooling of spin-polarized hydrogen atoms contributed to the achievement of
Bose-Einstein condensation in dilute alkali atoms in 1995 [172, 133, 134].
The initial experiments were performed on magnetically trapped ultracold
vapours of alkali metals 87Rb [172], 23Na [133], and 7Li [134]. Also the atoms
of 39K, 41K, 52Cr, 85Rb, 133Cs, 170Yb, 174Yb have been demonstrated to un-
dergo Bose-Einstein condensation [135].

By dilute gases one means systems with a very low particle density. For
comparison, the density of air at room temperatures and atmospheric pres-
sure is about 1019 cm−3. In liquids and solids the density of atoms is of order
1022 cm−3. The density at the center of Bose-Einstein condensate is typically
1013-1015 cm−3 atoms. Therefore, in order to reach Bose-Einstein condensa-
tion in dilute alkali atoms, the temperature must be reached of order 10−5
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Figure 1.15: Observation of Bose-Einstein condensation by absorption imag-
ing. The figure shows absorption vs. two spatial dimensions. From left to
right the atomic distribution in the cloud is shown, when cooled to just above
the transition point, after the condensate is formed, and after further evap-
orative cooling stabilizing an almost pure condensate. The total number of
atoms at the phase transition was about 7× 105, and transition occurred at
Tc = 2µK (adapted from [131]).

K or even less. In a typical experiment, the number of atoms is of order 106

while the radius of the cloud is about 10-100 µm (density ≈ 1014 cm−3), and
the transition temperature is of order Tc ≈ 1µK. Bose-Einstein condensation
is usually obtained by combination of different laser cooling techniques and
forced evaporative cooling [131, 135], as debated in the next Section.

1.6.2 Experimental technique

Alkali atoms are bosons, having odd atomic number Z and odd mass number
A. The ground-state electronic structure of alkali atoms is simple, i. e. all
electrons but one occupy closed shells, and the remaining electron is in s
orbital in a higher shell. The total spin of an alkali atom is an integer
consisting of the nuclear spin, which is a half-integer, and the electron spin,
which is equal to 1/2. Because of the s orbital electron, alkali atoms can be
easily manipulated by employing a magneto-optical trap (MOT) [Fig. 1.16],
which was used in the pioneering experiments on trapping ultracold alkali
atoms [172, 133].

Usually, in the experiment a beam of alkali atoms emerged from an oven
at a temperature of about 600 K, corresponding to a speed of ≈800 m s−1.
The beam is then transmitted through a so-called Zeeman slower, in which
the velocity of atoms in the beam is significantly reduced, to about 30 m
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Figure 1.16: Experimental setup which was used for cooling sodium atoms
to achieve Bose-Einstein condensation by Ketterle group at MIT in 1995
(adapted from [131]).

s−1. This velocity corresponds to 1 K. After passing the Zeeman slower,
atoms are slow enough to be trapped in MOT. The scheme of the magneto-
optical trap which was used at MIT is shown in Fig. 1.16. In MOT atoms
are trapped by a strong magnetic field, generated by two coils. In the center
of MOT the magnetic field vanishes causing the atoms to flip the spin and
further escape. Therefore, the atoms should be held away from the center
of the trap and a strong argon ion laser beam is used for that purpose. The
final step of achieving Bose-Einstein condensation is evaporative cooling to
remove relatively energetic atoms from the cloud. The evaporative cooling is
controlled by radiofrequency radiation from an antenna by selectively flipping
the spins of the most energetic atoms. The remaining atoms are cooled down
further by collisions among themselves [131].

1.6.3 Gross-Pitaevskii theory for a Bose-Einstein con-
densate

In the previous two Subsections, we considered preconditioning for Bose-
Einstein condensation (BEC), and the experimental methods to achieve Bose
gases. In this Subsection, we consider the mean-field theory for BEC.

The theory for the Bose-Einstein condensation is based on the Gross-
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Pitaevskii equation [136, 137, 138], which describes the zero-temperature
evolution of the nonuniform Bose gas. In fact, Pitaevskii [136] and Gross [137,
138] independently considered a nonuniform dilute Bose gas, generalizing
Bogoliubov’s treatment of a uniform Bose gas at zero temperature [139] to
comprise nonuniform states, particularly quantized vortices.

In the fully condensed state all bosons occupy the same single-particle
state φ(r). As a result one can write the N -particle wave function as

Ψ(r1, r2, . . . , rN) =
N
∏

i=1

φ(ri), (1.78)

which is symmetric under interchange of the coordinates of any two particles.
The single-particle wave function φ(ri) is normalized as

∫

dr|φ(r)|2 = 1. (1.79)

Since we consider a dilute Bose gas, only binary collisions are relevant
at low energies. Then we can approximate the effective interaction between
two atoms by a short-range interaction ≈ gδ(r − r′), where r and r′ are
positions of two particles, and g is a coupling constant with the dimension
of energy× volume. g depends on the s-wave scattering length a as g =
4π~2a/m [135, 140]. For example, the scattering length for 23Na is a = 2.75
nm [141], for 87Rb is a = 5.77 nm [142], and for 7Li is a = −1.45 nm [143].
By means of the scattering length a we can introduce another characteristic
of dilute gases such as n̄|a|3 ≪ 1, where n̄ is the mean particle density.

In a uniform bulk system, the scattering length must be positive (corre-
sponds to a repulsive interaction between atoms) to prevent an instability
leading to a collapse. However, a Bose condensate in an external confining
trap can remain stable even for a < 0 (corresponds to an attractive interac-
tion between atoms) as long as the number of condensed atoms is below a
critical value Ncr ∼ ar/|a|, where ar is the oscillator length.

To investigate the energy of the condensed state, we adopt a mean-field
approach assuming that the wave function is a symmetrized product of single-
particle wave functions. This wave function does not contain the correlations
produced by the interaction when two atoms are close to each other. The
effects are taken into account in the effective interaction g δ(r− r′). One can
write the effective Hamiltonian as

H =
N
∑

i=1

[ p2
i

2m
+ V (ri)

]

+ g
∑

i<j

δ(ri − rj), (1.80)
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where V (ri) is the external potential. Then the energy of the state (1.78) is
given by

E = N

∫

dr
[

~
2

2m
|∇φ(r)|2 + V (r)|φ(r)|2 + (N − 1)

2
g |φ(r)|4

]

. (1.81)

In the interaction term, N(N − 1)/2 is the number of terms in the inter-
action energy, that is the number of ways of making pairs of bosons, times
∫

dr g |φ(r)|4, the interaction energy of two particles in the state φ(r).

An essential feature of a dilute Bose gas at zero temperature is the exis-
tence of a order parameter ψ(r) that characterizes the condensed state. One
can introduce the order parameter for the uniform Bose gas of volume V as

ψ(r) = N1/2φ(r). (1.82)

After inserting Eq. (1.82) in Eq. (1.81), the energy of the ground state
modifies to

E(ψ) =

∫

dr
[

~
2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 + 1

2
g |ψ(r)|4

]

, (1.83)

where we neglected the term of order 1/N assuming that N ≫ 1. In order
to find the solution for ψ(r), one has to minimize Eq. (1.83) with respect
to ψ∗(r) with the constraint that the total number of particles should be
constant

N =

∫

dr|ψ(r)|2, (1.84)

where n(r) = |ψ(r)|2 is the particle density. The constraint can be applied
in the form δE − µδN , where µ is the Lagrange multiplier that ensures the
conservation of the particle number. Then the minimization of Eq. (1.83)
with the condition (1.84) leads to the equation:

− ~
2

2m
∇2ψ(r) + V (r)ψ(r) + g |ψ(r)|2ψ(r)− µψ(r) = 0. (1.85)

The variation of the kinetic energy term was done by performing an integra-

tion in parts by using the Gauss-Ostrogradskii’s theorem

∫

dV∇ψ∇δψ =
∮

δψ∇ψdS −
∫

dV (∇∇ψ)δψ. The surface integral vanishes for systems

of finite extent or when periodic boundary conditions are imposed [135].
Eq. (1.85) is the time-independent Gross-Pitaevskii equation (GP) [136,
137, 138]. It has the form of the Schrödinger equation in which the potential
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acting on particles is the sum of the external potential V (r) and a non-linear
term g |ψ(r)|2 that takes into account the mean field produced by the other
bosons. The eigenvalue of Eq. (1.83) is not the energy per particle, as it is
for the Schrödinger equation, but the chemical potential [140, 135].

Let us consider harmonically trapped condensate with the external po-
tential being the anisotropic three-dimensional harmonic oscillator

V (x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (1.86)

where ωi (i = x, y, z) are the three oscillator frequencies, which can differ
from each other in general. Then, when there is no interparticle interaction,
the third term in Eq. (1.85) can be omitted, the solution of Eq. (1.85) has
the form [135]:

φ0(r) =
1

π3/4(axayaz)1/2
e−x

2/2a2xe−y
2/2a2ye−z

2/2a2z , (1.87)

where ai (i = x, y, z) are the oscillator lengths given by a2i = ~/mωi. In that
case, the density distribution n(r) = Nφ0(r)

2 is Gaussian.
When a large number of particles is trapped in the cloud (starting with

≈ 103 atoms in the cloud), then the kinetic energy term can be neglected in
Eq. (1.85), and one arrives at the equation:

(

V (r) + g|ψ(r)|2
)

ψ(r) = µψ(r). (1.88)

Eq. (1.88) acquires the solution:

n(r) = |ψ(r)|2 =
(

µ− V (r)
)

/g. (1.89)

Eq. (1.89) gives the condition for the cloud which exists when the right-
hand side of Eq. (1.89) is positive, and ψ(r) = 0 otherwise. The boundary
of the cloud is therefore given by V (r) = µ. The physical content of this
approximation is that the energy to add a particle at any point in the cloud
is the same everywhere. This energy is given by the sum of the external
potential V (r) and an interaction contribution g n(r) which is the chemical
potential of a uniform gas having density equal to the local density n(r).
Since this approximation is reminiscent of the Thomas-Fermi approximation
in the theory of atoms, it is referred to by the same name.

One more term can be added to Eq. (1.85) - angular momentum energy
which corresponds to the rotation of the condensate along the z-axis. Then
the solution of Eq. (1.85) will represent topological defects such as vortices.
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1.6.4 Multi-component Bose-Einstein condensates

Bosons of a single component Bose-Einstein condensate occupy a single quan-
tum state. What happens if two or more quantum states are occupied simul-
taneously? In such case, one deals with a multi-component Bose-Einstein
condensation. The simplest example of such a multi-component BEC is a
mixture of two different kind of bosons, for example two isotopes of the same
element, or two different atoms. Since alkali atoms have a spin, it allows to
make mixtures of the same isotope but in different internal spin states.

The first multi-component condensate was composed of two hyperfine
states of 87Rb, created by the group led by Wieman and Cornell at JILA
in 1997 [9]. 87Rb has nuclear spin I = 3/2, which combines with the single
valence electron spin (S = 1/2). The total spin is the quantum number
F = I ± 1/2 corresponding to the total angular momentum operator F =
I+ J, where I and J are the operators of the nuclear spin and the electronic
angular momentum, respectively in units of ~ [135]. In the common notation
a hyperfine spin state is |F,mF 〉, meaning that in the hyperfine ground spin
states of a given alkali atom J = S = 1/2 and I are fixed, while F and
mF can take values |I − J | ≤ F ≤ I + J and −F ≤ mF ≤ F , respectively,
in integer steps. 87Rb has two manifolds, a lower one with F = 1 and an
upper one with F = 2. To trap 87Rb atoms, one needs weak-field states as
|1,−1〉, |2, 1〉 and |2, 2〉, which are only stable states. In the experiment a
state |1,−1〉 was cooled evaporatively and by the intercomponent interaction
the state |2, 2〉 was cooled through sympathetic cooling.

Following the creation of binary condensate in 87Rb, the group of Ketterle
at MIT confined a BEC of sodium atoms in all spin projections of the F =
1 hyperfine level [144]. Up to now two-component BECs were created of
two hyperfine spin states of atoms of the same species [10, 145, 146, 147,
148, 149, 150] and two-component BECs composed of two different kind of
atoms [151, 152, 153, 154, 155, 156]. Mixtures of hyperfine spin states of
the same isotope differ from mixtures of distinct isotopes, because atoms can
undergo transitions between hyperfine states, while transitions that convert
one isotope into another may be neglected [135].

Multi-component BEC is a favorable platform to study emergent novel
physics in mixtures of generally different superfluids. An important feature
of superfluids is their ability to support vortices. Multi-component BEC
offers a rich variety of topological defects such as vortex lattices [15, 157, 16],
vortex sheets [17] and skyrmions [18, 158, 159]. We shall discuss some of these
topological defects in more detail in Section 1.7. In the following Subsection
we outline the Gross-Pitaevskii formalism for the multicomponent BEC.
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1.6.5 Theory for multicomponent Bose-Einstein con-
densates

Having derived the Gross-Pitaevskii theory for single-component BECs, we
now generalize the Gross-Pitaevskii theory for multicomponent Bose-Einstein
condensates. We start the consideration of theory for a multi-component
BEC with a two-component case.

The generalization of the wave function given by Eq. (1.78) to two com-
ponents (with N1 and N2 particles respectively) is:

Ψ(r1, r2, . . . , rN1
; r′1, r

′
2, . . . , r

′
N2
) =

N1
∏

i=1

φ1(ri)

N2
∏

j=1

φ2(rj), (1.90)

where the bosons of component 1 are denoted by ri and of component 2 by r′j.
The corresponding single-particle wave functions are φ1 and φ2, respectively.
The atomic interactions generally depend on the species, and we denote the
effective intercomponent interaction by gij. For a uniform system of volume
V , one can write the interaction energy as

E =
N1(N1 − 1)g11

2V
+
N1N2g12

V
+
N2(N2 − 1)g11

2V
. (1.91)

In the zero-temperature mean-field approximation, one can introduce an or-
der parameter associated with each component as Ψj(r) = |Ψj|eiϕj . Then
the free energy of the two-component BEC can be written as

EM(r) =

∫

dr

{ 2
∑

j=1

(

~
2

2mj

|∇Ψj|2 + Vj(r)|Ψj|2+
1

2
gjj|Ψj|4

)

+ g12|Ψ1|2|Ψ2|2
}

, (1.92)

where mj is the mass of the bosons in component j, and as in the case of
the single component BEC we neglected the terms of order 1/Nj, assuming
Nj ≫ 1. The first term in Eq. (1.92) is the kinetic energy of component j, the
second term is the trapping potential experienced by component j, the third
term is the self-interaction energy of component j with the interaction param-
eter gjj, and the last term is the intercomponent interaction energy between
components 1 and 2 with the interaction strength g12. The interaction pa-
rameter gjj depends on the s-wave scattering length ajj as gjj = 4π~2ajj/mj,
while the intercomponent interaction parameter is g12 = 4π~2a12/m12, with
m12 = m1m2/(m1 +m2) being the reduced mass.
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The intercomponent interaction can be either attractive or repulsive be-
tween the components depending on the sign of the scattering length a12
which can be manipulated by using the Feshbach resonance [160]. However,
one can distinguish two regimes for two-component BECs. If g212 > g1g2,
then the two components are immiscible and separate into nonoverlapping
phases [161]. Otherwise, when g212 < g1g2 the two components form interpen-
etrating BECs [161]. Interestingly, in the experiment performed by Myatt at
JILA [9], the interaction parameters approximately satisfied g212 . g1g2 [162],
implying that two such uniform BECs would overlap. However, the two
trapped condensates were spatially separated due to the differences in the
two trapping potentials and interaction parameters [9]. Usually, in order to
avoid phase separation in an experiment, two hyperfine spin states are used
so that the difference in the angular momentum is ∆m = 2 (for example,
states |1,−1〉 and |2, 1〉) [161].

The order parameters are normalized such that
∫

|ψj(r)|2dr = Nj, (1.93)

where Nj is the total number of particle in component j.
Minimizing Eq. (1.92) with respect to Ψ∗

1 and Ψ∗
2 leads to two coupled

time-independent GP equations:
(

− ~
2

2mj

∇2 + Vj(r)− µj + gjj|Ψj|2 + g12|Ψ3−j|2
)

Ψj = 0, (1.94)

where j ∈ {1, 2} and µj is the chemical potential of component j being intro-
duced as the Lagrange multiplier to ensure the particle number conservation
in each component separately. These two coupled Gross-Pitaevskii equations
describe the evolution of the two order parameters, embodying a rich vari-
ety of physics, and can be used to predict many features of two-component
BECs, e.g. the dependence of ground-state wave functions on the nonlinear
interactions, and the nature of exotic topological features, such as vortices,
vortex lattices and skyrmions.

Generalization of Eqs. (1.92) and (1.94) to a more general case is straight-
forward and will be given in Chapter 4, Section 4.2 concerning the physics
of a three-component coherently coupled BEC.

1.6.6 Dimensionless GP equations

In our study of multi-component BECs, we solved numerically the coupled
Gross-Pitaevskii equations (1.94). Before we present the numerical method
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used to solve Eqs. (1.94), we need to recast the equations to a dimensionless
form. We choose the units of the harmonic oscillator of component 1, so that
~ω1 and ar =

√

~/m1ω1 are the units of energy and length, respectively. The
new wave functions Ψ′

j = arΨj/
√

Nj are normalized to unity. Then the two
recast GP equations take the form:
(

− 1

2
∇2 +

1

2
r2 +

1

2

ω2
z,1

ω2
1

z2 + g′11 |Ψ′
1|2 + g′12 |Ψ′

2|2 − µ1

)

Ψ′
1 = 0,

(

− 1

2

m1

m2

∇2 +
1

2

m2

m1

ω2
2

ω2
1

r2 +
1

2

m2

m1

ω2
z,2

ω2
1

z2 + g′22 |Ψ′
2|2

+g′21 |Ψ′
1|2 − µ2

)

Ψ′
2 = 0, (1.95)

where r2 = x2 + y2, and we assumed in Eq. (1.95) that the x- and y-
components of the oscillator frequency of component j are equal to ωx,j =
ωy,j = ωj. We consider a mass-imbalanced case with m1 6= m2. When
N1 6= N2 the parameters in the recast equations are:

g′11 =
m1N1g11

~2
, g′22 =

N2

N1

g22
g11

g′11,

g′12 =
N2

N1

g12
g11

g′11, g′21 =
g12
g11

g′11. (1.96)

In the case of an anisotropic trapping potential with ωz ≫ ωx = ωy ≡ ω⊥,
the condensates will be pancake-shaped, and can effectively be described by
a two-dimensional (2D) GP equations. The dependence of the z coordinate
can be integrated out from Eq. (1.95) by employing an anzats wave function
Ψj(x, y, z) = Rj(x, y)Zj(z) [163, 164], where the functions Rj(x, y) and Zj(z)
are normalized to unity. After substituting the anzats into Eq. (1.95) and
multiplying it by Z∗

j , one can subsequently perform the integration over the
z coordinate in the obtained equation. After the integration, we arrive at
the following two-dimensional GP equations:

(

− 1

2
∇2

2D +
1

2
r2 − µ1 + Ez,1

)

R1 + g′11|R1|2R1

∫

|Z1(z)|4dz

+g′12|R2|2R1

∫

|Z2(z)|2|Z1(z)|2dz = 0,

(

− 1

2

m1

m2

∇2
2D +

1

2

m2

m1

ω2
2

ω2
1

r2 − µ2 + Ez,2

)

R2 + g′22|R2|2R2

∫

|Z2(z)|4dz

+g′21|R1|2R2

∫

|Z1(z)|2|Z2(z)|2dz = 0,

(1.97)
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where we introduced the integrals

Ez,j =

∫

dz Z∗(z)

(

− 1

2

∂2

∂z2
+

1

2

ω2
z,j

ω2
1

)

Z(z), (1.98)

which can be incorporated into the chemical potential as µ2D
j = µj + Ez,j.

The function Zj(z) can be chosen as:

Zj = exp
(

− z2

2a2z,j

)(

πa2z,j

)−1/4

, (1.99)

where az,j =

√

~

mjωz,j
is the z-component oscillator length. Inserting Eq.

(1.99) and performing integration of the last two integrals in Eqs. (1.97)
leads to the equations:

(

− 1

2
∇2

2D +
1

2
r2 − µ2D

1 + g2D11 |R1|2 + g2D12 |R2|2
)

R1 = 0,

(

− 1

2

m1

m2

∇2
2D +

1

2

m2

m1

ω2
2

ω2
1

r2 − µ2D
2 + g2D22 |R2|2 + g2D21 |R1|2

)

R2 = 0, (1.100)

where we introduced g2Djj =
g′jj

az,j
√
2π

, g2D12 =
g′12√
π
(a2z,1 + a2z,2)

−1/2 and

g2D21 =
g′21√
π
(a2z,1 + a2z,2)

−1/2.

It is convenient to replace the function Rj by Ψj and re-write the dimen-
sionless 2D Gross-Pitaevskii equations as

(

− 1

2
∇2 +

1

2
r2 + g2D11 |Ψ1|2 + g2D12 |Ψ2|2 − µ1

)

Ψ1 = 0,

(

− 1

2

m1

m2

∇2 +
1

2

m2

m1

ω2
2

ω2
1

r2 + g2D22 |Ψ2|2 + g2D21 |Ψ1|2 − µ2

)

Ψ2 = 0. (1.101)

1.6.7 Introduction of link-variables to the GP equa-
tions

In order to introduce the discretization scheme which was used in the numer-
ical calculations, we consider a rotating two-component Bose-Einstein con-
densate by introducing the angular momentum energy −ΩΨ∗

jLzΨj in each
equation (1.101), where Lz = −i~[ez · (r×∇)] is the z component of the an-
gular momentum operator in the position representation. Both condensates
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are subjected to rotate along the z-axis with the same rotating velocity Ω. z
coordinate was integrated out in the angular momentum energy, and energy
is scaled in units of ~ω1. Then the equations (1.101) modify to:

(

− 1

2
∇2 +

1

2
r2 − ΩLz + g2D11 |Ψ1|2 + g2D12 |Ψ2|2 − µ1

)

Ψ1 = 0,

(

− 1

2

m1

m2

∇2 +
1

2

m2

m1

ω2
2

ω2
1

r2 − ΩLz + g2D22 |Ψ2|2 + g2D21 |Ψ1|2 − µ2

)

Ψ2 = 0.

(1.102)

The kinetic energy can be combined with the trap potential and with the
angular momentum energy in Eq. (1.102) leading to further recast equations:

(

1

2

(∇
i
−A

)2

+
1

2

(

1− Ω2

ω2
1

)

r2 + g2D11 |Ψ1|2 + g2D12 |Ψ2|2 − µ1

)

Ψ1 = 0,

(1.103)

(

1

2

(∇
i
−A′

)2

+
1

2

m2
2

m2
1

(ω2
2

ω2
1

− Ω2

ω2
1

)

r2+g2D22
m2

m1

|Ψ2|2

+ g2D21
m2

m1

|Ψ1|2 − µ2
m2

m1

)

Ψ2 = 0,

(1.104)

where A =
(

yΩ,−xΩ
)

and A′ =
(

y (m1/m2)Ω,−x(m1/m2)Ω
)

. From newly
recast Eqs. (1.103) and (1.104), conditions follow for the trapping potential

of component 1 and 2, respectively as
(

1 − Ω2

ω2
1

)

> 0 and
(ω2

2

ω2
1

− Ω2

ω2
1

)

> 0,

otherwise the confinement is lost.
We can treat vectors A and A′ as effective gauge fields and introduce link

variables

Um,n
α=x,y = exp

[

− i
∫ rn

rm

Aαdα
]

, (1.105)

for component 1 and

U ′m,n
α=x,y = exp

[

− i
∫ rn

rm

A′
αdα

]

, (1.106)

for component 2. The link variables given by Eqs. (1.105) and (1.106)
connect the m point of the discretized grid with the nearest n point of the
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same grid separated by the mesh dα of the grid on which the computation is
done. The link-variable method is used in order to provide fast convergence
of the solver at a high magnetic field and to preserve the gauge invariance
under discretization [165, 166, 167]. In the case of Bose-Einstein condensation
the analogue of the high magnetic field is the fast rotation. Therefore, it
is convenient to introduce the link-variables to solve numerically the GP
equations thus facilitating the fast convergence of our solver.

In our calculation, the whole system is mapped on a square grid with

the uniform mesh h, where h =
computation area

grid size
. Then first term in Eq.

(1.103) can be discretized as

(∇α

i
− Aα

)2

Ψm,k = −∇2
αΨm,k + i∇α

(

AαΨm,k

)

+ A2
αΨm,k

+iAα∇αΨm,k =
1

Um,n
α

(

− 2iAαU
m,n
α ∇αΨm,k

−iUm,n
α Ψm,k

(

∇αAα − iA2
α

)

+ Um,n
α ∇2

αΨm,k

)

, (1.107)

where the index (m,n) denotes the lattice point of interest. Substitution of
equations ∇αU

m,n
α = −iAαUm,n

α and ∇2
αU

m,n
α = −iUm,n

α

(

∇αAα − iA2
α

)

into
Eq. (1.107) leads to:

(∇α

i
− Aα

)2

Ψm,k =
1

Um,n
α
∇α

(

∇α

(

Um,n
α Ψm,k

))

. (1.108)

If α = x, one obtains:

(∇x

i
− Ax

)2

Ψm,k =
1

Um,n
x

1

h

(

Um+1,n
x Ψm+1,k − Um,n

x Ψm,k

h

−U
m,n
x Ψm,k − Um−1,n

x Ψm−1,k

h

)

=
Um+1,n
x Ψm+1,k − 2Ψm,k + Um−1,n

x Ψm−1,k

h2
, (1.109)

where we assumed that
Um+1,n
x Ψm+1,k

Um,n
x

≈ Um+1,n
x Ψm+1,k. In analogy, we can

do the same transformation for α = y.

The discretized GP equation for component 1 can be now written in full
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as:

U i−1,i
x Ψi−1,j

1

h2
+
U i+1,i
x Ψi+1,j

1

h2
+
U j−1,j
y Ψi,j−1

1

h2
+
U j+1,j
y Ψi,j+1

1

h2

=

(

4

h2
− 1

2

(

1− Ω2

ω2
1

)

r2 − g2D11 |Ψ1|2 − g2D12 |Ψ2|2 + µ1

)

Ψi,j
1 . (1.110)

For the GP equation of the second component similar discretization scheme
leads:

U ′ i−1,i
x Ψi−1,j

2

h2
+
U ′ i+1,i
x Ψi+1,j

2

h2
+
U ′ j−1,j
y Ψi,j−1

2

h2
+
U ′ j+1,j
y Ψi,j+1

2

h2

=

(

4

h2
− 1

2

m2
2

m2
1

(ω2
2

ω2
1

− Ω2

ω2
1

)

r2 − g2D22
m2

m1

|Ψ2|2 − g2D21
m2

m1

|Ψ1|2 + µ2

)

Ψi,j
2 .

(1.111)

1.6.8 Numerical simulation of the coupled GP equa-
tions

In this Subsection we describe the numerical method which we used to solve
the discretized GP equations (1.110) and (1.111). In the previous Subsection,
we introduced link-variables into the coupled GP equations to ensure the
fast convergence. The numerical method is based on Euler time steps being
performed to let the solution relax to a stable state. The taken boundary
condition was Ψj = 0 at the boundary of the computation area, and each
Ψj has to be normalized to unity separately (j ∈ {1, 2} for a two component
case). Therefore, after every time step each chemical potential µj has to be
adapted to ensure the proper normalization of corresponding Ψj.

To find the chemical potential µj that features Ψj normalized to unity in
the case of two coupled Gross-Pitaevskii equations, six quantities are relevant

for the algorithm: (1) Nj(t) =

∫

dxdy|Ψj(t)|2, the current normalization at

time t of Ψj, (2) δNj(t) = Nj(t)−Nj(t−δt), the change of the normalization
Nj(t) over the last time step δt, and (3) rj(t) = |δNj(t)/(Nj(t) − 1)| the
rate at which the normalization Nj approaches 1. The rate rj we want to
keep lower than a threshold rate rt to avoid overshooting the correct µj. rt
is optionally chosen to ensure the minimization of the convergence time. In
every time step, µj is adjusted by an amount of the order of δµj = |Nj(t)−1|.
As one can see from the GP equations, increasing (decreasing) µj leads to
increase (decrease) of Nj.
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Algorithm for solving the coupled GP equations

1: procedure SolveCoupledGP
2: repeat
3: ψ1 ← ψ1 + δt ·GP1(ψ1, ψ2, µ1) ⊲ Do one (or more) time step(s)

ψ2 ← ψ2 + δt ·GP2(ψ2, ψ1, µ2)

4: Nj ←
∫

dxdy|ψj |2 ⊲ Compute the normalization

5: δNj ← Nj −Nprev
j

6: δµj ← (Nj − 1)
7: rj ← |δNj/δµj |
8: if δNj · δµj < 0 then ⊲ If Nj evolves in the right direction
9: if rj < rt then ⊲ If convergence rate is slow
10: µj ← µj − δµj ⊲ Speed up the change of Nj
11: else ⊲ Convergence rate is too fast

12: µj ← µj +
1

2
δµj ⊲ Slow down the change of Nj

13: end if
14: else ⊲ Nj evolves in the wrong direction
15: µj ← µj − δµj ⊲ Change µj to counteract this
16: end if
17: Nprev

j ← Nj
18: until |GP1(ψ1, ψ2, µ1)/ψ1| < eψ |N1 − 1| < eN

and
|GP2(ψ2, ψ1, µ2)/ψ2| < eψ |N2 − 1| < eN

19: end procedure

Table 1.1: The algorithm used in the numerical computation of the coupled
GP equations (1.110) and (1.111).

To outline the algorithm, we begin with assumption of initially high nor-
malization Nj > 1. Then two scenarios can occur: either the normalization
is decreasing, as it should, or it is increasing. In the latter case the chemical
potential µj should be lowered by an amount δµj. In the former case one
should avoid, or at least counteract, possible overshooting the solution. One
can do the latter by following the rate rj: when rj > rt, the solver approaches
Nj = 1 too fast. Therefore, one needs precautionary measure to decrease µj
by δµj/2. When r < rt, we will speed up the rate by increasing µj by δµj.
The case of a too low normalization (Nj < 1) is analogous, only the signs
in front of δµj are reversed. We compute Ψj and µj self-consistently until
both quantities are below a predefined error threshold. At that, Ψ1 and Ψ2

are updated simultaneously in the same loop. The pseudocode is depicted in
Table 1.1.
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1.7 Skyrmions in multi-component systems

Superfluidity, superconductivity and Bose-Einstein condensation are exam-
ples of systems with quantum phase coherence. On the microscopic scale this
coherence is manifested through existence of quantized vortices, which are lo-
calized phase singularities with integer topological charge. These topological
defects are readily observed in liquid helium [168, 169, 170], in superconduc-
tors [85, 171], and in dilute atomic gases BEC [10, 172]. The occurrence
of quantized vortices in superfluids has been the focus of fundamental the-
oretical [173, 174, 175, 85, 140] and experimental work [176, 177, 170, 10].
Vortex-like excitations exist even in the Earth’s atmosphere [140], in super-
fluid hadronic matter (neutron stars) [140], and in rotating nuclei [140].

Recently, multi-band superconductors and multi-component BECs have
been demonstrated to exhibit another kind of topological defect termed
skyrmion [178, 179], which was predicted in early 50s in nuclear physics [180,
181, 182, 183]. Search for the skyrmions in multi-component BECs offers an
advantage to study their physical behaviour in much greater detail, because
this kind of a multi-component system can be easily created, manipulated,
and tuned, enabling direct comparison between theory and experiment.

This Section gives an outline of main topological excitations such as vor-
tices and skyrmions which will be used later in the presentation of the main
research results.

1.7.1 Vortices

Studying the superconductors of type II with the dimensionless Ginzburg-
Landau parameter κ > 1/

√
2, Abrikosov was first to derive that the magnetic

field would penetrate the superconducting sample in forms of separate single
flux quantum filaments (or vortex lines) [85]. He noticed that the resulting
pattern would be similar to one arising in vortex matter in superfluid helium
II, proposed earlier by Onsager [173] and Feynman [175]. Analyzing the
behavior of the order parameter in the neighborhood of the vortex cores at
the field close to the upper critical field Hc2 , Abrikosov found that the order
parameter Ψ vanishes in the vortex core, while the field becomes maximal
there, and the phase θ of Ψ changes by 2π when encircling the vortex. He
found that a single filament will carry exactly one quantum of flux

Φ0 =
hc

2e
= 2.07× 10−7 G − cm2, (1.112)

where h is Planck’s constant, c is the speed of light and e is the electron
charge. Although Abrikosov initially predicted that vortices would form a
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square lattice, it was soon realized that the triangular vortex lattice has lower
free energy.

(a) (b)

Figure 1.17: (a) First triangular vortex lattice observation in Pb at T = 1.1
K by using Bitter decoration technique (adapted from [176]); (b) Abrikosov
flux lattice in NbSe2 at T = 1.8 K measured by STM (adapted from [184]).

10µm

Figure 1.18: Unusual vortex pattern observed in MgB2 at T = 4.2 K. The
density of vortices in the decoration experiment represents the internal field
(adapted from [1]).

The first direct observation of Abrikosov lattice was on samples of lead
(shown in Fig. 1.17(a)) and niobium by employing magnetic decoration tech-
nique by Essmann and Träuble in 1967 [176]. Subsequent experiments con-
firmed that magnetic field penetrates the superconducting materials of type
II as singly quantized vortices forming the triangular lattice [177, 184]. Singly
quantized vortices were also observed in HTS superconductors [185, 186] and
in films [187, 188]. Unusual vortex pattern, disobeying a particular lattice,
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was recently observed in the two-gap superconductor MgB2 [1], shown in
Fig. 1.18. This is one of the first manifestations of novel physics in multi-
component superconductors.

Figure 1.19: Photographs of stable vortex arrays in the rotating helium II.
The pictures are placed in the order of the angular velocity applied to the
sample: (a) 0.30 s−1; (b) 0.30 s−1; (c) 0.40 s−1; (d) 0.37 s−1; (e) 0.45 s−1; (f)
0.47 s−1; (g) 0.47 s−1; (h) 0.45 s−1; (i) 0.86 s−1; (j) 0.55 s−1; (k) 0.58 s−1; (l)
0.59 s−1 (adapted from [170]).

In the context of superfluid 4He, Onsager and Feynman proposed inde-
pendently that when superfluid is rotated, the circulation will be quantized
in the form of whirlpools [173, 174, 175]. Indeed, if we consider a rotating
condensate with which we can associate a complex-valued order parameter
Ψ = |ψ|eiϕ (where |ψ| is the amplitude, and ϕ is the phase), then we can
define the velocity of the condensate as the gradient of a scalar

v =
~

m
∇ϕ, (1.113)

where m is the particle mass. Applying the operation circulation to this
gradient yields that

∇× v = 0, (1.114)
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i. e. the velocity field of the superfluid is irrotational, unless the phase of
the order parameter has a singularity. Superfluid supports the rotation only
in these singularities. From the single-valuedness of the order parameter it
follows that the change in the phase of the order parameter around a closed
contour must be a multiple of 2π

∆ϕ =

∮

∇ϕ · dl = 2πl, (1.115)

where l is an integer. Then the circulation of the superfluid velocity around
a closed contour is given by

∮

v · dl = ~

m
2πl = l

h

m
, (1.116)

demonstrating that the circulation of the superfluid velocity is quantized in
units of h/m. These whirlpools were termed vortices. The order parameter
drops to zero inside of the vortex, while the phase changes by 2π around it.

The first experimental vortex imaging in superfluids was performed in the
rotating helium II in 1979 by Yarmchuk, Gordon and Packard [170] [shown in
Fig. 1.19]. Shortly after Bose-Einstein condensation was realized experimen-
tally in trapped dilute alkali atoms, the first experiment on vortex observation
in BEC was performed [10]. Since then plenty of vortex experiments in the
trapped dilute BECs were implemented, providing important information on
the coherence and superfluid properties of dilute atomic gases. An exhaustive
list of experiments on vortices in BECs is given in Ref. [172].

1.7.2 Skyrmions

Vortices in superfluids, BECs and superconductors are topological defects
and considered to be manifestation of quantum phase coherence on micro-
scopic length scales. They are supported in both single component BECs and
superconductors as well as in multi-component BECs and multi-band super-
conductors. However, multi-component quantum systems differ from single
component counterparts by exhibiting dependence on the phase-difference
between the condensates, leading to nontrivial topological defects such as
skyrmions [180].

Skyrmion was first introduced by a British theorist Skyrme [180, 181,
182, 183, 190, 191, 192] representing an extended baryon, being considered
as a topological soliton created from bosons but exhibiting fermion features.
While solving the sine-Gordon equation for a field with components φ0 =
cos θ and φ1 = sin θ

∂2xxθ − ∂2ttθ = κ
2 sin θ, (1.117)
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where θ is angular variable and κ is an inverse length, Skyrme found that this
equation has three solutions a 2π-kink, a 4π-kink, and a breather [190]. These
solutions were already known by that time but Skyrme was not aware of the
existence of corresponding works [193]. He was able to show that solitons
of the sine-Gordon equation arising from the bosonic field model, are in fact
fermions. Skyrme also showed that these solitonic solutions possess conserved

current with components j0 =
1

2π
∂xθ and j1 = − 1

2π
∂tθ. The integral of the

component j0 of the conserved current

Q1D =

∫

j0dx =
1

2π

∫

∂xθ =
1

2π
(θ(∞, t)− θ(−∞, t)), (1.118)

he termed topological charge (or topological index). The generalization of the
topological index to the three spatial dimensions acquires the form [194]:

Q3D =
1

24π2
ǫαβγ

∫

d3x tr(U †∂αU∂βU
†∂γU), (1.119)

where ǫαβγ is the 3-component Levi-Civita tensor and U is an SU(2)-valued
field. The minimal energy solutions for each Q3D are called skyrmions.
Skyrmions in their original sense are smooth, topologically stable extremal
field configurations which are trivial at spatial infinity and have a finite en-
ergy. Moreover, skyrmions are characterized by a non-zero and integer-valued
topological charge Q3D.

Although initially skyrmion was introduced in the context of baryonic
number, the term is widely used nowadays in the condensed matter the-
ory for a broad range of defects with corresponding topology. For example,
skyrmionic texture was predicted to exist in a spinor Bose-Einstein conden-
sate based on two or more hyperfine states of an atom, where the spin degree
of freedom becomes relevant [179]. Skyrmionic defects are also found in su-
perconductors [178, 197], in thin magnetic films [195], and in chiral nematic
liquid crystals [196]. In the case of a two-component field Ψ† = (ψ∗

1, ψ
∗
2),

one can always construct a pseudospin field n ≡ (nx, ny, nz) =
Ψ†σ̂Ψ

Ψ†Ψ
with σ̂

being the Pauli matrices. Then the components of pseudospin n are:

nx =
ψ∗
1ψ2 + ψ∗

2ψ1

Ψ†Ψ
, ny =

i(ψ∗
2ψ1 − ψ∗

1ψ2)

Ψ†Ψ
, nz =

|ψ1|2 − |ψ2|2
Ψ†Ψ

. (1.120)

Then when the pseudospin n winds from 0 to 2π, it describes a continuous
closed surface as shown in Fig. 1.20. The topological charge associated with
the skyrmion in that case can be calculated as [197]

Q2cf =
1

4π

∫

R2

n · ∂xn× ∂yn dx dy. (1.121)
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Figure 1.20: Skyrmion model. Sphere represents 3D velocity field of the
average spin n = (nx, ny, nz). nz denotes the length of the average spin. 2D
surface is the projection of 3D pseudospin field to two dimensions. Courtesy
of Lingfeng Zhang, CMT group, University of Antwerp.

The meaning of the topological charge becomes clearer here: when the av-
erage spin winds once around the closed surface, the topological index is
equal to one. In other words, the topological charge counts how many times
the average spin winds the closed surface. As Fig. 1.20 demonstrates, the
topological charge is Q = 1 when the average spin winds the sphere once.

In a more general case of a multi-component field Ψ† = (ψ∗
1, ψ

∗
2, ψ

∗
3, . . . )

and a two-dimensional system one can extend the topological charge given
by Eq. (1.121) as [178]

Qmcf =

∫

iǫαβ
2π|Ψ|4

(

|Ψ|2∂αΨ†∂βΨ+Ψ†∂αΨ∂βΨ
†Ψ
)

d2r, (1.122)

where α, β ∈ {x, y}, ǫαβ is the 2-component Levi-Civita tensor. In fact,
if one inserts the components of the pseudospin n into Eq. (1.121), after
carrying out simple arithmetical calculations the topological charge given by
Eq. (1.121) modifies to Eq. (1.122), where the field Ψ† = (ψ∗

1, ψ
∗
2) has two

components.
A detailed derivation of the topological index given by Eq. (1.122) from

the Ginzburg-Landau functional for a multi-component system is presented
in Ref. [178]. It was also shown in Ref. [178] that the topological index Qmcf

takes integer values. The proof is based on the assumption that the magnetic
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flux is carried by an integer number of m fractional-flux vortices emerging in
the system.

1.8 Goals of the thesis

One of the main aims of this thesis is to revisit long-established and widely
used theoretical models and tools in superconductivity in the context of
multiband superconductors. One of such tools is the Ginzburg-Landau the-
ory [27], being regarded as the most convenient tool for conventional single-
band superconductors. The generalization of the Ginzburg-Landau theory
to multiband superconductors represents a system of nonlinear Ginzburg-
Landau equations, one for each band gap, coupled via the linear Josephson-
type terms. Albeit this generalization appears intuitively justified, partially
by a familiar structure of the equations, it contains several fundamental short-
comings. First, it has to be reconciled with the phenomenological Landau
theory of phase transitions [198]. Second, the earlier analysis of the two-
component model [19, 20] revealed that the accuracy of a solution to the
formalism exceeds the accuracy of its derivation. Therefore, the objective of
this thesis is to construct a convenient and simple tool for the study of the
properties of multiband superconductors which eliminates aforementioned
fundamental inconsistencies. The subsequent goal is to point out the new
physics stemming from the multi-component nature of the system, with par-
ticular attention to the chiral regime of three-band superconductors.

Furthermore, nano and atomically thin films are of great current inter-
est, and were proven to be multiband superconductors, where the multiband
structure is dictated by the nanofilm thickness through the size quantiza-
tion of the electron motion perpendicular to the film. However, a serious
limitation here is the absence of a convenient theoretical tool to access new
physical phenomena in such quasi-two-dimensional systems. For example,
investigating complex configurations of vortices in nanofilms by employing a
microscopic model, e.g., the Bogoliubov-de Gennes equations, is a difficult
and time consuming task. On the other hand, the standard Ginzburg-Landau
model is not valid in nanofilms, since the nanofilm thickness is much smaller
than the bulk BCS coherence length and the band gaps vary significantly in
this scale. Therefore, the objective of this thesis is to derive the appropri-
ate multiband Ginzburg-Landau theory for nano-thin superconductors, and
point out the consequences on emergent physics.

The third objective is to study numerically exotic vortex structures in
the rotating harmonically trapped two- and three-component Bose-Einstein
condensates. The underlying goal of these investigations is to extend our un-
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derstanding of vortex phenomena in the gaseous condensates but also to link
the findings to the ones of multiband superconductivity - particularly in the
chiral regime and novel vortex matter. Although the research carried out in
the thesis addresses a wide range of problems, it is important to stress that
superconductivity and Bose-Einstein condensation are closely related, rep-
resenting condensation of bosonic particles. The advantage of BECs is that
they can be easily created and manipulated experimentally, and to support
quantized vortices when being rotated, which allows to study the rich emer-
gent vortex physics and thereby prove some theoretical hypotheses. We note
that despite the research is theoretical, it is strongly motivated by current
experimental prospects.
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CHAPTER 2

The chiral regime of three-band superconductors

In the previous Chapter the Ginzburg-Landau and BCS theories for single
band superconductors were reviewed, the concept of multiband superconductor
was defined, main properties of the multiband superconductors were consid-
ered and the generalization of the BCS theory for the multiband superconduc-
tors was given. In this Chapter, by using the Gor’kov technique developed
for the single band superconductors and outlined in the previous Chapter, the
generalization of Ginzburg-Landau theory for the multiband superconductors
is derived.

2.1 Introduction

Studies of multiband (or multigap) superconducting systems, where more
than one carrier band contributes to the formation of the condensate, have
now more than a half-century history [88, 89, 19, 199]. In the last decade,
clear experimental evidences of multigap condensates were observed in a rich
variety of materials such as magnesium diboride [51, 56], oxypnictides [64],
iron arsenides [66] and iron pnictides [99, 200]. The string of discoveries
continues today so that the number of multiband superconductors increases
almost yearly.

There are different physical mechanisms responsible for the formation
of multiple carrier bands. For example, in bulk specimens the multi-gap
structure can be related to the appearance of separate pockets in the Fermi
surface centered around some points of the Brillouin zone. However, it was
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recently shown that multiband superconductivity can also arise in nanoscale
specimens (e.g. in nanofilms) made of ordinary single-band superconducting
materials, where the geometrical size quantization creates distinct carrier
subbands [112, 109, 119, 120, 201]. These and similar findings broadened
the interest in the physics of multiband coherent phenomena, and that in-
terest has given a strong impetus to theoretical investigations. One of the
focal points of such investigations is revisiting long-established and widely
used theoretical models and methods in superconductivity in the context of
multiband superconductors. One of such methods is the Ginzburg-Landau
(GL) theory [27], which is commonly regarded as one of the most general
and yet simple mean-field approaches for conventional single-band supercon-
ductors. Surprisingly, the generalization of the GL theory to the multiband
case is still a highly debated issue.

On the microscopic level, a multiband superconductor is modeled by the
multicomponent generalization of the BCS theory [88, 89]. The correspond-
ing GL equations are derived using a straightforward application of the origi-
nal single-band recipe by Gor’kov [36] (see, e.g., Refs. [202] and [75]). In this
approach, superconducting gap functions in each carrier band, hereafter re-
ferred to as band gaps, are regarded as the order parameters. Similarly to the
single-band case, the anomalous Green’s function is expanded in powers of the
corresponding band gaps and its spatial gradients [36], and then the expan-
sion is truncated to keep the same terms as in the single-band GL theory. This
procedure yields a system of nonlinear GL-type equations, one for each band
gap, coupled via the linear Josephson-type terms, and the corresponding
multicomponent functional. This is often referred to as the multi-component
GL model and is widely used in the analysis of multiband superconductors
[202, 75, 203, 204, 205, 206, 178, 6, 207, 208, 209, 210, 211, 212, 213].

Although this formulation of GL theory appears intuitively justified, par-
tially by a familiar structure of the obtained equations, it possesses several
fundamental inconsistencies. First, it has to be reconciled with the Landau
theory of phase transitions, according to which the order parameter must be
associated with a particular irreducible representation of the relevant sym-
metry group. Following this prescription, Volovik and Gor’kov developed a
classification of the exotic superconducting phases within the GL theory [214]
(a systematic classification of the GL theories based on the symmetry analysis
can be found in Ref. [215]). It is important that the number of independent
order parameters in the GL theory, given by the dimensionality of the irre-
ducible representation, is typically lower than the number of bands, which is
certainly different from the multicomponent model mentioned above.

Secondly, the analysis of the multicomponent GL theory presented by
Geilikman, Zaitsev and Kresin [19, 199] and more recently by Kogan and
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Schmalian [20] revealed another inconsistency: the accuracy of a solution
to the formalism exceeds the accuracy of its derivation. This discrepancy
is intrinsic in the multiband generalization of the Gor’kov procedure and
can only be eliminated by invoking an additional truncating reconstruction,
which removes the artificial higher-order contributions [19, 199, 20, 216, 217].

Without additional symmetries, such reconstruction yields a strict pro-
portionality of all band gaps, i. e., the GL theory has a single order pa-
rameter. This conclusion agrees with the phenomenological classification
that predicts a single-component GL theory in this case. (Deviations from
this result appear only in higher-order corrections to the ordinary GL the-
ory [216, 217, 218]).

This analysis did not consider the case of a degenerate solutions for Tc
which appears due to an additional symmetry of the system. Furthermore,
the calculations in Ref. [19] for an arbitrary number of bands employed a
rather restrictive ansatz for the band gaps, while Refs. [20] and [216] utilize
the separability specific to the two-band case. The microscopic derivation
of the multiband GL theory has not been yet achieved in the general case.
Notice that a mechanical merge of the symmetry analysis with the Gor’kov
truncating procedure, in which the outcome of th Gor’kov procedure is sim-
ply rewritten in terms of the basis states of the relevant symmetry group
representations, does not solve the problem. It yields a mixture of differ-
ent irreducible representations, which should not happen in the standard GL
formalism [5].

In this Chapter, we derive the reconstructed GL theory from the micro-
scopic Hamiltonian for a multiband superconductor in a general case with an
arbitrary number of bands as well as with an arbitrary symmetry (reflected
in the degeneracy of the solutions for Tc). The origin of the symmetry is
not important here. We note that it can appear not only due to the lattice
structure of the material, as discussed in Ref. [214] and [215] but also due to
other reasons, e.g., the geometrical shape of the sample as in superconduct-
ing single-crystalline nanofilms [219, 220, 220]. A detailed analysis of the
obtained equations is then performed for the three-band system treated as a
prototype of a multiband superconductor. In particular, we consider a simple
three-band model of pnictides with dominant interband couplings which al-
lows for the twofold degeneracy of the solitons for Tc. We demonstrate that in
full agreement with the phenomenological GL theory, this system has two or-
der parameters, related to the two-dimensional irreducible representation of
the relevant symmetry group. However, unlike the phenomenological analysis
based on the symmetry considerations, the derivation from the microscopic
theory offers the explicit expressions for the coefficients of the GL theory.
These expressions are highly nontrivial in the case of multiband supercon-
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ductors because they contain important information about contributions of
different bands that can not be obtained from the symmetry arguments. The
corresponding ground state of the system is found to be a chiral state with
nontrivial phase difference between the band gaps. Such states in multigap
superconductors have attracted much interest [6, 207, 208, 209, 210, 211, 213]
as they could lead to unconventional phenomena such as the formation of an-
tiferromagnetic domains or noninteger vortices (see, e.g., Ref. [215]). Notice
that in this consideration we do not go beyond the standard GL domain (i.e.,
band gaps are proportional to τ 1/2, with τ = 1− T/Tc the proximity to the
critical temperature).

The Chapter is organized as follows. In Section 2.2, the GL theory for
multiband superconductors is derived starting from the standard multiband
BCS model. The derivation is performed in three steps: (i) the truncated
multiband gap equation is obtained in matrix form by following the Gor’kov
procedure adapted for the case of multiple bands, (ii) the truncating recon-
struction is then applied by invoking the τ -expansion, and (iii) an explicit
form of the resulting GL equations is obtained by keeping terms of order τ 1/2

in the band gaps. In Section 2.3, we recast the final formalism in a more ex-
plicit form, for both the nondegenerate and degenerate cases. In Section 2.4,
we consider a three-band model, for which expressions for the coefficients of
the GL equations can be calculated analytically for an arbitrary interaction
matrix. Then, we investigate the case of a degenerate solution for Tc for a
simple variant of the model with strong interband couplings and demonstrate
analytically that the degeneracy in this model leads to a chiral ground state.
Our summary and conclusions can be found in Section 2.5.

2.2 Derivation of the GL theory

2.2.1 Truncated gap equation

Following Gor’kov [36], the GL theory is usually derived from the gap self-
consistency equation, using an expansion of the anomalous Green’s function
in powers of the order parameter and its spatial derivatives. We outline this
derivation for multiple bands, starting from the multiband BCS Hamilto-
nian [88, 89] with s-wave singlet pairing, which reads as

HBCS = Hc +
∑

i

∫

d3r
[

∑

σ

ψ̂†
iσ(r)Ti(r)ψ̂iσ(r)

+ ψ̂†
i↑(r) ψ̂

†
i↓(r)∆i(r) + h.c.

]

, (2.1)
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where i enumerates different bands, ψ̂iσ(r) and ψ̂†
iσ(r) are the carrier field

operators, ∆i(r) are the band gap functions, or simply band gaps, Hc is
the c-number term (see, e.g., Ref. [75]), and Ti(r) stands for the single-
electron energy. Equation (2.1) is supplemented with by the self-consistent
gap equation

~∆ = ǧ ~R, (2.2)

where we introduce ǧ, the matrix of the coupling constants gij, and use

the vector notations ~∆T = (∆1,∆2, . . .) and ~RT = (R1, R2, . . .), with Ri =
〈ψ̂i↑(r)ψ̂i↓(r)〉 being the anomalous Green’s function of the i-th band [222].

Using Eq. (2.1), we expand the anomalous Green’s functions in the vicin-
ity of Tc into a series in powers of the band gaps and their spatial gradients.
As the Hamiltonian (2.1) is diagonal over the band index, the series is ob-
tained independently for each band yielding the same expressions as in the
single-band case. The derivation of the expansion in powers of the gap func-
tion is given in Chapter 1, Section 1.3, Subsection 1.3.2, therefore we quote
here the final expansion for Ri, where only the leading nonlinear and gradient
terms are retained,

Ri[∆i] ≃ Ni(0)A∆i + Ωi[∆i], (2.3)

where Ni(0) is the band density of states (DOS), A = ln
(

2eΓ~ωc/πTc
)

, and

Ωi[∆i] = −ai∆i − bi|∆i|2∆i +Ki∇2∆i. (2.4)

In Eqs. (2.3) and (2.4) ωc is the cut-off frequency, Γ = 0.577 is the Euler
constant and the coefficients are calculated as

ai = −Ni(0)τ, bi = Ni(0)
7ζ(3)

8π2T 2
c

, Ki =
bi
6
~
2v2i , (2.5)

with ζ(. . . ) the Riemann zeta function and vi the band Fermi velocity. Al-
though here only results for the clean limit are quoted, we note that the
structure of the equations will be the same for dirty systems, as is usually
the case in the standard GL formalism.

We note that the magnetic field is not included in Eq. (2.4). The gener-
alization to the nonzero-field case is trivial and will be done at a later stage
by using the standard prescription of inserting the gauge invariant gradients

D = ∇ − i
2e

~c
A, where A is the vector potential. One should remember,

however, that this recipe is valid only in the standard GL domain when only
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terms of order τ 1/2 are kept in the gap functions. A more involved and com-
plicated procedure is needed when higher-order corrections to the band gaps
are considered [218].

Substituting Eq. (2.3) into Eq. (2.2), we obtain the following system of
coupled equations:

(

Ai + ai
)

∆i + bi∆i|∆i|2 −Ki∇2∆i +
∑

j 6=i
γij∆j = 0, (2.6)

where γij is the element of the inverted interaction matrix ǧ−1 and the con-
stants Ai are defined as

Ai = γii −Ni(0)A. (2.7)

The truncated set of equations given by Eg. (2.6) are commonly referred
to as the generalization of the GL theory to the multiband case, or the multi-
component GL theory. This interpretation is suggestive, especially given
that in the limit of zero interband couplings Eq. (2.6) yields N uncoupled
GL equations for ∆i’s that are the true Landau order parameters for the
uncoupled bands. Thus, the coupling is commonly assumed to be a weak
perturbation that does not significantly alter this physical picture.

However, already this trivial limit highlights shortcomings of the interpre-
tation of Eq. (2.6) as a consistent multiband GL formalism. In the absence
of coupling each band has its own critical temperature Tci, while the Tc of
the entire system is the largest of those. In the vicinity of Tc, which is the
usual validity domain of the GL theory, only the band with Tci = Tc develops
a superconductive state and, therefore, the system is in fact described by a
single-band GL theory with the single order parameter (here we assume that
the Tci’s are well separated). One can also imagine a degenerate situation
where M ≤ N gaps have the same largest critical temperature Tc. Here, in
the zero-coupling limit, the system is described by the theory with M ≤ N
order parameters corresponding to M uncoupled components. Thus, in the
zero interband-coupling limit, the GL theory always has fewer active order
parameters than the number of available bands. This conclusion is of course
trivial in the noninteracting case. However, in what follows we demonstrate
that it holds also in the general case of a nonzero coupling within the accuracy
of the GL approach.

2.2.2 Reconstructed GL theory

Deriving the GL theory for the general case of nonzero interband interactions
starts by noting that as discussed previously, Eq. (2.6) is inconsistent because
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the accuracy of its solution exceeds the accuracy of its derivation. One can
see this (details can be found in Refs. [19, 199, 20, 216, 217]) by taking
into account that the coefficients Ai + ai and γij are not zero in the limit
τ → 0 (T → Tc). This implies that a solution to Eq. (2.6), when being
expanded in τ , comprises terms of arbitrarily high orders, i.e., all ∆i’s are
given by infinite series in powers τn+1/2, with integer n. At the same time the
Gor’kov truncation neglects terms that contribute to orders higher than τ 1/2

in the band gap functions. The only situation when this inconsistency does
not happen is the single-band GL theory where the coefficient of the linear
term in the GL equation is proportional to τ and, as a result, the solution
comprises a single contribution of order τ 1/2.

In order to reconcile the accuracy of a solution for ∆i with the accu-
racy of the derivation of Eq. (2.6), we use the reconstruction procedure that
abandons incomplete higher-order contributions from the band gaps. This
procedure is nothing more than a systematic perturbation expansion in τ ,
which gives the GL theory and its corrections in a systematic way [218]. Fol-
lowing this procedure, the solution to Eq. (2.6) is sought in the form of a
series in odd powers of τ 1/2 as

∆i = ∆
(0)
i +∆

(1)
i +O(τ 5/2), (2.8)

where ∆
(0)
i ∝ τ 1/2 and ∆

(1)
i ∝ τ 3/2. This series is inserted into Eq. (2.6) and

then terms of the same order are collected. A simple power-counting shows
that making a solution to Eq. (2.6) consistent with the Gor’kov truncation,
one should keep the two lowest orders in the resulting τ -expansion of Eq. (2.6)
and the leading order term ∝ τ 1/2 in Eq. (2.8).

Notice that one must also take into account that spatial derivatives of
the difference δ∆i = ∆i −∆

(0)
i do not contribute to these lowest orders. In

an earlier consideration [19] it was assumed that δ∆i is independent of the
coordinates, see Eq. (14) in Ref. [199]. Subsequent works [216, 217, 218] have
demonstrated that such a restrictive ansatz is not needed. The GL theory
introduces the coherence length, ξ ∝ τ−1/2 so that all spatial derivatives of
all contributing terms in the band gaps scale as ∝ τ 1/2. In other words, each
gradient operator ∇ introduces a factor ∝ τ 1/2. Counting powers of τ in
the expansion confirms that the higher-order gradients of ∆

(0)
i as well as the

lowest gradients of δ∆i do not contribute to the two lowest orders of the τ
expansion of Eq. (2.6).

Substituting Eq. (2.8) into Eq. (2.6) and collecting terms of order τ 1/2,
we obtain the first equation in the reconstructed theory

Ľ~∆(0) = 0, (2.9)
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where the elements of the matrix Ľ are written as

Lij = δijAi + (1− δij)γij, (2.10)

with δij being the Kronecker symbol. The condition of solvability of Eq. (2.9),

detĽ = 0, (2.11)

is the equation for the critical temperature Tc that generally has N solutions.
Clearly, one has to choose the solution with the maximal Tc as it yields the
minimal value of the free energy. Equation (2.9) is commonly referred to as
the linearized gap equation as it can also be obtained by simply neglecting
all the nonlinear contributions in Eq. (2.6).

When N > 2, one may encounter a situation with M < N degenerate
solutions to Eq. (2.11) that correspond to the same maximal value of Tc.
In this case the matrix Ľ has M eigenvectors ξα, with α = 1, ...,M , corre-
sponding to the zero eigenvalue of Ľ at T = Tc. Without loss of generality
these eigenvectors can be chosen orthogonal, and their normalization is not
important.

A general solution to Eq. (2.9) is then represented as a sum of M terms
(i.e. M = 1 for the nondegenerate case), one for each eigenvector, as

~∆(0)(r) =
∑

α

ψα(r)~ξα. (2.12)

Here, M functions ψα are specified by the equation that is obtained from
Eq. (2.6) by matching terms of order τ 3/2 as

Ľ~∆(1) = ~Ω[~∆(0)], (2.13)

where the components Ωi[∆
(0)
i ] of ~Ω[~∆(0)] are given by Eq. (2.4) with ∆i re-

placed by ∆
(0)
i . A closed set ofM equations for ψα(r) is derived by projecting

Eq. (2.13) to the eigenvectors ~ξα, which yields M equations given by
∑

i

ξαiΩi[∆
(0)
i ] = 0, (2.14)

where ξαi is the i-th component of ~ξα.

2.3 Explicit form of the GL equations

2.3.1 Nondegenerate case

Here, we recast Eq. (2.14) in a more explicit and familiar form. In the
nondegenerate, case a single function ψ(r) ≡ ψ1(r) controls the same spatial
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profile of all band condensates. Rewriting Eq. (2.14) for ψ(r) one obtains

aψ + b|ψ|2ψ −KD2ψ = 0, (2.15)

where we include a nonzero magnetic field by replacing ∇→ D. The coeffi-
cients a, b and K in Eq. (2.15) are given by

a =
∑

i

aiξ
2
i , b =

∑

i

biξ
4
i , K =

∑

i

Kiξ2i , (2.16)

where ξi is the band component of ~ξ ≡ ~ξ1. The corresponding free-energy
functional reads as

F =

∫

d3r
[

a|ψ|2 + b

2
|ψ|4 +K|Dψ|2 + B2

8π

]

. (2.17)

Using this functional, one derives the accompanying Maxwell equation for
the gauge field in the form

1

4π
rotB = i

2e

~c
K
(

ψD∗ψ∗ − ψ∗Dψ
)

. (2.18)

As seen, Eqs. (2.15), (2.17) and (2.18) have the form of the ordinary single-
band GL theory. In fact, however, this is an effectively single-band GL theory
as the coefficients a, b and K comprise contributions of all bands. It is also
important to remember that ψ itself cannot be interpreted as an excitation
gap: it is related to the band gap functions via Eq. (2.12).

The single-band representation of the reconstructed GL theory allows one
to define the characteristic lengths of a multiband superconductor in a unique
way. In particular, the coherence length ξ, the magnetic penetration depth
λ, and their ratio κ are given by the standard GL expressions as

ξ =

√

K
|a| , λ =

~c

|e|

√

b

32πK|a| , κ = Φ0

√

b

32π3K2
, (2.19)

where Φ0 is the flux quantum. However, the multiband origin of Eqs. (2.15)-
(2.18) is still reflected in some properties of the system. For example, follow-
ing Eqs. (2.16) and (2.19), one concludes that b,K can be roughly estimated

as linearly proportional to N . Taking into account the relation κ ∝
√

b/K2

one arrives at the trend κ ∼ 1/
√
N , which means that a multiband super-

conductor approaches a type-I superconducting behaviour when the number
of bands is large enough.
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2.3.2 Degenerate case

When the maximal solution to Eq. (2.11) is degenerate, i.e.,M > 1, Eq. (2.12)
yields a set of coupled nonlinear equations, an explicit form of which is ob-
tained as

∑

β

(

aαβ −KαβD2
)

ψβ +
∑

βγδ

bαβγδ ψβψ
∗
γψδ = 0, (2.20)

where the coefficients are defined as

aαβ =
∑

i

aiξαiξβi, Kαβ =
∑

i

Kiξαiξβi,

bαβγδ =
∑

i

biξαiξβiξγiξδi. (2.21)

The corresponding free-energy functional is now obtained in the form

F =

∫

d3r
[

∑

αβ

(

aαβψ
∗
αψβ +KαβD∗ψ∗

αDψβ
)

+
1

2

∑

αβγδ

bαβγδ ψ
∗
α ψβ ψ

∗
γ ψδ +

B2

8π

]

. (2.22)

By calculating the functional derivative with respect to the vector potential,
we obtain from Eq. (2.22) the accompanying Maxwell equation as

1

4π
rotB = i

2e

~c

∑

αβ

Kαβ
(

ψαD
∗ψ∗

β − ψ∗
βDψα

)

. (2.23)

The number of components in the reconstructed GL theory is 1 ≤ M <
N , unlike in the original system of equations given by Eq. (2.6). Another
important difference is that all coefficients of the linear terms in the recon-
structed GL theory are now proportional to τ , which dictates that ψα ∝ τ 1/2.
This eliminates the problem of the mismatch between the accuracy of the so-
lutions and the equations, which was the reason to seek the reconstruction.

Notice that the reconstructed GL formalism, obtained here by the τ -
expansion, recovers the standard Landau theory of phase transitions. In
particular, the degeneracy of the linearized gap equation is related to an extra
symmetry between the bands, hidden in the relevant coupling matrix. The
degree of degeneracyM is defined by the dimensionality of the corresponding
irreducible representation with the M basis vectors ξα’s. Equation (2.22)
is interpreted as the Landau free-energy functional with the ψα’s being a
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Landau order parameters. The reconstruction can thus be regarded as the
procedure of finding the true Landau order parameter of the system, in the
form of linear combinations of the band gaps [see Eq. (2.12)]. However,
Eqs. (2.17) and (2.22) are derived by matching all relevant terms in the τ -
expansion, rather than through the phenomenological approach based on the
group-theory analysis [215].

In agreement with the Landau recipe, the reconstructed GL theory is
based on a single irreducible representation. However, if one continues the
τ -expansion to next orders, admixtures of other irreducible representations
will appear in the formalism. Within the symmetry analysis, it is often ar-
gued that such terms should arise because the appearance of the condensate
at T < Tc already changes the symmetry of the system [215]. The recon-
struction yields a clear quantitative estimate for such admixtures. It is easy
to see from Eq. (2.8) that the order parameters related to extra irreducible
representations will be of order τ 3/2 and higher, which must be neglected in
the present analysis concerning the standard GL formalism.

2.4 Three-band system

2.4.1 Eigenvectors

As a prototype of multiband superconductors, we now consider a physically
relevant case of a three-band system, the analysis of which can be done
analytically. In order to obtain the eigenvectors ξα, we write Eq. (2.9) as a
system of linear algebraic equations

Ai∆(0)
i +

∑

j 6=i
γij∆

(0)
j = 0. (2.24)

It is easy to verify that the following relations hold:

η1∆
(0)
1 = η2∆

(0)
2 = η3∆

(0)
3 , (2.25)

where

η1 = A1γ23 − γ12γ13, η2 = A2γ13 − γ12γ23,
η3 = A3γ12 − γ13γ23, (2.26)

and Ai is defined by Eq. (2.7).
We now investigate the following possibilities. Let us first assume that

η1, η2, η3 6= 0. Then, from Eq. (2.25) we immediately find that

ξi ∝ 1/ηi, (2.27)
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which implies that the gaps in all three bands are nonzero. When one of the
ηi’s is zero, say η1 = 0, then Eq. (2.25) dictates that ∆

(0)
2 = ∆

(0)
3 = 0, and

therefore the condensate is formed only in one band. When two of the ηi’s
vanish, the gap is nonzero in the corresponding two bands. In all these cases,
we deal with the nondegenerate scenario governed by the single-component
GL equation (2.15) with the coefficients given by Eq. (2.16). However, the

eigenvector ~ξ, whose band components appear in Eq. (2.16), is dependent on
the particular situation. As mentioned above, for η1, η2, η3 6= 0 we obtain
Eq. (2.27), whereas for, say, η1 = η2 = 0 we have ~ξ T = (1,−γ13/γ23, 0).

The case when all ηi’s are equal to zero requires a bit more algebra.
Expressing Ai in terms of γij from Eq. (2.26) and then inserting the result
into Eq. (2.24), we find that in this case Eqs. (2.24) are reduced to a single
equation that reads as

γ12γ13∆
(0)
1 + γ12γ23∆

(0)
2 + γ13γ23∆

(0)
3 = 0. (2.28)

A general solution to Eq. (2.28) can be written as

~∆(0)(r) = ϑ1(r)~u1 + ϑ2(r)~u2, (2.29)

where

~u1 =





0
−γ13/γ12

1



 , ~u2 =





1
−γ13/γ23

0



 (2.30)

are linearly independent and ϑ1,2(r) are unknown functions to be specified
later. Comparing Eq. (2.29) with Eq. (2.12), we conclude that this case repre-
sents the degenerate scenario with M = 2. Equation (2.29) can be rewritten

in terms of two orthogonal eigenvectors ~ξ1,2 by applying the orthogonalization
procedure to ~u1,2, which gives

~ξ1 = ~u1, ~ξ2 = ~u2 −
γ213γ12

(γ212 + γ213)γ23
~u1. (2.31)

One can then express the functions ϑ1,2 through ψ1,2 introduced earlier as
ϑ1(r) = ψ1(r) − γ213γ12/[(γ

2
12 + γ213)γ23]ψ2(r) and ϑ2(r) = ψ2(r). The band

gaps are then defined by the two Landau order parameters ψ1,2 according to

∆
(0)
1 = ψ2,

∆
(0)
2 = −γ13

γ12
ψ1 −

γ212γ13
(γ213 + γ212)γ23

ψ2,

∆
(0)
3 = ψ1 −

γ213γ12
(γ213 + γ212)γ23

ψ2. (2.32)
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Finally we note that the derivation of Eqs. (2.28)-(2.32) assumes that
γ12, γ13, γ23 6= 0. If some of these interband couplings is zero while η1 = η2 =
η3 = 0, the problem reduces to a trivial example of the nondegenerate case
where some of the available bands are uncoupled.

2.4.2 Chiral state with phase frustration

Under certain conditions, the ground state of a three-band superconductor
may develop a nontrivial phase difference between different band gaps, re-
ferred to as the state with phase frustration or the chiral solution. This state
is of particular interest as it breaks time-reversal invariance in the system,
leading to many unconventional superconducting properties [215]. Following,
we analytically demonstrate the possibility of such a state in the three-band
system within the simple variant of the model with strong interband cou-
plings, i.e., gii = 0 and gi 6=j > 0 and N1(0) = N2(0) = N3(0). Our analytical
calculation compliments numerical investigations in the recent Ref. [6]. Such
a model describes an interesting example of a system where the supercon-
ducting pairing is caused by interband coupling and, as it is believed, may
be relevant for the pnictides [6]. We are interested in the special case when
different interband couplings are equal to one another, which may be dic-
tated by some symmetry between bands [5] but is not necessarily limited
to only this particular physical situation. Please note that many different
combinations of intraband and interband couplings can lead to a degeneracy
of Tc and possible phase frustration (see, e.g. Ref. [207, 208, 209]). However,
in the absence of physical justifications for such coupling matrices, we refrain
from their analysis.

Using the orthogonality conditions for ~ξα’s and the fact that the band
DOS’s are equal, we obtain a12 = a21 = 0 in Eq. (2.20). Furthermore, it is
obvious that the tensor bαβγδ is symmetric with respect to permutation of
each pair of indices so that it is convenient to introduce new notations

β1 = b1111, β2 = b1112 = b1121 = b1211 = b2111,

β3 = b1122 = b1212 = b2112 = b2121 = b1221 = b2211,

β4 = b1222 = b2122 = b2212 = b2221, β5 = b2222. (2.33)
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Then, for the homogeneous case without magnetic field, Eq. (2.20) yields

α1 = −β1|ψ1|2 − β2
(

2ψ∗
1ψ2 + ψ1ψ

∗
2

)

− β3
(

2|ψ2|2 + ψ2
2

ψ∗
1

ψ1

)

− β4|ψ2|2
ψ2

ψ1

,

(2.34a)

α2 = −β2|ψ1|2
ψ1

ψ2

− β3
(

2|ψ1|2 + ψ2
1

ψ∗
2

ψ2

)

− β4
(

2ψ1ψ
∗
2 + ψ∗

1ψ2

)

− β5|ψ2|2,
(2.34b)

where we also denote α1 = a11, α2 = a22. As usual, it is convenient to search
for a solution to Eq. (2.34) in the form ψi = |ψi| exp(iφi). Then, matching
the imaginary parts in Eq. (2.34a) [or in Eq. (2.34b), which gives the same
result], we obtain

[

β2r + 2β3 cos(δφ) + β4r
−1
]

sin(δφ) = 0, (2.35a)

where the notations δφ = φ2−φ1 and r = |ψ1|/|ψ2| are introduced. Matching
the real parts in Eqs. (2.34a) and (2.34b) yields, respectively,

− α1

|ψ1|2
= β1 +

(

3β2 + β4r
−2
)

r−1 cos(δφ) + β3r
−2
[

2 + cos(2δφ)
]

, (2.35b)

− α2

|ψ1|2
=
(

β2r + 3β4r
−1
)

cos(δφ) + β3
[

2 + cos(2δφ)
]

+ β5r
−2. (2.35c)

To check the thermodynamic stability of different solutions to Eqs. (2.35),
one needs to calculate the free energy from the functional in Eq. (2.22). It
can be rewritten, using the new notations, as

F =

∫

d3r
{

|ψ1|2
(

α1+α2 r
−2
)

+
1

2
|ψ1|4

(

β1 + 4 cos(δφ)r−1
(

β2 + β4r
−2
)

+ 2β3r
−2
[

2 + cos(2δφ)
]

+ β5r
−4
)}

. (2.36)

To proceed further, we substitute the chosen model parameters into the
obtained equations. Inverting the coupling matrix yields γii = −1/(2g) and
γi 6=j = 1/(2g). Then, using Eq. (2.31), we obtain the eigenvectors as ~ξ T1 =

(0,−1, 1) and ~ξ T2 = (2,−1,−1), where ~ξ2 is now multiplied by 2 for the sake
of convenience of our further calculations. Substituting these eigenvectors
into Eq. (2.21), we find

α1 = 2ã, α2 = 6ã, β1 = 2b̃, β2 = 0, β3 = 2b̃, β4 = 0, β5 = 18b̃, (2.37)

where ã = a1 = a2 = a3 and b̃ = b1 = b2 = b3, and ai and bi are given by
Eq. (2.5). Finally, based on Eq. (2.37), we can rewrite Eq. (2.35a) as

sin(2δφ) = 0, (2.38)
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which yields the obvious solution for the phase difference δφ = πn/2, with n
being an integer.

One can identify two solution classes. The first one is given by δφ =
0, π, 2π, . . . for which cos(2δφ) = 1. Here, a sign difference can occur between
the band components but there is no nontrivial phase difference. In this case,
Eqs. (2.35b) and (2.35c) are reduced to

|ψ1|2 = |ã|
/[

b̃ (1 + 3r−2)
]

. (2.39)

The complete homogeneous solution for the band gaps is then given by

~∆(0) =

√

|ã|
b̃(3 + r2)





2
−r − 1
r − 1



 , (2.40)

where r = |ψ1|/|ψ2| serves as a parameter. The corresponding free-energy
density f = F/V is obtained as

f = −ã2/b̃. (2.41)

Notice that since Eq. (2.41) does not depend on r, this quantity is not fixed
and therefore we obtain a continuous family of solutions with the same free-
energy density.

The second solution class is obtained when n is odd, i.e., δφ = π/2, 3π/2, . . .
and cos(2δφ) = −1. In this case, Eqs. (2.35b) and (2.35c) yield the system
of two equations

−ã/|ψ1|2 =b̃ (1 + r−2), (2.42a)

−3ã/|ψ1|2 =b̃ (1 + 9r−2). (2.42b)

This system is solved trivially giving |ψ1|2 = 3ã/(4b̃) and r =
√
3. Then,

using Eqs. (2.42) and taking δφ = π/2, 5π/2, . . . and δφ = 3π/2, 7π/2, . . . we
obtain two different solutions as

~∆(0) = i

√

|ã|
b̃





1

ei2π/3

e−i2π/3



 ; −i
√

|ã|
b̃





1

e−i2π/3

ei2π/3



 . (2.43)

These are chiral solutions with a nontrivial phase difference between the band
gaps. The free-energy density for both of them reads as

f = −3ã2/(2b̃). (2.44)



76 The chiral regime of three-band superconductors

Comparing this with Eq. (2.41) reveals that the chiral solution is more favor-
able energetically and thus three-band model with strong interband couplings
supports the formation of the chiral state.

Note that Eqs. (2.40) and (2.43) are the two solution classes of Eq. (2.38).
They arise due to the fact that the solution for the critical temperature is
twofold degenerated which leads to Eq. (2.32) for the band gaps. As seen
from Eq. (2.32) the band gaps scale differently already at T = Tc, i. e., when
the system enters the superconducting regime. This difference in the band
gaps can arise either from a difference of amplitude gaps or an emergent phase
difference between the band gaps. Therefore, it is logical that Eq. (2.40) gave
rise to two sorts of solution, i.e., the first one with difference in amplitude gaps
given by Eq. (2.40), while the second class corresponds to the solution with
the non-trivial phase difference between the band gaps given by Eq. (2.43).
Both these solution classes were obtained as a consequence of the symmetry
of the chosen coupling matrix with the strong interband interaction.

This conclusion agrees with the numerical simulations of Eq. (2.6) for the
three-band case [6], which showed that the chiral state with the phase shifts
±2π/3 is found at T → Tc only in the limit g23 → g12 = g13. The phase
shift obtained in our work is independent of temperature, which differs from
the numerical simulations of Ref. [6]. We note, however, that these simu-
lations employed the unreconstructed GL equations, where a solution does
not account for all relevant terms of the τ -expansion. A correct temperature
dependence of the phase shift must be calculated with the help of the ex-
tended multiband GL formalism that should be constructed in the spirit of
the approach of Ref. [217].

As already mentioned above, the appearance of the chiral state may in-
dicate the symmetry of the model, reflected in the structure of the coupling
matrix. In particular, the matrix investigated in this Section can be realized
by choosing the bands as the pockets of the Fermi surface centered around the
X points of the Brillouin zone of the fcc lattice (see Ref. [5]). The band gaps
are then transformed according to a three dimensional representation of the
Oh cubic symmetry group. This representation splits into one dimensional
Ag and two-dimensional Eg irreducible representations. The two-dimensional
representation Eg, which corresponds to the highest critical temperature, can
have its basis chosen as two vectors in Eq. (2.43). Constructing the Landau
theory from this irreducible representation, one recovers the reconstructed
GL formalism discussed above, which additionally proves its validity.

Here, we stress that recasting the multicomponent GL theory (2.6) in
terms of the basis functions of the symmetry-group representations does
not eliminate admixtures of different irreducible representations in the free-
energy functional [5]. However, following our analysis, such admixtures must
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be neglected as they exceed the accuracy of the GL theory, in full agreement
with the standard Landau approach. The proper accounting of the admix-
ture terms can be done only by employing the extended GL theory which
collects all relevant higher-order terms in the expansion of the band gaps.

Finally, as the chiral state is related to the degeneracy of a solution for
Tc that can be caused by, e.g., the crystalline symmetry, the existence of any
simple relation between the chiral state and signs of the interband coupling
γi 6=j, as suggested in Refs. [211, 207, 208, 209] appears to be very questionable
at least in the GL domain. Notice that this conclusion is also supported by
numerical solutions of Eqs. (2.6) performed in Ref. [6].

2.5 Summary and conclusions

In this Chapter, we have derived the consistent multiband GL theory from the
multiband BCS Hamiltonian. The derivation applies a reconstruction pro-
cedure to the conventional Gor’kov truncation of the matrix gap equation.
This reconstruction invokes the expansion in powers of τ and removes incom-
plete contributions to band gaps of orders higher than τ 1/2, thus matching
the accuracy of the gap with that of the Gor’kov truncation.

When the solution for Tc is not degenerate, we recover the earlier results
of Ref. [19, 20, 216, 217] that the GL theory of a multiband superconductor
maps onto a single-component GL formalism in which the spatial profiles
of all band gaps are equivalent. However, this result is valid only in the
standard GL domain, i.e., to the accuracy ∆i ∝ τ 1/2. Differences between
the spatial profiles of the band gaps appears already in the leading correction
to the GL theory [216, 217].

If the solution for Tc is degenerate, which appears due to a symmetry of
the system, the GL theory acquires several order parameters. We have carried
out a detailed analysis for the three-band system treated as a prototype of
a multiband superconductor. For the simple three-band model of pnictides
with dominant interband couplings, the solution for Tc is twofold degenerate
and the GL theory has two order parameters ψα which correspond to the two-
dimensional irreducible representation of the relevant symmetry group, in full
agreement with the Landau theory. We have shown that the band energy
gaps themselves can not be interpreted as the Landau order parameters in
a multiband superconductor due to the Josephson-type coupling between
bands.

Our approach yields explicit expressions for the coefficients of the GL
theory. Also, the formalism provides a solid basis for further extensions
of the theory and, in particular, offers the correct way to account for the
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influence of other irreducible representations not inherent in the ordinary
GL approach.

It is worth noting that the origin of the degeneracy of Tc is not always
due to the crystalline symmetry. It can arise, e.g., in the atomically flat
superconducting nanofilms, where the size quantization of the perpendicu-
lar motion of electrons results in the formation of multiple single-electron
subbands [112, 109, 201, 119, 120]. Such superconducting nanofilms can be
regarded as effectively multiband superconductors with the interaction ma-
trix [219, 220, 221] gij = g(1+δij/2)/d, where d is the nanofilm thickness and
g is the coupling constant for the material of the nanofilm. The structure of
this matrix is similar to that of ǧ investigated in Subsection 2.4.2 and, as a
result, a degenerate solution for Tc also appears in this case. The developed
formalism thus provides a general link between the multiband BCS theory
and the phenomenological Landau model for multiband superconductors, ir-
respective of the origin of the symmetry.

We conclude by noting that the degenerate regime manifests itself in
several important physical consequences such as the formation of the chiral
ground state and the appearance of different spatial length scales of the band
condensates, which can be observed at T → Tc. This may result in a plethora
of new phenomena, i.e., fractional vortices [210], flux-carrying topological
solitons [178], and other exotic states [223, 224, 225, 226]. So far, those
phenomena have been studied using the unreconstructed multicomponent
GL model given by Eq. 2.6, and so we suggest revisiting these problems in
the framework of the true GL formalism.

The author contributed significantly to the main ideas, performed all an-
alytical calculations starting from the first truncation, suggested a method
on restoration of the Ginzburg-Ladnau functional from the Ginzburg-Landau
equation, analyzed the data and the literature.

The results presented in this Chapter were published as: N. V. Orlova, A.
A. Shanenko, A. V. Vagov, M. V. Milošević, and F. M. Peeters, Ginzburg-
Landau theory for multiband superconductors: Microscopic derivation, Phys.
Rev. B 87, 134510 (2013).



CHAPTER 3

Nanofilms as multiband superconductors

In Chapter 1, it was shown that nanofilms (or superconductors under quan-
tum confinement) can also evolve multiband structure when the nanofilm
thickness is varied. In this Chapter, a corresponding BCS theory for such
nanofilms is developed and a Ginzburg-Landau theory which can be suitable
to study such systems is derived. At the derivation, the same problem with
higher order contributions in the band gaps arises. Therefore, the elegant
method on removing the higher order contributions from the band gaps which
was developed in Chapter 2 is vitally needed here.

3.1 Introduction

Recent advances in nano-fabrication resulted in superconducting single crys-
talline metallic nanofilms with atomically uniform thickness (see e.g., [112,
109, 201, 119, 120]), including world-thinnest one-atomic-layer superconduc-
tors made of In and Pb [114, 227]. Another exciting development in the
field of superconductivity is an avalanche of novel compounds (e.g., metallic
borides, iron pnictides and chalcogenides) that constitute a new class: the
multiband superconductors [56, 99, 228, 229]. At first sight, superconduct-
ing metallic nanofilms bear little similarity to the multiband superconduct-
ing compounds. However, there exists an important common feature. The
single-particle energy spectrum in a perfectly uniform high-quality nanofilm
is tightly bound in the perpendicular quantum-confined direction due to
the formation of quantum-well states (QWS), similar to the Fabry-Pérot
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modes in an optical interferometer. This leads to the formation of a se-
ries of single-particle subbands, where the bottom of each subband coincides
with the corresponding QWS. As a result, the superconducting condensate in
the nanofilm becomes a coherent mixture of different subband condensates,
i.e. the superconducting metallic single-crystalline nanofilms are effectively
multi(sub)band superconductors.

Multiband materials are believed to harbor new superconducting phe-
nomena, such as the highly-debated exotic vortex configurations in MgB2 [1,
206, 230, 212, 223, 224, 225, 2], solitonic solutions [231, 210], chiral states [5,
6, 213], hidden criticality [7], and the recently observed crossover from the
Bardeen-Cooper-Schrieffer (BCS) regime to the Bose-Einstein condensation
(BEC) in FeSexTe1−x [3]. However, an important property of a bulk material
is that its multiband structure is always fixed. As opposed to that, the num-
ber of contributing subbands in an atomically flat nanofilm is controllable
by the nanofilm thickness. Moreover, even for a fixed thickness of the sam-
ple, energetic positions of the subbands and, as a result, their microscopic
parameters (such as e.g., the densities of states and the subband Fermi ve-
locity) can still be changed: the formation of the QWS depends on the
presence of a protective cover, on a particular substrate, on the character of
the interface between the film and substrate etc. Therefore, single-crystalline
metallic nanofilms are quantum-engineered multiband superconductors, and as
such present a prime candidate for further investigations of exciting physics
of multi-coupled superconducting condensates. Moreover, being atomically
flat, these films are well suited for scanning-probe experimentation of their
superconducting gap or vortex structure [114].

Superconductivity in atomically flat single-crystalline nanofilms is clearly
an extremely interesting subject, but was scarcely investigated to date1. One
of the main reasons for this is the absence of a reliable and solvable formal-
ism such as, e.g., the Ginzburg-Landau (GL) theory [27]. Successive ap-
plications of the GL functional range from condensed-matter theory (e.g.,
phase transitions and fluctuation phenomena, superconductivity and super-
fluidity) to high-energy physics (e.g., Higgs mechanism). However, neither
3D nor 2D variants of the ordinary GL functional are justified for single-
crystalline nanofilms. Here the system size perpendicular to the film is much
smaller than the bulk Cooper-pair radius and therefore the Gor’kov deriva-
tion [29, 87, 222] of the 3D GL formalism does not hold. Furthermore, due
to the size-quantization the superconducting order parameter exhibits fast
spatial variations in the direction perpendicular to the nanofilm [232] and

1Only a few theoretical works, that are mainly focused on the superconducting
quantum-size effects, see, e.g., [76, 81, 220, 232], have been published to date.
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therefore it is not possible to employ the ordinary 2D GL formalism that is
usually well justified in films with thickness smaller than the GL coherence
length but larger than the bulk Cooper-pair size, i.e., when the order param-
eter can be assumed almost spatially uniform in the perpendicular direction.

In this Chapter, we derive the GL theory appropriate for single-crystalline
metallic nanofilms and demonstrate that the presence of the size quantization
indeed leads to a multiband formalism. This formalism is computationally
convenient and efficient, and will present a powerful theoretical tool for fur-
ther studies of the effects of the multiple-subband structure on, e.g., vortex
configurations, critical phenomena and superconducting fluctuations in nano-
thin single-crystalline systems.

3.2 Multiband BCS Hamiltonian for nano-

films

According to recent experiments, superconducting fluctuations play a minor
role in single-crystalline metallic nanofilms with thicknesses > 5-8 atomic
layers where it was shown that the energy gap as a function of temperature
follows almost perfectly the BCS temperature trend (see, e.g., in [109]). Even
for thicknesses under 5 atomic layers, coherent behavior and vortices were
found, e.g., see [114] for such results in one-atomic-layer Pb and In nanofilms.
Fluctuations become important in the latter regime (first serious evidences
are reported in [233]) but a convenient and reliable theoretical platform to
study them is still lacking2. With all these facts in mind, we construct the
appropriate GL functional for single-crystalline metallic nanofilms starting
from the general expression for the BCS mean-field Hamiltonian of s-wave
superconductors

HBCS = C+
∫

d3x
{

∑

σ

ψ̂†
σ(x)Tx ψ̂σ(x)+

[

ψ̂†
↑(x)ψ̂

†
↓(x)∆(x)+h.c.

]

}

. (3.1)

Here Tx is the single-electron Hamiltonian absorbing the chemical potential
µ and the relevant confinement potential; ∆(x) = g〈ψ̂↑(x)ψ̂↓(x)〉 (with g > 0
the coupling constant) is the superconducting order parameter; C stands for
a c-number term that is not important for the present analysis. In atomically
uniform nanofilms it is natural to introduce the perpendicular and parallel

2As is well-known, the easiest and reliable approach to probe effects due to supercon-
ducting fluctuations is to employ the partition function constructed from the GL func-
tional. The appropriate GL functional for single-crystalline atomically uniform metallic
nanofilms is derived here.
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spatial degrees of freedom, i.e.,

Tx = T⊥ + T‖ − µ, ψ̂σ(x) =
∑

j

ϑj(x⊥) ψ̂jσ(x‖), (3.2)

where x =
(

x⊥, x‖
)

, with x⊥ the perpendicular coordinate and x‖ the set
of coordinates associated with the in-plane motion; ϑj(x⊥) denotes the wave

function of the jth QWS; and the new field operators ψ̂†
jσ(x‖) and ψ̂jσ(x‖)

obey the canonical anti-commutation relations typical of fermions and, so,
can be viewed as the subband field operators.

In nanofilms ∆(r) exhibits fast oscillations with a period of λF/2 (with
λF the 3D Fermi wavelength) as a function of x⊥ [232]. As known from
textbooks [29, 222], such fast variations do not allow the ordinary Gor’kov
derivation of the GL theory. To construct a proper generalization, we need
to integrate out the “fast” perpendicular coordinates. This makes it possible
to express the reduced BCS Hamiltonian of Eq. (3.1) in terms of ψ̂†

jσ(x‖)

and ψ̂jσ(x‖). The resulting expression can be considerably simplified when
keeping in mind the relevant energy scales in superconducting nanofilms:
the energy spacing δ between the neighboring QWS (between the neighboring

subbands) is much larger than the pairing energy. For δ we have δ ∼ ~
2

2m
(
π

d
)2,

with d the nanofilm thickness, whereas the pairing energy is of order ∆bulk,
the zero-temperature bulk excitation gap. One easily finds δ = 200-400meV
for d = 1-2 nm, which is a few orders of magnitude larger than the typical
metallic values of the bulk gap, i.e., ∆bulk = 0.1-2meV. Therefore, one
can expect that the pairing between electrons from different single-electron
subbands is strongly suppressed, i.e., two electrons from different subbands
are not able to form a Cooper pair. The same conclusion follows from a
numerical study of the Bogoliubov-de Gennes equations [234]. This allows
one to invoke the intraband-pairing approximation, i.e.,

∫

d3x ψ̂†
↑(x)ψ̂

†
↓(x)∆(x) ≃

∑

j

∫

dx|| ψ̂
†
j↑(x‖)ψ̂

†
j↓(x‖)∆j(x‖), (3.3)

where

∆j(x‖) =

∫

dx⊥ [ϑ∗
j(x⊥)]

2 ∆(x) (3.4)

can be interpreted as the subband order parameter. Plugging Eq. (3.3) into
Eq. (3.1), we obtain the intraband-approximation to the BCS Hamiltonian,
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i.e.,

HBCS ≃ C +
∑

j

∫

dx‖

{

∑

σ

ψ̂†
jσ(x‖)Tj,|| ψ̂jσ(x‖)

+
[

ψ̂†
j↑(x‖)ψ̂

†
j↓(x‖)∆j(x‖) + h.c.

]

}

, (3.5)

where we introduce Tj,‖ = εj + T‖ − µ, with the QWS-energy

εj =

∫

dx⊥ϑ
∗
j(x⊥)T⊥ϑj(x⊥).

As seen, Eq. (3.5) represents the multiband generalization of the BCS two-
band model [88, 89]. Note that we adopt the set-up of a perpendicular
external magnetic field that is most interesting for experimental applications.
Inside the nanofilm we assume B = B⊥(x‖) and choose A = A‖(x‖).

The self-consistency equation ∆(x) = g〈ψ̂↑(x)ψ̂↓(x)〉 can also be ex-
pressed in terms of the subband-dependent variables as

∆i(x‖) ≃
∑

j

gij〈ψ̂j↑(x‖)ψ̂j↓(x‖)〉, (3.6)

where we again neglect the pairing of electrons from different subbands, i.e.,

〈ψ̂↑(x)ψ̂↓(x)〉 ≃
∑

j

ϑ2
j(x⊥)〈ψ̂j↑(x‖)ψ̂j↓(x‖)〉, (3.7)

and the coupling-matrix element reads as

gij = g

∫

dx⊥ [ϑ∗
i (x⊥)]

2 ϑ2
j(x⊥). (3.8)

We notice again that the intraband-pairing approximation, i.e., Eqs. (3.3),
(3.5), (3.6) and (3.7), is relevant when δ/∆bulk ≫ 1 and exact in the limit
δ/∆bulk →∞.

3.3 Gor’kov truncation for multiband super-

conductors

The second step in our derivation is to employ the known procedure of the
Gor’kov truncation for multiple bands, see, e.g., [75]. First, one assumes that
the subband order parameters and their spatial gradients are small enough
(which is always valid in the vicinity of the critical temperature). Then, the
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anomalous Green function of each subband can be represented as an infinite
series in powers of the corresponding subband order parameter and its spatial
gradients. When truncating this series in the manner of Gor’kov [29, 222,
75, 20, 216, 218], we obtain

〈ψ̂j↑(x‖)ψ̂j↓(x||)〉 =
(

Aj − aj
)

∆j − bj∆j|∆j|2 +KjD2∆j, (3.9)

with D the gauge-invariant gradient and

Aj = Nj(0) ln
(2eΓ~ωD

πTc

)

, aj = −Nj(0)τ, bj = Nj(0)
7ζ(3)

8π2T 2
c

, Kj =
bj
4
~
2v2j ,

(3.10)
where τ = 1 − T/Tc is the proximity to the critical temperature; the Boltz-
mann coefficient kB is set to unity; Nj(0) and vj are the subband den-
sity of states and Fermi velocity, respectively; ζ(. . .) is the Riemann zeta-
function and Γ = 0.577 stands for the Euler constant. Note that the fac-

tor
1

4
in the expression for Kj appears because of the 2D character of the

single-electron subbands. For 3D systems
1

4
is replaced by

1

6
, see e.g.,

Refs. [222, 29, 75, 20, 216, 218]. Inserting Eq. (3.9) into Eq. (3.6), we find
the following equations for the subband order parameters:

αj∆j + bj∆j|∆j|2 −KjD2∆j +
∑

i 6=j
φji∆i = 0, (3.11)

where φji is the inverse of the interaction matrix gji, and αj = φjj −Aj + aj.
We remark that the last term in the l.h.s. of Eq. (3.11) is the Josephson-like
coupling responsible for the “tunneling” of Cooper pairs from one subband
to another. The free-energy functional (measured from the normal-state free
energy at B = 0) corresponding to Eq. (3.11) reads

F =

∫

d3x
{B2

8π
+ δ(x⊥)

[

∑

j

(

αj|∆j|2+
bj
2
|∆j|4 +Kj|D∆j|2

)

+

+
∑

i 6=j
φji
(

∆i∆
∗
j + c.c.

)

]}

, (3.12)

and the stationary point
δF
δA

= 0 yields the supplemental Maxwell equation.

Note that the coefficients of Eq. (3.10) have been derived for the case
when all the contributing QWS are far below the Fermi level, i.e., εj ≪ µ.
However, as already mentioned, the energetic positions of the subbands vary
significantly when changing the nanofilm thickness and details of fabrication.
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It may therefore occur that one of the QWS will be situated in the vicinity
of µ which corresponds to a shape Blatt-Thompson superconducting reso-
nance [235, 236]. In that case Eq. (3.11) remains the same but some of the
coefficients related to such a resonant subband will be different. In partic-
ular, when the bottom of the resonant subband (with the quantum number
k) touches exactly µ, i.e., εk = µ, we find

Ak =
Nk(0)A

2
, ak =

Nk(0)τ

2
, Kk = Nk(0)

~
2

16mTc
, (3.13)

while bk is unaltered and given by Eq. (3.10). Note that the coefficient for
the gradient term in the equation for the gap in the resonant subband has a
completely different dependence on Tc and, of course, does not contain the
subband Fermi velocity that is exactly equal to zero for the case εk = µ.
Interestingly, it resembles the dirty-limit expression for Kj ∝ Dj/Tc, with
Dj the subband diffusion coefficient (see e.g., [237]). As recently found, the
superconducting nanofilm approaches the BCS-BEC crossover when one of
the contributing single-electron subbands crosses µ [238] (see also [239]). The
qualitative change in the temperature dependence of Kk in Eq. (3.13) is a
signature of this phenomenon. Indeed, Kj is proportional to the Cooper-pair
size ξ0,j associated with the given subband. Based on Eq. (3.10) we obtain
ξ0,j ∼ ~vj/Tc while Eq. (3.13) yields ξ0,k ∼ ~/(mTc)

1/2 for the resonant sub-
band. Thus, we have ξ0,j/ξ0,k ∼ (µ/Tc)

1/2, which means that ξ0,k becomes
smaller by two orders of magnitude, i.e. we obtain a clear signature of ap-
proaching the BCS-BEC crossover in the resonant subband in agreement
with the recent finding of [238].

Equation (3.10) has been derived for a clean system and therefore the
effects of scattering on imperfections are not included (e.g., on the interface
between the nanofilm and the substrate). Though single-crystalline metal-
lic nanofilms are usually characterized by an extraordinary purity (see, e.g.,
discussion about the mean-free path in In nanofilms in [240]), it is important
to outline how to incorporate effects of moderate disorder. In the presence
of an extremely large energy scale induced by the perpendicular quantum
confinement, we can take impurity scattering into account as a perturba-
tion, preserving, to a first approximation, the separation of the in-plane and
perpendicular electronic motion. This will produce a similar multiband for-
malism but with in-plane motion specified by quasi-randomly distributed
levels in an almost equidistant manner, i.e., the in-plane motion will ac-
quire a diffusive character. Then, in the simplest approach, one may re-
place (see e.g., [202, 203]) Kj of Eq. (3.10) by its dirty-limit 2D expression
3πDj/(16Tc) (Aj, aj and bj will remain the same). In addition, a step-like
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jump in the subband-dependent density of states at the energy of the cor-
responding perpendicular level will be smoothed due to the broadening of
the QWS. Such a broadening can be estimated as c.a. 30-40meV (at zero
temperature and for the QWS close to the Fermi level) [241], which is much
smaller than the interband energy spacing δ in metallic nanofilms.

3.4 Reconstructed truncation and the GL

theory

The above straightforward application of the Gor’kov truncation in the case
of multiple (sub)bands is a well established procedure. However, it has sig-
nificant and well-hidden problems. It was recently shown [20, 216] (but also
known from 1960’s, see [19]) that the theory constructed in this manner in-
cludes incomplete higher-order terms in powers of τ . In other words, the
accuracy of a solution to this formalism exceeds the accuracy of the Gor’kov
truncation. Indeed, αj in Eqs. (3.11) and (3.12) does not approach zero when
τ → 0: Tc is unique in the system and so φjj cannot be equal toAj for all sub-
band condensates. The consequence of this fact is that a solution to Eq. (3.11)
is not proportional to τ 1/2 (as it is in the single-band case and should be in
the Landau theory) but includes higher-order terms ∝ τ 3/2, τ 5/2 etc. (Here
we refer an interested reader to detailed calculations in Refs. [20, 216, 218].)
These higher-order terms are incomplete because Eq. (3.9) does not keep all
contributions relevant for such higher orders. Thus, the incomplete terms
must be avoided to obtain a trustworthy formalism.

With this in mind, we rewrite Eq. (3.11) in the matrix form

Ľ~∆ = ~R, (3.14)

where ~∆ = (∆1, ...,∆n)
T, Ľ is the matrix with elements Lij = φij−Aiδij , and

~R has components Rj = −aj∆j − bj∆j|∆j|2 +KjD2∆j. Next, we introduce
the expansion

~∆ = ~∆(0) + ~∆(1) +O(τ 5/2), (3.15)

where ∆
(0)
i ∝ τ 1/2 and ∆

(1)
i ∝ τ 3/2. Inserting Eq. (3.15) into Eq. (3.14) and

matching terms of the order τ 1/2, we obtain

Ľ~∆(0) = 0. (3.16)

For a nontrivial solution of Eq. (3.16), we should have det Ľ = 0 which gives
the equation for Tc. To go further, we need to specify the interaction matrix:
gij = g(1 + δij)/d, for infinite confining interaction [235, 236]. The matrix
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φij has a similar structure: φii = ζ and φij|i 6=j = χ, where ζ > 0 and χ < 0
are proportional to d/g (e.g., for the case of three contributing subbands
ϑ = 10d/(7g) and χ = −4d/(7g)). Then, given the concrete form of φij, the
solution to Eq. (3.16) reads 3

~∆(0)(x‖) = ψ(x‖)~η, ηj = N(0)
(

ζ − χ−Aj
)−1

, (3.17)

with N(0) =
∑

j

Nj(0) the total density of states. As seen, all subband gaps

are proportional to ψ(x‖), and it remains to determine ψ(x‖).

Selecting terms of the order τ 3/2 in Eq. (3.14), we find Ľ~∆(1) = ~R(0),

where R
(0)
j can be obtained from Rj by substituting ∆

(0)
j for ∆j. We rewrite

this result as
[

~∆(0)
]† ~R(0) = 0, which can further be rearranged to the familiar

GL form
aψ + bψ|ψ|2 −KD2ψ = 0, (3.18)

with a =
∑

j

η2jaj, b =
∑

j

η4j bj, K =
∑

j

η2jKj. The corresponding GL free

energy reads

F (nano)
GL =

∫

d3x
{B2

8π
+ δ(x⊥)

[

a|ψ|2 + b

2
|ψ|4 +K|Dψ|2

]}

, (3.19)

and the variation of F (nano)
GL with respect toA gives the accompanying Maxwell

equation in the form
c

4π
rotB = δ(x⊥)j2D, (3.20)

where

j2D = i
2eK
~

(ψDψ∗ − ψ∗Dψ) (3.21)

is the 2D current density in the film plane, referred to as the sheet current
density.

Equations (3.17)-(3.21) constitute the GL formalism for nano-thin super-
conductors where the formation of the QWS strongly influences the proper-
ties of the system. As seen, this formalism maps effectively onto the single-
band 2D GL theory. However, the coefficients a, b and K are specified by
completely different microscopic expressions, involving the summation over
the contributing subbands. In addition, ψ is not an excitation gap: the sub-
band gaps ∆j are proportional to ψ. In fact ψ is the true Landau order
parameter for nano-thin superconductors.

3As shown in [220], the equation for Tc has more than one solution. One must select
the maximal Tc for which ζ − χ−Ai 6= 0 for all species, and the use of Eq. (3.17) is fully
justified.
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The equations have two characteristic lengths, the GL coherence length
ξ and the 2D magnetic screening length Λ, given by

ξ =

√

K
|a| , Λ =

(Φ2
0

2π

)2 b

4πK|a| , (3.22)

with Φ0 is the flux quantum. Λ can be roughly estimated as inversely pro-
portional to the number of contributing subbands N . In the limit N ≫ 1
the quantum-size effects are weakened and eventually washed out. In this
case one can estimate the number of subbands as N ≈ d/λF , where d is the
film thickness. This yields Λ ∝ 1/d, which is the well known Pearl result for
superconducting films [242].

Notice that for the diffusive in-plane motion Eqs. (3.17)-(3.21) remain
the same but, as already mentioned above, Kj given by Eq. (3.10) should be
replaced by its dirty-limit expression (aj and bj are not altered).

We also note that the GL formalism given by Eqs. (3.17)-(3.19) repre-
sents the theory to the leading-order in τ (see [216, 218]). However, due to
the scaling given in Eq. (3.17), this formalism will not capture the physics
based on the interplay of the different length scales of the different subband
condensates [243]. To shed light on that phenomenon one should construct
an extended GL formalism by accurately including terms of the order τ 3/2 in
∆j, see, e.g., [216, 218].

3.5 Applicability domain of the GL theory

for nanofilms

We now address the important issue about the applicability domain of the
GL theory for nano-thin superconductors. For single-band superconducting
materials this domain is τ ≪ 1. However, for multiband superconductors
it can shrink in the presence of (sub)bands that have significantly different
properties [203, 244, 245]. This observation follows from the applicability of
the gradient expansion involved in the derivation of the GL theory, which
requires the condition ξ ≫ ξ0,i, where ξ is the GL coherence length and ξ0,i
controls the spatial variations of the kernels in the integral expansion of the
anomalous Greens function in powers of the band excitation gap (ξ0,i can be
viewed as the Cooper-pair radius in a given band). Then, e.g., for the clean
limit, one has ξ0,i = ~vi/(2πTc) and the condition of the applicability of the
gradient expansion becomes:

τ ≪ γ = min
i

∑

j

v2jρj/v
2
i , (3.23)
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where ρi = N0(0)η
2
i /
∑

j

Nj(0)η
2
j . One can have a situation when the band

with the largest Fermi velocity does not make a significant contribution to
γ. In this case γ < 1 and, consequently, the validity domain of the gradient
expansion shrinks, which recovers the arguments of Refs. [203, 244, 245].
This point should always be taken into account in studies of bulk multiband
superconductors.

However, simple arguments demonstrate that the validity domain of the
GL theory for nano-thin superconductors is essentially the same as for bulk
single-band materials. For a regular case, when all contributing QWS are well
below the Fermi level, ηjs and vjs in all contributing subbands are of the same
order of magnitude and thus γ ∼ 1. Changes in γ can be expected only in the
vicinity of a shape resonance (here Eq. (3.23) should be altered to take into
account Eq. (3.13). In this case ξ0,i associated with the resonant subband
decreases, in some cases by orders of magnitude, as discussed above, see Eq.
(3.13). However, the corresponding drop in ξ is much less pronounced. The
short-length contribution of the resonant subband to ξ is almost negligible
as compared to the long-length contributions of the other subbands. The
resonant decreasing factor for ξ can be estimated as 1 − 1/N , where, we
recall that N is the number of the contributing subbands. Then, γ decreases
by a factor of (1− 1/N)2. In all practical situations the nanofilm has many
contributing subbands with N ≫ 1, which implies γ ∼ 1. Thus, the validity
domain of the GL theory for the nano-thin superconductors remains τ ≪ 1.

3.6 Summary and conclusions

Single-crystalline metallic nanofilms with thickness down to a few atomic
layers constitute a new class of superconductors, i.e., quantum-engineered
multiband superconductors. As opposed to bulk multiband superconductors,
the number of subbands in nano-thin superconductors, but also their ener-
getic positions and thus the properties, can be coarsely varied via the thick-
ness, a chosen substrate, the character of the interface, the presence/absence
of a protective cover etc. Future experiments using the electrostatic dop-
ing [246, 247, 248] are expected to provide a way to fine-tune subbands in
nanofilms by giving the method on how to increase or decrease charge carrier
density without causing structural disorder in nanofilms. Such outstanding
flexibility opens new prospects for the experimental studies of multiband co-
herent phenomena but also rises significant theoretical challenges. One of
them is the formulation of the GL theory for high-quality metallic nanofilms
that has been constructed in this work. This convenient theoretical tool will
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enable further analytical and numerical calculations of the critical parame-
ters, vortex matter in applied magnetic field, and exploration of the impact
of phase fluctuations, all as a function of the number of multiple contributing
subbands (thickness). We have also provided the GL formalism for studies of
a superconducting shape resonance and/or dirty samples, which are bound to
host different physics from their clean and non-resonant counterparts. With
these scientific prospects, we conclude that our results can give a new impetus
to interest in nanoscale superconductivity.

The author contributed substantially to the main ideas, suggested a method
on restoration of the Ginzburg-Ladnau functional from the Ginzburg-Landau
equation.

The results presented in this Chapter were published as: A. A. Shanenko,
N. V. Orlova, A. Vagov, M. V. Milošević, V. M. Axt and F. M. Peeters,
Nanofilms as quantum-engineered multiband superconductors: the Ginzburg-
Landau theory, EPL 102, 27003 (2013).



CHAPTER 4

Skyrmionic vortex lattices in three-component BECs

The study presented in this Chapter, was motivated by the results of Chap-
ter 2, in which the chiral solutions were found in the case of three-band super-
conductivity. Those solutions arise as consequence of non-trivial phase differ-
ence between the band gaps. It is known that such non-trivial phase difference
can lead to existence of novel topological defects, such as skyrmions [178, 197].
The needed parametric regimes in which skyrmions should be stable are not
achieved in available superconducting materials. However, they are reachable
in three-component BECs, where components can be experimentally tuned in
a broad parametric range. Therefore, the aim of the present work was to
study a regime in which a non-trivial phase difference arises between the con-
densates of a three-component Rabi-coupled BEC, and report the consequent
novel vortical and skyrmionic lattices that can be observed as the smoking
gun for the underlying chiral phenomena.

4.1 Introduction

Since the experimental creation of large vortex lattices in rotating single-
component Bose–Einstein condensates (BECs) of atomic gases [249, 250,
251], there has been growing interest in studying the rotational response
of BECs with multiple components1. The physics of such superfluid mix-
tures is more intricate because the competing effects enter not only via the

1For a review, see [252]
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self-interaction of a single component but also through intercomponent in-
teractions [135, 161]. In terms of finding the energy-minimizing vortex con-
figuration, this means that the relative positioning of vortices in different
components also profoundly affects the total energy. In addition, two dif-
ferent regimes can be distinguished: the immiscible regime, where the com-
ponents separate into nonoverlapping phases, and the miscible regime with
interpenetrating BECs [161].

The versatility of the emerging ground-state vortex structures is appar-
ent already in the simplest multicomponent case, the two-component BEC,
which has been realized experimentally, e.g., with two hyperfine spin states
of atoms of the same species [10, 145, 146, 147, 148, 149, 150]. A rapidly ro-
tating miscible two-component BEC with equally populated and repulsively
interacting components was shown to form vortex lattices whose geometry
can change from triangular to rectangular, with the lattice unit cells of the
two components displaced relative to each other [15, 157]. Subsequently,
a two-component mass-imbalanced BEC with attractive intercomponent in-
teractions was shown to host vortex lattices that vary from a square lat-
tice to a triangular lattice of vortex pairs (dimers) [16]. In the immiscible
regime corresponding to strong intercomponent repulsion, rotating harmon-
ically trapped two-component BECs undergo a phase separation leading to
serpentine vortex sheets [17] or, when the components are unequally popu-
lated, to a giant vortex surrounded by a ring of single-quantum vortices [158].
The ground state of a rotating two-component BEC can also host spin-texture
skyrmions [179, 158, 159, 253] or a solitary multiquantum vortex [253].

Moreover, a two-component BEC consisting of two hyperfine spin states
of the same atom can be coupled not only by density–density interactions but
also coherently, so that the complex phases of the condensate wave functions
are no longer independent of each other. When rotated, such Rabi-coupled
two-component BECs were found to contain vortex dimers (also called meron
pairs [254, 255]), and multidimer bound states made up of four or six indi-
vidual vortices from different components [256]. The dimer and multidimer
bound states were shown to emerge due to the Rabi coupling giving rise
to energy-costing domain walls in the relative phase between the two com-
ponents [257, 256]. In effect, the domain walls confine vortices in different
components into bound vortex molecules [257, 256]. With increasing strength
of the Rabi coupling, the domain wall between the bound vortices shrinks
and eventually vanishes, merging the constituent vortices into an “integer
vortex” (with the same phase winding in each component) [257, 210, 256].
Thus, the Rabi coupling induces an attractive interaction between same-sign
vortices in different components. For a more detailed study of vortex–vortex
interactions in multicomponent BECs, we refer to the work of Dantas et
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al. [258].
The sign of the Rabi coupling does not play a role in the ground state of

the Rabi-coupled two-component BEC, since one can always multiply either
of the condensate wave functions by a global U(1) phase factor to obtain
a ground-state solution with an attractive Rabi energy. However, the sit-
uation becomes significantly more involved when there are more than two
coherently coupled components in the system. Such a case, with three Rabi-
coupled BEC components, has been studied earlier in Ref. [259] but only
in the unfrustrated parameter regime where all three pairwise Rabi ener-
gies can be simultaneously attractive at the same point in space. In this
work, we investigate coherently coupled three-component BECs in the other
regime where the Rabi energies necessarily exhibit intrinsic phase frustra-
tion. Specifically, we show that the interplay of the intrinsic Rabi frustration
with the other interactions and superfluidity of the system can result in the
emergence of exotic ground-state vortex lattices when the system is rotated.
Fixing the relative phases of two pairs already fixes the relative phase of the
remaining pair. This can result in the suppression of some of the three pair-
wise Rabi couplings and generally leads to the existence of phase-frustrated
vortex lattices with unconventional features such as zig-zag patterns, vortex
chains, and doubly quantized vortices. In the limit of strong Rabi coupling,
the phase frustration causes the three-component BEC to behave effectively
as a two-component BEC with only density–density interactions. Conse-
quently, we also observe a triangular-to-square transition in the ground-state
vortex lattice in agreement with previous results for the two-component sys-
tem [15, 157, 159].

The overall repulsive interaction between different components tends to
favor interlacing of vortices in different components, splitting composite inte-
ger vortices into separate entities. Although each component has, on average,
the same overall circulation determined by the external rotation frequency,
the vortices of the system can no longer be satisfactorily described by a
single winding number. For this reason, we invoke a topological index de-
fined in terms of a CP 2 invariant [178] and use it to classify the observed
nontrivial states. This classification has a broader scope in multicomponent
quantum physics, since the relative phase frustration appears not only in co-
herently coupled three-component BECs but also in multiband superconduc-
tors [207, 6, 208, 209, 260], where it accounts for, i.a., fractional vortices [261],
solitons [210], skyrmions [178, 197, 262], and vortex sheets [263].

The Chapter is organized as follows: In Section 4.2, the theoretical de-
scription of the coherently coupled rotating three-component BECs is out-
lined. Section 4.3 presents the main results, summarized in two vortical-
skyrmionic lattice phase diagrams, with the discovered domains illustrated
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with representative ground-state solutions. The physical interpretation of the
obtained lattices is given in terms of the topological index (Section 4.3.1),
intrinsic phase suppression of the Rabi coupling (Section 4.3.2), and domain
walls (Section 4.3.3). Finally, we summarize our findings and discuss the
outlook in Section 4.4.

4.2 Theoretical framework

Our starting point is a harmonically trapped three-component BEC con-
sisting of three different spin states of a single atomic species, coupled co-
herently to each other. We use the standard zero-temperature mean-field
approach [135] and describe the condensate with three complex-valued wave
functions Ψi, where i ∈ {1, 2, 3}. For simplicity, we focus on the case of a
highly oblate cylindrically symmetric trapping potential with the harmonic
trap frequencies satisfying ωz ≫ ωx = ωy ≡ ω, which implies that the BEC
is quasi-two-dimensional and the z dependence can be integrated out. As-
suming that the system is set into rotation about the z axis with angular
frequency Ω, we write the two-dimensional Gross-Pitaevskii (GP) energy
functional [259] in the rotating frame of the system as

E =

∫

[

3
∑

i=1

(

~
2

2m
|∇Ψi|2 +

1

2
mω2r2|Ψi|2 − ΩΨ∗

iLzΨi

)

+
1

2

3
∑

i=1

3
∑

j=1

gij|Ψi|2|Ψj|2 − ~

∑∑

i 6=j
ωijΨ

∗
iΨj

]

d2r,

(4.1)

where m is the mass of the atoms, r2 = x2 + y2, and Lz = −i~(y∂x − x∂y)
is the angular momentum operator. The local density–density interactions
are characterized by the intra- and intercomponent coupling constants gii
and gij (= gji), respectively. We assume that g11 = g22 = g33 and g12 =
g13 = g23. The additional effective coupling constants ωij (= ωji ∈ R) in
Eq. (4.1) are known as the Rabi frequencies that interlink the phases of the
components [264, 265]. They can be experimentally realized and their values
controlled by externally applied electromagnetic fields. Accordingly, we call
the last term in Eq. (4.1) the Rabi energy and denote the corresponding

energy density as εR =
∑∑

i<j

εij, where εij = −~ωij(Ψ∗
iΨj +Ψ∗

jΨi) are the

pairwise Rabi energy densities. Variation of Eq. (4.1) with respect to Ψ∗
i



4.3 Numerical results 95

leads to three coupled time-independent GP equations:

(

− ~
2

2m
∇2 +

1

2
mω2r2 − ΩLz − µ+

3
∑

j=1

gij|Ψj|2
)

Ψi

− ~

∑

j 6=i
ωijΨj = 0,

(4.2)

where i ∈ {1, 2, 3}. Here µ is a chemical potential ensuring that

∫

∑

i

|Ψi(r)|2d2r = N, (4.3)

since we consider coherently coupled states where the Hamiltonian conserves

only the total particle number N =
∑

i

Ni but not the componentwise num-

bers Ni =

∫

|Ψi|2d2r.
In order to obtain dimensionless quantities for the numerics, we measure

length in units of the radial harmonic oscillator length ar =
√

~/mω and
energy in units of ~ω. We parametrize the interactions by the two dimen-
sionless quantities g = g11mN/3~

2 and σ = g12/g11 and consider only the
repulsively interacting miscible system with 0 < σ ≤ 1. Then dimensionless
GP equations take the form

(

− 1

2
∇̃2 +

1

2
r̃2 + g|Ψ̃i|2 −

Ω

ω
L̃z −

µ

~ω
+σg

∑

j 6=i
|Ψ̃j|2

)

Ψ̃i

−
∑

j 6=i

ωij
ω

Ψ̃j = 0,

(4.4)

where Ψ̃i = N−1/2
√
3arΨi and r̃ = r/ar. The numerical analysis of the

three-component BEC is based on solving Eqs. (4.4) with the link-variable
discretization scheme and the numerical method given in Chapter 1, Sub-
sections 1.6.7 and 1.6.8.

4.3 Numerical results

We have numerically solved the GP equations of the rotating three-component
BEC in the presence of both density–density and Rabi couplings [Eqs. (4.4)].
In all the states we present, we have fixed the intracomponent coupling
strength to g = g11mN/3~

2 = 2115 and the rotation frequency to Ω = 0.97ω.
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On the other hand, we treat the relative intercomponent density–density
coupling strength σ and the Rabi frequency ω12 as variables in the intervals
0 < σ ≤ 1 and −0.12ω ≤ ω12 ≤ −0.01ω in order to study their effect on the
ground-state vortex lattices of the system. We assume the other two Rabi
frequencies ω13 and ω23 to be equal and consider two different fixed values,
ω13 = ω23 = 0.01ω and ω13 = ω23 = 0.05ω, since these already convey many
of the key phenomena related to the Rabi coupling. Hence, we end up with
two different fixed parameter sets (g,Ω, ω, ω13, ω23) and the dimensionless
variables σ and ω12/ω. The results for the two parameter sets are presented
as two phase diagrams in the plane of σ and ω12/ω in Figs. 4.7 and 4.13.
In the remainder of this Section, we will analyze the phase diagrams in de-
tail (Section 4.3.1) and discuss the emerging phenomena of Rabi suppression
(Section 4.3.2) and domain walls (Section 4.3.3). We recall from Ref. [266]
that when the Rabi couplings are not present, only triangular lattices were
observed in the rotating ground states in the range 0 ≤ σ < 1.

4.3.1 Lattice phase diagrams

Let us first consider the fixed Rabi frequencies ω13 = ω23 = 0.01ω, and
vary the interspecies interaction strength and the remaining Rabi frequency
in the ranges 0 ≤ σ ≤ 1 and 0.01 ≤ −ω12 ≤ 0.12ω, respectively. This
results in a diverse set of ground-state vortex lattices, examples of which are
depicted in Figs. 4.1–4.6. For each solution, we present the density |Ψi|2
of each component, the total density ntot =

∑

i

|Ψi|2, and the Rabi energy

density εR; we also locate the vortices and present the relative complex phases
between the components using the quantities sgn (ωij) cos(ϕi−ϕj), where sgn
is the sign function, i < j, and ϕi = arg (Ψi). We will refer to these figures
when discussing the related phenomena in the subsequent sections.

For 0 ≤ σ ≤ 0.7 and −ω12 ≤ 0.04ω, and also in the small region where
0.7 < σ ≤ 0.9 and −ω12 ≤ 0.03ω, all three components host triangular
vortex lattices as shown in Figs. 4.1(a)-(c). For −ω12 > 0.04ω and σ ≥ 0.3,
the three triangular lattices are interlaced with one another. However, for
−ω12 > 0.03ω and σ < 0.3, vortices in components 1 and 2 move on top
of each other to form overlapping triangular vortex lattices [Figs. 4.2(a)-
(c)], which are in turn interlaced by the triangular lattice in component 3.
Together they constitute a honeycomb lattice of local minima in the total
density ntot as shown in Fig. 4.2(d).

For σ ≥ 0.3 and increased |ω12|, the triangular vortex lattices in compo-
nents 1 and 2 are replaced by overlapping square lattices of vortex dimers,
while component 3 hosts an interlacing square lattice of solitary vortices.
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Figure 4.1: Rotating ground state for the intercomponent interaction
strength σ = g12/g11 = 0.2 and the dominant Rabi frequency ω12/ω = −0.01.
The panels show (a)–(c) atomic densities |Ψ1|2, |Ψ2|2, and |Ψ3|2, respectively;
(d) total density ntot; (e) negative Rabi energy density −εR; (f) vortices of
each component on top of −εR, with (blue) squares, (pink) dots, and (green)
triangles denoting vortices in the wave functions Ψ1, Ψ2, and Ψ3, respectively;
(g) − cosϕ12, where ϕij = arg (Ψi)− arg (Ψj); (h) cosϕ13; (i) cosϕ23. Panel
(f) also indicates the elementary cell of the combined vortex lattice. The av-
erage topological index Q̃ = 2 for this state [see Eq. (4.6)]. In the grayscale
images, white (black) is used for largest (smallest) values. This state corre-
sponds to the intracomponent interaction strength g = g11mN/3~

2 = 2115,
rotation frequency Ω/ω = 0.97, and Rabi frequencies ω13 = ω23 = 0.01ω. The

field of view in panels (f)–(i) is 11ar × 11ar, where ar =
√

~/mω, showing
the central portion of the harmonic trap.

In the range 0.3 ≤ σ ≤ 0.7, the alignment of the dimers exhibits small
distortions in the center region of the lattice as shown in Figs. 4.3(a)-(b).
However, with a further increase in the intercomponent repulsion to σ = 0.8,
the dimers become globally tilted with respect to the square cell of their
underlying lattice [Figs. 4.4(a) and 4.4(b)]. Both the vortex lattice in com-
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Figure 4.2: Rotating ground state for σ = g12/g11 = 0.2 and −ω12/ω =
0.09. Other parameter values are the same as in Fig. 4.1. The panels depict
(a) |Ψ1|2; (b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed
on −εR; (g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also indicates the
elementary cell of the combined vortex lattice. The average topological index
Q̃ = 4/3 for this state. The field of view in panels (f)–(i) is 11ar × 11ar.

ponent 3 and the lattice of minima in ntot [Figs. 4.3(d) and 4.4(d)] remain
square throughout this region. Note in particular that at σ = 0.7, neither
ntot [Fig. 4.3(d)] nor the Rabi energy density εR [Fig. 4.3(e)] shows the lattice
distortions appearing in components 1 and 2.

Finally, the region σ = 1, corresponding to strong intercomponent repul-
sion, can be considered as the border that separates miscible and immisci-
ble regimes. Here, two phases can be distinguished with varying ω12. For
0.01ω ≤ −ω12 ≤ 0.04ω, we obtain interlacing triangular vortex-dimer lattices
in components 1 and 2, while a triangular lattice of doubly quantized fused-
core vortices forms in component 3 [Figs. 4.5(a)-(c)]. A fused-core vortex
comprises two singly quantized vortices practically coalesced into a single,
doubly quantized defect, or at least to within a distance smaller than the
core diameter of the constituent vortices. The apparent elliptical shape of
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Figure 4.3: Rotating ground state for σ = g12/g11 = 0.7 and −ω12/ω =
0.09. Other parameter values are the same as in Fig. 4.1. The panels depict
(a) |Ψ1|2; (b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed
on −εR; (g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also shows the
elementary cell of the combined vortex lattice. The average topological index
Q̃ = 2/3 for this state. The field of view in panels (f)–(i) is 11ar × 11ar.

the combined defect is due to the small separation of the phase singularities.
In the second phase at σ = 1, which occurs for 0.5ω ≤ −ω12 ≤ 0.12ω, com-
ponent 1 hosts a honeycomb vortex lattice, component 2 a triangular lattice
of vortex dimers, and component 3 a triangular lattice of fused-core vortices
[Figs. 4.6(a)-(c), respectively]. Furthermore, we note that the Rabi energy
density exhibits a honeycomb spatial structure [Fig. 4.6(e)].

All these states can actually be topologically characterized as contain-
ing two-dimensional skyrmions. According to Ref. [178], skyrmions in a
K-component model in two spatial dimensions can be defined by the CPK−1

topological invariant

Q =

∫

iǫαβ
2π|Ψ|4

(

|Ψ|2∂αΨ†∂βΨ+Ψ†∂αΨ∂βΨ
†Ψ
)

d2r, (4.5)
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Figure 4.4: Rotating ground state for σ = 0.9 and −ω12/ω = 0.09. Other
parameter values are the same as in Fig. 4.1. The panels show (a) |Ψ1|2;
(b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed on −εR;
(g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also indicates the elementary
cell of the combined vortex lattice. The average topological index Q̃ = 2/3
for this state. The field of view in panels (f)–(i) is 11ar × 11ar.

termed the topological index. In Eq. (4.5), ǫαβ is the Levi-Civita symbol,
α, β ∈ {x, y}, and Ψ† = (Ψ∗

1,Ψ
∗
2, . . . ,Ψ

∗
K). We note that CPK−1 is the

complex projective space whose points label the complex lines through the
origin of the space C

K [178]. The dimensionality of the space C
K is defined

by the number K of U(1) fields (components) in the system. The K fields
can be collected into a complex K vector Φ : M → C

K , where M = R
2 is

physical space. The space C
K can be mapped into a new space CPK−1 by

projecting a point in C
K to the complex line in CPK−1.

For our states, the integration is carried over the elementary cell of the
combined three-component vortex lattice. The topological index is zero for
an integer vortex, i.e., when the vortices reside on top of each other in all
components. In our case, we deal with two types of states: in the first type,
three interlacing lattices form in all three component at small values of |ω12|,



4.3 Numerical results 101

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

x

y

25 ar
2
5
a
r

Figure 4.5: Rotating ground state for σ = 1.0 and −ω12/ω = 0.01. Other
parameter values are the same as in Fig. 4.1. The panels correspond to
(a) |Ψ1|2; (b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed
on −εR; (g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also shows the
elementary cell of the combined vortex lattice. The average topological index
Q̃ = 2 for this state. The field of view in panels (f)–(i) is 11ar × 11ar.

while in the second type, when |ω12| is increased, we find overlapping vortex
lattices in component 1 and 2. Examples of states of each type are presented
in Figs. 4.1 and 4.2, respectively. If we calculate the CP 2 topological index
for each of these two states by using Eq. (4.5), where Ψ† = (Ψ∗

1,Ψ
∗
2,Ψ

∗
3),

we obtain the same Q = 2 per combined-lattice elementary cell, although
they clearly constitute two different phases. Therefore, in order to better
distinguish different phases, we instead calculate pairwise CP 1 topological
indices Qij, by using Eq. (4.5), where Ψ† = (Ψ∗

i ,Ψ
∗
j) and i 6= j (i, j = 1, 2, 3),

separately for each pair of the components, and then calculate an average
topological index Q̃ for the entire three-component state as

Q̃ =
Q12 +Q13 +Q23

3
. (4.6)

We stress that each Qij is calculated over the same elementary cell of the
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Figure 4.6: Rotating ground state for σ = 1.0 and −ω12/ω = 0.09. Other
parameter values are the same as in Fig. 4.1. The panels correspond to
(a) |Ψ1|2; (b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed
on −εR; (g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also indicates the
elementary cell of the combined vortex lattice. The average topological index
Q̃ = 4/3 for this state. The field of view in panels (f)–(i) is 11ar × 11ar.

three-component lattice. In panel (f) of Figs. 4.1–4.6, we mark vortices of each
component on top of the Rabi energy density εR and also indicate the lattice
elementary cell (by black solid line). To illustrate the use of Eq. (4.6), let us
consider, for example, the state shown in Fig. 4.1, for which the elementary
cell is the rectangle that connects four vortices of component 2 [denoted by
(pink) dots]. The rectangle encloses two vortices of each component. As a
result, the pairwise topological indices are Q12 = 2, Q13 = 2, and Q23 = 2.
The average topological index for the state is Q̃ = 2. On the other hand,
calculating the average topological index for the state shown in Fig. 4.2 in the
same manner gives Q̃ = 4/3, because the individual vortices of component 1
and 2 reside on top of each other and hence Q12 = 0.

By calculating the average topological index Q̃ from Eq. (4.6) for all
the obtained states and collecting the results, we obtain the phase diagram
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Figure 4.7: Skyrmionic-lattice phase diagram as a function of the inter-
component interaction strength σ and the Rabi frequency ω12, for fixed in-
tracomponent interaction strength g = 2115, external rotation frequency
Ω/ω = 0.97, and Rabi frequencies ω13 = ω23 = 0.01ω. Each number corre-
sponds to a numerically solved ground state of the three-component Bose–
Einstein condensate and indicates the corresponding average topological in-
dex Q̃ [Eq. (4.6)] per elementary cell of the combined three-component vortex
lattice. The (green) solid lines are guides to the eye for separating different
phases.

shown in Fig. 4.7. It classifies the different types of ground-state skyrmionic
lattices for the fixed Rabi couplings ω13 = ω23 = 0.01ω in the two-dimensional
domain 0 ≤ σ ≤ 1 and 0.01ω ≤ −ω12 ≤ 0.14ω. The states with Q̃ = 2 in
the range 0 ≤ σ < 1 correspond to skyrmionic lattices with two vortices
per component in a rectangular cell resulting from an interlacing triangular
vortex lattice in each component (Fig. 4.1). The states with Q̃ = 4/3 have
a parallelogram cell and overlapping triangular lattices in components 1 and
2 (Fig. 4.2). The states with Q̃ = 2/3 correspond to overlapping square
lattices of vortex dimers in components 1 and 2, an interlacing square vortex
lattice in component 3, and a square cell that contains one vortex of each
component (Figs. 4.3 and 4.4). The states with Q̃ = 2 at σ = 1 have a
hexagonal cell which includes two vortices of each component. At larger
|ω12|, this phase changes into a skyrmionic lattice with Q̃ = 4/3 because of
overlapping lattices in components 1 and 2.

We now turn to the second parameter set, which differs from the first by
having ω13 = ω23 = 0.05ω, and the Rabi coupling ω12 changes in the range
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Figure 4.8: Rotating ground state for the intercomponent interaction
strength σ = g12/g11 = 0.2 and the dominant Rabi frequency ω12/ω = −0.09.
The panels show (a)–(c) atomic densities |Ψ1|2, |Ψ2|2, and |Ψ3|2, respectively;
(d) total density ntot; (e) negative Rabi energy density −εR; (f) vortices of
each component on top of −εR; (g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel
(f) also shows the elementary cell of the combined vortex lattice. The average
topological index Q̃ = 2 for this state. This state corresponds to the intra-
component interaction strength g = g11mN/3~

2 = 2115, rotation frequency
Ω/ω = 0.97, and Rabi frequencies ω13/ω = ω23 = 0.05ω. The field of view in
panels (f)–(i) is 11ar × 11ar.

0.03ω ≤ −ω12 ≤ 0.14ω. For this given parameter set, in the range 0 < σ ≤
0.4 and −ω12 < 0.09ω, components 1 and 2 host interlacing zig-zag vortex
lattices, which are in turn both interlaced by a triangular vortex lattice in
component 3, similar to ones shown in Figs. 4.8(a)-(c). For−ω12 & 0.09ω, the
zig-zag lattices in components 1 and 2 start to overlap, while the interlacing
triangular lattice in component 3 remains unchanged. An example of the
state with overlapping zig-zag lattices in components 1 and 2 is shown in
Fig. 4.8. The total density for both kinds of states exhibits a plane-wave-like
modulation [Fig. 4.8(d)].
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Figure 4.9: Rotating ground state for σ = 0.7 and −ω12/ω = 0.03. Other
parameter values are the same as in Fig. 4.8. The panels show (a) |Ψ1|2;
(b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed on −εR;
(g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also indicates the elementary
cell of the combined vortex lattice. The average topological index Q̃ = 1 for
this state. The field of view in panels (f)–(i) is 11ar × 11ar.

The states occurring for 0.5 ≤ σ ≤ 0.8 and 0.03ω ≤ ω12 < 0.1ω corre-
spond to components 1 and 3 exhibiting zig-zag vortex lattices and compo-
nent 2 forming a square vortex lattice that interlaces both zig-zag lattices.
An example from this range is shown in Fig. 4.9. The corresponding total
density is depicted in Fig. 4.9(d) and exhibits a square pattern. In the same
range of intercomponent repulsion, 0.5 ≤ σ ≤ 0.8, but for −ω12 > 0.1ω,
zig-zag lattices instead form in components 1 and 2, which are interlaced by
a square vortex lattice in component 3 (Fig. 4.10). Both ntot and εR have a
square pattern [Figs. 4.10(d) and (e)].

For σ = 0.9 and 0.03ω ≤ −ω12 < 0.1ω, the system hosts triangular dimer
lattices in components 1 and 2 and parallel straight chains of vortices in
component 3. An example from this region is shown in Fig. 4.11. With
further increasing |ω12|, the vortices in components 1 and 2 eventually move
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Figure 4.10: Rotating ground state for σ = 0.7 and −ω12/ω = 0.12. Other
parameter values are the same as in Fig. 4.8. The panels show (a) |Ψ1|2;
(b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed on −εR;
(g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also shows the elementary
cell of the combined vortex lattice. The average topological index Q̃ = 2/3
for this state. The field of view in panels (f)–(i) is 11ar × 11ar.

on top of each other and form fully overlapping triangular dimer lattices for
0.1ω < −ω12 ≤ 0.14ω.

At σ = 1, we identify two different phases. For 0.03ω ≤ −ω12 < 0.1ω,
the system hosts mutually interlaced triangular lattices of dimers in all three
components (Fig. 4.12). The other phase occurs for −ω12 & 0.1ω and has
overlapping triangular lattices of dimers in components 1 and 2 and an in-
terlacing triangular lattice of dimers in component 3.

The states shown in Figs. 4.8–4.12 are also amenable to skyrmionic clas-
sification in terms of the average topological index per elementary cell of
the total lattice [Eq. (4.6)]. The corresponding phase diagram of appropri-
ate skyrmionic lattices for these states is shown in Fig. 4.13. For the states
with Q̃ = 2 in the range 0 < σ ≤ 0.4, the elementary cell is a rectangle
that contains two vortices of each component [Fig. 4.8(f)]. The skyrmionic
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Figure 4.11: Rotating ground state for σ = 0.9 and −ω12/ω = 0.06. Other
parameter values are the same as in Fig. 4.8. The panels depict (a) |Ψ1|2;
(b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed on −εR;
(g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also shows the elementary
cell of the combined vortex lattice. The average topological index Q̃ = 1 for
this state. The field of view in panels (f)–(i) is 11ar × 11ar.

lattices with Q̃ = 4/3 in the same range of σ correspond to the states with
overlapping zig-zag vortex lattices in component 1 and 2, so that the pairwise
topological index Q12 = 0. The region with Q̃ = 1 in 0.4 < σ ≤ 0.8 corre-
sponds to a skyrmionic lattice with a parallelogram cell containing one vortex
of each component [Fig. 4.9(f)]. With increasing |ω12| this phase changes into
a skyrmionic lattice with Q̃ = 2/3 [Fig. 4.10(f)]. At σ = 0.9, we distinguish
two phases, with Q̃ = 1 and Q̃ = 2/3, where in both cases the elementary
cell encloses one vortex of each component and is similar to the one shown
in Fig. 4.11(f). Finally, the region at σ = 1.0 also shows two phases with
the average topological indices Q̃ = 2 and Q̃ = 4/3. The elementary cell
contains two vortices of each component and is as shown in Fig. 4.12(f). The
latter phase with Q̃ = 4/3 emerges due to overlapping triangular lattices of
dimers in components 1 and 2, which reduces Q12 to zero.
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Figure 4.12: Rotating ground state for σ = 1.0 and −ω12/ω = 0.09. Other
parameter values are the same as in Fig. 4.8. The panels are for (a) |Ψ1|2;
(b) |Ψ2|2; (c) |Ψ3|2; (d) ntot; (e) −εR; (f) vortices superposed on −εR;
(g) − cosϕ12; (h) cosϕ13; (i) cosϕ23. Panel (f) also shows the elementary
cell of the combined vortex lattice. The average topological index Q̃ = 2 for
this state. The field of view in panels (f)–(i) is 11ar × 11ar.

4.3.2 Rabi suppression in the three-component system

In the Rabi-coupled two-component BEC, the sign of the Rabi frequency ω12

is irrelevant for the ground-state energetics because the system can freely
adjust the global phase difference between Ψ1 and Ψ2 to minimize the Rabi
energy. Consequently, ω12 = ω0 and ω12 = −ω0 (ω0 ∈ R) will yield physically
identical ground-state solutions with attractive Rabi energy ER ≤ 0 that
favors the overlap of same-sign vortices between the two components. In the
three-component counterpart, however, the signs of ωij make a difference,
and can result in intrinsic frustration and consequent suppression of some or
all of the three pairwise Rabi couplings.

In order to heuristically see how the Rabi suppression emerges in the
three-component BEC, consider the wave functions in the vicinity of a vortex,
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Figure 4.13: Skyrmionic-lattice phase diagram in the plane of the inter-
component interaction strength σ and the Rabi frequency ω12 for fixed in-
tracomponent interaction strength g = 2115, external rotation frequency
Ω/ω = 0.97, and Rabi frequencies ω13 = ω23 = 0.05ω. The numbers corre-
spond to the average topological index Q̃ given by Eq. (4.6) for the elementary
cell of the ensuing three-component lattice. The green solid lines are guides
to the eye.

for example, in component 1. In local polar coordinates (r′, φ′) with the
vortex at r′ = 0, we write the wave functions as

Ψj (r
′, φ′) = exp [i (κjφ

′ + Cj)] fk (r
′) ,

where the constants Cj ∈ R set the local relative phases and only affect the
Rabi term in Eq. (4.1). The Rabi energy density then becomes

E loc
R

πr20
= − 2

r20

∑∑

i<j

ωijδκi,κj cosCij

∫ r0

0

fifjr
′dr′, (4.7)

where δκi,κj is the Kronecker delta, Cij = Ci−Cj, and r0 defines the small disk

over which the local Rabi energy E loc
R is averaged. In the case κ1 = κ2 = κ3,

i.e., superposed same-sign vortices in all components or no vortices at all, all
three terms in the sum can be nonzero. If we further assume f1 = f2 = f3,
the minimization of the above Rabi energy density implies maximization of

the function h (C12, C13) =
∑∑

i<j

ωij cosCij = ω12 cosC12 + ω13 cosC13 +

ω23 cos (C12 − C13). This function has an upper bound of
∑∑

i<j

|ωij|. How-
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Figure 4.14: Pairwise Rabi energies Eij = −ωij
∫

(Ψ̃i
∗
Ψ̃j + Ψ̃∗

jΨ̃i)d
2r as

functions of the Rabi frequency ω12/ω for fixed g = 2115, σ = 0.7, Ω/ω =
0.97. Here Eij are for ω13 = ω23 = 0.01ω and E ′

ij for ω13 = ω23 = 0.05ω.

ever, depending on the values of ωij, max
Cij

h (C12, C13) may be significantly

below this upper bound, indicating that some or all of the Rabi couplings are
suppressed by the relative phase frustration between the particular compo-
nents. In general, the upper bound can be reached if and only if ω12ω13ω23 ≥
0, which is never satisfied by the parameter values used in this work (all
the presented states have ω12 < 0 < ω13 = ω23). For the parameter set
used in Fig. 4.7, the phase frustration occurs symmetrically between all
three pairs at ω12 = −0.01ω (Fig. 4.1 shows an example of this type) for
which the maximization yields cosC12 = −0.5 and cosC13 = cosC23 = 0.5.
At ω12 = −0.09ω (Figs. 4.2–4.6), the optimal phases yield cosC12 = −0.99
and cosC13 = cosC23 = 0.056, so that max

Cij

h (C12, C13) = 0.091ω < 0.11ω =
∑∑

i<j

|ωij|. Hence, the Rabi couplings within pairs 1–3 and 2–3 are strongly

suppressed, whereas the coupling within pair 1–2 is almost maximal. For the
parameter set used in Fig. 4.13, the phase frustration is symmetric between
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all three pairs at ω12 = −0.05ω and occurs dominantly within pairs 1–3 and
2–3 at ω12 = −0.09ω (Figs. 4.8 and 4.12) and at ω12 = −0.12ω (Fig. 4.10).

Figure 4.14 shows the behavior of the pairwise Rabi energies E12 and E13

as functions of −ω12 for fixed σ = 0.7, g = 2115, and Ω/ω = 0.97. Unprimed
quantities are for ω13 = ω23 = 0.01ω and primed quantities for ω13 = ω23 =
0.05ω. We observe that−E12 and −E ′

12 are superlinearly increasing functions
of −ω12, whereas −E13 and −E ′

13 have a maximum at a finite −ω12. The
decrease of −E13 and −E ′

13 with −ω12 is a direct consequence of the relative
phase suppression between the particular components. The Rabi energies for
other values of σ show qualitatively similar behavior.

4.3.3 Domain walls in the relative phases

The Rabi coupling leads to well-defined complex relative phases between
the condensates, and therefore, to the possibility of domain walls, i.e., one-
dimensional defects, in the relative phase field [257]. The Rabi term breaks
the U(1) symmetry of the relative phases ϕij ≡ ϕi−ϕj, where ϕi = arg (Ψi)
and i < j, by rendering the value for which sgn (ωij) cosϕij = 1 energetically
favorable. This enables us to define a domain wall to lie along the path
that connects two oppositely charged vortices in ϕij (i.e., same-sign vortices
in ϕi and ϕj) and satisfies cosϕij = −sgn (ωij), i.e., maximizes the phase-
dependent part of the pairwise Rabi energy. Together, the repulsive density–
density coupling gij > 0 and the Rabi coupling ωij give rise to an energy
minimum at a finite domain-wall length [157]. Increasing |ωij| decreases
this optimal length until the two vortices in ϕij merge and the domain wall
vanishes.

Let us now investigate the behavior of domain walls in the states discussed
in the preceding sections (Figs. 4.1–4.6 and 4.8–4.12). For convenience, we
consider the three components in pairs and their corresponding pairwise rel-
ative phases ϕ12, ϕ23 and ϕ13. The relative phases are presented in panels
(g)–(i) of said figures using the quantities sgn (ωij) cosϕij, with domain walls
shown in black; the positions of vortices of the relevant components are also
indicated.

The properties of the domain walls depend on the strength of the Rabi
coupling. For example, their characteristic width (analogous to the core size
of vortices) is proportional to |ωij|−1/2 [257]. In Fig. 4.15, we show how
the domain walls change when ω12 is varied in the range 0.01ω ≤ −ω12 ≤
−0.12ω while the other parameters are kept constant. At |ωij| = 0.01ω, the
domain walls are fairly delocalized, appearing wide between the oppositely
charged vortices in each ϕij [Fig. 4.15(a)]. Increasing |ωij| to 0.03ω narrows
the domain walls in ϕ12, while ϕ23 and ϕ13 remain nearly unchanged [Fig.
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(a)

(b)

(c)

(d)

(e)

Figure 4.15: Relative complex phases between components shown in terms
of sgn (ωij) cosϕij, where ϕij = arg (Ψi) − arg (Ψj) and the sgn function
makes small values (shown in black) correspond to maximal pairwise Rabi
energy density. First column is for − cosϕ12, second for cosϕ13 and third
for cosϕ23. The rows correspond to different values of ω12/ω: (a) −0.01,
(b) −0.03, (c) −0.04, (d) −0.06, and (e) −0.12. Other parameters are fixed
at σ = 0.7, Ω/ω = 0.97, g = 2115, and ω13 = ω23 = 0.01ω. The field of view
in each panel is 11ar × 11ar, and the vortices in Ψ1, Ψ2, and Ψ3 are marked
with (blue) squares, (pink) dots, and (green) triangles, respectively.

4.15(b)]. In this region, the pairwise Rabi energies −E12, −E13 and −E23

all increase with increasing −ω12 as shown in Fig. 4.14. At ω12 = −0.06ω,
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the strong Rabi coupling between components 1 and 2 shrinks the domain
walls in ϕ12, with vortices in ϕ1 and ϕ2 almost coinciding [Fig. 4.15(d)].
Simultaneously, the Rabi energies −E13 and −E23 reach their maximum and
gradually start decreasing due to the phase frustration occurring for these
pairs [Fig. 4.14]. Finally, at ω12 = −0.12ω, the domain walls have vanished
completely in ϕ12 [Fig. 4.15(e)]. Thus, we arrive at a unique state in which
the domain walls persist in ϕ23 and ϕ13 but vanish completely in ϕ12. The
effective interlocking of components 1 and 2 with ϕ12 ≃ π implies that ϕ13 ≡
ϕ23 + ϕ12 ≃ ϕ23 + π, as can be observed from Figs. 4.15(d) and 4.15(e).

4.3.4 Vortex phases revisited

Equipped with the insight gained from the previous two subsections, let us re-
turn to the phase diagrams in Figs. 4.7 and 4.13, and the various skyrmionic
lattice phases therein. The skyrmionic lattices emerge from the combina-
tions of the diverse set of single-component vortex lattices appearing in the
three-component system. One can see that both phase diagrams exhibit
a triangular-to-square transition in the underlying vortex-lattice geometry,
which is qualitatively similar to that of two-component BECs. In order to
understand how it comes about in the three-component system, note that
when ω12 is large enough to overcome the density–density repulsion due to
g12 > 0 and dominate over the other Rabi couplings, components 1 and 2 ef-
fectively become locked together such that Ψ1 = sgn (ω12)Ψ2 = −Ψ2. At the
same time, the Rabi coupling becomes very weak for the pairs 1–3 and 2–3
because of the suppression effect; in fact, since we have ω13 = ω23, Ψ1 = −Ψ2

implies that ε13 = −ε23, leading to cancellation of these Rabi couplings from
the energy functional. As a consequence, in this phase-locked limit compo-
nents 1 and 2 can be viewed as a single component, and the system starts to
behave like a repulsive two-component system with only density–density in-
teractions. Then the triangular-to-square transition is expected in the overall
lattice geometry, and the ensuing ground states can be classified according to
the results of Refs. [15, 157]. Figure 4.2 presents an example from the two-
component-like regime with triangular lattices (with σ = 0.7), while Fig. 4.4
shows a state with square lattice geometry and components 1 and 2 nearly
locked together (σ = 0.9) and which, with a further increase |ω12|, would
attain the square-geometry two-component limit.

The states containing zig-zag vortex lattices in some of the components
(Figs. 4.8-4.10) emerged in the region where all |ωij| where comparable with
each other and with the density–density repulsions. The zig-zag lattices
can be viewed as deformed triangular Abrikosov lattices where vortices orig-
inally in a straight row have been displaced in alternating directions. In
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the state shown in Fig. 4.8, with Q̃ = 2, these displacements are in op-
posite directions in components 1 and 2 [Fig. 4.8(g)]. As observed from
Figs. 4.8(g)-(i), this vortex configuration can efficiently accommodate rela-
tively tightly bound dimers in all three components, which are energetically
favoured due to the interplay of the comparable density–density repulsion
and Rabi-mediated attraction. It also follows from the zig-zag pattern that
these dimers are arranged in an antiferromagnetic order within each pair,
maximizing the intracomponent vortex distances. The origin of the phases
illustrated in Figs. 4.9 and 4.10 (with Q̃ = 1 and occurring in the range
0.4 < σ ≤ 0.8) can be understood in a similar way but with the underly-
ing lattice geometry being square instead of triangular. This again reflects
the triangle-to-square transition discussed above. We note that the zig-zag
vortex patterns have previously been found for single-component BECs in
highly eccentric harmonic trap potentials [267].

4.4 Summary and Conclusions

In this Chapter, we have shown that Rabi-coupled three-component BECs
can host unconventional vortex lattices in the rotating ground state of the
system. Based on the elementary cell of the total lattice pattern in each
state, we also interpreted and classified the states as skyrmionic lattices. We
argued that emerging lattice configurations can no longer be classified only
by the winding numbers of three components, and that the average topolog-
ical index of the corresponding elementary cell must be invoked. Using the
latter, we collected our results in two phase diagrams in the plane of the in-
tercomponent interaction strength σ and Rabi frequency ω12. We found that
at certain combinations of signs and values of the Rabi frequencies ωij , some
of the pairwise Rabi energies become heavily suppressed due to relative phase
frustration. For example, when ω12ω13ω23 < 0 and |ω12| ≫ |ω13| ≈ |ω23|, the
Rabi coupling is significant only between components 1 and 2. Such Rabi
suppression results in an effective reduction of the three-component BEC to a
density–density-coupled two-component BEC. Similarly, a three-component
multiband superconductor, for which the Josephson-type coupling serves as
an analog of the Rabi coupling in BECs, also reduces to a two-gap supercon-
ductor at a particular choice of the coupling matrix [6].

When the Rabi coupling becomes suppressed between two pairs of compo-
nents, the three-component system exhibits the triangular-to-square vortex-
lattice transition in agreement with the previous results for the repulsively
coupled two-component BECs and the classification given in Refs. [15, 157].
Although we have limited our study to a particular subset of the large param-
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eter space, we expect the rotating ground state of the Rabi-coupled three-
component BEC to harbor many more unforeseen vortex-lattice structures
for other values of σ and the intracomponent interaction strength g.

In light of the Rabi suppression, it might be interesting to compare and
contrast the present system with a hybrid three-component system in which
two components are different spin states of the same atom coherently cou-
pled to each other, whereas the third component is a different species with
different atomic mass and coupled only through density–density interactions
to the other two components. In the limit of strong Rabi coupling, the hy-
brid system would reduce to a mass-imbalanced two-component BEC, whose
rotating ground state exhibits a variety of unconventional ground-state vor-
tex structures [16, 253]. This more intricate limiting behavior suggests that
when the Rabi coupling is of intermediate strength, rotation of the hybrid
system will likely produce novel ground-state vortex lattices that do not exist
in our equal-mass system.

To realize the exotic vortex lattices experimentally, one could use, e.g.,
87Rb atoms in the hyperfine ground level 52S1/2. Two-component BECs
have already been realized using mixtures of the |F = 1,mF = −1〉 and |2, 1〉
states [10], the |1, 1〉 and |2, 2〉 states [149], and the |2, 1〉 and |2, 2〉 states [147]
from this manifold. The Rabi-coupled three component BEC could be cre-
ated by optically trapping a mixture of any three of these states and using
microwave and radiofrequency radiation to coherently couple them via two-
photon processes. The vortex lattices could then be produced by inducing
rotation in the system and letting it relax to its minimum-energy state. Mea-
surement of the relative phase between the BEC components should also be
feasible [268]. We also note that many of the discovered phases could be
distinguished by imaging only the profile of the total density ntot.

The author contributed significantly to the central ideas of the research,
constructed the model, implemented and carried out all numerical simula-
tions, analyzed the data.

The results of this Chapter were submitted to Phys. Rev. A as: N. V. Orlova,
P. Kuopanportti, and M. V. Milošević, Skyrmionic vortex lattices in coher-
ently coupled three-component BoseEinstein condensates.



116 Skyrmionic vortex lattices in three-component BECs



CHAPTER 5

Multiquantum vortices in two-component BEC

The results of the previous Chapter demonstrate the potential of the coupling
between multiple condensates to create emergent physics that is not available
otherwise. We prove that point further in this Chapter, on example of a
two-component BEC. Namely, it is shown here that a rotating and harmoni-
cally trapped mixture of two Bose-Einstein-condensed superfluids can host a
multiply quantized vortex in the ground state. Those so-called giant vortices
are not stable in rotating and harmonically confined single-component BECs,
and are thus a unique property of two-(or multi-)component BECs.

5.1 Introduction

According to the conventional paradigm [173, 175], the ground state in a
rotating superfluid will involve only singly quantized vortices (SQVs). Vor-
tices with larger quantum numbers are energetically unfavorable and do
not occur—not even for rapid rotation, which instead spawns a triangular
Abrikosov lattice of SQVs [85]. Although this is well established [170, 249,
251] for a solitary superfluid described by a single C-valued order parame-
ter Ψ, vortex physics becomes much more diverse when multiple mutually
interacting superfluids are rotated simultaneously in the same container.

Already for the simplest mixture, which consists of two superfluid species
and is described by two C-valued order parameters Ψ1 and Ψ2, a myriad
of unusual ground-state vortex structures have been found in experimental
and theoretical studies [252]. Experimentally, a versatile platform to study
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vortices is provided by atomic Bose–Einstein condensates (BECs) [269, 172,
10], in which two-component superfluid mixtures have been realized using two
different spin states of the same isotope [11, 9, 12, 10, 13, 14], two different
isotopes of the same element [270, 271], or two distinct elements [151, 152,
153, 154, 155, 156, 272, 273, 274]. The unconventional vortex structures
that were detected in these experiments comprise coreless SQVs [10] and
square vortex lattices [11]. Theoretical studies, however, have furnished the
two-species BECs with many more ground-state vortex configurations than
the aforementioned two [254, 255, 159, 15, 157, 275, 276, 16]: Predicted but
hitherto unobserved ones include serpentine vortex sheets [17], triangular
lattices of vortex pairs [16], and, in a pseudospin-1/2 representation, giant
skyrmions [158, 159] and meron pairs [254, 255].

One peculiar feature of the two-species mixture, which goes against the
traditional paradigm, is the appearance of multiply quantized vortices (MQV)
in the rotating ground state of the harmonically trapped system [158, 159, 16].
So far, the MQVs, also known as giant vortices, have been predicted only in
complicated states involving a number of accompanying SQVs and a large to-
tal circulation, thereby requiring rotation frequencies close to the maximum
set by the harmonic trap frequency. Consequently, the states have eluded
experimental observation and, due to the accompanying SQVs, might not
be suitable for investigating the rarely encountered ground-state MQV in a
controlled fashion. Besides being exotic and interesting in their own right,
MQVs could also be used to realize bosonic quantum Hall states [277], ini-
tiate quantum turbulence [278, 279, 280], or implement a ballistic quantum
switch [281].

In this investigation, we make the ground-state MQVs more accessible
to experiments by showing theoretically that an interacting mixture of two
dilute superfluids, when rotated at moderate speed, exhibits ground states
that contain a solitary MQV in one of the superfluids. We find such states
both for mutually attractive mixtures, where the MQV has a completely
empty core, and for mutually repulsive mixtures, where the core is occupied
by the other, vortex-free superfluid species. These states represent a rare in-
stance of a stable, solitary MQV in an atomic BEC and, as such, constitute
a robust, well-isolated, and tunable environment for the experimental explo-
ration of MQV physics, in complement to earlier observations in mesoscopic
superconductors [282, 283, 284, 285].

All the discovered states share the property that the two superfluid species
carry unequal numbers of circulation quanta under the same external rota-
tion. This requires the two superfluids to be composed of particles with
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sufficiently different masses1. For concreteness, we will focus on the har-
monically trapped two-species BEC of 87Rb and 41K because it has already
been realized in several experiments [151, 152, 153, 154, 155, 156], it enables
a flexible control over its interaction strengths [154], and it has a suitable
atomic mass ratio of ∼2. Although we present ground states only for this
particular system, the essential features of our results apply generally to
mass-imbalanced binary mixtures of dilute superfluids.

5.2 Model

We assume that the two-species BEC is rotated with angular velocity Ωẑ. In
the zero-temperature mean-field regime, the ground-state order parameters
Ψ1 (assigned to 87Rb) and Ψ2 (41K) satisfy the coupled time-independent
Gross–Pitaevskii equations in the rotating reference frame [252]:

(

Hj + gjj|Ψj|2 + g12|Ψ3−j|2 − µj
)

Ψj (r, φ) = 0, (5.1)

where j ∈ {1, 2},

Hj = −
~
2

2mj

∇2 +
1

2
mjω

2
j r

2 + i~Ω
∂

∂φ
, (5.2)

and the chemical potentials µj ensure that

∫

|Ψj|2 d2r = Nj. Here Nj, mj,

and ωj denote, respectively, the total number, the mass, and the radial har-
monic trapping frequency of species j atoms. We only consider quasi-two-
dimensional configurations pertaining to, e.g., highly oblate (prolate) traps
with strong (weak) axial confinement and Ψj approximately Gaussian (con-
stant) in the axial direction. The intraspecies interaction strengths gjj are
assumed to be positive, whereas for the interspecies parameter g12 we also
consider negative values.

We parametrize the interactions by the three dimensionless quantities
U = (g11 + g12)m1N1/~

2, g22/g11, and Γ = g12/
√
g11g22 > −1. The ground

states, i.e., the lowest-energy solutions of Eqs. (5.1), are then uniquely speci-
fied by these three and the following four other parameters: m2/m1, N2/N1,
ω2
2/ω

2
1, and Ω/ω1. Focusing on the 87Rb–41K BEC, we fix m2/m1 = 0.471.

The dimensionless equations, the discretization scheme, and the numerical
method which we used to solve Equations (5.1) are given in details in Chap-
ter 1, Subsections 1.6.6, 1.6.7 and 1.6.8.

1Essentially, this is because the circulation

∮

v(r) · dr of the superfluid velocity v =

~∇Arg(Ψ)/m is quantized in units of 2π~/m, where m is the mass of the superfluid
particles.
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5.3 Ground-state multiquantum vortices
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Figure 5.1: Emergence of a ground-state two-quantum vortex in a rotating,
mutually repulsive two-species 87Rb–41K BEC. (a)–(d) Atomic densities |Ψ1|2
and |Ψ2|2 and the complex phase of the order parameter Ψ1 in the ground
state at the indicated value of the interspecies interaction strength Γ =
g12/
√
g11g22. In all four cases, Arg (Ψ2) ≡ const (not shown). The parame-

ters in the Gross–Pitaevskii equations are set to m2/m1 = 0.471, g22/g11 = 4,
ω2
2/ω

2
1 = 10, N2/N1 = 1, Ω/ω1 = 0.4, and U = (g11 + g12)m1N1/~

2 = 300.
The chosen value of U corresponds approximately to 103 atoms in the system.
The length unit is ar =

√

~/m1ω1.

In order to understand why MQVs emerge in the rotating two-species
BEC, we begin with a scenario where only Γ is varied while the other pa-
rameters are held constant. Furthermore, for κj ∈ Z, let 〈κ1, κ2〉 denote a
sufficiently pointlike phase defect about which arg (Ψ1) winds by κ1×2π and
arg (Ψ2) by κ2 × 2π. For interspecies repulsion (Γ > 0), the simplest MQV
state appearing as the ground state is a 〈2, 0〉 vortex, whereas for Γ < 0, the
simplest one corresponds to 〈2, 1〉. In this quasi-2D system, the 〈2, 0〉 state
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is a pointlike vortex defect that carries two quanta of phase circulation in
the first component and none in the second component. Respectively, the
〈2, 1〉 vortex can be defined as a state in which the first component hosts
two quanta of circulation while the second component carries one quantum
of circulation. Below, we investigate these two cases separately.
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Figure 5.2: Interspecies interaction energy E12 = g12

∫

|Ψ1Ψ2|2 d2r,

kinetic energies Tj = ~
2

∫

|∇Ψj|2 d2r/2mj, and trap energies Vj =

mjω
2
j

∫

r2|Ψj|2 d2r/2 as functions of Γ for the same ground states. The pa-

rameters in the Gross–Pitaevskii equations are the same as ones given in
Fig. 5.1.

Consider first the mutually repulsive mixture. Figures 5.1(a)–5.1(d) de-
pict ground states at different Γ ≥ 0 for a rotating 87Rb–41K BEC in which
there are two circulation quanta in Rb and none in K. Figure 5.2 shows the
relevant energy terms as a function of Γ. When Γ = 0 [Fig. 5.1(a)], the two
off-centered 〈1, 0〉 vortices are separated by a distance of ∼10 times their core
radius. As Γ increases, the condensates move apart, with Rb shifting out-
ward and K inward; this behavior is manifested in the trap potential energy,
which increases for Rb and decreases for K. Consequently, Rb is depleted
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from the region between the two 〈1, 0〉 vortices, enabling them to merge into
a 〈2, 0〉 vortex without the kinetic-energy increase typical of MQV formation;
indeed, the kinetic energy T1 of Rb decreases with Γ ∈ [0, 0.6]. Hence, for
Γ ≥ 0.5, we observe an axisymmetric 〈2, 0〉 vortex, about which arg (Ψ1)
winds by 2× 2π. It is a coreless vortex [254, 255, 159, 286, 287, 288, 289] in
the sense that the total atomic density ntot = |Ψ1|2 + |Ψ2|2 does not vanish
at the phase singularity. We stress that the 〈2, 0〉 vortex is a unique example
of a ground-state MQV in a purely harmonic trap that occurs as a solitary
topological defect without any accompanying SQVs.

The emergence of the ground-state 〈2, 1〉 vortex for Γ < 0 is illustrated in
Fig. 5.3. For uncoupled condensates [Fig. 5.3(a)], there are two off-centered
〈1, 0〉 vortices and one central 〈0, 1〉 vortex. As Γ approaches −1, the two
〈1, 0〉 vortices move closer to each other, so that at Γ = −0.98, all three phase
singularities lie at the origin and make up an axisymmetric 〈2, 1〉 vortex. To
explain the movement, we note that the kinetic energy T1 increases when the
two vortices approach each other, whereas the interspecies interaction energy

E12 decreases due to the increasing overlap

∫

n1n2 d
2r. Since E12 gains in

importance when the attraction becomes stronger, it eventually begins to
dominate over T1, and thus the 〈2, 1〉 vortex forms [Fig. 5.3(d)].

The ground-state 〈2, 1〉 vortex constitutes a rare instance of a stable MQV
with a genuinely empty, self-supporting core. Typically, such vortices are ren-
dered unstable against splitting by quasiparticle excitations that are highly
localized within the core [290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
300, 301, 302]. In our case, however, the doubly quantized vortex in Ψ1 is
held together by the indivisible SQV in Ψ2.

The 〈2, 1〉 vortices are most readily found for relatively small values of
U . This is because small U implies a large size of the vortex cores, which
suppresses the kinetic energy near the phase singularities and leads to strong
dependence of E12 on the vortex positions.

To produce the MQVs of Figs. 5.1 and 5.3, it is desirable to have control
over the parameter Γ = g12/

√
g11g22. In experiments, gjk may be tuned

with Feshbach resonances [160], which have been demonstrated for 87Rb–
87Rb [303, 304, 305], 41K–41K [306, 307], and 87Rb–41K [154] interactions.
However, ground-state MQVs can also be obtained in the 87Rb–41K BEC
without employing Feshbach resonances. To demonstrate this for an axially
uniform system, we use the bare s-wave scattering lengths a11/aB = 99 [308],
a22/aB = 60 [309], and a12/aB = 163 [151], where aB is the Bohr radius, and
accordingly set g22/g11 = 1.29 and Γ = 2.27. The remaining parameters are
fixed after the 87Rb–41K experiment of Ref. [156].

Figure 5.4 shows the resulting ground states at two different rotation
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Figure 5.3: Formation of a ground-state vortex with specieswise quantum
numbers 〈κ1, κ2〉 = 〈2, 1〉 in a rotating, mutually attractive 87Rb–41K BEC.
(a)–(d) Atomic densities |Ψ1|2 and |Ψ2|2 and the complex phase of Ψ1 in the
ground state at the indicated value of Γ = g12/

√
g11g22; Arg [Ψ2 (r, φ)] ≃ φ

for all Γ (not shown). Here g22/g11 = ω2
2/ω

2
1 = N2/N1 = 1, Ω/ω1 = 0.7, and

U = 50. The chosen value of U corresponds approximately to 102 atoms in
the system.

frequencies, Ω/ω1 = 0.7 and 0.8. At Ω/ω1 = 0.7 (0.8), the Rb species hosts
a central 9-quantum (12-quantum) giant vortex surrounded by a ring of 13
(16) SQVs. In both cases, the K species is vortex-free and occupies the
core of the central giant vortex. However, due to high rotation frequency
and strong self-interaction, the first component triggers more vortices. The
vortices which did not enter the giant vortex formed in the center, arrange
into a ring of vortices instead, because the second component located in the
center and this configuration minimizes the free energy. At larger Ω, the
giant vortex becomes surrounded by a triangular lattice of SQVs; similar
profiles have been found earlier for rapidly rotating single-component BECs
in anharmonic trap potentials [310, 311, 312, 313, 314, 315, 316, 317, 318].
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Figure 5.4: Ground states of a 87Rb–41K BEC with interaction parameters
Γ = 2.27 and g22/g11 = 1.29 corresponding to the unmodified scattering
lengths in a highly prolate trap, shown for two different rotation frequencies.
In both states, Arg (Ψ2) ≡ const (not shown). Furthermore, ω2

2/ω
2
1 = 2.12,

N2/N1 = 0.27, and U = 2800 after the experiment of Ref. [156]. The chosen
value of U corresponds approximately to 106 atoms in the system.

5.4 Pseudospin textures

In this Section, we analyze our results in the pseudospin-1/2 representa-
tion [145, 319, 254, 255, 252]. At points where ntot 6= 0, we define the local
unit-length pseudospin

ŝ (r, φ) =
1

ntot (r, φ)

∑

jk

Ψ∗
j (r, φ)σjkΨk (r, φ) , (5.3)

where σ is a vector of the three Pauli matrices. Now consider a 〈κ1, κ2〉
vortex about which the atomic densities are locally axisymmetric. After
transforming to shifted polar coordinates (r′, φ′) with the vortex core at r′ =
0, we can write Ψj, for small r′, in terms of a spin rotation Z and a U (1)
gauge transformation acting on a unit-length reference spinor χ ∈ C

2:

Ψj (r
′, φ′) = |Ψj (r

′) |ei(κjφ′+Cj) (5.4)

=
√

ntot (r′)e
i
2
κgφ′

∑

k

Zjk (κsφ
′)χk (r

′) ,

where κs = κ2−κ1 and κg = κ1+κ2 are integers that determine, respectively,
the number of 2π rotations of ŝ about the unit vector ẑ and the number of
π windings of the U (1) gauge along a contour enclosing the core, Z (κsφ

′) =
exp (−iκsφ′σz/2), and Cj ∈ R are constants.
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Figure 5.5: Pseudospin textures of a (a) two-quantum skyrmion [for the state
in Fig. 5.1(d)], (b) single-quantum spin vortex [Fig. 5.3(d)], and (c) nine-
quantum giant skyrmion [Fig. 5.4(a)]. The arrows represent the projection

of the local pseudospin ŝ =
∑

jk

Ψ∗
jσjkΨk/ntot onto the xy plane. Here σ is a

vector of the Pauli matrices and ntot = |Ψ1|2+ |Ψ2|2. The dashed circle is the
species interface, where |Ψ1| = |Ψ2|. The inset in (c) shows the z projection
of ŝ as a function of the radial coordinate r.

Figure 5.5 shows ŝ for some of the ground states in Figs. 5.1, 5.3, and 5.4.
The 〈2, 0〉 vortex in Fig. 5.1(d) is interpreted as a doubly quantized skyrmi-
on [158, 159] located at the circular interface of the two species, where |Ψ1| =
|Ψ2|. Since κs = −2, ŝ rotates by −4π about ẑ when the interface is traversed
azimuthally; additionally, the projection ẑ · ŝ changes from −1 to 1 when the
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interface is crossed radially. For the 〈2, 1〉 vortex in Fig. 5.3(d), the U (1)
gauge winds by 3π and the spin ŝ by −2π. However, because now ẑ·ŝ vanishes
everywhere, this state is not a skyrmion but instead corresponds to a singly
quantized spin vortex. The defect is structurally similar to the so-called cross
disgyration in the fermionic superfluid 3He-A [320, 321]. Finally, the states
in Fig. 5.4 feature giant skyrmions with (a) κs = −9 and (b) κs = −12.

5.5 Summary and Conclusions

In this study, we have demonstrated that two-species BECs in rotating har-
monic traps are able to host thermodynamically stable multiquantum (or
giant) vortices. Such topological entities rarely exist in the ground state
and have thus been elusive in BECs, whereas they are observed and use-
ful in, e.g., mesoscopic superconductivity [281, 282, 283, 284, 285]. In the
present case, their stability is not induced by elaborate external poten-
tials [310, 311, 312, 313, 314, 315, 316, 317, 318, 322, 323, 324] but is an
inherent property of the harmonically confined, mass-imbalanced two-species
system: The giant vortex in the heavier species is stabilized by its coupling
to the lighter, giant-vortex-free species.

Experimentally, the presence of the MQV could be verified, e.g., by mea-
suring the orbital angular momentum using surface wave spectroscopy [325,
326, 327] or by detecting the κj-dependent concentric density ripples that
would form in free expansion [328]. Due to its ground-state nature, the MQV
is expected to be highly reproducible, long lived, and therefore amenable to
extensive measurements.

We also classified the discovered states into spin-skyrmion (coreless) and
spin-vortex (cored) variants, both of which can be realized in a mixture
87Rb–41K BEC [151, 152, 153, 154, 155, 156]. The similarities of these vor-
tices with fractional [212] and skyrmionic [210] vortex states in multiband
superconductors, as well as the rich possibilities for the creation and tun-
ing of multispecies BECs [151, 152, 153, 154, 155, 156, 272, 273, 274], open
a wide avenue for exploring emergent physics in multicomponent quantum
systems consisting of inherently nonidentical components.

The author contributed significantly to the basic concept, implemented and
performed all numerical calculations, participated in analyzing the results.

The results presented in this Chapter were published as: P. Kuopanportti,
N. V. Orlova, and M. V. Milošević, Ground-State Multiquantum Vortices in
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Two-Species Superfluids, Phys. Rev. A 91, 043605 (2015).
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CHAPTER 6

Summary and outlook

In this thesis, multi-component quantum systems were studied, such as multi-
band superconductors, nano and atomically thin films, and multi-component
Bose-Einstein condensates. New phenomena, which appear exclusively in
these multi-component systems, are inherently connected with the complex-
ity of interacting many-particle system stemming from the multi-component
nature and the competing effects arising between constituent components
of the system. Due to those exciting properties, multi-component systems
provide numerous prospects and challenges for future studies. In this the-
sis, the solid platform for such studies was provided by deriving the consis-
tent Ginzburg-Landau theory for multiband superconductors and supercon-
ducting nanofilms, bearing in mind that the GL theory is to date the most
convenient theoretical tool to study superconducting properties and related
phenomena in the proximity of the critical temperature Tc. Rotating and
harmonically trapped multi-component Bose-Einstein condensates were also
studied in this thesis as example of a multicomponent system that exhibits
rich and pronounced quantum phenomena, which can then be experimentally
realized and further manipulated in a broad range of parameters.

In what follows, the main results of the thesis are summarized in concreto.
In Chapter 2, the Ginzburg-Landau theory for the multiband supercon-

ductors was derived from the multiband BCS Hamiltonian. The derivation is
based on the Gor’kov truncation of the matrix gap equation. The procedure
invokes the expansion of the band gaps in powers of τ (where τ = 1−T/Tc).
In the expansion, we removed incomplete contributions into the band gaps
which are of orders higher than τ 1/2, i. e., higher than the precision of the
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solution of the original Gor’kov truncation. After performing this procedure,
the accuracy of the gap matches the accuracy of the Gor’kov truncation. Fur-
ther, we considered two scenarios for the solution for the critical temperature
Tc. When the solution for Tc is not degenerate, we found that the Ginzburg-
Landau theory of a multiband superconductor maps onto a single-component
GL formalism in which only a unique order parameter exists, and, as a con-
sequence, the spatial profiles of all band gaps are equivalent. If the solution
for Tc is degenerate, which appears due to a symmetry of the system, the
Ginzburg-Landau theory acquires multiple order parameters. The detailed
analysis was performed for the three-band system, treated as a prototype
of a multiband superconductor. For the simple three-band model of pnic-
tides with dominant interband couplings, it was shown that the solution for
Tc is twofold degenerate, resulting in existence of two order parameters in
the theory, which in turn leads to appearance of non trivial phase difference
between the gaps or, so-called, chiral solutions. It was demonstrated that
chiral state can be the ground state of such a three-band superconductor,
thus can be experimentally realized. The explicit microscopic expressions for
the otherwise phenomenological coefficients of the Ginzburg-Landau theory
were found.

In Chapter 3, it was demonstrated that due to the size quantization
of the electron motion limited in one of the dimensions, single-crystalline
metallic nanofilms exhibit multiband structure. The Ginzburg-Landau the-
ory appropriate for single-crystalline metallic nanofilms was derived. In the
derivation, the suitable BCS Hamiltonian was constructed for such a 2D sys-
tem by integrating out the coordinate in which the electron motion is limited.
The matrix gap equations were obtained for this multiband system from the
newly constructed Hamiltonian. Subsequently, the same procedure of the
Gor’kov truncation on removing incomplete contributions in the band gaps,
similar to the one used in Chapter 2, was employed. The explicit expres-
sions for the coefficients of the Ginzburg-Landau formalism for the single-
crystalline metallic nanofilms were also found. The obtained formalism is
computationally convenient and efficient, and will serve as a powerful theo-
retical tool for further investigations of the effects of the multiple-subband
structure on, e.g., vortex configurations, critical phenomena and supercon-
ducting fluctuations in nano-thin single-crystalline samples.

In the second half of the thesis, the multicomponent Bose-Einstein con-
densates were studied. In Chapter 4, rotating and harmonically trapped
Rabi-coupled three-component Bose-Einstein condensates were studied. This
system was shown to host unconventional vortex lattices in the rotating
ground state of the system. It was demonstrated that the found states can
be topologically characterized as a two-dimensional lattice of skyrmions. To
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classify the states with different skyrmionic lattices, the average topologi-
cal index was calculated as the average of pairwise CP 1 topological indices
of each pair of components. Different skyrmionic vortex lattices were then
grouped into two phase diagrams in the parameter space of the intercom-
ponent interaction strength σ and Rabi coupling frequency ω12 of the two
components, for other parameters fixed. In this study, equal contributions
of all three components were assumed, and the Rabi couplings were the only
varied parameters which is possible to achieve in current experiments. Be-
sides the emerging plethora of possible vortex lattice topologies, it was also
shown that at certain combinations of signs and values of the Rabi frequen-
cies ωij relative phase frustration arises in the system resulting in some of the
pairwise Rabi energies to become heavily suppressed. Such Rabi suppression
leads to an effective reduction of the three-component BEC to a density–
density-coupled two-component BEC. These exciting features are not only
of fundamental importance, but their observation in an experiment can be
used as a proof of frustration in the system under consideration.

InChapter 5, two-component Bose-Einstein condensates in rotating har-
monic traps were investigated in three different regimes. The first regime is
miscible with intercomponent attractive interaction, the second represents
the miscible regime with intercomponent repulsive interaction, while the
third is the immiscible regime with intercomponent repulsive interaction,
with the consequently separated phases. Stable multiquantum vortices in all
three regimes were found, and it was shown that their stability is an inher-
ent property of the harmonically confined, mass-imbalanced two-component
system. The discovered states were classified into spin-skyrmion (coreless)
and spin-vortex (cored) variants, both of which can be realized in a 87Rb–
41K BEC with the current experimental techniques, and both of which are
novel phases in the field.

In future research, it would be of importance to study fundamental vortex
properties in nanofilms by employing the multiband Ginzburg-Landau the-
ory for superconducting nanofilms, and further compare the findings to the
broadly known Pearl limit for vortices in thin films. Next the effects of lateral
confinement should be studied, following recent experiments on a nano-thin
Pb islands [330, 331, 332]. Concerning bulk materials, the chiral regime that
was shown to arise in three-band superconductors requires a more detailed
investigation, particularly with respect to formation of chiral domains and
domain walls, as well as the new topological defects such as skyrmions. Even
the behavior of critical fields in the chiral regime of a multi-band supercon-
ductor is yet to be calculated and understood. Logically, the extension of
the Ginzburg-Landau theory to the next order in τ is also beneficial for the
studies deeper in the superconducting state. On the BEC side, the study of



132 Summary and outlook

the Rabi-coupled multicomponent BECs should be extended to the broader
range of multiple parameters playing a role in the equilibrium phases. Be-
sides the stable configurations of the emergent phases, one should pay special
attention to dynamics in this system, particularly the nontrivial transitions
between the phases, and the vortical transformations therein.



CHAPTER 7

Samenvatting en vooruitzichten

In deze thesis werden multicomponent kwantumsystemen bestudeerd, waaron-
der multiband supergeleiders, atomair en nanodunne films en multicompo-
nente Bose-Einstein condensaten. Nieuwe fenomenen, welke uitsluitend in
deze multicomponent systemen voorkomen, zijn inherent verbonden met de
complexiteit van interagerende veel-deeltjes systemen afkomstig van het mul-
ticomponent karakter en de concurrerende effecten die ontstaan tussen de
samenstellende componenten van het systeem. Dankzij deze opwindende
eigenschappen bieden multicomponent systemen talrijke vooruitzichten en
uitdagingen voor toekomstige studies. In deze thesis werd de solide basis
voor dergelijk studies geleverd door de consistente Ginzburg-Landau theo-
rie af te leiden voor multiband supergeleiders en supergeleidende nanofilms,
aangezien de GL theorie tot op heden het meest geschikte theoretische hulp-
middel is om supergeleidende eigenschappen en gerelateerde fenomenen te
bestuderen in de buurt van de kritische temperatuur Tc. Roterende en har-
monisch opgesloten multicomponent Bose-Einstein condensaten werden ook
bestudeerd in deze thesis als voorbeeld van een multicomponent systeem dat
rijke en uitgesproken kwantumfenomenen vertoont, welke dan experimenteel
kunnen worden gerealiseerd en verder worden gemanipuleerd in een breed
bereik van parameters.

In wat volgt worden de belangrijkste resultaten van de thesis concreet
samengevat.

In Hoofdstuk 2 werd de Ginzburg-Landau theorie voor de multiband
supergeleiders afgeleid uit de multiband BCS Hamiltoniaan. De afleiding is
gebaseerd op de Gor’kov afkapping van de bandkloof vergelijking. De pro-
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cedure doet een beroep op de expansie van de bandkloven in machten van τ
(met τ = 1 − T/Tc). In de expansie verwijderden we onvolledige bijdragen
aan de bandkloven welke van hogere orde zijn dan τ 1/2, oftewel, hoger dan
de precisie van de oplossing van de oorspronkelijke Gor’kov afkapping. Na
het uitvoeren van deze procedure komt de nauwkeurigheid van de bandkloof
overeen met de nauwkeurigheid van de Gor’kov afkapping. Verder hebben we
twee scenario’s beschouwd voor de oplossing van de kritische temperatuur Tc.
Wanneer de oplossing voor Tc niet ontaard is, vonden we dat de Ginzburg-
Landau theorie voor een multiband supergeleider afgebeeld wordt op een een-
component GL formalisme waarin slechts één unieke orderparameter bestaat
en, bijgevolg, de ruimtelijke profielen van alle bandkloven equivalent zijn.
Als de oplossing voor Tc ontaard is, wat een gevolg is van een symmetrie van
het systeem, bevat de Ginzburg-Landau theorie meerdere orderparameters.
De gedetailleerde analyse werd uitgevoerd voor het drieband systeem, wat
als een prototype van een multiband supergeleider werd behandeld. Voor het
simpele drieband model van pnictiden met dominante interband koppeling
werd aangetoond dat de oplossing voor Tc tweevoudig ontaard is, wat resul-
teert in het bestaan van twee orderparameters in de theorie, wat dan weer
leidt tot de aanwezigheid van niet-triviale faseverschillen tussen de band-
kloven, ook wel chirale oplossingen genoemd. Er werd aangetoond dat een
chirale toestand de grondtoestand van zo’n drieband supergeleider kan zijn
en dus experimenteel kan worden gerealiseerd. De expliciete microscopische
uitdrukkingen voor de normaal gezien fenomenologische coëfficiënten van de
Ginzburg-Landau theorie werden bepaald.

In Hoofdstuk 3 werd aangetoond dat, als gevolg van de kwantisatie
geassocieerd met de opsluiting van de elektronen in een van de dimensies,
monokristallijne metallische nanofilms een multiband structuur vertonen. De
geschikte Ginzburg-Landau theorie voor monokristallijne metallische nano-
films werd afgeleid. In de afleiding werd de correcte BCS Hamiltoniaan voor
zo’n 2D systeem geconstrueerd door over de coördinaat geassocieerd met de
opsluitingsrichting te integreren. De matrix bandkloof vergelijkingen voor dit
multiband systeem werden uit de nieuwe opgestelde Hamiltoniaan bepaald.
Vervolgens werd opnieuw de Gor’kov afkapping voor het verwijderen van
onvolledige bijdragen aan de bandkloven, gelijkaardig aan de gehanteerde
methode in Hoofdstuk 2, toegepast. De expliciete uitdrukkingen voor de
coëfficiënten van het Ginzburg-Landau formalisme voor de monokristalli-
jne metallische nanofilms werden ook bepaald. Het verkregen formalisme
is efficiënt en geschikt voor computationele doeleinden, en zal dienen als
een krachtig theoretisch hulpmiddel voor verdere studies van de effecten van
de multisubband structuur op, bijvoorbeeld, vortex configuraties, kritische
fenomenen en supergeleidende fluctuaties in nanodunne monokristallijne ma-
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terialen.
In het tweede deel van de thesis werden multicomponent Bose-Einstein

condensaten bestudeerd. In Hoofdstuk 4 werden roterende en harmonisch
opgesloten Rabi-gekoppelde driecomponent Bose-Einsten condensaten bestu-
deerd. Van dit systeem werd bewezen dat het ongebruikelijke vortexroost-
ers vertoont in zijn roterende grondtoestand. Er werd aangetoond dat de
gevonden toestanden topologisch gekarakteriseerd kunnen worden als een
tweedimensionaal rooster van skyrmionen. Om de toestanden met verschil-
lende skyrmionroosters te classificeren werd de gemiddelde topologische index
berekend als het gemiddelde van de paarsgewijze CP 1 topologische indices
van elk paar van componenten. Verschillende skyrmionische vortexroosters
werden vervolgens gegroepeerd in twee fasediagrammen in de parameter-
ruimte van de intercomponent interactiesterkte σ en de Rabi koppelings-
frequentie ω12 van de twee componenten, voor vaste waarden van andere
parameters. In deze studie werden gelijke bijdragen van alle drie de compo-
nenten verondersteld en waren de Rabi koppelingen de enige parameters die
werden gevarieerd, wat haalbaar is in huidige experimenten. Naast het ver-
schijnen van een overvloed aan mogelijke vortexrooster topologieën, werd ook
aangetoond dat bij specifieke combinaties van de tekens en waarden van de
Rabi frequenties ωij frustratie van de relatieve fase ontstaat in het systeem,
wat als gevolg heeft dat sommige paarsgewijze Rabi energieën zwaar worden
onderdrukt. Dergelijke Rabi onderdrukking leidt tot een effectieve reductie
van het driecomponent BEC tot een dichtheid-dichtheid-gekoppeld tweecom-
ponent BEC. Deze opwindende kenmerken zijn niet alleen van fundamenteel
belang, maar hun observatie in een experiment kan worden gebruikt als een
bewijs van frustratie in het beschouwde systeem.

In Hoofdstuk 5 werden tweecomponent Bose-Einstein condensaten in
roterende harmonische vallen onderzocht in drie verschillende regimes. Het
eerste regime is vermengbaar en heeft attractieve intercomponentinteractie,
het tweede is het vermengbaar regime met repulsieve intercomponentinter-
actie, en het derde is het niet-vermengbare regime met repulsieve intercom-
ponentinteractie en bijgevolg met gescheiden fases. In alle drie de regimes
werden multikwantum vortices gevonden en er werd aangetoond dat hun sta-
biliteit een inherente eigenschap is van het harmonisch opgesloten tweecom-
ponent systeem bestaande uit atomen met verschillende massa’s. De gevon-
den toestanden werden geclassificeerd in spin-skyrmion en spin-vortex vari-
anten, welke beide kunnen worden gerealiseerd in een 87Rb − 41K BEC met
de huidige experimentele technieken en welke beide nieuwe fases zijn in het
onderzoeksveld.

In toekomstig onderzoek zou het van belang zijn om fundamentele vor-
texeigenschappen in nanofilms te bestuderen door de multiband Ginzburg-
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Landau theorie voor supergeleidende nanofilms te gebruiken, en om de re-
sultaten verder te vergelijken met de welgekende Pearl limiet voor vortices
in dunne films. Verder zouden de effecten van laterale opsluiting kunnen
worden bestudeerd, volgend op recente experimenten met nanodunne Pb-
eilanden [330, 331, 332]. Betreffende bulk materialen, vereist het chirale
regime waarvan werd aangetoond dat het ontstaat in drieband supergeleiders
een meer gedetailleerde studie, in het bijzonder betreffende de vorming van
chirale domeinen en domeinmuren, evenals de nieuwe topologische defecten
zoals skyrmionen. Zelfs het gedrag van kritische velden in het chirale regime
van een multiband supergeleider is nog niet berekend en begrepen. Logis-
cherwijze is de uitbreiding van de Ginzburg-Landau theorie naar de volgende
orde in τ ook voordelig voor studies dieper in de supergeleidende toestand.
Op het BEC vlak zou de studie van de Rabi-gekoppelde multicomponent
Bose-Einstein condensaten moeten worden uitgebreid naar een breder bereik
van meerdere parameters die een rol spelen in de evenwichtsfases. Naast de
stabiele configuraties van de mogelijke fases zou er ook speciale aandacht
moeten worden besteed aan de dynamica van het systeem, in het bijzonder
de niet-triviale overgangen tussen de fases en de vorticale transformaties die
zich daarin voordoen.
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