

Posted: Jun 08, 2017

Quantum nanoscope

(*Nanowerk News*) Researchers have studied how light can be used to "see" the quantum nature of an electronic material. They managed to do that by capturing light in a net of carbon atoms and slowing down light it down so that it moves almost as slow as the electrons in the graphene. Then something special happens: electrons and light start to move in concert, unveiling their quantum nature at such large scale that it could observed with a special type of microscope.

The experiments were performed with ultra-high quality graphene. To excite and image the ultra-slow ripples of light in the graphene (also called plasmons), the researchers used a special antenna for light that scans over the surface at a distance of a few nanometers. With this near field nanoscope they saw that the light ripples on the graphene moved more than 300 times slower than light, and dramatically different from what is expected from classical physics laws.

Quantum nanoscope

Electrons and light are moving in concert along the graphene sheet. (Image: ICFO/ F. Vialla)

The work has been published in *Science* ("Tuning quantum nonlocal effects in graphene plasmonics") by ICFO researchers Dr. Mark Lundeberg, Dr. Achim Woessner, led by ICREA Prof. at ICFO Frank Koppens, in collaboration with Prof. Hillenbrand from Nanogune, Prof. Polini from IIT and Prof. Hone from Columbia University.

In reference to the accomplished experiments, Prof. Koppens comments: "Usually it is very difficult to probe the quantum world, and to do so it requires ultra-low temperatures; here we could just "see" it with light and even at room temperature".

This technique paves now the way for exploring many new types quantum materials, including superconductors where electricity can flow without energy consumption, or topological materials that allow for quantum information processing with topological qubits. In addition, Prof. Hillenbrand states that "this could just be the beginning of a new era of near field nanoscopy".

Prof. Polini adds that "This discovery may eventually lead to understanding in a truly microscopic fashion complex quantum phenomena that occur when matter is subject to ultra-low temperatures and very high magnetic fields, like the fractional quantum Hall effect"

Source: ICFO-The Institute of Photonic Sciences

Subscribe to a free copy of one of our daily Nanowerk Newsletter Email Digests with a compilation of all of the day's news.

These articles might interest you as well:

Like Page Research News

(click here for Business News)

How close are we to a real Star Tre	-style medical tricorder? (w/video)Researd	chers send DNA on sequer	ntial, and consequential, building mission
Posted: Jun 16, 2017	Posted: Jun 16, 2017		
· · · · · · · · · · · · · · · · · · ·	-speargunsPiezoelectric nanogenerators fo	·	ensorsA skyrmion square dance
Posted: Jun 16, 2017	Posted: Jun 16, 2017	•	Posted: Jun 16, 2017
Nanostructures explain why jewel	carab beetles look like pure goldElectroly	tes made from liquefied ga	as enable batteries to run at ultra-low temperatures
Posted: Jun 16, 2017	Posted: Jun 15, 2017		
Interplay of light and matter - A 'pe	rfect' attosecond experimentGrant focuses	on 'hydrogen sponge' for	use in fuel-cell vehicles
Posted: Jun 15, 2017	Posted: Jun 15, 2017		
Seeking out new functions for supe	rconducting nanoelectronics'Magic' alloy o	could spur next generation	n of solar cells
Posted: Jun 15, 2017	Posted: Jun 15, 2017		
Development of low-dimensional n	anomaterials could revolutionize future te	chnologiesSmart material	s used in ultrasound behave similar to water
Posted: Jun 15, 2017		Posted: Jun 15, 2017 daily	
Quantum dot transistor simulates	functions of neuronsHow to fabricate centi	meter-scale nanoporous g	
Posted: Jun 15, 2017	Posted: Jun 15, 2017	Posted: Jun 15, 2017	
A simple platform to achieve polyn	norphic graphene quantum dots A mechanic	cal trigger for toxic tumor	therapy
Posted: Jun 15, 2017	Posted: Jun	Posted: Jun 15, 2017	
New chemical method could revolu	tionize graphenePrinted nanosensors mon	itor tire wear in real time	
Posted: Jun 15, 2017	Posted: Jun 14, 2017		
Nanotechnology tool enables food authentication with the naked eye			MORE NANOTECHNOLOGY RESEARCH NEWS
Posted: Jun 14, 2017			
	Find us on Facebook	Follow @Nanowerk	

Nanotechnology Home | Privacy | Terms of use | Contact us | What is Nanotechnology? | Sitemap | Advertise | Submit news The contents of this site are copyright © 2017 Nanowerk. All Rights Reserved