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Abstract

In this thesis the properties of excitons, which are bound states of an electron and a
hole, and higher order excitonic complexes such as trions and biexcitons are studied
in monolayer transition metal dichalcogenides (TMDs) and related materials such
as monolayer black phosphorus and TMD heterostructures.

For excitons a comparison is made between the finite element element solutions
of the multi- and single-band model, showing that the former lowers the binding
energy and leads to a reordering of and breaking of degeneracies between different
angular momentum intervalley excitons. For trions and biexcitons the stochastic
variational method is employed to numerically solve the single-band model. For all
three excitonic complexes it is found that the binding energies, which are calculated
for different combinations of TMDs and substrates and which are compared with
theoretical and experimental results from the literature, are extremely large.

Next, the presence of a perpendicular magnetic field is considered and shown to
increase the binding energy of excitons, trions, and biexcitons in monolayer TMDs.
The diamagnetic shifts of these excitonic complexes are found to increase with in-
creasing substrate dielectric constant and by calculating the exciton Landau levels
it is demonstrated how the magnetic field alters the degeneracies of the excited
states. Furthermore, it is shown that so-called dark excitons exhibit an exception-
ally strong valley Zeeman effect in the presence of a tilted magnetic field.

Monolayer materials with anisotropic band masses are considered next and it is
shown that in black phosphorus this anisotropy persists in the excitonic complexes
while in TiS3 it does not. It is found that applying uniaxial tensile strain increases
the exciton binding energy in black phosphorus.
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Interlayer excitons in TMD heterostructures are also studied and it is shown
that additional polarization effects in these systems can significantly decrease their
binding energy, which is calculated for all possible combinations of TMDs. The
experimental signature of these interlayer excitons is found to be tunable by means
of a perpendicular electric field.

Finally, the possibility of interlayer excitonic superfluidity, which is currently
intensively sought after in experiments, in a superlattice of TMD heterostructures
is investigated and very high critical temperatures of up to 270 K are obtained.

This thesis contributes new insights to the topic of strongly bound excitonic
complexes in two-dimensional materials, including the tunability of their properties
and their importance in exotic phenomena such as high-temperature superfluidity.



Abstract - Nederlands

In deze thesis worden de eigenschappen van excitonen, welke gebonden toestanden
zijn van een elektron en een holte, en hogere orde excitonische complexen zoals
trionen en biexcitonen bestudeerd in monolaag transitiemetaal dichalcogeniden
(TMDs) en gerelateerde materialen zoals monolaag zwarte fosfor en TMD het-
erostructuren.

Voor excitonen wordt een vergelijking gemaakt tussen de eindige elementen
oplossingen van het multi- en eenbandmodel, wat aantoont dat het multibandmodel
de bindingsenergie verlaagt en leidt tot een herschikking van en een breking van
ontaarding tussen intervallei excitonen met verschillende draaimomenta. Voor tri-
onen en biexcitonen wordt de stochastisch variationele methode gebruikt om het
eenbandmodel numeriek op te lossen. Voor alle drie de excitonische complexen
wordt gevonden dat de bindingsenergieën, welke berekend worden voor verschil-
lende combinaties van TMDs en substraten en welke vergeleken worden met theo-
retische en experimentele resultaten uit de literatuur, extreem groot zijn.

Vervolgens wordt de aanwezigheid van een loodrecht magneetveld beschouwd
en er wordt aangetoond dat dit de bindingsenergie van excitonen, trionen en biex-
citonen in monolaag TMDs verhoogt. Er wordt gevonden dat de diamagnetische
shift van deze excitonische complexen toeneemt met toenemende diëlektrische
constante van het substraat en aan de hand van de berekende exciton Landauni-
veaus wordt getoond hoe het magneetveld de ontaardingen van de geëxciteerde
toestanden verandert. Voorts wordt aangetoond dat zogenoemde donkere excito-
nen een uitzonderlijk sterk vallei Zeemaneffect vertonen in de aanwezigheid van
een schuin magneetveld.
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Monolaag materialen met anisotrope bandmassa’s worden vervolgens onder-
zocht en er wordt gevonden dat in zwarte fosfor deze anisotropie zich doorzet in
de excitonische complexen terwijl dit in TiS3 niet het geval is. Het blijkt dat het
uniaxiaal uitrekken van zwarte fosfor leidt tot een verhoging van de exciton bind-
ingsenergie.

Verder worden interlaag excitonen in TMD heterostructuren bestudeerd en er
wordt aangetoond dat additionele polarizatie-effecten in deze systemen hun bind-
ingsenergie, welke wordt berekend voor alle mogelijke combinaties van TMDs,
aanzienlijk kunnen verlagen. De experimentele aanwijzing voor deze interlaag ex-
citonen blijkt controleerbaar te zijn met een loodrecht elektrisch veld.

Ten slotte wordt de mogelijkheid tot interlaag excitonische superfluïditeit, waar
momenteel intensief naar wordt gezocht in experimenten, in een superrooster van
TMD heterostructuren onderzocht en zeer hoge kritische temperaturen tot 270 K
worden gevonden.

Deze thesis draagt nieuwe inzichten bij aan het domein van sterk gebonden
tweedimensionale excitonische complexen in monolaag materialen, waaronder hoe
hun eigenschappen kunnen worden gecontroleerd en hun belang in exotische feno-
menen zoals hoge-temperatuur superfluïditeit.
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CHAPTER 1

Introduction

1.1 A short history of excitons
The concept exciton was first proposed by Yakov Frenkel in 1931 [1], although
he referred to it as excitation wave, in an attempt to explain the discrete lines in
the emission spectra of iodine and related materials. His idea was based on a sim-
ple one-dimensional (1D) monatomic lattice in which all atoms are in the ground
state, except for one atom in which an electron is optically excited to a higher en-
ergy level. This is schematically illustrated in Fig. 1.1. Furthermore, he neglected
electron-electron interactions and assumed the electron positions to be fixed at their
respective atomic nuclei. His main realization was that, even though the electrons
are fixed, the electron excitation is not confined to a particular atom, but rather
can hop between different atoms. Through either radiative or vibrational processes
the highest-energy electron of atom i loses an amount of energy while the highest-
energy electron of atom i+1 gains that same amount. In other words: the excitation
is a quasiparticle which transfers energy but does not transfer charge. This quasi-
particle is called an exciton. Because he assumed the electrons to be fixed, the
exciton is always located around a single atomic nucleus and, as a consequence,
a very tightly bound exciton whose size is of the order of the unit cell of the sur-
rounding crystal is still referred to today as a Frenkel exciton and is mostly found
in alkali halides such as kitchen salt.

Even though Frenkel’s work was groundbreaking, his theory failed to explain
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Figure 1.1: Schematic illustration of the Frenkel exciton in a 1D monatomic lattice.
Electrons are indicated by the red dots, whereas the exciton is denoted by the blue
ellipse. Exciton transport through energy exchange of electrons is shown by the
colored arrows.

the discrete lines found in the emission spectra of semiconductors. This is because
he neglected electron-electron interactions, which play an important role in under-
standing excited electron states in semiconductors as these can propagate quasi-
freely through the lattice. Looking back now at the simple picture in Fig. 1.1,
imagine that the excited electron can travel freely between the atomic sites. At
each atomic site there are N electrons (in this case 3) repelling the excited elec-
tron, except at atomic site i where it is repelled by N − 1 electrons, i.e. it is less
repelled by site i. This will cause the electron to be pushed towards site i, meaning
that there is an effective attraction. The same result can be obtained by neglecting
the bound electrons and introducing a positively charged quasiparticle: the hole,
which was first introduced by Dirac in 1930, i.e. simultaneously with Frenkel’s
first description of the exciton. The attractive interaction between the electron and
the hole causes the exciton to have a hydrogen atom-like internal structure, i.e. the
presence of discrete energy levels, which leads to the observed lines in the emis-
sion spectra. For the three-dimensional (3D) hydrogen atom these energy levels are
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Ge Si CdS ZnO GaAs
Eb 5 [4] 10 [5] 28 [6] 59 [7] 3.4 [8]

Table 1.1: Experimentally obtained exciton binding energy (meV) for different 3D
semiconductors.

given by

En = −1

2

(
e2

4πε0

)2
µ

~2

1

n2
, (1.1)

with n a strictly positive integer and with µ = m0mP/(m0 + mP ) ≈ m0 the re-
duced mass withm0 (mP ) the electron (proton) mass. For excitons the substitutions
m0 → me, mP → mh, and ε0 → εrε0 have to be made in the above expressions
with me (mh) and εr the electron (hole) effective band mass and the relative dielec-
tric constant of the material, respectively. The internal exciton structure was first
mathematically described by Gregory Wannier [2] and, as a consequence, excitons
which are spread out over multiple unit cells of the surrounding crystal are referred
to as Wannier excitons and are mostly found in semiconductors. The excitons dis-
cussed in this thesis are all Wannier type excitons.

Over the years excitons have been studied, both theoretically [3] and experi-
mentally, in numerous 3D semiconductors and insulators such as germanium [4],
silicon [5], cadmium sulfide [6], zinc oxide [7], gallium arsenide [8, 9], titanium
dioxide [10, 11], and lithium fluoride [9]. A number of experimentally obtained
exciton binding energies for different 3D semiconductors are listed in Table 1.1,
which shows that these values do not exceed 60 meV.

In the late 1960s molecular-beam epitaxy was developed, in which atoms from
different elements are sublimed in ultra-high vacuum and subsequently condensed
on a substrate with a controlled deposition rate, allowing for the creation of het-
erostructures of different semiconductors. When the stacking of certain semicon-
ductors leads to a type-I band alignment, a quantum well is formed which can be
made as thin as a few nanometers. This is shown in Fig. 1.2 for the most famous
example, i.e. that of a GaAs/AlxGa1−xAs heterostructure. The x in AlxGa1−xAs
indicates the fraction of AlAs (as opposed to GaAs) in the alloy, which from now on
will be abbreviated to AlGaAs. Charge carriers in these quantum wells are quasi-
two-dimensional (quasi-2D) and therefore these systems immediately gained a lot
of attention because of their novel physics and promising potential for applications
such as transistors. Another consequence of the quasi-2D nature of the charge car-
riers is the relative increase in strength of the Coulomb interactions between them,
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Figure 1.2: (a) Schematic illustration of a GaAs/AlGaAs heterostructure. GaAs
acts as a quantum well of width W . (b) Energy diagram showing the lowest con-
duction band (CB) and highest valence band (VB) as a function of the perpendicu-
lar coordinate z. Two electron levels and one hole level which are localized in the
quantum well are indicated.

which can for example be seen by considering the energy levels of the 2D hydrogen
atom which are given by

En = −1

2

(
e2

4πε0

)2
µ

~2

1(
n− 1

2

)2 , (1.2)

with n again a strictly positive integer [12]. This result shows that the ionization
energy of a 2D ground state hydrogen atom is four times higher than that of a 3D
ground state hydrogen atom. It is important to note that here “2D” only refers to the
motion of the electron around the nucleus which is confined to a plane. The interac-
tion potential between the two particles and its associated electromagnetic field is
still 3D and therefore the increased ionization energy is the result of the vanishing
kinetic energy in the direction perpendicular to the 2D plane. In theory the exciton
binding energy should follow the same pattern, i.e. the 2D exciton energy levels
are found by making the substitutions mentioned below Eq. (1.1) in the above
expression. Indeed, experiments showed a continuous increase in exciton binding
energy with decreasing quantum well width [13, 14], with reported exciton bind-
ing energies of up to 17 meV in a GaAs/AlGaAs heterostructure with a quantum
well width of 5 nm [14]. Note that this value is larger than four times the exciton
binding energy in 3D GaAs listed in Table 1.1, which can be attributed to three
different effects [15]: the non-parabolicity of the conduction band which leads to
an increasing effective mass with decreasing well width, the dielectric mismatch,
i.e. the dielectric constant of the barrier material AlGaAs is smaller than that of the
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well material GaAs, and the coupling of the exciton states with the filled valence
band states. However, the exciton binding energy in a quantum well never reaches
its theoretical maximum value for a vanishing well width because of the finite quan-
tum well depth, e.g. 0.22 (0.16) eV for electrons (holes) in GaAs/AlGaAs. This
causes the electrons and holes in GaAs to spill over into the neighboring AlGaAs
and, as this effect increases with decreasing well width, the excitons tend to adopt
a 3D behavior and their binding energy starts to decrease in the limit of very thin
quantum wells. It was shown that, at some intermediate quantum well width, the
exciton binding energy can reach almost three quarters of its theoretical maximum
value [16].

There are two other factors limiting the exciton binding energy in these het-
erostructure quantum wells, apart from the spillover effect. The first one is that
of the single-particle effective masses, which for GaAs are 0.0667m0 (0.34m0) for
electrons (holes), yielding a reduced exciton mass of µ = 0.0558m0. A smaller
reduced mass leads to a larger kinetic energy which in turn leads to a smaller bind-
ing energy. The second one is that of the dielectric constants, which are given by
εr = 12.53 and εr = 10.06 for GaAs and AlGaAs, respectively. These weaken the
interaction potential and as such lower the binding energy. Therefore, in order to
have very strong excitonic effects one would ideally need to have a perfectly 2D
system for which the electron and hole effective masses are larger, preferably of
the order of the free electron mass, and for which there is less dielectric screening.

1.2 Entering the flatlands

For a very long time, perfectly 2D crystals were thought to be thermally unstable.
Peierls [17] and Landau [18] had shown that thermal fluctuations in 2D crystals
would lead to atomic displacements of the order of the lattice constant and that
therefore, due to the Lindemann criterion, the lattice would melt. Later, Mermin
and Wagner [19] and Hohenberg [20] provided a more rigorous proof for this theory
by showing that a spontaneous breaking of a continuous symmetry is not possible
in 2D (or lower dimensions) at non-zero temperature. This general theorem, which
precludes the existence of long-range order in 2D systems, also applies to crys-
tals [21]. It was indeed confirmed experimentally that the melting temperature of
thin films strongly decreases with decreasing number of layers and that these films
become unstable when they are about 12 layers thick [22].

In 2004, however, Geim and his co-workers took the condensed matter world
by surprise by reporting the experimental realization and characterization of atom-
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ically thin films, i.e. films of single-layer thickness, of carbon atoms, also known
as graphene [23–25]. To this end they used micromechanical cleavage, also known
as the scotch tape method, in which layers are repeatedly peeled off graphite. This
earned them the Nobel Prize in Physics in 2010. It should be noted that there
were earlier experimental observations of graphene, however they all failed to ex-
perimentally establish its electronic properties [26]. Over the years, graphene has
also been successfully synthesized using numerous other methods such as chemi-
cal cleavage, thermal decomposition of SiC, chemical vapor deposition, molecular
beam epitaxy, cutting open carbon nanotubes, . . . The stability of a graphene sheet,
which seems to violate the Mermin-Wagner theorem, is attributed to the fact that
it is actually not a perfect 2D crystal because it forms a rippled structure. This
increases the elastic energy but on the other hand reduces thermal fluctuations and
as such reduces the total free energy [27]. These ripples were indeed detected
and their height h was shown to scale with the width L of the graphene flake as
h ∝ L0.6 [28].

In the years following its discovery, both theoretical and experimental research
on graphene-related topics has exploded. This is mostly due to the extraordinary
properties which this new material was soon found to exhibit, making it a very
interesting material both from a theoretical as well as an application point of view.
These properties include: an exceptionally high electron mobility [29], a very large
thermal conductivity [30, 31], the ability to sustain extremely high electric current
densities [32], and a very large intrinsic strength [33].

One of the most remarkable properties of graphene is its conical energy disper-
sion relation, which provides an experimentally accessible platform for studying
quantum electrodynamics and gives rise to novel condensed matter physics. How-
ever, the lack of a band gap means that at any non-zero temperature, even when
there is no external charge carrier doping, there will always be a minimal conduc-
tivity due to spontaneous electron-hole fluctuations. This effect is referred to as the
formation of electron-hole puddles [25] and it is a big disadvantage with respect
to potential applications in logical devices such as transistors, which require the
device to be efficiently turned on and off. This inspired the quest for other 2D ma-
terials which have similar properties as graphene but which have a significant band
gap in their energy spectrum. Using some of the synthesis methods listed above,
this led to the discovery of numerous 2D materials such as single layers (monolay-
ers) of transition metal dichalcogenides (TMDs, the most famous example being
MoS2 [34]), hexagonal boron nitride (hBN) [35], silicene (which has, as opposed
to the other materials listed here, a small band gap of only a few meV) [36], black
phosphorus (also known as phosphorene) [37, 38], . . . All these materials exhibit
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Figure 1.3: Constructing van der Waals heterostructures by using different 2D ma-
terials as building (Lego) blocks. Figure taken from Ref. [39].

interesting properties and show great potential for use in applications, however in
this thesis the main focus will lie on monolayer TMDs. Furthermore, it is also
possible to stack multiple layers of these different materials on top of each other in
order to create so-called van der Waals heterostructures [39], as shown in Fig. 1.3.

1.3 Potential applications of monolayer TMDs
Monolayer TMDs share some of the remarkable properties of graphene. For exam-
ple, monolayer MoS2 was shown to be 30 times as strong as steel and to allow de-
formation up to 11% before breaking [40] (which compares to 20% for graphene).
Similar mechanical properties were predicted for other monolayer TMDs [41],
making them some of the strongest semiconducting materials and promising for
applications in flexible electronics used in for example displays and wearable elec-
tronics. These examples also require conducting and insulating components, for
which graphene and hBN can be used, respectively, and integrated with monolayer
TMDs to form hybrid 2D electronics.
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Carrier mobilities in monolayer TMDs are much lower than in graphene. At
first sight this would make them less interesting as candidate materials for use in
transistors, for which 2D materials in general are desirable because of the reduced
power dissipation. However, the large band gap of monolayer TMDs results in
high on/off current ratios, which allows for effective switching, largely because of
the very low off-state conductance which leads to a very low power consumption
during operation. In 2011 the first implementation of a transistor based on mono-
layer MoS2 was reported which showed a room temperature mobility similar to
that of graphene nanoribbons and thin silicon films and an on/off current ratio of
108 with ultralow standby power dissipation [42]. This led to increased interest in
monolayer TMD-based transistors as alternatives for low power applications [43].

The relatively high mobility of charge carriers in monolayer TMDs combined
with the fact that the band gap is direct means that they are promising for use in
photodetectors. The first monolayer MoS2 photodetector showed a photorespon-
sivity comparable to that of graphene-based devices and lower than that of silicon-
based devices [44]. However, two years later a monolayer MoS2-based photode-
tector exhibiting a 105-fold higher photoresponsivity than that of the first MoS2

photodetector was fabricated [45]. This drastic improvement was explained to be
the consequence of higher mobility, better contact quality, and a better position-
ing technique. These monolayer MoS2 photodetectors operate in the visible light
spectrum but are most effective for detecting green and yellow light. However, as
will be seen in the next chapter, TMDs also exhibit an indirect band gap which
decreases with increasing number of layers and thus allows the operating range of
the photodetector to be tuned through the layer number. As such, a trilayer MoS2

device has been shown to be ideal for detecting red light [46], which corresponds
to a phonon-assisted transition across the indirect band gap. Therefore, a wide
spectrum of light can be efficiently detected by combining photodetectors based on
different TMDs and with different number of layers.

1.3.1 Exciton-based applications

There are also a number of potential applications of monolayer TMDs in which
excitons play a crucial role. The first example is the use of monolayer TMDs in
light-emitting diodes (LEDs), which would allow flexible, ultra-thin LEDs which
are more energy-efficient and more easily tunable than LEDs based on 3D semi-
conductors to be made. Electrons and holes are injected in different parts of the
monolayer TMD by means of back gates to form an in-plane p-n junction and
are driven towards each other under the influence of a source-drain voltage, as is
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Figure 1.4: Schematic illustration of a monolayer WSe2 p-n junction device with
palladium (Pd) back gates (Vg1 and Vg2) and a source-drain voltage (Vsd) applied to
the source contact leading to a current (A) which is read out at the drain contact.
The back gates are separated from the WSe2 by hBN and the entire device sits on
a layer of SiO2 on a Si substrate. Figure taken from Ref. [47].

shown in Fig. 1.4. They then form excitons and subsequently recombine radia-
tively and as such generate light with a narrow spectrum. The frequency of the
light is determined by the energy difference between the exciton energy and the
electron-hole vacuum and therefore knowledge of exciton formation in monolayer
TMDs and how to tune the exciton (binding) energy is crucial in order to fabricate
optimal LEDs. These kind of devices were first realized in 2014 using monolayer
WSe2 [47–49].

Monolayer TMDs exhibit saturable absorption, i.e. the effect in which the light
absorption of a material decreases with increasing light intensity above a certain
saturation intensity. This effect occurs because the low-energy part of the valence
band becomes depleted before the excited electrons can decay back to the valence
band. Therefore, a crucial element determining the saturable absorption properties
of a material is the rate at which electrons and holes recombine. In monolayer
TMDs this rate is determined by the exciton lifetime, meaning that knowledge of
exciton dynamics is vital for ideal use of monolayer TMDs in ultra-fast photonics.
It was shown that the saturable absorption response of MoS2 is faster than that of
graphene [50]. Placing a material which exhibits saturable absorption in a laser
cavity will cause it to repeatedly filter out low-intensity light and as such a pulsed
laser beam can be created. Indeed it was shown that with the use of MoS2 laser
pulses in the near-infrared with pulse durations of 800 ps can be generated [51].

It is also possible to use monolayer TMDs as the gain medium in lasers. This is
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mostly motivated by the fact that the excitons in these materials allow for a long-
lived population inversion which is required to achieve stimulated emission and
as such generate the laser gain. Furthermore, monolayer TMDs have a relatively
large refractive index (6-7 in the visible wavelength range [52]) which leads to an
increased optical confinement in the laser gain medium. Monolayer TMD-based
lasers were first reported in 2015 using WSe2 [53] and WS2 [54].

1.4 Goal and organization of the thesis

The goal of this thesis is to study the properties of excitonic complexes, i.e. ex-
citons and higher order complexes, in monolayer TMDs and in related materials
such as monolayer black phosphorus and TMD heterostructures. The influence of
a magnetic field on these excitonic complexes is investigated and the possibility of
excitonic superfluidity in TMD heterostructures is examined.

The thesis is organized as follows.

In chapter 2 the physics of electrons and holes in monolayer TMDs is reviewed.
An effective Hamiltonian is constructed which describes the low-energy electronic
band structure of monolayer TMDs and it is shown how this Hamiltonian naturally
gives rise to some of the interesting properties of these materials, such as circular
dichroism, non-zero Berry curvature, and peculiar magnetic field effects. The in-
teraction potential between charge carriers is derived and used to study different
many-body phases in monolayer TMDs.

In chapter 3 excitons in monolayer TMDs are investigated. The two-body Dirac
framework, which will be used throughout the thesis, is introduced and used to cal-
culate several fundamental properties of different types of excitons. The chapter
ends with a short discussion of the possible experimental verification of some of
these properties.

In chapter 4 higher order excitonic complexes, i.e. consisting of 3 (trions) or 4
(biexcitons) particles, are studied. The stochastic variational method is introduced
which allows to obtain accurate solutions for these mathematically complex sys-
tems. The possible experimental detection of these excitonic complexes is briefly
explained at the end of the chapter.
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In chapter 5 the presence of a uniform magnetic field is considered. The effect
of a perpendicular magnetic field on the exciton energy levels is calculated and it
is shown how a tilted magnetic field leads to an unusually strong valley Zeeman
effect of so-called dark excitons. The influence of a perpendicular magnetic field
on trions and biexcitons is also investigated.

In chapter 6 the focus is shifted to other 2D materials, i.e. monolayer black
phosphorus and monolayer TiS3. These materials exhibit anisotropic electronic
band structures and the effect of this anisotropy on the fundamental properties of
excitons, trions, and biexcitons is studied.

In chapter 7 the attention is turned towards TMD van der Waals heterostructures
in which one TMD is doped with electrons and the other with holes. This kind of
system naturally gives rise to the formation of interlayer excitons. An appropriate
interaction potential is derived and the effect of the dielectric environment above,
below, and in between the two TMDs on the interlayer excitons is investigated.

In chapter 8 starts with a short history of (excitonic) superfluidity and a discus-
sion of the fundamental difficulty with superfluidity in 2D. Next, the possibility of
the formation of a high-temperature interlayer exciton condensate, i.e. the appear-
ance of high-temperature excitonic superfluidity, in a superlattice of TMD van der
Waals heterostructures is examined.
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CHAPTER 2

Electrons and holes in monolayer TMDs

In this chapter the single-particle properties of electrons and holes in monolayer
TMDs are first reviewed. An effective 2D Dirac Hamiltonian is constructed which
describes the low-energy electronic band structure. The eigenstates are calculated
and used to demonstrate a few specific properties of monolayer TMDs, i.e. circular
dichroism and non-zero Berry curvature. Next, the presence of a uniform perpen-
dicular magnetic field is considered and it is shown how this affects the energy
spectrum and the eigenstates of the system. Finally, the interaction potential be-
tween charge carriers is derived and used to study different many-body phases in
the absence and presence of a perpendicular magnetic field.

2.1 From bulk to monolayer

2.1.1 Crystal structure and symmetry
Transition metal dichalcogenides are semiconductors of the type MX2 with M a
transition metal atom (Mo, W, . . . ) and X a chalcogen atom (S, Se, . . . ). In this
thesis four different monolayer TMDs will be studied: MoS2, MoSe2, WS2, and
WSe2. These materials are, out of all the members of the TMD family, by far
the most commonly found in the literature. It should be noted that, even though
sometimes results will be shown for a specific material, the properties of these four
TMDs are generally very similar and therefore the same qualitative results could be
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Figure 2.1: (a) Photograph of a bulk MoS2 crystal which is approximately 1 cm
wide. Figure taken from Ref. [57]. (b) Lattice structure of bulk MoS2. Figure
taken from Ref. [42]. (c) Top view of the lattice structure of monolayer MoS2. The
color of the atoms corresponds to the colors in (b).

obtained for a different choice of material. On the few occasions where there is an
important difference between the TMDs an extensive discussion will be presented.

A photograph of a MoS2 crystal is shown in Fig. 2.1(a). The lattice consists of
a stack of elementary layers which are bound by weak van der Waals forces, as is
shown in Fig. 2.1(b). Each layer is actually composed of three atomic sublayers,
i.e. a sublayer of transition metal atoms in between two sublayers of chalcogen
atoms. Both the interlayer distance, defined as the distance between the transition
metal atom sublayers of adjacent layers, and the thickness of a layer, defined as the
distance between the chalcogen sublayers of the same layer, are approximately 6.5
Å [55]. In their bulk form TMDs show so-called AB stacking, with the transition
metal atoms of the odd layers and the chalcogen atoms of the even layers (and vice
versa) sharing the same in-plane coordinates, and their symmetry space group is
D4

6h, i.e. they show hexagonal symmetry and are inversion symmetric [56]. The
monolayer TMD lattice is hexagonal in which the transition metal and chalcogen
atoms each form a trigonal sublattice, as is shown in Fig. 2.1(c). As a result,
the symmetry space group of monolayer TMDs is D1

3h, i.e. they show trigonal
symmetry and are not inversion symmetric. They do, however, show reflection
symmetry with respect to the x-y mirror plane, i.e. the plane in which the transition
metal atoms are located. The unit cell contains one transition metal atom and two
chalcogen atoms (one in each sublayer).

2.1.2 Electronic structure

The electronic band structure of bulk MoS2, as calculated from density functional
theory, is shown in the left panel of Fig. 2.2(a) and exhibits an indirect band gap
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Figure 2.2: (a) Band structure calculated from density functional theory for bulk
and monolayer MoS2. The dashed line indicates the Fermi level and the arrows in-
dicate the smallest band gap. The highest valence band (lowest conduction band) is
shown in blue (green). Figure taken from Ref. [57]. (b) Experimentally determined
band gap of few-layer MoS2 as a function of the number of layers. The symbol for
monolayer MoS2 indicates a direct gap, the symbol for the other layer numbers in-
dicates an indirect gap. The dashed line represents the (indirect) band gap of bulk
MoS2. Figure taken from Ref. [34]. (c) Orbital projected band structures for mono-
layer MoS2 calculated from density functional theory. The size of the symbols is
proportional to the contribution from the corresponding orbital. Figure taken from
Ref. [60]. (d) First Brillouin zone of monolayer TMDs. The reciprocal lattice vec-
tors b1 and b2 and the high symmetry points are indicated on the figure. The K
(K ′) points are indicated in blue (red) and the path along which the band structures
in (a) and (c) are calculated is shown in green.
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around the Γ point. There is also a direct gap in the energy spectrum at the K
point but it is considerably larger than the indirect one. It is also relevant to look at
the orbital composition of the different states in the energy spectrum. The electron
configuration of molybdenum is given by [Kr]4d55s1 and that of sulfur is given by
[Ne]3s23p4. As a result, the relevant electronic states will be composed of the five
molybdenum d orbitals ({d−2, d−1, d0, d1, d2} or equivalently the physically more
relevant set of {dz2 , dx2−y2 , dxy, dxz, dyz}), the three sulfur p orbitals ({p−1, p0, p1}
or {px, py, pz}) as well as s orbitals stemming from both types of atoms. Density
functional theory calculations show that there is an important difference between
the conduction band states at the K point and those around the Γ point [58]. The
former consist mostly of molybdenum d orbitals, which are located in the middle
sublayer of each layer and are therefore relatively unaffected by interlayer cou-
pling. The latter correspond to linear combinations of molybdenum d orbitals and
antibonding sulfur pz orbitals. As a result these states show a strong dependence
on the interlayer coupling. When the number of layers in the system is reduced
the direct band gap at the K point is almost unchanged while the indirect band gap
around the Γ point is significantly increased. This was also confirmed experimen-
tally as is shown in Fig. 2.2(b). In the monolayer limit the indirect band gap is
larger than the direct gap and this transition occurs in all major TMDs (the elec-
tron configuration of tungsten (selenium) is [Xe]4f 145d46s2 ([Ar]3d104s24p4) and
therefore the above discussion holds for all four combinations of transition metal
atoms and chalcogen atoms). The electronic band structure of monolayer MoS2 is
shown in the right panel of Fig. 2.2(a).

A useful first step towards an analytical model is the construction of a tight-
binding model. Due to the periodicity of the lattice, the electron wave function
needs to satisfy Bloch’s theorem

TaiΨ = eik.aiΨ, (i = 1, 2), (2.1)

with Tai the translation operator along the lattice vector ai and with k the wave
vector. As a consequence, the electron wave function can be written as a Bloch
function Ψ(r) = eik.ru(r) with u(r) a function which has the periodicity of the lat-
tice. Therefore, in the tight-binding model the basis functions are based on atomic
orbital functions and are written as

Φj(k, r) =
1√
N

N∑
u=1

eik.R
u
j φj(r −Ru

j ), (j = 1, . . . , n), (2.2)

with Ru
j the position vector of the atomic orbital φj in unit cell u, with N the
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number of unit cells in the lattice, and with n the number of atomic orbitals (and
therefore the number of Bloch basis functions) which are taken into account.

In principle a total number of 14 atomic orbitals should be taken into account
for monolayer TMDs: 5 transition metal d orbitals, 6 chalcogen p orbitals (3 for
each chalcogen atom in the unit cell), 1 transition metal s orbital, and 2 chalcogen s
orbitals. This would lead to a 14×14 Hamiltonian. However, the s orbitals account
for less than 7% of the total orbital weight of the relevant energy bands [59], which
can also be seen in the right panel of Fig. 2.2(c), and are therefore often left out of
the model. Furthermore, when taking symmetric and antisymmetric combinations
of the p orbitals of the two chalcogen atoms, the 11 remaining orbitals can be di-
vided into two separate groups based on their (anti)symmetry with respect to the
x-y mirror plane discussed in the previous subsection: the even group {dz2 , dx2−y2 ,
dxy, px,s, py,s, pz,a} and the odd group {dxz, dyz, px,a, py,a, pz,s}, where the subscript
s (a) for the p orbitals indicates the symmetric (antisymmetric) combinations. The
Hamiltonian thus consists of a 6×6 block and a 5×5 block which are completely
decoupled [59]. Note that a perpendicular electric field would break the mirror
symmetry of the system and as such lead to a coupling between these two blocks
in the Hamiltonian. Density functional theory calculations, such as those shown in
the left panel of Fig. 2.2(c), indicate that the lowest conduction band and highest
valence band correspond to the even group of orbitals, meaning that these bands
can be described using a 6×6 Hamiltonian in which the tight-binding hopping pa-
rameters are fitted to the energy bands calculated from density functional theory.
Furthermore, in Ref. [60] it was shown that when including up to third-nearest-
neighbor hoppings the three p orbitals in the even group, whose contribution to the
lowest conduction band and highest valence band is small as can be seen from the
middle panel of Fig. 2.2(c), can be discarded and that therefore these two bands
can be well described throughout the entire Brillouin zone (shown in Fig. 2.2(d))
using a 3×3 Hamiltonian. The details of this Hamiltonian are given in appendix A.

2.1.3 Spin-orbit coupling

Another step which needs to be taken en route towards an effective analytical model
is the inclusion of spin-orbit coupling. The dominant intra-atomic contribution to
these interactions is given by

Hso =
e

2m2
0c

2

1

r

dV (r)

dr
L.S

= ξ(r) (LzSz + L+S− + L−S+) ,

(2.3)
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with V (r) the atomic potential felt by the electron, L± = Lx ± iLy and S± =
(Sx ± iSy)/2 with Lj (Sj) (j = x, y, z) the different components of the orbital
(spin) angular momentum, and where the scalar prefactor is written as ξ(r). The
above expression can be derived from relativistic quantum mechanics. A surpris-
ingly similar result can be found classically by considering the motion of the mag-
netic moment associated with the electron spin in the potential generated by the
nucleus. The classical result differs by a factor 2 from the quantum result, al-
though this can be corrected for. Both approaches are detailed in appendix B.
In the basis {|dz2 , ↑〉 , |dx2−y2 , ↑〉 , |dxy, ↑〉 , |dz2 , ↓〉 , |dx2−y2 , ↓〉 , |dxy, ↓〉} the above
Hamiltonian is block diagonal, i.e. diagonal in spin space, and these blocks are
given by

Hso = λs

0 0 0
0 0 −i
0 i 0

 , (2.4)

with s = ±1 the spin index, where the relations |dz2〉 = |d0〉, |dx2−y2〉 = (|d2〉 +

|d−2〉)/
√

2, and |dxy〉 = (|d2〉 − |d−2〉)/(
√

2i) were used, and with

λ = ~2

∫
drξ(r)|d2(r)|2, (2.5)

with d2(r) = 〈r|d2〉. Note that d2(r) = (d−2(r))∗ and that ξ(r)1, with 1 the
identity operator, preserves the orthogonality between atomic orbital states with
the same n and l quantum number but different m quantum number because of
its radial symmetry. Equation (2.4) implies that there is spin splitting in the va-
lence band but not in the conduction band. However, taking into account the small
contribution from p states leads to a small conduction band spin splitting as well
through the second and third term of Eq. (2.3). These terms only couple states
whose m quantum numbers differ by ±1 and therefore give no contribution to Eq.
(2.4) but will couple some of the d states with some of the p states. These addi-
tional coupling terms are non-diagonal in spin space but, as they are very small
due to the small contribution from the p states and the spatial separation between
the p and d states, they can be treated in perturbation theory. In general, it can
be concluded that spin-orbit coupling is strong in the valence bands of monolayer
TMDs because the corresponding Bloch states consist of atomic orbital states with
non-zero angular momentum, i.e. d±2 states, located on the same atomic sites.
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2.2 Life in the valleys

2.2.1 Effective Hamiltonian
In this thesis only low-energy phenomena are of interest and therefore it is useful to
construct an effective analytical model to describe the states close to the K and K ′

points at the corners of the hexagonal first Brillouin zone, which are therefore said
to be located in the so-called low-energy valleys. There are only two inequivalent
low-energy valleys since each of them can be connected to two other valleys in the
first Brillouin zone by means of reciprocal lattice vectors, as can be seen in Fig.
2.2(d). As shown in appendix A, a three-band tight-binding model involving only
nearest neighbor d-d hoppings in the basis of Bloch functions based on the atomic
orbital states {|dz2〉 , |dx2−y2〉 , |dxy〉} leads to a band structure which is in very good
agreement with density functional theory calculations for the highest valence band,
lowest conduction band, and a higher conduction band around the K and K ′ point
but diverges from the density functional theory calculations when moving away
from these points. This higher conduction band can be decoupled from the other
two bands by means of the Löwdin partitioning method [61, 62]. Expanding this
Hamiltonian around the K and K ′ point up to second order in the wave vector then
leads to an effective Hamiltonian for the highest valence and lowest conduction
band in the basis of Bloch functions based on the orbitals {|φc〉 = |dz2〉 , |φτv〉 =
(|dx2−y2〉+ iτ |dxy〉)/

√
2} [60, 61]:

Hτ (k) =
∆

2
σz + atk.στ + a2k2(γ1I2 + γ2σz) + a2γ3(k.σ∗τ )σx(k.σ

∗
τ ), (2.6)

where στ is the Pauli matrix vector (τσx, σy), I2 the 2×2 identity matrix, a the lat-
tice constant, and where t, γ1, γ2, and γ3 are different tight-binding parameters. The
valley index τ = 1 (τ = −1) describes the K (K ′) valley and the wave vector k is
defined with respect to theK (K ′) point. The second term in the above Hamiltonian
is the massless Dirac Hamiltonian which also describes the low-energy spectrum
of graphene. The first term is the mass term leading to the band gap ∆. The third
and fourth term lead to electron-hole asymmetry and the last term introduces the
trigonal symmetry of the lattice into the low-energy spectrum, which is known as
trigonal warping. Note that the atomic orbital states used in the Bloch basis can
also be written as |φc〉 = |d0〉 and |φv〉 = |d2〉 (|d−2〉) in the K (K ′) valley.

Transforming the spin-orbit Hamiltonian (2.4) to the basis of the above Hamil-
tonian gives

Hso =

(
0 0
0 λsτ

)
(2.7)



20 Electrons and holes in monolayer TMDs

a (nm) t (eV) ∆ (eV) 2λc (eV) 2λv (eV)
MoS2 0.32 1.10 1.66 −0.003 0.15
MoSe2 0.33 0.94 1.47 −0.021 0.18
WS2 0.32 1.37 1.79 0.027 0.43
WSe2 0.33 1.19 1.60 0.038 0.46

Table 2.1: Lattice constant (a) [56], hopping parameter (t) [56], band gap (∆) [56],
and spin splitting of the conduction (2λc) [63] and valence (2λv) [64] band for
different monolayer TMDs.

and needs to be added to Eq. (2.6). This leads to a splitting of 2λ between the
valence bands of opposite spin. As mentioned in the previous section, the spin-
orbit coupling in the conduction band is zero in this basis. However, it can simply
be added ad hoc to account for the existence of this effect to give the total spin-orbit
Hamiltonian

Hso =

(
λcsτ 0

0 λvsτ

)
. (2.8)

This leads to a splitting of 2λc (2λv) between the conduction (valence) bands of
opposite spin.

The material constants for the four TMDs studied in this thesis are listed in
Table 2.1. The low-energy spectrum of MoS2 is shown in Fig. 2.3. This shows
that the effect from the hopping parameters γ1, γ2, and γ3 is small close to the
band extrema, i.e. the relative difference between the energy bands obtained from
the Hamiltonian (2.6) with and without these parameters does not exceed 18% for
energies up to 180 meV above (below) the conduction band maximum (valence
band minimum). These extra hopping parameters are not readily available in the
literature for other TMDs. However, because of the very similar lattice constants
and orbital compositions of the energy bands, similar values are expected for the
other TMDs considered in this thesis, in analogy to the t hopping parameters listed
in Table 2.1. The terms associated with these hopping parameters will therefore be
neglected in the remainder of the thesis. The effective low-energy Hamiltonian is
thus given by

Hs,τ (k) =

 ∆

2
+ λcsτ at(τkx − iky)

at(τkx + iky) −∆

2
+ λvsτ

 , (2.9)
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Figure 2.3: Low-energy spectrum of MoS2 in the K (a) and K ′ (b) valley as ob-
tained from the Hamiltonian (2.6) (plus the spin-orbit term) (dashed) and (2.9)
(solid). Blue and red bands are spin up and spin down bands, respectively. The
extra hopping parameters are taken to be γ1 = 0.066 eV, γ2 = −0.011 eV, and
γ3 = −0.123 eV [60].

for which the energy spectrum is isotropic and can be written as

Es,τ,α(k) =
λc + λv

2
sτ + α

√
a2t2k2 +

∆2
s,τ

4
, (2.10)

with ∆s,τ = ∆+(λc−λv)sτ the effective band gap and with α = 1 (−1) describing
the conduction (valence) band. The corresponding eigenstates are given by the two-
component spinor

|ψk,s,τ,α〉 =

√
(∆s,τ + 2αεk,s,τ )

2

(∆s,τ + 2αεk,s,τ )
2 + 4a2t2k2

 1
2atkτeiτϕk

∆s,τ + 2αεk,s,τ


=

1

2
√
εk,s,τ

( √
2εk,s,τ + α∆s,τ

ατeiτϕk
√

2εk,s,τ − α∆s,τ

)
,

(2.11)

with εk,s,τ =
√

∆2
s,τ + 4a2t2k2/2 and ϕk = arctan(ky/kx). This can also be

written as

|ψk,s,τ,1〉 =

 cos

(
θk,s,τ

2

)
sin

(
θk,s,τ

2

)
τeiτϕk

 , |ψk,s,τ,−1〉 =

 sin

(
θk,s,τ

2

)
− cos

(
θk,s,τ

2

)
τeiτϕk

 ,

(2.12)
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Figure 2.4: Low-energy spectrum of MoS2 in the K valley for spin up electrons as
obtained from the Hamiltonian (2.9) (solid) and (2.13) (dotted). The color indicates
the contribution from the first spinor component, i.e. from the dz2 Bloch function.

with cos θk,s,τ ≡ ∆s,τ/(2εk,s,τ ). The two components of the eigenstates are also
referred to as the pseudospin components.

The energy spectrum (2.10) is hyperbolic and there is a gradual mixing between
the two basis components when moving away from the K or K ′ point, as is shown
in Fig. 2.4. For small k it can be approximated by

Es,τ,α(k) =
(λc + λv)sτ + α∆s,τ

2
+ α

~2k2

2ms,τ

, (2.13)

with the effective charge carrier mass given by

ms,τ =
~2∆s,τ

2a2t2
. (2.14)

This approximate parabolic energy spectrum is also shown in Fig. 2.4. Note that no
state mixing is shown for these energy bands. This is because this approximation is
often used in the so-called single-band model in which the conduction and valence
bands are treated separately. The difference between the two-band Dirac model
and the parabolic single-band model will be explained more in depth in the next
chapter. Using the parameters given in Table 2.1, the effective band masses of
MoS2, MoSe2, WS2, and WSe2 are given by 0.49m0 (0.53m0), 0.54m0 (0.62m0),
0.32m0 (0.40m0), and 0.34m0 (0.45m0), respectively, for sτ = 1 (sτ = −1).
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2.2.2 Circular dichroism
The interaction of electrons in monolayer TMDs with a radiation field will now
be studied. The radiation field is modeled classically, i.e. as a monochromatic
electromagnetic wave with vector potential

A(r, t) = 2A0e cos(q.r − ωt), (2.15)

with e the polarization direction and q the wave vector of the light. Using the
Peierls substitution p → p − qA this leads to an extra term ateA(r, t).στ/~ in
the Hamiltonian, with e the elementary charge. This is a harmonic time-dependent
perturbation for which the absorption rate |Pe(k)|2 is, according to Fermi’s golden
rule, proportional to | 〈ψf |eiq.re.στ |ψi〉 |2. As the light wavelength for transitions
in the visible range is much larger than the lattice constant only direct transitions,
i.e. q = 0, will be considered. For light polarized in the x-direction the matrix
element for an optical transition from the valence band to the conduction band is
given by

〈ψk,s,τ,1|τσx|ψk,s,τ,−1〉 = − cos2

(
θk,s,τ

2

)
eiτϕk + sin2

(
θk,s,τ

2

)
e−iτϕk

= − cos θk,s,τ cosϕk − i sinϕk.

(2.16)

Similarly, for light polarized in the y-direction the transition matrix element is

〈ψk,s,τ,1|σy|ψk,s,τ,−1〉 = iτ cos2

(
θk,s,τ

2

)
eiτϕk + iτ sin2

(
θk,s,τ

2

)
e−iτϕk

= iτ cosϕk − τ cos θk,s,τ sinϕk.

(2.17)

As a result, the matrix element for circularly polarized light is given by

〈ψk,s,τ,1|τσx + iγσy|ψk,s,τ,−1〉 = −eiγτϕk (γτ + cos θk,s,τ ) , (2.18)

where γ = 1 (γ = −1) describes left (right) circularly polarized light. The circular
polarization is therefore found to be

ηs,τ (k) =
|Ps,τγ=+(k)|2 − |Ps,τγ=−(k)|2

|Ps,τγ=+(k)|2 + |Ps,τγ=−(k)|2
=

2τ cos θk,s,τ
1 + cos2 θk,s,τ

= τ
∆s,τ

√
∆2
s,τ + 4a2t2k2

∆2
s,τ + 2a2t2k2

.

(2.19)
This result is shown in Fig. 2.5(a), illustrating that the K (K ′) valley is strongly

dominated by left (right) circularly polarized light transitions. The polarization is
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Figure 2.5: (a) Circular polarization of spin up (blue) and spin down (red) electrons
in the K (solid) and K ′ (dashed) valley of MoS2 as calculated from Eq. (2.19).
The dotted black line indicates the halfway point between the K and K ′ points, i.e.
the M point. (b) Circular polarization of electrons in MoS2 calculated throughout
the entire first Brillouin zone from density functional theory. Figure taken from
Ref. [65].

opposite for electrons with opposite valley and spin indexes. Moving away from
the band extrema the circular polarization decreases very slowly from its extremal
value, i.e. to lowest non-zero order in k it is given by ηs,τ (k) = τ −2τ(atk/∆s,τ )

4.
At the M point there is still a polarization of 59% (63%) for spin up (spin down)
electrons in the K valley. However, as this point is located halfway between the K
and K ′ point the effective Hamiltonian (2.9) is no longer valid. Density functional
theory calculations show that the electrons retain their near-perfect circular polar-
ization throughout almost the entire first Brillouin zone, except along the lines con-
necting the Γ point with the M points where the polarization vanishes [65]. This is
shown in Fig. 2.5(b). This means that charge carriers can be excited selectively in
the K (K ′) valley by means of a left (right) circularly polarized laser. This effect is
called circular dichroism and was indeed confirmed experimentally [66, 67]. Note
that, as the perturbation associated with the electromagnetic wave vector potential
(2.15) is diagonal in spin space, optical transitions conserve the spin of the elec-
tron [68]. Furthermore, even though the angular momentum of a photon (±~) is
insufficient to allow for a transition between electron states with angular momen-
tum ±2~ and 0, angular momentum conservation can still be satisfied by taking
into account the crystal symmetry. The trigonal symmetry leads to a Bloch phase
which can absorb angular momentum in a manner similar to an Umklapp process
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and as such provides the system with additional angular momentum in a modulus
of 3~ [68–70]. This effect is associated with transitions between atomic orbital
states of transition metal atoms in different unit cells.

2.2.3 Berry curvature
Transporting a system adiabatically along a closed circuit in parameter space causes
it to pick up a global gauge-invariant, and therefore physical, phase known as the
Berry phase which can be expressed as [71, 72]

γn =

∫
S

dS.Ωn(R), (2.20)

where the integral is performed over the surface S enclosed by the closed path in
the parameter space and where

Ωn(R) = ∇R × 〈n(R)|i∇R|n(R)〉 (2.21)

is a local gauge-invariant quantity known as the Berry curvature, which is a mea-
sure of the coupling of the nth energy level with eigenstate |n(R)〉 with all the
other energy levels in the system. For crystals the parameter space is the first Bril-
louin zone and as such the Berry curvature depends on the wave vector k. It is
non-zero in all crystals with broken inversion symmetry and is essential in a proper
description of the dynamics of Bloch electrons, leading for example to the spin and
valley Hall effect in monolayer TMDs [56]. Using the eigenstates (2.11), the Berry
curvature is found to be equal to

Ωs,τ,α(k) = −τα 2a2t2∆s,τ(
∆2
s,τ + 4a2t2k2

) 3
2

ez, (2.22)

with ez the unit vector in the z-direction. This shows that it is opposite for the
conduction and valence bands and opposite for electrons with opposite spin and
valley indexes. Another important physical quantity which is directly related to the
Berry curvature is the intrinsic orbital magnetic moment of Bloch particles which
is given by [73, 74]

ms,τ,α(k) = −i e
2~
〈∇kψk,s,τ,α| × (Hs,τ (k)− Es,τ,α(k)) |∇kψk,s,τ,α〉

=
e

2~
(Es,τ,α(k)− Es,τ,−α(k)) Ωs,τ,α(k).

(2.23)
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For monolayer TMDs this leads to

ms,τ (k) = −τ ea2t2∆s,τ

4~a2t2k2 + ~∆2
s,τ

ez, (2.24)

which is opposite for electrons with opposite spin and valley indexes but equal
for the conduction and valence bands and therefore does not influence the optical
selection rules discussed in the previous subsection. At the K and K ′ points the
above expression reduces to ms,τ (0) = −τµ∗Bez with µ∗B = e~/(2ms,τ ) the ef-
fective Bohr magneton. This magnetic moment plays an important role when a
perpendicular magnetic field is applied.

2.2.4 Magnetic field effects

A commonly used experimental manipulation is the application of a magnetic field.
In this subsection the effects of both a perpendicular and an in-plane magnetic field
will be investigated.

Perpendicular magnetic field

A possible vector potential which leads to a magnetic field oriented perpendicular
to the TMD layer, i.e. B = ∇ × A = Bez, is given by A = Bxey. Including
this vector potential in the Hamiltonian through the Peierls substitution leads to the
breakdown of kx as a good quantum number. However, it is possible to define an
operator

â =
lB√

2

(
k̂x − i

(
ky +

x̂

l2B

))
, (2.25)

with lB =
√

~/(eB) the magnetic length, for which it is easy to show that [â, â†] =
1̂. The eigenvalue equation for the effective Hamiltonian then becomes

â |φv〉 =
lB√
2at

(
E − λc + λv

2
sτ − ∆s,τ

2

)
|φc〉

â† |φc〉 =
lB√
2at

(
E − λc + λv

2
sτ +

∆s,τ

2

)
|φv〉

(2.26)

for τ = 1. For τ = −1 the operators in the left hand sides of the above equations are
changed to −â† (−â) for the top (bottom) equation. Substituting one equation into
the other shows that both components of the spinor are eigenstates of the number
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Figure 2.6: Landau level spectrum of MoS2 in the K (spin up) (a) and K ′ (spin
down) (b) valley. The zero-field bands are shown with (solid, red) and without
(dashed, blue) the contribution from (2.24). The n = 0 Landau level is indicated
in both valleys. A magnetic field of 1000 T is used in the calculation in order to
clearly show its effect.

operator â†â. The energy spectrum is found to be given by

En,s,τ,α =
(λc + λv)

2
sτ + α

√
∆̃2
s,τ

4
+

2a2t2

l2B
n, (2.27)

with n a strictly positive integer. The corresponding eigenstates in the K valley are

|ψn,s,1,1〉 =

cos

(
θn,s,1

2

)
|n− 1〉

i sin

(
θn,s,1

2

)
|n〉

 , |ψn,s,1,−1〉 =

sin

(
θn,s,1

2

)
|n− 1〉

−i cos

(
θn,s,1

2

)
|n〉

 ,

(2.28)
with cos θn,s,τ ≡ ∆s,τ/

√
∆2
s,τ + 8a2t2n/l2B. In the K ′ valley the kets |n− 1〉 and

|n〉 need to be switched. Special attention needs to be paid to the case when n = 0,
for which the energy spectrum is given by E0,s,τ = −τ∆s,τ/2 + (λc + λv)sτ/2,
meaning that this state is located in the valence (conduction) band in the K (K ′)
valley, and the corresponding eigenstates are given by |ψ0,s,1〉 = (0, |0〉)T and
|ψ0,s,−1〉 = (|0〉 , 0)T , respectively.

The Landau level spectrum is shown in Fig. 2.6. The symmetry breaking be-
tween the energy levels in the K and K ′ valley is a consequence of the breaking
of time-reversal symmetry in the system due to the presence of the magnetic field.
In the valence (conduction) band of the K (K ′) valley the lowest Landau level is
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located at the bottom of the zero-field bands, which would mean that there is no
magnetic confinement. However, the energy spectrum can be made to look more in-
tuitive by explicitly taking into account the effect of the intrinsic magnetic moment
(2.24). This contributes a term −ms,τ (k).B ≈ τµ∗BB to the energy spectrum, i.e.
a type of valley Zeeman effect, which is already implicitly included in the Landau
level spectrum (2.27). Shifting the zero-field bands by this amount shows that the
lowest Landau level is always shifted by the same energy amount with respect to
the zero-field band extrema [75].

There are two other types of Zeeman effects present in monolayer TMDs: the
orbital Zeeman effect associated with the angular quantum number of the atomic
orbital states which shifts the valence bands by an amount 2τµBB and the spin
Zeeman effect which shifts all energy bands by an amount sµBB, with µB the
Bohr magneton. These effects are not included in Fig. 2.6.

Furthermore, using the eigenstates (2.28) and following a procedure analogous
to that discussed in subsection 2.2.2 it is possible to show that perfect circular
dichroism is retained in the presence of a perpendicular magnetic field but that now
only transitions between Landau levels whose indexes differ by ±1 are allowed.

In-plane magnetic field

A possible vector potential which leads to a magnetic field oriented in the plane
of the TMD layer, i.e. B = ∇ × A = Bex, is given by A = −Bzey. Since
the electrons are located within a single layer it is possible to take z = 0 and as
such the in-plane magnetic field will have no orbital effect. However, it will have
an important effect through the spin Zeeman effect, i.e. the term µBB.s in the
Hamiltonian with s the vector of Pauli matrices in spin space. When adding this
term to the low-energy Hamiltonian (2.9), the in-plane components of the magnetic
field prevent it from being diagonal in spin space and as such lead to a 4 × 4
Hamiltonian instead of a 2 × 2 Hamiltonian. As this effect is generally small it is
possible to treat it in first order perturbation theory [76] and absorb the resulting
energy shift in the spin-orbit coupling parameters: λ̃c(v) = λc(v) + µ2

BB
2
x/(2λc(v)).

The eigenstates are then given by

|ψk,s,τ,α〉 =
1√

1 + δ2
α

(
|ψk,s,τ,α〉0 + sτδα |ψk,−s,τ,α〉0

)
, (2.29)

with |ψk,s,τ,α〉0 the unperturbed eigenstates, with δα = µBBx/(2λα), and with
λ1 = λc and λ−1 = λv. This is a good approximation as long as µBBx is small
compared to λc(v), which is the case for realistic magnetic field strengths for the
four considered TMDs, except for MoS2 for magnetic fields stronger than 10 T.
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Using the above eigenstates, the optical transition amplitudes between valence
and conduction band states are found to be

Ps,τγ =
1√

(1 + δ2
1)(1 + δ2

−1)

(
Ps,τγ,0 + δ1δ−1P−s,τγ,0

)
(2.30)

and
Ps,τγ =

sτ√
(1 + δ2

1)(1 + δ2
−1)

(
δ1P−s,τγ,0 − δ−1Ps,τγ,0

)
(2.31)

for transitions between states with the same spin and opposite spin, respectively,
with P s,τ

γ,0 the optical transition amplitude between the zeroth order eigenstates and
with s the spin of the conduction band. This means that the presence of an in-plane
magnetic field allows for optical transitions between energy bands associated with
opposite spins.

2.3 A hole in the band
The hole was already briefly discussed in section 1.1 in the context of an array of
tightly bound electron states, showing that it is a quasiparticle of opposite charge.
This concept can be extended to periodic condensed matter systems. In semicon-
ductors such as monolayer TMDs the “normal” state or vacuum state is that in
which the valence bands are completely filled and the conduction bands are com-
pletely empty. To this vacuum state excitations can be added, i.e. adding an elec-
tron to the conduction band or removing an electron from the valence band. Re-
moving an electron with a certain energy, wave vector, and spin can equivalently be
described as adding a quasiparticle, i.e. the hole, with opposite energy, wave vector,
and spin to the system. This means that the hole quasiparticle Hamiltonian can eas-
ily be expressed in terms of the electron Hamiltonian as Hh

s,τ (k) = −He
−s,−τ (−k),

or in more general mathematical terms as Hh = −THeT−1 with T = isyK the
time-reversal operator with sy a Pauli matrix in spin space and K the complex con-
jugation [77]. Note that for TMDs, because of the hexagonal Brillouin zone (see
Fig. 2.2(d)), a flip in the wave vector implies that the valley index is flipped as well.

It is worth pointing out the difference between a valence electron and a hole.
A valence electron is a negatively charged real particle with a negative band mass
due to the negative second derivative of the energy bands near the valence band
maximum. As a result, valence electrons move in the direction opposite to that of
an applied force and can form a bound state in the presence of a negatively charged
impurity. A hole is a positively charged quasiparticle with a positive band mass
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(because of the energy flip) which therefore moves in the direction of an applied
force and also forms a bound state in the presence of a negatively charged impurity.
This shows how valence electrons and holes can have very similar properties. On
the other hand, a conduction electron and a hole (in the valence band) can form a
bound state, i.e. an exciton, while a conduction electron and a valence electron can
not. This shows the fundamental difference between the two.

2.4 Interparticle interaction potential
When studying few-body or many-body effects knowledge of the interparticle in-
teraction potential is needed. In order to find an expression for this potential in a
TMD monolayer Gauss’s law is used as a starting point: ∇.D = next, with next
the charge density of an external point charge located at (r′, z′) with charge q1. The
charge is located in the TMD layer which is located at z′ = 0. The displacement
field D is given by D = ε0E + P , with E the electric field and P = χε0E
the polarization density, with χ the polarizability. For homogeneous 3D dielectrics
this simplifies to D = ε̃E, with ε̃ the dielectric tensor of the material. Using
E = −∇φ(r − r′, z, z′), with φ(r − r′, z, z′) the electrostatic potential, Gauss’s
law becomes(

εir

(
∂2

∂x2
+

∂2

∂y2

)
+

∂

∂z

(
εiz
∂

∂z

))
φi(r − r′, z, 0) = −q1

ε0

δ (r − r′) δ (z) ,

(2.32)
with εir and εiz the in-plane and out-of-plane relative dielectric constants of the
homogeneous 3D region below (i = b) and above (i = t) the TMD. Here, only
isotropic dielectrics, i.e. εir = εiz = εi, will be considered. Because monolayer
TMDs are 2D materials there will only be an induced charge density in the material
plane, i.e. χ(z) = χ2Dδ(z) where χ2D has the dimensions of length as opposed to
the dimensionless 3D polarizability χ. As a consequence it is no longer possible to
write D = ε̃E and as a result there are non-local dielectric screening effects [78].
Gauss’s law becomes ε0∇.E = next + nind with

nind = −∇.P = ε0χ2D∇. (δ (z)∇φ(r − r′, z, 0))

= ε0χ2D

(
δ (z)

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+

(
∂

∂z
δ (z)

)
∂

∂z

)
φ(r − r′, z, 0)

(2.33)

the induced charge density in the TMD layer. Adding the above induced charge
density to Eq. (2.32) and performing an in-plane 2D Fourier transform over r − r′
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gives the equation

∂

∂z

(
εi
∂

∂z
φiq(z, 0)

)
− εiq2φiq(z, 0) = − q1

Aε0

δ (z)

+ χ2D

(
q2δ (z)− δ (z)

∂2

∂z2
−
(
∂

∂z
δ (z)

)
∂

∂z

)
φiq(z, 0),

(2.34)

with A the area of the system. This equation has to be solved in both the region be-
low and above the TMD. In these regions the right hand side of the above equation
vanishes and the solutions are given by

φiq(z, 0) = Aie
qz +Bie

−qz, (2.35)

with Ai and Bi integration constants. Since the external and induced charge densi-
ties are located in the TMD layer, i.e. between the two homogeneous 3D regions,
they will only enter in the boundary conditions relating the two piecewise solutions
φiq(z, 0) at the interface at z = 0. The boundary conditions are given by

φtq(0, 0) = φbq(0, 0),

εt
∂

∂z
φtq(0, 0) = εb

∂

∂z
φbq(0, 0) + q2χ2Dφ

b
q(0, 0)− q1

Aε0

.
(2.36)

Notice that the last two terms on the right hand side of Eq. (2.34) cancel each other.
Furthermore, Bb = At = 0 needs to be imposed in order to avoid divergences.
The first boundary condition then yields Ab = Bt and from the second boundary
condition it follows that the interaction potential between the external charge q1

and a charge q2 can in general be written as

V (q, z, 0) = q2φq(z, 0) =
q1q2

2Aqε0ε(q, z)
, (2.37)

with ε(q, z) a relative dielectric function given by

ε(q, z) =

(
εb + εt

2
+
χ2D

2
q

)
eq|z|. (2.38)

Defining the average dielectric constant of the environment κ = (εb+εt)/2 and the
screening length r0 = χ2D/(2κ), the real space interaction potential in the TMD
layer can be found by performing the inverse 2D Fourier transform, which gives

V (r) =
A

(2π)2

∫
d2qV (q, 0, 0)eiq.(r−r

′)

=
q1q2

4πκε0

∫ ∞
0

dq
J0(qr)

1 + r0q
,

(2.39)
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Figure 2.7: (a) Interaction potential between an electron and a hole in monolayer
TMDs for κ = 1 and with screening length r0 = 0 nm (solid, blue), r0 = 2 nm
(dashed, red), and r0 = 6 nm (dotted, black). (b) Electric field lines created by a
positive and a negative charge separated by a distance of 3.2 nm in a monolayer
TMD at z = 0 with screening length r0 = 10 nm (solid, blue) and r0 = 0 nm, i.e.
a bare Coulomb potential (dashed, red).

with J0 the zeroth order Bessel function of the first kind and r = |r − r′| the
distance between the two charges. Performing the integral leads to

V (r) =
e2

4πκε0

π

2r0

(
H0

(
r

r0

)
− Y0

(
r

r0

))
, (2.40)

where Y0 and H0 are the Bessel function of the second kind and the Struve func-
tion, respectively, and where q1 = q2 = ±e was chosen. This potential is known as
the Keldysh potential [79,80] and is shown in Fig. 2.7(a). For r0 = 0 this potential
reduces to the bare Coulomb potential V (r) = e2/(4πκε0r). Increasing the screen-
ing length leads to a decrease in the short-range interaction strength while the long-
range interaction strength is unaffected. For very large screening lengths r0 → ∞
the interaction potential becomes logarithmic, i.e. V (r) = e2/(4πκε0r0)ln(r0/r).
Density functional theory calculations show that the 2D polarizability is equal to
8.29 nm, 10.34 nm, 7.58 nm, and 9.02 nm in MoS2, MoSe2, WS2, and WSe2,
respectively [81].

The corresponding electric field lines of this interaction potential between two
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oppositely charged particles are shown in Fig. 2.7(b) and are compared with the
electric field lines associated with the bare Coulomb potential. This shows that in
the vicinity of the charge carriers the electric field lines associated with the Keldysh
potential are located within the TMD layer, i.e. as if the electromagnetic field is
confined to the 2D plane as well, whereas when moving further away from the
charge carriers they break out of the layer to recover the 3D behavior of the bare
Coulomb potential.

The peculiar interaction potential (2.40) leads to series of exciton energy levels
in monolayer TMDs which are more shallow, have less degeneracies, and follow a
different functional form as compared to the 2D hydrogenic Rydberg series (1.2).
These exciton levels will be discussed in more detail in the next chapter.

2.5 Many-body phases in monolayer TMDs

In the following chapters few-body and many-body effects of particles of opposite
charge are studied. In this section, many-body effects of same-charge particles are
investigated, e.g. the possibility of ferromagnetism. It is known that long-range
exchange interactions cause the 3D electron gas to become ferromagnetic at low
densities [82–84]. This was later confirmed by Monte Carlo simulations [85, 86],
which predicted the same effect in the 2D electron gas [85, 87]. The 2D electron
gas has been investigated in detail in semiconductor heterostructures and electrons
above liquid helium [88–91], however the discovery of graphene and other related
2D materials such as those discussed in section 1.2 provided new systems with
different dispersion relations and topologies for studying the 2D electron gas [92].
The pronounced effect of the dispersion relation on the many-body state of the
electron gas was shown by using a variational wave function technique, which
found that monolayer graphene does not exhibit a ferromagnetic phase [93] while
bilayer graphene does [94].

Monolayer TMDs provide an interesting platform for studying these many-
body effects, as it can be expected that the valley-contrasting spin splitting will re-
sult in a rich many-body phase diagram with many more possible phases than those
predicted for monolayer and bilayer graphene. Recently, ferromagnetic behavior
was predicted in numerous different TMD-based systems such as exfoliated TMDs
with defects [95], transition metal-doped TMDs [96], intercalated TMDs [97],
TMD-based heterostructures [98, 99], and TMDs in which one of the chalcogen
layers is either removed [100] or different from the other chalcogen layer [101].
However, in all of these systems the ferromagnetic phase is not driven by many-
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body exchange interactions but rather is a single-particle effect in which one of
the spin states is energetically preferred over the other, and which is not present in
clean monolayer TMDs.

In this section a variational technique, similar to that used in Refs. [93, 94],
is used to study the exchange interaction-driven many-body phases of different
monolayer TMDs and their dependence on the dielectric constant of the substrate
and on a perpendicular magnetic field. This study was published in Physical Re-
view B [102]. After the publication of this work other theoretical studies ap-
peared predicting interaction-driven valley and spin polarized phases in monolayer
TMDs [103–105], as briefly discussed at the end of this section.

2.5.1 Many-body Hamiltonian

Due to the large band gap either only conduction band states (n-doped TMDs) or
only valence band states (p-doped TMDs) need to be taken into account because in-
terband electron-hole fluctuations are suppressed. The kinetic energy contribution
to the many-body Hamiltonian can then be written as

Ĥα
0 = α

∑
k,s,τ

Es,τ,α(k)â†k,s,τ âk,s,τ , (2.41)

with Es,τ,α(k) the single-particle energy spectrum (2.10), with α = 1 (α = −1)
describing electrons (holes), and with â†k,σ,τ (âk,σ,τ ) the creation (annihilation) op-
erator of either an electron in the conduction band (n-doped TMDs) or a vacancy
in the valence band (p-doped TMDs) with wave vector k, spin index s, and valley
index τ . Recall from section 2.3 that the hole quasiparticle has opposite energy,
wave vector, spin index, and valley index as compared to that of the vacant valence
band state.

The many-body interaction Hamiltonian is in general given by

V̂ α =
1

2

∑
q,w,ρ

∑
k,s,τ

∑
q′,w′,ρ′

∑
k′,s′,τ ′

〈ψq,w,ρ,αψk,s,τ,α|V (|r − r′|)|ψq′,w′,ρ′,αψk′,s′,τ ′,α〉

â†q,w,ρâ
†
k,s,τ âk′,s′,τ ′ âq′,w′,ρ′ ,

(2.42)

with V (r) given by (2.40) and with the position representation of the eigenstates
|ψk,s,τ,α〉 given by (2.11) multiplied with eik.rηs/

√
A with A the surface area and
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ηs the orthonormal spin states. Performing the integrals over r and r’ leads to

〈ψq,w,ρψk,s,τ |V (|r − r′|)|ψq′,w′,ρ′ψk′,s′,τ ′〉 =
e2

2ε0κA
δw,w′δs,s′δρ,ρ′δτ,τ ′δk′+q′,k+q

〈ψq,w,ρ,α|ψq′,w′,ρ′,α〉p 〈ψk,s,τ,α|ψk′,s′,τ ′,α〉p
|k − k′|+ r0|k − k′|2

,

(2.43)

where 〈〉p denotes the overlap element of the pseudospin part of the eigenstates
(2.11) and where intervalley scattering was neglected due to the large correspond-
ing momentum exchange. When only considering the exchange interactions (the
direct interactions are canceled by the interactions with the positive lattice back-
ground), this reduces to

V̂ α = − e2

4ε0κA

∑
s,τ

∑
k,q

| 〈ψq,s,τ,α|ψk,s,τ,α〉p |
2

|k − q|+ r0|k − q|2
â†q,s,τ âq,s,τ â

†
k,s,τ âk,s,τ , (2.44)

i.e. an attractive interaction between particles with the same spin and valley in-
dexes.

The magnetic part of the many-body Hamiltonian can be obtained by summing
over the Zeeman effect contributions of all the single-particle states and is therefore
given by

Ĥα
B = αB

∑
k,s,τ

(sµB − ez.ms,τ (k))â†k,s,τ âk,s,τ − 2B
∑
k,s,τ

τµBâ
†
k,s,τ âk,s,τ , (2.45)

where the three terms describe the spin, valley, and orbital Zeeman effect, respec-
tively, and where the last term thus should only be included for holes. Apart from
the different Zeeman effects, a perpendicular magnetic field also leads to confine-
ment of the charge carriers, resulting in discrete Landau levels in the energy spec-
trum as discussed in subsection 2.2.4. This will have a significant effect on the
many-body phase when the confinement region is smaller than the average inter-
particle distance. The latter can be estimated by 〈r〉 = 1/

√
πn with n the charge

carrier density, while the former is given by the magnetic length lB =
√
~/(eB).

For B = 50 T this gives lB = 3.63 nm, which is less than the average interparticle
distance for densities smaller than n = 0.3 × 1013 cm−2. This means that only
at high magnetic field strengths and low densities would the Landau levels signifi-
cantly affect the many-body phase. Therefore, this effect is not taken into account
here.
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2.5.2 Variational solution
A variational state is considered in which the four energy bands can be filled inde-
pendently from each other up to a certain number of particles Ns,τ , i.e. the state

|Ψ0〉 =

∏
s,τ

∏
k≤ks,τF

â†k,s,τ

 |∅〉 , (2.46)

with ks,τF the band dependent Fermi wave vector and with |∅〉 the vacuum state, i.e.
completely filled valence bands and completely empty conduction bands. This is a
Hartree-Fock method in which Fermi correlation is taken into account (through the
anticommutation relations of the creation and annihilation operators) but Coulomb
correlation is not. The occupation number of a given single-particle state is there-
fore given by

Nk,s,τ = 〈Ψ0|â†k,s,τ âk,s,τ |Ψ0〉 =

{
1 for k ≤ ks,τF
0 for k > ks,τF

. (2.47)

The total number of particles in a given energy band is given by Ns,τ =
∑
k

Nk,s,τ

and together they form the set of variational parameters. In order to gain more
direct physical insight from the variational parameters they are transformed to

N =
∑
s,τ

Ns,τ , ζs =

∑
s,τ sNs,τ∑
s,τ Ns,τ

, ζτ =

∑
s,τ τNs,τ∑
s,τ Ns,τ

, ζβ =

∑
s,τ sτNs,τ∑
s,τ Ns,τ

.

(2.48)
The total number of particles in the system N is fixed, meaning that there are
three variational parameters: ζs, ζτ , and ζβ . These are the spin, valley, and spin-
valley polarization, respectively, and can range from −1 to 1. For example, a state
characterized by (ζs, ζτ , ζβ) = (0, 0, 1) has an equal number of spin up and spin
down particles, has an equal number of particles in both valleys, but all spin up
(spin down) particles reside in the K (K ′) valley. Starting from Ns,τ =

∑
k

Nk,s,τ ,

converting the summation over k to an integral, and using Eq. (2.47) an expression
relatingNs,τ and ks,τF is obtained. The set of equations in Eq. (2.48) is then inverted
to get

ks,τF =

√
4π
Ns,τ

A
=
√
πn(1 + sζs + τζτ + sτζβ), (2.49)
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with n = N/A the total particle density. The expectation value of the kinetic energy
(2.41) with respect to the variational state is given by

〈Ψ0|Ĥα
0 |Ψ0〉 = α

A

2π

∑
s,τ

∫ ks,τF

0

dkkEs,τ,α(k)

=
N

2πn

∑
s,τ

(
α
λc + λv

2
sτ (ks,τF )2 +

1

24a2t2

((
4a2t2 (ks,τF )2 + ∆2

s,τ

) 3
2 −∆3

s,τ

))
.

(2.50)

The expectation value of the interparticle interactions (2.44) with respect to the
variational state is given by

〈Ψ0|V̂ α|Ψ0〉 = − Ne2

4ε0κ(2π)3n

∑
s,τ

Is,τ (ks,τF )3 , (2.51)

where the integral

Is,τ =

∫ 1

0

duu

∫ 1

0

dvv

∫ 2π

0

dθ

[(
1

2
+

∆̃2
s,τ

2fs,τ (u)fs,τ (v)
+

uv cos θ

2fs,τ (u)fs,τ (v)

)/
(√

u2 + v2 − 2uv cos θ + cs,τ
(
u2 + v2 − 2uv cos θ

)) ]
,

(2.52)

with

fs,τ (x) =
√

∆̃2
s,τ + x2, ∆̃s,τ =

∆s,τ

2atks,τF
, cs,τ = r0k

s,τ
F , (2.53)

is evaluated numerically.
The expectation value of the magnetic part of the Hamiltonian (2.45) with re-

spect to the variational state is given by

〈Ψ0|Ĥα
B|Ψ0〉 = αNζsµBB + α

NeB

16π~n
∑
s,τ

τ∆s,τ ln

(
1 +

1

∆̃2
s,τ

)
− 2NζτµBB,

(2.54)
where the last term should only be included for holes.

The sum of the three terms (2.50), (2.51), and (2.54) gives the total variational
energy which depends on the three variational parameters and which is minimized
brute force to find the variational parameters which define the lowest energy many-
body state.
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2.5.3 Numerical results
The main results and discussions presented here are for n-doped TMDs. A short
discussion of p-doped TMDs follows at the end of this subsection.

n-doped TMDs

In the absence of interactions the many-body state can simply be found by filling
up the lowest energy single-particle states. In the absence of a magnetic field this
means that both valleys are populated equally and, as a consequence, that both spin
states are also populated equally. The many-body state is therefore characterized
by (ζs, ζτ , ζβ) = (0, 0, 1) at low densities, i.e. there is no global spin and no valley
polarization but there is spin polarization in each valley separately (so-called spin-
valley locking). For densities above some critical value, the electrons will also
populate the higher conduction band in both valleys and as such the spin-valley
locking will be gradually lost, i.e. there is a second order phase transition. The
many-body state is then given by (ζs, ζτ , ζβ) = (0, 0, β(n)) for molybdenum-based
TMDs and by (ζs, ζτ , ζβ) = (0, 0,−β(n)) for tungsten-based TMDs with

β(n) =
∆(λv − λc)− (λv + λc)

√
4a2t2πn+ ∆2 − 4λcλv

2a2t2πn
(2.55)

a function which decreases continuously with increasing density from 1 to 0. The
sign difference between molybdenum- and tungsten-based TMDs is the direct con-
sequence of the difference in sign of the conduction band spin-orbit coupling pa-
rameter λc (see Table 2.1).

When including electron-electron interactions, four different many-body phases
are found. These are shown in Fig. 2.8 for WSe2 but are found in all four of the
TMDs considered in this thesis. Phase I is characterized by (ζs, ζτ , ζβ) = (1, 1, 1)
or (ζs, ζτ , ζβ) = (−1,−1, 1) for molybdenum-based TMDs and by (ζs, ζτ , ζβ) =
(1,−1,−1) or (ζs, ζτ , ζβ) = (−1, 1,−1) for tungsten-based TMDs. The sys-
tem is completely spin polarized and valley polarized, i.e. the many-body state
is a truly ferromagnetic state. In the specific case of MoS2 an additional fer-
romagnetic phase, phase I′, is found characterized by (ζs, ζτ , ζβ) = (−1, 1,−1)
or (ζs, ζτ , ζβ) = (1,−1,−1). The difference with phase I is that the electrons
now all occupy one of the upper conduction bands as opposed to one of the lower
conduction bands. This is possible because of the very small spin-orbit coupling
in the conduction band and because the upper conduction bands have a slightly
larger effective mass (2.14) reducing their kinetic energy contribution. Phase II
is characterized by (ζs, ζτ , ζβ) = (0, 0, 1) for molybdenum-based TMDs and by
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Figure 2.8: The four different obtained phases of monolayer TMDs (shown here
for WSe2) in zero magnetic field. Blue and red bands are spin up and spin down
bands, respectively.

(ζs, ζτ , ζβ) = (0, 0,−1) for tungsten-based TMDs, i.e. the low-density phase of
the non-interacting case discussed above. There is no global spin and valley po-
larization but there is spin-valley locking. Phase III is characterized by non-zero
values between−1 and 1 for all three variational parameters, which vary as a func-
tion of the electron density, such that one of the valleys is completely spin polarized
whereas the other valley shows little to no spin polarization. Finally, phase IV is
characterized by (ζs, ζτ , ζβ) = (0, 0, β(n)) for molybdenum-based TMDs and by
(ζs, ζτ , ζβ) = (0, 0,−β(n)) for tungsten-based TMDs. This is the completely un-
polarized phase which was also found in the high density limit without interactions.

The energies of these four phases are shown in Fig. 2.9 in an experimentally
accessible electron density range [106]. This shows that a step by step decrease in
the spin/valley order of the many-body state is found when increasing the density.
In the limit of zero density the energy of all these phases converges to ∆/2 − λc,
i.e. the lowest single-particle energy. However, at very low densities the system
should transit to a Wigner crystal, which is predicted to occur at densities of the
order of 1× 1011 cm−2 [107], although for such low densities the effects of defects
also become increasingly important. Furthermore, the first derivative of the ground
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Figure 2.9: Energy per particle for MoSe2 calculated for zero magnetic field and
εb = εt = 1 as a function of the total electron density for phase I (blue), phase II
(red), phase III (black), and phase IV (green). The phase transitions are indicated
by the dashed black vertical lines.

state energy shows discontinuities when transiting between phases, meaning that
the transitions between these phases are all first order. In summary, in the non-
interacting case there are only two phases (phase II and phase IV) with a second
order transition between them, but when interactions are included additional phases
are found between them (phase III) and at low densities (phase I) with first order
transitions between all phases.

The phase diagram as a function of the electron density and the substrate dielec-
tric constant is shown in Figs. 2.10(a)-(b). All the phase transitions occur at lower
densities for larger substrate dielectric constants, meaning that the substrate also
leads to a reduction in spin/valley order. This is because the substrate weakens the
electron-electron interactions. The phase transition between phase I and II is less
dependent on the substrate dielectric constant than those between phase II and III
and between phase III and IV. The order in which the four different TMDs change
phases is different for the phase transition between phase I and II as compared to
those between phase II and III and between phase III and IV.

When a perpendicular magnetic field is added to the system, the phase diagram
shown in Fig. 2.11(a) is found. The four phases which are present at zero mag-
netic field persist for non-zero magnetic field. The magnetic field breaks the val-
ley degeneracy and as a result phase I is now only characterized by (ζs, ζτ , ζβ) =
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Figure 2.10: (a) Phase diagram calculated for zero magnetic field as a function
of the total electron density and the dielectric constant of the substrate below the
material εb (εt = 1) for MoS2 (solid, blue) and MoSe2 (dashed, red). (b) The same
as (a) but now for WS2 (solid, blue) and WSe2 (dashed, red).

(−1,−1, 1) for molybdenum-based TMDs and by (ζs, ζτ , ζβ) = (1,−1,−1) for
tungsten-based TMDs. For MoS2 phase I′ persists up to magnetic field strengths
of 40 T and is characterized by (ζs, ζτ , ζβ) = (1,−1,−1). This means that a com-
plete flip in spin polarization, from ζs = −1 to ζs = 1, occurs when tuning the
system from phase I to phase I′. The transition to phase I′ occurs at larger densi-
ties with increasing magnetic field because the energy difference between the two
conduction bands in the lowest energy valley increases with magnetic field. Phase
II is now characterized by (ζs, ζτ , ζβ) = (−δ(n),−δ(n), 1) for molybdenum-based
TMDs and by (ζs, ζτ , ζβ) = (δ(n),−δ(n),−1) for tungsten-based TMDs with δ(n)
a function similar to β(n). The exact numerical values of the variational parameters
which define phase III and phase IV also change slightly due to the magnetic field
but they still represent the same type of phases as those shown in Fig. 2.8. The
phase transitions between phase I and phase II and between phase III and phase
IV shift to higher densities as the magnetic field increases. The phase transition
between phase II and phase III, however, shifts to lower densities as the magnetic
field increases.

In Fig. 2.11(b) the spin polarization as a function of the electron density is
shown. This clearly shows the transition from phase I with complete spin polariza-
tion to phase II with partial spin polarization. In the absence of a magnetic field the
spin polarization in phase II is 0, but this value increases with the magnetic field
strength. This also shows that the transition occurs at higher densities for stronger
magnetic fields.
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Figure 2.11: (a) Phase diagram calculated for εb = εt = 1 as a function of the
total electron density and the perpendicular magnetic field for MoS2 (solid, blue),
MoSe2 (dashed, red), WS2 (dotted, black), and WSe2 (dot-dashed, green). (b) Spin
polarization calculated for εb = εt = 1 for MoSe2 as a function of the total electron
density for a perpendicular magnetic field of 0 T (solid, blue), 20 T (dashed, red),
and 50 T (dotted, black). The inset shows phase V which occurs in the presence of
strong magnetic fields.

Furthermore, for MoS2, an additional phase (phase V) for magnetic fields larger
than 7 T is found which completely replaces phase II for magnetic fields larger than
23 T. This phase is characterized by (ζs, ζτ , ζβ) = (−δ(n),−1, δ(n)) and is shown
in the inset of Fig. 2.11(b). There is complete valley polarization and very little
spin polarization, which is a consequence of the fact that the states in the K ′ valley
shift down in energy with respect to those in the K valley. The reason that this
phase is only found for MoS2 is because of the very small spin-orbit coupling in
the conduction band. This phase will also occur for the other TMDs but at much
stronger magnetic fields.

p-doped TMDs

For p-doped TMDs the same four phases as for n-doped TMDs are found. The
transition between phase I and phase II as a function of the substrate dielectric con-
stant is identical to that for n-doped TMDs for MoS2 and MoSe2. This is because
in both phase I and phase II only the lowest energy bands are occupied and there-
fore the energy difference with the higher energy bands due to the spin splitting,
which is very different for the conduction and valence bands, has no influence on
this phase transition. For WS2 and WSe2, however, this phase transition occurs
at lower densities for p-doped TMDs as compared to n-doped TMDs. The reason
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is that for these materials the highest valence bands have a smaller effective mass
than the lowest conduction bands, whereas for MoS2 and MoSe2 these bands have
the same effective mass. Furthermore, phase III and phase IV occur at much higher
densities, above 7 − 15 × 1013 cm−2 depending on the TMD and the substrate,
as compared to n-doped TMDs. This is a consequence of the much stronger spin
splitting in the valence bands as compared to the conduction bands. This strong
spin splitting also leads to the absence of phase I′ for p-doped MoS2.

In the presence of a perpendicular magnetic field the transition between phase
I and phase II depends more strongly on the magnetic field for p-doped TMDs as
compared to n-doped TMDs. This is a consequence of the orbital Zeeman effect,
which only occurs for valence band states. Furthermore, phase V only occurs for
unrealistically strong magnetic fields for all TMDs, including MoS2.

2.5.4 Conclusion

A variational technique was used to study the different many-body phases of elec-
trons in different monolayer TMDs. It was found that there are four phases with
first order phase transitions between them. When increasing the electron density
a step-wise reduction in spin/valley order was found in which the system consec-
utively exhibits: complete spin and valley polarization, spin-valley locking, spin
polarization in only one of the valleys, and no spin or valley polarization. The ef-
fect of a substrate below the TMD was studied and it was found that it leads to a
reduction in spin/valley order.

Furthermore, the effect of a perpendicular magnetic field was studied and it
was found that all four phases persist. For the specific case of MoS2 an extra
phase appears for magnetic fields larger than 7 T. In this phase there is complete
valley polarization but little to no spin polarization. Another effect exclusive to this
material is that a complete flip in spin polarization, from ζs = −1 to ζs = 1, occurs
at low densities. Both these effects are the consequence of the very small spin-orbit
coupling in the conduction band.

Finally, p-doped TMDs were considered and it was found that the correspond-
ing phase diagram is less rich than that of n-doped TMDs. Phase I′ and phase V do
not occur and phase III and phase IV only occur at very large densities.

The phase diagrams obtained here could in principle be measured experimen-
tally. Phases with a significant spin polarization, i.e. phases I and III, should be the
easiest to observe experimentally by using a magnetometer, although the limited
density region in which phase III occurs might hinder observations of this phase.
Nevertheless, experimental evidence for a spin polarized electron gas was indeed
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found very recently in monolayer MoS2 [108].
Similar results were obtained in other theoretical works. In Ref. [103] a valley

polarized phase was predicted using a variational mean field treatment based on a
three-band nearest-neighbor tight-binding Hamiltonian applicable throughout the
entire first Brillouin zone. A contact potential was used for the interactions and
only p-doped TMDs were considered. In Refs. [104] and [105] a spin polarized
phase was predicted by studying the time-dependent spin response function and
the free energy with explicit inclusion of the intervalley interactions, respectively.
The former considered p-doped TMDs and used a contact potential, while the latter
considered n-doped TMDs and used a bare Coulomb potential with the inclusion
of dynamical screening effects.



CHAPTER 3

Excitons in monolayer TMDs

In this chapter the properties of excitons in monolayer TMDs are studied. A four-
band exciton Hamiltonian is constructed starting from the two-band electron and
hole single-particle Hamiltonians derived in the previous chapter. The correspond-
ing eigenvalue equation is solved numerically, exploiting the eigenstates of the con-
served exciton angular momentum, to obtain the exciton energies and wave func-
tions and the results are compared with those of the single-band model commonly
used in the literature. The chapter ends with an explanation on how some of the
exciton properties calculated in this chapter can be measured experimentally.

3.1 Exciton Hamiltonian eigenvalue equation(s)

A two-body exciton Hamiltonian can in general be written as Hexc = He ⊗ 1 +
1 ⊗ Hh with He and Hh the single-particle electron and hole Hamiltonians. Us-
ing the two-band single-electron Hamiltonian He

se,τe(k
e) (2.9) and the relation

Hh
sh,τh(kh) = −He

−sh,−τh(−kh) discussed in section 2.3 results in a four-band
exciton Hamiltonian which acts on states in the product Hilbert space Hexc =
He ⊗ Hh. A possible set of basis states which span the exciton Hilbert space is
given by {|Φe

c〉 ⊗ |Φh
c 〉 , |Φe

c〉 ⊗ |Φh
v〉 , |Φe

v〉 ⊗ |Φh
c 〉 , |Φe

v〉 ⊗ |Φh
v〉} with |Φe(h)

c 〉 and
|Φe(h)

v 〉 the electron (hole) Bloch state (2.2) based on the atomic orbital states d0

and d2τ , respectively. Writing out the exciton Hamiltonian in this basis by explic-
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Figure 3.1: Schematic representation of the different types of excitons in mono-
layer TMDs. The circles and dots indicate holes and electrons, respectively. The
solid blue ellipse and the dotted red ellipse indicate intravalley A excitons in the K
and K ′ valley, respectively. The dashed red ellipse indicates an intravalley B exci-
ton in the K valley. The large dot-dashed purple ellipse indicates an intervalley A
exciton.

itly working out the tensor products in the above general expression then gives

Hexc
σ (ke,kh) =

0 at(−τhkhx − ikhy ) at(τ ekex − ikey) 0

at(−τhkhx + ikhy ) ∆sh,τh 0 at(τ ekex − ikey)
at(τ ekex + ikey) 0 −∆se,τe at(−τhkhx − ikhy )

0 at(τ ekex + ikey) at(−τhkhx + ikhy ) λ(seτ e − shτh)

 .

(3.1)

Note that in this entire chapter the spin splitting in the conduction bands is ne-
glected, i.e. λc = 0, since it only has a small quantitative effect on the exciton
energies and wave functions, while the spin splitting in the valence bands λv = λ
is retained. As a result ∆s,τ now reduces to ∆− λsτ . The subscript σ is shorthand
notation for se, τ e, sh, τh and defines the type of exciton. Excitons consisting of a
hole in the upper (lower) valence band, i.e. shτh = 1 (shτh = −1), are commonly
known as A excitons (B excitons) [81]. Excitons with τ e = −τh (τ e = τh) are
referred to as intravalley (intervalley) excitons, i.e. these names refer to whether
the electron is in the same or opposite valley as compared to the absence of the
electron, not compared to the hole quasiparticle. Since light cannot induce a spin
flip, optically excited excitons have seτ e = shτh. The different types of excitons
are illustrated in Fig. 3.1.

The energy spectrum of the above exciton Hamiltonian is in general given by
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Eexc
σ,αe,αh(ke,kh) = Ese,τe,αe(k

e) + Esh,τh,αh(kh) with Es,τ,α(k) the single-particle
energy spectrum (2.10). For ke = kh the energy band with αe = αh = 1 is
given by the single-particle conduction band multiplied with a factor 2. This band
corresponds to excitons composed of an electron (hole) in the conduction (valence)
band, i.e. the classical type of exciton. This band will lead to bound states when
interparticle interactions are included. Similarly, the energy band with αe = αh =
−1 is twice the single-particle valence band and corresponds to excitons composed
of an electron (hole) in the valence (conduction) band. The energy bands with
αe = −αh = ±1 are located in between the other two bands and are completely
flat in the case of optically excited excitons. These bands correspond to excitons
composed of an electron and hole in the same band (conduction or valence).

The interaction potential between the electron and hole can be added to the
exciton Hamiltonian through the term V (|re−rh|)I4 with V (r) given by Eq. (2.40)
and I4 the 4 × 4 identity matrix. As a result, the Hamiltonian does not commute
with the single-particle momentum operators. This means that the components
of the single-particle wave vectors ke and kh are not good quantum numbers and
should be replaced by their corresponding differential operators when solving the
eigenvalue problem in the position representation. However, if the single-particle
coordinates are transformed to center of mass and relative coordinates,

R =
re + rh

2
, r = re − rh, K = ke + kh, k =

ke − kh

2
, (3.2)

the interaction term becomes V (r)I4. As a consequence, the Hamiltonian does
not commute with the relative momentum operator but does commute with the
center of mass momentum operator. Therefore, K is a conserved quantity and its
components are good quantum numbers. Note that the above definitions are written
as a function of the single-particle wave vectors which are relative with respect to
the valley wave vector τD, i.e. ki = qi − τ iDi with qi the absolute wave vector
in the Brillouin zone. This means that in these coordinates the center of mass wave
vector of an intervalley exciton can still be zero, i.e. when both the electron and
hole are located at their respective band extrema, even though the absolute center
of mass wave vector is ±2K (or ∓K when reduced to the first Brillouin zone).

At this point the exciton eigenvalue equation is a differential equation as a func-
tion of two variables, i.e. the two components of the relative position vector. In
polar coordinates the angular part can be separated from the radial part by exploit-
ing the fact that the single-electron Hamiltonian (2.9) commutes with the angular
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momentum operator

1

~
Jez,τe(k

e) =
(
xek

e
y − yekex

)
I2 +

τ e

2
σz =

1

i

∂

∂ϕe
I2 +

τ e

2
σz, (3.3)

where the first and second term correspond to the contributions from the orbital
angular momentum and the pseudospin, respectively. Using (A ⊗ B)(C ⊗ D) =
(AC)⊗ (BD) and ∂ϕeV (reh) = −∂ϕhV (reh) it can be shown that the total exciton
angular momentum operator

1

~
Jexcz,τe,τh =

1

~
Jez,τe(k

e)⊗ I2 + I2 ⊗
1

~
Jez,−τh(kh)

= (xky − ykx +XKy − Y Kx) I4 +
1

2
diag

(
τ eh− , τ

eh
+ ,−τ eh+ ,−τ eh−

)
,

(3.4)

with τ eh± = τ e ± τh, commutes with the exciton Hamiltonian (3.1). Note that the
separate electron, hole, relative, and center of mass angular momentum operators
all do not commute with the exciton Hamiltonian. In the single-band Schrödinger-
like model based on the single-particle energy spectrum (2.13), which is often used
in the literature and which will be discussed in subsection 3.1.3, the latter two
angular momentum operators do commute with the exciton Hamiltonian, but this is
prevented in the four-band Dirac model due to the coupling between the momentum
and the pseudospin.

3.1.1 Exact solution forK = 0 excitons
Considering first the simplest case in which K = 0, i.e. excitons with no transla-
tional kinetic energy. The center of mass orbital angular momentum now vanishes
and as a result the eigenvalues of the exciton angular momentum operator (3.4) are
all non-degenerate and the eigenstates are eigenstates of the exciton Hamiltonian
(3.1) as well. This allows the exciton wave function to be written as

Ψexc
σ (r) =


φe,hc,c (r)ei(j−

1
2
τeh− )ϕ

iφe,hc,v (r)ei(j−
1
2
τeh+ )ϕ

iφe,hv,c(r)e
i(j+ 1

2
τeh+ )ϕ

φe,hv,v(r)e
i(j+ 1

2
τeh− )ϕ

 , (3.5)

with j the angular quantum number (which needs to be an integer in order to satisfy
single-valuedness of the wave function) and where the diagonal nature of the exci-
ton angular momentum operator allows separate prefactors (in this case a factor i
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in the second and third component) to be included for convenience. The subscripts
of the radial wave functions denote the bands in which the particles denoted in the
corresponding superscripts are located. Using the above ansatz the exciton Hamil-
tonian eigenvalue equation in relative coordinates and in position representation, in
which

τkx ± iky =
1

i
τe±iτϕ

(
∂

∂r
± iτ

r

∂

∂ϕ

)
, (3.6)

becomes

τh
(
∂

∂r
− τh

r

(
j − 1

2
τ eh+

))
φe,hc,v (r) + τ e

(
∂

∂r
+
τ e

r

(
j +

1

2
τ eh+

))
φe,hv,c(r)

=
1

at
(Eexc

σ + V (r))φe,hc,c (r)

τh
(
∂

∂r
+
τh

r

(
j − 1

2
τ eh−

))
φe,hc,c (r) + τ e

(
∂

∂r
+
τ e

r

(
j +

1

2
τ eh−

))
φe,hv,v(r)

= − 1

at

(
Eexc
σ + V (r)−∆sh,τh

)
φe,hc,v (r)

τ e
(
∂

∂r
− τ e

r

(
j − 1

2
τ eh−

))
φe,hc,c (r) + τh

(
∂

∂r
− τh

r

(
j +

1

2
τ eh−

))
φe,hv,v(r)

= − 1

at
(Eexc

σ + V (r) + ∆se,τe)φ
e,h
v,c(r)

τ e
(
∂

∂r
− τ e

r

(
j − 1

2
τ eh+

))
φe,hc,v (r) + τh

(
∂

∂r
+
τh

r

(
j +

1

2
τ eh+

))
φe,hv,c(r)

=
1

at

(
Eexc
σ + V (r)− λ(seτ e − shτh)

)
φe,hv,v(r)

.

(3.7)
This set of equations can be solved numerically ‘exact’ using the finite element
method (FEM).

3.1.2 Approximate solution forK 6= 0 excitons
When K 6= 0, the center of mass orbital angular momentum R × ~K can be
non-zero and the eigenvalues of the total exciton angular momentum operator are
in general given by the sum of the relative and center of mass quantum numbers
j = jr + jR, both of which are integers, meaning that these eigenvalues are all
infinitely degenerate and that the eigenstates are not necessarily eigenstates of the
exciton Hamiltonian. In order to find the common eigenstates of the angular mo-
mentum and the Hamiltonian the latter would have to be diagonalized in the infi-
nite dimensional subspace spanned by all the angular momentum eigenstates cor-
responding to a given eigenvalue j. This is practically impossible and as such
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this prevents the separation of the angular problem from the radial one. Since
the momentum-pseudospin coupling lies at the heart of this problem, this can be
resolved by decoupling the exciton eigenvalue equation to a single equation fol-
lowing a procedure analogous to earlier works [109–111]. Defining

Oe = at(τ ekex − ikey)I2, Oh = at(−τhkhxσx + khyσy), (3.8)

the exciton eigenvalue equation can be rewritten as

(
Oh − V (r)I2 +

∆sh,τh

2
(I2 − σz)

)
|Ψe

c〉+Oe |Ψe
v〉 = Eexc

σ |Ψe
c〉

O†e |Ψe
c〉+

(
Oh − V (r)I2 −

∆se,τe

2
(I2 + σz)

+
λ(seτ e − shτh)

2
(I2 − σz)

)
|Ψe

v〉 = Eexc
σ |Ψe

v〉

, (3.9)

with |Ψe
c〉 =

(
|φe,hc,c 〉 , |φe,hc,v 〉

)T
and |Ψe

v〉 =
(
|φe,hv,c〉 , |φe,hv,v〉

)T
. It follows from the

second equation that

|Ψe
v〉 ≈

(
Eexc
σ I2 + V (r)I2 +

∆se,τe

2
(I2 + σz)

− λ(seτ e − shτh)
2

(I2 − σz)
)−1

O†e |Ψe
c〉 ,

(3.10)

where the hole kinetic energy was assumed to be small compared to the band gap
and the exciton energy, which is a good approximation for monolayer TMDs since
for a high photo-induced charge carrier density of 5 × 1012 cm−2 [112–114] the
Fermi energy is on average 0.03 eV with respect to the band extrema for the con-
sidered TMDs, which compares with a band gap of on average 1.5 eV (and an
exciton energy which is lower but of the same order as the band gap). Using this
result, the first equation of (3.9) can be written as{(
−V (r) + a2t2ke−

(
gσ1 (Eexc

σ , r)ke+
))
|φe,hc,c 〉 − atkh+ |φe,hc,v 〉 = Eexc

σ |φe,hc,c 〉(
−V (r) + ∆sh,τh + a2t2ke−

(
gσ2 (Eexc

σ , r)ke+
))
|φe,hc,v 〉 − atkh− |φe,hc,c 〉 = Eexc

σ |φe,hc,v 〉
(3.11)

with kj± = τ jkjx ± ikjy and with

gσ1 (Eexc
σ , r) = (Eexc

σ + V (r) + ∆se,τe)
−1 ,

gσ2 (Eexc
σ , r) =

(
Eexc
σ + V (r)− λ(seτ e − shτh)

)−1
.

(3.12)
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The first equation now leads to

|φe,hc,c 〉 ≈ −
atkh+

Eexc
σ + V (r)

|φe,hc,v 〉 , (3.13)

now assuming the electron kinetic energy to be small compared to the exciton en-
ergy, which is a good approximation for the same reason as explained below Eq.
(3.10). Inserting this in the second equation of (3.11), transforming to center of
mass and relative coordinates, and going to position representation results in(
− 2a2t2

Eexc
σ + V (r)

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
− K2

4

)
− V (r) + ∆sh,τh

− a2t2
(
∂

∂r

1

Eexc
σ + V (r)

)(
2
∂

∂r
+ i

τ e + τh

r

∂

∂ϕ

+ δτh,−τeτ
h (Ky cos(ϕ)−Kx sin(ϕ))

))
φe,hc,v (r, ϕ) = Eexc

σ φe,hc,v (r, ϕ).

(3.14)

In the last step it was assumed that seτ e = shτh since in this chapter only opti-
cally excited excitons are considered. The disadvantages of using this equation are
the fact that it needs to be solved self-consistently and that the other three compo-
nents of the exciton wave function still need to be calculated explicitly from Eqs.
(3.10) and (3.13) after solving this equation whereas a numerical solution of the
coupled set of equations (3.7) immediately yields all four components. The last
two terms in this equation, which only appear for intravalley excitons and not for
intervalley ones, still prevent the separation of the angular and the radial part. In
principle these terms could be treated within perturbation theory. In such a case
the angular part of the zeroth order wave function is simply given by exp(ijϕ) with
j an integer quantum number. This implies that these terms give no contribution
in first order perturbation theory, whereas in second order perturbation theory they
only couple states whose angular momentum quantum numbers differ by ±1. Be-
cause of the large energy difference between such states (for not too highly excited
states), which will be seen in subsection 3.2.2, these corrections will be negligibly
small. They will therefore be neglected in the remainder of the calculations and the
angular part of the wave function is thus assumed to be given by exp(ijϕ).

3.1.3 Single-band model
Starting from the parabolic single-particle energy spectrum (2.13), absorbing the
constant terms into the exciton energy, and performing the more general transfor-
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mation to center of mass and relative coordinates, i.e. with

R =
mere +mhrh
me +mh

, k =
mhke −mekh
me +mh

, (3.15)

as compared to Eq. (3.2), the exciton eigenvalue equation reduces to a typical
Schrödinger equation:(

~2K2

2Mσ

− ~2

2µσ

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
− V (r)

)
ψexcσ (r, ϕ) = Eexc

σ ψexcσ (r, ϕ),

(3.16)
withMσ = mse,τe+msh,τh the total exciton mass and µσ = mse,τemsh,τh/(mse,τe+
msh,τh) the reduced exciton mass and where the angular part of the wave function
is again of the form exp(ijϕ) with j an integer quantum number. This equation is
often used in the literature as it is easier to solve numerically, for example using
the FEM, than the set of equations (3.7) or the decoupled equation (3.14). Fur-
thermore, it has the important advantage that it is always a single equation, even
when studying complexes consisting of more than two particles. It will be used in
the next two chapters to study trions and biexcitons. The Dirac model on the other
hand leads to a set of 2N coupled equations for an N -particle complex. The disad-
vantage of the single-band model is that the coupling between the conduction and
valence bands, which is inherently present in the multi-band Dirac model through
the Berry curvature, is not taken into account. Different properties of excitons in
monolayer TMDs will now be calculated using the four-band model and the differ-
ences with the single-band model will be investigated. This study was published
in Physical Review B [115]. Unless specified otherwise, the results are shown for
intravalleyA excitons withK = 0 and are obtained from the set of equations (3.7).

3.2 Numerical results

3.2.1 Ground state binding energy
Solving either the set of equations (3.7), the decoupled equation (3.14), or the
single-band model equation (3.16) yields the exciton energy Eexc

σ , which from now
on is written as E, dropping the subscript σ and the superscript exc for notational
simplicity. However, a physically more relevant quantity is the exciton binding
energy Eb. This quantity is defined as the difference between the energy of the
constituent electron and hole and the exciton energy, i.e. Eb = Ee + Eh − E. In
the multi-band model this reduces to Eb = ∆sh,τh − E whereas in the single-band
model it is simply given by Eb = −E.
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Figure 3.2: (a) Binding energy for A (blue) and B (red) excitons in MoS2 sus-
pended in vacuum as a function of the spin-orbit coupling strength. (b) Binding
energy for A excitons in MoS2 suspended in vacuum as a function of the band gap
for fixed charge carrier mass. The dashed red line is the single-band result.

In Fig. 3.2(a) the ground state binding energy forA andB excitons as a function
of the spin-orbit coupling strength is shown. In the absence of spin-orbit coupling
the binding energies for both kinds of excitons are equal since there is no spin
splitting of the energy bands. With increasing spin-orbit coupling theA (B) exciton
binding energy decreases (increases). This is to be expected since increasing λ will
cause the A exciton band gap to become smaller whereas the B exciton band gap
becomes larger. It follows from Eq. (2.14) that an increasing (decreasing) band
gap leads to an increasing (decreasing) effective charge carrier mass. This reduces
(enhances) the kinetic energy and therefore enhances (reduces) the binding energy,
thus explaining the results in the figure. For the realistic value of the spin-orbit
coupling strength of MoS2 given in Table 2.1 the difference in binding energy of
the A and B exciton is 14 meV and the difference in the ground state energy of the
A and B exciton is 136 meV, i.e. 2λ minus the difference in binding energy.

The ground state binding energy as a function of the band gap is shown in Fig.
3.2(b). In order to facilitate comparison with the single-band model result, for each
value of the band gap the value of at is calculated according to Eq. (2.14) such that
it fixes the charge carrier mass at 0.5m0. The figure shows that the binding energy
calculated in the multi-band model converges to the binding energy calculated in
the single-band model in the limit of an infinite band gap. As discussed in the
previous chapter, in the multi-band model there is a mixing between the conduction
and valence band states, which is clear from the eigenstates (2.12). This mixing
increases with decreasing band gap and as such the conduction (valence) band state
increasingly loses its electron-like (hole-like) character. This causes the exciton
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binding energy to decrease with decreasing band gap. In the single-band model the
charge carrier mass replaces the role of the parameter at in the multi-band model
as the parameter that determines the curvature of the energy bands. However, the
band gap parameter is effectively lost. Only pure electron- and hole-like states are
considered in the single-band eigenvalue equation (3.16), which can therefore be
viewed as an infinite band gap approximation. This is why the multi-band result
converges to the single-band result in the infinite band gap limit. At the realistic
value of the band gap of MoS2 given in Table 2.1 the difference in binding energy
of the multi- and single-band model is 16 meV. It should be noted that, in the
multi-band model, when the band gap is smaller than the exciton binding energy
the ground state is no longer a true bound state. However, this is not the case for
the materials considered in this thesis.

In Table 3.1 the exciton ground state binding energy is shown for different
monolayer TMDs and different substrates as calculated using both the single- and
multi-band model. For the single-band results the effective masses given in Ref.
[81], which are equal to those calculated in subsection 2.2.1 (except for MoS2

for which 0.50m0 is used instead of 0.49m0), were used. The calculated values
are compared with other theoretical studies based on the single-band model using
ground state diffusion Monte Carlo [116], path-integral Monte Carlo [117], and
the stochastic variational method [118], as well as experimental results. It is clear
that excitons in monolayer TMDs have exceptionally large binding energies. The
origin for these large binding energies is threefold: the (quasi-)perfect 2D nature of
the charge carriers, the relatively large effective masses, and the reduced dielectric
screening, i.e. for a monolayer TMD in vacuum only charges in the material plane
itself contribute to the screening, as described by the Keldysh potential (2.40). As
discussed in section 1.1, non-perfect 2D confinement, small effective masses, and
large dielectric constants limit the exciton binding energy in conventional semi-
conductor heterostructures such as GaAs/AlGaAs. The calculated values also show
that the presence of a substrate reduces the exciton binding energy, which is a result
of the additional dielectric screening. In general the values are in good agreement
with the other theoretical results, differing at most 16%. However, it should be
noted that in Ref. [117] a value of εb = 3.0 was used for SiO2, leading to con-
sistently larger binding energies. Assuming εb = 3.0, a single-band (multi-band)
binding energy of 365.3 meV (352.1 meV), 323.6 meV (316.8 meV), 328.6 meV
(315.2 meV), and 301.6 meV (292.1 meV) for MoS2, MoSe2, WS2, and WSe2,
respectively, is found. This is in considerably better agreement with the results
of Ref. [117]. The agreement with the experimental results is less satisfactory.
With some references there is reasonable agreement while other references find
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Substrate Literature This thesis
Theory Experiment SB MB

MoS2 Vacuum 551.4 [116] 570 [122] 555.1 538.6
526.5 [117]
555.0 [118]
614 [119]

SiO2 348.6 [117] - 320.6 308.4
301 [120]

hBN 222.0 [121] - 191.9 183.5
MoSe2 Vacuum 477.8 [116] - 480.4 471.8

476.9 [117]
480.4 [118]

SiO2 322.9 [117] 590 ± 50 [123] 286.2 279.9
BLG - 550 ± 40 [124] 256.7 250.9

580 ± 60 [125]
WS2 Vacuum 519.1 [116] - 523.3 505.7

509.8 [117]
523.5 [118]

SiO2 322.9 [117] 320 ± 40 [126] 284.0 271.8
312 [127]

710 ± 10 [128]
410 [129]
700 [130]

WSe2 Vacuum 466.7 [116] - 470.2 457.8
456.4 [117]
470.2 [118]

SiO2 294.6 [117] 370 [131] 262.5 253.8
720 ± 70 [123]

482 [132]
198 [133]

600 ± 200 [134]

Table 3.1: Exciton ground state binding energy (meV) for different monolayer
TMDs and different substrates calculated using the single-band (SB) and multi-
band (MB) model, compared with theoretical and experimental results from the
literature. The following dielectric constants were used: εb = 3.8 (εb = 4.58) and
εt = 1 for SiO2 (bilayer graphene, BLG) below and vacuum above the TMD and
εb = εt = 4.4 for encapsulating hBN.
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binding energies which are almost a factor 3 larger. These large discrepancies and
the non-consistency between different experimental results for the same systems
can potentially be attributed to surface roughness of the substrate, which can lead
to local detachment of the TMD from the substrate and as such to considerably
larger binding energies. Another possible explanation is the fact that in experi-
ments the excitons can potentially be confused with excitons which are bound to
defects, which leads to higher predicted binding energies. The procedure of these
experiments is discussed in section 3.3.

3.2.2 Exciton energy spectrum

Up to now only results for the ground state were shown. This state is characterized
by a principal quantum number n = 1 and an angular momentum quantum num-
ber j = 0 and is referred to as the 1s state in analogy to the 2D hydrogen atom.
However, similar to the 2D hydrogen atom, there is an infinite spectrum of bound
exciton states which pile up towards the edge of the continuum, which for the case
of monolayer TMDs lies at ∆sh,τh . These will be discussed in this subsection,
starting with s states. However, in contrast to the (2D) hydrogen atom in which
states with the same principal quantum number but different angular momentum
are degenerate, the non-local screening effects in monolayer TMDs which lead to
the Keldysh potential (2.40) also result in the breaking of this degeneracy, as will be
seen shortly. The higher angular momentum states cannot be observed by means
of one-photon transitions which are most commonly used in experiments. How-
ever, two-photon transitions can give optical access to these states, as was shown
successfully for p states [130,131]. Even higher angular momentum states, such as
d states, have so far not been experimentally measured in monolayer TMDs. Even
though these non-zero angular momentum states are optically inactive, they do play
an important role in exciton relaxation and valley dynamics [135] and are therefore
worth investigating. The results are shown in this subsection and this study was
published in Physical Review B [136].

In Fig. 3.3(a) the five lowest s state energy levels for excitons in WSe2 and
WS2 on a SiO2 substrate are shown and compared with an analytical model based
on an effective Hamiltonian and a bare coulomb potential [77] and experimental
results [126,131]. This shows that the agreement of the multi-band model with the
experimental results is better than that of the analytical model. The results obtained
from the multi-band model always overestimate the experimental results except for
the ground state of WS2 for which a smaller value is found.

The dependence on the 2D polarizability of the three lowest s state energy levels
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Figure 3.3: (a) Five lowest s state energy levels for excitons in WSe2 and WS2 on a
SiO2 substrate, compared with the analytical model of Ref. [77] (red), and the ex-
perimental results of Refs. [131] (WSe2) and [126] (WS2) (black). The parameters
specified in Ref. [77] were used in the calculation, i.e. ∆s,τ = 1.97 eV, a = 3.310
Å, and t = 1.13 eV for WSe2 and ∆s,τ = 2.4 eV, a = 3.197 Å, and t = 1.25 eV
for WS2, and a dielectric constant of εr = 3.9 for the SiO2 substrate. (b) Three
lowest s state energy levels calculated for excitons in MoS2 suspended in vacuum
as a function of the 2D polarizability. The dashed green line indicates the edge of
the continuum.

for excitons in MoS2 is shown in Fig. 3.3(b). As the 2D polarizability increases,
and thus the interaction strength decreases, all the energy levels converge towards
the edge of the continuum. As the 2D polarizability decreases, the ground state
disappears in the negative continuum, at which point it is no longer a true bound
state.

The exciton bound state spectrum of MoS2, now also including p and d states,
is shown in Fig. 3.4. Note that the degeneracy between states with the same prin-
cipal quantum number but different orbital angular momentum is broken, such that
those with higher (absolute value of) orbital angular momentum have lower en-
ergy. The energy difference between the energy levels is larger when the material
is suspended in vacuum as compared to when it is placed on a substrate, which
is due to the stronger interactions in the former case. The results are compared
with those of Refs. [119] and [120], which use a first-principles (meaning without
tunable parameters, phenomenological models, or other assumptions) and a tight-
binding formulation, respectively, of the Bethe-Salpeter equation approach, which
is a many-body formulation of the exciton problem which takes into account two-
particle interactions up to infinite order and is therefore expected to give reliable
results. These studies also found that E2p < E2s, which was experimentally found
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Figure 3.4: Intravalley (τ e = −τh = 1, left) and intervalley (τ e = τh = −1, right)
exciton energy levels for MoS2 suspended in vacuum (a) and placed on a SiO2

substrate (εb = 3.8) (b). The results of this thesis (T. T.) are compared with results
from the literature (Lit.), i.e. from Ref. [119] (a) and Ref. [120] (b). The obtained
results are labeled on the figure according to n[L]j , where [L] represents s (blue),
p (red), or d (black) depending on the orbital angular momentum of the dominant
component of the wave function. No labeling was given in Ref. [120] for intervalley
excitons. Exciton states with negative orbital angular momentum are indicated
with dashed lines. When two states with opposite orbital angular momentum are
degenerate only the solid line is shown. B exciton states are indicated with the letter
B. To facilitate comparison, the energy levels are uniformly shifted downwards in
energy such that the ground state (which can be either intravalley or intervalley)
has zero energy.

as well in Ref. [130] for WS2. Furthermore, the results show thatE3d < E3p < E3s,
which was also theoretically predicted in Ref. [130] for WS2.

The lowest energy intravalley exciton is found to have slightly lower energy
than the lowest energy intervalley exciton, which again agrees with Ref. [119] but
not with Ref. [120]. However, whether the intravalley or intervalley exciton has
lowest energy will also depend on the effect of exchange interactions. This effect
is not taken into account here and therefore it is not possible to give a definite
answer on which type of exciton has the lowest ground state energy. However, the
exact strength of the exchange interactions is difficult to predict and therefore even
when including this effect it is still practically impossible to estimate which exciton
has the lowest ground state energy [120].

The most remarkable result is the ordering of the intervalley exciton energy
levels with different j, with as the most striking example the fact that the ground
state has angular momentum j = −1. The reason for this is related to the orbital
angular momenta of the different components of the total exciton wave function.
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The second component, which corresponds to an exciton consisting of an electron
in the conduction band and a hole in the valence band as discussed in the previous
section, is the most dominant one. As can be seen from Eq. (3.5), the dominant
component of an intravalley exciton (τ e = −τh) with total angular momentum j
also has orbital angular momentum j. For an intervalley exciton (τ e = τh = τ ),
however, the dominant component of an exciton with angular momentum j has
orbital angular momentum j − τ . Therefore, the total wave function of an inter-
valley exciton with angular momentum j = τ resembles that of an s-like state and
thus has the lowest energy. Looking at Eq. (3.4), this remarkable result can be
interpreted as the exciton having approximately zero orbital angular momentum
(and hence an s-like wave function, even though this is not a good quantum num-
ber) but non-zero contribution from the pseudospin of the electron and hole, which
cancels for intravalley excitons but adds up for intervalley excitons. This is why
the energy levels in Fig. 3.4 are labeled according to the orbital angular momen-
tum of the dominant component of the exciton wave function. From now on, the
subscript j in these labels will be omitted for intravalley excitons, as in this case
the total angular momentum and the (approximate) orbital angular momentum are
equal. In Ref. [119] it was found that the intervalley exciton ground state is a 1s
state, although the origin of the angular momentum labeling used in that work is
not entirely clear, whereas in Ref. [120] no statement was made about the angular
momentum of the intervalley exciton states.

Finally, it is found that intravalley excitons with angular momenta ±j are de-
generate, which is in agreement with Ref. [119] but not with Ref. [120]. This
degeneracy is broken for intervalley excitons, again in agreement with Ref. [119],
but is restored when taking opposite intervalley excitons into account, i.e. (τ, j)
and (−τ,−j) excitons are degenerate. This may suggest that the (non-)degeneracy
between the states with opposite j arises from the coupling between the orbital
angular momentum of the exciton and the intrinsic angular momentum of the ex-
citon. The single-particle intrinsic angular momentum (which is associated with
the Berry curvature and gives rise to the intrinsic magnetic moment (2.24)) is op-
posite for electrons and holes, as well as in the two valleys. This means that the
total intrinsic angular momentum for intravalley excitons is zero and therefore it
cannot couple with the orbital angular momentum. For intervalley excitons, how-
ever, the total intrinsic angular momentum is non-zero and opposite for the two
opposite intervalley excitons. This causes a valley-opposing splitting between in-
tervalley excitons with opposite j, which explains the degeneracy between (τ, j)
and (−τ,−j) exciton states. The non-degeneracy between opposite j intravalley
excitons found in Ref. [120] could be explained by many-body Berry curvature
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Substrate 1s 2p 2s 3d 3p 3s

MoS2 Vacuum 539 321 262 212 190 163
SiO2 308 139 107 73 65 54
hBN 183 61 46 26 25 20

MoSe2 Vacuum 472 291 241 199 179 154
SiO2 280 135 104 74 66 55
hBN 172 63 48 28 26 22

WS2 Vacuum 506 283 226 176 157 132
SiO2 272 110 83 52 48 39
hBN 152 44 34 17 17 14

WSe2 Vacuum 458 265 214 170 152 129
SiO2 254 108 82 54 49 40
hBN 146 45 34 19 18 15

Table 3.2: Binding energy (meV) calculated for different exciton states in different
monolayer TMDs for different substrates. The following dielectric constants were
used: εb = 3.8 and εt = 1 for SiO2 below and vacuum above the TMD and
εb = εt = 4.4 for encapsulating hBN.

effects [137], which are not taken into account in this thesis.

In Table 3.2 the binding energy of different exciton states is shown for different
monolayer TMDs and different substrates. The results show that, for all exciton
states, the binding energy is largest in MoS2 and smallest in WSe2. Remarkably,
the binding energy is larger in MoSe2 than in WS2 for all states except for the
ground state. For comparison, results from the literature are summarized in Table
3.3. In the case of MoS2, for which the results from the literature are theoretical,
the agreement with the calculated values is good, differing at most by 17%. In the
case of WS2 and WSe2 experimental results are available (except for the 2s, 3d, and
3s states of Ref. [130] which are theoretical) and the agreement with the calculated
values is less satisfactory, differing at least by 15% and at most by a factor 9 (with
the 3s state of Ref. [134]). The results of Refs. [130] and [134] in particular are
remarkable, with 1s state binding energies which are significantly larger than the
range of commonly accepted theoretical ground state exciton binding energies in
vacuum (see Table 3.1), even though in both works a SiO2 substrate is used which
should reduce the binding energy. However, the difference in energy between the
1s and 2s state found in Ref. [134] is 13% smaller than the value obtained here,
whereas the result found in Ref. [130] is 38% larger than said value. This may
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Substrate Ref. 1s 2p 2s 3d 3p 3s

MoS2 Vacuum [119] 614 395 315 - - -
SiO2 [120] 301 150(-)/125(+) 99 - - -

WS2 SiO2 [126] 320 - 156 - - 96
SiO2 [130] 621 423 314 266 205 136

WSe2 SiO2 [131] 364 - 199 - - 133
SiO2 [134] 650 500 500 - 370 370

Table 3.3: Binding energy (meV) for different exciton states in different monolayer
TMDs for different substrates as found in the literature. Results for MoS2 are
theoretical whereas the results for WS2 and WSe2 are experimental.

indicate that in Ref. [134] the band gap was overestimated, which was already
suggested in the manuscript itself, whereas in Ref. [130] there may have been issues
with the substrate as discussed in the previous subsection.

3.2.3 Wave function and interparticle distance

In Fig. 3.5 the different components of the 1s state exciton wave function are shown
for two values of the band gap. For the realistic value of the band gap the second
component of the exciton wave function (blue curves), which represents the con-
tribution of an exciton composed of an electron in the conduction band and a hole
in the valence band, is significantly larger than the other three components. This
component as well as the third component (black curves) show s-like behavior,
whereas the first and fourth component (red curves) show p-like behavior. This is
in agreement with Eq. (3.5), in which for j = 0 and τ e = −τh = 1 the second and
third component have zero orbital angular momentum and the first (fourth) compo-
nent has orbital angular momentum−1 (1). The single-band model wave function,
which has only one component since in this model only conduction particles are
considered, is in good agreement with the dominant component. It is precisely
the other components, representing the contribution of excitons consisting partly
or entirely of valence particles, which lead to the decreasing binding energy with
decreasing band gap shown in Fig. 3.2(b). For the case of a very large band gap
the valence components are completely suppressed and the dominant conduction
component agrees perfectly with the single-band model wave function, which is
in correspondence with the fact that the binding energy in the multi-band model
converges to the single-band model binding energy in the limit of an infinite band
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Figure 3.5: Different components (β = c, γ = v: blue curve, β = c, γ = c and
β = v, γ = v: red curve, β = v, γ = c: black curve) of the 1s state wave function
for excitons in MoS2 suspended in vacuum obtained from Eq. (3.14) (solid) and
Eq. (3.7) (dashed) for ∆ = 1.66 eV (a) and ∆ = 500 eV (b) for fixed charge
carrier mass. The dotted green curve is the single-band result. The inset shows the
corresponding total radial probability distribution.

gap.
It is also worth comparing the results of the decoupled eigenvalue equation

(3.14) with those of the set of equations (3.7). Using the decoupled eigenvalue
equation for an exciton in MoS2 suspended in vacuum results in a binding energy
of 556 meV, 274 meV, and 330 meV for the 1s, 2s, and 2p state, respectively.
This compares with the values 539 meV, 262 meV, and 321 meV, respectively, ob-
tained from equation (3.7) listed in Table 3.2. This amounts to a difference of 3-4%
between the results of the two equations. When comparing the wave functions ob-
tained from both equations, the largest difference between the two is found in the
second component for small r. The wave function obtained from Eq. (3.7) has a
maximum at small non-zero r while the solution obtained from Eq. (3.14) has its
maximum in the origin. This additional curvature of the wave function for the for-
mer leads to a higher energy and as such a lower binding energy, in agreement with
the values mentioned above. The total radial probability distributions as obtained
from the two equations are in good agreement, with the probability distribution ob-
tained from Eq. (3.7) being slightly more spread out, which is in agreement with
the lower binding energy which is found using this equation.

Solving the decoupled eigenvalue equation (3.14) allows to calculate the exci-
ton energy as a function of the center of mass wave vector. This dependence is
approximately parabolic at low energy. From the curvature of the exciton disper-
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sion the total exciton mass can be obtained through the expression

M =
~2

m0

(
∂2E(K)

∂K2

∣∣∣∣
K=0

)−1

. (3.17)

This results in M = 1.14m0, M = 1.24m0, M = 0.70m0, and M = 0.77m0 for
the 1s state exciton in, respectively, MoS2, MoSe2, WS2, and WSe2 suspended in
vacuum. These values are 9-14% larger than the non-interacting exciton masses
Mσ = mse,τe + msh,τh , with ms,τ calculated from Eq. (2.14), which results in,
respectively, M = 0.98m0, M = 1.08m0, M = 0.64m0, and M = 0.68m0. The
interaction between the electron and the hole thus causes the exciton to become
heavier. These interacting exciton masses differ very little for higher excited exci-
ton states: they have slightly smaller masses, e.g. M = 1.12m0 and M = 1.09m0

for the 2p and 2s state in MoS2, respectively. Furthermore, there is also a very weak
dependence on the substrate dielectric constant, i.e. a decreasing exciton mass with
increasing dielectric constant, e.g. M = 1.09m0 for the 1s state exciton in MoS2

on a SiO2 substrate. These two observations are in correspondence with the fact
that a lower binding energy leads to a smaller exciton mass.

It should be noted that in this thesis the exchange interactions between the elec-
trons and holes, which actually stem from the exchange interactions between the
conduction and valence electrons and are therefore weak because of the small over-
lap between these states, are not taken into account. These couple the intravalley
exciton bands originating from direct transitions in theK andK ′ valley and as such
lead to a splitting of these originally degenerate bands into a parabolic lower band
a linear upper band [119, 120]. This leads to a correction on the total exciton mass
of the lower parabolic band, which is the ground state. Using the effective model
and the parameters given in Ref. [119] leads to a correction factor of 1.26 for the
total exciton mass for MoS2 suspended in vacuum. Similar results are expected for
other TMDs. It should be noted that in Ref. [119] the bare Coulomb potential was
used instead of the Keldysh potential to study the exchange effects. When using
the latter potential the above correction factor is expected to be even closer to 1.
The presence of a substrate will also reduce the correction factor. The exchange in-
teractions reduce the binding energy of excitons in MoS2 suspended in vacuum by
20 meV in the case of a bare Coulomb potential [119]. In the case of the Keldysh
potential this effect will be even smaller, which is why it is neglected in this thesis.

For a general N -particle complex the correlation function between particles i
and j is defined as

Cij(r) = 〈Ψ|δ(ri − rj − r)|Ψ〉 , (3.18)
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Figure 3.6: Radial probability distribution (a) and average interparticle distance as
a function of the 2D polarizability (b) calculated for the three lowest s states for
excitons in MoS2 suspended in vacuum.

with Ψ(r1, r2, . . . , rN) the total N -particle wave function. For excitons in a trans-
lational invariant system this simply reduces to the total probability distribution.
The radial probability distributions for the three lowest s states for excitons in MoS2

suspended in vacuum are shown in Fig. 3.6(a). This shows that the excited states
have a larger probability for the particles being at a larger distance from each other.
In general, the radial probability distribution of the nth state exhibits n maxima.
In Fig. 3.6(b) the average interparticle distances for the three lowest s states as a
function of the 2D polarizability are shown. These are calculated from

〈rij〉 = 2π

∫ ∞
0

r2Cij(r)dr. (3.19)

The results show that the average interparticle distance increases with the 2D po-
larizability, which is a consequence of the reduced interaction strength, as well as
with increasingly excited states.

In Table 3.4 the average interparticle distance of different exciton states is
shown for different monolayer TMDs and different substrates. The results show
that the average interparticle distances exhibit opposite behavior as compared to
the binding energies listed in Table 3.2, as can be expected. It can be seen that the
average interparticle distance is mostly determined by the type of transition metal
in the TMD, while changing the chalcogen atom between sulfur and selenium has
very little influence on the interparticle distance. Furthermore, in vacuum the av-
erage interparticle distance in MoS2 (WS2) is slightly smaller than that in MoSe2

(WSe2) for all states, while in the presence of a substrate this behavior holds for
the lowest states, whereas for higher excited states the opposite is true.
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Substrate 1s 2p 2s 3d 3p 3s

MoS2 Vacuum 1.00 2.05 2.97 3.43 4.39 5.53
SiO2 1.11 2.57 3.86 4.87 6.31 8.09
hBN 1.27 3.47 5.22 7.49 9.52 11.99

MoSe2 Vacuum 1.04 2.11 3.05 3.48 4.46 5.59
SiO2 1.14 2.57 3.83 4.71 6.12 7.83
hBN 1.28 3.32 5.02 6.92 8.85 11.27

WS2 Vacuum 1.23 2.56 3.75 4.42 5.69 7.21
SiO2 1.41 3.43 5.18 6.87 8.84 11.32
hBN 1.66 4.93 7.36 11.33 14.05 17.52

WSe2 Vacuum 1.27 2.62 3.82 4.45 5.72 7.23
SiO2 1.43 3.40 5.12 6.62 8.56 10.97
hBN 1.66 4.73 7.11 10.58 13.24 16.65

Table 3.4: Average interparticle distance (nm) calculated for different exciton states
in different monolayer TMDs for different substrates. The following dielectric
constants were used: εb = 3.8 and εt = 1 for SiO2 below and vacuum above the
TMD and εb = εt = 4.4 for encapsulating hBN.

3.2.4 Absorbance spectrum
When both the excitonic energy spectrum as well as the wave functions are known
it is also possible to calculate the absorbance spectrum from the valence band con-
tinuum to the bound exciton states resulting from the presence of a radiation field.
Similar to the discussion in subsection 2.2.2, the absorption rate is obtained from
Fermi’s golden rule. Because now transitions between two-particle states are con-
sidered the perturbation is proportional to (e.σ)⊗ I2− I2⊗ (e.σ), again assuming
that q = 0 because of the large light wavelength compared to the lattice constant.
The density of states of the final state, which appears in Fermi’s golden rule but is
a constant for the continuum bands at low energy, is now for a bound exciton state
with energy Ej given by

δ(Ej − ~ω) = lim
γ→0

1

πγ

γ2

(Ej − ~ω)2 + γ2
= lim

γ→0

1

π
Im
(

1

Ej − ~ω − iγ

)
, (3.20)

with ~ω the photon energy. Due to thermal effects the broadening factor γ will
be non-zero and the limit in the above expression can be left out. The absorbance
is given by the ratio of the absorbed energy per unit time to the energy flux of the
radiation field and, calculating the matrix element of the perturbation term between
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the valence band continuum state and an exciton bound state, can be expressed
as [138, 139]

α(ω) ∝ 1

ω
Im

(∑
j

|Pe(0)|2|φe,h,jc,v (0)− φe,h,jv,c (0)|2

Ej − ~ω − iγ

)
, (3.21)

with φe,h,jc,v (r) and φe,h,jv,c (r) components of the exciton wave function (3.5) and
Pe(0) the absorption rate between the valence and conduction band continuum
states discussed in subsection 2.2.2 at the band edges. The wave function of higher
angular momentum states is zero in the origin, thus explaining why these states
cannot be observed in one-photon experiments as discussed earlier. The above for-
mula can also be derived more rigorously from quantum field theory. This lies
outside the scope of this thesis but the derivation can be found in Ref. [140] and
the different steps can be summarized as follows. The electromagnetic field is
treated classically and the electronic part of the Hamiltonian is written out in sec-
ond quantization, expanding the field operators in the Bloch functions in the term
describing the interactions between the electrons and the electric field. The Heisen-
berg equations for the creation and annihilation operators lead to an equation for
the interband polarization, which is defined as the expectation value of the electric
dipole and can also be expanded in Bloch functions. Assuming a filled valence
band and an empty conduction band, this equation can be solved by means of a
Fourier transform and by subsequently expanding the interband polarization in the
exciton wave functions. The absorbance is defined as the imaginary part of the
polarizability, which follows directly from the interband polarization.

The excitonic absorbance spectrum is shown in Fig. 3.7. The calculated results
are in good agreement with results obtained from numerically solving the Bethe-
Salpeter equation, which means that the higher-order interaction effects taken into
account in the Bethe-Salpeter equation do not have a significant effect on the ex-
citon properties. The most noticeable difference between the two is the height of
the peak around 2.27 eV, which corresponds to the 2s state of the B exciton, which
is about 50% of the peak of the 1s state of the B exciton in the results obtained
from the Bethe-Salpeter equation whereas it is about 20% of this peak in the re-
sults obtained here. The splitting between the peaks of the 1s state of the A and the
B exciton is similar for the three different results shown in this figure. However,
both the current results and the Bethe-Salpeter equation predict that the B exciton
peak is higher than the A exciton peak whereas in the experimental results the A
exciton peak is more pronounced than the B exciton peak. It should be noted that
the experimental absorbance was not measured up to high enough photon energies
to clearly distinguish the excited states.
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Figure 3.7: Excitonic absorbance spectrum calculated for MoS2 on a SiO2 substrate
using a broadening of γ = 25 meV (solid, blue), compared with the numerical
solution of the Bethe-Salpeter equation of Ref. [120] (dashed, red) and the experi-
mental results of Ref. [141] (dotted, black). The two theoretical results are shifted
such that they match the A exciton energy of the experimental results. The results
are also rescaled to facilitate comparison.

3.3 Experimental measurement of the exciton bind-
ing energy

In Tables 3.1 and 3.3 numerous experimental exciton binding energies were listed.
In this section the most important methods for measuring these binding energies
are briefly discussed.

Charge carriers are excited from the valence band by means of a continuous
wave laser operating at a fixed wavelength of about 500 nm (often 532 nm, i.e.
green light) in order to ensure that the electrons reach the conduction band. The
radius of the focused laser spot is of the order of a few µm. Note that charge
carries can only be excited to a state within the light cone defined by k = E/(~c)
with E the photon energy, which gives ka = 0.0026 for the transition between the
band extrema in MoS2. The electrons and holes then form excitons and perform a
cascade-like relaxation through energetically lower lying exciton states by means
of phonon emissions. After a few ps almost all the excitons reside in the exciton
ground state [135]. After a few hundred ps the excitons radiatively recombine



68 Excitons in monolayer TMDs

Figure 3.8: (a) Energy diagram schematically indicating the electronic band gap
or transport gap (Eg), the optical band gap or transition energy (Eopt), and the
exciton binding energy (Eb). (b) Logarithm of the scanning tunneling spectroscopy
differential conductance of MoSe2 on a bilayer graphene substrate. Both figures are
taken from Ref. [124].

and emit photons with energy Eopt. This backscattered photoluminescence (PL) is
guided to a spectrometer and detected using a CCD camera. As such the photon
energy Eopt, also known as the optical band gap or the transition energy, can be
experimentally measured.

An alternative way of obtaining the optical band gap is by doing an absorption
measurement. In such an experiment a broadband radiation source is used to im-
pinge light on the sample and the reflected radiation is collected on a CCD camera
in a spectrometer. This results in an absorbance spectrum such as that shown in
Fig. 3.7, which is similar to the PL spectrum [141]. In both types of experiments
the energy at which the peak occurs gives the optical band gap.

Knowledge of the optical band gap is not sufficient for obtaining the exciton
binding energy. As illustrated in Fig. 3.8(a) the exciton binding energy is given
by Eb = Eg − Eopt, meaning that the electronic band gap Eg, also known as the
transport gap, needs to be measured as well. This can be done by means of scan-
ning tunneling spectroscopy measurements. A scanning tunneling microscope tip
is placed at a fixed height above the sample and the electron tunneling current I
between the tip and the sample is measured as a function of the voltage V between
the tip and the sample. This allows to obtain the differential conductance dI/dV ,
which eliminates the dependence on the properties of the tip. The logarithm of an
experimentally obtained differential conductance is shown in Fig. 3.8(b). In the
band gap region the differential conductance is significantly lower and as such the
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band gap can immediately be obtained as the width of this near-zero differential
conductance interval.

It is also possible for excitons to bind to defects, which will be present in any
realistic sample. These defect-bound excitons also lead to a peak in the PL spec-
trum which is located at energies lower than the free exciton peak and which at low
laser power dominates over the free exciton peak [142]. As such the free exciton
might be inadvertently allocated to the bound exciton peak, which would lead to
an overestimation of the exciton binding energy. At high laser power, on the other
hand, the free exciton peak dominates over the bound exciton peak since the num-
ber of bound excitons is limited by the number of defects whereas the number of
free excitons is in theory unlimited. Note that the free excitons are not affected
by the defects since the average electron-hole interparticle distance for excitons in
TMDs is typically of the order of a few nm (see Table 3.4), which is less than the
typical average distance between defects in realistic samples.

An alternative way of experimentally obtaining the exciton binding energy is
through photocurrent spectroscopy. In this type of experiments the sample is il-
luminated using a broadband radiation source and the resulting photocurrent is
measured as a function of the photon energy. The advantage of such measurements
is that the optical and electronic band gap can be obtained simultaneously, while
the disadvantage is the fact that electrical contacts need to be fabricated on the
sample [122].

Excited s state excitons have much lower absorption than the ground state,
which is associated with the lower value of the exciton wave function in the origin
in Eq. (3.21) and can be seen in Fig. 3.7. Therefore, they can best be detected by
means of reflectance contrast measurements, i.e. the difference in reflected radia-
tion from the sample and from the substrate, both following broad band illumina-
tion, normalized by the reflected radiation from the substrate. Taking the derivative
of this reflectance contrast reveals the excited s states [126]. Higher angular mo-
mentum exciton states, which do not appear in the absorbance spectrum because
their wave function is zero in the origin, can be measured in two-photon absorbance
experiments by means of a tunable pulsed infrared radiation source [131].

3.4 Conclusion

In this chapter excitons in monolayer TMDs were studied and a comparison was
made between the single-band model, which is often used in the literature, and the
multi-band model constructed in this thesis. It was shown how the latter can be
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solved by exploiting the eigenstates of the exciton total angular momentum opera-
tor with which the exciton Hamiltonian commutes. It was found that the multi-band
result for the exciton binding energy is lower than the single-band result, which is
a consequence of the Dirac nature of the low-energy charge carriers in monolayer
TMDs. This Dirac nature persists in the excitons and manifests itself in the extra
components of the exciton wave function.

The spectrum of excited exciton states was calculated in the multi-band model,
which confirmed the broken degeneracies between states with the same principal
quantum number but different (approximate) orbital angular momentum previously
found in the literature, which is a consequence of the non-local dielectric screening
effects which are included in the Keldysh potential.

It was discovered that for intravalley excitons the approximate orbital angular
momentum, i.e. that of the dominant wave function component, coincides with the
conserved total angular momentum, whereas for intervalley excitons they differ
by plus or minus one. This can be attributed to the electron and hole pseudospin
which do (intravalley) or do not (intervalley) cancel with each other and leads to an
intervalley exciton ground state with angular momentum j = τ , with τ = ±1 the
valley index.

Furthermore, it was found that states with opposite approximate orbital angular
momentum are degenerate for intravalley excitons, whereas for intervalley excitons
they are not. However, this degeneracy is restored when taking opposite interval-
ley excitons into account, which suggests that this effect may arise as a result of
coupling between the orbital angular momentum of the exciton and the intrinsic
angular momentum of the exciton, which is associated with the Berry curvature.
These results are in agreement with those of Ref. [119] and were extended here
to higher excited states. In Ref. [120] this degeneracy was also found to be bro-
ken for intravalley excitons, which might be due to many-body Berry curvature
effects [137].

The calculated values of the exciton ground state binding energy, which are of
the order of half an eV in monolayer TMDs, were found to be in good agreement
with theoretical results from the literature. On the other hand, significant differ-
ences were found with experimental results, for which substrate surface roughness
and defect-bound excitons were proposed as possible explanations.



CHAPTER 4

Trions and biexcitons in monolayer TMDs

In this chapter excitonic complexes consisting of three (trions) and four (biexcitons)
particles are studied. It is demonstrated that the FEM is unsuitable for solving
the eigenvalue equations of the corresponding Hamiltonians, showing the need for
another numerical solution method. Hence the stochastic variational method is
introduced and used to calculate the binding energy and the structural properties
of trions and biexcitons in monolayer TMDs. A short discussion is given at the end
of the chapter on the experimental detection of these excitonic complexes.

4.1 A short history of trions and biexcitons
Up to now only excitons, i.e. two-particle bound states, have been considered in
this thesis. However, it is possible for an exciton to bind an additional particle,
either an electron or a hole, to form a stable three-particle state which is known as
a trion or a charged exciton, or even for two excitons to bind to form a so-called
biexciton. The binding energies, in vacuum, of both excitonic complexes were first
calculated in 1946 using a variational method [143].

The stability of trions in 3D semiconductors was first predicted in 1958 [144].
Since then, they have been thoroughly studied theoretically in 3D semiconductors
[145] and in semiconductor heterostructures [146–148]. However, the first exper-
imental observation, in a CdTe/CdZnTe heterostructure, followed more than thirty
years later [149]. Subsequently they have mostly been measured in GaAs/AlGaAs
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heterostructures [150–153]. The trion binding energies predicted and measured in
these systems, which generally increase with decreasing quantum well width for
the same reason as discussed in section 1.1 for excitons, never exceed 3 meV in the
absence of a magnetic field. The effects of a perpendicular magnetic field on the
binding energy of excitonic complexes will be discussed in the next chapter.

Stable biexcitons in 3D semiconductors were only first suggested in 1972, pre-
dicting a binding energy of 0.13 meV for bulk GaAs [154]. Later, theoretical
studies were also presented for biexcitons in GaAs/AlGaAs heterostructures, pre-
dicting a biexciton binding energy up to 2 meV [155], and in CdTe/CdZnTe het-
erostructures, predicting a biexciton binding energy of almost 4 meV [156]. The
first experimental observation of stable biexcitons had been done in 1978 in bulk
silicon [157], followed shortly by observation of biexcitons in a GaAs/AlGaAs
heterostructure [158]. Both works predicted a biexciton binding energy of 1-1.5
meV. Later, however, a significantly larger binding energy of 10 meV was mea-
sured [159] in a CdTe/CdZnTe heterostructure with a quantum well width more
than a factor two smaller than that of Ref. [158].

Analogous to the discussions on the exciton binding energy in section 1.1 and
subsection 3.2.1, the above mentioned trion and biexciton binding energies are
limited by the non-perfect 2D confinement in the quantum wells, the small effective
masses of the charge carriers, and the large dielectric constant of the environment.
Therefore, similar to the very strongly bound excitons discussed in the previous
chapter, trions and biexcitons in monolayer TMDs are expected to exhibit binding
energies of the order of tens of meVs.

4.2 Trions in monolayer TMDs: a first attempt

In this chapter only negative trions will be considered, i.e. an exciton with an addi-
tional electron. However, the two kinds of trions exhibit very similar properties and
the procedure presented below can very easily be modified to describe positive tri-
ons. In the case of equal electron and hole effective masses the properties of the two
types of trions are even identical out of symmetry. In the multi-band model, again
starting from the two-band single-electron Hamiltonian (2.9), the trion Hamilto-
nian can be constructed in the basis Btri = {Bexc ⊗ |Φe2

c 〉 ,Bexc ⊗ |Φe2
v 〉} with Bexc

the exciton basis given in section 3.1. This results in

H tri
σ,se2 ,τe2 =

(
Hexc
σ + V1 Oe2
O†e2 Hexc

σ + V se2 ,τe2
2

)
, (4.1)
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with Hexc
σ the exciton Hamiltonian (3.1) and with

Oe2 = at
(
τ e2ke2x − ike2y

)
I4, (4.2)

V1 =

(
∆

2
− V (rhe2) + V (re1e2)

)
I4, (4.3)

V se2 ,τe2
2 =

(
−∆

2
+ λse2τ e2 − V (rhe2) + V (re1e2)

)
I4, (4.4)

with rij = |ri − rj|. The eigenvalue problem of this trion Hamiltonian thus leads
to a set of eight coupled differential equations, which is practically near-impossible
to solve. Therefore, it is better to decouple this set of equations. From the second
equation of the eigenvalue problem it follows that

|Ψe2
v 〉 ≈

(
Etri
σ,se2 ,τe2I4 − V se2 ,τe2

2 −Dexc
σ

)−1

O†e2 |Ψ
e2
c 〉 , (4.5)

with |Ψe2
c(v)〉 =

(
|φe1,h,e2c,c,c(v)〉 , |φ

e1,h,e2
c,v,c(v)〉 , |φ

e1,h,e2
v,c,c(v)〉 , |φ

e1,h,e2
v,v,c(v)〉

)T
and with Dexc

σ the 4×
4 diagonal matrix containing the diagonal elements of the exciton Hamiltonian
(3.1). In this approximation, the kinetic energy of the first electron and the hole is
assumed to be small compared to the band gap and the trion energy, which is a good
approximation for the same reason as explained below Eq. (3.10) and because the
trion energy is even larger than the exciton energy. Inserting the above relation in
the first equation of the eigenvalue problem leads to

(
Hexc
σ +Oe2

(
Etri
α,se2 ,τe2I4 − V se2 ,τe2

2 −Dexc
α

)−1

O†e2

+V1

)
|Ψe2

c 〉 = Etri
σ,se2 ,τe2 |Ψe2

c 〉 .
(4.6)

This eigenvalue problem is similar to the exciton eigenvalue problem, but now
with additional terms on the diagonal. Therefore, this 4 × 4 matrix equation can
be decoupled in a similar fashion as described in subsection 3.1.2 for excitons, in
which it is again useful to transform to center of mass and relative coordinates
(3.2) and where the conserved center of mass momentum is now assumed to be
equal to zero. Going to position representation for an extra electron with se2τ e2 =
se1τ e1 = shτh, meaning that it can be optically excited simultaneously with the
other electron and the hole, the resulting decoupled differential equation is given
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by

(
− V

(
Etri
β , re1h, rhe2

) (
∇2
re1h

+∇2
rhe2
−∇re1h

.∇rhe2

)
− V (re1h)− V (rhe2)

−
(

∂

∂re1h
V
(
Etri
β , re1h, rhe2

)) ∂

∂re1h
−
(

∂

∂rhe2
V
(
Etri
β , re1h, rhe2

)) ∂

∂rhe2

+
1

2

(
∂

∂re1h
V
(
Etri
β , re1h, rhe2

)) ∂

∂rhe2
+

1

2

(
∂

∂rhe2
V
(
Etri
β , re1h, rhe2

)) ∂

∂re1h

+ V (re1h + rhe2) + ∆sh,τh +
∆

2

)
φe1,h,e2c,v,c (re1h, rhe2) = Etri

β φe1,h,e2c,v,c (re1h, rhe2),

(4.7)

with

V
(
Etri
β , re1h, rhe2

)
=

2a2t2

Etri
β + V (re1h) + V (rhe2)− V (re1h + rhe2)− ∆

2

(4.8)

and where β is shorthand notation for σ, se2 , τ e2 . The electron-electron interaction
term depends on |re1h + rhe2|, which means that the angular parts of the equa-
tion cannot be decoupled form the radial parts. A FEM solution of a differential
equation with four variables is very time consuming and uses a very large amount
of computer memory. Therefore, as a rough approximation, it is assumed that
ϕe1h = ϕhe2 such that |re1h + rhe2| = re1h + rhe2 , the accuracy of which will be
checked in subsection 4.4.1. In that case, the angular part of the trion wave function
is approximately of the form exp(ij1ϕe1h + ij2ϕhe2) and in the above differential
equation j1 and j2 were already taken to be zero. The differential equation again
has to be solved self-consistently to determine the trion energy Etri

β and the com-
ponent φe1,h,e2c,v,c (re1h, rhe2) of the trion wave function. The other components of the
wave function can be determined from Eq. (4.5) and equations which are analogous
to Eqs. (3.10) and (3.13) and which follow from decoupling the trion eigenvalue
problem. The trion binding energy is given by Eb = ∆/2 + Eexc

σ − Etri
β , i.e. the

difference in energy between the trion and the exciton plus a free electron.
As a comparison the trion Hamiltonian eigenvalue equation will also be solved

in the single-band model, i.e. starting from the parabolic single-particle energy
spectrum (2.13). Analogous to the exciton single-band differential equation (3.16),
performing the transformation (3.15) and taking the center of mass momentum to
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be zero results in the trion single-band differential equation(
− ~2

2µσ

(
∇2
re1h

+∇2
rhe2

)
+

~2

mh

∇re1h
.∇rhe2

− V (re1h)− V (rhe2)

+ V (re1h + rhe2)

)
ψtriβ (re1h, rhe2) = Etri

β ψtriβ (re1h, rhe2),

(4.9)

with the reduced mass µσ defined below Eq. (3.16). Again the approximation
|re1h+rhe2| = re1h+rhe2 was made, in order to allow for a practical solution using
the FEM, and j1 = j2 = 0 was taken for the angular part of the wave function. In
the single-band model the trion binding energy is given by Eb = Eexc

σ − Etri
β .

The biexciton single-band Hamiltonian eigenvalue equation will not be given here.
Their binding energy is given by Eb = 2Eexc

σ −Ebi
β,sh2 ,τh2 since they dissociate into

two excitons.
It can be concluded that the trion Hamiltonian eigenvalue problem presents

a few challenges, i.e. the fact that in the multi-band model it is a set of eight
coupled equations and the fact that, in both the multi- and the single-band model,
the angular dependence in the interaction potential needs to be neglected in order
to allow for a practical solution using the FEM. For biexcitons these challenges
are even more significant, i.e. the biexciton Hamiltonian eigenvalue problem is
a set of sixteen coupled equations in the multi-band model and there are three
angular coordinates which need to be neglected in the interaction potential. It can
be expected, although this will be checked in subsection 4.4.1, that this is not a good
approximation. This shows the need for another numerical method which allows to
solve the trion and biexciton Hamiltonian eigenvalue equations without neglecting
the angular dependences in a reasonable computation time and without needing an
excessive amount of memory. This numerical method will be introduced now.

4.3 Stochastic variational method
In the stochastic variational method (SVM), which was first proposed in 1976
[160], the many-body wave function Ψ(r1, . . . , rN) of an N -particle complex is
expanded in a basis of size K:

ΨS,MS
(r1, . . . , rN) =

K∑
n=1

cnϕ
n
S,MS

(r1, . . . , rN), (4.10)

where the basis functions are taken as correlated Gaussians [161, 162]:

ϕnS,MS
(r1, . . . , rN) = A

(
e−( #»x TAn

#»x+ #»y TAn
#»y )/2χnS,MS

)
, (4.11)
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where #»x and #»y are N -dimensional vectors containing, respectively, the x- and y-
components of the positions of the different particles. The matricesAn are symmet-
ric and positive definite and contain variational parameters. χnS,MS

is the total spin
state of the excitonic complex corresponding to the total spin S and z-component
of the spin MS , which are conserved quantities. This total spin state is obtained by
adding step by step single-particle spin states. Therefore, multiple total spin states
belonging to the same S and MS value are possible, as these can be obtained by
different intermediate spin states. For example, the spin state of an exciton is either
a triplet state (S = 1,MS = 1, 0,−1) or a singlet state (S = 0,MS = 0), i.e. there
is only one possible spin state associated with a certain value of (S,MS). Trions,
however, have a total spin of either S = 1/2 or S = 3/2 and the former can be
realised by either adding a third spin to the exciton singlet state or to the exciton
triplet state. As such there are two possible (S,MS) = (1/2, 1/2) trion doublet
states given by

|1
2
,
1

2
〉
1

= −
√

2

3
|↑↑↓〉+

√
1

6
(|↑↓↑〉+ |↓↑↑〉) ,

|1
2
,
1

2
〉
0

=
1√
2

(|↑↓↑〉 − |↓↑↑〉) ,
(4.12)

where the subscripts of the kets in the left hand sides of the equations correspond
to the total spin of the exciton to which the third spin was added. In this thesis
the (S,MS) = (0, 0) singlet state is considered for excitons and biexcitons and
the (S,MS) = (1/2, 1/2) doublet state is considered for trions. Finally, A is the
antisymmetrization operator for the indistinguishable particles.

The energy of the excitonic complex is estimated by means of a stochastic trial
and error procedure. First, a matrix A1 and a spin function χ1

S,MS
are randomly

generated multiple times and the variational energy is calculated using each of
them. The wave function with the set of parameters that gives the lowest variational
energy is then retained as the first basis function, i.e. K = 1. Subsequently, a new
matrix A2 and spin function χ2

S,MS
are randomly generated multiple times and the

variational energy is calculated in the K = 2 basis consisting of the previously
determined first basis function and the new trial basis function. The wave function
with the set of parameters that gives the lowest variational energy is then retained
as the second basis function. Following this procedure, the variational principle
ensures that each addition of a new basis function guarantees a lower variational
energy value and the basis size is increased until convergence of the energy value
is reached.

The result is virtually exact in the limit of an infinite basis size [162, 163].
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For the calculations done in this thesis, a basis size of K = 50 for excitons and
K = 250 for trions and biexcitons was used, resulting in a typical energy differ-
ence between the results for a basis size of K − 1 and K of 0.001 µeV, 0.1 µeV,
and 1 µeV, for excitons, trions, and biexcitons, respectively. However, a better es-
timate for the statistical error associated with the stochastic nature of the SVM can
be obtained by calculating the energy for a given excitonic complex, TMD, and
substrate N times and calculating the standard deviation

S =

√√√√ 1

N

N∑
i=1

(Ei − Ea)2, with Ea =
1

N

N∑
i=1

Ei, (4.13)

for the set of calculated energies Ei. For example, for excitons in WS2 on a SiO2

substrate (for which a binding energy of 284.0 meV is obtained, i.e. identical to
the value obtained with the FEM in the single-band model listed in Table 3.1), a
standard deviation of S = 0.04 meV is obtained for N = 10. For the same system
and N value, standard deviations of S = 0.3 meV and S = 1.7 meV are obtained
for trions and biexcitons, respectively. Values of the same order are expected for
other combinations of TMDs and substrates.

One of the major advantages of the correlated Gaussian basis functions (4.11) is
the fact that the matrix elements between these basis functions of a lot of operators,
including those of the Hamiltonian, can be calculated analytically. For example,
the overlap of the x-dependent part of the Gaussian basis functions, i.e. the matrix
element of the identity operator between basis functions with parameter matrices
A and A′, is given by

〈1〉x ≡ S0 =

∫
d #»xe−( #»x T (A+A′) #»x )/2 =

∫
d #»xe−( #»x TUDUT #»x )/2 =

∫
d

#»
t e−(

#»
t TD

#»
t )/2

=
N∏
i=1

∫
dtie

−λit2i /2 =
N∏
i=1

√
2π

λi
=

(
(2π)N

det(A+ A′)

) 1
2

,

(4.14)

with U the unitary transformation matrix which transforms the matrix A + A′ to
the diagonal matrix D with the eigenvalues λi of A+ A′ on the diagonal. Because
U is unitary, the absolute value of the Jacobian determinant of the coordinate trans-
formation #»

t = UT #»x is equal to 1. Also including the y-dependent part of the
Gaussian basis functions leads to the final result 〈1〉 = S2

0 . The matrix element
of numerous other operators can be calculated in a similar way and the results are
listed in Table 7.1 of Ref. [161]. The derivation for two important operators, i.e.
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the kinetic energy and the delta function, is given in appendix C. The importance
of the delta function lies in the fact that a general potential can be written as

V

(
N∑
k=1

wkrk

)
=

∫
dr0V (r0)δ

(
N∑
k=1

wkrk − r0

)
, (4.15)

with wk real constants. As such the expectation value of such a potential between
the correlated Gaussian basis functions is reduced to that of the delta function,
the result of which is proportional to e−cr

2
0 with c a constant depending on the

variational parameters, as shown in appendix C. Therefore, the expectation value
of the potential is known analytically as long as the integral

∫
dr0V (r0)e−cr

2
0 (4.16)

can be performed analytically. This is the case for the Keldysh potential, as shown
in appendix C.

The expectation value of all the different terms in the Hamiltonian can thus be
calculated analytically for a general N -particle complex. This allows for a rela-
tively short computation time, i.e. of the order of 15 minutes, 12 hours, and 2 days
for excitons, trions, and biexcitons, respectively, on a 3.60 GHz Intel Xeon E5-
1650 v4 processor (calculations with different input parameters are run in parallel
on different cores). However, the real gain by using the SVM lies in the very small
amount of memory which is needed. For biexcitons and K = 250 the wave func-
tion is characterized by 3000 variational parameters which need to be stored. This
compares with the FEM in which the wave function is defined by its value at n6

different mesh points with n the number of mesh points for each coordinate. This
number is already larger than 3000 for n = 4.

The SVM will now be used to calculate different properties of trions and biexci-
tons in monolayer TMDs and for trions the comparison will be made with the FEM
results. These results were published in Physical Review B, partly in Ref. [115] and
partly in Ref. [164]. In this thesis, and in all works in the literature, the SVM is only
applied to the single-band model. In principle, however, it could also be applied
to the multi-band model by using a different correlated Gaussian basis function for
each of the components.
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MoS2 MoSe2 WS2 WSe2

me 0.47 0.55 0.32 0.34
mh 0.54 0.59 0.35 0.36

Table 4.1: Charge carrier masses in units of m0 for different monolayer TMDs,
taken from Ref. [117].

4.4 Numerical results

4.4.1 Binding energy

In Table 4.2 the trion binding energy is shown for different monolayer TMDs and
different substrates in the single-band model, obtained with both the SVM and the
FEM, and in the multi-band model. For the FEM solution of the single-band model
the effective masses of Ref. [81] were used whereas for the SVM the masses given
in Table 4.1 were used in order to account for the small differences between the
electron and hole masses. The FEM results (for both the single- and the multi-band
model) were obtained by neglecting angular correlations. The calculated values
are compared with other theoretical studies based on the single-band model using
ground state diffusion Monte Carlo [116, 165], path-integral Monte Carlo [117],
and the SVM [118], as well as experimental results. It is clear that trions in mono-
layer TMDs exhibit exceptionally large binding energies, i.e. an order of magni-
tude larger than those in semiconductor heterostructures as discussed in section 4.1.
This is again due to the perfect 2D confinement, the large effective masses, and the
reduced dielectric screening. For TMDs suspended in vacuum the results obtained
with the multi-band model are a few meV larger than the single-band SVM results.
On the other hand, for TMDs placed on a SiO2 substrate the multi-band model re-
sults are considerably smaller than the SVM results. Furthermore, the single-band
FEM results agree very badly with the SVM results, even predicting unstable tri-
ons in WS2 on a SiO2 substrate and in WSe2 encapsulated by hBN. This clearly
shows the importance of angular correlations in trions, which can therefore not be
neglected.

The calculated SVM values differ by at most 10% with the results from the
different theoretical approaches for both vacuum and SiO2. Again, as was already
the case for excitons, note that εb = 3.0 was used for SiO2 in Ref. [117], explaining
their consistently larger binding energies. Assuming εb = 3.0, an SVM binding
energy of 24.9 meV, 21.6 meV, 24.0 meV, and 20.5 meV is obtained for MoS2,
MoSe2, WS2, and WSe2, respectively. This is in considerably better agreement
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Substrate Literature This thesis
Theory Experiment SVM FEM MB

MoS2 Vacuum 33.8 [116] - 33.4 23.1 37.9
32.0 [117]
33.7 [118]
32 [165]

SiO2 24.7 [117] 18 ± 1.5 [141] 22.9 3.4 14.5
MoSe2 Vacuum 28.4 [116] - 27.7 21.1 32.5

27.7 [117]
28.2 [118]
31 [165]

SiO2 22.1 [117] 30 [166] 20.3 5.3 14.2
WS2 Vacuum 34.0 [116] - 32.4 18.8 35.2

33.1 [117]
33.8 [118]
31 [165]

SiO2 24.3 [117] 30 [167] 21.3 -1.9 9.4
30 [168]

18-45 [169]
26 [170]

WSe2 Vacuum 29.5 [116] - 28.8 18.3 32.1
28.5 [117]
29.5 [118]
27 [165]

SiO2 21.5 [117] 30 [171] 19.6 0.4 10.4
30 [133]

hBN 26 [172] 32 [172] 12.4 -5.3 5.7

Table 4.2: Negative trion binding energy (meV) for different TMD materials and
different substrates in the single-band model obtained using both the SVM and the
FEM and in the multi-band model (MB), compared with theoretical and experi-
mental results from the literature. The following dielectric constants were used:
εb = 3.8 and εt = 1 for SiO2 below and vacuum above the TMD and εb = εt = 4.4
for encapsulating hBN. The FEM and MB results were obtained by neglecting an-
gular correlations.
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Substrate Literature This thesis
Theory Experiment

MoS2 Vacuum 22.7 [116] - 19.0
22.7 [117]
22.5 [118]
24 [165]

SiO2 20.3 [117] - 14.0
Al2O3 - 70 [173] 10.0

60 [174]
MoSe2 Vacuum 17.7 [116] - 15.5

19.3 [117]
18.4 [118]
23 [165]

SiO2 17.4 [117] - 11.3
Al2O3 - 20 [175] 9.5

WS2 Vacuum 23.3 [116] - 19.5
23.9 [117]
23.6 [118]
23 [165]

SiO2 20.9 [117] 65 [167] 14.5
69 [176]

WSe2 Vacuum 20.0 [116] - 15.9
20.7 [117]
20.2 [118]
20 [165]

SiO2 18.1 [117] 52 [177] 12.5
Al2O3 19.8 [178] 18.3 ± 0.5 [178] 5.4

Table 4.3: Biexciton binding energy (meV) for different TMD materials and dif-
ferent substrates in the single-band model obtained using the SVM, compared with
theoretical and experimental results from the literature. The following dielectric
constants were used: εb = 3.8 (εb = 10) and εt = 1 for SiO2 (Al2O3) below and
vacuum above the TMD.
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with the results of Ref. [117]. There is a very small difference, i.e. at most 1.4
meV, between the calculated SVM values and the SVM results of Ref. [118]. The
latter used the equal electron and hole effective masses of Ref. [81] and it can thus
be concluded that the small difference in the electron and hole masses has a very
limited effect on the trion binding energy. In general, the calculated SVM values
underestimate the experimental results by a factor of about 2/3, except for MoS2.

In Table 4.3 the biexciton binding energy is shown for different monolayer
TMDs and different substrates in the single-band model obtained with the SVM.
The results are compared with the same theoretical studies as for trions, as well as
with experimental results. The theoretically predicted biexciton binding energies
are smaller than the corresponding trion binding energies but are still consider-
ably larger than the biexciton binding energies in semiconductor heterostructures
as discussed in section 4.1. The calculated values are about 15-20% smaller than
the other theoretical results for vacuum. For SiO2 the difference is slightly larger,
which is again due to the smaller dielectric constant which was used in Ref. [117].
The reason for the significant difference with the theoretical value for Al2O3 is not
immediately clear. Very large biexciton binding energies, which can be up to a
factor of 2-4 larger than predicted by theory, have been found in multiple exper-
iments. However, there is some discussion on whether these are truly biexcitons
which are being measured. It was argued in Ref. [118] that this disagreement is
due to a misinterpretation of the experimental results and that in experiment the
particular biexciton peak is in fact the one from an excited state of the biexciton. In
Ref. [179], on the other hand, it was demonstrated that these experimental results
can be related to the coupling of excitons with intervalley plasmons.

One possible explanation for the consistently larger experimental trion and
biexciton binding energies as compared to theoretical predictions is local poten-
tial fluctuations as a result of the substrate. These can be modeled by means of a
circular potential well V (r) = V0Θ(r − aw), with V0 (aw) the height (radius) of
the potential well, acting on all the particles. In Fig. 4.1 the negative trion and
biexciton binding energies are shown as a function of the potential well radius for a
fixed potential height. The binding energy increases with decreasing potential well
radius due to the confinement for both excitonic complexes, with the effect being
slightly more pronounced for biexcitons. The binding energies of both complexes
are approximately doubled at a well radius of 5 nm as compared to the absence of
a potential well.
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Figure 4.1: Negative trion (blue) and biexciton (red) binding energy calculated as
a function of the potential well radius for WSe2 on a SiO2 substrate. The height of
the circular potential well is V0 = 300 meV. The dotted lines indicate the binding
energy in the absence of a potential well.

4.4.2 Wave function

In Fig. 4.2 the different components of the multi-band trion ground state wave
function are shown. Similar to the case of the exciton shown in Fig. 3.5, there is
now one dominant component which represents a trion consisting of two electrons
in the conduction band and a hole in the valence band, and three considerably
smaller components representing a trion in which one of the particles is in its sea,
i.e. an electron in the valence band or a hole in the conduction band. In Fig.
4.2, only these four largest components are shown. There are however four more
components which are even smaller, i.e. three components representing a trion in
which two of the particles are in their sea and one component representing a trion
in which all three particles are in their sea.

The wave function as a function of the hole x-coordinate when its y-coordinate
and the two electrons are fixed is shown in Fig. 4.2(a). This shows that the hole
localizes equally around the two electrons. The component φe1,h,e2c,c,c of the wave
function also shows extrema around the electron positions whereas the main con-
tribution of the other two non-dominant components is in between the two elec-
trons. Furthermore, the SVM wave function shows qualitatively the same behavior
as the dominant component of the multi-band wave function and as the single-band
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Figure 4.2: (a) Different components (β = c, γ = v, δ = c: blue curve, β = c,
γ = c, δ = c: red curve, β = c, γ = v, δ = v: black curve, β = v, γ = v, δ = c:
brown curve) of the ground state wave function for trions in MoS2 suspended in
vacuum as a function of the hole coordinate xh for yh = 0 and for fixed electrons
calculated in the multi-band model. The dashed green curve and dotted orange
curve are the single-band SVM and FEM result, respectively. (b) Same as (a) but
now as a function of the electron coordinate xe2 for ye2 = 0 and for a fixed electron
and hole. Circles and dots indicate the position of holes and electrons, respectively.
All the wave functions are scaled to their respective maxima.

FEM wave function but there are substantial quantitative differences. These differ-
ences are a consequence of the fact that the dependence of the wave function on the
angular coordinates was neglected when using the FEM. In Fig. 4.2(b) the wave
function is shown as a function of the electron x-coordinate when its y-coordinate
and the hole and the other electron are fixed, which shows that the electron localizes
around the hole. The other components show a similar behavior as the dominant
component. In this case the agreement between the SVM and FEM wave functions
is better than in the case of fixed electrons.

The dominant component of the ground state wave function and the second ex-
cited state wave function is shown as a function of the relative coordinates in Fig.
4.3. The ground state wave function has a single maximum at re1h = rhe2 = 0,
meaning that the three particles form one symmetric system with comparable av-
erage interparticle distances between all the particles. The calculated interparticle
distances using Eq. (3.19) are 〈reh〉 = 0.96 nm and 〈ree〉 = 1.40 nm, yielding a
ratio of 〈reh〉 / 〈ree〉 = 0.69. The second excited state however has two maxima:
one at re1h = 0 and rhe2 ≈ 3 nm and one at re1h ≈ 3 nm and rhe2 = 0. This means
that the structure of the trion is now given by an exciton, consisting of one of the
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Figure 4.3: Dominant component φe1,h,e2c,v,c (re1h, rhe2), scaled to its maximum, of
the ground state (a) and second excited state (b) wave function for trions in MoS2

suspended in vacuum as a function of the relative coordinates calculated in the
multi-band model.

electrons and the hole, with the additional electron circling around it. In this case
Eq. (3.19) gives 〈reh〉 = 2.31 nm and 〈ree〉 = 3.81 nm. However, since the two
electrons are identical, this implies that 〈reh〉 is the average of the average distance
between the hole and the inner electron and the average distance between the hole
and the outer electron. Approximating the latter by the average electron-electron
distance leads to an average distance between the hole and the inner electron of
〈rineh〉 = 0.80 nm. This gives 〈rineh〉 / 〈ree〉 = 0.21, i.e. the second excited state is
more asymmetric than the ground state.

The biexciton wave function is shown in the next chapter.

4.5 Experimental measurement of the trion and biex-
citon binding energy

In this section it will be explained how the experimental trion and biexciton binding
energies listed in Tables 4.2 and 4.3 can be measured.

Trions are typically measured in monolayer TMDs placed on a thin substrate,
for example 300 nm of SiO2, which in turn rests on a heavily doped silicon sub-
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Figure 4.4: (a) PL spectrum of MoSe2 on a SiO2 substrate as a function of the
back gate voltage. The exciton (X0), positive and negative trion (X+ andX−), and
impurity trapped exciton (XI) are indicated on the figure. (b) Exciton and trion
peak intensity as a function of the back gate voltage. Solid lines are fits to the
experimental results. Both figures are taken from Ref. [166].

strate. Furthermore, electron beam lithography is used to fabricate source and drain
contacts which are grounded. Applying a back gate potential to the doped silicon
then allows to electrostatically dope the monolayer TMD. Measuring the PL spec-
trum, as described in section 3.3, for a range of back gate voltages leads to a result
such as that shown in Fig. 4.4(a). The trion binding energy is simply given by
the difference between the exciton peak energy and the trion peak energy. There-
fore, the value of the band gap does not need to be known and thus no scanning
tunneling spectroscopy measurements are necessary. This removes an element of
uncertainty from the experiment and might help explain why there is less discrep-
ancy between different experimentally obtained trion binding energies for the same
system as compared to between different experimentally obtained exciton binding
energies. Furthermore, the results of Fig. 4.4(a) can be explained as follows.

When there are an equal number of electrons and holes, which is the case when
optically exciting electrons from the valence to the conduction band, the energet-
ically most favorable situation is that in which all of these charge carriers pair up
and form excitons. Therefore, in this case little to no trions will be present in the
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system. When there is an excess of one of the charge carriers, however, the ener-
getically most favorable situation is that in which all the minority charge carriers
pair up with one of the majority charge carriers to form excitons, and the remain-
ing majority charge carriers are bound by the excitons to form trions. An excess
of electrons (holes) leads to the formation of negative (positive) trions. When the
number of majority charge carriers is less than twice the number of minority charge
carriers there will be a coexistence of excitons and trions because not all excitons
will be able to bind an additional particle. When there are more than twice as many
majority charge carriers as compared to minority charge carriers all excitons are
able to bind an additional particle to form a trion and as a result little to no excitons
will be present in the system.

This qualitative picture can be confirmed by measuring the intensity of the ex-
citon and trion peaks, which is a measure of the number of excitons and trions in
the system, as a function of the back gate voltage, as shown in Fig. 4.4(b). This
indicates that the number of excitons decreases with increasing absolute value of
the gate voltage, whereas the number of trions increases such that the sum of the
two is approximately constant. The residual trions at zero gate voltage are due to a
background electron density which can be attributed to the large contact resistance
of the sample preventing the carrier concentration from reaching equilibrium on
the experimental time scale. This effect should be eliminated by improved contact
technologies [166].

The formation of biexcitons, i.e. the binding of two excitons, is a process which
becomes increasingly important with increasing exciton density. In optical exper-
iments this corresponds to high laser intensities and biexcitons have indeed been
reported in standard PL measurements under these conditions [167, 177]. How-
ever, as mentioned in section 4.4, there is some debate on whether these PL fea-
tures, which occur at energies lower than the trion energy, are truly stemming from
biexcitons.

On the other hand, biexcitons have also been observed in pump-probe experi-
ments [173, 176, 178] in which the output of a laser is split into two pulses with a
controllable time delay between them. Tuning the first pulse (the pump pulse) to
the exciton energy and measuring the differential absorption as a function of the
energy of the second pulse (the probe pulse) and the time difference between the
two pulses then leads to a result such as that shown in Fig. 4.5. The differential
absorption, i.e. the difference in absorption between the pump and the probe pulse,
is negative for excitons and trions because these states are partly saturated due to
the pump pulse and are therefore less likely to absorb the probe pulse. For the
biexciton, however, the differential absorption is positive because the absorption of
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Figure 4.5: Differential absorption for WSe2 on a Al2O3 substrate obtained by
means of a pump-probe measurement as a function of the probe pulse energy and
the time difference between the pump and the probe pulse for a fixed pump pulse
energy of 1.744 eV. Figure taken from Ref. [178].

the probe pulse leads to a transition from two excitonic states to a biexcitonic state.
Both in standard PL and in pump-probe experiments the biexciton peak is as-

sociated with a transition between an exciton and a biexciton state and as such the
peak energy gives the difference between the exciton and biexciton energy. There-
fore, the biexciton binding energy, which is given by the difference between two
times the exciton energy and the biexciton energy, can be obtained as the differ-
ence between the exciton peak energy and the biexciton peak energy. In Fig. 4.5
the biexciton peak is found between the exciton and trion peaks, meaning that the
biexciton binding energy is found to be smaller than the trion binding energy.

4.6 Conclusion
In this chapter trions and biexcitons in monolayer TMDs were studied. An attempt
was made to calculate the trion binding energies in the single-band model using
the FEM by neglecting angular correlations (a full solution being practically in-
feasible), but comparison with theoretical results from the literature showed that
this is not a good approximation. Therefore, the SVM based on correlated Gaus-
sian basis functions was introduced and used to calculate the trion and biexciton
binding energies for different monolayer TMDs and different substrates and very
large values were found, i.e. up to 30 meV and up to 20 meV for trions and biex-
citons, respectively. Good agreement was obtained with other theoretical studies
and reasonably good agreement was found with experimental results for trions. For
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biexcitons there are very large differences with experimental results but it was ex-
plained that this may be the consequence of misinterpretation of the experimental
results [118, 179]. It was also shown that the trion and biexciton binding energies
can be approximately doubled by adding in-plane confinement to the system.
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CHAPTER 5

Magnetic field effects on excitonic complexes in
monolayer TMDs

In this chapter the presence of a uniform magnetic field is considered and its ef-
fect on excitonic complexes in monolayer TMDs is investigated. For excitons the
Hamiltonian in the presence of a perpendicular magnetic field is constructed in
the four-band model and the corresponding eigenvalue equation is solved numeri-
cally in order to obtain the exciton Landau level spectrum. Next, it is shown how
so-called dark excitons, which brighten as a result of an in-plane magnetic field,
exhibit a strong valley Zeeman effect when applying a tilted magnetic field. Finally,
the SVM is used to study the effects of a perpendicular magnetic field on trions and
biexcitons.

5.1 Exciton Landau levels
The presence of a perpendicular magnetic field again needs to be taken into ac-
count by means of the Peierls substitution Π = k− qA/~, leading to the magnetic
electron Hamiltonian He,q

s,τ (Π) and hole Hamiltonian Hh,q
s,τ (Π) = −He,−q

−s,−τ (−Π).
In this chapter, the symmetric gauge A = (−By/2, Bx/2, 0)T is chosen for the
vector potential. As a result, the components of the center of mass momentum are
no longer good quantum numbers and, similar to the discussion in subsection 3.1.2,
the exciton Hamiltonian eigenvalue equation will again have to be decoupled in or-
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der to separate the angular part from the radial part, even though the total exciton
angular momentum operator (3.4) still commutes with the (magnetic) Hamiltonian.
Furthermore, as discussed in subsection 2.2.4, the spin Zeeman effect and the Zee-
man effect due to the orbital angular momentum m of the single-particle states
around their atomic sites, i.e. m = 0 and m = 2τ for conduction and valence band
states, respectively, also needs to be taken into account explicitly. Following the
same procedure as explained in subsection 3.1.2 leads to the decoupled equation(

Πe
−

(
1

gσ(Eexc
σ , reh)− λvβ

Πe
+

)
+ Πh

−

(
1

gσ(Eexc
σ , reh)− λcβ

Πh
+

))
|φe,hc,v 〉

=
gσ(Eexc

σ , reh)−∆σ

a2t2
|φe,hc,v 〉 ,

(5.1)

with Πj
± = τ jΠj

x ± iΠj
y, β = seτ e − shτh, gσ(Eexc

σ , reh) = Eσ + V (r) − (se +

sh)µBB − 2τhµBB, ∆σ = ∆ + λcs
eτ e − λvs

hτh, and where |φe,hc,v 〉 is again the
component of the exciton eigenstate representing an exciton consisting of an elec-
tron in the conduction band and a hole in the valence band. It was again assumed
that the electron and hole kinetic energies are small compared to the band gap and
the exciton energy. Switching to position representation, transforming to center
of mass and relative coordinates (3.2), and taking β = 0, λc = 0, and λv = λ
eventually leads to the differential equation(
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φe,hc,v (r, R, ϕr, ϕR) = Eexc

σ φe,hc,v (r, R, ϕr, ϕR).

(5.2)

There are now three terms which only appear for intravalley excitons and not for
intervalley excitons and which prevent the equation from being separable into an
angular and a radial part. These terms are small because they are related to mag-
netic field effects and it can again be argued that they can be neglected because
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Figure 5.1: Six lowest Landau levels of the intravalley (τ e = −τh = 1) 2p state (a)
and 3d state (b) calculated for excitons in MoS2 suspended in vacuum. Solid blue
(dashed red) lines indicate positive (negative) relative angular momentum states.

they will only contribute in second order perturbation theory, similar to the discus-
sion below Eq. (3.14), where they now only couple states whose relative (center
of mass) angular momentum quantum numbers differ by ±1 (∓1). It is therefore
assumed that the angular part of the wave function is given by exp(ijrϕr + ijRϕR),
with jr and jR integer quantum numbers. Furthermore, the terms corresponding
to the magnetic angular momentum (i.e. the last one on the second line of the
equation) and the Zeeman effect related to the intrinsic magnetic moment of the
individual Bloch particles (2.24) (i.e. the first one on the third line of the equation)
can now be distinguished.

Solving the above differential equation leads to discrete energy levels, i.e. the
Landau levels, which depend on a total of four integer indexes, i.e. the principal
and angular quantum numbers nR ≥ 0 and jR (nr > 0 and jr) associated with
the center of mass (relative) degree of freedom. The Landau levels for the exciton
2p and 3d states of MoS2 are shown in Fig. 5.1. The Landau levels show a linear
behavior as a function of the magnetic field strength and correspond qualitatively
to the Landau levels of a 2D charged Schrödinger particle, i.e. [180]

Eexc
σ '

(
nR +

jR + |jR|
2

+
1

2

)
~ωc, (5.3)

with ωc = 2eB/M the center of mass cyclotron frequency withM the total exciton
mass (3.17). This means that for each nR the corresponding Landau levels are
infinitely degenerate for all jR ≤ 0 and that for each nR and jR all the states with
quantum numbers (nR + q, jR − q), with q an integer for which nR + q ≥ 0 and
jR− q ≥ 0, are degenerate. Note that some of the lowest Landau levels decrease as
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Figure 5.2: Dominant component of the intravalley (τ e = −τh = 1) 2p state
nR = 0 wave function for the degenerate states with (jr, jR) = (1, 0) (a) and
(jr, jR) = (−1, 1) (b) calculated for excitons in MoS2 suspended in vacuum in the
presence of a magnetic field of B = 50 T.

a function of the magnetic field, which is a consequence of the Zeeman effect due to
the orbital angular momentum of the single-particle states around their atomic sites.
Furthermore, the magnetic field breaks the degeneracy between states with opposite
relative angular momentum ±jr, which is to be expected. However, there is still
a degree of degeneracy in the relative angular momentum quantum number in the
sense that Landau level number k of the state with relative angular momentum jr
is degenerate with Landau level number k + jr of the state with opposite relative
angular momentum −jr. As a result, only the lowest |jr| Landau levels of the
state with negative relative angular momentum are non-degenerate with the Landau
levels of the state with opposite relative angular momentum. This is a remarkable
result since it is not immediately clear from Eq. (5.2) that this should be the case.

The exciton wave functions of two degenerate states of which both the rela-
tive and the center of mass angular momentum quantum numbers are different are
shown in Fig. 5.2. The wave function in Fig. 5.2(a) shows s-like behavior as a
function of the center of mass coordinate whereas the wave function in Fig. 5.2(b)
shows p-like behavior. Both wave functions show p-like behavior as a function of
the relative coordinate. This also shows that, even for a high magnetic field strength
of 50 T, the exciton wave functions are more localized as a function of the relative
coordinate as compared to the center of mass coordinate.
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Note that the exchange interactions for p and d states are expected to be neg-
ligible since these are proportional with the value of the exciton wave function
squared in the relative coordinate origin [120]. Therefore, it is to be expected that
the inclusion of exchange interaction effects would have little to no effect on the
results presented here. For s states the slopes of the Landau levels are altered by
the inverse of the correction factor discussed in subsection 3.2.3.

The results presented in this section were published in Physical Review B
[136]. In principle it should be possible to measure these exciton Landau levels
experimentally by means of photoluminescence experiments. However, due to the
small energy separation between the different Landau levels, high magnetic field
strengths, high laser powers, and low temperatures would be needed to try and
resolve the different states. Landau level-like features were found in Ref. [127],
although the origin of these features was not discussed.

5.2 Strong valley Zeeman effect of dark excitons in a
tilted magnetic field

5.2.1 Influence of the different Zeeman effects on the exciton
energies

As mentioned in subsection 2.2.4, a perpendicular magnetic field breaks time-
reversal symmetry and as such lifts the degeneracy between theK andK ′ valley, as
can be seen from the Landau level spectrum shown in Fig. 2.6. Aside from leading
to Landau quantization, however, a magnetic field also leads to Zeeman shifts in
the energy spectrum. As discussed earlier, there are three types of Zeeman effects
in monolayer TMDs: the Zeeman effect associated with the angular momentum of
the atomic orbital states (which will be referred to in this section as the orbital Zee-
man effect), the spin Zeeman effect, and the Zeeman effect related to the intrinsic
magnetic moment of the individual Bloch particles (2.24) (which will be referred
to in this section as the Bloch Zeeman effect). They are schematically depicted in
Fig. 5.3(a). The spin and Bloch Zeeman effects do not influence the energy gap
between states with the same spin and valley indexes. The orbital Zeeman effect,
however, decreases (increases) the energy gap in theK (K ′) valley by an amount of
2µBBz. As a result, the exciton transition energy, which is measured in PL experi-
ments and scales with the band gap, is different in the two valleys as well. Due to
the circular dichroism in monolayer TMDs this means that the exciton resonances
in the PL spectra for left and right circularly polarized light shift from each other
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Figure 5.3: (a) Schematic representation of the energy bands of tungsten-based
monolayer TMDs in the absence (dashed) and presence (solid) of a perpendicular
magnetic field. Landau levels are not shown here. Blue and red curves are spin up
and spin down bands, respectively. The black, purple, and green arrows indicate
the effect of the spin, orbital, and Bloch Zeeman effect, respectively. (b) Schematic
illustration of an experimental setup for studying the effects of a tilted magnetic
field on the optical properties of a TMD monolayer.

in the presence of a perpendicular magnetic field by an amount of 4µBBz. This is
referred to in the literature as the exciton valley Zeeman effect and has indeed been
experimentally observed in monolayer TMDs [127, 181–185].

Depending on the relative sign of the spin-orbit couplings in the conduction
and valence bands in monolayer TMDs, the constituent electron and hole of the
lowest-energy exciton can be located in energy bands which either have the same
spin or opposite spin. Since optical transitions conserve spin, the former are re-
ferred to as bright excitons while the latter are known as dark excitons. Theoretical
studies predict that λc < 0 for molybdenum-based TMDs and λc > 0 for tungsten-
based TMDs [60, 63, 186, 187], as was shown in Table 2.1. Since λv > 0 for all
monolayer TMDs, the lowest-energy A exciton in tungsten-based TMDs is dark.
As discussed in subsection 2.2.4, an in-plane magnetic field, aside from leading to
small additional shifts in the energy bands, couples the different spin states and as a
result leads to a non-zero amplitude for previously forbidden interband transitions
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Figure 5.4: Excitonic PL spectra calculated for WS2 on a SiO2 substrate for right
(solid, blue) and left (dashed, red) circularly polarized light for different tilt angles
of the sample in the presence of a magnetic field of 30 T. A broadening of γ = 5
meV was used.

(2.31). This causes the dark excitons to brighten and as such leads to additional
peaks in the PL spectrum, which was indeed observed experimentally [76].

Fig. 5.3(a) shows that the spin Zeeman effect leads to an additional increase
(decrease) of 2µBBz of the energy gap between the highest valence band and the
conduction band with opposite spin in the K (K ′) valley. The Bloch Zeeman effect
further adds to this difference in size of the energy gap since it is slightly stronger
for states with sτ = 1 as compared to states with sτ = −1, as can be seen from
Eq. (2.24). Therefore, in a tilted magnetic field the peaks in the PL spectrum due
to these brightened dark excitonic states will also split between the two circular
polarizations of the laser and this splitting is expected to be more than twice as
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Figure 5.5: Splitting of the bright (solid, blue) and dark (dashed, red) excitonic
peaks in the PL spectrum calculated for WS2 on a SiO2 substrate in the presence of
a magnetic field of 30 T as a function of the tilt angle of the sample.

large as the splitting between the bright exciton peaks. For materials with λc > 0,
i.e. tungsten-based TMDs, the dark A exciton energy is lower than the bright A
exciton energy and therefore these resonances can be detected in the PL spectrum
as their intensity is further thermally increased by a factor exp(∆Ebd/(kBT )), with
∆Ebd the difference between the bright and the dark exciton energy. A possible
experimental setup to measure this effect is shown in Fig. 5.3(b). The magnetic
field is oriented along the z-direction and the sample can be tilted over an arbitrary
angle θ. The mirror should be tilted over an angle φ = (π − θ)/2 in order to have
perpendicular incidence of the laser beam which is pointed along the z-direction.

5.2.2 PL spectrum in a tilted magnetic field

It will now be investigated how these different Zeeman effects and brightenings
of dark excitons manifest themselves in the PL spectrum in different monolayer
TMDs in the presence of a tilted magnetic field. The PL spectrum is calculated by
adding a factor exp(−Ej/(kBT )) to each term in the expression of the absorbance
spectrum (3.21) in order to take into account thermalization effects which occur
between the formation and the recombination of the excitons. The exciton energies
and wave functions, which are needed to obtain the PL spectrum, are calculated
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Figure 5.6: Excitonic PL spectra for right (solid, blue) and left (dashed, red) circu-
larly polarized light calculated for different TMD monolayers on a SiO2 substrate
with tilt angle θ = 45◦ in the presence of a magnetic field of 50 T. A broadening of
γ = 3 meV was used. Note that for the A and the B exciton the bright peaks in the
right circularly polarized PL spectra of the different materials have been artificially
aligned at 1.035 eV and 1.1 eV, respectively, to facilitate comparison.

from a differential equation, similar to Eq. (5.2), derived from Eq. (5.1) for the
more general case β 6= 0. The results presented in this section were published in
Physical Review B Rapid Communication [188].

The excitonic PL spectrum of WS2 is shown for different tilt angles in Fig. 5.4.
The results clearly show the above predicted effects, i.e. the splitting of the dark
exciton peaks is more than twice as large as compared to the splitting of the bright
exciton peaks, which should be detectable experimentally. However, although the
splitting of the dark exciton peak increases as the tilt angle decreases, the intensity
of the dark exciton peaks decreases as well, making them more difficult to observe.
Therefore, this effect can be best measured at intermediate tilt angles. The splitting
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Figure 5.7: Excitonic PL spectra for left and right circularly polarized light calcu-
lated for WSe2 on a SiO2 substrate for B = 7 T, θ = 0◦, γ = 3.5 meV (a) and
B = 14 T, θ = 90◦, γ = 8 meV (b). Comparison is made with the experimental re-
sults of Ref. [183] (a) and Ref. [76] (b). The calculated results are shifted to match
the A exciton energy of the experimental results and the maxima are rescaled to
facilitate comparison.

of the bright and dark excitonic peaks in the PL spectrum is shown in Fig. 5.5 as a
function of the tilt angle of the sample. Notice that the splitting of both excitonic
peaks increases with decreasing angle and that the splitting of the dark excitonic
peak is more than twice as large as compared to the splitting of the bright peak.

For materials with λc < 0, i.e. molybdenum-based TMDs, the dark A exciton
energy is higher than that of the bright A exciton and as such these states are, in
addition to their already lower intensity, further thermally suppressed by a factor
exp(∆Ebd/(kBT )) and are therefore not detected experimentally. This can be seen
in Fig. 5.6, where no brightened dark A exciton peaks are seen in the PL spectra
of MoS2 and MoSe2. For B excitons the situation is reversed: in materials with
λc < 0 the dark exciton has a lower energy than the bright exciton and can be
detected whereas in materials with λc > 0 the dark exciton has a higher energy
than the bright exciton and is thermally suppressed. However, in this case the spin
and orbital Zeeman effects cancel each other and the only (small) change in the
energy gap comes from the Bloch Zeeman effect. Therefore, the splitting of the
dark B exciton peaks in the PL spectrum will be smaller than that of the bright
excitons and thus more difficult to detect. This can be seen in the figure, where
the brightened dark B exciton peak of MoSe2 and that of MoS2 are difficult to
observe. Although, for the latter, the treatment of the in-plane component of the
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magnetic field within first order perturbation theory, as discussed above and below
Eq. (2.29), might have smaller accuracy due to the very small λc.

In Figs. 5.7(a) and (b) the calculated results are compared with experimental
results for the case of a perpendicular and an in-plane magnetic field, respectively.
For a perpendicular magnetic field a slightly larger splitting of the excitonic peak
is found, which is possibly due to the fact that the magnetic quantum numbers in
the conduction and valence bands of monolayer TMDs deviate somewhat from the
values m = 0 and m = 2τ due to mixing of the transition metal d orbitals that
make up the single-particle states at the band edges with the chalcogen p orbitals
[127]. In the case of an in-plane magnetic field there are additional features in
the experimental PL spectrum at energies lower than the brightened dark exciton
energy which have been attributed to localized or defect-related excitons [167,189].

5.3 Magnetic field dependence of the ground state
properties of excitonic complexes

In general, the Hamiltonian for an N -particle excitonic complex in the presence of
a uniform perpendicular magnetic field is in the single-band model given by

H =
N∑
i=1

~2

2mi

(
ki +

e

~
Ai

)2

+
N∑
i<j

sgn(qiqj)V (|ri − rj|), (5.4)

with qi and mi the charge and effective mass of particle i. Again the symmetric
gauge A = (−By/2, Bx/2, 0)T is chosen for the vector potential. In this section,
the different Zeeman terms are not taken into account because they do not influence
the binding energy and the structural properties of the excitonic complexes. The
Hamiltonian can be rewritten as

H =
N∑
i=1

(
− ~2

2mi

∇2
i +

e2B2

8mi

r2
i +

eB

2mi

Lzi

)
+

N∑
i<j

sgn(qiqj)V (|ri − rj|), (5.5)

with Lzi the z-component of the angular momentum of particle i. The energies
and wave functions are obtained from the above Hamiltonian using the SVM and
the results, which are presented in this section, were published in Physical Review
B [164]. The matrix elements of the r2

i terms between the correlated basis functions
can be obtained by exploiting Eq. (4.15). The expectation value of the sum of the
single-particle angular momenta vanishes for the ground state [161].
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In addition to the SVM approach, and in order to get a better physical insight, it
is also useful to construct a simplified variational method for excitons in a magnetic
field. Transforming to center of mass and relative coordinates (3.15) leads to the
exciton Hamiltonian

Hex =
P 2

2M
+
e2B2

8µ
R2 +

p2

2µ
+
e2B2

8M2

(
m3
h +m3

e

mhme

)
r2

+
e2B2

4

(me −mh)

Mµ
R.r − V (r),

(5.6)

with M = mh+me and 1/µ = 1/mh+1/me. Here it was used that the sum of the
two single-particle angular momentum operators is equal to the sum of the center
of mass and the relative angular momentum operators, which was also used in Eq.
(3.4). The latter two commute with the Hamiltonian and are zero for the ground
state. For equal electron and hole masses me = mh = m the above Hamiltonian
decouples into a center of mass part and a relative part, i.e. Hex = HCM + Hrel,
Ψex(R, r) = ψCM(R)ψrel(r), and Eex = ECM + Erel. The center of mass part
can be solved exactly. Its Hamiltonian can be rewritten as

HCM =
P 2

2M
+

1

2
Mω2R2, (5.7)

with ω = eB/(2
√
Mµ) = eB/M . This is the Hamiltonian of the 2D harmonic

oscillator, which has an energy spectrum given by Eq. (5.3), yielding a ground state
energy of E0

CM = ~eB/M = ~2/(2ml2B). The corresponding ground state wave
function is given by

ψ0
CM(R) =

1√
πlB

e−R
2/(2l2B). (5.8)

Note that this implies that a difference in electron and hole mass would only lead to
corrections of the order of (me−mh)

2 since first order perturbation theory implies
that the lowest order correction of the corresponding term in the Hamiltonian is
proportional to 〈ψ0

CM |R|ψ0
CM〉 = 0.

The relative part of the Hamiltonian can be written as

Hrel = − ~2

2µ
∇2 +

e2B2

32µ
r2 − V (r). (5.9)

In the case of zero magnetic field the Hamiltonian reduces to that of a hydrogen-like
problem which, in the absence of non-local screening, has an exponential ground
state wave function. Without the Coulomb-like interaction term, on the other hand,
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the Hamiltonian reduces to that of an harmonic oscillator which has a Gaussian
ground state wave function. Therefore, to interpolate between these limiting cases,
the following variational wave function is considered:

ψ0
rel(r) = Ne−a

2r2−br, (5.10)

with a and b variational parameters andN a normalization constant. The variational
ground state energy of the relative part of the Hamiltonian is

E0
rel(a, b) =

〈ψ0
rel|Hrel|ψ0

rel〉
〈ψ0

rel|ψ0
rel〉

, (5.11)

and the best approximation for the total exciton energy is therefore given by

Eex =
~2

2ml2B
+ E0

rel(amin, bmin), (5.12)

with amin and bmin the variational parameters which minimize the variational en-
ergy.

Furthermore, in the simplified variational model for the exciton, it is possible
to show that the correlation function between the electron and hole (3.18) is given
by

Ceh(r) =
1

2π

8a3

2a− γb
e−2a2r2−2br, (5.13)

leading to an average electron-hole distance (3.19) given by

〈reh〉 =
γ(a2 + b2)− 2ab

2a2 (2a− γb)
, (5.14)

with γ =
√

2πeb
2/(2a2)Erfc(b/(

√
2a)) and where the magnetic field and 2D polar-

izability dependence is reflected in the variational parameters a and b which have
to be chosen such that they minimize the variational energy.

5.3.1 Binding energy
In the presence of a magnetic field the binding energies for excitons, negative tri-
ons, and biexcitons are, respectively, given by

Eex
b (B,χ2D) = Ee

0(B) + Eh
0 (B)− Eex(B,χ2D), (5.15)

Etr
b (B,χ2D) = Ee

0(B) + Eex(B,χ2D)− Etr(B,χ2D), (5.16)

Ebi
b (B,χ2D) = 2Eex(B,χ2D)− Ebi(B,χ2D), (5.17)
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Figure 5.8: Exciton binding energy as a function of the magnetic field strength
for a 2D polarizability of χ2D = 2 nm (a) and χ2D = 1000 nm (b). The system is
suspended in vacuum and the effective masses are taken to beme = mh = 0.26m0.
The solid blue curves are obtained with the SVM, the dashed red curves are the
results from the simplified variational model (5.10), the dotted black curves are
obtained with the simplified model in which a is set to 0, and the dot-dashed green
curves are obtained with the simplified model in which b is set to 0.

where Ee(h)
0 , Eex, Etr and Ebi are the free electron (hole), exciton, trion, and biex-

citon energy, respectively. Again only negative trions will be considered.
In Fig. 5.8 the exciton binding energy is shown as a function of the magnetic

field strength for two different 2D polarizabilities. An increased 2D polarizability
leads to a decreased binding energy as a consequence of the decreased short-range
interactions, as was shown in Fig. 2.7. For small 2D polarizabilities, the bind-
ing energy increases linearly with the magnetic field strength, whereas for large
2D polarizabilities the binding energy initially increases linearly with the magnetic
field strength but at higher magnetic field strengths the increase becomes slower
than linear. This can be understood since a perpendicular magnetic field leads to
in-plane confinement of the particles, for which the length scale is the magnetic
length. At low magnetic field strengths this length scale is much larger than the
average interparticle distance and as such the exciton energy depends very weakly
on the magnetic field. Free electrons and holes, however, do immediately feel the
influence of the magnetic field and this confinement leads to an increase in the
first two terms of Eq. (5.15) and therefore in the binding energy as well. As the
magnetic field strength increases, the magnetic length decreases and eventually be-
comes of the same order as the interparticle distance. Increasing the magnetic field
strength even further will cause the particles to be pushed closer towards each other
which increases the kinetic energy of the exciton. This effect decreases the bind-
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Figure 5.9: Trion (solid, blue) and biexciton (dashed, red) binding energy as a
function of the magnetic field strength calculated for WSe2 on a SiO2 substrate.

ing energy and adds up with the increase in binding energy stemming from the
magnetic confinement of the free electrons and holes to yield a deviation from the
linear magnetic field dependence of the binding energy. At larger 2D polarizabil-
ities the interparticle distance is larger due to the decreased Coulomb interactions
and therefore the deviation from the linear behavior starts at lower magnetic field
strengths.

Figure 5.8 also shows that the results obtained with the simplified variational
method agree well with those obtained with the SVM. In the absence of screening,
which is not shown here, the SVM results can be reproduced with high accuracy
in the chosen magnetic field range, i.e. 0 T up to 60 T, by using an exponential
variational wave function (i.e. a = 0). When using a Gaussian wave function (i.e.
b = 0), binding energies which are 21.5% smaller than the SVM values are found.
This implies that in this magnetic field range the Coulomb term dominates over the
magnetic field term and therefore the relative part of the exciton is described by an
exponential wave function. For small 2D polarizabilities Fig. 5.8(a) shows that the
results obtained using the full variational wave function are about 5 meV, or 0.4%,
smaller than the SVM results, that the results obtained using an exponential wave
function (a = 0) are about 28 meV, or 2.3%, smaller than the SVM results, and that
the results obtained using a Gaussian wave function (b = 0) are about 39 meV, or
3.4%, smaller than the SVM results. This implies that the interaction term, which
is now given by the Keldysh potential (2.40) instead of the bare Coulomb potential,
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Subst. Exciton Trion Biexciton
0 T / 10 T / 20 T 0 T / 10 T / 20 T 0 T / 10 T / 20 T

MoS2 Vac. 555.7 / 556.9 / 558.1 33.4 / 34.9 / 36.1 19.0 / 22.3 / 23.5
SiO2 321.1 / 322.3 / 323.5 22.9 / 24.7 / 25.9 15.5 / 17.8 / 19.5

MoSe2 Vac. 486.7 / 487.8 / 488.8 27.7 / 29.3 / 30.4 15.5 / 17.6 / 19.3
SiO2 291.4 / 292.5 / 293.5 20.3 / 21.7 / 22.8 13.3 / 15.3 / 16.7

WS2 Vac. 530.1 / 532.0 / 533.7 32.4 / 35.7 / 37.4 19.5 / 22.4 / 25.0
SiO2 289.2 / 291.0 / 292.7 21.3 / 24.0 / 25.6 14.5 / 17.1 / 19.7

WSe2 Vac. 473.8 / 475.5 / 477.2 28.8 / 31.3 / 32.7 15.9 / 19.3 / 20.7
SiO2 265.2 / 267.1 / 268.7 19.6 / 21.4 / 23.1 12.5 / 15.3 / 17.6

Table 5.1: Exciton, trion, and biexciton binding energies (meV) calculated for dif-
ferent TMD materials and different substrates. The dielectric constants εb = 3.8
and εt = 1 were used for SiO2 below and vacuum above the TMD.

still dominates over the magnetic field term. However, the corresponding exciton
state cannot be described by an exponential or a Gaussian wave function or even a
product of the two, although the latter gives the best approximation. In the presence
of strong screening Fig. 5.8(b) shows that the SVM results can be reproduced with
high accuracy by using a Gaussian variational wave function (b = 0). When using
an exponential wave function (a = 0), however, the results agree at low magnetic
field strengths but deviate from the SVM results for higher magnetic field strengths,
even resulting in a decrease in binding energy. This implies that, due to the strong
screening and therefore weak interactions, the magnetic field term now dominates
over the interaction term and therefore the relative part of the exciton is described
by a Gaussian wave function.

The trion and biexciton binding energies are shown as a function of the mag-
netic field strength in Fig. 5.9. For both excitonic complexes it shows qualitatively
the same behavior as that of the exciton binding energy, however the deviation from
the linear behavior is less pronounced as compared to that in Fig. 5.8(b). This is
because the corresponding trion and biexciton interparticle distances are smaller
than the exciton interparticle distance corresponding to Fig. 5.8(b) because differ-
ent parameters were used. Furthermore, notice that the biexciton binding energy is
smaller than the trion binding energy.

In Table 5.1 the exciton, trion, and biexciton binding energies are shown for dif-
ferent monolayer TMDs, different substrates, and different magnetic field strengths.
The binding energy of the different excitonic complexes increases with the mag-
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Figure 5.10: (a) Interparticle distance probability distribution between the electron
and hole of an exciton calculated for the same parameters as in Fig. 5.8 and for a
2D polarizability of χ2D = 2 nm (solid, blue) and χ2D = 1000 nm (red, scaled up
by a factor of 8), in the absence (dashed) and presence (dotted) of a magnetic field
of B = 60 T. The dotted black vertical line indicates twice the magnetic length. (b)
The modulus squared of the exciton wave function Ψe(x1) ≡ Ψ0,0 ((x1, y1 = 0),0)
for a hole fixed in the origin for the same cases as in (a). The calculated wave
functions are rescaled relative to their respective maxima.

netic field strength, with the increase being in general slightly larger at low fields,
i.e. going from 0 T to 10 T as compared to going from 10 T to 20 T. This is in
correspondence with the non-linear behavior discussed above. Furthermore, the
materials with smaller effective electron and hole masses (WS2 and WSe2) exhibit
a stronger magnetic field dependence than those with larger effective electron and
hole masses (MoS2 and MoSe2). This is because a smaller effective mass, and
therefore larger kinetic energy, leads to a smaller binding energy and therefore a
larger excitonic complex which is more susceptible to magnetic confinement. Fur-
thermore, the magnetic field dependence is also more pronounced for trions and
biexcitons as compared to that for excitons, which again is a consequence of the
fact that the former two excitonic complexes are less strongly bound and therefore
larger.

5.3.2 Wave function and interparticle distance

In Fig. 5.10 the interparticle distance probability distribution and the modulus
squared of the wave function for an exciton with the hole fixed at x = y = 0 are
shown, as obtained from the SVM. When the screening is weak these quantities
are unaffected by the presence of a magnetic field since the exciton is localized in
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Figure 5.11: Average interparticle distance between the electron and hole of an
exciton as a function of the magnetic field strength calculated for the same param-
eters as in Fig. 5.8 and for a 2D polarizability of χ2D = 2 nm (SVM: solid, blue
and simplified model: dashed, orange) and χ2D = 1000 nm (SVM: solid, red and
simplified model: dashed, green). The dotted black curve is twice the magnetic
length.

a region smaller than the magnetic confinement region. In the presence of strong
screening, however, the exciton is larger than this magnetic confinement region and
therefore becomes compressed when a magnetic field is applied. In Fig. 5.11 the
average interparticle distance is shown as a function of the magnetic field strength.
For larger 2D polarizabilities the exciton is larger, which is again a consequence
of the decreased interaction. As the magnetic field increases, the exciton in the
presence of strong screening decreases considerably in size. This is because the
magnetic length already becomes comparable to the size of the exciton at a rel-
atively small magnetic field strength of 10 T. Moreover, the average interparticle
distance converges to twice the magnetic length for high magnetic field strengths.
The size of the exciton in the presence of small screening remains constant at 0.72
nm because it is significantly smaller than the magnetic length for the considered
magnetic field strengths. The figure also shows good agreement between the results
obtained from the SVM and the simplified variational model (5.10).

Using Eq. (3.19), average interparticle distances of 〈ree〉 = 3.56 nm and
〈reh〉 = 2.25 nm are found for the trion of Fig. 5.9 (WSe2 on a SiO2 substrate),
approximately independent of the magnetic field for realistic field strengths. For
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Figure 5.12: Modulus squared of the biexciton wave function
Ψ0,0

(
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)
calculated for a 2D polarizability of χ2D = 5.3 nm

and a magnetic field strength of B = 0 T (a) and B = 60 T (b). The circles and
dots indicate the location of the fixed holes and electrons, respectively.

biexcitons in the same system average interparticle distances of 〈ree〉 = 2.78 nm
and 〈reh〉 = 2.05 nm are obtained, again approximately independent of the mag-
netic field for realistic field strengths. This shows that the biexciton is smaller than
the trion despite the fact that its binding energy is also smaller. This may be ex-
plained due to the fact that for biexcitons there is an extra hole, as compared to
negative trions, to screen the repulsive electron-electron interaction.

In Fig. 5.12 the modulus squared of the biexciton wave function for a fixed
electron and fixed holes, i.e. the conditional electron probability distribution, is
shown for the previously used parameters me = mh = 0.26m0 and κ = 1. Notice
that for B = 0 T the other electron localizes predominantly around the fixed holes.
The presence of a strong magnetic field causes the localized regions around the
fixed holes to merge, which is a manifestation of the fact that 〈rhh〉 has decreased
due to the magnetic field.

5.3.3 Diamagnetic shift
For excitons, the center of mass part of the Hamiltonian leads to a linear magnetic
field term in the energy spectrum (5.12). It can be shown that this term is in general
given by N~2/(2Ml2B) for an N -particle excitonic complex with equal effective
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electron and hole masses. The quadratic magnetic field term in the excitonic energy
spectrum, the so-called diamagnetic shift [190], is approximately given by σB2

with σ = e2 〈r2〉 /32µ, where the expectation value is taken with respect to the
wave function in the absence of a magnetic field. It is possible to show that, up
to first order in the electron-hole mass difference, the center of mass part can be
decoupled from the relative part of the Hamiltonian (5.5) and that the diamagnetic
shift of the energy of the N -particle excitonic complex is in general given by

σ =
e2

8M

N∑
i>j

〈r2
ij〉 . (5.18)

This value can be experimentally obtained by fitting the results of the transition
energy as a function of the magnetic field and as such it provides information about
the size of the excitonic complex. The transition energy, which was schematically
shown for excitons in Fig. 3.8(a), is in general defined as the energy of the photon
resulting from the recombination process of an electron and a hole in the excitonic
complex [147]. It can therefore be written as

Eex
t (B,χ2D) = Eg + Eex(B,χ2D), (5.19)

Etr
t (B,χ2D) = Eg + Etr(B,χ2D)− Ee

0(B), (5.20)

Ebi
t (B,χ2D) = Eg + Ebi(B,χ2D)− Eex(B,χ2D), (5.21)

for excitons, trions, and biexcitons, respectively, with Eg the band gap. Since the
diamagnetic shift describes the quadratic dependence on the magnetic field and
since Eg and Ee

0(B) are, respectively, constant and linear as a function of the mag-
netic field it follows that σext = σex, σtrt = σtr, and σbit = σbi − σex. Therefore,
σt can be obtained by measuring and fitting the transition energy of a given exci-
tonic complex, from which in turn σ can be found which then gives an estimate of
the size of the excitonic complex by means of Eq. (5.18). The different Zeeman
terms are linear as a function of the magnetic field and therefore do not influence
the diamagnetic shift.

In Table 5.2 the exciton, trion, and biexciton diamagnetic shifts, as determined
from fitting the magnetic field dependence of the transition energy, are shown and
compared with the values obtained from the calculated interparticle distances by
means of Eq. (5.18). Here equal electron and hole masses of 0.5m0, 0.54m0,
0.32m0, and 0.34m0 for MoS2, MoSe2, WS2, and WSe2, respectively, were as-
sumed. Only experimental results for excitons are shown in the table. There are
no experimental results for biexcitons and only one for trions, i.e. σ = 5.7 µeV
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Exciton Trion Biexciton
This thesis Literature This thesis This thesis
Fit (5.18) Fit (5.18) Fit (5.18)

MoS2 0.033 0.035 - 0.319 0.282 0.271 0.292
MoSe2 0.032 0.030 - 0.263 0.286 0.302 0.287
WS2 A 0.080 0.080 0.9 [127] 0.756 0.700 0.633 0.744

0.32 ± 0.02 [129]
WS2 B 0.047 0.047 0.11 ± 0.02 [129]
WSe2 0.081 0.080 0.18 ± 0.02 [132] 0.992 0.709 0.849 0.790

Table 5.2: Exciton, trion, and biexciton diamagnetic shifts σ (µeV T−2) for dif-
ferent TMD materials on a SiO2 substrate (εb = 3.8, εt = 1) found by fitting the
magnetic field dependence of the transition energy, compared with values calcu-
lated from the interparticle distances using Eq. (5.18). Experimental results from
the literature are shown for excitons. For WS2 results are shown for both the A and
the B exciton.

T−2 for WS2 on a SiO2 substrate [127], which differs almost an order of magni-
tude from the results calculated here. The trion and biexciton diamagnetic shifts
are comparable, whereas the corresponding exciton diamagnetic shift is almost an
order of magnitude smaller. For excitons excellent agreement is found between the
results obtained with the fit and from Eq. (5.18). For trions and biexcitons a rel-
ative discrepancy between the fit and the results from Eq. (5.18) between 5% and
28% is found. This implies that the estimated size of the excitonic complex will
differ between 2.5% and 15% from the theoretical size calculated from Eq. (5.18).
The agreement between the fit and the results obtained from Eq. (5.18) can be fur-
ther improved by increasing the number of variational basis functions but this will
lead to an exponential increase of the computation time. It can also be concluded
that the value of the diamagnetic shift for excitons, trions, and biexcitons depends
strongly on the type of transition metal, whereas the type of chalcogen atom is of
less importance.

For excitons, the calculated results obtained from both the fit and Eq. (5.18)
underestimate the experimental results by about a factor 4 for A excitons in WS2

(and by more than a factor 10 when comparing with Ref. [127]) and by a factor 2
forB excitons in WS2 and forA excitons in WSe2. A (B) excitons consist of a hole
stemming from the upper (lower) valence band and have slightly different effective
masses. For B excitons in WS2 me = mh = 0.405m0 was used. These experimen-
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Figure 5.13: Exciton (blue), trion (red), and biexciton (black) diamagnetic shift
obtained from Eq. (5.18) for WS2 as a function of the dielectric constant of the
substrate. The exciton results are scaled up by a factor 6.

tal results depend significantly on the exact value of the dielectric constant of the
substrate and in Ref. [132] the high frequency value for the dielectric constant of
SiO2 was used instead of the static one, i.e. εb = 2.1 instead of εb = 3.8. When
using εb = 2.1 diamagnetic shifts of σ = 0.067 µeV T−2 and σ = 0.069 µeV T−2

are found using the fit and Eq. (5.18), respectively. Furthermore, it is remarkable
that the experimental results for these two materials differ by about a factor 2 while
their effective charge carrier masses and 2D polarizabilities are very similar.

The diamagnetic shift obtained from Eq. (5.18) is shown for excitons, trions,
and biexcitons in WS2 as a function of the dielectric constant of the substrate in Fig.
5.13. This shows that the diamagnetic shift increases approximately linearly with
the dielectric constant of the substrate and that its value can be more than doubled
as compared to the value in vacuum by choosing an appropriate substrate. The sub-
strate dependence of the trion and biexciton diamagnetic shifts is stronger than that
of the exciton diamagnetic shift. More specifically, the results can be fitted by a lin-
ear curve, i.e. σ = aεb+b, and the fitting parameters are (a, b) = (0.0085, 0.04887)
µeV T−2, (a, b) = (0.0678, 0.4408) µeV T−2, and (a, b) = (0.0721, 0.4593) µeV
T−2 for excitons, trions, and biexcitons, respectively.
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5.4 Conclusion
In this chapter the effects of uniform magnetic fields on excitons, trions, and biexci-
tons in monolayer TMDs were studied. It was found that a perpendicular magnetic
field leads to exciton Landau levels which correspond qualitatively to those of the
2D charged Schrödinger particle. As expected, the degeneracy between states with
opposite angular momentum was found to be broken as a result of the magnetic
field. However, this degeneracy is only partly broken since only the lowest |jr| Lan-
dau levels of the state with negative relative angular momentum are non-degenerate
with the Landau levels of the state with opposite relative angular momentum.

Next, it was shown how two known effects from the literature, i.e. the exciton
valley Zeeman effect in the presence of a perpendicular magnetic field and the
brightening of dark excitons in the presence of an in-plane magnetic field, can be
combined in the presence of a tilted magnetic field. More specifically, it was found
that this dark exciton valley Zeeman effect is more than twice as strong as compared
to that of the bright exciton. It was also demonstrated that, as a result of the sign
of the spin-orbit coupling in the conduction band, this strong effect is only present
for A excitons in tungsten-based TMDs.

Finally, the SVM was used to study the ground state properties of excitons,
trions, and biexcitons in a perpendicular magnetic field and it was shown that the
binding energy of all three excitonic complexes increases as a function of the mag-
netic field strength. More specifically, the biexciton binding energy can be almost
doubled in the presence of a magnetic field of 50 T. Furthermore, the diamagnetic
shift of trions and biexcitons was found to be almost an order of magnitude larger
than that of excitons and the diamagnetic shift of all three excitonic complexes was
shown to increase as a function of the substrate dielectric constant.
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CHAPTER 6

Excitonic complexes in anisotropic 2D materials

In this chapter two new materials are considered, i.e. monolayer black phosphorus
and monolayer TiS3. These materials exhibit an anisotropic energy spectrum and
the effect of this anisotropy on the binding energy and the structural properties
of excitons, trions, and biexcitons in these materials is investigated by means of
the SVM. It is shown that excitonic complexes in black phosphorus are strongly
anisotropic whereas in TiS3 they are almost isotropic, which is a consequence of
the relative anisotropy of the constituent electrons and holes. Finally, the effect of
tensile and compressive strain in different directions on the properties of excitons
in black phosphorus is studied.

6.1 Anisotropic 2D materials
Monolayer TMDs, like graphene, have trigonal lattice symmetry which persists in
the electronic band structure. However, at low energies this trigonal warping effect,
described by the parameter γ3 in the low-energy Hamiltonian (2.6), is very small
and as such it is a good approximation to consider the low-energy spectrum of
these materials to be perfectly isotropic. As a result, excitonic complexes in these
materials are isotropic as well.

As mentioned in section 1.2, numerous 2D materials, including materials with
non-trigonal symmetry, can be fabricated using the same methods which are used
to obtain graphene and monolayer TMDs. A such, another possible type of 2D
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Figure 6.1: Top view (top) and side view (bottom) of the lattice of monolayer bP (a)
and TiS3 (b). The unit cell of bP is indicated by the dashed rectangle. Ti (S) atoms
are indicated in light blue (orange). Figures taken from Ref. [191] (a) and [192]
(b).

semiconductor is monolayer black phosphorus (bP) [37, 38], for which the lattice
structure is shown in Fig. 6.1(a). This material is also commonly referred to in the
literature as phosphorene, which is slightly misleading since electrons in bP form
sp3 bonds as opposed to the sp2 bonds in graphene and in benzene-like structures
(from which graphene got its “ene”). As a result of the strong symmetry breaking
between the x- and y-direction, this material exhibits a highly anisotropic band
structure [193, 194], i.e. the effective masses in the kx-direction are different from
those in the ky-direction. Since bP is a semiconductor with a band gap similar
to that of TMDs, it is also well-suited for technological applications such as field
effect transistors [195] and photodetector devices [196, 197].

Another class of anisotropic 2D semiconductors is formed by the transition
metal trichalcogenides [198, 199]. Monolayer TiS3, the prototypical representative
of this class for which the lattice structure is shown in Fig. 6.1(b), has recently been
synthesized and proposed as a candidate material for use in transistors [200, 201].
This material exhibits a peculiar anisotropic band structure in which the conduction
band is flatter in the kx-direction whereas the valence band is flatter in the ky-
direction [202]. Thus the anisotropy directions of electrons and holes are different
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were used: χ2D = 8 nm and εb = εt = 1.

from each other. This is in contrast to bP in which both the conduction and valence
bands are flatter in the ky-direction. As a result of their anisotropic band structure,
both bP and TiS3 show interesting properties such as linear dichroism [203–205]
and Faraday rotation [206].

The binding energy and structural properties of excitonic complexes in both
monolayer bP and monolayer TiS3 will now be studied using the SVM in the
single-band model. The same procedure as explained in section 4.3 can be used,
with the only difference being that now the matrices containing the variational pa-
rameters in the correlated Gaussian basis functions (4.11) are different for the x-
and y-dependence. The results presented in this chapter were published in Physical
Review B [207].

6.2 Binding energy

In order to better understand the influence of the anisotropic band structure, the
exciton binding energy is shown in Fig. 6.2 for a general system as a function of the
electron band mass in the kx-direction for different values of the electron band mass
in the ky-direction. Two distinct situations are considered: i) identical electron and
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mx
e (m0) my

e (m0) mx
h (m0) my

h (m0) χ2D (nm)
bP 0.20 6.89 0.20 6.89 5.49 [208]

TiS3 1.52 0.40 0.30 0.99 8.87 [209]

Table 6.1: Charge carrier masses [202] and 2D polarizabilities for bP and TiS3.

hole masses and ii) opposite electron and hole masses, i.e. the kx-component of
one equals the ky-component of the other and vice versa. The binding energy for
identical electron and hole masses is always larger than that for opposite masses
except when the masses in the kx- and ky-direction are equal, i.e. at mx

e = 0.1m0,
mx
e = m0, and mx

e = 4m0 for the blue, red, and black curves, respectively, as in
this case the two situations are identical. This can be explained by the fact that the
reduced mass µx(y) = mx(y)

e m
x(y)
h /(mx(y)

e +m
x(y)
h ) ≤ min(mx(y)

e ,m
x(y)
h ), implying

that in the opposite mass case, i.e. the electron and hole anisotropy directions
are perpendicular with respect to each other, µx = µy will remain small when
mx
e = my

h becomes large. Since excitonic properties are determined by the reduced
mass and not the individual masses, this means that excitons in this system are
isotropic and always 2D (even though the constituent particles are quasi-1D in the
limit of large mx

e = my
h) because of the limited reduced masses and therefore

have limited binding energy. On the other hand, in the identical mass case, i.e.
the electron and hole anisotropy directions are parallel with respect to each other,
µx(y) = mx(y)

e /2 = m
x(y)
h /2 and therefore µx increases linearly with increasing

mx
e = mx

h whereas µy remains constant. Excitons in this system are anisotropic
and are quasi-1D in the limit of large mx

e = mx
h and therefore their binding energy

is large due to the additional confinement.

For the remainder of this chapter the focus will lie on monolayer bP and mono-
layer TiS3, for which the effective band masses and 2D polarizabilities used in
the calculations are given in Table 6.1. The binding energies for excitons, neg-
ative and positive trions, and biexcitons are shown in Table 6.2 for bP and TiS3

both suspended in vacuum and placed on a SiO2 substrate. The calculated values
are compared with other theoretical studies using diffusion Monte Carlo [210], the
Numerov approach [211], a simple variational method [208], and first-principles
Bethe-Salpeter calculations [209, 212, 213]. For bP, the calculated values differ at
most 16% from those of Ref. [210]. More specifically for excitons the agreement
is best with the results of Ref. [212] (a difference of 0.3% for vacuum) and least
good with the results of Ref. [208] (a difference of 21% for SiO2), which are ob-
tained using a simple variational method. There are no other theoretical results for
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Substrate bP TiS3

This thesis Literature This thesis Literature
X Vacuum 832.4 743.9 [210] 537.1 560, 590 [209]

760 [211] 920 [213]
710 [208]
830 [212]

SiO2 483.6 405.0 [210] 314.7 330 [209]
400 [211]
380 [208]

hBN 443.7 - 289.0 -
hBN×2 293.8 - 191.7 -

X− Vacuum 56.3 51.6 [210] 34.9 32 [209]
SiO2 39.6 34.2 [210] 25.3 23 [209]
hBN 37.3 - 23.9 -

hBN×2 27.2 - 17.8 -
X+ Vacuum 56.3 53 [210] 34.0 36 [209]

SiO2 39.6 - 24.2 26 [209]
hBN 37.3 - 22.8 -

hBN×2 27.2 - 16.7 -
X2 Vacuum 40.1 40.9 [210] 25.8 -

SiO2 33.0 - 21.8 -
hBN 31.8 - 21.1 -

hBN×2 25.9 - 17.5 -

Table 6.2: Exciton (X), negative (X−) and positive (X+) trion, and biexciton (X2)
binding energies (meV) for bP and TiS3 and for different substrates obtained using
the SVM, compared with theoretical results from the literature. The following
dielectric constants were used: εb = 3.8 (εb = 4.4) and εt = 1 for SiO2 (hBN)
below and vacuum above the material and εb = εt = 4.4 for encapsulating hBN
(denoted by hBN×2).
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biexcitons in bP on a SiO2 substrate. The binding energies for TiS3 are in general
smaller than those for bP. The calculated values agree very well, i.e. differing at
most 9%, with those from Ref. [209], which are obtained by numerically solving
the relative Schrödinger equation either directly for excitons or using an imaginary
time evolution operator for trions. The authors also calculate the exciton binding
energy for TiS3 in vacuum by solving the Bethe-Salpeter equation and find 590
meV, which is still in good agreement. However, the result from Ref. [213], which
was obtained using first-principles Bethe-Salpeter calculations, differs by almost a
factor 2 from both the calculated result and those of Ref. [209].

The results for both bP and TiS3 on an hBN substrate are, due to the similar
dielectric constant, close to those for a SiO2 substrate. However, when the mate-
rials are encapsulated in hBN the binding energies of the excitonic complexes are
considerably smaller. Furthermore, the biexciton binding energy is almost always
smaller than the trion binding energy. However, the difference between them de-
creases with increasing substrate screening and for TiS3 encapsulated in hBN the
biexciton is more tightly bound than the positive trion. This is consistent with the
general results of Ref. [165] which found that both a difference in electron and hole
band masses and a reduced screening length (in this case due to an increased κ) lead
to an increase of the biexciton binding energy with respect to the trion binding en-
ergy. This may be explained due to the fact that biexcitons are smaller than trions
(as discussed in subsection 5.3.2), making them more susceptible to the increase
in short-range interactions associated with the reduced screening length. The de-
pendence on the difference in electron and hole band masses is not immediately
clear. Finally, note that the negative and positive trion binding energies are equal
in bP because equal electron and hole band masses were assumed. In Ref. [210]
a difference of 2.6% between these two excitonic complexes was found. For TiS3

the negative trion binding energy is larger than the positive trion binding energy,
which is to be expected because the electron effective masses are larger than the
hole effective masses, whereas the opposite behavior was found in Ref. [209].

There are only few experimental works studying excitonic complexes in mono-
layer bP. An exciton binding energy of 900 ± 120 meV and 300 meV was found
in Ref. [214] and Ref. [215], respectively. Both studies used a SiO2 substrate. The
former differs by about a factor 2 from the value calculated here (and even more
from the other theoretical results), although it is remarkable that this value is in
good agreement with the theoretical results for bP suspended in vacuum. It is pos-
sible that the experiment was performed on a part of the material which was locally
detached from the substrate. The result of Ref. [215] is in reasonable agreement
with the value calculated here, i.e. a difference of 21%. This study also found a



6.3 Correlation function and interparticle distance 121

bP TiS3

reh ree rhh reh ree rhh
xeh xee xhh xeh xee xhh
yeh yee yhh yeh yee yhh

Exciton 0.68 - - 0.92 - -
0.82 - - 0.78 - -
0.23 - - 0.74 - -

Trion 1.22 2.01 - 1.52 2.43 -
1.61 2.34 - 1.31 1.83 -
0.35 0.50 - 1.33 1.97 -

Biexciton 1.06 1.47 1.47 1.32 1.75 1.78
1.36 1.75 1.75 1.13 1.31 1.50
0.32 0.38 0.38 1.12 1.46 1.35

Table 6.3: Exciton, negative trion, and biexciton average interparticle distances
(nm), total and in the x/y-direction, calculated for bP and TiS3 suspended in vac-
uum.

trion binding energy of 100 meV, again on a SiO2 substrate, which differs by about
a factor 3 from both the calculated value and that of Ref. [210]. There are no ex-
perimental results available for biexcitons in bP and for monolayer TiS3 in general.

6.3 Correlation function and interparticle distance
Similar to the average interparticle distance in the isotropic case (3.19), the average
distance between particles i and j is in the anisotropic case obtained by

〈rij〉 =

∫ ∞
−∞

∫ ∞
−∞

√
x2 + y2Cij(x, y)dxdy, (6.1)

where the correlation function (3.18) is now anisotropic. Analogously the interpar-
ticle distance in the x- and y-direction are defined as

〈xij〉 =

√∫ ∞
−∞

∫ ∞
−∞

x2Cij(x, y)dxdy,

〈yij〉 =

√∫ ∞
−∞

∫ ∞
−∞

y2Cij(x, y)dxdy.

(6.2)
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Figure 6.3: Electron-hole correlation functions calculated for excitons in bP (a) and
TiS3 (b) suspended in vacuum.

In Table 6.3 the average interparticle distances, total as well as resolved in the
x/y-direction, are shown for excitons, negative trions, and biexcitons in bP and
TiS3. In general, the interparticle distances are larger in TiS3 as compared to bP,
which is in correspondence with the smaller binding energies found in Table 6.2.
Excitons exhibit the smallest interparticle distance, as can be expected. More re-
markably, trions show larger interparticle distances than biexcitons, even though
their binding energy is larger. This is similar to what was found for monolayer
transition metal dichalcogenides, as discussed in subsection 5.3.2. Furthermore,
the average distance between particles of equal charge is larger than that between
particles of opposite charge. Looking at the x/y-resolved interparticle distances, it
is clear that the excitonic complexes in bP are strongly anisotropic, with the inter-
particle distances in the x-direction a factor 4-5 larger than those in the y-direction,
whereas the excitonic complexes in TiS3 are almost isotropic. This is because, in
the discussion related to Fig. 6.2 on the reduced masses, bP is an example of the
identical mass case whereas TiS3 is an example of the opposite mass case. It is also
interesting to note that the electron-electron and hole-hole interparticles distances
are identical in bP, due to the identical electron and hole band masses, whereas they
are slightly different in TiS3. More specifically, in TiS3, the difference between the
electron-electron and hole-hole interparticles distances in the x/y-direction is more
pronounced than the difference between the total electron-electron and hole-hole
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Figure 6.4: Electron-electron (a)-(b) and electron-hole (c)-(d) correlation functions
calculated for negative trions in bP (a)+(c) and TiS3 (b)+(d) suspended in vacuum.

interparticles distances. Furthermore, in the x-direction the electrons are located
closer together than the holes whereas in the y-direction the opposite is true. This
agrees with the band masses in Table 6.1, i.e. a larger electron band mass in the
x-direction and a larger hole band mass in the y-direction.

The electron-hole correlation functions for excitons in bP and TiS3 are shown
in Fig. 6.3. This clearly demonstrates the strongly anisotropic behavior of excitons
in bP and the almost isotropic excitons in TiS3, as well as the fact that excitons in
TiS3 are in general larger than those in bP, even though in bP they are slightly more
spread out in the x-direction.

The electron-electron and electron-hole correlation functions for negative trions
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Figure 6.5: Electron-electron correlation functions calculated for biexcitons in bP
(a) and TiS3 (b) suspended in vacuum.

in bP and TiS3 are shown in Fig. 6.4. This again demonstrates the difference
in (an)isotropy between the two materials, although now the slight anisotropy in
TiS3 is also apparent in the electron-electron correlation function. The electron-
electron correlation functions show two maxima along the x-direction, instead of
one in the origin. This is a consequence of the Coulomb repulsion between the
two electrons [147,210] and this effect is therefore not present in the electron-hole
correlation functions. This figure also clearly shows the larger spatial extent of the
electron-electron correlation functions as compared to the electron-hole correlation
functions, which is consistent with the average interparticle distances shown in
Table 3.4.

For biexcitons the electron-electron correlation functions for bP and TiS3 are
shown in Fig. 6.5. This shows that the electron-electron correlation functions
for biexcitons are qualitatively similar to those for negative trions, except that the
system is more compact. This is related to the smaller interparticle distances for
biexcitons as compared to negative trions found in Table 6.3.

6.4 Excitons in strained bP
In this section the influence of in-plane uniaxial strain on excitons in monolayer
and bilayer bP is investigated. To this end, the effective band masses are calculated
from a numerical four-band tight-binding method [193]. The 2D polarizability of
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Figure 6.6: Exciton binding energy calculated for monolayer (a) and bilayer (b)
bP suspended in vacuum as a function of the strain in the x-direction (blue) and y-
direction (red). The size of the dots indicates the value of the exciton wave function
in the relative coordinate origin, scaled relatively to the value for 10% strain in the
x-direction.

Figure 6.7: Exciton wave function calculated for monolayer (top) and bilayer (bot-
tom) bP suspended in vacuum as a function of the hole coordinates for an electron
fixed in the origin. Three different strain values in the x-direction were considered:
−10% (left), 0% (middle), and 10% (right).
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−10% 0% 10%

Monolayer 2.60 2.18 1.94
Bilayer 2.92 2.09 1.75

Table 6.4: Anisotropy ratio xeh/yeh of the exciton average interparticle distance
calculated for both monolayer and bilayer bP for three different strain values in the
x-direction.

bilayer bP is taken to be twice that of monolayer bP [209, 210]. A paper which
includes the results presented in the remainder of this section is currently being
written.

In Fig. 6.6 the exciton binding energy is shown as a function of strain. The
results show that the binding energy increases (decreases) in a non-linear way as a
result of tensile (compressive) strain. The wave function in the electron-hole rela-
tive coordinate origin, which is a measure of the absorbance of the corresponding
exciton state as shown in Eq. (3.21), follows the same pattern as the binding en-
ergy. This is because a larger binding energy is associated with a more compact
wave function, which has a relatively larger value in the relative coordinate ori-
gin. Applying strain in the x-direction has a more pronounced effect as compared
to applying strain in the y-direction. As such, it can be concluded that applying
tensile strain, particularly in the x-direction, makes excitons in bP optically more
active. Furthermore, excitons in bilayer bP are less strongly bound and are more
susceptible to applied strain than their counterparts in monolayer bP. Notice that the
exciton binding energy for monolayer bP differs somewhat from the value given in
Table 6.2 because there is a small difference between the calculated band masses
and those from the literature.

The exciton wave function is shown for different strain values in the x-direction
in Fig. 6.7. This clearly shows the anisotropic nature of the excitons in both mono-
layer and bilayer bP. Furthermore, it is clear that applying tensile strain leads to
a more compact wave function, which is related to the larger binding energy. For
the same reason, the monolayer bP exciton wave functions are more compact than
those in bilayer bP. Remarkably, tensile strain leads to a more symmetric exci-
ton wave function, i.e. it partly restores the isotropy in the energy band structure.
Compressive strain, on the other hand, increases this anisotropy even further. This
is quantified in Table 6.4, where the ratio of the average interparticle distances in
the x- and y-direction is shown. This clearly demonstrates that this effect is more
pronounced in bilayer bP, for which in the case of 10% compressive strain the ex-



6.5 Conclusion 127

citons are almost three times more spread out in the x-direction as compared to the
y-direction, while for 10% tensile strain the excitons are less than two times more
spread out in the x-direction as compared to the y-direction. The same qualitative
effect, although less pronounced, was found in the case of strain in the y-direction.

6.5 Conclusion
In this chapter the properties of excitons, trions, and biexcitons were studied in
2D materials with anisotropic band structures, more specifically monolayer bP and
monolayer TiS3. For all three excitonic complexes the binding energies were calcu-
lated using the SVM and good agreement was found with theoretical results from
the literature when available. The binding energies for excitonic complexes in TiS3

are comparable to those in TMDs, whereas in bP they can be almost twice as large.
Next, the pair correlation functions and average interparticle distances were

calculated, which showed an important difference between the two materials. In
bP the electron and hole anisotropy directions are parallel and therefore excitonic
complexes in bP are anisotropic as well. In TiS3, however, the electron and hole
anisotropy directions are perpendicular and as a result excitonic complexes in TiS3

are almost isotropic.
Finally, the effect of uniaxial tensile and compressive strain in different direc-

tions on the properties of excitons in bP was studied and it was found that applying
tensile strain increases the exciton binding energy and restores the isotropy in the
excitonic complexes, whereas compressive strain decreases the exciton binding en-
ergy and increases the anisotropy even further.
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CHAPTER 7

Interlayer excitons in TMD heterostructures

In this chapter the properties of interlayer excitons in TMD heterostructures, i.e.
excitons which consist of an electron in one layer and a hole in the other layer, are
studied in the multi-band Dirac model. An expression for the electron-hole inter-
action potential in these systems is derived, taking into account the effect of the
dielectric environment above, below, and between the two TMDs as well as polar-
ization effects both in the transition metal layer and in the chalcogen layers of the
TMDs. The interlayer exciton binding energy is calculated and its dependence on
the dielectric environment is investigated. Finally, the excitonic absorbance spec-
trum is obtained and it is shown that the interlayer exciton signature is influenced
by a perpendicular electric field.

7.1 TMD heterostructures: band alignment and in-
terlayer coupling

Up to now only the monolayer form of TMDs has been considered in this the-
sis. However, as mentioned in section 1.2, it is also possible to stack different
kinds of monolayer TMDs on top of each other and as such create a so-called van
der Waals heterostructure [39]. Depending on the materials which are combined,
this stacking can result in different types of energy band alignment, as is shown
in Fig. 7.1. When the bands of the two combined TMDs are staggered, which
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Figure 7.1: Band alignment of different monolayer TMDs obtained using two
different numerical methods (solid, black and dashed, blue). Figure taken from
Ref. [221].

is known as type-II band alignment, low-energy electrons naturally reside in one
TMD while low-energy holes are located in the other TMD. These electrons and
holes can then form so-called interlayer excitons, which were detected in recent ex-
periments [216–219] and were found to have a binding energy of the order of hun-
dred meV and a lifetime which is one to two orders of magnitude larger than that
of intralayer excitons [217, 220]. These interlayer excitons also play a crucial role
in excitonic superfluidity, as will be seen in the next chapter. Type-II band align-
ment has been theoretically predicted [221–224] and experimentally found [225]
to occur in a wide range of TMD heterostructures, i.e. Fig. 7.1 shows that this is
the case for all possible combinations of the four most common TMDs studied in
this thesis except for MoSe2/WS2 for which different alignment types are predicted
by different numerical methods. Therefore, the properties of interlayer excitons in
all these TMD heterostructures will now be investigated. The results presented in
this chapter were published in Physical Review B [226].

The interlayer coupling between different TMDs will be discussed in more de-
tail in the next chapter. In this chapter it is only important to note that the interlayer
hopping energy between the valence bands of the different TMDs is of the order of
0.1 eV [227], while between the conduction bands this hopping energy is consider-
ably smaller still [228]. Since these energies are much smaller than the band offsets
there is very little hybridization between the two layers and it is a good approxima-
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tion to assume that the TMDs in a TMD heterostructure are completely decoupled
from each other. The interlayer exciton Hamiltonian can therefore be written as

Hexc
σ (ke,kh) =
δ1 − V (reh, h) −ahthkh+ aeteke− 0
−ahthkh− δ2 − V (reh, h) 0 aeteke−
aeteke+ 0 δ3 − V (reh, h) −ahthkh+

0 aeteke+ −ahthkh− δ4 − V (reh, h)

 ,
(7.1)

with V (reh, h) the interlayer interaction potential, with h the interlayer distance,
which will be derived in the next section and with

δ1 =
∆e −∆h

2
, δ2 =

∆e + ∆h

2
− λhshτh,

δ3 = −∆e + ∆h

2
+ λeseτ e, δ4 = −∆e −∆h

2
+ λeseτ e − λhshτh,

(7.2)

and kj± = τ jkjx ± ikjy. The superscript e or h denotes a parameter from the elec-
tron or hole TMD, respectively. The band offset between the two TMDs appears
as a diagonal term in the above Hamiltonian and can therefore be absorbed into
the exciton energy. Analogous to the discussion on excitons in monolayer TMDs,
the eigenvalue equation of this Hamiltonian can either be solved by exploiting the
commutation with the exciton angular momentum operator and numerically solv-
ing the resulting set of coupled equations as explained in subsection 3.1.1, or by
decoupling this set of equations to a single equation and solving it self-consistently
as explained in subsection 3.1.2. In this chapter the latter method is chosen and at-
tention is focused on bright intravalley s state A excitons with zero center of mass
momentum. Following the decoupling procedure of subsection 3.1.2 then leads to
the equation in relative coordinates(
− (aete)2

(
∂

∂r
g4(Eexc

σ , r)

)
∂

∂r
−
(
ahth

)2
(
∂

∂r
g1(Eexc

σ , r)

)
∂

∂r
+ δ2 − V (r, h)

− (aete)2 g4(Eexc
σ , r)∇2

r −
(
ahth

)2
g1(Eexc

σ , r)∇2
r

)
φe,hc,v (r) = Eexc

σ φe,hc,v (r),

(7.3)

with
g1(4)(E

exc
σ , r) =

(
Eexc
σ + V (r, h)− δ1(4)

)−1
. (7.4)



132 Interlayer excitons in TMD heterostructures

Solving the above differential equation gives the interlayer exciton energy which
can then be used to find the interlayer exciton binding energy which is given by

Eb =
∆e + ∆h

2
− λhshτh − Eexc

σ . (7.5)

7.2 Interlayer interaction potential
An expression for the interlayer interaction potential can be derived from Gauss’s
law, analogous to the derivation of the interaction potential in monolayer TMDs
in section 2.4. In order to take into account the possibility of a layered substrate
between the two TMDs and of polarization effects in the chalcogen layers of each
TMD [229], Gauss’s law is now solved for a stack of N 2D layers. Placing a test
charge in one of these layers leads to induced charge densities in all N layers. In-
cluding the possibility of anisotropic dielectrics between the 2D layers, i.e. εir 6= εiz
for the homogeneous 3D region i, the general solution for the electrostatic potential
in such a 3D region can be written as

φiq(z, z
′) = Ai(z

′)e
√
εir/ε

i
zqz +Bi(z

′)e−
√
εir/ε

i
zqz, (7.6)

with Ai and Bi integration constants which are also dependent on which layer the
test charge is placed in. These piecewise solutions need to be matched at each of
the N 2D layers [230] and the corresponding boundary conditions are given by

φi+1
q (zi, z

′) = φiq(zi, z
′),

εi+1
z

∂

∂z
φi+1
q (zi, z

′) = εiz
∂

∂z
φiq(zi, z

′) + q2χi2Dφ
i
q(zi, z

′)− q1

Aε0

δz′,zi ,
(7.7)

with z′ equal to one of the zi. Furthermore, assuming region i (i = 1, . . . , N + 1)
to be located between zi−1 and zi, which implies that z0 = −∞ and zN+1 =
+∞, B1 = AN+1 = 0 has to be imposed in order to avoid divergences. As such
the electrostatic potential can be uniquely determined, from which the reciprocal
interaction potential in turn is immediately found by means of Eq. (2.37) (with
in this case a general z′ instead of z′ = 0). The interlayer interaction potential is
found by taking z = −z′ = ±h/2. The result will depend on how the total system
is modeled.

Two possible models of a TMD heterostructure are shown in Fig. 7.2. In (a)
the TMDs are modeled by monolayers and the barrier between the two TMDs is
modeled by a 3D homogeneous material. The substrates above (t) and below (b) the
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Figure 7.2: Schematic illustration of a TMD heterostructure with substrates with
isotropic dielectric constants εb and εt below and above the system, respectively.
(a) The TMDs are modeled by monolayers with 2D polarizabilities χb2D and χt2D for
the bottom and top TMD layer, respectively. The barrier between the two layers has
a dielectric constant εr and εz parallel and perpendicular to the plane, respectively.
(b) The TMDs are modeled by trilayers with 2D polarizabilities χi,M2D and χi,X2D for
the transition metal and chalcogen layers, respectively, with i = b, t. In between
the two TMDs are hBN layers with 2D polarizability χhBN

2D . The interlayer distance
h is defined as the separation between the transition metal layers of the two TMDs.

TMD heterostructure are assumed to be isotropic, i.e. εt/br = εt/bz = εt/b, whereas
for the barrier between the two TMDs the more general case in which εr and εz can
differ from each other is considered. The following dielectric function is found for
the interlayer interaction:

ε

(
q,−h

2
,
h

2

)
=
εb + εt + (χb2D + χt2D)q

2
cosh

(√
εr
εz
hq

)
+
εrεz + (εb + χb2Dq)(εt + χt2Dq)

2
√
εrεz

sinh

(√
εr
εz
hq

)
,

(7.8)

with χb2D (χt2D) the 2D polarizability of the bottom (top) TMD. The real space
interaction potential can be found by taking the inverse 2D Fourier transform of
the reciprocal potential. In general, however, no analytic expression can be found
and it has to be obtained by numerical integration. The only limits for which an
analytic expression for the real space interaction potential can be found are: 1)
h = 0, for which ε(q) = κ + χ2Dq/2 and the interaction potential reduces to the
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Figure 7.3: (a) Solid, blue: Interlayer interaction potential between a hole and an
electron in a TMD heterostructure calculated for εb = εt = εs = 1, interlayer
distance h = 1 nm, and with 2D polarizabilities χb2D = χt2D = 8 nm. Dashed,
red: Same as the previous but now for χt2D = 0. Dot-dashed, green: Interlayer
interaction potential taking into account the polarizabilities of the chalcogen layers
with χb,X2D = χt,X2D = 2 nm. Dotted, black: Intralayer interaction potential (2.40)
with r →

√
r2 + h2. (b) Interlayer interaction potential calculated for a MoS2/WS2

heterostructure on SiO2 (blue) and between hBN layers (red) and with 1 layer of
hBN between the two TMDs which are modeled by trilayers with (dashed) and
without (solid) polarization effects in the chalcogen layers with χX2D = χM2D/4.
Dielectric constants of εb = 3.8 for SiO2 and (εr = 4.5, εz = 1) for the hBN
substrates were used, as well as a 2D polarizability of χhBN

2D = 1.17 nm for the hBN
layer in the barrier.

intralayer potential (2.40) (when one of the 2D polarizabilities is set to 0) and 2)
χb2D = χt2D = 0 and εb = εt = εr = εz = 1, for which ε(q, h) = ehq and the
interaction potential reduces to q1q2/(4πε0

√
r2 + h2).

In Fig. 7.2(b) the TMDs are modeled by trilayers, i.e. a transition metal layer
between two chalcogen layers, and the barrier between the two TMDs is modeled
by a stack of 2D layers. The interlayer distance h is defined as the separation
between the transition metal layers of the two TMDs and is therefore given by
h = (Ns + 3)d with Ns the number of layers in the barrier and d = 0.333 nm
the elementary distance between the different layers in the system (for simplicity
it is assumed that the distance between the transition metal and chalcogen layers
of a TMD is also equal to d). Therefore, when there is no barrier between the two
TMDs, the interlayer distance h equals 1 nm. In principle an analytic expression for
ε(q,−h/2, h/2) for the interaction between a charge in the transition metal layer
of the top TMD and a charge in the transition metal layer of the bottom TMD can
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Figure 7.4: 2D polarizability of the hBN layers for which the interaction potential is
identical to that when a homogeneous barrier is present between the TMDs, which
are modeled by monolayers, with εr = 4.5 and εz = 1, calculated as a function of
the number of hBN layers. The parameters εb = εt = 1 and χb2D = χt2D = 8 nm
are chosen. The thickness of the homogeneous barrier is modified according to the
number of hBN layers. The dashed red line indicates the in-plane 2D polarizability
χhBN

2D = d(εr − 1). The blue curve is a guide to the eye.

be found. This expression is, even in the simple case of a single hBN layer barrier
and the absence of polarization in the chalcogen layers, very lengthy and therefore
not given here. The real space interaction potential can again only be determined
numerically.

The results for the real space interaction potential are shown in Fig. 7.3. This
shows that the interaction potential is considerably weaker than what is found by
simply substituting r →

√
r2 + h2 in the intralayer interaction potential (2.40).

This is partly due to the additive effect of the screening in the two layers since
assuming the 2D polarizability to be zero in one of the layers leads to a potential
which is closer to that obtained with the simple substitution in the intralayer poten-
tial. Furthermore, the additional dielectric screening effect in the chalcogen layers
reduces the interaction strength as expected. The dielectric environment above and
below the heterostructure only leads to an approximately constant shift of the in-
teraction potential.

Furthermore, there are also two possible ways of modeling the presence of hBN
as a barrier: as a homogeneous 3D slab with a relative dielectric constant εs or as
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MoS2 MoSe2 WS2 WSe2

MoS2 119.5/103.1 112.3/97.1 117.1/101.4 112.1/97.1
MoSe2 113.9/98.7 107.4/93.2 111.4/96.9 106.9/93.0
WS2 116.4/100.7 109.3/94.7 114.8/99.6 109.7/95.3
WSe2 112.7/97.7 106.1/92.1 110.9/96.5 106.3/92.5

Table 7.1: Interlayer exciton binding energy (meV) calculated for different TMD
heterostructures modeled by two monolayers on top of a SiO2 substrate (εb = 3.8)
with interlayer distance h = 0.6 nm (left) and h = 1 nm (right) (i.e. no barrier
between the two TMDs). The rows and columns indicate the n-doped (bottom
layer) and p-doped (top layer) materials, respectively.

a stack of 2D layers with 2D polarizability χhBN
2D . The relation between these two

parameters is approximately given by χhBN
2D = d(εs − 1) [78]. When calculating

the interlayer interaction potential in both models it is found that they can never be
identical when hBN is assumed to be isotropic in the 3D model. It turns out that the
out-of-plane relative dielectric constant needs to be set equal to 1 in order to have
equal interaction potentials in the two models. In Fig. 7.4 the 2D polarizability
is shown for which the interaction potential in the 2D model is identical to that
in the 3D model with εz = 1 and εr = 4.5 as a function of the number of hBN
layers. This shows that for an increasing number of hBN layers the equivalent 2D
polarizability converges to the result found using the formula of Ref. [78]. For
a finite number of layers the 2D polarizability is always larger than this limiting
value, with a maximum difference of a factor 2 for a single hBN layer.

The above real space interaction potentials are plugged into Eq. (7.3) in order to
obtain the interlayer exciton (binding) energy, wave function, and other associated
properties, the results of which are discussed now.

7.3 Numerical results
In Table 7.1 (Table 7.2) the binding energy (average in-plane interparticle distance)
of interlayer excitons in different TMD heterostructures is given for two different
interlayer distances: h = 0.6 nm, which is the lower bound from density functional
theory predictions [233, 234], and the above mentioned theoretical value h = 1
nm. As such this leads to a range of binding energies and interparticle distances
which are relevant for experiments. It is important to note that in these tables all
the possible combinations of TMDs are shown, including those where both TMDs
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MoS2 MoSe2 WS2 WSe2

MoS2 2.37/2.67 2.43/2.75 2.57/2.89 2.62/2.95
MoSe2 2.41/2.72 2.47/2.79 2.63/2.95 2.67/3.00
WS2 2.58/2.91 2.66/3.00 2.75/3.09 2.81/3.16
WSe2 2.61/2.93 2.68/3.02 2.79/3.13 2.84/3.19

Table 7.2: Average interlayer exciton in-plane interparticle distance (nm) calcu-
lated for the same systems as in Table 7.1.

are identical, for the sake of completeness. For heterostructures which do not have
a type-II band alignment the electron is artificially put in one TMD and the hole
in the other TMD. In theory, the necessary band alignment can always be created
for any combination of TMDs using a perpendicular electric field, however the
required electric field strengths may be unrealistically large depending on the band
offsets. It is also possible to create interlayer excitons by external doping of the
different TMDs of choice but in that case a dielectric barrier is required between
the two TMDs to prevent immediate electron-hole recombination.

In Table 7.1, the difference between the maximum (MoS2/MoS2) and minimum
(WSe2/MoSe2) binding energy is 13.4 meV for h = 0.6 nm and 11 meV for h = 1
nm. The binding energies for h = 1 nm are smaller than those for h = 0.6 nm be-
cause of the reduced interaction strength. Heterostructures consisting of two TMD
layers containing sulfur have noticeably larger binding energies than heterostruc-
tures consisting of two TMD layers containing selenium. The difference between
the maximum (WSe2/WSe2) and minimum (MoS2/MoS2) interparticle distance in
Table 7.2 is 0.47 nm for h = 0.6 nm and 0.52 nm for h = 1 nm. The interpar-
ticle distances for h = 1 nm are larger than those for h = 0.6 nm because of
the reduced interaction strength. Heterostructures consisting of two TMD layers
containing tungsten have noticeably larger interparticle distances than heterostruc-
tures consisting of two TMD layers containing molybdenum. Therefore it can be
concluded that the chalcogen atoms mostly influence the binding energy whereas
the transition metal atoms mostly influence the interparticle distance. Notice also
that the result for e.g. MoS2/MoSe2 is slightly different from that for MoSe2/MoS2

because of the asymmetric dielectric environment. The intralayer exciton binding
energies are, respectively, 320.9 meV, 290.1 meV, 284.6 meV, and 265.1 meV for
monolayer MoS2, MoSe2, WS2, and WSe2 on a SiO2 substrate. These are about
a factor 3 larger than the interlayer exciton binding energies. The corresponding
intralayer exciton average interparticle distances are 1.02 nm, 1.05 nm, 1.21 nm,
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Substrate State This thesis Literature
0.6 nm 1 nm

MoS2/WS2 Vacuum 1s 221 197 430 [231]
2s 134 124 -
3s 91 86 -

SiO2 1s 117/139 101/120 -
2s 56/65 51/59 -
3s 32/36 30/34 -

MoSe2/WSe2 Vacuum 1s 195 175 320 [231]
2s 123 114 -
3s 86 81 -

SiO2 1s 107/124 93/108 173 [232]
2s 54/62 49/57 69 [232]
3s 32/36 30/33 35 [232]

Table 7.3: Interlayer exciton binding energy (meV) calculated for the lowest three
s states for two different TMD heterostructures in vacuum and on top of a SiO2

substrate (εb = 3.8), modeled by two monolayers (left) and two trilayers with no
polarization effects in the chalcogen layers (right), with interlayer distance h =
0.6 nm and h = 1 nm (i.e. no barrier between the two TMDs) compared with
theoretical results from the literature. Molybdenum- and tungsten-based TMDs are
n-doped (bottom layer) and p-doped (top layer), respectively.

and 1.22 nm, respectively. These are about a factor 2.5 smaller than the interlayer
exciton average interparticle distances.

In Table 7.3 the interlayer exciton binding energies for two different TMD het-
erostructures are compared with other theoretical studies based on first-principles
many-body perturbation theory with the Bethe-Salpeter equation [231] and on a
solution of the effective mass Wannier equation [232]. Here, considerably smaller
binding energies are found which is possibly due to the fact that other models for
the interaction potential are used in the other theoretical works. The agreement is
better for higher excited states, which is because the binding energy converges to
0 in this limit, and for smaller interlayer distances. In Ref. [231] interlayer dis-
tances between 0.6 nm and 0.65 nm were used whereas in Ref. [232] an interlayer
distance of 0.645 nm was used. Little to no details on the interaction potential are
given in Ref. [231] but the authors claim that their large interlayer exciton binding
energies, which are only 20% smaller than the intralayer exciton binding energies,
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Substrate t/b NhBN = 1 NhBN = 2 NhBN = 3

MoS2/WS2 Vacuum/SiO2 103/83 90/74 81/68
hBN/hBN 133/107 118/97 107/88

MoSe2/WSe2 Vacuum/SiO2 94/75 83/68 75/62
hBN/hBN 121/96 108/87 98/81

Table 7.4: Interlayer exciton binding energy (meV) calculated for two different
TMD heterostructures in two different dielectric environments for 1 up to 3 lay-
ers of hBN between the two TMDs which are modeled by trilayers with (right)
and without (left) polarization effects in the chalcogen layers with χX2D = χM2D/4.
Dielectric constants of εb = 3.8 for SiO2 and (εr = 4.5, εz = 1) for the hBN sub-
strates were used, as well as a 2D polarizability of χhBN

2D = 1.17 nm for the hBN
layers in the barrier. Molybdenum- and tungsten-based TMDs are n-doped (bottom
layer) and p-doped (top layer), respectively.

are the result of reduced out-of-plane screening. However, as mentioned earlier, it
is shown in Fig. 7.3 that the interlayer interaction potential is considerably weaker
than what would be expected from a simple substitution r →

√
r2 + h2 in the in-

tralayer interaction potential because there is a screening effect in both TMDs. In
Ref. [232] a model similar to that of this thesis was used for the interlayer inter-
actions, except that the TMDs are modeled by homogeneous slabs with a certain
thickness and constant dielectric constant, meaning that there can be a spacing be-
tween the charge carriers and the substrate, whereas here the TMDs are modeled
by strictly 2D materials with a 2D polarizability. To facilitate comparison the cal-
culations are therefore also done for the case in which the TMDs are modeled by
trilayers without polarization effects in the chalcogen layers, meaning that there is
a spacing of 0.666 nm between the transition metal layer and the SiO2 substrate, in
accordance with Fig. 7.2(b). These results are also shown in Table 7.3 and the in-
terlayer exciton binding energies are found to be larger due to the reduced influence
of the substrate and as such the results are closer to those of Ref. [232].

In Table 7.4 the interlayer exciton binding energy is shown for two different
heterostructures, modeled by two trilayers with and without polarization effects in
the chalcogen layers, in two different dielectric environments and for a different
number of hBN layers between the two TMDs. As expected, the binding energy
decreases with increasing number of layers in the barrier and when there are po-
larization effects in the chalcogen layers, with the latter effect being stronger than
the former. Even though the in-plane dielectric constant of hBN is larger than that
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Figure 7.5: Binding energy (a) and average in-plane interparticle distance (b) cal-
culated for the 1s (blue), 2s (red), and 3s state (black) interlayer excitons in a
MoS2/WS2 heterostructure suspended in vacuum, modeled by two monolayers
(solid) and two trilayers with χX2D = χM2D/4 (dashed). There is no barrier between
the two TMDs. Molybdenum- and tungsten-based TMDs are n-doped (bottom
layer) and p-doped (top layer), respectively.

of SiO2, the interlayer exciton binding energy of a system with hBN both above
and below the heterostructure is larger than that of a system with vacuum (SiO2)
above (below) the heterostructure. This is because, due to the smaller out-of-plane
dielectric constant of hBN as compared to that of SiO2, the total dielectric constant
ε =
√
εrεz of the former is smaller than that of the latter for the chosen parameters.

In Fig. 7.5 the interlayer exciton binding energy (a) and average in-plane in-
terparticle distance (b) are shown as a function of the interlayer distance and a
comparison is made between the monolayer and the trilayer model for the TMDs.
The binding energy decreases in both models with increasing interlayer distance
due to the reduced interaction strength, with the binding energy at h = 10 nm be-
ing more than twice as small as the value at h = 1 nm for the ground state. The
additional polarization in the chalcogen layers in the double trilayer model reduces
the binding energy by an amount of the order of tens of meV, with the effect be-
ing more pronounced at small interlayer distances. For higher excited states, which
have smaller binding energy, the additional polarization effect in the chalcogen lay-
ers is less pronounced. Correspondingly, the average interparticle distance of the
interlayer exciton increases with increasing interlayer distance, reaching more than
twice the value of h = 1 nm at h = 10 nm for the ground state. The polarization in
the chalcogen layers increases the average interparticle distance by about 0.5 nm,
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Figure 7.6: Binding energy calculated for interlayer excitons in a MoS2/WS2 het-
erostructure with interlayer distance h = 1 nm, modeled by two monolayers (solid,
blue) and two trilayers with χX2D = χM2D/4 (dashed, red) as a function of εb (a), εs
(b), εr (c), and εz (d). The dielectric constants which are not varied are set to 1 for
each figure. The dashed red curves in (b) and (d) are shifted upwards by 40 meV
for clarity. Molybdenum- and tungsten-based TMDs are n-doped (bottom layer)
and p-doped (top layer), respectively.

1nm, and 1.5 nm for the 1s, 2s, and 3s state exciton, respectively. This means that
the polarization in the chalcogen layers leads to a larger absolute increase in the av-
erage interparticle distance of higher excited states, although the relative increase
in interparticle distance is smaller for higher excited states. Remarkably, in abso-
lute terms, the effect of this additional polarization on the interparticle distance is
approximately independent on the interlayer distance.

The dependencies of the interlayer exciton binding energy on the different rel-
ative dielectric constants of the system are shown in Fig. 7.6. The exciton binding
energy decreases by a factor 4 when the dielectric constant of the substrate below
the TMD heterostructure increases from 1 to 10, as shown in Fig. 7.6(a). When
the polarization in the chalcogen layers is taken into account in the double trilayer
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model the decrease in binding energy is limited to a factor 3 for the same dielectric
constant range. For small dielectric constants this additional polarization leads to a
decrease in binding energy. However, for dielectric constants above εb ≈ 7 the ad-
ditional polarization leads to an increase in binding energy. This can be explained
due to the fact that, although the chalcogen layers themselves weaken the interac-
tions, they also screen the effect of the substrate. When the effect of the substrate is
stronger than that of the chalcogen layers, i.e. for large values of εb, this screening
of the substrate can enhance the total interaction strength.

A remarkable dependence on the isotropic dielectric constant εs = εr = εz
of the barrier between the two TMD layers is found, as shown in Fig. 7.6(b). At
first the binding energy increases with increasing εs, before reaching a maximum
at εs ≈ 4 after which it starts to decrease. When the additional polarization in the
chalcogen layers is taken into account this dependence changes quantitatively, i.e.
the binding energy is reduced, the dependence on εs is less pronounced, and the
maximum binding energy is reached at a slightly smaller value of εs, but qualita-
tively it remains the same. To gain more insight into this behavior the anisotropic
case is also studied. The εr-dependence, as shown in Fig. 7.6(c), is similar to
the εb-dependence but it is less pronounced. At some value of εr between 12 and
13 the additional polarization in the chalcogen layers again leads to an increase
in the exciton binding energy. It is not entirely clear what physical mechanism is
behind this increase. Finally, the εz-dependence of the exciton binding energy is
shown in Fig. 7.6(d). In contrast to what might be expected, the binding energy
is found to increase as a function of εz. In the limit of large εz it converges to a
fixed value. When the polarization in the chalcogen layers is taken into account
this convergence occurs at smaller values of εz. Limiting values of Eb = 315 meV
and Eb = 165 meV are found in the absence and presence of the polarization in the
chalcogen layers, respectively. It can be concluded that εr and εz are in competition
with each other for the εs-dependence of the binding energy. It is the increase as a
function of εz which causes the binding energy in (b) to increase for small values
of εs, whereas the decrease as a function of εr and the convergence at large εz lead
to the subsequent decrease in binding energy for large values of εs.

The excitonic absorbance spectrum is shown in Fig. 7.7. The highest energy
peak corresponds to intralayer excitons in the WSe2 layer. The peak next to it
corresponds to intralayer excitons in the MoSe2 layer. The small low-energy peak
corresponds to interlayer excitons. The band gap parameters are modified in order
to align the different peaks with those from the experimental results. As such an
offset of 515 meV is found between the conduction bands of the two TMDs and
an offset of 453 meV is found between the valence bands. These results are in-
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Figure 7.7: Excitonic absorbance spectra calculated for a MoSe2/WSe2 het-
erostructure modeled by two monolayers on a SiO2 substrate (εb = 3.8) with vac-
uum on top, in the absence (a) and presence (b) of a perpendicular electric field
of −0.1 V/nm and with interlayer distance h = 1 nm (i.e. no barrier between
the two TMDs). A broadening of γ = 10 meV was used. The dashed red curve
is the experimental photoluminescence result from Ref. [217]. The interlayer (I)
and intralayer (Mo/W) exciton (E) and trion (T) peaks are indicated on the figure.
Molybdenum and tungsten-based TMDs are n-doped (bottom layer) and p-doped
(top layer), respectively.

deed larger than the lower bounds of 310 meV and 230 meV for the conduction
band offset and valence band offset, respectively, which were found in Ref. [217],
and are also slightly larger than the values of 300-340 meV and 380-430 meV for
the conduction and valence band offset, respectively, shown in Fig. 7.1. The ad-
ditional peaks which are present in the experimental results correspond to trions,
which are not considered in the calculations in this chapter. There are consider-
able differences in the intensities of the interlayer exciton and the WSe2 intralayer
exciton peaks between the calculated absorbance spectrum and the experimental
photoluminescence spectrum. The difference lies in the degree of occupation of
the different excitonic states. This depends on multiple factors such as the temper-
ature, laser power, recombination times, . . . , and is therefore difficult to predict.

Finally, the results are also shown in the presence of a perpendicular electric
field of −0.1 V/nm, i.e. pointing from WSe2 to MoSe2, which is added as a con-
stant term to the diagonal elements of the exciton Hamiltonian (7.1). The intralayer
exciton peaks are unaffected, but the interlayer exciton peak shifts upwards in en-
ergy by about 0.1 eV. Mathematically, this can be understood since the electric field
shifts the energy bands of the two TMDs with respect to each other, thus enhancing
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Figure 7.8: (a) Schematic representation of the band diagram of a MoSe2/WSe2

heterostructure with (dashed) and without (solid) a perpendicular electric field
pointing from WSe2 to MoSe2. ∆Mo (∆W) indicates the intralayer exciton band
gap in MoSe2 (WSe2) and ∆I indicates the interlayer exciton band gap. (b) 1s
(blue), 2s (red), and 3s state (black) interlayer exciton energy calculated as a func-
tion of the perpendicular electric field pointing from MoSe2 to WSe2 in the case of
a hBN substrate above and below the heterostructure. The TMDs are modeled by
monolayers. The green curve is the experimental result for the 1s state interlayer
exciton from Ref. [235]. The dashed, blue curve is the calculated result when the
interlayer distance is reduced from 1 nm to 0.53 nm.

the interlayer exciton band gap, while the intralayer exciton band gaps remain the
same. This is shown schematically in Fig. 7.8(a). Physically, this is because the
interlayer excitons form an electric dipole pointing (partly) in the perpendicular
direction and as such couple to a perpendicular electric field. In this case the elec-
tric field is oriented opposite to the interlayer exciton dipole moment which points
from the negative to the positive charges, i.e. from MoSe2 to WSe2, and as such
the interlayer exciton energy is increased. This is very different for intralayer exci-
tons which have an electric dipole pointing completely in the material plane and as
such do not couple to a perpendicular electric field. This effect was also found in
Ref. [235] in which a bottom and top gate were placed on the hBN substrate above
and below the material, respectively. In Fig. 7.8(b) these experimental results,
for which a positive electric field means that it points from MoSe2 to WSe2, are
compared with the results which are calculated here. The interlayer exciton energy
depends linearly on the perpendicular electric field, which corresponds with the
energy of a electric dipole in an electric field. However, the slopes of the calculated
curves, which are determined by the interlayer distance, do not agree with the slope
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found in the experimental results. When the interlayer distance is considered as a
fitting parameter excellent agreement is found with the experimental results when
an interlayer distance of 0.53 nm is assumed, as opposed to the theoretical inter-
layer distance of 1 nm. This indicates that interlayer exciton formation may cause
the electrons and holes to be pulled out of the transition metal layer. This effect
is not taken into account in the monolayer TMD single-particle Hamiltonian (2.9)
which describes a strictly 2D system. Notice that the slopes for the 1s, 2s, and 3s
states are all equal. A similar experiment was carried out in Ref. [217], in which
vacuum (SiO2) was placed above (below) the heterostructure and where only a top
gate and a back gate were used, which is more difficult to model theoretically. The
authors found non-linear behavior as a function of the back gate potential, how-
ever they mention explicitly that the use of top and bottom gates may elucidate this
phenomenon.

7.4 Conclusion

In this chapter interlayer excitons in TMD heterostructures were studied. The ap-
propriate electron-hole interaction potential was derived, which allows to take into
account both a homogeneous and a layered substrate between the two TMDs as
well as additional polarization effects in the chalcogen layers of the TMDs.

The interlayer exciton binding energy and average interparticle distance were
calculated for all combinations of TMDs, which led to the conclusion that the
chalcogen atoms mostly influence the binding energy whereas the transition metal
atoms mostly influence the interparticle distance. The binding energies were com-
pared with results from the literature when available, showing significant differ-
ences which may be the consequence of a difference in interlayer interaction po-
tential.

Next, the effect of different dielectric environments on the exciton binding en-
ergy was investigated and a remarkable dependence on the dielectric constant of
the barrier between the two TMDs was found, resulting from competing effects
as a function of the in-plane and out-of-plane dielectric constants of the barrier.
Furthermore, the polarization effects in the chalcogen layers, which in general re-
duce the exciton binding energy, can lead to an increase in binding energy in the
presence of strong substrate effects by screening out the substrate.

Finally, the excitonic absorbance spectrum was calculated and it was shown
that the interlayer exciton peak shifts linearly in the presence of a perpendicular
electric field, whereas the intralayer exciton peaks are unaffected. This can be at-
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tributed to the differently oriented intralayer and interlayer exciton electric dipoles.
Furthermore, the dependence of the interlayer exciton peak energy on the perpen-
dicular electric field was found to be in good agreement with experiment, although
a slightly lower than usual interlayer distance was needed to obtain near-perfect
agreement.



CHAPTER 8

Excitonic superfluidity in TMD heterostructures

In this chapter the possible formation of an interlayer exciton superfluid in TMD
heterostructures is investigated. A superlattice of these TMD heterostructures is
considered in order to have a 3D superfluid and as such avoid the Berezinskiı̆-
Kosterlitz-Thouless transition which limits the critical temperatures in 2D superflu-
ids. The appropriate unscreened interaction potential is derived and polarization
effects are taken into account by means of the RPA approximation. The superfluid
gap, perpendicular pair correlation length, and condensate fraction are calculated
by solving the self-consistent gap equation and very high critical temperatures of
up to 270 K are obtained.

8.1 A short history of (conventional) superfluidity

In 1911 Heike Kamerlingh Onnes made a very remarkable discovery: the elec-
trical resistivity of mercury suddenly drops to zero below a critical temperature
of 4.2 K, i.e. it becomes a superconductor [236]. In 1938 another exotic low-
temperature effect was stumbled upon: liquid helium can flow without viscosity
when it is cooled down below a critical temperature of around 2 K, i.e. it becomes
a superfluid [237, 238]. In the same year, Fritz London proposed Bose-Einstein
condensation as the mechanism underlying the formation of superfluidity in liquid
helium [239]. A Bose-Einstein condensate (BEC) is a fourth phase of matter in
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which a single-particle state is macroscopically occupied with global phase coher-
ence between the particles, as such leading to an expression of quantum mechanics
on a macroscopic scale. This new phase of matter was first theoretically described
by Satyendra Nath Bose [240] and Albert Einstein [241] in 1924 in the context of
a dilute non-interacting monatomic gas of bosons (atoms for which the total spin
of the constituent particles is even, i.e. atoms consisting of an even number of
fermions). However, a similar mathematical description can be applied to liquid
helium (more specifically helium-4, which consists of two protons, two neutrons,
and two electrons), although interactions play a much more prominent role in this
system due to the considerably smaller interatomic distance.

It is also possible for a superfluid to form in a system of fermions through a
pairing mechanism. A famous example of such a system is helium-3, which lacks
a neutron as compared to helium-4 and is therefore a fermion. In this case the in-
teraction potential which leads to the pairing is simply the interatomic potential,
which can be modeled by the Lennard-Jones potential. A superfluid with a critical
temperature in the mK range was found both experimentally [242, 243] and theo-
retically [244] in this system in 1972, leading to Nobel Prizes in Physics in 1996
and 2003, respectively. However, the most important example is that of electrons
in certain solids which can have an effective attraction between them as a result
of electron-phonon interaction, which was shown by Fröhlich in 1950 [245]. The
physical picture behind this effective attraction is that of electrons moving in the
lattice and leaving behind a trail of lattice deformations behind them. These tem-
porarily displaced positive lattice ions then attract other electrons and as such the
electrons can form so-called Cooper pairs [246]. These pairs can then condense
at low temperatures to form a charged superfluid and as such make the material
superconducting. In 1957, Bardeen, Cooper, and Schrieffer presented a minimal
theory based on the formation of Cooper pairs which can exhibit superconductiv-
ity [247]. It turned out that this BCS theory could qualitatively explain all effects
related to conventional superconductors, i.e. for which the pairing is driven by
electron-phonon interaction, and could even provide reasonable quantitative agree-
ment with experimental results. This earned them the Nobel Prize in Physics in
1972.

Over the years superconductivity has been detected in many different materi-
als. However, for a long time the critical temperatures which were found never
exceeded 40 K. The main reason for this is the rather weak electron-phonon ef-
fective interaction which, due to energy conservation, limits the range of electron
single-particle states which can contribute to the superconductivity to a window
of at most ~ωLO above and below the Fermi level, with ωLO the longitudinal op-
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tical phonon frequency. In the 1980s and 1990s new copper-based superconduc-
tors were found with critical temperatures of up to 150 K. Much more recently
iron-based superconductors appeared with similarly high critical temperatures. For
both these new types of superconductors the mechanism behind the pairing is not
electron-phonon interaction. However, as for what exactly is the glue that holds the
electrons together in these materials remains an open question.

8.2 Excitonic superfluidity

Given the fact that the superfluid critical temperature in fermionic systems is lim-
ited by the strength, or rather the weakness, of the interactions between the con-
stituent fermions, it seems natural to consider excitons as a candidate for high-
temperature superfluidity. After all, the attractive interaction between the con-
stituent electrons and holes is mediated by the strong long-range Coulomb poten-
tial. As such, excitonic superfluidity was first theoretically predicted in 1962 [248].
The price to pay is the fact that this type of superfluidity is strongly hindered by the
short radiative lifetime of the excitons.

Therefore, it is advantageous for the superfluid if the electrons and holes are
spatially separated in order to prevent this very fast recombination, as was first
suggested in Ref. [249]. The first practical realizations of such a system took the
form of coupled GaAs/AlGaAs quantum wells, for which a drastic reduction in the
width of the peaks in the PL spectrum [250] or a dramatic resonant enhancement
of the zero bias tunneling conductance [251] indicated a transition to an ordered
state below some critical temperature. However, definitive experimental evidence
of excitonic superfluidity in these systems was provided only in 2012, showing a
critical temperature of about 1 K [252]. The reason for this low critical temper-
ature is threefold: (1) For experimentally achievable well and barrier thicknesses
the electron-hole separation is larger than the effective Bohr radius. (2) The bar-
rier between the two quantum wells (i.e. AlGaAs) has a relatively large dielectric
constant which screens the attractive interaction. (3) The reduced exciton mass is
small and there is a large mismatch between the electron and hole effective masses.

The discovery of graphene and other 2D materials provided a number of new
candidate systems for observing excitonic superfluidity. The combination of an
n-doped and a p-doped graphene layer solves almost all of the above problems:
the use of hBN allows to create barriers which are a factor 4 thinner as compared
to AlGaAs and as such allow for electron-hole separations smaller than the effec-
tive Bohr radius, the dielectric constant of hBN is almost a factor 3 smaller as
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compared to AlGaAs, and the conduction and valence bands are almost perfectly
symmetric. As such, interlayer excitonic superfluidity was predicted to occur in a
double monolayer graphene system with critical temperatures up to room temper-
ature [253–255]. Unfortunately, this was never confirmed experimentally because
the linear dispersion of graphene implies that the ratio of potential energy to kinetic
energy cannot be tuned by means of the electron and hole density and the system
is effectively stuck in the weakly interacting regime. Later on it was realized that
it is possible to resolve this issue by considering a double bilayer graphene sys-
tem, which has a parabolic low-energy dispersion. The critical temperature in this
system was predicted to be about 20 K [256] and experimental evidence for ex-
citonic superfluidity was indeed recently found [257]. Furthermore, it was shown
that the critical temperature can be enhanced by increasing the number of graphene
layers [258] and that high-temperature interlayer excitonic superfluidity can also
occur in TMD heterostructures [259]. However, it is very important to note that
the excitonic superfluidity in these 2D materials could have reached much higher
critical temperatures if it had not been for a fundamental thermodynamic argument.

8.3 Berezinskiı̆-Kosterlitz-Thouless transition

In general, the second quantization Hamiltonian of interacting electrons and holes
in solids obeys U(1) symmetry, i.e. it is invariant under a transformation â →
exp(iθ)â, as can be seen from the equations (2.41) and (2.42). As will be seen in
appendix E, however, the superfluid ground state does not obey this symmetry: the
above transformation only holds for θ = 0 and for θ = π. Therefore, when the
temperature is decreased below the critical temperature Tc the continuous symme-
try associated with the phase θ is spontaneously broken, as such allowing for the
formation of long-range order with a fixed phase θ, which is necessary for the exis-
tence of a superfluid. In mathematical terms: the phase correlation is a constant for
T < Tc, falls off exponentially with the distance for T > Tc, and falls off according
to a power law for T = Tc, the latter indicating quasi-long-range order. However,
as discussed in section 1.2, a spontaneous breaking of a continuous symmetry is not
possible in 2D (or lower dimensions) because at non-zero temperature the system
can thermally fluctuate to a state with any possible phase θ and as such destroy the
long-range order. This effect, which appears at lower dimensions because of the
higher density of states, seems to preclude the existence of 2D superfluidity.

However, in 2D systems it is possible for a phase which does not break any
symmetry and which exhibits quasi-long-range order, in which the phase correla-
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Figure 8.1: Phase of the superfluid in the presence of (a) a vortex and (b) a vortex-
antivortex pair separated by a distance d.

tion falls off according to a power law for any non-zero temperature, to exist below
some critical temperature. The corresponding phase transition is associated with
the dissociation of bound vortex-antivortex pairs into unbound vortices and antivor-
tices. A vortex is the flow of the condensate around a region of depleted density
known as the vortex core, as shown in Fig. 8.1(a). It is clear that a single vortex or
antivortex destroys the phase ordering in the system. For a vortex-antivortex pair,
however, there is still a uniform phase order at distances far enough from the pair,
as is shown in Fig. 8.1(b). Therefore, the formation of a bound vortex-antivortex
pair does not destroy the superfluidity but the formation of a single vortex or an-
tivortex does. It can be shown that the kinetic energy of a free vortex or antivortex
is given by Ekin = E0 ln(R/ξ), with R the size of the system, ξ the size of the
vortex core, and E0 = πns~2/m with ns the superfluid density of particles with
mass m. On the other hand, the energy of a bound vortex-antivortex pair is given
by Ekin = E0 ln(d/2ξ), with d the separation distance between the vortex and the
antivortex. The details of these calculations are given in appendix D. Furthermore,
the entropy S of a vortex is directly related to the number of possible positions
of the vortex in the system and is therefore given by S = 2kB ln(R/ξ). Equiva-
lently, the entropy of a vortex-antivortex pair is, using ξ � R, simply given by
S = 4kB ln(R/ξ). As a result, it is clear that at any non-zero temperature the
free energy F = Ekin − TS of a bound vortex-antivortex pair is dominated by the
entropic contribution and as such thermal excitations of these pairs can always be
formed. For a single vortex or antivortex, however, both terms in the free energy
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are of the same order and it follows that above a temperature

T BKT
c =

πns~2

2mkB
(8.1)

it is energetically favorable to form single vortices and antivortices and as such to
destroy the quasi-long-range order, and the superfluidity with it, in the system. Note
that the size of the system and the size of the vortex core do not enter in the above
result. This phase transition was first described by Berezinskiı̆ [260] and Kosterlitz
and Thouless [261] and is therefore referred to as the BKT transition. The crit-
ical temperature T BKT

c only depends on the interaction type and strength through
the superfluid density and since it is typically lower than the critical temperatures
calculated from BCS theory for systems with Coulomb interactions between the
particles, this mechanism can limit the effective critical temperature below which
superfluidity can be observed in 2D Coulombic systems.

In order to circumvent this problem, a superlattice of alternating monolayer
TMDs of two different types with type-II band alignment, where one type is n-
doped and the other type is p-doped, will be studied in the remainder of this chap-
ter. A schematic illustration of this system is shown in Fig. 8.2. This is a possible
type of system in which the superfluid can act 3D, and as such bypass the BKT
transition, but nevertheless can still exhibit the high critical temperatures calcu-
lated from BCS theory associated with 2D systems. In order to estimate whether
the superfluid acts 3D or 2D the phase coherence length should be known, which
represents the length scale over which the superfluid is reduced as a result of a
local fluctuation and is related to the size of the vortex core in the above discus-
sion. If the phase coherence length in the perpendicular direction ξz � 2d, with
d the interlayer distance and 2d therefore the distance between same-type TMDs,
the superfluid acts completely 3D, whereas in the opposite case ξz � 2d it acts
completely 2D. A paper on the results presented in the remainder of this chapter
has been submitted to Nature Physics.

8.4 Superlattice of TMD heterostructures

8.4.1 Energy spectrum and eigenstates
As mentioned earlier, subsequent layers in bulk TMDs are AB stacked and the cor-
responding energy spectrum exhibits an indirect band gap. Switching over to TMD
heterostructure superlattices, i.e. infinite stacks of alternating monolayer TMDs
of two different types, the indirect gap is retained for all combinations of the four



8.4 Superlattice of TMD heterostructures 153

Figure 8.2: Schematic illustration of an infinite superlattice of alternating mono-
layer TMDs of two different types, indicated by the black and green lines, where
one type is n-doped and the other type is p-doped. The periodic distance 2d, with
d the interlayer distance, is indicated by the arrow.

best-known TMDs in the case of AB stacking [223]. As a result, interlayer exci-
tons in these systems would acquire a large center of mass momentum which would
complicate matters. Another possible stacking for the heterostructure superlattice
is AA stacking, in which all the transition metal atoms are horizontally aligned,
as well as all the chalcogen atoms. For this stacking type all combinations of the
four best-known TMDs exhibit a direct band gap at the K and K ′ points except for
MoS2/WS2 and MoSe2/WSe2 which have an indirect gap [223]. Three of the re-
maining TMD heterostructures show a type-II band alignment, with the exception
being MoSe2/WS2 as was shown in Fig. 7.1. For a general combination of TMDs
the low-energy single-particle Hamiltonian for this system can be written as

Hk,s,τ =

H1
s,τ (kx, ky) +

δb
2
I2 T (kz)

T †(kz) H2
s,τ (kx, ky)−

δb
2
I2

 , (8.2)
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with H`
s,τ (kx, ky) the monolayer Hamiltonian (2.9) for the TMD of type ` and with

the bias potential δb chosen such that the band alignment agrees with that of Ref.
[221]. The interlayer coupling part of the Hamiltonian is given by

T (kz) =

(
2tc cos(kzd) 0

0 2tv cos(kzd)

)
, (8.3)

with d = 0.65 nm the interlayer distance and tc (tv) the interlayer hopping parame-
ter between the conduction band d0 states (valence band d2τ states) of the different
layers. Note that in the case of AB stacking the hopping between the d0 states van-
ishes at the K and K ′ points (and increases linearly with the in-plane wave vector
when moving away from these points) because of the trigonal arrangement of the
interlayer nearest neighbors and the cylindrical symmetry of the d0 orbitals. The
interlayer hopping between the d2τ states does not vanish at the K and K ′ points
due to the C2 symmetry around the z-axis of the d2τ orbitals. Rather there is an ef-
fective interlayer coupling strength 2tv which is given by 0.086 eV, 0.106 eV, 0.109
eV, and 0.134 eV for MoS2, MoSe2, WS2, and WSe2, respectively [227]. When the
stacking between the different TMDs is AA the interlayer nearest neighbors share
the same in-plane coordinates. As a result, the interlayer hopping between the d0

states does not vanish. It was shown in Ref. [228] that the coupling strength be-
tween the d2τ states is almost identical to that in the case of AB stacking and that
the coupling strength between the d0 states is about a factor 1/7 of that between
the d2τ states in the case of bilayer MoS2. Since this is only determined by the
type of orbitals and the spatial separation, which is the same for all TMDs, it will
therefore be assumed that tc = tv/7 is true in general. For TMD heterostructures
the effective hopping parameter is assumed to be given by the average value of the
hopping parameters of each of the two TMDs, which in general is a good approxi-
mation [228] and particularly so when the transition metal atoms of the two TMDs
are the same.

The energy spectrum of the system is obtained by numerically solving the
eigenvalue equation of the Hamiltonian (8.2) and the result is shown in Fig. 8.3
for a WS2/WSe2 heterostructure superlattice. Note that the lowest conduction band
is the WS2 spin down band and the highest valence band is the WSe2 spin up band.
The influence of the interlayer hopping on the energy bands is small as a result of
the energy mismatch between the bands of the different TMDs. The band width
in the kz-direction is 1 meV for the lowest conduction band and 27 meV for the
highest valence band. The band width of the two-particle electron-hole band is
therefore equal to 28 meV.

In the remainder of this chapter the results are shown for the WS2/WSe2 su-
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Figure 8.3: (a) Energy spectrum of a WS2/WSe2 heterostructure superlattice calcu-
lated as a function of the in-plane wave vector component. Solid and dashed bands
are associated with WS2 and WSe2, respectively. Blue and red bands are spin up
and spin down bands, respectively. (b) Highest valence band of a WS2/WSe2 het-
erostructure superlattice calculated as a function of the perpendicular wave vector
component.

perlattice because of the relatively large spin splitting in the WS2 conduction band,
i.e. 27 meV, as a result of which the spin up band will only be significantly filled
for temperatures above room temperature for the densities considered here and
can therefore be neglected. For the WSe2 valence band the extremely large spin
splitting, i.e. 460 meV, assures that neglecting the spin down band is an excellent
approximation. As such, for both electrons and holes there are only two low-energy
bands, i.e. spin down in the K valley and spin up in the K ′ valley. In superlattices
containing MoS2 this symmetry between electrons and holes would be broken be-
cause the very small spin-orbit coupling in the conduction band of MoS2 would
lead to four low-energy electron bands as opposed to two low-energy hole bands.

For a given spin and valley quantum number, each of the single-particle eigen-
states |ψk,β〉 is a four-component spinor which can be written as

|ψk,β〉 =


Ck1c,β |Φk,1〉
Ck1v ,β |Φk,1〉
Ck2c,β |Φk,2〉
Ck2v ,β |Φk,2〉

 , (8.4)

where the coefficients Cki,β associated with the pseudospin i of the energy band
β are obtained by numerically solving the eigenvalue equation of the Hamiltonian
(8.2). The subscript 1(2)c(v) denotes the pseudospin associated with the conduction
or valence band of the TMD of type 1 (WS2) or 2 (WSe2). These coefficients
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reflect the hybridization between the different TMD types. This effect is strongest
at the K and K ′ points and in the valence band, for which the WSe2 state has
4.67% contribution from the WS2 layer. At the edge of the Brillouin zone, i.e. for
|kz| = π/2d, the layers are completely decoupled, which follows from Eq. (8.3).

The position representation of the states |Φk,`〉 is obtained by solving the differ-
ential eigenvalue equation of the Hamiltonian (8.2). For the in-plane wave vector
the low-energy approximation is equivalent to assuming k‖a � 1, which implies
that the wavelength of the particles is much larger than the lattice constant and
the corresponding solution is given by a plane wave. This approximation is also
referred to as the continuum approximation. However, because of the small band
width in the kz-direction, states with all possible kz-values in the first Brillouin
zone will be of importance and no continuum approximation, i.e. kzd� 1, can be
assumed in the perpendicular direction. In the limit of weak interlayer coupling the
total solution can therefore be written as

Φk,`(r) =
1√
NA

eik‖.ρ
N/2∑

j=−N/2

δ1/2(z − j2d− z`d)ei(2j+z`)kzd, (8.5)

with N the number of TMD heterostructures, ρ the in-plane coordinate vector and
with z` = 0 and z` = 1 for the TMD of the first and second type, respectively.

8.4.2 Coulomb matrix elements between superlattice eigenstates
In this subsection an expression is derived for the bare Coulomb interaction matrix
elements for scattering between the eigenstates of the superlattice, i.e.

〈ψκ′,α′ψk′,β′ |V (r)|ψκ,αψk,β〉 , with V (r) =
e2

4πεrε0r
. (8.6)

This represents a first particle with wave vector κ in band α and a second particle
with wave vector k in band β which interact through the Coulomb potential and
as such respectively end up with wave vector κ′ in band α′ and with wave vector
k′ in band β′. The relative dielectric constant εr =

√
εzε‖ accounts for the static

screening effects of the ions and the filled valence bands. It is equal to 10.9, 12.3,
9.9, and 11.2 for bulk MoS2, MoSe2, WS2, and WSe2, respectively [55]. In the
limit of no hybdridization between the different TMD types the system effectively
consists of two decoupled bulk TMDs whose interlayer distance is twice that of
their normal bulk forms. It is shown in Ref. [81] that the dielectric constant of
MoS2 is approximately halved when the interlayer distance is doubled. Therefore,
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the heterostructure superlattice dielectric constant is assumed to be given by the
average of half the dielectric constants of the two constituent TMDs, which results
in a value of 5.5 for the WS2/WSe2 superlattice. Note that the bare Coulomb po-
tential, as opposed to the Keldysh potential which is valid for monolayer TMDs, is
expected to be appropriate here because for the densities considered in this chapter
the average interparticle distance is considerably larger than the interlayer distance
and therefore the screening of the interactions is that of a 3D dielectric, which can
be quantified by a multiplicative dielectric constant εr, instead of a single 2D layer.

As a starting point, the matrix elements between the states |Φk,`〉 are given by

〈Φκ′,`′2Φk′,`′1 |V (r)|Φκ,`2Φk,`1〉 =

δ`1,`′1δ`2,`′2δk+κ,k′+κ′
e2

4πεrε0NA

2π

q‖

N∑
w=−N

ei(2w−z`1+z`2 )qzde−|2w−z`1+z`2 |q‖d,
(8.7)

with A the surface area of the TMD layers and with q = k − k′ = κ′ − κ.
Performing the summation in the limit N → ∞ for the case `1 = `2 leads to the
known expression [262, 263] for the interaction potential between the same TMD
types

V S(q‖, qz) =
e2

4πεrε0NA

2π

q‖

sinh(2q‖d)

cosh(2q‖d)− cos(2qzd)
. (8.8)

This expression interpolates between the 2D and 3D limits. In the limit d → ∞
the last fraction becomes equal to 1 and the 2D interaction potential for N layers
of surface area A is recovered. In the limit d → 0 a Taylor expansion of the
trigonometric and hyperbolic functions transforms the last fraction to 2q‖/(2d(q2

‖+

q2
z)) and as such the 3D interaction potential for a volume of AN2d is recovered.

This result is shown in Fig. 8.4. A completely analogous procedure for the case
`1 6= `2 leads to the interaction potential between the different TMD types

V D(q‖, qz) =
e2

4πεrε0NA

2π

q‖

2 sinh(q‖d) cos(qzd)

cosh(2q‖d)− cos(2qzd)
, (8.9)

which also reduces to the standard 3D interaction potential in the limit d → 0 and
includes the factor 2e−q‖d in the limit d→∞. This result is also shown in Fig. 8.4.

Because of the large energy gaps between the different bands only the dominant
intraband interactions between the lowest conduction band and highest valence
band need to be considered in Eq. (8.6), i.e. α = α′ = 1c and β = β′ = 2v with
1c and 2v referring to the dominant component of the state in Eq. (8.4). Retaining
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Figure 8.4: Intralayer (solid, blue) and interlayer (solid, red) interaction potential
calculated as a function of q‖ for qz = 0. The corresponding dashed curves are the
2D intralayer (∝ 1/q‖) and 2D interlayer (∝ 2e−q‖d/q‖) interaction potentials. The
dotted black curve is the 3D interaction potential (∝ 1/q2

‖).

only the dominant zero center of mass momentum electron-hole pairs, Eq. (8.6)
can be written as

〈ψ−k′,1cψk′,2v |V (r)|ψ−k,1cψk,2v〉 = FH
k,k′V

S(q‖, qz) + F 0
k,k′V

D(q‖, qz). (8.10)

The pseudospin overlap factors are given by

F 0
k,k′ = C1,1c

k,k′
C2,2v
k,k′

+ C2,1c
k,k′
C1,2v
k,k′

, FH
k,k′ = C1,1c

k,k′
C1,2v
k,k′

+ C2,1c
k,k′
C2,2v
k,k′

, (8.11)

with
Cl,α
k,k′

=
∑
j=c,v

(
Ck
′

lj ,α

)∗
Cklj ,α, (8.12)

and are known as the form factors. The form factor F 0
k,k′ represents the contribu-

tion of both particles being located in their original TMD types or of both particles
having hopped to the other TMD type, whereas FH

k,k′ represents the contribution
of one of the particles having hopped to the other TMD type. As such, Eq. (8.10)
expresses the fact that, due to the hybridization between the bands of the different
TMD types, there is a (small) intralayer contribution to the total electron-hole in-
teraction potential. At small q‖ this total potential is dominated by 3D interactions
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between different TMD types. At large q‖, however, it is dominated by 2D inter-
actions between the same TMD types. Since the interaction is strongest at small
q‖, this means that the superfluid will predominantly be driven by 3D interactions,
which is physically expected.

8.4.3 Superfluid properties
Assuming the WS2 layers to be n-doped and the WSe2 layers to be p-doped, the
many-body interacting Hamiltonian in one of the valleys of the heterostructure
superlattice is given by

Ĥ =
∑
k

(
(εk,1c − µe)â

†
k,1c

âk,1c + (−εk,2v − µh)b̂
†
k,2v

b̂k,2v

)
−
∑
k,k′

〈ψ−k′,1cψk′,2v |V (r)|ψ−k,1cψk,2v〉 â
†
−k′,1c b̂

†
k′,2v

b̂k,2v â−k,1c ,
(8.13)

which is written as a function of â†k,1c (b̂†k,2v ) and âk,1c (b̂k,2v ), the creation and an-
nihilation operators for electrons in the lowest conduction band εk,1c (holes in the
highest valence band εk,2v ). In this form the states |ψk,2v〉 are actually hole states
in the hole conduction band, which can be obtained by substituting k→ −k in the
corresponding electron valence band state (which has no effect on the total interac-
tion potential), and both chemical potentials µe and µh are positive. Furthermore,
the electron-electron and hole-hole interaction terms are not included in the above
Hamiltonian because they do not play a role in the electron-hole pairing mecha-
nism but rather only lead to a correction on the kinetic energy which cancels with
other terms, as is shown in appendix E.

The presence of superfluidity in a system is associated with a superfluid gap
∆k, which is related to the energy required to break up an electron-hole Cooper
pair. In appendix E it is shown that this superfluid gap can be determined from the
zero-temperature self-consistent equation

∆k =
∑
k′

V RPA(k,k′)
∆k′

2Ek′
, (8.14)

with

Ek =
√
ξ2
k + ∆2

k, ξk =
εk,1c − εk,2v

2
− µ, µ =

µe + µh
2

, (8.15)

the quasiparticle dispersion, average electron-hole dispersion, and average chemi-
cal potential of the 3D system, respectively. Note that this is a mean field result,
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i.e. it does not include fluctuations. Because the single-particle energies increase
rapidly with increasing k‖, results with arbitrarily good accuracy can be obtained
by limiting the summation over the in-plane wave vector to a suitable cut-off kc.
For the summation over the perpendicular wave vector component, however, no
such cut-off can be used because of the small band widths in the kz-direction and
therefore the summation runs over the entire first Brillouin zone, i.e. from −π/2d
to π/2d.

Furthermore, the interaction between an electron and a hole will be screened
due to the polarization of the other electrons and holes. Therefore, these effects are
taken into account by means of the random phase approximation (RPA), in which
the interaction potential is given by [264]

V RPA(k,k′) =
F 0
k,k′V

D(q‖, qz) + FH
k,k′V

S(q‖, qz)

1− 2V S(q‖, qz)(Π0
n,q + ΠH

a,q)− 2V D(q‖, qz)(ΠH
n,q + Π0

a,q)
,

(8.16)
which takes into account the intraband polarizations in the presence of a superfluid
which are given by [265]

Π0(H)
n,q = −2

∑
k

F
0(H)
k+q,k

Ek+q + Ek

(
(uk+qvk)2 + (ukvk+q)

2) ,
Π0(H)
a,q = 2

∑
k

F
0(H)
k+q,k

Ek+q + Ek
(2uk+qvkukvk+q) ,

u2
k =

1

2

(
1 +

ξk
Ek

)
, v2

k =
1

2

(
1− ξk

Ek

)
.

(8.17)

The terms Π0(H)
n,q represent the normal state screening which is modified due to

the presence of the superfluidity. The terms Π0(H)
a,q , on the other hand, represent

the anomalous screening which only appears as a result of the presence of the
superfluidity.

8.4.4 Numerical results
The gap equation (8.14) is solved for two different values of µ and the resulting
superfluid gaps are shown in Fig. 8.5. Note that from now on the chemical poten-
tial is defined relative to the minimum of the average electron-hole energy, i.e. the
transformation µ → µ − (ε0,1c − ε0,2v)/2 is performed. For µ = −20 meV the
superfluid gap has its maximum in the origin, whereas for µ = 10 meV the maxi-
mum is located at an in-plane wave vector component of about half of the inverse
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Figure 8.5: Superfluid gaps calculated for µ = −20 meV (top) and µ = 10 meV
(bottom) as a function of the in-plane (left) and perpendicular (right) wave vector
component, scaled with the average in-plane interparticle distance and the perpen-
dicular periodic distance, respectively.

average in-plane interparticle distance, which is defined as r0 = 1/
√
πn2D with n2D

the effective 2D density (see below). In the in-plane direction, the superfluid gap is
wider for µ = −20 meV than for µ = 10 meV, but in both cases it is much wider
than 1/r0. Since the superfluid gap is related to the pair correlation function of the
electron-hole Cooper pair, this indicates that the pairs are compact with respect to
the average interparticle distance. In the perpendicular direction, however, the su-
perfluid gap for the lower value of the chemical potential is narrower than that for
the higher value. In both cases the size of the pairs is of the order of the interlayer
distance.

The chemical potential enters in the gap equation as a parameter. However, an
experimentally more relevant parameter is given by the electron and hole density,
which is given by

ne = nh =
2

AN2d

∑
k

v2
k ≡ n, (8.18)



162 Excitonic superfluidity in TMD heterostructures

0 4 8 12 16
-60

-40

-20

0

20

0 4 8 12 16 20

0 2 4 6 8 10
0

10

20

30

40

50
0 2 4 6 8 10 12

Figure 8.6: Chemical potential (a) and maximum superfluid gap (b) calculated as
a function of the 3D and effective 2D density. The dashed red curve in (a) is the
average Fermi level.

which is derived in appendix E and from which an effective 2D density n2D can be
obtained by multiplying it with 2d. Note that the electron and hole densities are
equal per construction, which is preferable for the formation of a superfluid since
an excess of either would increase the screening and as such reduce the interaction
strength. Because of the difference in effective mass of the lowest conduction band
and highest valence band this implies that the electron and hole Fermi levels are
in general not equal. The relation between the chemical potential and the density
is shown in Fig. 8.6(a). At low densities the chemical potential is negative. This
is to be expected since in the limit of zero density there is an energy gain of half
the exciton binding energy when a particle is added to the system. This region in
which the chemical potential is negative is referred to as the BEC regime. In the
high-density limit, on the other hand, the chemical potential converges to the Fermi
level and this region is known as the BCS regime. The region between these two
limiting cases is known as the crossover regime.

An alternative way of defining the different regimes is through the condensate
fraction, which gives the fraction of the particles which are in the superfluid state
and is determined through

c =

∑
k(ukvk)2∑
k(vk)2

, (8.19)

as discussed in appendix E. The boundary between the BEC and the crossover
regimes is usually assumed to be given by c = 0.8, which for this systems corre-
sponds to a density of around 8×1018 cm−3. The BCS regime is defined as c < 0.2.
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However, this regime is never reached in this system, as will be explained in the
next paragraph. The shape of the superfluid gap can also give a clue about the
regime. In the BEC regime the superfluid gap is wide and has its maximum in the
origin, as shown in Fig. 8.5(a). Moving into the crossover regime, the maximum
shifts away from the origin and the superfluid gap becomes narrower, as shown in
Fig. 8.5(c). In the BCS regime, which is not reached in this system, the superfluid
gap is narrow and centered around the Fermi wave vector.

In Fig. 8.6(b) the maximum value of the superfluid gap is shown as a function
of the density. The maximum gap initially increases as a function of the density,
before reaching a maximum at a density of around 5 × 1018 cm−3. The maximum
gap then gradually decreases and, at a density of around 9.5 × 1018 cm−3, almost
instantly vanishes. The density at which it vanishes is known as the onset den-
sity. This effect can be attributed to the many-body screening of the interaction
potential which becomes more efficient at higher densities. At low densities, when
the superfluid gap is much larger than the Fermi level, the low-lying states which
are normally responsible for the screening, are not available due to the presence
of the gap in the energy spectrum. Therefore it can be said that at low densities
the superfluidity kills the screening, while at high densities the screening kills the
superfluidity. The condensate fraction is found to jump from 0.65 to a near-zero
value at the onset density and as a result the BCS regime is never reached in this
system. Note that this abrupt disappearance of the superfluidity is also reflected in
the chemical potential, which shows a jump towards the Fermi level at the onset
density.

The property of the superfluid which is of most interest is the critical tem-
perature Tc, which is defined as the temperature at which the superfluid gap van-
ishes. At non-zero temperature the electron-hole Cooper pairs can thermally break
up, and by assuming these broken up pairs to be non-interacting the temperature-
dependent gap equation (E.19) can be derived, as explained in appendix E. At high
densities, i.e. in the BCS regime, the condensate fraction is small and therefore
the interactions between the broken up pairs only constitute a small fraction of the
total interactions. As a result, the critical temperature can be obtained from Eq.
(E.19). This is a challenging numerical calculation since close to Tc the solution
is not well-behaved. However, there is an alternative way in which the critical
temperature can be found much more efficiently. For temperatures close to Tc, the
temperature-dependent gap equation (E.19) can be rewritten as

∆k(T ) ≈
∑
k′

V RPA(k,k′, T )
∆k′(T )

2|ξk′ |
tanh

(
|ξk′ |

2kBT

)
, (8.20)
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where it was used that ∆k � ξk and ξδk � kBTc. The latter still needs to be
checked for consistency with the obtained results: it is a good approximation if
Tc > 200 K. The temperature-dependent superfluid gap can approximately be writ-
ten as ∆k(T ) = g(T )∆k, i.e. the superfluid will not change from one regime to
another with increasing temperature. Furthermore, in the RPA interaction potential
the superfluid gap can be assumed to be that at zero temperature since for temper-
atures close to Tc the role of the vanishing superfluid gap in the screening is taken
over by the pseudogap. This pseudogap represents an intermediate phase in which
there is a gap in the excitation spectrum, i.e. there is pairing, but there is no phase
coherence [266]. At Tc this pseudogap is of the same order as the superfluid gap at
zero temperature [267]. Multiplying both sides of the above equation with ∆k and
summing over k then allows to define a function

λ(T ) =

∑
k

∑
k′ V

RPA(k,k′)
∆k∆k′
2|ξk′ |

tanh
(
|ξk′ |

2kBT

)
∑
k (∆k)2 (8.21)

whose value is close to 1. The critical temperature can then be obtained by solv-
ing for λ(Tc) = 1. Note that the calculation is performed for fixed density and
therefore the chemical potential needs to be adjusted appropriately with increasing
temperature. The results obtained from the above expression become less accurate
with decreasing density as phase fluctuations of the superfluid and interactions be-
tween the broken up pairs become increasingly important. At very low densities,
i.e. in the BEC regime, there are no broken up pairs because of the large pseudo-
gap. Phase fluctuations of the superfluid, on the other hand, are important and can
in principle be included in order to get very accurate results [268, 269]. However,
in the deep BEC regime the interparticle distances are very large and as a result the
electron-hole Cooper pairs can be assumed to be perfect bosons which can form
a BEC. The critical temperature of the system can therefore be determined by im-
posing that not all the bosons can be put in excited states, i.e.

n =
2

AN2d

∑
k

1

e(εk,1c−εk,2v−ε0,1c+ε0,2v)/(kBTBEC
c ) − 1

. (8.22)

The critical temperatures obtained from the above two expressions are shown in
Fig. 8.7 as a function of the density. In the intermediate density region the critical
temperature interpolates between these two limiting cases but it is not possible to
determine the exact values in the current framework. However, it is known that the
BCS formalism can give a good estimate of the critical temperature up to about
halfway across the crossover regime, whereas the BEC formalism only gives re-
liable results in the deep BEC regime [270]. Therefore, a possible interpolation
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Figure 8.7: BEC (solid, blue) and BCS (solid, red) critical temperature calculated
as a function of the 3D and effective 2D density. The dashed black curve is a possi-
ble interpolation of the critical temperature between the BEC and BCS expressions.

between the two limiting results is shown in Fig. 8.7 which starts from the BCS re-
sult in the crossover regime and which smoothly decreases with decreasing density
to the BEC result well into the BEC regime. The final result has a maximum criti-
cal temperature of 270 K, i.e. close to room temperature, in the crossover regime.

In order to estimate whether the superfluid can reach this mean field critical
temperature, or whether it is hindered by a BKT transition at lower temperatures,
the phase coherence length should be calculated. As discussed at the end of section
8.3, this length scale determines whether the superfluid acts 2D or 3D. However,
this is an extensive calculation which lies outside the scope of this thesis. Fortu-
nately, the system has another fundamental length scale which can indirectly an-
swer the question about the dimensionality: the pair correlation length, which is
given by [271]

ξ2
P,i =

∑
k

(
∂
∂ki
ukvk

)2

∑
k (ukvk)2 . (8.23)

This length scale gives an indication of the size of the electron-hole Cooper pair
and corresponds to the effective exciton Bohr radius in the low-density limit. In the
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considered density range, the pair correlation length in the z-direction is found to
vary between 0.55 nm and 0.67 nm. However, it is known that in the BCS limit the
phase coherence length coincides with the pair correlation length, whereas in the
BEC limit the phase coherence length is much larger than the pair correlation length
[272]. Therefore, given the above values for the pair correlation length, it can be
inferred that the phase coherence length will (significantly) exceed the periodic
distance 2d = 1.3 nm in the relevant density range, i.e. in the crossover regime,
and that the superfluid will thus act 3D. It can thus be concluded that the proposed
superlattice of TMD heterostructures exhibits high-temperature superfluidity, with
critical temperatures possibly as high as 270 K. Note that this is a significantly
higher value than what can be obtained in a single TMD heterostructure. In these
systems the superfluid is 2D and as a result the critical temperature is determined
by the BKT transition, which does not exceed 20 K in the density range considered
here. However, due to the reduced dielectric screening, the onset density is much
higher and as a result the BKT temperature is found to reach values up to 120 K.
This result is part of a paper which has been submitted to Physical Review Letters.

8.5 Conclusion
In this chapter the possibility of an interlayer exciton superfluid in a superlattice
of TMD heterostructures was investigated. The appropriate unscreened interaction
potential was derived and an expression interpolating between the 2D and 3D limits
was obtained. Polarization effects were included by means of the RPA and this
potential was then used to solve the superfluid gap equation. By estimating the
perpendicular phase coherence length and comparing it to the interlayer distance it
was found that the superfluid in this system acts 3D. As a result, it is not hindered
by a BKT transition and the calculated mean field critical temperatures which can
reach up to 270 K, i.e. approaching room temperature, are applicable.



CHAPTER 9

Conclusion and outlook

9.1 Summary
Excitons have been extensively studied for almost a century, as briefly summarized
in chapter 1. More recently, this research expanded to trions and biexcitons and it
was found that the features of these three excitonic complexes become more pro-
nounced when they are spatially confined. Therefore, in this thesis the properties
of excitons, trions, and biexcitons are studied in a number of two-dimensional (2D)
semiconductors, with the main focus lying on monolayer transition metal dichalco-
genides (TMDs).

In chapter 2 the single-particle properties of electrons and holes in monolayer
TMDs were first reviewed. It was explained how an effective 2D Dirac Hamilto-
nian, describing the highest valence band and lowest conduction band around the
K and K ′ points, can be derived from tight-binding models. The Bloch basis func-
tions on which this Hamiltonian is constructed are based on the d0 and d2τ atomic
orbitals of the transition metal atom. It was also shown how to take into account
the effect of spin-orbit coupling which is very strong in the highest valence band of
monolayer TMDs. Next, the eigenvalues and eigenstates of the Hamiltonian were
calculated and the latter were used to show that monolayer TMDs exhibit circular
dichroism, i.e. charge carriers in the K (K ′) valley can be excited by means of
left (right) circularly polarized light. The eigenvalues and eigenstates also allow to
calculate the Berry curvature and the associated intrinsic orbital magnetic moment.
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It was demonstrated that the latter leads to a type of valley Zeeman effect and as
such helps to explain the Landau level spectrum of monolayer TMDs in the pres-
ence of a perpendicular magnetic field. The presence of an in-plane magnetic field
was shown to allow for optical transitions between energy bands associated with
opposite spins. Next, the interparticle interaction potential in monolayer TMDs
was derived from Gauss’s law and it was demonstrated that the 2D confinement of
the charge carriers leads to a particular interaction potential known as the Keldysh
potential. In the last section, this potential was used in a variational calculation of
the different many-body phases of electrons in different monolayer TMDs. It was
found that there are four phases with a step-wise reduction in spin/valley order with
increasing electron density: a completely spin and valley polarized phase, a phase
with spin-valley locking, a phase with spin polarization in only one of the valleys,
and a phase with no spin or valley polarization. These phases were demonstrated
to persist in the presence of a perpendicular magnetic field and in the specific case
of MoS2 an additional phase of complete valley polarization and little to no spin
polarization was found to appear for magnetic fields larger than 7 T. Finally, it was
found that the phase diagram of holes in monolayer TMDs is less rich as a result of
the strong spin-orbit coupling in the valence band.

In chapter 3 the properties of excitons in monolayer TMDs were studied. First,
a four-band exciton Hamiltonian was constructed based on the two-band electron
and hole single-particle Hamiltonians derived in chapter 2. It was shown that the
corresponding eigenvalue equation, which in position representation corresponds
to a set of differential equations, can be solved numerically using the finite element
method (FEM) by transforming to center of mass and relative coordinates and by
separating the radial part from the angular part by exploiting the eigenstates of the
exciton angular momentum operator which commutes with the exciton Hamilto-
nian. For excitons with non-zero center of mass momentum this approach is not
feasible but nevertheless the exciton eigenvalue equation can still be solved by de-
coupling the set of equations to a single equation and solving it self-consistently.
The exciton ground state binding energy was calculated for different monolayer
TMDs and different substrates and very large values of more than 500 meV were
obtained. The results were compared with those of a single-band model based on
an effective mass approximation of the low-energy bands and it was found that
multi-band effects reduce the exciton binding energy. Furthermore, good agree-
ment was found with other theoretical studies while less satisfactory agreement
was found with experimental results, for which substrate surface roughness and
defect-bound excitons were proposed as possible explanations. Next, higher ex-
cited exciton states were studied leading to three important results: (1) For states
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with the same principal quantum number those with higher (absolute value of) or-
bital angular momentum have lower energy. (2) The intervalley exciton ground
state has angular momentum j = −1 which can be attributed to the pseudospin of
the constituent electron and hole. (3) Intravalley excitons with angular momenta
±j are degenerate while for intervalley excitons (τ, j) and (−τ,−j) excitons are
degenerate, suggesting that this may be related to the coupling between the or-
bital angular momentum of the exciton and the intrinsic angular momentum of the
exciton, which is related to the Berry curvature. Furthermore, the exciton wave
functions were calculated, including the non-dominant components which possess
different orbital angular momentum characteristics and which lower the exciton
binding energy. These wave functions were then used to calculate the average
interparticle distance for different exciton states, different monolayer TMDs, and
different substrates, as well as the excitonic absorbance spectrum.

In chapter 4 the properties of trions and biexcitons in monolayer TMDs were
studied. It was shown that the FEM is not suitable for solving the eigenvalue equa-
tions of the trion and biexciton Hamiltonians. Therefore the stochastic variational
method (SVM) based on correlated Gaussian basis functions was introduced and
used to calculate the trion and biexciton binding energies for different monolayer
TMDs and different substrates and very large values were found, i.e. up to 30 meV
and up to 20 meV for trions and biexcitons, respectively. Good agreement was
obtained with other theoretical studies and reasonably good agreement was found
with experimental results for trions. For biexcitons there are very large differences
with experimental results but it was explained that this may be the consequence of
misinterpretation of the experimental results. Furthermore, the trion wave function
was calculated for the ground state and for the second excited state, showing that
for the former the three particles form a symmetric system whereas the latter can
be viewed as an exciton with an additional particle circling around it.

In chapter 5 the presence of a uniform magnetic field was considered and its
effect on excitonic complexes in monolayer TMDs was investigated. First, a four-
band exciton Hamiltonian was constructed for the case of a perpendicular magnetic
field, which allowed to obtain the exciton Landau level spectrum. It was found
that the exciton Landau levels correspond qualitatively to the Landau levels of a
2D charged Schrödinger particle and that the magnetic field partially breaks the
degeneracy between states with opposite relative angular momentum ±jr, i.e. the
lowest |jr| Landau levels of the state with negative relative angular momentum are
non-degenerate with the Landau levels of the state with opposite relative angular
momentum. Next, it was shown that dark excitons in a tilted magnetic field, which
brighten as a result of the in-plane component, exhibit an exciton valley Zeeman
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effect, as a result of the perpendicular component, which is more than twice as
strong as that of bright excitons. As a result of the sign of the spin-orbit coupling in
the conduction band, this strong effect is only present for A excitons in tungsten-
based TMDs. In the last section, the SVM was used to study the ground state
properties of excitons, trions, and biexcitons in a perpendicular magnetic field and
it was shown that the binding energy of all three excitonic complexes increases as
a function of the magnetic field strength. Furthermore, the diamagnetic shift of
trions and biexcitons was found to be almost an order of magnitude larger than that
of excitons and the diamagnetic shift of all three excitonic complexes was shown
to increase as a function of the substrate dielectric constant.

In chapter 6 attention was turned towards materials with anisotropic band struc-
tures, i.e. monolayer black phosphorus (bP) and TiS3. A slightly modified form of
the SVM, to take into account the anisotropy, was used to calculate the binding en-
ergy of excitons, trions, and biexcitons, which yielded good agreement with other
theoretical studies when available. It was found that the binding energies of exci-
tonic complexes in TiS3 are generally smaller than those of their counterparts in
bP. In TiS3, negative trions are more tightly bound than positive trions, whereas in
bP their binding energies are equal because of the (approximately) equal electron
and hole band masses. Next, the correlation functions and average interparticle dis-
tances of the different excitonic complexes in these two materials were calculated,
which showed that excitonic complexes in bP are strongly anisotropic whereas in
TiS3 they are almost isotropic, which is a consequence of the anisotropy of the
constituent electrons and holes being equal in bP and opposite in TiS3. Finally,
the effect of uniaxial tensile and compressive strain in different directions on the
properties of excitons in bP was studied and it was found that applying tensile
strain increases the exciton binding energy and restores the isotropy in the exci-
tonic complexes, whereas compressive strain decreases the exciton binding energy
and increases the anisotropy even further.

In chapter 7 interlayer excitons in TMD heterostructures were studied. The ap-
propriate electron-hole interaction potential, taking into account the effect of the
dielectric environment above, below, and between the two TMDs as well as po-
larization effects both in the transition metal layer and in the chalcogen layers of
the TMDs, was first derived and used in a four-band model. The exciton binding
energy and average interparticle distance were calculated for all combinations of
TMDs, which led to the conclusion that the chalcogen atoms mostly influence the
binding energy whereas the transition metal atoms mostly influence the interpar-
ticle distance. Next, the effect of different dielectric environments on the exciton
binding energy was investigated and a remarkable dependence on the dielectric
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constant of the barrier between the two TMDs was found, resulting from compet-
ing effects as a function of the in-plane and out-of-plane dielectric constants of the
barrier. Furthermore, the polarization effects in the chalcogen layers, which in gen-
eral reduce the exciton binding energy, can lead to an increase in binding energy in
the presence of strong substrate effects by screening out the substrate. Finally, the
excitonic absorbance spectrum was calculated and it was shown that the interlayer
exciton peak depends linearly on a perpendicular electric field, in agreement with
recent experimental results.

In chapter 8 the possible formation of an interlayer exciton superfluid in TMD
heterostructures was investigated. A superlattice of these TMD heterostructures
was considered in order to have a 3D superfluid and as such avoid the Berezinskiı̆-
Kosterlitz-Thouless transition which limits the critical temperatures in 2D superflu-
ids. First, the appropriate unscreened interaction potential was derived, taking into
account the geometry of the system. Polarization effects were included by means of
the random phase approximation (RPA). Using this screened RPA interaction po-
tential, the superfluid gap equation was solved for different values of the chemical
potential and very high critical temperatures of up to 270 K were obtained.

9.2 Situating the novelty of this thesis

This thesis provided an extensive study of excitons, trions, and biexcitons, which
are few-body systems which can be found in semiconductors. In contrast to iso-
lated atoms, for which the many-electron system can be reasonably well described
by neglecting (Coulomb) correlations between the electrons (i.e. the Hartree-Fock
method), interparticle correlations are extremely important in these systems. This
was dramatically shown in this thesis, where it was found that neglecting angular
correlations in trions leads to poor results, sometimes even predicting unstable tri-
ons. Accurately taking into account these correlations is a difficult task and was
done here by means of the stochastic variational method, which is one of the most
accurate methods available.

The attention was mainly focused on monolayer TMDs. The 2D nature of
these systems leads to a peculiar interaction potential, which in turn causes the
exciton levels to deviate from the 2D hydrogenic Rydberg series. Combined with
the associated reduced dielectric screening this leads to exceptionally large binding
energies for all three excitonic complexes, i.e. an order of magnitude larger than
those in 3D semiconductors and in semiconductor quantum wells. These binding
energies were calculated here for a range of TMDs and substrates and the results
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were compared with theoretical and experimental results from the literature when
available. Good agreement was found with other theoretical studies while less sat-
isfactory agreement was found with experimental results, for which substrate sur-
face roughness and misinterpretation of the PL spectra were suggested as possible
explanations.

Another unique feature of monolayer TMDs, owing to their hexagonal lattice
structure, is the fact that the low-energy charge carriers reside in the K and K ′

valleys at the corners of the hexagonal Brillouin zone, in contrast to most semicon-
ductors where they are usually found at the Γ point. This allows for the possibility
of both intra- and intervalley excitons, which in this thesis were shown to have dif-
ferent degeneracies and energy level orderings as a result of the Dirac nature of the
charge carriers. Intervalley excitons can not be directly measured experimentally
but they can affect the exciton dynamics in TMDs.

Previous studies of magnetic field effects on excitons in TMDs have mostly
been limited to ground state properties. In this thesis it was shown how a perpen-
dicular magnetic field leads to exciton Landau levels and partly breaks the degen-
eracy between states with opposite relative angular momentum. Furthermore, the
exciton valley Zeeman effect, which is well-known in the literature for bright ex-
citons, was here predicted to be more than twice as strong for dark excitons. This
could in principle be measured experimentally by applying a tilted magnetic field.
Little to no studies exist on the effect of a magnetic field on trions and biexcitons
in TMDs. In this thesis it was shown how a perpendicular magnetic field leads to a
stronger relative increase in binding energy for trions and biexcitons as compared
to excitons and how their diamagnetic shifts can be tuned by means of a substrate.

The binding energies of excitonic complexes have also been calculated for two
2D semiconductors with anisotropic band structures, which included the first cal-
culation of the biexciton binding energy in monolayer TiS3. Furthermore, it was
shown here how the excitonic complexes in TiS3 are actually almost isotropic and
how the anisotropy of excitons in monolayer bP can be tuned by means of strain.

Different monolayer TMDs can be stacked to form TMD heterostructures in
which interlayer excitons can form. An interlayer interaction potential was derived
in this thesis which allows to describe layered substrates between the TMDs. This
potential was then used to calculate the interlayer exciton binding energy for many
different combinations of TMDs, many of which had not yet been reported in the
literature, and to investigate how it can be tuned by the dielectric environment. Fur-
thermore, it is possible for these interlayer excitons to form a superfluid, which in
2D systems is limited by the BKT transition. In order to circumvent this mecha-
nism, a superlattice of TMD heterostructures was proposed in this thesis and high
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critical temperatures approaching room temperature were predicted. This has po-
tential for low-energy nanoelectronics, which is a challenging area for the present-
day microelectronics industry, and is therefore actively pursued by for example
the FLEET (Future Low-Energy Electronics Technologies) center of excellence in
Australia.

9.3 Outlook
There are a number of possible ways to extend the work presented in this thesis. For
example, it would be very interesting to implement the SVM method for the multi-
band trion and biexciton Hamiltonians. This would allow to study the influence of
multi-band effects, which are considerably more important for trions as compared
to excitons as was shown in chapter 4, on the different properties of these excitonic
complexes.

It is also worth investigating the effect of a perpendicular magnetic field on ex-
citonic complexes in bP, possibly combined with an applied uniaxial strain, which
provides a new way of realizing excitonic complexes with tunable anisotropy.

Furthermore, interlayer trions whose two equally charged particles are located
in the same layer were recently predicted to be stable based on first-principles
Bethe-Salpeter calculations [273], which followed a possible experimental obser-
vation of this new type of excitonic complex a year earlier [274]. It would be very
interesting to try to reproduce these results using the SVM method, which would
require implementing the interaction potential derived in chapter 7, and then to
extend these calculations to interlayer biexcitons.

Finally, it is worth investigating interlayer excitonic superfluidity in TMD het-
erostructure superlattices with an indirect band gap, which would result in a super-
fluid with non-zero center of mass momentum. The symmetric orientation of the
different conduction band minima with respect to the valence band maxima might
result in a plethora of different superfluid phases.
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APPENDIX A

Three-band tight-binding Hamiltonian for monolayer
TMDs

In Ref. [60] a three-band tight-binding Hamiltonian involving only nearest neigh-
bor d-d hoppings in the basis of Bloch functions based on the atomic orbital states
{|dz2〉 , |dx2−y2〉 , |dxy〉} was introduced which can be written as

HNN(k) =

h0 h1 h2

h∗1 h11 h12

h∗2 h∗12 h22

 , (A.1)

with

h0 = 2t0(cos 2α + 2 cosα cos β) + ε1,

h1 = −2
√

3t2 sinα sin β + 2it1(sin 2α + sinα cos β),

h2 = 2t2(cos 2α− cosα cos β) + 2
√

3it1 cosα sin β,

h11 = 2t11 cos 2α + (t11 + 3t22) cosα cos β + ε2,

h22 = 2t22 cos 2α + (3t11 + t22) cosα cos β + ε2,

h12 =
√

3(t22 − t11) sinα sin β + 4it12 sinα(cosα− cos β),

(α, β) =

(
1

2
kxa,

√
3

2
kya

)
.

(A.2)
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This Hamiltonian, which for simplicity does not include spin-orbit coupling, con-
tains eight parameters which are determined using the Slater-Koster method [275]
by fitting its band structure to density functional theory calculations and are listed
in Table A.1. Using these parameters, the resulting band structure is shown in Fig.
A.1(a). This shows that it is in very good agreement with density functional theory
calculations for the highest valence band, lowest conduction band, and a higher
conduction band around the K and K ′ point but diverges from the density func-
tional theory calculations when moving away from these points. This issue can
be resolved by including up to third nearest neighbor hoppings. In that case the
Hamiltonian is given by

HTNN(k) =

g0 g1 g2

g∗1 g11 g12

g∗2 g∗12 g22

 , (A.3)

with

g0 =h0 + 2r0(2 cos 3α cos β + cos 2β) + 2u0(2 cos 2α cos 2β + cos 4α),

g1 =h1 + 2(r1 + r2) sin 3α sin β − 2
√

3u2 sin 2α sin 2β

+ 2i(r1 − r2) sin 3α cos β + 2iu1 sin 2α(2 cos 2α + cos 2β),

g2 =h2 −
2√
3

(r1 + r2)(cos 3α cos β − cos 2β) + 2u2(cos 4α− cos 2α cos 2β)

+
2√
3
i(r1 − r2) sin β(cos 3α + 2 cos β) + 2

√
3iu1 cos 2α sin 2β,

g11 =h11 + 4r11 cos 3α cos β + 2(r11 +
√

3r12) cos 2β

+ (u11 + 3u22) cos 2α cos 2β + 2u11 cos 4α,

g22 =h22 + 2r11(2 cos 3α cos β + cos 2β) +
2√
3
r12(4 cos 3α cos β − cos 2β)

+ (3u11 + u22) cos 2α cos 2β + 2u22 cos 4α,

g12 =h12 + 4r12 sin 3α sin β +
√

3(u22 − u11) sin 2α sin 2β

+ 4iu12 sin 2α(cos 2α− cos 2β).

(A.4)

This Hamiltonian, which again does not include spin-orbit coupling, contains eleven
additional parameters which are again determined using the Slater-Koster method
by fitting its band structure to density functional theory calculations and are, to-
gether with the previous eight parameters, listed in Table A.2. Using these param-
eters, the resulting band structure is shown in Fig. A.1(b), which shows that it is in
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very good agreement with the density functional theory calculations for the highest
valence band, lowest conduction band, and a higher conduction band throughout
the entire first Brillouin zone.

ε1 ε2 t0 t1 t2 t11 t12 t22

MoS2 1.046 2.104 −0.184 0.401 0.507 0.218 0.338 0.057
MoSe2 0.919 2.065 −0.188 0.317 0.456 0.211 0.290 0.130
WS2 1.130 2.275 −0.206 0.567 0.536 0.286 0.384 −0.061
WSe2 0.943 2.197 −0.207 0.457 0.486 0.263 0.329 0.034

Table A.1: Three-band nearest neighbor tight-binding Hamiltonian parameters
(eV), obtained using the Slater-Koster method by fitting to density functional the-
ory calculations based on a generalized gradient approximation, for different mono-
layer TMDs. Table taken from Ref. [60].

ε1 ε2 t0 t1 t2 t11 t12 t22

r0 r1 r2 r11 r12 u0 u1 u2

u11 u12 u22

MoS2 0.683 1.707 −0.146 −0.114 0.506 0.085 0.162 0.073
0.060 −0.236 0.067 0.016 0.087 −0.038 0.046 0.001
0.266 −0.176 −0.150

MoSe2 0.684 1.546 −0.146 −0.130 0.432 0.144 0.117 0.075
0.039 −0.209 0.069 0.052 0.060 −0.042 0.036 0.008
0.272 −0.172 −0.150

WS2 0.717 1.916 −0.152 −0.097 0.590 0.047 0.178 0.016
0.069 −0.261 0.107 −0.003 0.109 −0.054 0.045 0.002
0.325 −0.206 −0.163

WSe2 0.728 1.655 −0.146 −0.124 0.507 0.117 0.127 0.015
0.036 −0.234 0.107 0.044 0.075 −0.061 0.032 0.007
0.329 −0.202 −0.164

Table A.2: Three-band third nearest neighbor tight-binding Hamiltonian parame-
ters (eV), obtained using the Slater-Koster method by fitting to density functional
theory calculations based on a generalized gradient approximation, for different
monolayer TMDs. Table taken from Ref. [60].
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Figure A.1: Nearest neighbor (a) and third nearest neighbor (b) tight-binding band
structures (blue) compared with density functional theory calculations based on a
generalized gradient approximation (red) for MoS2. The size of the dots indicates
the contribution from the atomic orbital states {|dz2〉 , |dx2−y2〉 , |dxy〉} to the three
bands which are compared with the tight-binding results. Figure taken from Ref.
[60].



APPENDIX B

Derivation of the spin-orbit coupling

B.1 Relativistic quantum mechanical approach
The Dirac equation is, in the presence of a scalar potential, given by

i~
∂ψ

∂t
=
(
cα.p+ βm0c

2 + V
)
ψ, (B.1)

with c the speed of light, V = −eφ the scalar potential associated with the electro-
static potential φ, and with

α =

(
0 σ
σ 0

)
, β =

(
I2 0
0 −I2

)
. (B.2)

For a stationary state

ψ = e−
i
~ (m0c2+E)t

(
ϕ

χ

)
, (B.3)

with ϕ and χ both time-independent two-component spinors and where the energy
is defined relative to the rest energy to allow to easily take the non-relativistic limit,
the Dirac equation becomes

c

(
σ.pχ

σ.pϕ

)
− 2m0c

2

(
0

χ

)
+ V

(
ϕ

χ

)
= E

(
ϕ

χ

)
. (B.4)
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From the second equation it follows that

χ =
c

E − V + 2m0c2
σ.pϕ ≈ 1

2m0c

(
σ.p− E − V

2m0c2
σ.p

)
ϕ, (B.5)

which shows that in the non-relativistic limit the component χ is much smaller
than the component ϕ. Inserting this expression into the first equation of Eq. (B.4)
introduces a term

H1 =
1

4m2
0c

2
(σ.p)V (σ.p) (B.6)

to the effective Hamiltonian for the dominant spinor component ϕ. Using the iden-
tity

(σ.a)(σ.b) = a.bI2 + iσ.(a× b), (B.7)

this term can be rewritten as

H1 =
1

4m2
0c

2

(
(V p2I2 − i~(∇V ).pI2 + ~σ.(∇V × p)

)
. (B.8)

Using

∇V =
1

r

dV (r)

dr
r, (B.9)

which is valid for a central potential, the last term in Eq. (B.8) becomes

Hso =
1

2m2
0c

2

1

r

dV (r)

dr
L.S, (B.10)

with L = r × p and S = (~/2)σ. This is the spin-orbit coupling term.

B.2 Classical approach
It is possible to find the same result as obtained above by following a more intuitive
classical approach. Consider the motion of an electron around a nucleus. The
electron has a magnetic moment µ associated with its intrinsic spin S which is
given by

µ = −gs
e

2m0

S, (B.11)

with gs = 2 the spin g-factor which follows from relativistic quantum mechanics.
In the presence of a magnetic field this magnetic moment has an energy contribu-
tion

Hso = −µ.B. (B.12)
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In the rest frame of the nucleus the electron feels an electric fieldE but no magnetic
field. In the rest frame of the electron, however, the nucleus is moving and as such
the electron feels a magnetic field

B = −v ×E
c2

, (B.13)

with v the velocity of the electron, which follows from a Lorentz transformation in
which the non-relativistic limit v � c was assumed. Assuming that the potential
of the nucleus V (r) is central, the corresponding electric field is given by

E = −∇φ =
1

er

dV

dr
r, (B.14)

with φ = −V/e the electrostatic potential. Putting everything together and using
p = m0v and L = r × p then leads to

Hso =
1

m2
0c

2

1

r

dV (r)

dr
L.S. (B.15)

Notice that this expression differs by a factor 2 from the expression derived from
the Dirac equation. The reason behind this discrepancy is the fact that the electron
rest frame is not inertial: it accelerates as the electron orbits around the nucleus.
This can be resolved by performing the Lorentz transformation from the electron
rest frame to the rest frame of the electron at an infinitesimal time dt later together
with a rotation to account for the new position of the electron. Adding this effect,
which is known as Thomas precession [276], leads to the missing factor 2 in the
denominator of the above expression. It should be noted that the expression for the
spin-orbit coupling can also be derived in the rest frame of the nucleus, which is
inertial. In this case there is no magnetic field, but the moving magnetic dipole of
the electron acquires an electric dipole which in turn couples with the electric field
of the nucleus to give the same result. However, this derivation is more extensive
and is therefore not given here.
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APPENDIX C

Matrix elements between correlated Gaussian
basis functions

Kinetic energy

The kinetic energy of an N -particle complex can be written as

T = Tx + Ty =
#»p TxΛ #»p x

2
+

#»p Ty Λ #»p y

2
, (C.1)

where #»p x and #»p y areN -dimensional vectors containing, respectively, the x- and y-
components of the momenta of the different particles and with Λ a diagonal matrix
containing the inverse effective masses of the particles. However, the derivation
below holds for any symmetric matrix Λ. Applying the first term to the x-dependent
part of a correlated Gaussian basis function (4.11) leads to

Txϕ( #»x ) = −~2

2

∑
i,j

Λij
∂

∂xi

∂

∂xj
e−

1
2

∑
k,l Aklxkxl

=
~2

2

∑
i,j

Λij
∂

∂xi

(
Ajlxle

− 1
2

∑
k,l Aklxkxl

)
=

~2

2

∑
i,j

Λij

(
Aij −

∑
k,l

AjlxlAikxk

)
e−( #»x TA #»x )/2,

(C.2)
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where the fact that A is a symmetric matrix, i.e. Aij = Aji, was used. The second
term in the above expression can be integrated by introducing a source term

#»

J T . #»x
to the basis functions:∫

d #»xxkxle
−( #»x TA #»x )/2 =

∫
d #»x

d

dJk

d

dJl
e−( #»x TA #»x )/2+JT . #»x

∣∣∣∣
#»
J=0

=
d

dJk

d

dJl

N∏
i=1

∫
dtie

−λit2i /2+Oiti

∣∣∣∣
#»
J=0

=

(
(2π)N

det(A)

) 1
2 d

dJk

d

dJl
e

1
2

∑
iO

2
i /λi

∣∣∣∣
#»
J=0

=

(
(2π)N

det(A)

) 1
2 d

dJk

d

dJl
e

1
2

∑
i,j A

−1
ij JiJj

∣∣∣∣
#»
J=0

=

(
(2π)N

det(A)

) 1
2

A−1
kl ,

(C.3)

where the matrix A with eigenvalues λi is diagonalized using the unitary transfor-
mation U and with #»

t = UT #»x and
#»

O = UT #»

J , in analogy to the calculation in
Eq. (4.14). Putting everything together, the matrix element of the kinetic energy
between two correlated Gaussian basis functions with parameter matricesA andA′

is given by

〈T 〉 = ~2S2
0

(∑
i,j

AijΛji −
∑
i,j,k,l

Aik(A+ A′)−1
kl AljΛji

)
= ~2S2

0 tr
(
A(IN − (A+ A′)−1A)Λ

)
= ~2S2

0 tr
(
A(A+ A′)−1A′Λ

)
,

(C.4)

with S0 the 1D overlap between the basis functions which is calculated in Eq.
(4.14).

Delta function

The matrix element of the Dirac delta function in Eq. (4.15) between two correlated
Gaussian basis functions can be calculated by rewriting it as an inverse Fourier
transformation:

〈δ
(

#»wT #»r − r0

)
〉 =

1

(2π)2

∫
dkeik.r0

∫
d #»xe−( #»x T (A+A′) #»x )/2+ikx

#»wT #»x

×
∫
d #»y e−( #»y T (A+A′) #»y )/2+iky

#»wT #»y ,

(C.5)

with #»w with an N -dimensional vector containing the real constants wk and with
#»r an N -dimensional vector whose components are the 2D position vectors of the
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different particles. The exponent in the second integral can be rewritten as

− 1

2

(
#»x T (A+ A′) #»x

)
+ ikx

#»wT #»x = −1

2

(
#»x T − ikx #»wT (A+ A′)−1

)
(A+ A′)

×
(

#»x − (A+ A′)−1ikx
#»w
)

+
1

2
ikx

#»wT (A+ A′)−1ikx
#»w,

(C.6)

and the exponent in the third integral can be rewritten analogously. Integrating the
first term in the above expression again leads to a factor S0 since the coordinates #»x
are simply shifted. As such, the matrix element (C.5) reduces to

〈δ
(

#»wT #»r − r0

)
〉 =

S2
0

(2π)2

∫
dke−( #»wT (A+A′)−1 #»wk2)/2+ik.r0

=
S2

0

2π #»wT (A+ A′)−1 #»w
e−r

2
0/(2

#»wT (A+A′)−1 #»w).

(C.7)

Keldysh potential

Using the above result and Eq. (4.15), it follows that the matrix element of the
two-particle interaction potential between two correlated Gaussian basis functions
is given by

〈V (|ri − rj|)〉 =
S2

0c

π

∫
drV (r)e−cr

2

, (C.8)

with c = 1/(2 #»wT (A + A′)−1 #»w) and wk = δik − δjk. This can be rewritten using
Parseval’s theorem, which states that∫

drf(r)g(r) =
1

(2π)2

∫
dkF [f ](k)F [g](k). (C.9)

It follows from Eqs. (2.39) and (2.40) that the Fourier transform of the Keldysh
potential is given by

F [V ](k) = v0
2π

k + r0k2
, with v0 =

e2

4πκε0

. (C.10)

Furthermore, the Fourier transform of the Gaussian in Eq. (C.8) is given by

F [e−cr
2

](k) =

∫
dre−cr

2

e−ik.r = 2π

∫
drrJ0(kr)e−cr

2

=
πe−k

2/(4c)

c
. (C.11)
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As a result, the matrix element of the two-particle Keldysh potential between two
correlated Gaussian basis functions reduces to

〈V (|ri − rj|)〉 = v0S
2
0

∫ ∞
0

dk
e−k

2/(4c)

1 + r0k
=
v0S

2
0

2r0

(
2
√
πF (γ)− e−γ2Ei(γ2)

)
,

(C.12)
with γ = 1/(2

√
cr0), F the Dawson function, and Ei the exponential integral.

Permutation operator

When the excitonic complex contains indistinguishable particles, the correlated
Gaussian basis functions (4.11) are antisymmetrized accordingly. This means that
the basis functions can contain terms in which the particles have been permuted, i.e.
#»r → TP

#»r with TP the permutation matrix. A matrix element involving a permuted
term with parameter matrixA is equivalent to the matrix element involving the non-
permuted term with parameter matrix T TP ATP .



APPENDIX D

Kinetic energy of single vortices and
vortex-antivortex pairs

The second-quantized form of the kinetic energy contribution to the Hamiltonian
of a many-body system is in terms of field operators given by

Ĥkin = − ~2

2m

∫
d2r ψ̂†(r)∇2ψ̂(r). (D.1)

For a macroscopically occupied ground state it is possible to assume ψ̂(r) ≈
Ψ(r)1̂ with

Ψ(r) =
√
nse

iϕ(r) (D.2)

the ground state wave function with ns the uniform superfluid density and ϕ the
phase. As such the kinetic energy can be written as

Ekin =
ns~2

2m

∫
d2r |∇ϕ(r)|2 . (D.3)

Constructing the Heisenberg equation for the field operator ψ̂(r), again making the
substitution ψ̂(r) ≈ Ψ(r)1̂, and deriving a continuity equation from the resulting
equation allows to identify a velocity given by

v =
~
m
∇ϕ. (D.4)
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This allows to find the circulation around a single (anti)vortex to be

Γ =

∮
C

v.dl =
~
m

∮
C

∇ϕ.dl = ±2π
~
m
, (D.5)

since the phase of the system changes by 2π (−2π) when moving around a vor-
tex (antivortex). Furthermore, from the cylindrical symmetry of the (anti)vortex it
follows that v(r) = v(r)eθ, which combined with the above expression leads to

v(r) = ± ~
mr

. (D.6)

Inserting this in Eq. (D.3) then gives the kinetic energy of a single (anti)vortex:

Ekin =
πns~2

m
ln

(
R

ξ

)
, (D.7)

with R the radius of the system and where the density was assumed to be zero
inside the (anti)vortex core of radius ξ.

For a bound vortex-antivortex pair separated by a distance d the contribution
to the total velocity stemming from the vortex will approximately cancel with that
from the antivortex for r > d/2. As such the kinetic energy of the pair becomes

Ekin =
πns~2

m
ln

(
d

2ξ

)
. (D.8)

This is an approximate result, however the crucial point is that it does not depend
on R.



APPENDIX E

Derivation of the superfluid gap equation

The question that needs to be answered is whether there exists a state which has
lower energy with respect to the interacting superlattice Hamiltonian (8.13) than
the normal ground state in which all single-particle states surrounded by the Fermi
surface are occupied for both electrons and holes. Therefore a variational state of
the form

|Φ〉 =
∏
k

(
uk + vkâ

†
−kb̂

†
k

)
|∅〉 , (E.1)

with |∅〉 the vacuum state of completely filled valence bands and empty conduction
bands and with uk and vk the variational parameters which are chosen to be real
and to obey uk = u−k and vk = v−k, is used to search for the true ground state.
The band indices of the operators have been dropped for notational simplicity. For
this state to be normalized the variational parameters need to fulfill the relation

u2
k + v2

k = 1, ∀k. (E.2)

When uk = Θ(k /∈ V) and vk = Θ(k ∈ V), with V the volume in reciprocal space
surrounded by the Fermi surface, the variational state reduces to the normal ground
state. When both uk and vk are non-zero for the same k, however, the variational
state contains a superposition of an empty state and an electron-hole state, i.e. it
does not have a fixed number of particles.



190 Derivation of the superfluid gap equation

Furthermore, it is convenient to perform the so-called Bogoliubov transforma-
tion to the new set of operators

α̂k = ukâ−k − vkb̂†k, β̂k = vkâ
†
−k + ukb̂k, (E.3)

which have the very useful property that the variational state (E.1) is their ground
state, i.e.

α̂k |Φ〉 = β̂k |Φ〉 = 0. (E.4)

It follows from the fermionic anticommutation relations of the electron and hole
operators âk and b̂k that the above operators adhere to the same set of rules, i.e.

{α̂k′ , α̂k} = {α̂†
k′
, α̂†k} = {β̂k′ , β̂k} = {β̂†

k′
, β̂†k} = 0,

{α̂k′ , β̂k} = {α̂†
k′
, β̂k} = {α̂k′ , β̂†k} = {α̂†

k′
, β̂†k} = 0,

{α̂k′ , α̂†k} = {β̂k′ , β̂†k} = δk,k′ .

(E.5)

Using these new operators, the expectation value of the Hamiltonian (8.13)
with respect to the variational state (E.1) can be calculated and minimized, with
the chemical potentials µe and µh taking into account the boundary condition of a
fixed number of electrons and holes. The expectation value of the electron kinetic
energy becomes

Ee
0 =

∑
k

ξek 〈Φ|â
†
kâk|Φ〉 =

∑
k

ξek 〈Φ|
(
ukα̂

†
−k + vkβ̂−k

)(
ukα̂−k + vkβ̂

†
−k

)
|Φ〉

=
∑
k

ξek 〈Φ|v2
kβ̂−kβ̂

†
−k|Φ〉 =

∑
k

ξekv
2
k,

(E.6)

with ξek = εk,1c − µe. A completely analogous calculation for the hole kinetic
energy gives Eh

0 =
∑
k

ξhkv
2
k with ξhk = −εk,2v − µh.

The expectation value of the electron-hole interaction term is given by

Ieh =
∑
k,k′

Vk,k′ 〈Φ|â†−k′ b̂
†
k′
b̂kâ−k|Φ〉 =

∑
k,k′

Vk,k′〈Φ|
(
uk′α̂

†
k′

+ vk′ β̂k′
)

×
(
uk′ β̂

†
k′
− vk′α̂k′

)(
ukβ̂k − vkα̂†k

)(
ukα̂k + vkβ̂

†
k

)
|Φ〉

=
∑
k,k′

Vk,k′
(
vk′uk′ukvk 〈Φ|β̂k′ β̂†k′ β̂kβ̂

†
k|Φ〉+ v2

k′v
2
k 〈Φ|β̂k′α̂k′α̂

†
kβ̂
†
k|Φ〉

)
=
∑
k,k′

Vk,k′vk′uk′ukvk +
∑
k

Vk,kv
4
k,

(E.7)
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with Vk,k′ shorthand notation for the screened interaction potential (8.16). Note
that the first term in the above result vanishes in the normal state limit, while it
lowers the total energy for a state for which uk and vk are non-zero simultaneously.
This term will drive the system towards the superfluid state, i.e. states for which
ukvk 6= 0 represent electron-hole Cooper pairs. The second term on the other hand
is also non-zero in the normal state and acts as a correction term −Vk,kv2

k on the
kinetic energy. The expectation value of the electron-electron interaction term is
given by

Iee =
∑
k,k′

V ee
k,k′ 〈Φ|â

†
−k′ â

†
k′
âkâ−k|Φ〉 =

∑
k,k′

V ee
k,k′〈Φ|

(
uk′α̂

†
k′

+ vk′ β̂k′
)

×
(
uk′α̂

†
−k′ + vk′ β̂−k′

)(
ukα̂−k + vkβ̂

†
−k

)(
ukα̂k + vkβ̂

†
k

)
|Φ〉

=
∑
k,k′

V ee
k,k′v

2
k′v

2
k 〈Φ|β̂k′ β̂−k′ β̂

†
−kβ̂

†
k|Φ〉 =

∑
k

V ee
k,kv

4
k.

(E.8)

A completely analogous calculation shows that Ihh = Iee. The electron-electron
and hole-hole interaction terms need to be multiplied with an additional factor 1/2
to avoid double counting and have opposite sign compared to the electron-hole in-
teraction term. Therefore, the kinetic energy corrections due to the three interaction
terms cancel each other since for small momentum exchange the interaction poten-
tials between particles with opposite charge and between particles with the same
charge are equal.

Putting everything together, the expectation value of the Hamiltonian is given
by

〈Ĥ〉 =
∑
k

(
ξek + ξhk

)
v2
k −

∑
k,k′

Vk,k′vk′uk′ukvk. (E.9)

Minimizing this expression with respect to vk and taking into account that

∂uk
∂vk

= −vk
uk

(E.10)

leads to the equation

2
(
ξek + ξhk

)
vk −

∑
k′

2Vk,k′vk′uk′

(
−vk
uk

)
vk −

∑
k′

2Vk,k′vk′uk′uk = 0. (E.11)

Multiplying with uk and introducing a help function

∆k =
∑
k′

Vk,k′uk′vk′ (E.12)
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reduces this to (
ξek + ξhk

)
ukvk + ∆k

(
v2
k − u2

k

)
= 0. (E.13)

Writing uk = cos(θk/2) and vk = sin(θk/2) to account for the normalization
condition allows to obtain

u2
k =

1

2

(
1 +

ξk
Ek

)
, v2

k =
1

2

(
1− ξk

Ek

)
, Ek =

√
ξ2
k + ∆2

k, ξk =
ξek + ξhk

2
,

(E.14)
and as such the help function is found to obey the self-consistent equation

∆k =
∑
k′

Vk,k′
∆k′

2Ek′
. (E.15)

Although it is already clear that ∆k is directly related to the superfluid state, it
is at this point not yet known what exactly is its physical significance. However,
it is easy to show that ukvk = 〈Φ|â†−kb̂

†
k|Φ〉, which implies that ∆k is related to

the pair correlation function of the electron-hole Cooper pair. Furthermore, it is
insightful to break up one such electron-hole Cooper pair, i.e. set ukvk = 0 for one
particular value of k. As such, the interaction energy in the expectation value (E.9)
is increased by an amount of 2∆kukvk. On the other hand, the kinetic energy is
changed from the first term in (E.9) for the value of k to either ξek or ξhk. When for
example the hole (electron) is removed, the energy difference between the broken
pair state (BP) and the superfluid ground state (GS) is given by

EBP−EGS = ξ
e(h)
k −

(
ξek + ξhk

)
v2
k+2∆kukvk =

ξ
e(h)
k − ξh(e)

k

2
+
√
ξ2
k + ∆2

k, (E.16)

which at the Fermi surface reduces to ∆kF . This shows that the function ∆k is
related to the energy required to break up an electron-hole pair. It is also interesting
to note that

α̂†k |Φ〉 =
(
ukâ

†
−k − vkb̂k

)(
uk + vkâ

†
−kb̂

†
k

)
|∅〉

=
(
u2
kâ
†
−k + v2

kâ
†
−kb̂kb̂

†
k

)
|∅〉 = â†−k |∅〉 ,

(E.17)

where the variational state was limited to a single electron-hole Cooper pair for
notational simplicity. An analogous calculation leads to β̂†k |Φ〉 = b̂†k |∅〉. This
shows that the operator α̂†k (β̂†k) breaks up an electron-hole Cooper pair and only
retains the electron (hole), i.e. it creates an excitation with energyEk+ξδk (Ek−ξδk),
with ξδk = (ξek−ξhk)/2. Since these operators satisfy the fermionic anticommutation
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relations (E.5), the excitations which they create can be treated as non-interacting
fermions which, at non-zero temperature and thermal equilibrium, obey the Fermi-
Dirac distribution:

〈α̂†kα̂k〉 =
1

e(Ek+ξδk)/(kBT ) + 1
, 〈β̂†kβ̂k〉 =

1

e(Ek−ξδk)/(kBT ) + 1
. (E.18)

By using these expressions to calculate the expectation values of the kinetic energy
and interaction terms, using Wick decomposition for the latter, and minimizing the
result, an expression for the temperature-dependent gap equation can be found. The
details will not be given here but the result is given by

∆k(T ) =
∑
k′

Vk,k′
∆k′(T )

2Ek′

sinh
(
Ek′
kBT

)
cosh

(
Ek′
kBT

)
+ cosh

(
ξδ
k′

kBT

) . (E.19)

Finally, the zero-temperature electron and hole densities are given by

ne =
2

AN2d

∑
k

〈Φ|â†kâk|Φ〉 =
2

AN2d

∑
k

v2
k = nh, (E.20)

with N the number of TMD heterostructures of surface area A and interlayer dis-
tance d, which follows from an analogous calculation as that shown in Eq. (E.6).
The factor 2 in the numerator is due to the spin/valley-degeneracy in the system.
Furthermore, since ukvk represents the distribution of electron-hole Cooper pairs,
it follows that the condensate density is found by adding an additional factor u2

k in
the above definition. However, it is more insightful to immediately calculate the
condensate fraction, which is the ratio of the condensate density to the total density
and is therefore given by

c =

∑
k(ukvk)2∑
k(vk)2

. (E.21)
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