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Chapter 1
Introduction

�Begin at the beginning,¨ the
King said gravely, �and go on
till you come to the end: then
stop."

Lewis Carroll

1.1 The rise of 2D materials

The isolation of graphene in 2004 from graphite was a de�ning moment for the
birth of a new �eld: two-dimensional (2D) materials. In recent years, there
has been a rapidly increasing number of papers focusing on two-dimensional
(2D) atomic-layer systems, including graphene [1, 2, 3], transition metal
dichalcogenides (TMDCs) [4, 5, 6], hexagonal boron nitride (h-BN) [7, 8]
and phosphorene (a single layer of Black phosphorus (BP)) [9], as candi-
date materials for future electronic applications. Compared with traditional
three dimensional (3D) materials such as gallium arsenide (GaAs) and sili-
con (Si), 2D materials exhibit many exceptional properties. First, quantum
con�nement in the direction perpendicular to the 2D plane leads to novel elec-
tronic and optical properties that are distinctively di�erent from their bulk
parental materials [10, 11]. Second, their surfaces are naturally passivated
without any dangling bonds, which makes it easy to integrate 2D materials
with photonic structures [12]. Third, despite being atomically thin, many 2D
materials interact strongly with light. For example, a single layer of MoS2

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: (a) Electromagnetic spectrum. Band structures of single-layer
(b)h-BN, (c) MoS2, (d)BP, and (e) graphene. Figure taken from Ref. [14].

absorbs around 10% of vertically incident light at excitonic resonances (615
nm and 660 nm) [13]. Finally, 2D materials can cover a very wide range of
the electromagnetic spectrum because of their diverse electronic properties
(Fig. 1.1(a)).

A high-performance device such as a �eld-e�ect transistor (FET) requires
a moderate electronic band gap, a reasonably high carrier mobility of the
channel material and excellent electrode-channel contacts. Graphene o�ers
extremely high mobilities, due to its very low carrier e�ective mass, and thus
is considered to be a promising candidate for high-speed FET devices, but
its intrinsic dispersion is gapless [15, 16]. Despite extensive e�orts following
a wide variety of approaches to the problem of opening a gap in di�erent
graphene nanostructures, all devices to date have a relatively large 'o�' cur-
rent and thus a low 'on−o�' ratio. For this reason the emergence of monolayer
TMDCs has attracted substantial research interest, and in particular MoS2

(Fig. 1.1(c)) has recently been used to fabricate a FET [17]. Unlike graphene,
monolayer MoS2 is a direct-bandgap semiconductor with a carrier mobility
of ≈200 cm2 V−1 s−1, improvable up to 500 cm2 V−1 s−1 [18], a value which
is not unreasonable for applications but remains orders of magnitude lower
than that of graphene [19]. h-BN is another important type of 2D material
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Figure 1.2: Band structures obtained by density functional theory for one,
two and three layers of phosphorene, and for bulk black phosphorus. Figure
taken from Ref. [21].

[20]. It has a large band-gap of around 6 eV (Fig. 1.1(b)), which makes it
an excellent dielectric, and can be incorporated into various heterostructures
for the electrostatic gating of other 2D materials, as 'lattice matching' is not
necessary in these van der Waals heterostructures. Di�erent from Graphene,
TMDCs and h-BN, the recently rediscovered BP (Fig. 1.1(d)) exhibits a
direct bandgap of around 0.3 eV in its bulk form which increases up to 2 eV
in its monolayer form. Thus the entire community working on atomic layer
transport continues to search for a 2D material which is semiconducting,
preferably with a direct band gap, has high carrier mobility and has the
potential to form excellent contacts with known electrode materials.

1.2 Phosphorene

In the family of 2D materials, phosphorene, a monolayer of black phosphorus
(BP), with puckered structure has recently attracted considerable attention
because of the unique physical properties associated with its anisotropic band
structure [21, 22, 23, 24, 25]. BP is the most thermodynamically stable phase
of phosphorus at ambient temperature and pressure [26, 27]. BP was discov-
ered by P. W. Bridgman in 1914 in an attempt to convert white phosphorus
to red phosphorus using high hydrostatic pressure [28]. This was achieved
using a 200oC oil bath and 1.2 GPa of pressure. Bridgman found that BP
was more dense than either white or red phosphorus, and also the most sta-
ble allotrope of the three in air. BP consists of puckered hexagonal layers
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Figure 1.3: Crystal structure and band structure of BP. (a) Side view of
the BP crystal lattice. The interlayer spacing is 0.53nm. (b) Top view of
the lattice of single-layer BP. (c) 3D bulk Brillouin zone (top) and (d) cor-
responding 2D surface Brillouin zone (bottom) of BP. The high-symmetry
points are marked by red circles. The bond angles are shown. The cor-
responding x, y, and z directions are indicated in both A and B. x and y
correspond to the armchair and zigzag directions of BP, respectively. Figure
taken from Ref. [22].

that coupled through weakly van der Waals interlayer interactions [29, 30].
Such as graphene and h − BN , monolayer and few-layer of BP can be ex-
foliated from its bulk material with great potential for applications in new
2D electronic devices [31, 32]. BP is a layered material in which each layer
forms a puckered surface due to sp3 hybridization. In its bulk crystalline
form, BP is a semiconductor with a direct band gap of 0.3 eV which reaches
up to 2 eV in the monolayer structure (see Fig. 1.2) [33, 9]. Phosphorene
has a direct energy gap [33] and high carrier mobility [34, 35] which has re-
cently attracted signi�cant attention as a new 2D semiconductor material for
electronic and optoelectronic applications [35, 36, 37, 38, 23]. BP is a single-
elemental layered crystalline material consisting of only phosphorus atoms.
Unlike in group IV elemental layered materials, such as graphene, silicene,
or germanene, each phosphorus atom has �ve outer shell electrons. BP has
three crystalline structures: orthorhombic, simple cubic, and rhombohedral.
The single-layer BP includes two atomic layers and two kinds of P�P bonds.
The shorter bond length of 0.2224 nm connects the nearest P atoms in the
same plane, and the longer bond length of 0.2244 nm connects P atoms be-
tween the top and bottom of a single layer. A top view of BP along the z
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Figure 1.4: Images and characterization of exfoliated phosphorene. (a)
Microscope image of 2L phosphorene. (b) AFM image of 2L phosphorene,
with region indicated in the dashed line box in (a). (c) Raman spectrum of
2L phosphorene. (d) Schematic plot of phosphorene layer structure. Figure
taken from Ref. [48].

direction shows a hexagonal structure with bond angles of 96.3° and 102.1°
(See Fig. 1.3) [22].

A special feature of phosphorene is the high in-plane anisotropy of its
energy band structure. This anisotropy comes from the layered puckered-
honeycomb structure of phosphorene resulting from sp3 hybridization of phos-
phorene. Motivated by this peculiar property, several theoretical and exper-
imental studies investigated di�erent anisotropic properties of phosphorene
[21, 39, 40, 41]. Recently, many-body aspects of phosphorene have been
also addressed through the study of collective excitation modes in a doped
monolayer and in coupled phosphorene bilayers [42, 43, 44, 45, 46, 47].
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Figure 1.5: Real part of optical conductivities Re(σxx) and Re(σyy) for 10-
nm-thick intrinsic BP, i.e., Fermi level is located at midgap. Figure taken
from Ref. [50].

1.2.1 Optical properties of phosphorene

Characterization of the optical properties of phosphorene, including Raman
scattering and photoluminescence (PL) spectroscopy, is essential to further
understand its electronic band structure, crystalline orientation, and highly
anisotropic exciton dynamics. The highly anisotropic nature of phosphorene
has been demonstrated through Raman and polarization photoluminescence
measurements [49, 48]. It was shown that, phosphorene is a two-dimensional
semiconductor with layers-dependent band gap in the near-infrared range
[48]. Few-layer phosphorene �akes (Fig. 1.4) were fabricated using mechan-
ical exfoliation techniques onto a Si/SiO2 chip substrate, similar to that for
graphene and MoS2 [48]. The �akes were �rst identi�ed by optical contrast in
a microscope. Regions with di�erent colors correspond to phosphorene �akes
with di�erent thicknesses. Fig. 1.4(a) displays the optical microscope image
of a typical thin phosphorene sample on a Si/SiO2 substrate. The layer num-
ber identi�cation was con�rmed by atomic force microscopy (AFM) imaging
of the same sample (Fig. 1.4(b)). Thus polarized Raman spectroscopy pro-
vides a non-destructive, accurate method to determine the crystalline orien-
tation of phosphorene. As it was mentioned, in order to prevent the few layer
phosphorene from reacting with the moisture or other possible reactants from
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the environment, the samples were put into a microscope-compatible cham-
ber with a slow �ow of nitrogen gas. The measured Raman peaks (Fig. 1.4
(c)), at 359, 437, and 466 cm−1 are attributed to the A1

g, B2g, and A2
g phonon

modes in the crystalline few-layer phosphorene �akes, which matched well
with observations in bulk BP. The measured PL spectra (Fig. 1.4 (a)) in
few-layer phosphorus were highly dependent on the number of layers (two to
�ve layers). Strong PL peaks at 961, 1268, 1413, and 1558 nm were observed
in two-, three-, four-, and �ve-layered phosphorene, respectively, which cor-
respond to energy peaks of 1.29, 0.98, 0.88, and 0.80 eV, respectively. The
measured PL peaks are attributed to the nature of excitons, which represent
lower bounds on the fundamental band gap values in few-layer phosphorene,
respectively.

Physical quantities observed in optical experiments can often be expressed
in terms of the optical conductivity. It was shown that the optical conductiv-
ity, similarly the absorption spectra, of multilayer BP vary sensitively with
thickness, doping, and light polarization, particularly for frequencies in the
range from 2500−5000 cm−1, which resides in the technologically relevant
mid- to near-infrared spectrum [50]. Hence, multilayer BP might o�er at-
tractive alternatives in terms of tunability, �exibility, and cost, to narrow-gap
compound semiconductors for infrared-optoelectronics. Fig. 1.5 presents the
calculated real part of optical conductivities of an undoped 10-nm BP thin
�lm. Results are normalized with respect to σ0 = e2/4~, the well-known
universal conductivity of graphene [51]. The large asymmetry between σxx
and σyy is immediately apparent.

1.2.2 Mechanical properties of phosphorene

Besides the electrical and optical properties, the mechanical attributes of
two dimensional materials (2DMs) are of great importance as well [52, 53].
The mechanical behavior of 2D materials reveal a wealth of physics and pro-
vide valuable insights into the lattice-electron interactions in low dimensional
systems. These properties have been investigated for phosphorene using �rst-
principles calculations [54]. As a result of its puckered structure, both the
Young's modulus and strain were found to be highly anisotropic and non-
linear [54, 55, 38]. The suspended strips aligned with armchair and zigzag
directions allow ones to carry out systematic measurements of the anisotropic
Young's modulus of few-layer BP. The average Young's moduli in armchair
and zigzag directions, Earm and Ezig, were calculated using the AFM bending
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Figure 1.6: Young's modulus measurements. (a) Schematic diagram of
the AFM bending measurement carried out on the suspended BP strip. (b)
Young's modulus in the zigzag and the armchair directions of 4 pairs of
suspended BP strips. Figure taken from Ref. [56].

method (see Fig. 1.6). It has been shown that on average Ezig is about 2
times larger than Earm (Ezig = 58.6 ± 11.7 GPa, Earm = 27.2 ± 4.1 GPa)
[56].

Phosphorene has also demonstrated superior mechanical �exibility and
can withstand a surface tension and tensile strain up to 10 N/m and 30%,
respectively which opens doors for applications in �exible displays [55]. It
was shown that a moderate −2% strain in the zigzag direction can trigger
the direct-to-indirect band gap transition when axial strain is applied. In
Fig. 1.7(a), �ve strain zones were identi�ed based on their distinct band
structure. Zone I is for a direct band gap within the strain range −12% to
−10.2%, in which the CBM is represented by state C and the VBM is given
by state F. Zone II corresponds to an indirect band gap from −10.2% to
−2%, where the VBM is state E. Zone III is a direct gap at Γ from −2%
to +8%. Zone IV is an indirect gap from +8% to +11.3%, where the CBM
is at k = (0, 0.3, 0). Zone V shows a direct band gap with both the CBM
and VBM at k = (0, 0.3, 0). The critical strains of −10.2%, −2%, +8%,
and +11.3% are the zone boundaries for transition from direct to indirect
band gap and vis versa. Fig. 1.7(b) presents the band gap as a function
of strain applied in the armchair direction. The drop of the gap value at
+12% results from the fact that the CBM is replaced by the CB at X (state
G). The Poisson's ratio is also a fundamental mechanical property that re-
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Figure 1.7: The band gap of phosphorene as a function of strain applied (a)
in the zigzag and (b) in the armchair directions, respectively. Figure taken
from Ref. [55].

lates the resulting lateral strain to applied axial strain. Although this value
can theoretically be negative, it is positive for nearly all materials, though
negative values have been observed in so-called auxetic structures. How-
ever, nearly all auxetic materials are bulk materials whose microstructure
has been speci�cally engineered to generate a negative Poisson ratio. The
existence of a negative Poisson ratio in phosphorene has been shown by using
�rst-principles calculations [57]. In contrast to engineered bulk auxetics, this
behavior is intrinsic for phosphorene, and originates from its puckered struc-
ture. This phenomena should be intrinsic to other puckered two-dimensional
nanomaterials because of the fact that it functions as a nanoscale re-entrant
structure, which has previously been exploited in bulk materials to induce a
negative Poisson ratio.

1.3 Organization of the thesis

The thesis is organized as follows: In chapter 2, the electronic properties
of phosphorene are brie�y reviewed. In this chapter the necessary mathe-
matical concepts that will be used throughout the thesis are introduced, the
peculiar electronic properties of phosphorene are mentioned. As an example
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of an electronic phosphorene peculiarity, the anisotropic plasmon modes of a
phosphorene are elaborated upon.

In chapter 3, we investigate the e�ect of band anisotropy on the Coulomb
drag resistivity in a double-layer electron system, consisting of two individual
isolated layers which are coupled via the Coulomb interaction. We start from
the expression for the drag resistivity based upon the semiclassical Boltzmann
transport equation in the relaxation time approximation, and develop a gen-
eral formalism, which includes the e�ect of anisotropic energy dispersion and
rotationally misaligned 2D layers. As an example we apply this formalism
to calculate Coulomb drag resistivity in a double-layer phosphorene system.
Our results show a strong drag resistivity dependence on the band anisotropy.

In chapter 4, we calculate the optical conductivity of an anisotropic two-
dimensional system with Rashba spin-�ip excitation within the Kubo formal-
ism. We show that the anisotropic Rashba e�ect caused by an external �eld
changes signi�cantly the magnitude of the spin splitting. Furthermore, we
obtain an analytical expression for the longitudinal optical conductivity asso-
ciated with inter-band transitions as a function of the frequency for arbitrary
polarization angle.

In chapter 5, we model a system of phosphorene on polar insulator sub-
strates. We go beyond the assumption of independent electrons and indeed
SO phonon modes and theoretically study the coupled plasmon-SO phonon
interaction in monolayer and double-layer phosphorene using perturbation
theory. We �nd that in the case of phosphorene in contrast to graphene and
TMDCs, the mode coupling e�ect not only modi�es the plasma dispersion
relation but also enables us to tune the hybrid plasmon-SO phonon modes
in the two crystallographic directions.

In chapter 6, the e�ects of an applied in-plane uniaxial strain on the plas-
mon dispersions of monolayer, bilayer and double-layer phosphorene struc-
tures in the long-wavelength limit within the linear elasticity theory are stud-
ied. In the low energy limit, these e�ects can be modeled through the change
in the curvature of the anisotropic energy band along the armchair and zigzag
directions. We derive analytical relations for the plasmon modes under uni-
axial strain and show that the direction of the applied strain is important.

In chapter 7, we study excitonic super�uidity at zero temperature in
the electron-hole double layer phosphorene system by using an anisotropic
e�ective mass in the free-electron model. Highly anisotropic super�uidity is
predicted where the magnitude of the gap function is not only momentum
dependent, but also depends on the direction of the wavevector k.
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We study the possibility of an inhomogeneous charge density wave phase
in a system of two electron and hole phosphorene monolayers separated by
h-BN insulating layers in chapter 8. Our results show that the negative
compressibility in phosphorene enables the formation of a charge density
wave through the application of an uniform force �eld.
Finally, we conclude the thesis in chapter 9 and present an outlook for future
studies.
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Chapter 2
Electronic properties of phosphorene

How do the electronic properties
of black phosphorene behave?

In this chapter the electronic properties of phosphorene are reviewed.
First the energy band spectrum of the charge carriers in phosphorene is de-
rived from k.p theory. It is shown that the conduction and valence bands have
peculiar energy band near the Γ point for the Brillouin zone. Around this
point all the interesting physics happens because here the CBM and VBM are
situated and the carriers have an anisotropic dispersion. This chapter brie�y
reviews the theoretical concepts that are common to phosphorene electronics
and here we mainly introduce the readers that are unfamiliar with phospho-
rene physics. Secondly, it also determines the notation for the succeeding
chapters.

2.1 Low-energy Hamiltonian of BP

BP has an orthorhombic crystal structure consisting of puckered layers. The
lattice constant in the out-of-plane direction is about 10.7 Å, and the ef-
fective layer-to-layer distance is half of this value [58]. In monolayer BP,
translational symmetry in the z direction is broken, and its band structure
has a direct energy gap at the Γ point instead of the Z point in the bulk
case. Having obtained the band structure using ab initio calculations, a sim-

13
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pli�ed model was constructed that describes the bands around the Γ point.
Based on k.p theory and symmetry arguments, the in-plane electron dis-
persion around the Γ point can be described by the following low-energy
Hamiltonian. In this case, the perturbing Hamiltonian is given by [59]

H1 =
~(kxp̂x + kyp̂y)

m0

, (2.1)

where m0 is the free electron mass. The true eigenstates of the system at
the Γ point are either even or odd with respect to σh re�ection (a symbol
for horizontal mirror planes) and can written as a sum over irreducible rep-
resentations of the C2h point group

|ψei 〉 = |Agi 〉+ |Bu
i 〉 , |ψ0

i 〉 = |Aui 〉+ |Bg
i 〉 , (2.2)

where Au/g and Bu/g are the irreducible representations. Using the symme-
try argument, we show how the di�erent bands mix through the perturbing
Hamiltonian by rewriting the matrix element 〈ψsi | p̂x/y |ψs

′
j 〉 as

〈ψsi |σ
†
hσhp̂x/yσ

†
hσh|ψ

s′

j 〉 = ±ss′ 〈ψsi | p̂x/y |ψs
′

j 〉 , (2.3)

where s, s′ = ± are the σh symmetry indices. This result tells us that the
matrix element for px(py) is nonzero only if the states have the same (di�er-
ent) σh symmetry. According to the �rst principles calculations, the valence
and the conduction bands are even in σh. Thus, to the lowest order, the
e�ective low-energy Hamiltonian is

Ĥ0 =

(
Ec γ1kx
γ∗1kx Ev

)
, (2.4)

where γ1 = ~ 〈ψc| p̂x/y |ψv〉 /m0. Note that without including the rest of the
bands, Eq. (2.4) describes a 1D system. The lack of y-dependence agrees
with the weak dispersion in the y-direction close to the Γ point seen in the
numerical results. The rest of theHeff is obtained by including the remaining
bands and using the Löwdin partitioning [60]. The leading order correction
to the e�ective Hamiltonian is given by

(Hcorr)mm′ =
∑
l

(H1)lm(H1)lm′

2

[ 1

Em − El
+

1

E ′m − El
]
, (2.5)
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Figure 2.1: Fitting of the Heff results to the ab initio band structure.
Figure taken from Ref. [59].

where the summation goes over the remaining bands. The diagonal elements
of the correction are

(Hcorr)mm′ =
∑
l

(γxml)
2(kx)

2 + (γyml)
2(ky)

2

Em − El
= ηmk

2
x + νmk

2
y. (2.6)

This result captures the mass di�erence between the conduction and the
valence bands as well as the x̂ and ŷ directions where x and y stand for
the armchair and zigzag directions, respectively. Finally, the o�-diagonal
elements are

(Hcorr)cv = αk2
x + βk2

y,

α =
∑

l,even,σh

γxclγ
x
vl

2

[ 1

Ec − El
+

1

Ev − El
]
,

β =
∑

l,odd,σh

γyclγ
y
vl

2

[ 1

Ec − El
+

1

Ev − El
]
.

(2.7)

Then, the corresponding Hamiltonian of BP near the Γ point can be
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expressed as

Ĥ0 =

(
Ec + ηck

2
x + αck

2
y γkx + βk2

y

γkx + βk2
y Ev − ηvk2

x − αvk2
y

)
, (2.8)

Ec (Ev) is the energy of conduction (valence) band edge, γ and β describes
the e�ective coupling between the conduction and valence bands. ηc,v and
αc,v are related to the known anisotropic e�ective masses of phosphorene [59].

mx
e =

~2

2(ηc + γ2/2∆)
,

mx
h =

~2

2(ηv − γ2/2∆)
,

my
e(h) =

~2

2αc(v)

,

(2.9)

where ∆ is the energy band gap. One can then use these masses to obtain
an approximation for the spectrum [44, 61]

ξi(k) =
~2

2
(
k2
x

m
e(h)
x

+
k2
y

m
e(h)
y

)− µe(h), (2.10)

where me/h
x and me/h

y are the electron/hole e�ective masses along zigzag and
armchair direction in each layer. Close to the Γ point, only the leading
coupling terms have been retained. A �t for the conduction and valence
bands is shown in Fig. 2.1. For this �t, γ1= 6.85 w/π eVm, ηv= -3 w2/π2

eVm2, αc= 3w2/π2 eVm2, and β = 7 w2/π2 eVm2, where w= 2.23×10−10m
and π/w is the BZ width in the x direction. The rest of the parameters are
set to zero. Note that this �t gives a direct band gap.

2.2 Anisotropic polarization function

A simple framework to include electron-electron interactions is called the
random phase approximation (RPA) that was originally introduced by Gell-
Mann and Bruckner and Bohm and Pines [62] in two seemingly di�erent
ways. For an electron gas system, the non-interacting temperature dependent
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polarization function can be obtained from the following equation [62]

Πi(q, ω) = −gs
ν

∑
k

f 0(Ei
k)− f 0(Ei

k+q)

Ei
k − Ei

k+q + ~ω + iη
. (2.11)

Here f 0(Ei
q) is the Fermi distribution function in layer i at energy E cor-

responding to the wave vector q, gs = 2 is spin degeneracy and η is the
broadening parameter, which accounts for disorder in the system. The
temperature-dependent dynamic polarization function for intra-band tran-
sition in an anisotropic 2D material can be calculated by making use of the
following anisotropic parabolic energy dispersion relation

Ei
k =

~2

2
(
k2
x

mx

+
k2
y

my

)− µi, (2.12)

in Eq.(2.11) for the polarization function

Πi(q, ω)

g2d

= −
∫
dK

Φi(K,T )

Q

[
sgn(<(Z−))

1√
Z2
− −K2

−sgn(<(Z+))
1√

Z2
+ −K2

]
.

(2.13)
In the above symmetric form of temperature-dependent anisotropic polariza-

tion function, we de�ne Q =

√
md/M̂(q/kF ), K =

√
md/M̂(k/kF ) where M̂

is the mass tensor with diagonal element mx and my along x and y direction,
and md =

√
mxmy is the 2D density of state mass. Moreover, g2d = md/π~2

and Z± = ((~ω + iη)/~QνF ) ± (Q/2) with νF = ~kF/md and Φi(K,T ) is
given by

Φi(K,T ) =
K

1 + exp[(K2Ei
F − µi)/kBT ]

, (2.14)

where µi is the chemical potential of layer i, which is determined by the
particle number conservation condition [63]

µi + kBT ln[1 + exp(−µi/kBT )] = Ei
F . (2.15)

Here, we consider q = q(cos θ, sin θ) , in accordance to the notation in Ref.
[46], to introduce rotational parameter for the layers. Rotational angle, τi, is
de�ned as the angle between x-axis in the laboratory frame and x direction
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Figure 2.2: Static dielectric function in the RPA for monolayer phosphorene
along the armchair and zigzag direction for (a) n = 1 × 1013cm−2 and (b)
n = 0.5× 1013cm−2 for T=0K.

of the ith layer. So, we can write Q = q
√
mdRi/kF in which the orientation

factor, Ri , is expressed as

Ri =

(
cos2(θ − τi)

mx

+
sin2(θ − τi)

my

)
. (2.16)

In case of phosphorene, we have mx ≈ 0.15m0 and my ≈ 0.7m0 [64].

2.3 Screening potential

The dynamically screened inter-layer potential can be obtained by solving
the corresponding Dyson equation [65]

Uij(q, ω) =
Vij(q)

det|εij(q, ω)|
, (2.17)

where Vij(q) = ν(q) exp(−qd(1 − δij)) is the unscreened 2D Coulomb inter-
action with d being the layer spacing. ν(q) = 2πe2/qκ, with κ being the
average dielectric constant. Finally εij(q, ω) is the dynamic dielectric matrix
of the system. For systems with high electron density it is reasonable to
employ the RPA to calculate εij(q, ω) [66]

εij(q, ω) = δij + Vij(q)Πi(q, ω). (2.18)
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At low electron densities, the short-range local �eld e�ects are not negligible
and must be included in the dielectric matrix by replacing (1−Gij(q))Vij(q)
for, Vij(q) where Gij(q) denotes the static intra- (i = j ) and inter-layer
(i 6= j ) elements of LFC matrix, respectively. Here we incorporate only the
intra-layer components of the local �eld correction (LFC) factor because of
their stronger e�ect on the drag resistivity [67]

Gii(q) =
q

2
√
q2 + k2

F

, (2.19)

where G(q) and kF =
√

2πn is the Hubbard LFC factor and the Fermi wave
vector, respectively, with n being the electron density.

Fig. 2.2 shows the static dielectric function of monolayer BP along zigzag
q||y and armchair q||x direction of phosphorene for di�erent densities. Π(q)
has a kink at q = 2|kF .q̂|. One can see how the kink migrates with changing
doping. With increasing temperature and disorder, the kink is smoothed
out as illustrated in Fig. 2.3. The otherwise isotropic screening at small
momenta now becomes anisotropic.

2.4 Plasmon modes in phosphorene

There is one particular type of excitation which is immensely important,
namely the plasmon excitation. This excitation can be measured by, for
example, inelastic light scattering (Raman scattering), where the change of
momentum and energy of an incoming photon is measured. Plasmons are
collective density oscillations that arise due to the electron-electron interac-
tion. They exist in many metals and semiconductors. While the electron-hole
pair excitations are the only possible source of dissipation of plasmons in the
non-interacting electron gas, this is certainly not true for the interacting case
which is more complicated.
In order to �nd plasmons in a quantum mechanical framework, one needs to
include electron-electron interactions. If one calculates the density-density
response function including interactions, plasmons will appear as its poles.
The plasma frequency is an important parameter of the interacting electron
gas setting the energy scale for several processes, e.g. it marks the limit
below which metals re�ect incoming electromagnetic radiation, and above
which they become transparent. A very direct manifestation of the plasmon
frequency is the existence of the collective charge density oscillations, the
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Figure 2.3: Dynamic dielectric function in the RPA for monolayer phospho-
rene along the armchair and zigzag direction for two broadening parameterη.

plasma oscillations. From a classical point of view, one can think of plas-
mons as the response of an interacting electron liquid to an external electric
�eld that causes a disturbance in the density. These oscillations are obtained
as follows. Consider the relation φext(q, ω) = ε(q, ω)φtot(q, ω). Note that
ε(q, ω) = 0 in fact allows for a situation where the total potential varies in
space and time in the absence of any external potential driving these varia-
tions.

The plasmons have in�nite lifetime for small q. However, at some point
the dispersion curve crosses into the dissipative =Π(q, ω) = 0 area, and there
the plasmon acquires a �nite lifetime. In other words for high q-values the
plasmonic excitations are not exact eigenmodes of the system, and they are
damped out as a function of time. In the literature this damping mechanism
is denoted Landau damping. This occur when the plasmon enters the SP
phase space, whose boundaries are given by ~ω±pl = E(±kF + q)− E(kF ).
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2.5 The polarization function in the long-wavelength

limit

The dynamic polarization function given by Eq. (2.13) has the following
expression in the long-wavelength limit at zero-temperature:

Π(ω, q, θ)

g2d

=
1

2

[
− 2 +

√
(1− 2ω

kFνFQ2
)2 − 4

Q2
+

√
(1 +

2ω

kFνFQ2
)2 − 4

Q2

]
,

(2.20)
One can rewrite Eq. (2.20) as:

Π(ω, q, θ)

g2d

=
1

2

[
−2+(1− 2ω

kFνFQ2
)
(
1− 2/Q2

(1− 2ω
kF νFQ2 )2

)
(1+

2ω

kFνFQ2
)
(
1− 2/Q2

(1 + 2ω
kF νFQ2 )2

)]
,

(2.21)
from which we �nd the long wavelength approximation

Π(ω, q → 0, θ)

g2d

≈ −2

Q2

(
1

1− 4ω2

(kF νFQ2)2

)
. (2.22)

Finally, by ignoring unity in the denominator and making use of Qi(θ) =
q
√
mdRi(θ)/kF and EF = ~2k2

F/2md, one obtains Eq. (3.5). The polariza-
tion function in the limit of low energy and long-wavelength can be written
as:

Π(q → 0, ω) =
Ri(θ)nq

2

ω2
. (2.23)

So, we can derive the plasmon dispersion for monolayer BP in the long
wave length limit as

ε(q → 0, ω) = 1− 2πe2

qκ

Ri(θ)nq
2

ω2
= 0

ωpl(q) =
2πne2Ri(θ)q

κ
,

(2.24)

which results into

ωpl(q) =
2πne2Ri(θ)q

κ
, (2.25)

where κ is the dielectric constant.
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As it is well known, electronic collective modes of a double-layer system
are obtained from zeros of the dielectric function determinant, Eq.(2.18). In
the presence of intra-band single particle excitations, there are two plasmon
modes. In order to determine the dispersion relation of the coupled modes,
we need to calculate the zeros of determinant of the total dielectric matrix
(Eq. (5.6)) in the long-wavelength limit

ε(ω, q → 0, θ) = 1− (R1(θ) +R2(θ))Π′(q → 0, ω)ν(q)

+ ν(q)Π′(q → 0, ω))2R1(θ)R2(θ)(1− e−2qd)
(2.26)

where Π′(ω, q, θ) = Πi(ω, q, θ)/Ri(θ).
In the long-wave length limit, we can write (1−e−2qd) u 2qd. As we have

mentioned, for getting the plasmonic branches we should have the zero of
dielectric function as

1−
(
R1(θ) +R2(θ)

)
Π′(q → 0, ω)ν(q) + ν(q)Π′(q → 0, ω))2R1(θ)R2(θ)2qd = 0

(2.27)
By doing some algebra, we get the following relation:

ν(q)2(2qd)R1(θ)R2(θ)[Π′(ω, q, θ)− Π+(q → 0, θ)][Π′(ω, q → 0, θ)− Π−(q → 0, θ)] = 0
(2.28)

where Π+ and Π− de�ned as

Π+(ω, q, θ) =
R1(θ) +R2(θ)

(R1(θ)R2(θ)ν(q)2qd
(2.29)

and

Π−(ω, q, θ) =
1

(R1(θ) +R2(θ))ν(q)
(2.30)

The dispersion relation of the couple modes is given by Π′(ω, q → 0, θ) =
Π±(ω, q → 0, θ). In the leading-q approximation (long-wavelength limit),
two plasmonic branches are obtained through the following relations [46]:

ωac(q, θ) = 2q

√
nπe2d12

ε∞

R1(θ)R2(θ)

R1(θ) +R2(θ)
. (2.31)



2.5. THE POLARIZATION FUNCTION IN THE LONG-WAVELENGTH LIMIT23

Figure 2.4: (Color online) Loss function, |=(1/ det ε(q, ω, T )| , for two crys-
tallographic directions (a) θ = 0 and (b) θ = π/2 at T=100 K with d =5 nm
, n = 3× 1012cm−2 and η =1 meV.

ωop(q, θ) =

√
2nπe2q

ε∞

(
R1(θ) +R2(θ)

)
. (2.32)

Finally, one obtains the so-called acoustic and optical modes, which show
linear ωac(q) ∼

√
(R1R2/(R1 +R2)dq and square-root ωop ∼

√
(R1 +R2)q

behavior at small wave vectors, respectively, and dependence on the orienta-
tion factors R1 and R2 (see Eq.(2.16)) for phosphorene [46].

To make the above discussion clearer, we show the loss function of a
system comprising two parallel monolayer phosphorene separated by d =
5 nm at T= 100 K for two main crystallographic directions: θ = 0 and
θ = π/2, in Fig.2.4, respectively. One may notice that the acoustic plasmon
mode calculated here are weaker than the optical one. This can be explained
by the fact that the coherence of the acoustic mode is signi�cantly a�ected by
thermal �uctuations and disorder, η, broadening because the ω-q spectrum of
this mode is very close to the single particle excitation region. Our numerical
results for the loss function at small q is in good agreement with the loss
function for bilayer black phosphorus in Ref. [45] where the two modes have
been obtained by using a general tight-binding model. Additionally, it can be
recognized that the lower-energy acoustic plasmon and higher-energy optical
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plasmon modes follow a di�erent asymptotic behavior at small wave vectors
in both panels of Fig. 2.4. Due to the anisotropic band structure, the long-
lived plasmon modes disperse di�erently in such a way that the larger the
e�ective mass along y leads to smaller resonance frequencies [46, 44]. As we
know at low temperature, the carriers do not have enough energy to be exited
above the Fermi surface but on the contrary at T near the Fermi temperature
there is su�cient energy to excite carriers thermally.

As we mentioned earlier, the RPA is reliable for systems with high electron
densities. The density parameter rs =

√
2/(kFa

∗
B) with e�ective Bohr radius

a∗B = κ/(e2md), which is de�ned as the average distance between electrons
in a non-interacting 2D electron gas, gives a measure for reliability of the
RPA. In Fig. 2.4, we consider the same electron density in the both layers,
n1 = n2 = 3 × 1012cm−2, the substrate and spacer to be low with κ ≈ 12
that leads to an rs ≈ 1.7 for which RPA predicts the qualitatively well
electronic behavior. However, Hubbard LFC can improve the result of the
calculations by including the exchange hole around the interacting electrons.
As mentioned, the acoustic mode depends the �nite separation between the
layers, d. Due to the anisotropic band structure and electron-hole continuum
of the system, long lived plasmons can disperse di�erently in phosphorene.
Furthermore, di�erent parameters are e�ective on the behavior of anisotropic
double layer system such as the relative rotation angle, the relative chemical
potential, as well as the separation between the layers.

2.6 Experimental observation of plasmons

From an experimental viewpoint, momentum resolved electron energy loss
spectroscopy (EELS) [68] directly probes the loss function of a material,
which in turn is simply the inverse of the imaginary part of the dynamical
interacting dielectric constant of a material: ELoss(q, ω) = −

[
1/=ε(q, ω)

]
. It

has been used extensively in a variety of materials such as graphene [69, 70]
TMDs [71], and bulk BP [72], in order to explore the single particle and collec-
tive excitations such as excitons and plasmons. The energy and momentum
resolved optical response of BP in its bulk form has been investigated by em-
ploying EELS in transmission [72]. Along the armchair direction of the puck-
ered layers, a highly dispersive mode was found that is strongly suppressed
in the zig-zag (zz) direction. This mode emerges out of the single-particle
continuum for �nite values of the momentum and is therefore interpreted as
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Figure 2.5: (a) EELS intensity along the two high-symmetry directions
within the puckered layers of BP. (b) Low-energy polarization-map showing
the smooth angular dependence of the EELS intensity within the puckered
layers of BP. (c) Calculated single-particle band structure along ΓX. Figure
taken from Ref. 2.5.

an exciton. Consequently, the behavior of the measured EELS intensity is
shown in Fig. 2.5 where we see an angular dependent reduction of spectral
weight when changing the polarization from ΓX (ar) to ΓY (zz)-direction.
From Fig. 2.5, it is clear that this translates directly to a strongly anisotropic
EELS response. A low-energy mode was found along the ΓX that resides at
about E = 0.6 eV . When changing the polarization direction from ΓX to
ΓY within the puckered layers, this mode gradually shifts to lower energy
and looses strength as can be seen from Fig. 2.5(b).
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Chapter 3
Coulomb drag

� How the drag e�ect in BP is
a�ected by the anisotropy band
structure?�

In this chapter 1, we theoretically study the Coulomb drag resistivity in a
double-layer electron system with highly anisotropic parabolic band structure
using Boltzmann transport theory. As an example, we consider a double-layer
phosphorene on which we apply our formalism. This approach, in principle,
can be used for other double-layered systems with paraboloidal band struc-
tures. Our calculations show that the rotation of one layer with respect to
another layer is able to control the drag resistivity in such systems. As a
result of the rotation, the o�-diagonal elements of the drag resistivity ten-
sor have non-zero values at any temperature. In addition, we show that
the anisotropic drag resistivity is very sensitive to the direction of the mo-
mentum transfer between the two layers due to highly anisotropic inter-layer
electron-electron interaction. Also the plasmon modes depend on the rel-
ative direction of the two layers and temperature. In particular, the drag
anisotropy ratio, ρyy/ρxx, can reach up to ≈ 3 by changing the tempera-
ture. Furthermore, our calculations suggest that including the local �eld
correction in the dielectric function changes the results signi�cantly. Finally,

1The results of this chapter were published in Journal of Physics: Condensed Matter,
28 (28), 285301 [47]
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Figure 3.1: (a) Side view of a double-layer phosphorene system with the
separation of d in the drag setup. (b) Top view of phosphorene.

we examine the dependence of drag resistivity and its anisotropy ratio on
various parameters like inter-layer separation, electron density, short-range
interaction and insulating substrate/spacer.

3.1 Introduction

Double-layered 2D structures consisting of two parallel electron or hole sys-
tems which are kept in close vicinity demand special attention due to many-
body e�ects [73, 74, 75]. The inter-layer Coulomb interaction plays a sig-
ni�cant role in these correlated systems. In Coulomb drag phenomenon,
momentum can be transferred from interacting electrons in one layer to elec-
trons in the adjacent layer [76, 77, 78]. The momentum transfer takes place
through inter-layer Coulomb interaction, but does not involve any carrier ex-
changes due to the inserting materials between the two phosphorene layers.
This phenomenon has been previously studied in di�erent nanostructures
such as double quantum wells (DQW) [79, 80, 81, 82, 83].

Van der Waals bonding of 2D heterostructures makes it possible to spa-
tially separate two layers of graphene (or any other 2D materials) down to
a few nano-meter, by inserting a few atomic layers of a 2D insulator, for in-
stance h-BN to isolate the layers from one another. As shown by Gorbachev
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[1], a double-layer graphene system has a strong Coulomb drag resistivity
with respect to GaAlAs heterostructures [84, 85]. Likewise, phosphorene is a
2D material, however, with highly anisotropic energy dispersion in contrast
to graphene and other 2D materials. Therefore, it is particularly worthwhile
to examine the e�ect of anisotropy on the Coulomb drag [86].

In this chapter we investigate the e�ect of band anisotropy on the Coulomb
drag resistivity in a double-layer electron system, consisting of two individual
isolated layers which are coupled via Coulomb interaction. We start from the
expression for the drag resistivity based upon the semi-classical Boltzmann
transport equation within the relaxation time approximation, and develop a
general formalism, which includes the e�ect of anisotropic energy dispersion
and rotationally misalignment. As an example we apply this formalism to cal-
culate the Coulomb drag resistivity in a double-layer phosphorene system, see
Fig. 3.1. Numerical results show a strong dependence of the drag resistivity
on the band anisotropy. It indicates that the drag resistivity along the big-
ger mass, i.e., my, has a larger value. Furthermore, we discuss how the drag
resistivity and its anisotropy ratio depend on the carrier density, inter-layer
separation, rotation of layers and the choice of insulating substrate/spacer.
The drag resistivity is enhanced substantially in the y direction when adding
the Hubbard local �eld correction (LFC) to our formalism. Note that the
LFC includes the short-range exchange e�ect between electrons in the same
the layer.

3.2 Coulomb drag resistivity in 2D anisotropic

systems

3.2.1 Model

We consider a system composed of two parallel spatially separated 2D elec-
tron gases with anisotropic parabolic-like band structures. In this system
the carriers are coupled through Coulomb interaction and there is no tun-
neling between layers so the Fermi energies and chemical potentials can be
considered independently. The inter-layer Coulomb interaction can cause
momentum transfer from the electrons in the drive layer, layer 1, to the car-
riers in the drag layer, layer 2. In doing so it generates a potential di�erence
across the layers. In Fig. 3.1(a) we show a schematic of the drag setup with
phosphorene layers as anisotropic 2D electron gases. Also, a top view of the
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phosphorene monolayer can be seen in Fig. 3.1(b).
The drag (inter-layer) resistivity, ρ, can be de�ned as [87]∑

α=x,y

ραβ21 J1,α = Ξ2,β, (3.1)

where J and Ξ are the current density and electric �eld, respectively. α and
β indexes label x and y components and ραβ21 = ρβα12 . The drag resistivity in
the linear regime has been studied in a variety of theoretical approaches for
(non)parabolic band structures, and particularly graphene by assuming intra-
layer momentum (in)dependent relaxation times [88, 85]. Using di�erent
theoretical approaches such as the memory function formalism [89], Kubo
formula based on the leading-order diagrammatic perturbation theory [90]
and the linear response Boltzmann transport equation, the drag resistivity
matrix can be obtained. We generalize the derivation of the drag resistivity
tensor based on the Boltzmann equation approach to the case of anisotropic
band structure with the assumption of a constant transport time and obtain
(see Appendix ??):

ραβ21 =
~2

2πe2n1n2kBT

∫
d2q

(2π)2
qαqβ ×

∫ ∞
0

dω
|U21(q, ω)|2=Π2(q, ω)=Π1(q, ω)

sinh2(~ω/2kBT )
.

(3.2)
This is the same as the drag resistivity expression given for isotropic parabolic
band structure systems in which qα and qβ are the α and β components
of the transferred wave vector corresponding to layer 1 and layer 2 in the
laboratory frame, respectively. Here U21(q, ω) is the temperature-dependent
dynamically screened inter-layer interaction, Πi(q, ω) and ni being the 2D
non-interacting polarization function and electronic density of ith layer, and
kB is the Boltzman constant. In Sec. 3.2.2, we will rewrite Eq. (3.2) to
make it more convenient to use in a double-layer electron gas system with
anisotropic band structure.

It is worth pointing out that considering a very thin double-layer phos-
phorene system when, at the same time, we assume there is no tunneling
between the two layers, is not actually a problematic consideration because
the space between layers is �lled by a slim dielectric material. Al2O3 and
h-BN have been successfully used as a substrate and spacer to make such
thin heterostructures with no inter-layer tunneling [91, 92]. Throughout this
chapter, we assume that the substrate is a thick layer of the same material
as spacer.
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Figure 3.2: (a) F xx(q, ω, T ) and (b) F yy(q, ω, T ) for two aligned phospho-
rene monolayers sandwiched by Al2O3 layers at T=100 K with d= 5nm,
n = 3× 1012cm−2 and η =1 meV .

3.2.2 Drag e�ect in a double-layer phosphorene

In this section, we �rst derive a formula for the drag resistivity of a 2D
anisotropic double-layer system with parabolic band structure and then solve
it by making use of numerical methods. Eq. (3.2) is the general formula for
the drag resistivity based on the linearized Boltzmann transport equation.
In the case of two coupled anisotropic layers, the o�-diagonal components of
the drag resistivity tensor may have non-zero values as a result of �nite τ ,
unlike the isotropic systems such as double-layer graphene and conventional
2D electron gas. To make the di�erence more explicit, we rewrite Eq.(3.2)
as follows

ραβD =
~2

(2π)3e2n1n2kBT

∫
dq

∫ ∞
0

dωFαβ(q, ω, T ), (3.3)

where ραβD = ραβ21 and Fαβ(q, ω, T ) is de�ned as
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Figure 3.3: The integrand of Eq. (3.4) at q = kF for two aligned monolayers
sandwiched by Al2O3 layers with n = 3 × 1012cm−2, and η =1 meV, d =5
nm, along (a) x and (b) y directions at T=100 K and along y direction at (c)
T= 50 K and (d) T= 10 K. The radial and azimuthal coordinates are ω/ωF
and the angular orientation of q, respectively.
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Fαβ(q, ω, T ) =

∫ 2π

0

dθψαβ(θ, τ1, τ2)
q3

sinh2(~ω/2kBT )
|U12(q, ω, T ; θ, τ1, τ2)|2

×=Π1(q, ω, T ; θ, τ1)=Π2(q, ω, T ; θ, τ2)
(3.4)

with ψαβ given by

ψαβ(θ, τ1, τ2) =


cos(θ − τ1) cos(θ − τ2), α = β = x

sin(θ − τ1) sin(θ − τ2), α = β = y

cos(θ − τ1) sin(θ − τ2), α = x, β = y.

(3.5)

In order to understand how anisotropy a�ects the drag resistivity, it is
worth looking into the integrand of Eq. (3.3), Fαβ(q, ω, T ) in more depth.
In Fig. 3.2, we show Fαβ(q, ω, T ) for a coupled system composed of two
aligned phosphorene monolayers separated by 5 nm at T=100 K. We use the
dimensionless variables q/kF and ω/ωF , where ωF = ~−1EF . Note that the
integrand has signi�cant weight in the 0 < q < kF interval, as is the case
in a conventional 2D electron gas [90] but its values are larger along the y
direction. This is due to the greater e�ective mass of electrons in y direction,
which results in lower energies for the collective modes, and in this manner
enhances the contributions of the plasmons [90, 79].

The angular orientation of q impacts the drag resistivity behavior con-
siderably. We depict the integrand of Eq. (3.4) along x(α = β = x) in Fig.
3.3(a) and along y(α = β = y) in Fig. 3.3(b) in an aligned-layers system. At
intermediate temperature T∼100 K, both modes (acoustic and optical) take
part and the single particle excitation spectrum is su�ciently broadened to
contribute e�ectively. As can be observed in the �gure, the larger magni-
tude of the integrand occurs around θ = 0 and 180◦ along the x direction
and around θ = 90◦ and 270◦ for y direction, respectively. The integrand
of Eq. (3.4) along the y direction plotted in Figs. 3.3(c) and (d) show the
results for two di�erent temperatures: (c) T=50 K and (d) T=10 K. Ac-
cording to this �gure, at T=10 K the drag resistivity is mainly in�uenced
by the acoustic mode which is lower in energy (ω < 0.5ωF ) and the optical
mode contribution starts to appears at 50 K. Here, the radial and azimuthal
coordinates denote ω/ωF and the angular orientation of q, respectively. The
�rst set of calculations of the drag resistivity in a double-layer phosphorene
is presented in Fig. 3.4. Here we show the diagonal and o�-diagonal elements
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Figure 3.4: Anisotropic drag resistivity components, ραβD calculated within
RPA as a function of temperature for two aligned phosphorene monolayers
separated by an Al2O3 layer with n = 3× 1012cm−2 at η =1 meV and d =5
nm. The inset graph shows the anisotropy ratio ρyy/ρxx.

of the drag resistivity tensor calculated within the RPA, versus temperature
for two parallel aligned phosphorene monolayers separated by Al2O3 layers
of thickness d =5 nm. While the diagonal drag resistivity matrix elements
increase in similar manner with temperature, there are signi�cant di�erences
between the values. Drag resistivity along the x direction, ρxx, is smaller
than the drag resistivity along the y direction, ρyy, at any temperatures of
interest with a drag anisotropy ratio (see inset graph), ρyy/ρxx, which ap-
proximately changes from 2 up to about 3. We believe that a higher-energy
resonance along x direction resulting from the smaller e�ective mass, as dis-
cussed before, accounts for this behavior. Moreover, as expected from general
symmetry arguments, the o�-diagonal elements are zero.

In order to understand how rotation of one layer with respect to the
other about the normal direction to the layers (z direction) impacts the be-
havior of the drag resistivity, we present calculations of the diagonal and
o�-diagonal elements of the drag resistivity matrix for a couple of rotational
angles in Fig. 3.5. Here, we set τ1 = 0 and τ2 = τ . It can be seen that
as the angle of rotation increases, both diagonal elements of drag resistivity
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Figure 3.5: Scaled drag resistivity ρDT−2 as a function of temperature for
di�erent angles with n = 3 × 1012cm−2, and η =1 meV, d =5 nm. The
phosphorene layers are sandwiched by Al2O3 layers.

	
Figure 3.6: Scaled drag resistivity calculated within RPA (a) along y di-
rection as a function of temperature and for di�erent values of the distance
between the two layers and (b) along x and y directions as a function of tem-
perature. Here, n = 3× 1012cm−2 and η =1 meV and the system comprising
of two aligned phosphorene monolayers sandwiched by Al2O3.
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Figure 3.7: Scaled drag resistivity, ρDT−2, as a function of temperature for
two aligned phosphorene monolayers sandwiched by Al2O3 and calculated (a)
within RPA for two di�erent electron densities n = 3× 1012cm−2 (solid line)
and n = 1 × 1013cm−2 (dashed line), (b) within RPA and Hubbard LFC at
n = 3× 1012cm−2 and (c) sandwiched by Al2O3 and h-BN calculated within
Hubbard LFC at n = 3× 1012cm−2. Here we set d = 5 nm and η = 1 meV.

decrease considerably. This observation can be rationalized through the fact
that by increasing the angle of rotation, one of the plasmonic branches is
forced into the damped regime. As a result, the contribution of plasmons to
the Coulomb drag phenomenon, which is known to be signi�cant, decreases.
Furthermore, our calculations show that when the layers are rotated with
respect to one another the anisotropic e�ects can create an interesting non-
zero transversal drag resistivity, ρxy, which is absent in isotropic materials at
zero magnetic �eld. This observation can be fully understood by Eq. (3.3-
3.5) in which a misalignment of the laboratory and the layer axes gives rise
to a non-zero value for the o�-diagonal elements. This e�ect, however, may
exist in double-layer structures subjected to a perpendicularly applied mag-
netic �eld [93, 1]. Another interesting geometrical e�ect in a double-layer
phosphorene structure comes from changing the inter-layer distance, which
is presented in Fig. 3.6(a) is a 3D plot showing the variation of ρyyT−2 as
a function of layer spacing and temperature. It can be observed that the
peaks occur at intermediate temperatures where the plasmon contribution
to the drag resistivity is signi�cant, over the whole range of inter-layer dis-
tances. Also the scaled drag resistivity decreases strongly when increasing
the separation between the two layers at all temperatures. One can attribute
this behavior to the inter-layer interaction, which decays exponentially with
increasing distance between the layers, and decreases due to acoustic modes
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Figure 3.8: The anisotropy ratio of drag resistivity, ρyy/ρxx, as a func-
tion of temperature for two aligned phosphorene monolayers sandwiched by
Al2O3 (solid line) and h-BN (dashed line) calculated within Hubbard LFC
at electron density n = 3× 1012cm−2. Here we set d = 5 nm and η = 1 meV.

shifting toward higher energies. Having said that, it is worth pointing out
that the changing inter-layer distance does not signi�cantly change the drag
anisotropy ratio. To trace this behavior, we plot both scaled ρxx and ρyy as
a functions of temperature for two di�erent layer spacings: d = 2 nm and 5
nm in Fig. 3.6(b), which shows that the anisotropy ratio is less dependent
on the inter-layer distance.

The e�ect of electron density on the drag resistivity is also of interest;
hence, we illustrate it in Fig. 3.7(a). As expected for double-layer systems,
for which the electron density increases, the Coulomb drag decreases and the
resistivity peak moves towards higher temperature [79]. Moreover, it is worth
mentioning that the anisotropic e�ect is more pronounced at lower electron
density.

By including the Hubbard zero-temperature LFC, improvements on the
RPA results are studied in Fig. 3.7(b). Here, we employ the intra-layer
local �eld factor, Eq.(2.19), which is responsible for most of the drag re-
sistivity enhancement by the short-range interaction e�ects [94]. Exchange
interaction, which is taken into account by the Hubbard LFC, impacts the
inter-layer interaction through the dielectric function of the system (see Eq.
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(2.17)). Our calculations show that including the LFC factor enhances the
drag resistivity results notably by strengthening the inter-layer interaction
[94]. Furthermore, for the parameters used here one can see that the values
of the anisotropy ratio are almost the same for both approximations. We
also investigate the e�ects of substrate and spacer dielectric materials on the
anisotropic drag resistivity by considering two already experimentally used
insulators, namely Al2O3 [95] and h-BN [91], in phosphorene systems. Here,
we assume n = 3×1012cm−2 corresponding in h-BN case to density parameter
rs ∼ 5 which makes it necessary to consider the LFC factor in our calculation.
The results indicate that including the LFC in drag resistivity calculations
is important for both studied substrates. Signi�cant di�erences between the
results of RPA and local �eld factor approximation suggest a strong sen-
sitivity of the drag resistivity to the e�ective intra-layer electron-electron
interactions. Our results indicate that the anisotropic drag resistivity has
larger values at all temperatures, when Al2O3 is used as spacer/substrate
compared with the case in which h-BN is used (see Fig. 3.7(c)), due to a
larger dielectric constant of Al2O3. Employing the high- κ materials as sub-
strates/spacers reduces screening, and as a result enhances the inter-layer
electron-electron interactions.

Finally, we present the anisotropy ratio for two di�erent substrates in Fig.
3.8. We have employed Hubbard LFC to dielectric function to account for
exchange short-range e�ects. Calculations show that di�erent substrates has
a moderate e�ect on the anisotropy ratio and shift the maximum expected
anisotropy ratio.

3.3 Conclusion

To summarize, we have derived a formula for the anisotropic drag resistivity
in a structure composed of two spatially separated 2D electron gas systems
with parabolic band structures. We have assumed that the electron gases are
sandwiched by insulators so that there is no tunneling between the layers.
We have chosen double-layer phosphorene as an example system on which
we apply our anisotropic drag theory. Our numerical results con�rm that
the drag resistivity depends not only on the typically considered parame-
ters such as temperature, inter-layer separation, carrier density and nature
of elementary excitations, but also on the direction of momentum transfer
between the two layers in addition to the rotational parameter. Our calcu-
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lations also show that while the diagonal elements of anisotropic drag resis-
tivity tensor have di�erent values due to di�erent electron e�ective masses
along x and y directions at any temperatures of interest, there are non-zero
o�-diagonal elements for the rotated structure. The non-zero o�-diagonal
elements have not been reported before in a 2D coupled system without an
applied magnetic �eld. According to the numerical results, both diagonal
elements of anisotropic drag resistivity tensor increase with decreasing inter-
layer separation and electron density. We show that, the anisotropic ratio
varies e�ectively with the change of temperature and electronic density. To
improve on RPA results at low electron density, we have included the zero
temperature Hubbard LFC factor in our calculations and shown that the
inclusion of LFC strongly in�uences the drag resistivity values. Moreover,
we have studied the e�ects of substrate/spacer on the anisotropic drag re-
sistivity. We show that a substrate/spacers with high dielectric constant is
able to increase the anisotropic drag resistivity considerably. These results
provide qualitative insights into the impact that an anisotropic band struc-
ture can have on drag resistivity, as an important transport quantity in a
coupled 2D structure. The present work also suggests that the rotational
parameter between layers can be considered as an extra degree of freedom
for the applications of momentum transfer between coupled layers.
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Chapter 4
Optical conductivity with the Rashba

e�ect

"What is the optical response of
an anisotropic 2D electron gas
system in the presence of
Rashba spin-orbit interaction?"

In this chapter 1 we calculate the optical conductivity of an anisotropic
two-dimensional system with Rashba spin-�ip excitation within the Kubo for-
malism. We show that the anisotropic Rashba e�ect caused by an external
�eld changes signi�cantly the magnitude of the spin splitting. Furthermore,
we obtain an analytical expression for the longitudinal optical conductiv-
ity associated with inter-band transitions as a function of the frequency for
arbitrary polarization angle. We �nd that the diagonal components of the
optical conductivity tensor are direction-dependent and the optical absorp-
tion spectrum exhibits a strongly anisotropic absorption window. The height
and width of this absorption window are very sensitive to the anisotropy of
the system . While the height of absorption peak increases with increasing
e�ective mass anisotropy ratio, the peak intensity is larger when the light
polarization is along the armchair direction. Moreover, the absorption peak
width becomes broader as the density of state mass or Rashba interaction is

1The results of this chapter were published in Physical Review B 96 (7), 075411 (2017)
[40]

41
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enhanced. These features in the optical absorption spectrum can be used to
determine parameters relevant for spintronics.

4.1 Spin-orbit interaction

Nowadays, spin-orbit coupling interaction is a �eld of great interest owing
to potential applications in spintronic phenomena and electric manipulation
of spins [96, 2, 97, 98]. This interaction shows up when crystalline lattices
lack a center of inversion symmetry (the Dresselhaus type [99]) or there is a
structural asymmetry in the interfaces/surface region of quantum wells (the
Rashba type [100]). In two dimensional (2D) materials, when inversion sym-
metry is broken by an applied transverse electric �eld or a substrate, spin
degeneracy is lifted due to the Rashba e�ect [101]. Therefore, transitions
between spin split states results in a non-zero value for the optical conduc-
tivity in the presence of an alternating electric �eld. The absorption part
of the optical conductivity can be used in order to probe the spin-split en-
ergy levels. Like the unique anisotropic properties of excitons in phosphorene
[39], the spintronic parameters such as the Rashba coupling strength, elec-
tron density and also spin polarization in the 2D materials can be measured
optically [102, 103, 5]. Phosphorene-like materials, group IV-VI compounds,
resemble in many respects, for instance, in-plane anisotropy, orthorhombic
lattice and puckered layered structure [104, 105]. Similar to phosphorene and
as a consequence of their orthorhombic structure, transport, optoelectronic
and spintronic properties of these materials are highly anisotropic [106, 107].

Recently, Xiao et al. [5] studied the optical conductivity of MoS2 in the
presence of spin-orbit coupling and found that the Rashba spin-orbit pa-
rameter can change the absorption peak or absorption window in the optical
spectrum. In contrast to the isotropic band structure of MoS2 the anisotropic
band structure in phosphorene results in a highly anisotropic Rashba split-
ting; [108, 109] hence, the strength of spin splitting depends on the direc-
tion of wave vector, as well as its magnitude [109]. The anisotropic Rashba
spin-orbit interaction in 2D electron or hole gas systems due to the k-cubic
Rashba spin-orbit interaction gives rise to di�erent features in the optical
conductivity, anisotropic spin susceptibility and also distinctive behavior of
the spin Hall conductivity [110, 111]. Another anisotropic behavior of the
spin splitting appears for the interplay between both Rashba and Dressel-
haus spin-orbit coupling in a 2D electron gas. It has been shown that the
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Figure 4.1: Energy dispersion (a) along the x direction (θ=0) and (b) along
the y direction (θ = π/2) with mx=m0, my=4m0, and αR=10meVÅ (c) Spin
splitting along the x and y directions for several values of αR with mx=m0

and my=4m0. The inset �gure is a top view of an anisotropic monolayer
with the x and y axes being the armchair and zigzag directions, respectively.

anisotropic dynamical optical conductivity can be used as a powerful tool
to probe and manipulate the coupling strengths and set out the range of
frequencies where the optical conductivity is essentially non-zero [112].

In this Chapter, we use the k-linear Rashba Hamiltonian for anisotropic
2D materials, such as phosphorene and group-IV monochalcogenides, which
have been predicted to exhibit an anisotropic energy band [113, 32, 104].
Based upon the Kubo formalism, we obtain an analytical expression for the
longitudinal optical conductivity with arbitrary polarization angles, includ-
ing inter-band transitions. In contrast to isotropic systems, the longitudinal
optical conductivity depends not only on the Rashba parameter but most
importantly also on the e�ective mass anisotropy. The most signi�cant con-
tribution to the optical absorption occurs when the polarization of light is
along the armchair direction (the direction with a smaller e�ective mass). We
�nd that the extrinsic spin-orbit coupling due to the broken inversion sym-
metry is strongly anisotropic which has an impact on the optical response of
2D electron systems. The level splitting caused by the anisotropic Rashba
e�ect gives rise to an optical response with a direction-dependent absorption
peak. The width of the absorption window depends strongly on both the
polarization direction and the e�ective mass ratio. The latter can be consid-
ered as an additional degree of freedom to tune the height and width of this
absorption peak. High carrier mobility or increased electric �eld shifts the
position of the absorptive peak to higher frequencies which can be adjusted
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Figure 4.2: (a) Energy dispersion and (b) spin splitting along the x (arm-
chair) direction for a few values of αR with my=4m0 and mx=m0.

appropriately. Our calculations of the absorption part of the optical conduc-
tivity with Rashba spin-orbit coupling are compared with measurement of
infrared spectra on BP thin �lm at di�erent polarizations [114]. Moreover,
these values compare favorably with the optical conductivity of typical MoS2

in the presence of Rashba interaction at low temperature in the infrared to
terahertz spectral range [5]. We predict that single and few layer BP with
anisotropic crystal structure and MoS2 have great potential for infrared op-
toelectronics. Whereas phosphorene is a good example of a 2D anisotropic
system, our formalism is also applicable to other 2D puckered materials.

4.2 Paraboloidal energy band with anisotropic

Rashba e�ect

We study the low-energy dispersion and optical conductivity of a 2D system
with paraboloidal energy band in the presence of Rashba spin-orbit coupling.
We assume that the 2D system is a puckered honeycomb lattice where the x
and y axes are taken to be along its armchair and zigzag directions, respec-
tively. The Hamiltonian for such a system including the extrinsic Rashba
term is given by:

Ĥ = Ĥ0 + ĤR . (4.1)
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Here, Ĥ0 is the k.p free-electron Hamiltonian whose low-energy spectrum for
an anisotropic 2D system is obtained as [115]

Ĥ0 =
~2

2
(
k2
x

mx

+
k2
y

my

)σ̂0 , (4.2)

where mx and my are the electron e�ective masses along the x and y direc-
tions respectively, and σ̂0 is the 2×2 unitary matrix. The Rashba anisotropic
Hamiltonian, which has been recently introduced for phosphorene [109] can
be rewritten as

ĤR = −αR(

√
md

mx

kxσ̂y −
√
md

my

kyσ̂x) . (4.3)

Here, αR is the Rashba coe�cient, md =
√
mxmy is the density-of-state

masses and σ̂x and σ̂y are the Pauli matrices.
Upon diagonalizing the total Hamiltonian, one obtains two branches of

the energy spectrum:

Eλ(k) =
~2k2R(θ)

2
+ λα∗R(θ)k , (4.4)

where λ refers to the electron spin in the upper (+) or lower (−) branch,
and θ denotes the angle of wave vector with respect to x-axis. R(θ) is the
orientation parameter which is de�ned as [47]

R(θ) =

(
cos2 θ

mx

+
sin2 θ

my

)
, (4.5)

and α∗R is the anisotropic Rashba coe�cient, given by:

α∗R(θ) = αR
√
mdR(θ) . (4.6)

To illustrate the e�ect of Rashba spin-orbit coupling on the anisotropic band
structure, we plot the energy dispersion of the Rashba spin-split branches
and energy spacing (the energy di�erence between the spin up and spin down
branches) along the two main crystallographic directions in Fig. 4.1. Due to
the Rashba interaction, the energy dispersion deviates from a parabola for
each spin branch. Moreover, the anisotropic characteristic of the spin-split
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branches as a result of di�erent e�ective masses along the armchair (x) and
zigzag (y) directions is clearly observed. Also, it can be seen from Fig. 4.1(c)
that the energy is direction-dependent and as expected along the armchair
direction with smaller e�ective mass, the spin splitting is stronger. It is
known that the Rashba spin-orbit interaction can be tuned by an external
electric �eld, so, we show the energy dispersion and energy spacing along the
armchair (x) direction for di�erent Rashba parameters in Figs. 4.2(a) and
4.2(b). We �nd that the dispersion relation of a 2D material with anisotropic
band structure can be well-tuned by the directional e�ective masses as well
as the Rashba coe�cient. Besides, there is a uniform enhancement of the en-
ergy spacing with increasing Rashba parameter due to the linear momentum
dependence of the spin splitting interaction.

4.3 Optical conductivity

In a spin-orbit coupled system, the optical conductivity due to the transi-
tions between di�erent spin states is an important quantity. We calculate
this property using the Kubo linear response formalism for a 2D system
with anisotropic parabolic energy band in the presence of Rashba interac-
tion. Assuming a spatially homogeneous electric �eld, the Kubo formula for
conductivity which starts from the current-current correlation function, is
given by [116, 100]

σij(q, t) =
ine2

mω
δij +

1

ω

∫ ∞
0

eiω̄ < [Ĵi(q, t), Ĵj(q, 0)] > dt , (4.7)

where indices i and j stand for the two Cartesian coordinates x, y and n is
the electron density, ω̄ = ω+ iη (η → 0+) and Ĵi = ev̂i is the current density
operator with v̂i = ~−1∂Ĥ/∂ki being the electron velocity operator. In this
paper, we concentrate on the absorptive part of the optical conductivity
which is the real part of this complex quantity [117]. In the optical limit
q → 0, the dynamical optical conductivity can be obtained as follows:

σij(ω) =
ie2

ω

∑
λ,λ′

∑
k,k′

ψij(k,k
′, λ, λ′)× f 0(Eλ(k))− f 0(Eλ′(k′))

Eλ(k)− Eλ′(k′) + ~(ω + iη)
, (4.8)
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Figure 4.3: Transitions between spin branches. The arrows correspond to
the transitions with threshold frequencies of (2αRp

±
F )/~.

where ψij(k,k′, λ, λ′) is de�ned as

ψij(k,k
′, λ, λ′) = 〈kλ| v̂i |k′λ′〉 〈k′λ′| v̂j |kλ〉 . (4.9)

The electron velocity operators for two spin-split branches in the x and
y directions are given as

v̂x =
1

~

(
~2kx
mx

σ̂0 − αR
√
md

mx

kxσ̂y

)
,

v̂y =
1

~

(
~2ky
my

σ̂0 + αR

√
md

my

kyσ̂x

)
.

(4.10)

Before calculating the eigenstates of the system, |kλ〉, we introduce a
new 2D wave vector p = (px, py) which is de�ned as k =

√
M/md p with M

being the mass tensor whose diagonal elements are mx and my [44]. Now,
we can rewrite the free electron and Rashba parts of the total Hamiltonian
as follows:

Ĥ0 =
~2p2

2md

σ̂0 , (4.11)
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ĤR = −αR(p× ẑ).σ̂ , (4.12)

where σ̂ = σ̂xî + σ̂y ĵ. Thus, the two spin-split eigenstates can be identi�ed
as:

|pλ〉 =
e(ip.r)

√
2

(
1

λpy−ipx
p

)
(4.13)

with r = (x, y) being a 2D real space position vector. Also, the expressions
for the velocity operators can be written in terms of p:

v̂x =
~

√
mxmd

(
pxσ̂0 − pRσ̂y

)
,

v̂y =
~

√
mymd

(
pyσ̂0 + pRσ̂x

)
,

(4.14)

where pR = αRmd/~2 is the e�ective Rashba wave vector. It has been shown
that the spin-conserving intra-band transitions give rise to low frequency
absorption, whereas the spin-�ip transitions result in a wide absorption peak
[112, 5]. We focus on the optical conductivity due to the inter-band spin
�ip excitations. As ordinary 2D electron gas systems [112], it can be shown
that the o�-diagonal elements of the optical conductivity (transverse or Hall
conductivity) are zero in the absence of a magnetic �eld, i.e. σxy = 0. By
making use of Eqs. (4.13) and (4.14), one can calculate the diagonal elements
of the ψ tensor as:

ψjj(p,p
′;λ, λ′) =

~2

2mjmd

(
p2
j(1+λλ′)+p2

α(1+λλ′cos2φ)+2pRpjcosφ(1+λλ′)

)
δpp′ ,

(4.15)
where φ = tan−1(py/px). Accordingly, the non-equal diagonal components
of optical conductivity (longitudinal optical conductivity) due to spin-�ip
transitions are obtained as:

σjj(ω) =
ie2~2pR
2ωmjmd

∫
pdpdφ

(2π)2
(1−cos2φ)

(
f 0(E−(p))− f 0(E+(p))

E−(p)− E+(p) + ~(ω + iη)
+(E− ↔ E+)

)
.

(4.16)
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Figure 4.4: Real part of longitudinal optical conductivity as a function of
excitation frequency: (a) for all θ, and (b) for θ = 0 and θ = π/2 with
n = 1× 1013cm−2. Here we set αR=10 meVÅ, my=4m0 and mx=m0.

After performing the p integral, the following expression is obtained for σjj
at zero temperature:

σjj(ω) = − ie2m2
d

2πmjω~4

[
1 +

~3ωR(θ)Λ(ω)

8(α∗R(θ))2

]
, (4.17)

with Λ(ω) de�ned as:

Λ(ω) = ln

(
(ω − ω− + iη)(ω + ω+ + iη)

(ω + ω− + iη)(ω − ω+ + iη)

)
, (4.18)

where ω± are the threshold frequency modes induced by the inter-branch
electronic transition:

ω± =
2α∗Rp

F
±√

mdR(θ)~
. (4.19)

Here, pF± = pF ∓ pR are the Fermi wave vectors for the two spin branches
with pF =

√
2nπ − p2

R. A schematic diagram for the optical transitions is
shown in Fig. 4.3. The arrows correspond to the vertical transitions between
two spin branches in the optical limit (q → 0).
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Figure 4.5: Real part of longitudinal optical conductivity as a function of
excitation frequency for θ = 0 with (a) my = 4m0 and (b) mx = m0. (c)
Maximum of real part of longitudinal optical conductivity as a function of
mass anisotropy ratio. (d) Width of the absorption window as a function of
mass anisotropy ratio. Here, we set n = 1× 1013cm−2 with αR=10 meV Å .
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The longitudinal optical conductivity along an arbitrary polarization di-
rection θ, is given by [50]:

σ(ω, θ) = σxxcos
2θ + σyysin

2θ . (4.20)

By inserting Eqs. (4.17) and (4.18) in the above equation we obtain:

σ(ω, θ) = −ie
2md(α

∗
R(θ))2

2πω~4

[
1 +

~3ωR(θ)Λ(ω)

8(α∗R(θ))2

]
. (4.21)

In Fig. 4.4(a), we illustrate the calculated real part of the anisotropic
conductivity for arbitrary direction of polarization vector as a function of
radiation frequency, ω, at a �xed electron density n = 1× 1013cm−2 and for
αR=10 meVÅ, my=4m0 and mx=m0. As expected, the optical conductivity
has its maximum value at θ = 0 i.e. along the armchair direction of the 2D
layer. The signi�cantly smaller e�ective mass for the θ = 0 direction suggests
that the charge carriers prefer to �ow along this direction. In addition,
Fig. 4.4(b) shows the absorption part of the optical conductivity for the
two main crystallographic directions θ = 0 and θ = π/2. The fact that
the anisotropy ratio of the optical conductivity is equal to the inverse of the
mass anisotropy ratio, i.e., σyy(ω)/σxx(ω) = mx/my, is clearly observed in
this �gure. Furthermore, as a consequence of the energy conservation law
under vertical transitions (q → 0) between spin branches (see Fig. 4.3)), the
absorption part of the longitudinal optical conductivity at T = 0 has a step
function like variation with the frequency, i.e., a non-zero value for a range
of frequencies which is given by

ω− − ω+ =
2(α∗R)2

~3R(θ)
. (4.22)

As is evident from Fig. 4.4, the absorption is in the THz region for the set
of parameters used here. We have already mentioned above that the optical
conductivity exhibits a strong dependence on the e�ective mass anisotropy.
The variation of the real part of σxx with the e�ective mass along the x and y
directions is shown in Fig. 4.5. One may notice that the mass asymmetry not
only alters the maximum value of the optical conductivity but also changes
the width of the peak. According to this �gure, the peak height of σxx(ω)
increases by decreasing the e�ective mass along the radiation polarization
direction or increasing the e�ective mass along the direction perpendicular
to the radiation polarization. In other words, a higher peak intensity is
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achieved as a consequence of the e�ective mass anisotropy ratio (my/mx)
enhancement. Moreover, the absorption window of the real part of longi-
tudinal optical conductivity is extended by increasing the density of states
mass (md). The e�ect of Rashba coupling strength on the absorption part
of σxx(ω) is shown in Fig. 4.6(a). The absorption peak width is broadened
and the onset frequency of the absorptive peak moves towards a higher value
when the Rashba parameter increases [102]. The Rashba parameters chosen
here are comparable to the as-obtained values for phosphorene and group-
IV monochalcogenides from density functional theory calculations [109, 108].
For large values of αR, a stronger spin splitting occurs which in turn shifts
the absorption part of the optical conductivity from the THz to infrared
frequencies. These features for the spin-�ip absorption peak are similar to
that of the conventional two dimensional electron gas systems and MoS2 [5].
We observe that the predicted value of infrared spectra on BP thin �lm at
di�erent polarizations [114] is in very good agreement with our results of
the absorption part of the optical conductivity for high value of Rashba pa-
rameters and density especially across the technologically relevant THz to
mid-infrared spectrum [50]. We also depict the variation of the optical ab-
sorption with the electron density in Fig. 4.6(b) for �xed αR=10 meVÅ and
e�ective masses my=4m0 and mx=m0 . One of the important characteris-
tics of this �gure is that while the value of the peak height remains almost
unchanged by increasing electron density, the absorption peak moves toward
higher frequencies as a result of the Pauli blockade e�ect [118, 119, 120].

4.4 Conclusion

In summary, we have studied the energy spectrum and optical response of
an anisotropic 2D electron gas system in the presence of Rashba spin-orbit
interaction. Based on the Kubo formalism, we calculated the optical conduc-
tivity tensor considering the Rashba spin-�ip excitations. We found that the
e�ective mass anisotropy plays an important role in the optical absorption
spectrum through the direction-dependent Rashba spin splitting. As a gen-
eral result, the diagonal components of the optical conductivity tensor are
inversely proportional to the corresponding e�ective mass elements. Further-
more, the e�ective mass asymmetry is an additional degree of freedom to tune
the height and width of the absorption peak. This introduces aspects to the
optical conductivity for spintronic applications of 2D anisotropic materials
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Figure 4.6: Real part of longitudinal optical conductivity as a function of
excitation frequency for θ=0 with my=4m0, mx=m0 for a few values of (a)
Rashba parameter with n0 = 1 × 1013cm−2 and (b) electron density with
αR=10 meV Å.

such as phosphorene and group-IV monochalcogenides. We also showed that
larger optical absorption is generated when the polarization of radiation is
along the armchair direction and its maximal value is enhanced by increasing
the e�ective mass ratio. However, the width of the absorption window has a
strong dependence on both the polarization direction and the e�ective mass
ratio. Finally, the position of the absorptive peak moves to higher frequen-
cies with increasing the Rashba parameter and electron density. Our results
suggest an interesting way to determine some of the spintronic characteristics
of a class of 2D nanostructures, with anisotropic Rashba e�ect, using optical
methods.
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Chapter 5
Surface optical phonon plasmon

interaction

"How do polar
substrates/spacers in�uence the
plasmons in monolayer and
double-layer phosphorene
systems?"

In this chapter1, we investigate phosphorene on polar insulator substrates
as shown in Fig. 5.1. We go beyond the assumption of independent electron
and SO phonon modes and consider coupled plasmon-SO phonon oscillations.
Here, we theoretically study the coupled plasmon-SO phonon interaction in
monolayer and double-layer phosphorene on polar substrates using pertur-
bation theory. We start from the expression for the dynamical dielectric
function of the coupled system in a generalized RPA, and develop a gen-
eral formalism, which includes the e�ect of anisotropic energy dispersion and
rotationally misaligned double-layer system. In such systems having the in-
teraction between electrons and SO phonons could yield phonon mediated
electron-electron (e-e) interaction which creates new collective modes with
highly anisotropic dispersion. We �nd that in the case of phosphorene, in
contrast to graphene [121, 122, 123] and TMDs [6], the mode coupling e�ect

1The results of this chapter were published in Physical Review B 96 (7), 075411 (2017)
[43].
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not only modi�es the plasmon dispersion relation but also enables us to tune
the hybrid plasmon-SO phonon modes in two crystallography directions. So,
anisotropy in phosphorene provides an extra dimension in the phase space of
electron-SO phonon coupling.

Figure 5.1: Schematic �gure of a monolayer phosphorene where a polar
insulating material (for example h-BN) has been used as a substrate. z indi-
cates the vertical distance of the monolayer phosphorene from the substrate.

5.1 Introduction

The properties of the substrate often drastically alters the transport behavior
of the 2D crystal and the overall characteristics of the device. Recently,
phosphorene has been transferred on top of the h-BN substrate [7, 124]. The
interaction between phosphorene and the substrate is considered to play a
crucial role in the modulation of the electronic properties of phosphorene-
based devices [125]. In most currently available 2DMs, a sample lies on the
top of a polar substrate such as h-BN, SiO2, SiC or Al2O3 [126, 91, 127,
15, 128]. In such heterostructures, the polar optical phonon modes of the
substrate are localized near the 2DMs-substrate interface and are coupled
to the surface optical (SO) phonon modes of the polar substrate through
the long-range Fröhlich interaction. As a result, the SO phonon could be
considered as the dominant plasmon-SO phonon coupling source in 2DMs on
polar substrates. The coupling of SO phonon modes to the plasma oscillations
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of free carriers is known as plasmon-SO phonon coupling. These coupled
modes may be observed by infrared (IR) transmission measurements [129,
130]. The plasmon-SO phonon coupling changes the dips in the IR re�ectivity
spectra from isolated plasmon and SO phonon frequencies to the normal
coupled ones [123, 131].

The coupled plasmon-SO phonon modes have been extensively investi-
gated in 2DMs with isotropic band structure such as graphene, silicene and
germanene [132, 133, 134, 135]. It is shown that this phenomenon modi�es
many-body properties such as plasmon modes [122, 123, 136] and self en-
ergy [137] and can also change the mobility [138], e�ective mass [139, 137],
scattering rate [140, 134] and inelastic lifetime [141] in carrier transport phe-
nomena. Moreover, it can be considered as a mechanism for tuning the band
gap [127, 142, 135].

In this chapter, we model a system of phosphorene on polar insulator sub-
strates as shown in Fig. 5.1. We theoretically study the coupled plasmon-SO
phonon modes in monolayer and double-layer phosphorene on polar sub-
strates using perturbation theory. We start from the expression for dynam-
ical dielectric function of the coupled system in the RPA, and develop a
general formalism, which includes the e�ect of anisotropic energy dispersion
and rotationally misaligned double-layer system. In such systems having
the interaction between the electrons and substrate-SO phonons could yield
phonon-mediated electron-electron interaction which creates a new set of col-
lective modes with highly anisotropic dispersion. We �nd that in the case
of phosphorene in contrast to graphene [122, 123] and TMDs [6], the mode
coupling e�ect not only modi�es the plasmon dispersion relation but also
enables us to tune the hybrid plasmon-SO phonon modes in the two crys-
tallographic directions. So, the anisotropy is an important feature of the
coupled electron-SO phonon oscillation spectrum in phosphorene systems.

5.2 Hamiltonian for phosphorene on polar sub-

strates

In a phosphorene multilayer system with no electron-phonon interaction, the
electrons in each layer interact with themselves and also with the electrons in
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other layers through the following electron-electron interaction Hamiltonian:

Hel−el =
1

2

∑
ij

∑
kqp

vij(q)a
†
k+q,ia

†
p−q,jap,jak,i , (5.1)

where vij(q) = v(q)e−qdij(1−δij) represents the diagonal (intralayer with i =
j) and o�-diagonal (interlayer with i 6= j) elements of the bare Coulomb
potential matrix. Here, we de�ne v(q) = 2πe2/qε∞ with ε∞ being the high-
frequency dielectric constant and dij is the distance between i -th and j -th
layers. Also, ak,i (a†k,i) is the electron annihilation (creation) operator in layer
i.

If the phophorene layers are supported by polar materials, an additional
interaction term involving the electron-SO phonon coupling can be included
by using the Fröhlich Hamiltonian [143]:

Hel−ph =
∑
i

∑
λ

∑
kq

[Mλ
0 ((q)]a†k+q,iak,i(bqλ + b†−qλ) , (5.2)

which renormalizes the screened electron-electron potential through the di-
electric function matrix, εij(ω,q):

V sc
ij (ω,q) =

vij(q)

det|εij(ω,q)|
. (5.3)

In Eq. (5.2), bqλ (b†qλ) is the phonon annihilation (creation) operator
with wave vector q and branch index λ and Mλ

0 (q) is the amplitude of the
electron-SO phonon interaction [122]:

Mλ
0 (q) =

[
v(q)α

ωλSO
2
e−2qz

]1/2
, (5.4)

where ωλSO is the SO phonon frequency of the λth branch, z is the vertical
distance between phosphorene and substrate and we de�ne:

α = ε∞
[ 1

ε∞ + 1
− 1

ε0 + 1

]
, (5.5)

with εo being the zero-frequency dielectric constant. Here, we assume that the
phonon-phonon interaction is negligible so each mode couples to the electrons
independently. In order to study the e�ect of electron-SO phonon coupling
on the collective charge-density excitations, one needs to obtain the zeros of
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the determinant of the dynamical dielectric function matrix (the poles of the
screened potential). We use the dynamical RPA dielectric function in which
the contribution of the electron-SO phonon interaction is taken into account
[144]:

εij(ω,q) = δij − Uij(ω, q)Πi(ω,q). (5.6)

Here, Uij(ω, q) is the combined Coulomb and phonon-mediated interactions
between ith and jth layers:

Uij(ω, q) = U0(ω, q)e−qdij(1−δij), (5.7)

where U0(ω, q) = vph(ω, q) + v(q) and the SO phonon-mediated electron-
electron interaction, vph(ω, q), is given by [145]:

vph(ω, q) =
∑
λ

[Mλ
0 (q)]2Dλ

0 (ω). (5.8)

Dλ
0 (ω) is the bare propagator for a phonon of branch index λ:

Dλ
0 (ω) =

2ωλSO
ω2 − (ωλSO)2

. (5.9)

In the case of monolayer, we will have τi = 0. The knowledge of the
appropriate limiting behavior of the polarization function is important in
investigating the excitation spectrum specially the collective excitations of
the system. Therefore, we obtain the polarization function in the dynamic
long-wavelength limit where the plasmon excitations are important due to
their long lifetimes. In this limit, the polarization function of Eq. (5.6) can
be approximated as (see the appendix B):

Πi(ω, q, θ)

g2d

≈ Ri(θ)EF
q2

ω2
. (5.10)

In the following section, we present our calculations for the coupled plasmon-
SO phonon modes in both monolayer and double-layer phosphorene systems
with a number of experimentally chosen polar substrates/spacers.

5.3 Coupled plasmon SO-phonon modes in

monolayer phosphorene

The RPA dielectric function for a monolayer system in which the electrons
are coupled to SO phonons of a polar substrate can be obtained through
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Figure 5.2: The hybrid plasmon-SO phonon dispersion in phosphorene
monolayer on SiO2 substrate as a function of wave vector q for two main
crystallographic directions of phosphorene: θ = 0 (q ‖ x) and θ = π/2 (q ‖ x)
with (a) n = 1 × 1013 cm−2, (b) n = 5 × 1013 cm−2 and z = 0.2 nm. The
uncoupled plasmon dispersion is shown by dashed curve. The two horizontal
lines represent the frequencies of the SO phonon modes, i.e. ~ω1

so = 60 meV
and ~ω2

so = 146 meV.
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Table 5.1: Physical parameters of selected polar materials from Ref. [127].

SiO2 h-BN Al2O3

~ω1
SO(meV) 60 101 55

~ω2
SO(meV) 146 195 94
ε0 3.9 5.1 12.5
ε∞ 2.5 4.1 3.2
α 0.2 0.132 0.525

summing over all the bare bubble diagrams as [122]

εi(ω,q) = 1− 2πe2

ε∞q
Πi(ω,q) +

∑
λ

αe−2qz

1− αe−2qz − ω2/(ωλso)
2
. (5.11)

In the long-wavelength limit (q → 0) by inserting Eq. (5.10) into Eq. (5.11),
we get the following coupled collective modes (see appendix B):

ωλ(+)(q, θ) = ωλso
(
1 + αe−2qz

ω2
pl(q, θ)

(ωλso)
2

)
, (5.12)

ω(−)(q, θ) = ωpl(q, θ)
(
1− α

2
e−2qz

)
, (5.13)

where ωpl(q, θ) =
√

2πne2Ri(θ)q/ε∞ is the plasmon frequency of the uncou-
pled anisotropic system. We consider a phosphorene monolayer sandwiched
by polar materials such as SiO2, h-BN or Al2O3 whose physical parameters
are listed in Table 5.1. In addition, the e�ective masses in x and y directions
of phosphorene monolayer are given as mx ≈ 0.15m0 and my ≈ 0.7m0 where
m0 is the free electron mass [64].

In Fig. 5.2, we depict the coupled and uncoupled plasmon modes of
phosphorene monolayer on SiO2 substrate calculated for two main crystallo-
graphic directions θ = 0 (q ‖ x) and θ = π/2 (q ‖ y). According to this �gure,
in the case of SiO2 substrate, there are three hybrid modes, one plasmon-like,
ω−(q, θ), and two phonon-like, ωλ+(q, θ), as were previously shown experimen-
tally [129] for graphene monolayer. It can be seen that the ω−(q, θ) (plasmon-
like mode) is lower in energy than the uncoupled plasmon mode, ωpl(q, θ),
and the lower (upper) phonon-like branch starts from ω1

so (ω2
so) at q = 0

and increases below (above) the uncoupled plasmon dispersion by increasing
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Figure 5.3: Loss function, |=(1/ det ε(ω, q, θ))|, for q=0.1 nm with n =
1×1013cm−2 and η = 5 meV. The radial and azimuthal coordinates are ω
and the angular orientation of q, respectively.

q along both directions. The coupling is strong when the frequencies of the
phonon-like modes deviate considerably from the bare SO phonon modes, ωλso
(see Eq. (5.12)). As expected in 2DMs with anisotropic band structure, the
hybrid plasmon-SO phonon modes have higher resonance frequencies [46, 44]
and the plasmon-like modes are more a�ected by the electron-SO phonon
coupling in the direction of the lighter mass, q ‖ x. In the coupled system,
the electrons can be scattered either by the emission of hybrid plasmon-
SO phonon modes (ω+, ω−) or by the single particle excitation (SPE). The
boundary of the SPE continuum represented by green shaded area in Fig.
5.2 is given by:

~ω±(SPE)(q, θ) =
Ri(θ)~2

2
± qνF

√
Ri(θ)md . (5.14)

Though all hybrid plasmon-SO phonon excitations are damped at IR
frequencies, the plasmon-like mode, ω−, experiences the Landau damping at
smaller q with respect to the phonon-like modes. On the other hand, the
higher frequency phonon-like mode, ω2

+, stays away from ω2
SO and enters the

SPE region at large q for both directions. Therefore, this mode shows a strong
coupling and can be easily detected. Moreover, at high densities (Fig. 5.2(b))
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Figure 5.4: E�ect of changing substrate: |=(1/ det ε(ω, q, θ))| for phospho-
rene monolayer at θ = 0 (q ‖ x). The solid black line is the uncoupled
plasmon branch and the two horizontal black dashed lines represent the fre-
quencies of SO phonon modes of the substrate: (a) SiO2, (b) h-BN and (c)
Al2O3 with n = 1× 1013 cm−2, z =0.2 nm and η=5 meV.

where the Fermi energy exceeds the SO phonon energy i.e. EF � ~ω2
SO, the

upper phonon-like branch strongly deviates from the uncoupled SO phonon's
energy while the ω1

+ branch still remains between the two phonon energies.
Thus, the high energy phonon-like mode, ω2

+, which is very sensitive to the
density and direction, can be considered as a tunable quantity for applications
in optical plasmonic devices. Furthermore, we study the impact of angular
orientation of q on the behavior of hybrid plasmon-SO phonon modes by
plotting the loss function, |=(1/ det ε(ω, q, θ))|, for q=0.1 nm (see Fig. 5.3).
The results show that the maximum value of loss function occurs around θ=
0 and 180 (along x direction) for all three branches.

In order to explore the e�ects of a speci�c substrate on the hybrid plasmon-
SO phonon modes, we show the loss function of phosphorene monolayer on
(a) SiO2, (b) h-BN and (c) Al2O3 polar substrates along x direction (θ = 0)
in Fig. 5.4. One can see that using the Al2O3 (with higher α) as a polar
substrate results in a strong coupling as evidenced by considerable deviation
of ω− from ωpl and of ωλ+ from ωSO.

It should be pointed out that while the phonon frequency ωSO is an
important parameter for the phonon-like modes, ωλ+, the α parameter mostly
a�ects the plasmon-like spectrum. Hence, the choice of substrate can be used
to engineer the plasmon dispersion in phosphorene.
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Figure 5.5: (a) and (b) The uncoupled and (c) and (d) coupled plasmon-SO
phonon modes for two aligned phosphorene monolayers sandwiched by SiO2

as a function of wave vector q for two main crystallographic directions: (a)
and (c) θ = 0 (q ‖ x) and (b) and (d) θ = π/2 (q ‖ y) with n = 1 × 1013

cm−2, d12=5 nm z=0.2 nm and η=5 meV.
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5.4 Coupled plasmon-SO phonon modes in

double-layer phosphorene

Here, we consider a double-layer phosphorene with equal electron densities
sandwiched by a homogeneous dielectric medium that models the substrate.
It is reasonable to calculate the uncoupled plasmon modes before discussing
the hybrid modes from the zeros of the determinant of the dielectric function
matrix Eq. (5.6). In the leading-q approximation (long-wavelength limit),
two plasmonic branches are obtained through the following relations [46]:

ωac(q, θ) = 2q

√
nπe2d12

ε∞

R1(θ)R2(θ)

R1(θ) +R2(θ)
. (5.15)

ωop(q, θ) =

√
2nπe2q

ε∞

(
R1(θ) +R2(θ)

)
. (5.16)

These two uncoupled branches are shown in Fig. 5.5(a) for θ = 0 (along x
direction) and in Fig. 5.5(b) for θ = π/2 (along y direction) when SiO2 is
considered as a substrate/spacer [146, 46].

It can be seen that the plasmon modes experience a stronger reduc-
tion along y direction compared to x direction. For the case of electron-SO
phonon coupling in double-layer phosphorene, we �nd two acoustic phonon-
like modes, ωλac(+), with λ=1,2 and one acoustic plasmon-like mode, ωac(−)

(see appendix B). The long-wavelength dispersions of the acoustic modes can
be written as:

ωλac(+)(q, θ) = ωλSO

√
1 +

4nπd12e2q2αe−2qz

(ωλSO)2ε∞

R1(θ)R2(θ)

R1(θ) +R2(θ)
, (5.17)

ωac(−)(q, θ) = 2q

√
nπe2d12(1− αe−2qz)

ε∞

R1(θ)R2(θ)

R1(θ) +R2(θ)
. (5.18)

In the same vein, we obtain two optical phonon-like modes, ωλop(+), and
one optical plasmon-like mode, ωop(−) as

ωλop(+)(q, θ) = ωλSO

√
1 +

2nπe2qαe−2qz

(ωλSO)2ε∞

(
R1(θ) +R2(θ)

)
, (5.19)
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Figure 5.6: E�ect of changing rotation angle on the loss function, | −
=[1/ε(ω, q)]|, for double-layer phosphorene sandwiched by SiO2 in (ω, q)
space along θ = 0 (q ‖ x) for τ1 = 0 and (a) τ2 = π/4, (b) τ2 = π/3
and (c) τ2 = π/2 with d12 = 5 nm, n = 1× 1013 cm−2 and z=0.2 nm.

ωop(−)(q, θ) =

√
2nπe2q(1− αe−2qz)

ε∞

(
R1(θ) +R2(θ)

)
. (5.20)

The behavior of the coupled modes with SiO2 as substrate/spacer is pre-
sented in Figs. 5.5(c) and 5.5(d) for θ = 0 and θ = π/2, respectively. The
dispersion relations of the ωop/ac(−) modes resemble the uncoupled acoustic
and optical plasmon modes with an additional (1−αe−2qz)1/2 multiplier which
makes these coupled modes lie below the uncoupled ones. Similar to the case
of phosphorene monolayer, the hybrid plasmon-SO phonon frequencies along
q ‖ x are larger than along q ‖ y because the carriers along y direction have
larger mass and so get damped faster. One can also see that the uncou-
pled plasmon modes for q ‖ y lie lower than ω2

+ and therefore plasmon-SO
phonon coupling along y direction is substantially weaker compared to the x
direction.

In order to understand how the orientation parameter, Ri(θ), impacts the
behavior of hybrid plasmon-SO phonon modes in the double-layer system,
we show three cases in which τ1 = 0 and τ2 progressively increases from
π/4 to π/3 and to π/2 along x direction and for substrate/spacer SiO2 in
Fig. (5.6). One may notice that, in general, with the reduction of τ2, the
coupled plasmon-SO phonon modes become signi�cantly stronger because
the hybrid modes are larger along the lower mass direction, i.e. θ = 0.
Furthermore, it is clear that the three acoustic plasmon/phonon-like modes
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Figure 5.7: E�ect of changing separation between layers on the loss func-
tion, | − =[1/ε(ω, q)]|, for two parallel phosphorene monolayers sandwiched
by SiO2 in (ω, q) space along θ = 0 (q ‖ x) for (a) d12 = 2 nm (b) d12=5 nm
and (c) d12=8 nm with n = 1× 1013 cm−2 and z=0.2 nm.

are very sensitive to the rotation of layers and get damped as the angle of
rotation is increased. Finally, we address the e�ect of separation between
layers, d12, on the coupled modes along x direction in Fig. (5.7) for the
substrate/spacer SiO2. Here, increasing the separation between layers shows
a similar e�ect on hybrid mode frequencies as the reduction of rotation angle
τ2 (see Fig. 5.6). As expected, the hybrid acoustic branches, similar to
the uncoupled ones, depend strongly on the separation between layers at
long-wavelengths and move to the optical branches by increasing the layers'
spacing. As a result, by adjusting two parameters τ2 and d12, the acoustic
branches may get strongly damped or a transition to the optical modes may
be observed.

5.5 Conclusion

In summary, we have considered monolayer and double-layer phosphorene
systems located on polar substrates/spacers and derived the anisotropic cou-
pled plasmon-SO phonon dispersion relations in the long wavelength limit.
Here, the dynamical dielectric function is calculated within the RPA and
including many-body electron-electron interaction in phosphorene layer(s)
as well as the interaction between electrons and the long range electric �eld
generated by SO phonon modes. In the case of monolayer, due to the two rel-
evant SO phonon modes of the substrate, three hybrid plasmon-SO phonon
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branches are obtained. It is shown that the hybrid plasmon-SO phonon
modes are stronger along x direction because of lower corresponding e�ec-
tive mass and at large electron densities, these modes are stronger especially
along x direction. Exploring the e�ects of speci�c substrates on the cou-
pled modes showed that the phonon frequency (ωSO) of a substrate is the
most e�ective parameter in phonon-like modes (ωλ+) whereas the α parameter
changes the plasmon-like mode, ω−. Hence the choice of substrate can be
utilized in order to engineer the plasmon-SO phonon dispersion phosphorene
systems.

Also, analytical expressions for the hybrid modes at the long wavelength
limit have been derived for double-layer phosphorene. The results showed
that there are six hybrid modes: three acoustic, (ω±)ac, and three optical
modes, (ω±)op. By evaluating the energy loss function, it was found that
similar to the case of monolayer phosphorene, all plasmon-SO phonon modes
are stronger along x direction than the modes along y direction. The e�ect of
misalignment of the two layers on the hybrid modes has been also investigated
and found that the acoustic branches may become strongly damped or a tran-
sition to the optical modes can be observed in at small rotations. Finally, the
hybrid modes of double-layer phosphorene was studied for several inter-layer
separations and a transition to the optical modes (fast damping excitations)
by increasing (decreasing) of d2 is observed for the acoustic modes. As a
result of our calculations, rotation angle and separation between two layers
can be used as a mechanism for tuning the e�ects of the plasmon-SO phonon
coupling.



Chapter 6
Plasmon modes under applied

uniaxial strain

"Can plasmon modes of BP be
a�ected by an applied uniaxial
tensile strain?"

In this chapter1, we study the e�ects of an applied in-plane uniaxial strain
on the plasmon dispersion of monolayer, bilayer and double-layer phospho-
rene structures in the long-wavelength limit within linear elasticity theory.
In the low energy limit, these e�ects can be modeled through the change in
the curvature of the anisotropic energy band along the armchair and zigzag
directions. We derive analytical relations for the plasmon modes under uni-
axial strain and show that the direction of the applied strain is important.
Moreover, we observe that along the armchair direction, the changes of the
plasmon dispersion with strain are di�erent and larger than those along the
zigzag direction. For the two-layer phosphorene systems, we �nd that the rel-
ative orientation factor of the two layers can be used to control the plasmon
energy. Furthermore, our study shows that the plasmon collective modes are
more a�ected when the strain is applied equally to the layers as compared to
the case in which the strain is applied asymmetrically to the layers. We also

1The results of this chapter were accepted to Journal of Applied Physics 123, 174301
(2018).
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Table 6.1: Physical parameters of phosphorene under uniaxial strain along
armchair and zigzag edges.

x-axis y-axis
u′ (eV) 0.33 0.19
δ′ (eV) 2.15 2.91
χ′ (eVÅ) -2.96 3.43
η′x (eVÅ

2) 1.21 -0.45
η′y (eVÅ

2) -0.45 0.89
γ′x (eVÅ

2) 2.37 -3.81
γ′y (eVÅ

2) -3.81 3.81

calculate the e�ect of strain on the drag resistivity in a double-layer phos-
phorene structure. The changes in the plasmon excitations due to an applied
strain are mainly responsible for the predicted changes in the drag resistiv-
ity. This study can be easily extended to other anisotropic two-dimensional
materials.

6.1 Introduction

BP is the most stable allotrope form of crystalline phosphorus and is a layered
van der Waals (vdW) material like graphite. BP is a semiconductor with
a puckered orthorhombic structure o�ering highly anisotropic optical and
electronic properties [43, 32, 40, 113]. Few-layer BP has the unique feature
that its direct bandgap deceases exponentially from 2 to 0.35 eV as the
number of layers increases from monolayer to its bulk form. This property
allows layer-engineering to tune the electronic bandgaps and light absorption
spectra of BP.

This structure, with no surface dangling bonds withstands high deforma-
tion without breaking. Strain engineering, a recently developed and widely
adopted technique, is capable of changing the electronic and optical proper-
ties of BP. The band structure of this novel material is highly sensitive to
an applied strain and is highly deformable [147], making it a good potential
candidate for electro-mechanical applications [38, 148]. While silicon typi-
cally breaks at strain level of 1.5 % [149] and MoS2 gets folded and wrinkled
by tensile strain of about 10 % [150, 151], monolayer BP (phosphorene) is
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able to withstand a surface tension and tensile strain up to 10 N/m and 30
%, respectively [38, 152, 147, 23, 55, 153].

Plasmons, the collective excitations of the oscillating charges have been
extensively studied in graphene and other two-dimensional (2D) materials
[154, 155, 156, 157]. It was shown that plasmon collective modes in graphene
have relatively long propagation length [158, 159]. In a doped MoS2 mono-
layer, as a result of a strong spin-orbit coupling, the plasmon modes are
di�erent from those in graphene-like materials and enter the electron-hole
continuum region just similar to the case of 2D electron or hole gas with
spin-orbit coupling [160, 161]. The e�ect of uniaxial strain on the disper-
sion relation of plasmons in graphene was investigated and a strain-induced
anisotropic enhancement of the deviations from linearity of the transverse
modes was obtained [162]. Also, the anisotropic collective excitations in
pristine single-layer and multi-layer BP have been studied in the absence and
presence of a magnetic or electric �eld [163, 164]. In the context of plasmons
in layered BP, the e�ect of strain is one of the main issues that should be
addressed. Particularly, it is interesting to explore the strain in�uence on the
spatially separated double-layer phosphorene system in which the layers are
coupled only via the long-range Coulomb interaction and the system exhibits
a rich variety of phenomena like Coulomb drag [165]. The interaction-induced
Coulomb drag transresistivity in phosphorene double-layer, that was recently
investigated [47], is attractive because of its dependence on the plasma oscil-
lations and sensitivity to the structural anisotropy of the system.

In this chapter, we theoretically investigate the e�ects of an applied uni-
axial strain on the plasmon dispersion of monolayer, double-layer and bi-
layer phosphorene structures within linear elasticity theory. We calculate
the strain-dependent dynamic dielectric function within the RPA and obtain
the plasmon dispersion relation in the long-wavelength limit. We show that
the energy of the plasmon modes depends upon the applied strain through
the resulting e�ective masses along the armchair (x-axis) and zigzag (y-axis)
directions. In two-layer phosphorene systems, the relative orientation of the
two layers controls the plasmon frequencies. We also present numerical re-
sults for the e�ect of strain on the drag resistivity in a double-layer phos-
phorene structure and conclude that the changes in the plasmon excitation
energies, due to applied strain, are mainly responsible for the predicted be-
haviors.
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6.2 Strain-dependent electronic structure

We consider a system composed of phosphorene layers under externally ap-
plied strain.

The unit cell of monolayer phosphorene contains four phosphorus atoms
which are stacked in puckered subplanes. In the tight-binding (TB) model,
the Hamiltonian of the system is given as [166] Ht =

∑
i,j tijc

†
i (cj), where

tij represents the hoping between ith and jth sites and c†i (cj) is the creation
(annihilation) operator of electrons at site i(j). A strain-dependent two-
band TB Hamiltonian in the continuum approximation (retaining terms up
to second order in k) and considering the linear deformation regime was
obtained around the Γ point as [167, 148]

Ĥs
k

=

(
us + ηsxk

2
x + ηsyk

2
y δs + γsxk

2
x + γsyk

2
y + iχskx

δs + γsxk
2
x + γsyk

2
y − iχskx us + ηsxk

2
x + ηsyk

2
y

)
. (6.1)

Here, only the uniaxial strains sx, sy and sz along the three principle
directions, namely, the x-axis, y-axis and also the direction normal to the
phosphorene plane (z-axis) have been considered. Therefore, the changes of
the components of the position vector are determined by Xs = (1 + sX)X
where X = x, y and z. The strain-dependent parameters in the above TB
Hamiltonian are related to the unstrained ones as us = u+su′, ηsx = ηx+sη′x,
ηsy = ηy+sη

′
y, γ

s
x = γx+sγ′x, γ

s
y = γy+sγ

′
y and χ

s = χ+sχ′ where u = 0.42 eV,
ηx = 1.03 eVÅ2, ηy = 0.56 eVÅ2, δ = 0.76 eV, γx = 3.51 eVÅ, γy = 3.81 eVÅ2

and χ = −5.34 eVÅ. In Table 6.1, we list the calculated parameters of the TB
Hamiltonian matrix elements for a phosphorene monolayer under uniaxial
strain [148]. Applied strain can, in fact, a�ect the inter-band coupling by
changing the energy gap and χs. However, the relatively large bandgap of the
phosphorene monolayer which results in a weak inter-band interaction, allows
one to decouple the conduction and valence bands at small wave vectors. In
this approximation, the phosphorene band structure is obtained as:

Es
±(k) ≈ us + ηsxk

2
x + ηsyk

2
y ±

(
δs +

[
γsxk

2
x + γsyk

2
y +

(χs)2

2δs
k2
x

])
, (6.2)

where +(−) stands for the conduction (valence) band. Thus, the strain-
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Figure 6.1: E�ective masses along the armchair and zigzag directions of
phosphorene as function of tensile strain applied along (a)x-axis (sx) and (b)
y-axis (sy).

dependent electron and hole e�ective masses are given by

ms
ex =

~2

2(ηsx + γsx + (χs)2/2δs)

ms
ey =

~2

2(ηsy + γsy)

ms
hx =

~2

2(γsx − ηsx + (χs)2/2δs)

ms
hy =

~2

2(γsy − ηsy)
.

(6.3)

Considering only the conduction band and using the above strain-dependent
electron e�ective masses along the armchair (ms

x = ms
ex) and zigzag directions

(ms
y = ms

ey), we can obtain the following expression for the energy of the
electrons [44, 167]

Es(k) =
~2

2
(
k2
x

ms
x

+
k2
y

ms
y

). (6.4)

The calculated strain-dependent electron e�ective masses of phosphorene
as functions of sx and sy are depicted in Figs. 6.1(a) and (b). The inset
�gure is the top view of monolayer phosphorene. In a relaxed (unstrained)



74CHAPTER 6. PLASMONMODES UNDER APPLIED UNIAXIAL STRAIN

phosphorene monolayer system, the electron e�ective mass is predicted to
be 0.168m0 in the armchair and 0.852m0 in the zigzag directions [166]. The
smaller electron e�ective mass along the armchair direction results in a fa-
vorable transport direction in phosphorene. We show that when applying
uniaxial strain along x-axis, the e�ective mass in the armchair direction is
almost insensitive to the strength of the applied strain while along the zigzag
direction, it increases notably with strain. These behaviors are direct con-
sequences of the e�ect of strain on the band structure and atomic orbitals
of phosphorene [55]. In the case of strain applied parallel to the y-axis, the
e�ective mass along the armchair (zigzag) direction increases (decreases).
Since we used the one-band model, there are no sharp changes in the ef-
fective masses due to the direct-indirect band gap transition (see Fig. 6.1)
[55].

6.3 Plasmons under uniaxial strains

In order to study plasmonic collective modes, we need to calculate the dielec-
tric function εs(q, ω) of the system. Within linear-response theory, plasmon
modes are de�ned as the zeros of the dielectric function. The RPA is the
simplest diagrammatic procedure to include the electron correlations in the
dielectric function. It is well-known that RPA gives the exact dielectric func-
tion in the limit of in�nite electron density. As a result, it makes sense to
employ the RPA to calculate the dielectric function at high electron density.
The strain-dependent RPA dielectric function matrix for a few-layer system
in the absence of inter-layer tunneling is given by [66, 168]

εsij(q, ω) = δij + Vij(q)Π
s
i (q, ω), (6.5)

where Vij(q) = ν(q) exp(−qd(1− δij)) is the unscreened 2D Coulomb interac-
tion with d being the separation between layers and ν(q) = 2πe2/qκ, where
κ being the average dielectric constant. The non-interacting polarization
function of ith layer can be obtained through the following equation [62]:

Πs
i (q, ω) = − 2

A

∑
k

f 0(Es
i (q))− f 0(Es

i (k + q))

Es
i (q)− Es

i (k + q) + ~ω + iξ
. (6.6)

Here, A denotes the area of the unit cell, f 0(Es
i (q)) is the Fermi distribution

function of layer i at strain-modi�ed energy Es
i corresponding to a 2D wave
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vector q and ξ being the broadening parameter which accounts for disorder
in the system. In a phosphorene monolayer, the temperature-dependent dy-
namic polarization function for the intra-band transition has been calculated
by making use of the anisotropic parabolic energy dispersion relation (Eq.
(6.4)) as [44, 47]:

Πs
i (q, ω)

gs2d
= −

∫
dK

Φs
i (K,T )

Q

[
sgn(<(Z−))

1√
Z2
− −K2

− sgn(<(Z+))
1√

Z2
+ −K2

]
.

(6.7)

In the above, we de�ned K(Q) =
√
ms
d/M̂

s(k(q)/kF ), where M̂ s is the
strain-dependent mass tensor with diagonal elements ms

x and m
s
y and m

s
d =√

ms
xm

s
y is the 2D density of states mass. Here, kF =

√
2πn is the Fermi wave

vector, n being the electron density, q = q(cos θ, sin θ), gs2d = ms
d/π~2 and the

rotational angle, τi, is de�ned as the angle between x-axis in the laboratory
frame and x direction of the ith layer. So, we can write Q = q

√
ms
dR

s
i (θ)/kF

in which the strain-dependent orientation factor, Rs
i (θ), is expressed as:

Rs
i (θ) =

(
cos2(θ − τi)

ms
x

+
sin2(θ − τi)

ms
y

)
. (6.8)

Moreover, in Eq. (6.7) we de�ne Z± = ((~ω+ iξ)/~QνsF )± (Q/2kF ) with
νsF = ~kF/ms

d and Φs
i is given by:

Φs
i (K,T ) =

K

1 + exp[(K2Es
F,i − µsi )/kBT ]

, (6.9)

where Es
F,i and µ

s
i are the strain-dependent Fermi energy and chemical po-

tential of layer i, respectively and they satisfy the following particle number
conservation condition [63]:

Es
F,i = µsi + kBT ln[1 + exp(−µsi/kBT )]. (6.10)

In the limit of long-wavelength where the plasmon excitations have rela-
tively long lifetimes, the zero-temperature polarization function can be ap-
proximated as [43]:

Πs
i (ω, q, θ)

gs2d
≈ q2

ω2
Rs
i (θ)E

s
F,i. (6.11)



76CHAPTER 6. PLASMONMODES UNDER APPLIED UNIAXIAL STRAIN

Figure 6.2: The plasmon dispersions in the unstrained and uniaxial ten-
sile strained phosphorene monolayers along x− and y−axis with n = 1 ×
1013cm−2. Here, the substrate is h-BN.

Thus, the long-wavelength plasmon dispersion relation of a phosphorene
monolayer under uniaxial strain is obtained as

ωspl(q, θ) =

√
2nπe2Rs

i (θ)q

κ
, (6.12)

which depends on strain through the orientation factor. An important and
useful feature of this formulation is that all the e�ects due to strain appear
in the strain-dependent orientation factor Rs

i (θ) as a multiplicative modi-
�er. Therefore, we recover the typical

√
q dispersion of 2D plasmons and

the strain e�ects are included in the e�ective masses. In Fig. 6.2, we show
our numerical results for the strain-dependence plasmon modes in mono-
layer phosphorene along (a) armchair and (b) zigzag directions for a few
applied uniaxial strains. For comparison, we also present numerical results
for the case of relaxed system. Due to the peculiar behaviors of the e�ective
masses under uniaxial strains along zigzag and armchair directions, plas-
mon modes behave di�erently along these directions. The energy of plasmon
modes, ~ωspl(q, θ), along the armchair direction decreases with increasing the
strength of the applied strain due to the e�ective mass enhancement along



6.3. PLASMONS UNDER UNIAXIAL STRAINS 77

Figure 6.3: (a) Acoustic and (b) optical plasmon dispersions along arm-
chair and zigzag directions of a double-layer phosphorene structure. Uniaxial
tensile strain is applied along the x− and y-axis with n = 1× 1013cm−2 and
d =5 nm. The structure is sandwiched by h-BN.

this direction. However, as shown in Fig. 6.2, the e�ect of applied strain on
the plasmon dispersion along the zigzag direction is di�erent. It is important
to notice that the energy of plasmon modes in the zigzag direction decreases
(increases) with applied sx (sy) strain. This observation could be understood
through the fact that the electron e�ective mass increases (decreases) with
increasing sx (sy) along the zigzag direction (see Fig. 6.1). However, the
e�ective mass along the armchair direction increases with increasing sx and
also sy. It is worth pointing out that while the applied strain changes the
energy of the plasmon modes, it does not alter the standard

√
q dispersion

behavior.

To show how uniaxial strain a�ects the plasmonic excitations in double-
layer phosphorene, we solve Eq. (6.5) for a 2×2 matrix. Considering the long-
wavelength limit and only the intra-band transition, there are two plasmonic
branches, the so-called acoustic plasmons with q-linear behavior

ωsac(q, θ) = 2q

√
nπe2d

ε∞

(
Rs

1(θ)Rs
2(θ)

Rs
1(θ) +Rs

2(θ)

)
, (6.13)
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and optical plasmons with square-root dependence on q

ωsop(q, θ) =

√
2nπe2q

ε∞

(
Rs

1(θ) +Rs
2(θ)

)
. (6.14)

Although the optical mode, ωsop(q, θ), corresponds to a collective excitation
in which the electron densities in the two layers �uctuate in-phase and it
is independent of the layer separation d for small wave vectors, the acous-
tic plasmon mode, ωsac(q, θ), accounts for an out-of-phase oscillation of the
carriers in the two layers and depends on d. These branches are in�uenced
by the strain through the strain-dependent orientation factor of the layers,
Rs

1(θ) and Rs
2(θ). While these factors are combined together additively for

the optical plasmon modes, they appear as a reduced form, similar to a re-
duced mass in the acoustic plasmon [46]. In Fig. 6.3, these modes have been
illustrated for a few uniaxial strain values along the armchair and zigzag
directions in phosphorene double-layer sandwiched by h-BN at an electron
density n = 1× 1013 cm−2 and with a separation distance d = 5 nm. When
strain is applied to a double-layer system, both the optical and acoustic plas-
mon modes decrease along the armchair direction. However, these plasmon
branches exhibit a long-wavelength behavior similar to the zigzag direction
of plasmon dispersion in monolayer phosphorene under uniaxial strain.
It is appealing to model bilayer phosphorene itself by reducing the separa-
tion down to d = 0.5 nm. Therefore, we use the general low-energy model of
anisotropic double-layer systems (see Eq. 6.4) without the inter-layer hop-
ping of electrons. The plasmon modes of the relaxed and strained bilayer
phosphorene are shown in Fig. 6.4 where an e�ective dielectric constant of ∼
2 (for a common h-BN substrate and air spacer) and an inter-layer distance
of d = 0.5 nm are considered. More interestingly, due to the weak vdW
interaction between phosphorene layers, the plasmon modes of our suggested
bilayer phosphorene with no strain are consistent with the results have been
previously obtained in the long-wavelength limit in Ref. [45]. Plasmon modes
that were studied by using a TB model for a bilayer phosphorene in which
the inter-layer hopping of electrons was allowed. As expected, the acoustic
modes in the bilayer structure are much weaker as compared to the acoustic
modes of the double-layer system because of the shorter distance between
the two layers. Also, under uniaxial strain, the behavior of the optical and
acoustic modes of the bilayer system is similar to the case of double-layer
phosphorene along both the armchair and zigzag directions. For the strained



6.4. TRANSRESISTIVITY OF PHOSPHORENE UNDER STRAIN 79

Figure 6.4: (a) Acoustic and (b) optical plasmon dispersions along armchair
and zigzag directions in bilayer phosphorene. Uniaxial tensile strain is applied
along the x− and y−axis with n = 1 × 1013cm−2 and d = 0.5 nm. The
e�ective dielectric constant of ∼ 2 (h-BN as substrate and air as spacer is
used).

bilayer structure, we investigate two di�erent cases: i) strain equally applied
to the two layers, R1(s) = R2(s), and ii) strain applied only to one of the
layers, R1(s 6= 0) and R2(s = 0). The qualitative di�erence between these
two cases is apparent in Fig. 6.4. As can be observed, the e�ect of strain on
the long-wavelength plasmon energies in case i) is stronger than the case ii).

6.4 Transresistivity of phosphorene under strain

In this section, we study the transresistivity in a double-layer phosphorene
under strain. It is well-known that plasmon modes contribute strongly to the
momentum transfer phenomenon in Coulomb coupled electron gas systems
[90, 169]. The transresistivity matrix for an anisotropic double-layer system
which was recently proposed [47] is given by

ρsαβ =
~2

(2π)3e2n1n2kBT

∫
dq

∫ ∞
0

dωF s
αβ(q, ω, T ), (6.15)
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Figure 6.5: Scaled drag resistivity for a few values of tensile uniaxial strain
along (a) armchair and (b) zigzag directions in a double-layer phosphorene
sandwiched by h-BN with d = 5 nm.

where n1 and n2 are the electron densities in layers 1 and 2, α and β denote
the Cartesian coordinates (x and y) and F s

αβ(q, ω, T ) is de�ned as:

F s
αβ(q, ω, T ) =

∫ 2π

0

dθψαβ(θ, τ1, τ2)
q3

sinh2(~ω/2kBT )
|U s

12(q, ω, T ; θ, τ1, τ2)|2

×=Πs
1(q, ω, T ; θ, τ1)=Πs

2(q, ω, T ; θ, τ2),
(6.16)

with ψαβ given by

ψαβ(θ, τ1, τ2) =


cos(θ − τ1) cos(θ − τ2), α = β = x
sin(θ − τ1) sin(θ − τ2), α = β = y
cos(θ − τ1) sin(θ − τ2), α = x, β = y.

(6.17)

The strain-dependent dynamically screened inter-layer potential
U s

12(q, ω, T ; θ, τ1, τ2) = U s
12(q, ω) can be obtained from [65]:

U s
12(q, ω) =

V12(q)

det|εs12(q, ω)|
, (6.18)

where det|εsij(q, ω)| is the determinant of the general dielectric matrix, Eq.
(6.5). In Fig. 6.5, we show the diagonal elements of the transresistivity ten-
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sor calculated within the RPA versus temperature for two parallel aligned
phosphorene monolayers sandwiched by h-BN layers and separated by a dis-
tance of d = 5 nm. It can be seen that the values of ρsyy is larger than ρ

s
xx

in the studied range of temperatures. This is a consequence of a higher elec-
tron e�ective mass (Fig. 6.1) which results in lower excitation energies for
the acoustic and optical branches (Fig. 6.3), and thus in a larger contribu-
tion of plasmon modes to the momentum transfer phenomenon. Also, as a
general result, the transresistivity is mainly in�uenced by the strain in such
a way that it increases by increasing the applied strain. According to the
results shown in Fig. 6.5, the e�ect of uniaxial strain on the transresistivity
is stronger for higher temperatures. In the case of ρsxx, the drag resistivity
shows a neat correlation with the plasmon modes when sx or sy is applied.
On the other hand, although, the unstrained ρsyy has still smaller values than
the strained one, it does not really follow the trend of the plasmon modes
with applied sy. We think that in this case, the e�ect of applied strain on
the single-particle contribution to the drag resistivity dominates the strain
e�ect on the plasmons, which results in a di�erent behavior.

6.5 Conclusion

In this chapter, we have studied the e�ect of an applied uniaxial tensile strain
on the plasmon dispersion of monolayer, bilayer and double-layer phospho-
rene structures. As a consequence of the anisotropic energy band, the changes
in the plasmon dispersions are di�erent along the armchair and zigzag direc-
tions and depend strongly on the direction of the applied uniaxial strain.
Also, in the two-layer phosphorene systems, it was shown that the strain-
dependent orientation factor of the layers controls the variations in the plas-
mon energies. In addition, we have obtained that while the behavior of
the optical and acoustic modes are similar in both bilayer and double-layer
phosphorene, plasmons along the armchair direction are more a�ected by
strain. Moreover, for the strained bilayer structure, two di�erent cases have
been investigated: i) strain equally applied to the two layers, and ii) strain
applied only to one of the layers. We found that the e�ect of strain on
the long-wavelength plasmon modes in case i) is stronger than for case ii).
Finally, the diagonal elements of the transresistivity tensor have been calcu-
lated within the RPA for a double-layer phosphorene in which two parallel
aligned phosphorene monolayers are under strain and sandwiched by h-BN.
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The results suggested that the changes in the plasmonic excitations, due to
the applied strain, are mainly responsible for the predicted behaviors of the
drag resistivity.



Chapter 7
Electron-hole super�uidity

"How does excitonic
super�uidity occur in a
electron-hole double-layer
phosphorene at zero
temperature ?"

We study excitonic super�uidity at zero temperature in the electron-hole
double layer phosphorene system by using an anisotropic e�ective mass in
the free-electron model. Highly anisotropic super�uidity is predicted where
the magnitude of the gap function is not only momentum dependent, but also
depends on the direction of k. Meanwhile, the peak around the maximum
gap (∆max) is located in the BEC regime along the armchair direction and
in the BCS-BEC crossover regime along zigzag direction. We calculate an
estimated highest Kosterlitz-Thouless transition temperature with maximum
value up to ∼ 90K in double layer phosphorene along the zigzag direction
with carrier densities as high as 4 × 1012 cm−2. We highlight in this work
that the in-plane anisotropy plays an important role in super�uidity where
in a special direction there is a transition to strongly correlated states. Our
results may guide future experimental research towards the realization of
anisotropic condensate states in coupled 2D devices.
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Figure 7.1: Schematic illustration of two phosphorene sheets separated by
a thin barrier of h-BN layers. The electrons and holes are induced in the
separately electrically contacted upper and lower phosphorene sheets by top
and back gates.

7.1 Introduction

Phosphorene is unstable in air [170, 171] and therefore encapsulation with
hexagonal boron nitride (h-BN) is used to make devices which are conduc-
tive and fully stable under ambient conditions [172, 30]. There has been an
increasing interest in the study of van der Waals heterostructures including
2D conducting sheets separated by thin h-BN insulating layers. The interest
is mainly because these systems o�er the possibility for the observation of
a coherent super�uid state in spatially separated electron- and hole-doped
conducting sheets driven by the strong inter-layer Coulomb interaction. Un-
like conventional double-GaAs quantum well structures, which typically have
inter-layer electron-hole separation larger than the e�ective Bohr radius, the
separation between the electron-hole sheets in 2D van der Waals heterostruc-
tures [1], can be as small as 1 nm (i.e. three h-BN layers) and still provide a
potential barrier high enough to suppress inter-layer tunneling. This leads to
a strong inter-layer coupling, boosting the onset of super�uidity. Electron-
hole super�uidity has been studied in di�erent double graphene systems,
including monolayers [173], bilayers [174], few layers [8], nanoribbons [175]
and hybrid graphene-GaAs quantum heterostructures [176]. Such systems
may support a super�ow of electron-hole pairs below the Kosterlitz-Thouless
(KT) transition temperature. Except for the double electron-hole monolayer
graphene system, in which a strong screening kills any super�uidity [173],
multi-layer graphene systems show promising predictions for the observation
of a condensate super�uid state.

In this chapter, we investigate the possibility of anisotropic super�uid-
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ity in double electron-hole phosphorene sheets. We found that a highly
anisotropic super�uid state occurs in double phosphorene sheets arising from
the anisotropic low energy bands in phosphorene. Because of the anisotropic
charge carrier e�ective mass along the armchair(x) and zigzag (y) directions,
excitons in phosphorene are characterized by a strong spatial anisotropy and
can exist at elevated temperatures with large binding energies [39, 177, 178].
Our system consists of two parallel monolayer phosphorene sheets. The up-
per sheet of electrons and the lower sheet of holes are controlled by the top
and back gates, respectively. The two sheets are separated by a thin h-
BN insulating barrier to prevent tunneling between the phosphorene sheets
and thus prevent electron-hole recombination. The semiconductor nature
of phosphorene with a large energy gap of ∼ 1.5 − 2 eV leads to only very
small contributions from the phosphorene valence band. Therefore, within
our calculations we consider only contributions from the conduction band.
We �rst extend the isotropic mean-�eld equations for the super�uid gap and
super�uid density to the case of anisotropic energy bands considering static
screened electron-hole Coulomb interaction. We calculate the super�uid en-
ergy gap and transition temperature to see whether a super�uid state can
form in the double phosphorene system for experimentally attainable densi-
ties. We predict a highly anisotropic gap function and estimate an upper limit
for the transition temperature that also depends on the direction of motion
of the electron-hole pair, caused by the anisotropic band structure. Whereas
phosphorene represents a good system to which we can apply our analysis,
the approach outlined in this paper are given in the most general form to
make them easily adaptable to other materials and can also be applied to
other emerging anisotropic 2D materials.

7.2 Isotropic mean �eld equation

We employ a mean �eld approach in which the �nite energy gap in the
excitation spectrum of the system ∆(k), is a signature of the super�uid
ground state. For a system with equal density of electrons and holes ne =
nh = n, the pair excitation energy and the equation for the momentum
dependent gap function are, respectively [179]

E(k) =
√
ξ2(k) + ∆2(k), (7.1)
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∆(k) = − 1

Ω

∑
q

V (q)
∆(k − q)

2E(k − q)
, (7.2)

and the mean �eld equation for the electron(hole) density is given by:

n =
gs
Ω

∑
k′

1

2
(1− ξ(k′)

E(k′)
), (7.3)

where Ω is the surface area of the system, ξ(k) = [ξe(k) + ξh(k)]/2 with
ξe/h(k) energy of electrons and holes measured from the chemical potential µ
and gs = 2 is the spin degeneracy. The screened Coulomb interaction V (q),
between electron(e) and hole(h) layers in the random phase approximation
(RPA) is given by [180]:

V (q) =
vd + Πa(v

2
q − v2

d)

1 + 2(vqΠn + vdΠa) + (v2
q − v2

d)(Π
2
n − Π2

a)
. (7.4)

Here vq = −2πe2/κq and vd = vq exp(−qd) are, respectively, the intra-layer
and inter-layer Coulomb interaction screened by a surrounding medium with
dielectric permitivity κ. Here we set κ = 3 which is the dielectric constant of
h-BN. Πn and Πa are the normal and anomalous polarization, respectively,
which within the RPA are given by [66, 181]

Πn(q) = −gs
∑
k

u2(k)ν2(k − q) + ν2(k) u2(k − q)

E(k) + E(k − q)
, (7.5)

Πa(q) = gs
∑
k

2u(k)ν(k − q)ν(k) u(k − q)

E(k) + E(k − q)
, (7.6)

where u(k) and ν(k) are the coherence factors given by [182]

u2(k) =
1

2
(1 +

ξ(k)

E(k)
), ν2(k) =

1

2
(1− ξ(k)

E(k)
). (7.7)

We note that u(k)ν(k) = ∆(k)/2E(k). The most favorable conditions for
pairing occurs when kFd � 1. In this limit, Eq. (7.4) can be approximated
as [174, 8]

V (q) ≈ vq exp(−qd)

1 + 2vq(Πn[q) + Πa(q)]
. (7.8)
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7.3 Anisotropic mean �eld equations

Here, we extend the mean �eld equations (7.2) and (7.3) to the case of e-h
phosphorene sheets where the energy bands are anisotropic. Here we use the
e�ective masses me

x = mh
x ≈ 0.15m0 and me

y ≈ 0.7m0 and mh
y ≈ 1.0m0 (m0

is the free electron mass) [64]. Because phosphorene is a semiconductor with
a direct band gap at the Γ point of the �rst Brillouin zone [33], inter-band
transitions require extremely large energies. Therefore, we include only one
band and limited ourselves to contributions from the conduction band of
each layer. In this case, we use equal e�ective masses for the e and h in each
phosphorene sheet, so that we drop out the e and h indices. Here, to get rid
of the anisotropy, we use the following transformation [44] s =

√
mD/Mq

and p =
√
mD/Mk. We consider k = k(cos(θ), sin(θ)) where θ is the polar

angle of the k vector with respect to the x axis. So, we can rewrite p(θ) =
k
√
mdR(θ) in which the orientation factor R(θ) = cos2(θ)/mx + sin2(θ)/my

[46]. Using this simpli�ed notation, the anisotropic energy ξ(k) term (Eq.
2.10) becomes:

ξ(p) =
~2p2

2md

− µ. (7.9)

Having this quadratic energy dispersion, we generalize the well-known ana-
lytical form of the polarizability to include anisotropy in the super�uid gap.
Therefore, the zero temperature total polarization function can be calcu-
lated by using the renormalized isotropic energy bands Eq. (7.9) within the
calculation of Eq. (7.5) for the normal polarization function

Πn(s) = −gs
∑
p

u2(s)ν2(p− s) + ν2(p)u2(p− s)

E(p) + E(p− s)
, (7.10)

and in Eq. (7.6) for the anomalous polarization function

Πa(s) = gs
∑
p

2u(p)ν(p− s) ν(p)u(p− s)

E(p) + E(p− s)
. (7.11)

Using the polar notation, one can readily obtain the super�uid gap equa-
tion as

∆(p) = − 1

Ω

∑
p′

V (p− p′)
∆(p′)

2E(p′)
, (7.12)
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and the density equation

n =
gs
Ω

∑
p′

1

2
(1− ξ(p′)

E(p′)
). (7.13)

7.4 Results an discussions

In this section, we present and discuss our numerical results for the super-
�uidity of the double-layer phosphorene. Here we solve Eqs. (7.10)-(7.13)
self-consistently for the direction-dependent ∆(k). The separation of few
nanometers between electron and hole sheets can be achieved in the 2D e-h
double-layer systems making them good candidates for the observation of su-
per�uidity [174, 8]. Fig. (7.2) shows the maximum of the super�uid gap ∆max

as a function of density for di�erent interlayer separations d and for both (a)
armchair (θ = 0) and (b) zigzag (θ = π/2) directions of phosphorene. It is
important to note that, although with decreasing d the pairing interaction
in the two directions become stronger and the super�uidity persists up to a
higher onset density, nc, but the maximum of the gap function, ∆max, is about
twice larger along zigzag than armchair direction for the same d. This e�ect
can be understood by recalling the fact that the larger e�ective mass results
in a signi�cant enhanced exciton e-h binding energy. Indeed, the localized
excitons happen when the e�ective mass is large and the dielectric constant
is small. Therefore, in the zigzag direction the interactions are stronger than
in the armchair direction, leading to more localized pairs, and this further
reduces the e�ectiveness of screening. We use the one band model in which
the e-h (exciton) mass ratio is �xed to unity. When the mass anisotropies
of e and h are di�erent, the Fermi surfaces for the conduction and valence
bands will be di�erent. Then the e�ective mass anisotropy results in the
disappearance of the exciton state because excess energy is needed to create
e�h pairs.
The distinction between BEC and BEC-BCS crossover regime is shown in
Fig. (7.2). This separation can be estimated by the condensate fraction, CF =∑

k u
2(k)v2(k)/

∑
k v

2(k), which describes the number of Bose-condensed
particles at T = 0 [8]. It is shown that due to the fact CF > 0.8 the peak
around the maximum gap ∆max is located in the BEC regime along the arm-
chair direction and it is in the crossover from exciton BEC at low densities
to the BCS-like condensate at high densities along the zigzag direction where
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Figure 7.2: Maximum of the super�uid gap along the two main crystallo-
graphic directions of phosphorene (a) the armchair direction (θ = 0) and (b)
the zigzag direction (θ = π/2) for di�erent h-BN e�ective barrier thickness
d.

0.2 < CF < 0.8, especially in the low inter-layer distance. Furthermore, in
the high density regime screening kills the super�uid gap before the BCS
regime is reached for two directions.

The k dependence of the gap ∆(k) can show the nature of the super�u-
idity. To highlight the anisotropy of the gap function, we provide three cross
sections of ∆k in Fig. 7.3 for d = 2nm and density marked in Fig. 7.2. We
see that in Fig. 7.3(a) for low density the peak in ∆k along both directions
is centered at k = 0 in the strongly pairing regime of Bose-Einstein con-
densation (BEC). In Fig. 7.3(b) the maximum ∆k is becoming more broad
along the zigzag direction but it is still centered around k = 0 displaying a
remaining bosonic character of the Cooper pairing in the BEC regime but
the maximum peak goes to the BEC-BCS crossover regime of weak coupling
pairing along the armchair (x) direction. Fig. 7.3(c) shows the cross section
of ∆(k) as a function of k/kF at n ≈ 3.5 × 1012cm−2 where the gap func-
tion along the zigzag direction has its maximum. The maximum ∆(k) along
zigzag direction con�rms that we are in the BEC-(BCS) crossover regime of
compact electron-hole pairs at high densities due to the maximum peak near
kF . Furthermore, with increasing density along zigzag direction we would
reach BCS but the gap collapses before that happens and so the super�uid
does not reach the BCS limit. At very low densities and at small enough
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interlayer distance the electron-hole system is in the very strong-coupling
regime: the gap is large in units of the non interacting Fermi energy, the
condensate fraction is close to one, the chemical potential becomes strongly
negative and it approaches minus half of the binding energy of the two-body
electron-hole problem, which is the bound state energy of an isolated exci-
ton. Moreover, in the BEC limit the radius of the electron-hole Cooper pairs
approach the radius of the exciton in the isolated exciton-limit. Therefore,
the extreme BEC limit realized at very low densities in our electron-hole
system at T=0 is in correspondence with the pure, weakly interacting exci-
tonic system analyzed in detail in Ref. [178]. On the other hand, a direct
quantitative comparison between the results of our work and the results of
Ref. [178] is not possible and beyond the scope of the present paper, being
di�erent the model interaction between carriers and the way the Coulomb
screening is included in the two approaches.

There is a condensate of pairs in the zero-momentum state below the crit-
ical temperature, the highest temperature at which the normal Fermi system
becomes unstable with respect to the formation of pairs. This super�uid
transition temperature in two-dimensions is determined by the well known
relation

TKT =
π

4
ρs, (7.14)

where ρs(0), the super�uid density can be obtained by [183]:

ρs = gs
∑
p

ν2(p)

md

. (7.15)

Therefore, below TKT super�uidity exits in the e-h pairs condensate where
it has an important e�ect on the transport properties of the condensate.
Hence, it is necessary to give the variation of the KT temperature and nc
with distance between the layers. For densities above an onset density nc
if there is any super�uidity at all, the gap would be extremely small. The
behavior of the onset density is indeed related to the direction of k due to
the di�erent e�ective masses. In Fig. 7.4(a), we depict nc as a function of
d for several relative directions of the phosphorene layers. At �xed d, the
onset density is larger along the zigzag (θ = π/2) direction and its value in
this direction becomes an order of magnitude bigger than for the armchair
(θ = 0) direction as d decreases. The maximum value for nc approaches
4 × 1012 cm2 for d = 2nm. The maximum TKT which happens in the onset
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Figure 7.3: Cross section of ∆(k) in the k/kF phase for density (a) (1) , (b)
(2) and (c) (3) marked in Fig.7.2. Here the e�ective h-BN barrier thickness
is d = 2nm.

density is plotted in Fig. 7.4(b) as a function of d. This is the highest
temperature we �nd and below which we get super�uidity along the zigzag
direction (θ = π/2). Furthermore, the maximum value of the KT transition
temperatures are well above those predicted for double few-layer sheets of
graphene [8].

7.5 Conclusion

In this chapter, we studied the occurrence of excitonic super�uidity in electron-
hole double-layer phosphorene at zero temperature. We �rst generalized the
approach for the gap function to the case of a strongly anisotropic double-
layer system such as phosphorene. We showed that the gap function is
anisotropic, i.e. it depends on the direction of k, in which the basic ori-
gin of the anisotropy can be explained by using an anisotropic e�ective mass
in the free-electron model. The results showed that the gap function is larger
along the zigzag direction and the peak around the maximum gap (∆max)
is located in the BEC regime along the armchair direction and it is in the
crossover regime from exciton BEC at low densities to the BCS-like conden-
sate at high densities along the zigzag direction. Importantly, we estimate
the anisotropic high KT transition temperature with maximum value up to
∼ 90 K in double-layer phosphorene along the zigzag direction with carrier
densities as high as 4× 1012 cm−2. Furthermore, there is a phase transition
as a function of the wave vector direction. We showed that the electron-
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Figure 7.4: (a) Maximum density nc for several directions as a function of
the h-BN e�ective barrier thickness d. (b) Maximum TKT as a function of
the h-BN e�ective barrier thickness d.

hole double-layer phosphorene system is a promising candidate for revealing
a variety of super�uid phases. We highlight in this work that the in-plane
anisotropy e�ects play an important role in the super�uid state in a special
direction and for the transition to strongly correlated states and it would be
gratifying to observe this e�ect in experiments.



Chapter 8
Anisotropic charge density wave

"Can we see charge density
waves in a double layer
phosphorene?"

The possibility of an inhomogeneous charge density wave phase is investi-
gated in a system of two coupled electron and hole phosphorene monolayers
separated by hexagonal boron nitride insulating layers. The charge density
wave state is induced through the assumption of negative compressibility of
electron/hole gases in a Coulomb drag con�guration between the electron
and hole phosphorene sheets. Under equilibrium conditions, we derive ana-
lytical expressions for the density oscillation along the zigzag and armchair
directions of phosphorene. We �nd that the density modulation not only
depends on the sign of the compressibility but also on the anisotropy of the
phosphorene low energy bands.

8.1 Introduction

One of the most surprising phenomenon in condensed matter physics is that
a Fermi liquid ground state can become unstable leading to inhomogeneous
phases [184]. Charge density waves (CDWs) [185], spin density waves (SDWs)
[186], and superconductivity [187] are hallmarks of such phases for electrons
to lower their energy via a gap opening at the Fermi level. These are special
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cases of the so-called Peierls distortion, where a local symmetry is broken to
achieve a lower ground state energy [188]. However, CDWs are favored in
one dimensional (1D) systems or systems which look electronically 1D along
a speci�c direction [189]. Aside from their ubiquity, CDWs tend to pop up
in material systems with contemporary interest, including 1D systems and
two-dimensional (2D) systems with strong interactions, some of which also
happen to be superconducting [190]. Moreover, the amplitude of the CDW
can be tuned by the applied drag force [191] which depend on the separation
between the layers and temperature. In addition, some types of CDWs can
not be explained by simple models of Fermi surface nesting, and are hence
topics of active research. The CDW phase can be experimentally observed
using scanning tunneling microscopy (STM) [192, 193].

One of the experimental consequences of the formation of CDW states
would be the negative contribution of electron-electron correlations to the
electronic compressibility [194, 195]. Another experimental indication would
be the reentrant integer quantum Hall e�ect in such systems, induced by
pinning of the hexagonal CDW due to disorder [196, 195]. Moreover, CDWs
are induced when the compressibility (κ−1 = n2∂µ/∂n) is negative (n is the
density and µ is the chemical potential) [191]. A negative compressibility
results from electron-electron interactions, in which the exchange and corre-
lation energies lower the chemical potential as the electron density decreases.
This e�ect has been observed to enhance the capacitance of semiconductor
2D electronic systems by a few percent above the expected geometric capac-
itance [197]. In comparison to graphene, phosphorene is chemically reactive
and tends to form strong bonds with the surface of substrates which lead
to structural changes [198, 199, 200]. Naturally, chemically stable 2D ma-
terial systems, such as graphene and hexagonal boron nitride (h-BN) may
be used to protect the fragile, low-chemical-stability of phosphorene [201].
Encapsulated of few-layer phosphorene by h-BN sheets are new ultraclean
heterostructures which could be ideal anisotropic 2D systems with high mo-
bility and possible negative compressibility of its electron/hole gas [202].

Recently, a system of two strongly coupled electron-hole bilayer graphene
sheets has been investigated in Ref. [189] and new inhomogeneous coupled
Wigner crystal phase (c-WC) and 1D-CDW phases were predicted which in-
terplay with the predicted electron-hole superfuid. In contrast to graphene,
the large gap in phosphorene allows the contribution of the conduction band
to dominate and to change the sign of the compressibility of the electron/hole
gases at experimental achievable carrier concentrations. In graphene, the
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Figure 8.1: Schematic setup of the electron-hole phosphorene monolayers.

compressibility does not become negative in the absence of magnetic �eld
because of the positive contribution of the completely �lled valence band
[203]. Negative compressibility has been recently observed in atomically
thin BP wherein strong correlations results in an enhanced gate capacitance
[202]. Importantly, negative compressibility occurs at densities as high as
n ≈ 1012cm−2 which is achievable in experiment [202]. It was shown that
an increase in the gate capacitance of a phosphorene �eld-e�ect transistor
(FET) originates from such negative compressibility at low electron densities
[202].

In this chapter, we investigate the CDW phase of carriers in coupled
electron-hole phosphorene sheets where the electrons and holes interact via
the Coulomb interaction. In this system, a negative electronic compressibility
at su�ciently low charge density enables the formation of a CDW phase
through the application of a uniform force �eld via the Coulomb drag. In
the Coulomb drag setup shown in Fig. 8.1 applying the current in one of
the layers, i.e. the �active� drive layer, induces an electric �eld in the other
layer, i.e. the �passive� drag layer, in which no current �ows. When the
compressibility of the drag layer is negative, the force exerted by this electric
�eld results in CDW phases with a wave-length determined by the absolute
value of the compressibility [191]. We generalize the method of Ref. [191] to
investigate the controlled formation of a CDW phase caused by a negative
electronic compressibility.
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8.2 Charge density wave in double-layer phos-

phorene

We consider two strongly coupled phosphorene layers, one layer containing
electrons and the other holes. We assume that an uniform and steady force
is applied to the carriers in each layer due to the momentum transfer pro-
cesses in a drag set up con�guration. We can characterize this force using
an interlayer scattering time tensor τ̂ , i.e. the rate at which momentum is
transfered from the drive layer to the drag layer. Therefore, the force F d

applied from the drive to the drag layer can be written as F d = M̂ τ̂−1v
[204], where v is the group velocity of carriers in the drive layer and M̂ is the
mass tensor with diagonal elements me/h

x and me/h
y along x (armchair) and

y (zigzag) directions, respectively. We solve the equilibrium solution for a
single layer of phosphorene to which the drag force is applied. The drag layer
is modeled as a quasi-1D electron(hole) gas on a �nite strip of length L with
density ne/h. As no current can �ow in the direction of the electric �eld, the
drag force must be exactly balanced by the quantum mechanical force arising
from the gradient of the chemical potential Fq = −∇µ. Assuming that the
density remains uniform in the zigzag (armchair) direction, the equilibrium
condition for the armchair (zigzag) direction can be written as

F α
d −∇µ+

∫ Lα/2

−Lα/2
dα′

e2δn(α′)

2πκ(α− α′)
= 0, (8.1)

where α = x, y and α′ = x′, y′. δn is the deviation of the 2D electron density
from equilibrium with κ being the dielectric constant. In the linear regime,
the gradient of the chemical potential is

F q = −∂µ
∂n

∣∣∣∣
n

∇δn. (8.2)

Inserting both the drag and quantum mechanical forces in Eq. (8.1) we
�nd the equilibrium condition for the α direction

me
αv

e
α

ταd
− ∂µ

∂n

dδn(α)

dα
+

∫ L/2

−L/2
dα′

e2δn(α′)

2πκ(α− α′)
= 0, (8.3)

where ταd is the scattering lifetime, the electric �eld is applied along the α
direction in the drive layer and the current is measured along the α direction
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in the drag layer. We assume Lx = Ly = L and express x and y in units
of L/2 and divide the equilibrium solution by the drag force. Therefore, the
equilibrium condition for the α direction of the phosphorene layer becomes

1− Γ̄α
dδn(α)

dα
+ (

e2ταd
2πκme

αv
e
α

)

∫ 1

−1

dα′
δn(α′)

(α− α′)
= 0, (8.4)

where Γ̄α = Γα/L and Γα is a direction dependent compressibility-related
length given by

Γα =
2 ταd
veαm

e
α

∂µ

∂n
. (8.5)

The density can be expanded in a series of Chebyshev polynomials

δn(α) =
∞∑
j=1

cαj T2j−1(α), (8.6)

with cαj the expansion coe�cients. Using T ′n(α) = nUn−1(α) where Un(α) is
associated with the second kind Chebyshev polynomial, the derivative of the
density is given by

dδn(α)

dα
=
∞∑
j=1

cαj (2j − 1)U2j−2(α).
(8.7)

Eqs. (8.4)-(8.7) can be solved numerically for δn(α). Substituting these
expressions into Eq. (8.4), multiplying both sides by (1 − α2)1/2U2k−2(α)
and integrating over α with the help of standard integrals for the Chebyshev
polynomials one can arrive at a set of linear algebraic equations for the
coe�cients cαj

∞∑
j=1

Wα
kjc

α
j = δk1, k = 1, 2... (8.8)

where W is a matrix whose elements are given by

Wα
kj = (

2 e2τα
πκmαvα

)
[ 1

1− 4(k + j − 1)2
+

1

1− 4(k − j)2

]
+Γ̄α(2k−1)δkj. (8.9)
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Using Eqs. (8.8) and (8.9), we �nd from Eq. (8.4) the solution

δn(α) =
∞∑
j=1

[W−1]αj1 T2j−1(α), (8.10)

where W−1 is the inverse of matrix W . In the next subsection, we obtain the
interlayer scattering time.

8.3 Interlayer scattering rate

The Coulomb drag technique allows a unique access to the interlayer scat-
tering rate via a resistance measurement. This can be simply shown within
the Drude model [165]. Considering an electron-hole double layer system,
the anisotropic drag resistivity is given by [47]

ραβd =
~2

2πe2n1n2kBT

∫
d2q

(2π)2
qαqβ

∫ ∞
0

dω
|Ueh(q, ω)|2ImΠh(q, ω)ImΠe(q, ω)

sinh2(~ω/2kBT )
,

(8.11)
where α and β indices refer to the x and y components. We assume that the
drive layer contains electrons and the drag layer contains holes. Therefore,
the drag resistivity depends on the interlayer momentum relaxation rate as

ραβd =
M̂ e

α

nee2ταβd
. (8.12)

The dynamically screened interlayer potential Ueh(q, ω) can be obtained
by solving the corresponding Dyson equation [65]

Ueh(q, ω) =
Veh(q)

det |εeh(q, ω)|
, (8.13)

where Veh(q) = ν(q) exp(−qd) is the unscreened 2D Coulomb interaction
with d being the interlayer separation. ν(q) = 2πe2/qκ and εeh(q, ω) is the
dynamic dielectric matrix of the system. Using the random phase approxi-
mation (RPA) formalism, we obtain [66, 168]

εeh(q, ω) = δeh + Veh(q)Πe(q, ω). (8.14)
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For an electron gas system, the non-interacting density�density response
function can be obtained from the following equation [62]

Πe/h(q, ω) = −gs
ν

∑
k

f 0(E
e/h
q )− f 0(E

e/h
k+q)

E
e/h
q − Ee/h

k+q + ~ω + iη
. (8.15)

Here f 0(E
e/h
q ) is the Fermi-Dirac distribution at energy E corresponding to

the wave vector q, gs = 2 is the spin degeneracy, ν is the unit cell surface and
η is the broadening parameter that may account for disorder in the system.
Using the following anisotropic parabolic energy dispersion relation

E
e/h
k =

~2

2
(
k2
x

mx
e/h

+
k2
y

my
e/h

)− µe/h, (8.16)

the temperature-dependent dynamical density-density response function for
intra-band transitions in an anisotropic 2D material can be calculated

Πe/h(q, ω)

g
e/h
2D

= −
∫
dK

Φe/h(K,T )

Qe/h

×[
sgn(Re(Z−))

1√
Z2
− −K2

− sgn(Re(Z+))
1√

Z2
+ −K2

]
.

(8.17)

In the above symmetric form of temperature-dependent anisotropic density-

density response function, we have de�ned Qe/h = (q/k
e/h
F )

√
m
e/h
D /M̂ e/h,

Ke/h = (k/k
e/h
F )

√
m
e/h
D /M̂ e/h, g2D

e/h = m
e/h
D /π~2, Z±e/h = ((~ω+iη)/~Qe/hν

e/h
F )±

(Qe/h/2) with ν
e/h
F = ~ke/hF /m

e/h
D , me/h

D =

√
m
e/h
x m

e/h
y is the 2D density of

state mass, and

Φe/h(Ke/h, T ) =
Ke/h

1 + exp[(K2
e/hE

e/h
F − µe/h)/kBT ]

, (8.18)

where ke/hF =
√

2πne/h and µe/h is the chemical potential of the electron
and hole layers which is determined by the particle number conservation
condition [63]. We work in polar coordinates q = q(cos θ, sin θ), Qe/h =

(q/k
e/h
F )

√
m
e/h
D Re/h(θ) in which the orientation factor Re/h is expressed as

Re/h(θ) =
(

cos2(θ)/m
e/h
x + sin2(θ)/m

e/h
y

)
. At su�ciently low temperature
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and q � k
e/h
F one can approximate Im[Πe/h(q, ω)] by the low frequency ex-

pression

Im[Πe/h(q, ω)] ≈ − (m
e/h
D )2 ω

2π~3Qe/h(k
e/h
F )2

. (8.19)

In this case, the screened potential of the electron-hole interaction in
Eq. (8.13) |Ueh(q, ω)| can be approximated by the static interlayer Coulomb
interaction in the long wave-length limit as

Ueh(q → 0) =
vqe
−qd

[1− vq ∂ne∂µe
][1− vq ∂nh∂µh

] + ∂ne
∂µe

∂nh
∂µh

v2
qe
−2qd

. (8.20)

An important property of this equation is the compressibility, related to the
small q limit of the proper density-density response function of the compress-
ibility sum rule [205]. There is an exact relation between the compressibility
and the long wave-length limit of the static density-density response function
as Πe/h(q → 0) = −∂ne/h/∂µe/h [205]. Inserting Eq. (8.20) in Eq. (8.11) we
have

Ueh(q → 0) =
2πe2

κ

q

εs(q)
, (8.21)

where εs(q) is de�ned as

εs(q) = [q2eqd − q(qes + qhs )eqd] + qesq
h
s (eqd − e−qd). (8.22)

here q(e/h)
s = (2πe2/κ)(∂ne/h/∂µe/h) is the screening wave vector related to

compressibility. Since the most important contribution from the integration
over q comes from the region in which q ≤ 1/d and since 1/d � k

e/h
F , we

may neglect the �rst term in the denominator of Eq. (8.21) and obtain the
simple form

Ueh(q → 0) =
2πe2

κ

q

2qesq
h
s sinh(qd)

. (8.23)
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Using Eq. (8.23), the drag resistivity in Eq. (8.11) is given by

ραβeh ≈ −
~2

(2π)3e2nhnekBT

(me
D)2(mh

D)2

(2π~)3keFk
h
F

∫
dθ

∫
q dq qαe q

β
h

QeQh

(
πe2

κ
)2 q2

(qdeqdh)2(sinh2(qd))

×
∫ ∞

0

dω
ω2

sinh2( ~ω
(2kBT )

.

(8.24)
This allows one to analytically obtain the integration over q and ω, by

using
∫∞

0
dxxp/4 sinh2(x/2) = p! ζ(p) [206]. Since ρxyeh ∝

∫
dθ sin(θ) cos(θ) =

0, the o� diagonal elements of the drag resistivity vanish. The analytical
results for the diagonal elements of the drag resistivity at low temperatures
(T � TF ) becomes

ρααeh =
e2ζ(3)

16π3~2

(kBT )2
√
me
αm

h
αm

e
dm

h
d

nenhEe
FE

h
F

1

(qesd)2(qhs d)2
. (8.25)

One can then use this equation into Eq. (8.12) to get a diagonal tensor
for the anisotropic interlayer scattering rate

τααd =
16π3~2(qesd)2(qhs d)2

e4ζ(3)

nhE
e
FE

h
F M̂α

e

(kBT )2
√
mα
em

α
hm

e
Dm

h
D

. (8.26)

For a system with equal electron and hole densities ne = nh = n and equal
chemical potentials, we have qes = qhs = (8π2/λ), where λ = (4πκ/e2)(∂µ/∂n)
is the compressibility related length [191].

8.4 Results and discussion

The density modulation depends directly on the system anisotropy and also
on the sign of the compressibility. In order to explore the CDW in the phos-
phorene layer subjected to the drag force, we study the e�ects of the sign of
the compressibility on the equilibrium solution, i.e. Eq. (8.4). In Fig. 8.2(a)
we show the numerical results as calculated from the equilibrium solution for
a positive compressibility (∂µ/∂n > 0 ) in the armchair (x) and zigzag (y) di-
rections of phosphorene with e�ective masses me

x = 0.16m0 and me
y = 1.24m0

and mh
x = 0.15m0 and mh

y = 4.95m0 with the velocity vex = 6 × 106 (cm/s)
and vey = 1.5 × 106 (cm/s) [207, 55] with m0 being the free electron mass.
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Figure 8.2: The equilibrium solutions of Eq. (8.4) for (a) positive com-
pressibility (∂µ/∂n > 0) and (b) negative compressibility (∂µ/∂n < 0) with
|∂µ/∂n| ≈ 5 ×10−12 meV cm2 along the armchair(x) and zigzag(y) directions
at the equilibrium density n = 2 × 1012cm−2. Here d = 2nm and T = 2K.
The length of the strip is taken to be L = 5λ.

We set the dielectric constant κ ≈ 4 [208] for encapsulated phosphorene by
h-BN layers [191] and L= 5λ. We can see that similar to the case of an
isotropic 2DEG [191] the CDW is not stable for phosphorene along the di-
rections where the compressibility is positive. Note that, the charge doesn't
change at the center of phosphorene but it accumulates along the edges due
to the strong electric �eld induced at the sharp edges. As a direct conse-
quence of the band anisotropy the charge accumulation is di�erent at the
two directions of phosphorene. We show the charge modulation for phospho-
rene layers in Fig. 8.2(b) when the compressibility is negative. One can see
that the density modulation along the zigzag (y) and armchair (x) directions
have di�erent amplitude. The amplitude and frequency of these oscillations
depend on the applied electric �eld and the value of Γα in our Coulomb drag
setup providing opportunity for electronic tuning. Moreover, phosphorene
shows a CDWs at higher densities as compared to typical 2D electron gas
systems [191].

The Coulomb interaction between the holes and electrons can also signif-
icantly enhance the occurrence of the CDW phase, especially when rs � d,
where rs = 1/(a

∗(e/h)
B

√
nπ) is the average distance between two neighbor-
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Figure 8.3: Amplitude of the charge modulation |δn| for negative compress-
ibility with ∂µ/∂n ≈ - 5 ×10−12 meV cm2 along the zigzag (y) and armchair
(x) directions as a function of the separation between the BP layers d at
di�erent temperatures for equilibrium density n = 2×1012cm−2 and L = 5λ.

ing in-plane carriers and a
∗(e/h)
B = (~κ/me/h

D e2), the e�ective Bohr radius.
Fig. 8.3 shows the amplitude of the CDW along both zigzag and armchair
directions as a function of the separation between the two layers at di�er-
ent temperatures. We �nd that the CDW state does become stable as the
spacing between the layers is decreased. When we increase the separation d,
the density modulation strongly reduced because at su�ciently large d, the
strength of the interlayer attraction is decreased.

8.5 Conclusion

In this chapter, we considered a system of two strongly coupled electron-hole
phosphorene layers interacting by the Coulomb interaction. The system we
proposed is expected to support large transresistivity [47] due to the larger
e�ective mass of the carriers and consequently the large density of states
and CDW modulations in phosphorene. We showed that the negative elec-
tronic compressibility of the double layer electron-hole phosphorene system
at achievable density enables the generation of a CDW phase through the
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application of a uniform force �eld via the Coulomb drag. We solved the
equilibrium solutions for the drag layer modeled as a quasi-1D system. By
using the compressibility sum rule in which the compressibility is related to
the small momentum limit of the proper density-density response function,
an analytical expression is obtained for the anisotropic drag force. We found
that the density modulation not only depends on the sign of the compress-
ibility but also depends on the system anisotropy. The amplitude of the
CDW phase depends on the separation between the layers and temperature.
The wave-length of the CDW can be also electrically tuned by changing the
value of Γα. This might be changed in experiment by changing, via a gate,
the density of the passive layer.

There are a number of ways that a CDW phase could be experimentally
identi�ed [209]. This phase can be detected by optical methods, such as dif-
ferential absorption or di�raction and also by using STM which can detect
a number of features related to the onset of CDW including charge modula-
tion, periodic distortion of atomic position, and the opening of a gap in the
density of states. Angle resolved photoemission spectroscopy (ARPES) can
also show which portions of the Fermi surface are gapped out by the CDW
[210]. This can give guidance whether the CDW is driven by Fermi surface
nesting or by something more exotic [211]. By perturbing a material with an
ultrashort laser pulse and following the resulting transient ARPES spectra,
one can obtain insight into the dynamics both of quasiparticle occupations
and of the electronic structure itself [212].



Chapter 9
Summary and outlook

9.1 Summary

In this thesis, the many body properties of monolayer and double layer BP
were theoretically investigated. Within the linear response theory, these
properties were studied for di�erent con�gurations of an anisotropic two-
dimensional systems like phosphorene. The main results have been presented
in chapters 3 to 9 which answered the following questions:

How drag e�ect in BP is a�ected by the anisotropy band struc-
ture?
In chapter 3, the anisotropic drag resistivity was studied in a structure com-
posed of two spatially separated 2D electron gas systems with paraboloidal
band structure. The double-layer phosphorene was chosen as an example
system on which the anisotropic drag theory was applied. It was shown that
the drag resistivity depends not only on the typically considered parame-
ters such as temperature, inter-layer separation, carrier density and nature
of elementary excitations, but also on the direction of momentum transfer
between the two layers in addition to the rotational parameter. It was also
shown that while the diagonal elements of the anisotropic drag resistivity ten-
sor has di�erent values due to di�erent electron e�ective masses along x and
y directions at any temperatures of interest, there are non-zero o�-diagonal
elements for the rotated structure. The non-zero o�-diagonal elements have
not been reported before in a 2D coupled system in the absence of an applied
magnetic �eld. Furthermore, both diagonal elements of anisotropic drag re-
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sistivity tensor increase with decreasing inter-layer separation and electron
density. The results showed that the anisotropic ratio varies e�ectively with
the change of temperature and electronic density. To improve on the RPA
results at low electron density, the zero temperature Hubbard LFC factor was
included in the calculations and shown that the inclusion of LFC strongly in-
�uences the drag resistivity values. The results suggested that the rotational
parameter between layers can be considered as an extra degree of freedom in
order to control the momentum transfer between coupled layers. The work
highlights the role of anisotropic band structure on drag resistivity, as an
important transport quantity in a coupled 2D structure.

What is the optical response of an anisotropic 2D electron gas
system in the presence of Rashba spin-orbit interaction?
The energy spectrum and optical response of an anisotropic 2D electron
gas system in the presence of Rashba spin-orbit interaction in chapter 4.
Based on the Kubo formalism, the optical conductivity tensor was calculated
by considering Rashba spin-�ip excitations. It was found that the e�ective
mass anisotropy plays an important role in the optical absorption spectrum
through the direction-dependent Rashba spin splitting. As a general result,
the diagonal components of the optical conductivity tensor were inversely
proportional to the corresponding e�ective mass elements. Furthermore, the
e�ective mass asymmetry was an additional degree of freedom to tune the
height and width of the absorption peak. This introduced aspects to the
optical conductivity for spintronic applications of 2D anisotropic materials
such as phosphorene and group-IV monochalcogenides. It was also shown
that larger optical absorption is generated when the polarization of the ra-
diation is along the armchair direction and its maximal value was enhanced
by increasing the e�ective mass ratio. However, the width of the absorption
window strongly depends on both the polarization direction and the e�ective
mass ratio. Finally, the position of the absorptive peak moved to higher fre-
quencies with increasing Rashba parameter and electron density. The results
suggested an interesting way to determine some of the spintronic character-
istics of a class of 2D nanostructures, with anisotropic Rashba e�ect, using
optical methods.

How do polar substrates/spacers in�uence the plasmons in mono-
layer and double-layer phosphorene systems?
In chapter 5, the monolayer and double-layer phosphorene systems located
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on polar substrates/spacers have been considered. The dynamical dielectric
function was calculated within the RPA and including many-body electron-
electron interaction in phosphorene layer(s) as well as the interaction between
electrons and the long range electric �eld generated by SO phonon modes.
The anisotropic coupled plasmon-SO phonon dispersion relations were de-
rived in the long wavelength limit. In the case of monolayer, due to the
two relevant SO phonon modes of the substrate, three hybrid plasmon-SO
phonon branches were obtained. It was shown that the hybrid plasmon-SO
phonon modes are stronger along x direction because of lower correspond-
ing e�ective mass and at large electron densities, these modes are stronger
especially along x direction. Exploring the e�ects of speci�c substrates on
the coupled modes showed that the phonon frequency (ωSO) of a substrate
is the most e�ective parameter that controls the phonon-like modes (ωλ+)
whereas α parameter changes the plasmon-like modes, ω−. Hence the choice
of substrate can be utilized in order to engineer the plasmon-SO phonon dis-
persion phosphorene systems. Also, the analytical expressions for the hybrid
modes at the long wavelength limit have been derived for the double-layer
phosphorene. The results showed that there are six hybrid modes: three
acoustic, (ω±)ac, and three optical modes, (ω±)op. By evaluating the energy
loss function, it was found that similar to the case of monolayer phospho-
rene, all plasmon-SO phonon modes are stronger along x direction than the
modes along y direction. The e�ect of misalignment of the two layers on
the hybrid modes has been also investigated and found that the acoustic
branches may become strongly damped or a transition to the optical modes
can be observed at small rotations. Finally, the hybrid modes of double-layer
phosphorene was studied for several separations between the two layers and
a transition to the optical modes (fast damping excitations) by increasing
(decreasing) d2 was observed for the acoustic modes. As a result of the cal-
culations, rotation angle and separation between two layers can be used as a
mechanism for tuning the plasmon-SO phonon coupling e�ects.

Can plasmon modes of BP a�ect by an applied uniaxial tensile
strain?
In chapter 6, we have studied the e�ect of an applied uniaxial tensile strain
on the plasmon dispersion of monolayer, bilayer and double-layer phospho-
rene structures. As a consequence of anisotropic energy band, the changes
of plasmon dispersions are di�erent along the armchair and zigzag directions
and strongly depend on the direction of the applied uniaxial strain. Also, in
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two-layer phosphorene systems, it was shown that the strain-dependent ori-
entation factor of layers control plasmon energies. In addition, we obtained
that while the behavior of the optical and acoustic modes are similar in both
bilayer and double-layer phosphorene, plasmons along the armchair direction
are more a�ected by strain. Moreover, for the strained bilayer structure, two
di�erent cases have been investigated: i) the strain is equally applied to the
two layers, and ii) the strain is applied only to one of the layers. We have
found that the e�ect of strain on the long-wavelength plasmon modes in case
i) is stronger than the case ii). Finally, the diagonal elements of the tran-
sresistivity tensor have been calculated within the RPA for a double-layer
phosphorene in which two parallel aligned phosphorene monolayers are un-
der strain and sandwiched by h-BN. The results suggested that the changes
in the plasmonic excitations, due to the applied strain, are mainly responsi-
ble for the predicted behaviors of the drag resistivity.

How does excitonic super�uidity occur in a electron-hole double-
layer phosphorene at zero temperature ?
In chapter 7, the occurrence of excitonic super�uidity in electron-hole double-
layer phosphorene was studied at zero temperature. At �rst, an approach
for the gap function of the strongly anisotropic double-layer system such as
phosphorene have been generalized. It was shown that the gap function is
anisotropic, depending on the direction of k, in which the basic origin of
the anisotropy can be explained by using an anisotropic e�ective mass in the
free-electron model. The results showed that the gap function is higher along
zigzag direction and the peak around the maximum gap (∆max) is located in
the BEC regime along armchair direction and it is in the crossover regime
from exciton BEC at low densities to the BCS-like condensate at high densi-
ties along zigzag direction. Importantly, the anisotropic high KT transition
temperature with maximum value up to ∼ 90 K was estimated in double-
layer phosphorene along zigzag direction with large carrier densities as high
as 4×1012 cm−2. Furthermore, it was shown that the in-plane anisotropy ef-
fects play an important role in the super�uidity for the transition to strongly
correlated states in a special direction and it would be gratifying to observe
this e�ect in experiments.

Can we see charge density waves in a double layer phosphorene?
A system consisting of two strongly coupled electron-hole phosphorene lay-
ers interacting by the Coulomb interaction was considered in chapter 8. It
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was shown that the negative electronic compressibility of the double layer
electron-hole phosphorene system at achievable density enables the genera-
tion of a CDW phase through the application of a uniform force �eld via the
Coulomb drag. The equilibrium solutions were solved for the drag layer mod-
eled as a quasi-1D system. By using the compressibility sum rule in which
the compressibility is related to the small momentum limit of the proper
density-density response function, an analytical expression was obtained for
the anisotropic drag force. It was found that the density modulation not only
depends on the sign of the compressibility but also depends on the system
anisotropy. The amplitude of the CDW phase depended on the separation
between the layers and temperature. The wave-length of the CDW can be
also electrically tuned by changing the value of Γα. This can be varied in
experiment by a gate, the density of the passive layer. There are a number
of ways that a CDW phase could be experimentally identi�ed [209]. This
phase can be detected by optical methods, such as di�erential absorption or
di�raction and also by using STM which can detect a number of features re-
lated to the onset of CDW including charge modulation, periodic distortion
of atomic position, and the opening of a gap in the density of states. Angle
resolved photoemission spectroscopy (ARPES) can also show which portions
of the Fermi surface are gapped out by the CDW [210]. This can give guid-
ance whether the CDW is driven by Fermi surface nesting or by something
more exotic [211]. By perturbing a material with an ultrashort laser pulse
and following the resulting transient ARPES spectra, one can obtain insight
into the dynamics both of quasiparticle occupations and of the electronic
structure itself [212].

9.2 Outlook

In chapter 3, the anisotropic drag resistivity was studied in a structure com-
posed of two spatially separated double-layer phosphorene. Over the past
decade, this phenomena in double-layer two-dimensional electron systems has
been a subject of extensive experimental and theoretical studies. Further-
more, the hybrid structures with di�erent 2D materials, such as graphene-
MoS2 hybrid structure, have attracted signi�cant attentions. It would be
interesting to see the Coulomb drag in heterostructures made of monolayer
BP-graphene/TMDCs.
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In chapter 6, the e�ect of an applied uniaxial tensile strain on the plasmon
dispersion of monolayer, bilayer and double-layer phosphorene structures has
been studied. Recently, it was shown that a graphene/dielectric/metal con�g-
uration exhibits extreme plasmon con�nement, an order of magnitude higher
than that of conventional graphene plasmons so called acoustic plasmons.
These phenomena has been recently investigated in monolayer and multilay-
ers of BP placed just a few nanometers above a conducting plate. In the
presence of a conducting plate, the acoustic plasmon dispersion for the arm-
chair direction was found to exhibit the characteristic linear scaling in the
mid- and far-infrared regime while in the zigzag direction, such scaling be-
havior is not evident due to relatively tighter plasmon con�nement. It is nice
to see how applied uniaxial tensile strain a�ects on the acoustic plasmons.

In chapter 7, we have investigated the occurrence of excitonic super�uidity
in electron-hole double-layer phosphorene at zero temperature. Investigation
of super�uidity in this system through the Coulomb drag phenomena in the
exciton regime would also be an interesting work. At lower temperatures,
it was shown that the qualitative behavior of the Coulomb drag transresis-
tance is completely determined by the requirement of least dissipation and is
independent of all microscopic details. Transresistance measurements have
shown a foolproof test for the presence of an excitonic condensate. Therefore,
the Coulomb drag transresistance for a coupled electron-hole system is well
described by the Fermi-liquid theory while when excitons form and condense
new features appear.



Chapter 10
Samenvatting

Deze thesis onderzocht theoretisch verschillende veel deeltjes seigenschap-
pen van monolaag en dubbellaagse BP. Binnen de lineaireresponse theorie
werden deze eigenschappen bestudeerd voor verschillende con�guraties van
anisotrope tweedimensionale systemen zoals fosforeen. De belangrijkste re-
sultaten zijn gepresenteerd in hoofdstukken 3 tot 8 en de volgende vragen
werden beantwoord:

Hoe wordt het sleepe�ect bij BP beïnvloed door de anisotropie
van de bandenstructuur? Hoofdstuk 3 bestudeerde de anisotrope `drag
resistivity' in een structuur die bestaat uit twee ruimtelijk gescheiden 2D
elektronen gas systemen met paraboloïde bandenstructuur. De dubbellaagse
fosforeen is gekozen als een voorbeeldsysteem waarop de anisotrope weer-
standstheorie wordt toegepast. Er werd aangetoond dat de `drag resistiv-
ity' niet alleen afhangt van de typisch beschouwde parameters zoals tem-
peratuur, tussenlaagscheiding, draaggolfdichtheid en aard van elementaire
excitaties, maar ook van de richting van de impulsoverdracht tussen de twee
lagen bovenop de rotatieparameter. Ook waren er geen niet-nul o�-diagonale
elementen voor de geroteerde structuur. De verschillende waarden van de
diagonale elementen van de anisotrope weerstandsgevoeligheidstensor zijn
een gevolg van verschillende elektron e�ectieve massa langs x en y richtin-
gen. De niet-nul o�-diagonale elementen zijn nog niet eerder gemeld in een
2D-gekoppeld systeem zonder een magnetisch veld. Bovendien nemen beide
diagonale elementen van de anisotrope sleepweerstandsensor toe met afne-
mende scheiding tussen de lagen en elektronendichtheid. De resultaten toon-
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den dat de anisotrope verhouding e�ectief varieert met de verandering van
temperatuur en elektronische dichtheid. Om de RPA-resultaten bij een lage
elektronendichtheid te verbeteren, is de Hubbard LFC-factor met een nul
temperatuur opgenomen in de berekeningen. De resultaten gaven weer dat
de LFC de waarden voor de weerstand sterk beïnvloedt. Verder kon de ro-
tatieparameter tussen de lagen beschouwd worden als een extra vrijheidsgrad
voor de impulsoverdracht tussen gekoppelde lagen.

Wat is de optische respons van een anisotroop 2D elektronengas-
systeem in de aanwezigheid van Rashba spin-baan-interactie?

Het energiespectrum en de optische respons van een anisotroop 2D-elektronen
gas systeem in de aanwezigheid van Rashba spin-baan-interactie werd bestudeerd
in hoofdstuk 4. Op basis van het Kubo-formalisme is de tensor voor de optis-
che geleidbaarheid berekend door de Rashba spin-�ip-excitaties in beschouwing
te nemen. Er werd gevonden dat de e�ectieve `massa anisotropie' een belan-
grijke rol speelt in het optische absorptiespectrum door de richtingsafhanke-
lijke Rashba-rotatiesplitsing. Als een algemeen resultaat waren de diagonale
componenten van de optische geleidbaarheidstensor omgekeerd evenredig met
de overeenkomstige e�ectieve massa-elementen. Bovendien was de e�ectieve
massa symmetrie een extra vrijheids-parameter om de hoogte en breedte van
de absorptiepiek af te stemmen. Dit introduceerde aspecten van de optische
geleidbaarheid relevant voor spintronische toepassingen van 2D-anisotrope
materialen zoals fosfor en monochalcogeniden van groep IV. Tevens werd de
grotere optische absorptie gegenereerd wanneer de polarisatie van straling
langs de richting van de `armchair' plaatsvindt en de maximale waarde er-
van verbetert door de e�ectieve massaverhouding te vergroten. De breedte
van het absorptievenster was echter sterk afhankelijk van zowel de polar-
isatierichting als de e�ectieve massaverhouding. Ten slotte verplaatste de
positie van de absorptiepiek zich naar hogere frequenties met het verhogen
van de Rashba parameter en elektronendichtheid.

Hoe beïnvloeden polaire substraten de plasmonen in monolaag
en dubbel-laagse BP-systemen?

In hoofdstuk 5 zijn de monolaag en dubbellaagse fosfor systemen op po-
laire substraten / scheidingen betudeerd. De dynamische dielectrische functie
werd berekend binnen de RPA. De dynamische dielectrische functie omvat
veel oldtjes elektron-elektron interactie in fosfeenlagen als de interactie tussen
elektronen en het lange afstand elektrisch veld dat gegenereerd is door SO
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fonon modi. De anisotrope gekoppelde plasmon-SO-fonondispersierelaties
zijn afgeleid in de langegol�engteg limiet. In het geval van de monolaag
werden, als gevolg van de twee relevante SO-fononen van het substraat, drie
hybride plasmon-SO-fonontakken verkregen. Er werd bewezen dat de hy-
bride plasmon-SO-fonon-modi sterker zijn in de richting x vanwege de lagere
corresponderende e�ectieve massa. Bij grote elektronendichtheden zijn deze
modi sterker, vooral in de richting van x. Onderzoek naar de e�ecten van
speci�eke substraten op de gekoppelde modi toonde aan dat de fononfre-
quentie (ωSO) van een substraat de meest e�ectieve parameter is in fonon-
achtige modi (ωλ+) terwijl de α parameter de plasmon-achtige modi verandert,
ω−. Derhalve kan de substraat keuze worden gebruikt om de plasmon-SO-
fonondispersie te wijzigen. Ook zijn de analytische expressies voor de hybride
modi bij de lange gol�engte limiet afgeleid voor de dubbellaagse fosfeen. De
resultaten demonstreerden dat er zes hybride modi zijn: drie akoestische,
(ω±)ac, en drie optische modi,(ω±)op. Door de energieverliesfunctie te eval-
ueren, werd vastgesteld dat, vergelijkbaar met het geval van monolaag fosfor,
alle plasmon-SO fonon-modi sterker zijn in de richting x dan de modi langs
de richting y. Daarnaast is het e�ect van verkeerde uitlijning van de twee
lagen op de hybride modi onderzocht. Zo konden de akoestische takken
sterk worden gedempt of kon een overgang naar de optische modi worden
waargenomen bij kleine rotaties. Tenslotte werden de hybride modi van de
dubbellaagse fosforeen onderzocht voor verschillende scheidingen tussen de
twee lagen. Ook werd een overgang naar de optische modi (snelle demp-
ingsexcitaties) door het verhogen (afnemen) van d2 waargenomen voor de
akoestische modi. Als resultaat van de berekeningen kan de rotatiehoek en
de scheiding tussen twee lagen worden gebruikt als een mechanisme voor het
afstemmen van de plasmon-SO-fononkoppelingse�ecten.

Kunnen plasmamodi van BP worden beïnvloed door een uniax-
iale trekspanning?

Hoofdstuk 6 bestudeerde het e�ect van een uniaxiale trekspanning op
de plasmondispersie van de monolaag, dubbellaag en de dubbellaagse fos-
forstructuren. Als een gevolg van de anisotrope energieband zijn de plas-
mondispersies verschillend langs de `armchair' en de zigzagrichting. Ook zijn
de veranderingen sterk afhankelijk van de richting van de uniaxiale span-
ning. Tevens werd voor de tweelaagse fosforeen systemen aangetoond dat
de spanningsafhankelijke oriëntatiefactor van de lagen de plasmon-energieën
beinvloed. Bovendien hebben we vastgesteld dat hoewel het gedrag van de
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optische en akoestische modi vergelijkbaar is in zowel bilaag als dubbellaagse
fosfor, de plasmonen in de `armchair' richting meer worden beïnvloed door
de spanning. Bovendien zijn voor de gespannen dubbellaagstructuur twee
diverse gevallen onderzocht: (i) de spanning wordt gelijtijdig toegepast op
de twee lagen en (ii) de spanning wordt alleen toegepast op één van de lagen.
We hebben ontdekt dat het e�ect van spanning op de plasmonen met lange
gol�engte in geval (i) sterker is dan de casus (ii). Ten slotte zijn de diagonale
elementen van de trans-weerstandtensor berekend binnen de RPA voor een
dubbellaagse fosfor, waarin twee parallel uitgelijnde fosfor-monolagen onder
spanning staan en worden ingeklemd door h-BN. De resultaten toonden aan
dat de veranderingen in de plasmonische excitaties, vanwege de toegepaste
spanning, hoofdzakelijk verantwoordelijk zijn voor het voorspelde gedrag van
de `drag resistivity'.

Hoe manifesteert de exciton super�uïditeit voor het dubbele
elektron-gat monolaag BP?

Hoofdstuk 7 bestudeerde de excitonische super�uiditeit in elektron-holte
dubbellaags fosforeen bij nul-temperatuur. In eerste instantie is een benader-
ing voor de kloo�unctie van het sterk anisotrope dubbellaags systeem fos-
for veralgemeend. Er werd aangetoond dat de gap-functie anisotroop is,
nl.afhankelijk van de richting van k,en de oorsprong van de anisotropie kan
worden verklaard door een anisotrope e�ectieve massa in het model met
vrije elektronen te gebruiken. De resultaten toonden aan dat de gap-functie
groter is in de richting van de zigzag en dat de piek rond de maximale kloof
(∆max) zich bevindt in het BEC-regime langs de `armchair' richting. Voor
lage dichtheden zitten we in het overgangsregime van BEC, terwijl voor hoge
dichtheden een BCS-achtige condensaat in de zigzag richting wordt gevon-
den. Belangrijk is dat de anisotrope hoge KT-overgangstemperatuur met
maximale waarde tot ∼ 90K werd geschat in dubbellaags fosforeen in de
zigzag richting, voor grote dichtheden tot 4×1012 cm−2. Verder werd aange-
toond dat de anisotropie-e�ecten in het vlak een belangrijke rol spelen in de
super�uïditeit voor de overgang naar sterk gecorreleerde toestanden in een
speciale richting. Het zou interessant zijn om dit e�ect experimenteel waar
te nemen.

Kunnen we de ladingsdichtheidsgolven in een dubbele mono-
laag BP zien? Dit werd bestudeerd in hoofdstuk 8. Er werd bewezen dat de
negatieve elektronische samendrukbaarheid van het dubbellaagse elektronen-
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holte fosfeen systeem bij een haalbare dichtheid een CDW-fase mogelijk
maakt dankzij een uniform krachtveld via de Coulomb-weerstand. De even-
wichtsoplossingen wordt bekomen voor de sleeplaag gemodelleerd als een
quasi-1D-systeem. Door gebruik te maken van de samendrukbaarheidssom-
regel waarin de samendrukbaarheid is gerelateerd aan de kleine momentum
limiet van de dichtheidsresponsefunctie, werd een analytische uitdrukking
verkregen voor de anisotrope sleepkracht. Het bleek dat de dichtheidsmodu-
latie niet alleen afhankelijk is van het teken van de samendrukbaarheid, maar
ook van de anisotropie van het systeem. De amplitude van de CDW-fase hing
af van de scheiding tussen de lagen en de temperatuur. De gol�engte van
de CDW kan ook elektrisch worden afgestemd door de waarde ervan te wi-
jzigen. In een experiment kan dit worden gerealiseerd via een poort die de
dichtheid van de passieve laag verandert. Er zijn een aantal manieren waarop
een CDW-fase experimenteel kan worden geïdenti�ceerd [209]. Deze fase kan
worden gedetecteerd door optische methoden, zoals di�erentiële absorptie of
di�ractie. Een STM kan de ladingsmodulatie, de periodieke vervorming van
de atomaire positie en het openen van een opening in de toestandsdichtheid
waarnemen. Daarnaast kan hoekopgeloste foto-emissiespectroscopie (ARPES)
laten zien welke gedeelten van het Fermi-oppervlak worden weggewerkt door
de CDW [210]. Dit kan aanwijzingen geven of het CDW wordt aangestuurd
door Fermi-oppervlaktenesten of door iets exotischer [211]. Door een ma-
teriaal te verstoren met een ultrakorte laserpuls en de resulterende voorbij-
gaande ARPES-spectra te volgen, kan men inzicht verkrijgen in de dynamica
van zowel de quasideeltjes als van de elektronische structuur zelf [212].
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Appendix A
Drag resistivity tensor

Here, we present a derivation of Eq. (3.1) for the drag resistivity tensor in
a rotationally misaligned double-layer electron gas system with anisotropic
parabolic band structure by following closely the approach of Ref. [87]. We
suppose that the intra-layer transport time is independent of the wave vector.
So, in a 2D system with the energy dispersion of the form of Eq. (2.12), the
e�ective mass, M̂ , transport time, τ̂t, and mobility, µ̂t, are symmetric and
constant 2×2 tensors and are related by:

µ̂t = eiM̂
−1τ̂t. (A.1)

We assume one layer (layer 1) is �xed and take its lattice principal axes along
the laboratory coordinate system but the other layer (layer 2) is rotated by
an angle τ . Hence, in the laboratory frame, M̂ , τ̂t, and µ̂t have zero and
non-zero o�-diagonal elements in the �xed and rotated layers, respectively.
In layer 2, these non-diagonal matrices can be expressed in terms of the
diagonal ones by introducing the rotation matrix, R̂(τ), e.g. for the e�ective
mass tensor we have

M̂2 = R̂(−τ)M̂1R̂(τ). (A.2)

Since we are dealing with the symmetric e�ective mass and transport time
tensors, each one is equal to its transpose. Moreover, due to the diagonal
representations of these tensors in the laboratory frame, we have:

M̂−1
i τ̂t,i = τ̂t,iM̂

−1
i . (A.3)
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In the Boltzmann transport equation framework, we de�ne a deviation
function g(k) as

δf ≡ f(k)− f 0(k) = −kBT
(
∂f 0(k)

∂Ek

)
g(k). (A.4)

where f(k) is the non-equilibrium Fermi distribution function and f 0(k) =
f 0(Ek). The linearized interlayer collision integral is given by:

S[g1, g2](k2) =2

∫
dk1

(2π)2

∫
dq

(2π)2
w(q, Ek1+q − Ek1)f 0

1 (k1)f 0
2 (k2)[1− f 0

1 (k1 + q)]×

[1− f 0
2 (k2 − q)][g1(k1) + g2(k2)− g1(k1 + q)− g2(k2 − q)]×

δ(Ek1 + Ek2 − Ek1+q − Ek2−q),
(A.5)

with w(q, ω) = 4π~−1|U21(q, ω)|2. Considering weak interlayer interaction,
the coupled Boltzmann equations are given by:

e1(
∂f 0

1

∂E
)(v1)t.Ξ1 = −Ĥ1[g1](k1), (A.6)

and

e2(
∂f 0

2

∂E
)(v2)t.Ξ2 = −Ĥ2[g2](k2) + S[g1, g2 = 0](k2), (A.7)

where the superscript t means the transpose and Ξi and Ĥi are DC elec-
tric �eld and the negative of the linearized intra-layer collision operator in
layer i, respectively. In a 2D semiconductor with anisotropic parabolic band
structure, the electron velocity is simply related to the wave vector

vi(ki) = ~M̂−1
i ki. (A.8)

From the above equations g1 and g2 can be obtained as:

g1(k1) = −e1Ĥ
−1
1

[
(
∂f 0

1

∂E
)(v1)t

]
(k1).Ξ1, (A.9)

and

g2(k2) = −e2Ĥ
−1
2

[
(
∂f 0

2

∂E
)(v2)t

]
(k2).Ξ2 + Ĥ−1

2 [S](k2). (A.10)
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Since the current in layer 2 is equal to zero

J2 = −2e2kBT

∫
dk2

(2π)2

(
(
∂f 0

2

∂E
)v2

)
g2(k2) = 0, (A.11)

one �nds the following relation:

2e2
2kBT

∫
dk2

(2π)2

(
(
∂f 0

2

∂E
)v2

)
Ĥ−1

2

[
(
∂f 0

2

∂E
)(v2)t

]
(k2).Ξ2 =

− 2e2kBT

∫
dk2

(2π)2

(
(
∂f 0

2

∂E
)v2

)
Ĥ−1

2 [S](k2).

(A.12)

The left hand side of the above equation is equals to n2e2µ̂t,2.Ξ2. By em-
ploying the following identities to Eq. (A.5)

δ(Ek1+Ek2−Ek1+q−Ek2−q) = ~
∫ ∞

0

dωδ(Ek1−Ek1+q−~ω)δ(Ek2−Ek2−q+~ω).

(A.13)
and

f 0(E1)[1− f 0(E2)] = [f 0(E2)− f 0(E1)]nB(E1 − E2), (A.14)

Eq.(A.12) can be rewritten as:

n2e2µ̂t,2.Ξ2 = −4e2kBT

π

∫
dq

(2π)2

∫ ∞
0

dω|U21(q, ω)|2nB(~ω)nB(−~ω)

×
[ ∫

dk2

(2π)2
[f 0

2 (k2)− f 0
2 (k2 + q)]δ(Ek2 − Ek2+q − ~ω)Ĥ−1

2

[
(
∂f 0

2

∂E
)v2

]
(k2)

]
×
[ ∫

dk1

(2π)2
[f 0

1 (k1)− f 0
1 (k1 + q)]δ(Ek1 − Ek1+q − ~ω)[g1(k1)− g1(k1 + q)]

]
.

(A.15)
where nB(~ω) is the Bose distribution function and in the second line we use
the Hermitian property of H−1

2 . Using the relaxation time approximation,
one can de�ne:

gi(ki) = −eiĤ−1
i

[
(
∂f 0

i

∂E
)(vi)

t
]
(ki).Ξi ≡

ei
(
τ̂t,ivi(ki)

)t
.Ξi

kBT
. (A.16)
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Hence, Eq. (A.15) can be written as:

n2e2µ̂t,2.Ξ2 = −4e2kBT

π

∫
dq

(2π)2

∫ ∞
0

dω|U21(q, ω)|2nB(~ω)nB(−~ω)

×
[

1

2kBT

∫
dk2

(2π)2
[f 0

2 (k2)− f 0
2 (k2 + q)]δ(Ek2 − Ek2+q − ~ω)]τ̂t,2[v2(k2 + q)− v2(k2)]

]
×
[
e1

kBT

∫
dk1

(2π)2
[f 0

1 (k1)− f 0
1 (k1 + q)]δ(Ek1 − Ek1+q − ~ω)

×
(
τ̂t,1[v1(k1 + q)− v1(k1)]

)t
.Ξ1

]
,

(A.17)

The DC electric �elds in the two layers are related by:

Ξ2 = ρ̂21J1 = n1e1ρ̂21µ̂t,1.Ξ1. (A.18)

Inserting Eqs. (A.8) and (A.18) into Eq. (A.15) and considering the proper-
ties of e�ective mass and transport time tensors, one gets:

n1e1n2e2µ̂t,2ρ̂21µ̂t,1.Ξ1 = −4e2kBT

π

∫
dq

(2π)2

∫ ∞
0

dω|U21(q, ω)|2nB(~ω)nB(−~ω)

×
[
τ̂t,2M̂

−1
2 R̂(−τ)q

2kBT

∫
dk2

(2π)2
[f 0

2 (k2)− f 0
2 (k2 + q)]δ(Ek2 − Ek2+q − ~ω)]

]
×
[

qte1M̂
−1
1 τ̂t,1.Ξ1

kBT

∫
dk1

(2π)2
[f 0

1 (k1)− f 0
1 (k1 + q)]δ(Ek1 − Ek1+q − ~ω)

]
.

(A.19)

By multiplying both sides of the above equation by µ̂−1
t,2 and using the

mobility relation, Eq. (A.1), commutative property Eq. (A.16) and the
equality 4nB(~ω)nB(−~ω) = − sinh−2(~ω/2kBT ), Eq. (A.19) can be written
as:

ραβ21 =
~2

2πn1e1n2e2kBT

∫
dq

(2π)2
qαqβ

∫ ∞
0

dω
|U21(q, ω)|2

sinh2(~ω/2kBT )

×
[ ∫

dk1

(2π)2
[f 0

1 (k1)− f 0
1 (k1 + q)]δ(Ek1 − Ek1+q − ~ω)

]
×
[ ∫

dk2

(2π)2
[f 0

2 (k2)− f 0
2 (k2 + q)]δ(Ek2 − Ek2+q − ~ω)

]
,

(A.20)
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where qα and qβ are the α and β components of the transferred wave vector
corresponding to layer 1 and layer 2 in the laboratory frame, respectively.
Finally by using the de�nition of the polarizability function , Eq. (8.15), one
obtains the Eq.(3.1).
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Appendix B
Electron-SO phonon modes

B.1 Monolayer phosphorene

Inserting Eq. (3.5) into Eq. (5.11), we have:

ε(ω, q, θ) = 1−
ω2
pl(q, θ)

ω2(q, θ)
+
∑
λ

αe−2qz

1− αe−2qz − ω2(q, θ)/(ωλso)
2
. (B.1)

From the zeros of dielectric function (here we drop the q and θ for simplicity):

ω2(ω2 − (ωλSO)2)− ω2
pl(ω

2 − (ωλSO)2)− ω2
pl(ω

λ
SO)2αe−2qz = 0, (B.2)

the coupled plasmon-SO phonon modes are obtained as:

(ωλ(±))
2 =

1

2

[(
(ωλSO)2 + ω2

pl

)
±
[
((ωλSO)2 − ω2

pl) + 4ω2
pl(ω

λ
SO)2αe−2qz

]1/2]
.

(B.3)

By Taylor expanding the right hand side of Eq. (B.3), we get:

ωλ(+)(q, θ) = ωλso
(
1 + αe−2qz

ω2
pl

(ωλso)
2 − ω2

pl

), (B.4)

ωλ(−)(q, θ) = ωpl
(
1− αe−2qz

2

(ωλso)
2

(ωλso)
2 − ω2

pl

)
. (B.5)

Since ωpl → 0 in the long-wavelength limit, one can safely ignore ωpl in the
denominator of the above equations and obtain Eqs. (5.12) and (5.13).

123



124 APPENDIX B. ELECTRON-SO PHONON MODES

B.2 Double-layer phosphorene

Here, we calculate the coupled plasmon-SO phonon modes in double-layer
systems with anisotropic band structure. In such systems, the rotation of one
layer with respect to the other should be considered. In order to determine
the dispersion relation of the coupled modes, we need to calculate the zeros
of the determinant of the total dielectric matrix (Eq. (5.6)) in the long-
wavelength limit:

ε(ω, q, θ) = 1− (R1(θ) +R2(θ))Π′(q, ω)U0(q, ω)

+ (U0(q, ω)Π′(q, ω))2R1(θ)R2(θ)(1− e−2qd12),
(B.6)

where Π′(ω, q, θ) = Πi(ω, q, θ)/Ri(θ). After some algebra, we get the follow-
ing relation:

ε(ω, q, θ) = U2
0 (q, ω)(2qd12)R1(θ)R2(θ)[Π′(ω, q, θ)− Π+(ω, q, θ)]

× [Π′(ω, q, θ)− Π−(ω, q, θ)],
(B.7)

where Π+ and Π− are de�ned as

Π+(ω, q, θ) =
R1(θ) +R2(θ)

(R1(θ)R2(θ)U0(q, ω)2qd12

, (B.8)

and
Π−(ω, q, θ) =

1

(R1(θ) +R2(θ))U0(q, ω)
. (B.9)

The dispersion relation of the couple modes is given by Π′(ω, q, θ) = Π±(ω, q, θ).
Using the Eqs. (5.4-5.9) in the Π′(ω, q, θ) = Π+(ω, q, θ) condition, we get:

ω2
(
ω2 − (ωλSO)2

)
− q2fac(θ)

[
ω2 − (ωλSO)2 + (ωλSO)2αe−2qz

]
= 0 (B.10)

where fac(θ) is de�ned as:

fac(θ) =
4πne2d12

ε∞

R1(θ)R2(θ)

R1(θ) +R2(θ)
. (B.11)

After some algebra, we obtain the following relation:

(ωλac(±))
2 =

(ωλso)
2 + q2fac(θ)

2
±

√(
(ωλSO)2 − q2fac(θ)

)2
+ 4q2fac(θ)(ωλSO)2αe−2qz

4
,

(B.12)
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which can be simpli�ed in the long-wavelength limit as:

(ωλac(+))
2 = (ωλso)

2

[
1 +

fac(θ)q
2αe−2qz

(ωλso)
2

]
, (B.13)

and
(ωλac(−))

2 = fac(θ)q
2[1− αe−2qz]. (B.14)

Substituting the relation for fac(θ) in above relations, one obtains Eqs. (5.17)
and (5.18) for the coupled acoustic modes. In the case of the coupled opti-
cal modes, we use the Π′(q, ω) = Π−(q, ω) condition and get the following
equation:

ω2
(
ω2 − (ωλso)

2
)
− fop(θ)

[
ω2

− (ωλso)
2 + (ωλso)

2αe−2qz
]

= 0
(B.15)

where fop(θ) is given by:

fop(θ) =
2πne2

ε∞

(
R1(θ) +R2(θ)

)
. (B.16)

Solving Eq. (B.15) yields:

(ωλop(±))
2 =

(ωλso)
2 + qfop(θ)

2
±

√(
(ωλso)

2 − qfop(θ)
)2 − 4qfop(θ)(ωλso)

2(1− αe−2qz)

4
.

(B.17)
In the long-wavelength limit, we end up with the following expressions for
the coupled optical modes:

(ωλop(+))
2 = (ωλso)

2

[
1 +

qfop(θ)αe
−2qz

(ωλso)
2

]
(B.18)

and
(ωλop(−))

2 = qfop(θ)[1− αe−2qz]. (B.19)

Finally, by inserting fop(θ) into Eqs. (B.18) and (B.19) one obtains Eqs.
(5.19) and (5.20).
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