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Prof. dr. Bart Partoens



Members of the jury:

Chairman

Prof. Dr. Nick Van Remortel, Universiteit Antwerpen, Belgium

Advisors
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Abstract

In this thesis, an ab initio description of superconducting condensates consist-

ing of multiple components is developed. Such multicomponent superconduc-

tivity can originate from a multiband electronic structure, from spin degrees

of freedom, additional interactions, and so on. The description starts from a

full characterization of the structural, electronic and vibrational properties of

a material, obtained from density functional theory. This is coupled here to a

quantum-field theory of the superconducting state mediated by the electron-

phonon interaction, called Eliashberg theory. This methodology enables the

discovery of new properties of multicomponent superconductors of sizes rang-

ing from bulk to atomically thin. First, we explore how band condensates

stemming from distinct electronic bands of compound superconductors are

coupled, and how this affects the temperature evolution of the superconduct-

ing state, and its interaction with an applied magnetic field. Subsequently,

a novel approach is elaborated to describe systems hosting not only lattice

vibrations but also spin fluctuations, as a result of a competing magnetic

state. This provides new insights into multicomponent superconductivity in

recently discovered iron-based superconductors, where superconductivity is

proven to be conventional yet strongly depleted due to ferromagnetic spin

fluctuations. In the second part of this thesis multicomponent superconduc-

tivity in atomically thin materials is investigated. Here, the superconducting

spectrum is found to be enriched by emergent surface states, leading to the

discovery of a three-gap superconducting state in a monolayer material, which

can be profoundly changed by the addition of extra layers. The critical tem-

perature of this new monolayer three-gap superconductor is relatively high,

owing to multigap effects, and is shown to be enhanced further by means of

strain and adatoms. Finally, atomically thin materials are investigated where

the superconducting state coexists with other novel quantum states, leading

to new physics emerging from the interplay between the states. This thesis

thus contributes to a better understanding of the role of atomic-scale inter-

actions in emergent multicomponent superconductivity, and their evolution

with dimensionality.
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Abstract – Nederlandse versie

In deze thesis wordt een ab initio beschrijving van supergeleidende condensa-

ten bestaande uit meerdere componenten ontwikkeld. Zulke multicomponent

supergeleiding kan voortkomen uit een elektronische structuur met meerdere

banden, uit spinvrijheidsgraden, het aanwezig zijn van verschillende inter-

acties, enzovoort. Het startpunt voor deze beschrijving is een volledige ka-

rakterisatie van de structurele, elektronische en vibrationele eigenschappen

van een bepaald materiaal, bekomen met dichtheidsfunctionaaltheorie. Dit

wordt in deze thesis gekoppeld aan een kwantumveldentheorie voor de super-

geleidende toestand ontstaan uit elektron-fonon interactie, Eliashbergtheorie

genaamd. Deze methodologie maakt het mogelijk om nieuwe eigenschap-

pen van multicomponent supergeleiders, met afmetingen die variëren van

bulk tot atomair dun, te ontdekken. Om te beginnen onderzoeken we hoe

de bandcondensaten van een samengestelde stof, afkomstig van verschillende

elektronische banden, gekoppeld zijn en hoe dit de temperatuursevolutie van

de supergeleidende toestand en de interactie met een aangelegd magnetisch

veld bëınvloedt. Vervolgens wordt er een nieuwe aanpak ontwikkeld om sys-

temen te beschrijven waarin niet enkel roostertrillingen maar ook spinfluc-

tuaties, ten gevolge van een concurrerende magnetische fase, een rol spelen.

Dit biedt nieuwe inzichten in de multicomponent supergeleiding van recent

ontdekte supergeleiders gebaseerd op het element ijzer, waarvoor bewezen

wordt dat de supergeleiding conventioneel van aard is, maar sterk verzwakt

door ferromagnetische spinfluctuaties. In het tweede deel van deze thesis

wordt multicomponent supergeleiding in atomaire dunne materialen onder-

zocht. Hiervoor werd gevonden dat het supergeleidende spectrum verrijkt is

door een in deze limiet tevoorschijn komende oppervlaktetoestand, wat geleid

heeft tot ontdekking van een supergeleidende toestand met drie bandkloven

in een monolaag, waarvan de eigenschappen diepgaand veranderen wanneer

er extra lagen toegevoegd worden. De kritische temperatuur van deze nieuwe

monolaag driecomponentsupergeleider is relatief hoog, dankzij de koppeling

tussen de componenten, en we bewijzen hier dat deze nog verhoogd kan wor-

den door middel van deformatie van het kristalrooster (‘strain’) en van ada-

tomen. Ten slotte worden atomair dunne materialen geëxploreerd waarin de
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supergeleidende toestand samen voorkomt met andere nieuwe kwantumtoe-

standen, wat tot nieuwe fysica leidt ten gevolge van de wisselwerking tussen

de toestanden. Samenvattend draagt deze thesis bij tot een beter begrip van

de rol van interacties op de atomaire schaal in de opkomende multicomponent

supergeleiding, en hoe deze evolueert als functie van de dimensionaliteit.
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Chapter 1

Introduction

1.1 Brief historical survey and key aspects of su-

perconductivity

1.1.1 Discovery

The discovery of superconductivity can be traced back to the cryogenic re-

search (i.e., at extremely low temperatures) at the beginning of the 20th

century. At the same time, it presents a remarkable example of a serendipi-

tous discovery. The Dutch experimental physicist Heike Kamerlingh Onnes,

whose lab was situated in the University of Leiden, had for the first time

liquefied helium in 1908 [1, 2]. He achieved this by cooling below 4.2 K,

the boiling point of helium at a pressure of 1 bar. To attain these very low

temperatures, he first cooled compressed helium to the freezing point of hy-

drogen (14 K), followed by Joule-Thompson expansion, which is based on

temperature lowering in expanding gases [3].

This breakthrough in low-temperature research enabled Onnes to investigate

the behavior of metals at low temperatures. A crucial discovery followed in

1911, when Onnes investigated the conductivity of mercury (Hg), cooled by

liquid helium. The data of the first measurement that revealed zero resistivity

in mercury is depicted in Fig. 1.1. The prime characteristic of superconduc-

tivity showing here is the resistance drop to zero, within the experimental

margin (“nagenoeg nul” as Onnes stated in Dutch). Onnes originally coined

1
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Figure 1.1: Data from the original measurement of Kamerlingh
Onnes revealing superconductivity in mercury in 1911 [2].

this phenomenon supraconductivity, but later adopted the more logical term

superconductivity1. Clearly visible in Fig. 1.1, the transition from a normal

metal to a superconductor appears as a critical phenomenon, that takes place

at a critical temperature (Tc), which in the case of Hg is 4.2 K. In 1912, Onnes

investigated a superconducting ring made of tin (Sn), and demonstrated that

the resistance in a superconductor is indeed exactly zero, and not just unde-

tectably small. Onnes simply cooled the ring below its critical temperature

in an external magnetic field, thus inducing a current in the ring once the

field was removed. This current in the superconducting ring did not decay af-

ter several days, and this persistent current yielded the proof Onnes needed.

Onnes was awarded the 1913 Nobel prize in physics for “his investigations

on the properties of matter at low temperatures which led, inter alia, to the

production of liquid helium”.

1.1.2 Meissner effect and London theory

Subsequently, in 1933, a second important characteristic of the supercon-

ducting state was discovered by Walther Meissner and Robert Ochsenfeld.

1The original term by Onnes lives on, though, in the French term “supraconductivité”.
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Figure 1.2: The Meissner effect for a spherical superconducting
sample: the applied magnetic field B is expelled from the supercon-

ductor below critical temperature Tc.

They discovered that below its critical temperature, a superconductor expels

external magnetic fields, as depicted in Fig. 1.2. This phenomenon can be

exploited in order to levitate magnets above superconductors. The expul-

sion of the magnetic field by the superconductor leads to a repulsive force

between superconductor and magnet that can overcome gravity. In certain

types of superconductors (‘type-II’ superconductors), the levitation is more

stable than in others, because the magnet is pinned by penetrating flux lines.

We will have to go further in our study of superconductivity to fully ap-

preciate this. In a first attempt to explain these unconventional properties

of superconductors, the brothers Fritz and Heinz London proposed a phe-

nomenological theory of superconductivity in 1935. The London brothers

had the tremendous intuition that the superconducting state is a quantum

mechanical one, and moreover the ground state, such that the expectation

value of its canonical momentum vanishes, 〈p̂〉 = 0 [4]. The canonical mo-

mentum being given by p̂ = mv̂ + qÂ(r̂), where m is mass, q is charge, and

A is the magnetic vector potential, one obtains in the proposed model for the

superconductor that the expectation value of the velocity of the supercon-

ducting particles is 〈v̂s〉 = − q
mA. The resulting supercurrent is thus found

by 〈v̂s〉 multiplied with the charges that are flowing, nsq, where ns is the
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density of superconducting carriers, such that2

Js = nsq〈v̂s〉 = −nsq
2

m
A⇒ A = − m

nsq2
Js . (1.1)

This is a remarkable result since it is at odds with Ohm’s law for normal con-

ductors stating that J = σE, where σ is the conductivity. Another important

result of the London brothers is that Maxwell’s laws retain their validity in

superconductors. As a result, the relation between the supercurrent, the

electric field and the magnetic field generated by the superconductor can be

obtained as

E = − ∂

∂t
A =

m

nsq2

∂

∂t
Js ,

B = ∇×A = − m

nsq2
∇× Js .

(1.2)

This set of equations is called the London equations. These are able to

describe the Meissner effect. Suppose a semi-infinite superconductor (for

z > 0), with an interface to a vacuum (for z < 0), where a magnetic field

is applied parallel to the interface, i.e. Ba = Baŷ. We start from the 4th

Maxwell equation, ∇×B = µ0

(
J + ε0

∂
∂tE

)
, where in the static case we are

considering ∂
∂tE = 0. This yields that in the superconductor (z > 0)

∇× (∇×B) = ∇ (∇ ·B)−∇2B = µ0∇× Js , (1.3)

where ∇ ·B = 0 according to the second Maxwell equation. By applying the

London equations, 1.2, we obtain the following differential equation for the

magnetic field in the superconductor, and its solution, using the boundary

condition B(0) = Ba,

∂2

∂x2
B =

µ0nsq
2

m
B⇒ B = Bae

− x
λL , (1.4)

where λL =
√

m
µ0nsq2 has the units of length and is called the London pen-

etration depth. This result shows that an applied magnetic field decreases

exponentially in the superconductor, with the London penetration depth as

the characteristic length scale. This magnetic field screening occurs under

2Note the gauge transformation, A→ A+∇f . The London equations are valid within
the choice of gauge ∇ ·A = 0, called ‘London gauge’ or ‘Coulomb gauge’, such that the
continuity equation ∂ns

∂t
+ ∇ · Js = 0 is fulfilled in the static case, ∂ns

∂t
= 0.
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the influence of the superconducting current, and lies at the origin of the

Meissner effect.

1.1.3 Ginzburg-Landau theory

Landau theory of phase transitions. In 1950 another, although more

deeply rooted, phenomenological theory of superconductivity saw the light

of the day, namely Ginzburg-Landau (GL) theory [5]. It is based on the more

general, very successful Landau theory of second order phase transitions (i.e.,

whereby the order parameter changes continuously). In GL theory, the quan-

tum mechanical nature of the superconducting state is explicitly taken into

account, as it is formulated using the wave function in the superconducting

state, ψ(r). GL theory of phase transitions states that around its minimum,

the free energy functional of the superconducting state can be expanded as

Fs = Fn +

∫
dr

[
α |ψ(r)|2 +

β

2
|ψ(r)|4 +

1

2M
ψ∗(r) |i~∇ +QA(r)|2 ψ(r)

+
B2(r)

2µ

]
. (1.5)

Here, Fn is the free energy in the normal state, and since it is a constant

it plays no role in the following. The mass M = 2me and the charge Q =

−2e are characteristic of the Cooper pairing between two electrons, which

is the microscopic mechanism behind superconductivity (as I will discuss in

more depth further on). Notice that in Eq. 1.5 only even powers of the

superconducting wave function ψ(r) come into play, as an expansion is made

in close vicinity to the minimum. Moreover, the series is cut off at the fourth

power, which is also a reasonable approximation in this case. The third term

of the integral is the kinetic energy of the Cooper pair, and the fourth term

is simply the free energy due to the magnetic field (no different from classical

electromagnetism).

Ginzburg-Landau equations. Minimization of this functional with re-

spect to the order parameter ψ(r), δFs
δψ∗(r) = 0, yields the first GL equation

−~2

2M

[
∇− iQ

~
A(r)

]2

ψ(r) + αψ(r) + β |ψ(r)|2 ψ(r) = 0 . (1.6)
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This first GL equation is the equivalent of the Gross-Pitaevski equation for

Bose-Einstein condensates [6]. There are two unknown functions to be ob-

tained, namely ψ(r) and A(r), so that an extra condition is required. It

can be obtained through the variational form of the fourth Maxwell equation

(static case), combined with Eq. 1.5, yielding

Js = − δFs

δA(r)
=
iQ~
2M

[ψ∗(r)∇ψ(r)− ψ(r) (∇ψ(r))∗]

− Q2

M
|ψ(r)|2 A(r) . (1.7)

According to the same Maxwell law (again the static case), ∇ × B = ∇ ×
(∇×A) = µ (Jext + Js), where Jext is an external, injected current. This

yields

1

µ
∇× (∇×A(r)) = − δFs

δA(r)
=
iQ~
2M

[ψ∗(r)∇ψ(r)− ψ(r) (∇ψ(r))∗]

− Q2

M
|ψ(r)|2 A(r) + Jext . (1.8)

This constitutes the second GL equation. In combination with the first GL

equation it can be used to self-consistently solve for ψ(r) and A(r).

Superconducting coherence. Ginzburg-Landau theory has been very

successful in its description of the superconducting length scales and the

interaction of superconductors with applied magnetic fields. In ultracold

gases, the length scale describing the restoration of Bose-Einstein condensa-

tion in the vicinity of an impurity, an interface with another state, or after

a perturbation is called the healing length [6]. In superconductors an equiv-

alent length scale arises from Ginzburg-Landau theory, called the coherence

length, ξ. In the microscopic Bardeen-Cooper-Schrieffer theory, which we will

review further on, it can be identified with the characteristic length scale of

the Cooper pair (sometimes called its ‘size’). Within GL theory the coher-

ence length of the superconducting condensate can be extracted in its most

elementary form by treating again the superconducting half-space for z > 0,

just like we derived the London penetration depth, but in this case without

applied magnetic field. In this case, the first GL equation, 1.6, reduces to

−~2

2M
∇2ψ(r) + αψ(r) + β |ψ(r)|2 ψ(r) = 0 . (1.9)
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Figure 1.3: Types of superconductivity under applied magnetic
field. (a) Abrikosov vortices forming a triangular lattice [7]. The
evolution of the magnetic field, B, and the modulus squared of the
condensate wave function |ψ|2 around a vortex. (b) Magnetization M
as a function of applied magnetic field H, showing type-I vs. type-II

superconducting behavior.

The solution to this differential equation must have the form ψ(z) =
√
nsf(z),

where ns =
√
−α
β is the density of superconducting particles at z →∞, such

that Eq. 1.9 becomes

−~2

2M

∂2f(z)

∂z2
+ f(z)− f3(z) = 0 . (1.10)

One can check that the solution to this equation is given by f(z) = tanh
(
z
ξ

)
with ξ =

√
~2

2Mα the coherence length.

Interaction with magnetic field. Ginzburg-Landau theory can equally

be employed to study the interaction of superconductors with applied mag-

netic fields more deeply. This analysis was first performed by A. Abrikosov

[8–10]. In a first approximation, one can consider making a hole of cross-

sectional area A in a superconductor, by means of an applied magnetic field.

The energy that is gained is then given by the product of the volume λLA

and the energy density, i.e., λLA
B2

c
8π . The energy that is needed to destroy the

superconducting state, on the other hand, depends on its coherence length ξ,

namely ξAB2
c

8π . Therefore, the net energy that is needed to create the interface

between an area in the normal state and the rest of the superconductor is to

a first approximation the surface energy ES = (ξ − λL)AB2
c

8π . As a result, if
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ξ � λL, this surface energy is positive, and thus it is not beneficial to create

the interface. When the critical magnetic field is applied, superconductivity

will be destroyed, the sample turning to the normal state, following a first

order phase transition. This type of interaction of a superconductor with

magnetic field is called type-I. On the other hand, if ξ � λL such interfaces

become beneficial to form. In this case there is an intermediate state where

the normal and superconducting states coexist in the sample. The normal

state forms a collection of holes in the superconductor, which are named vor-

tices. They also exist in Bose-Einstein condensates, where they can be formed

by, e.g., rotating the condensate [6]. Abrikosov showed that these vortices,

in sufficiently high densities, form a triangular, thus hexagonal closed packed

(hcp) lattice, the eponymous Abrikosov lattice, shown in Fig. 1.3(a). At the

core of the vortex, ψ(r) is depleted. The condensate wave function ψ(r)

heals, as we have derived earlier, as tanh
(
r
ξ

)
. Therefore, the characteristic

length scale of the core of the vortex is the superconducting coherence length,

ξ. The magnetic field decays away from the vortex core according to e
− r
λL .

Therefore, the size of the vortex as a magnetic object can be identified with

the London penetration depth λL.

The difference between type-I and type-II superconductors is thus determined

by the ratio of λL and ξ, called the Ginzburg-Landau parameter κ = λL
ξ .

The analysis of the types presented above ignores the specific evolution of

B and ψ, and is therefore only valid when ξ � λL and ξ � λL. A more

detailed calculation of the surface energy than presented here, which can

be found in Ref. 11, shows that the transition between type-I and type-II

superconductivity occurs at κ = 1√
2

(the Bogomolny point).

The difference between type-I and type-II superconductors becomes appar-

ent in the magnetization curve of superconductors as a function of applied

magnetic field, shown in Fig. 1.3(b). For small H both types behave in

the same way, namely M ∝ H, i.e., perfect diamagnetism, according to the

Meissner effect. In a type-I superconductor, there is one critical magnetic

field at which the first-order transition occurs, namely the thermodynamic

critical field Hc. In a type-II superconductor, on the other hand, there are

two critical field. At Hc1, the perfect diamagnetism ceases, yet the supercon-

ducting state is not entirely lost. This is the intermediate (or mixed) state
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where vortices coexist with the superconducting state. At the upper criti-

cal field, Hc2, superconductivity is entirely destroyed. We will focus on the

types of superconductivity under applied magnetic field in Chapter 4, where

I will present my discovery of a rare, new type-I superconducting compound,

namely OsB2.

Flux quantization. Importantly, the flux through vortices is quantized.

The root cause of this flux quantization is the phase, φ, of the superconducting

condensate wave function ψ(r) =
√
ns(r)eiφ(r). According to Eq. 1.7, the

supercurrent is given by

Js = −Q~
M

ns∇φ− Q2

M
nsA(r) . (1.11)

The second term is the supercurrent that we already saw arising in the Lon-

don theory, while the new, first term is due to gradients in the phase. When

one integrates this equation around a closed path C in the superconductor3,

one obtains ∮
C
dl ·A +

M

nsQ2

∮
C
dl · Js = − ~

Q

∮
C
dl ·∇φ . (1.12)

Stokes’ theorem yields
∮
C dl ·A =

∫
dS ·B, i.e. the standard magnetic flux.

The whole left hand side can be proven to be a conserved quantity, namely

the London fluxoid,

Φ =

∫
dS ·B +

M

nsQ2

∮
C
dl · Js , (1.13)

with ∂Φ
∂t = 0, from the London equation [11]. The second term is the contri-

bution of the supercurrent. Continuity of the superconducting wave function

requires that
∮
C dl ·∇φ = 2πn, where n is an integer number. As such, the

London fluxoid is Φ = n h
|Q| , where h

|Q| := Φ0 is the elementary flux quan-

tum, hence the name fluxoid. This implies that magnetic flux through a

superconductor is quantized, including the vortices.

The interest in superconducting vortices has peaked in recent years, with

notable new vortex states such as multiquantum or giant vortices (n > 1) in

3This is valid both when the superconductor does and does not contain normal holes,
i.e., is singly or multiply connected in topological terms.
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mesoscopic samples [12], fractional vortices (in inhomogeneous systems, such

as a weak link Josephson junction between two superconductors [13], or in

multicomponent superconductors [14]). Moreover, in new superconductors

with two-dimensional characteristics, such as the iron chalcogenide FeSe, the

symmetry breaking from fourfold to twofold symmetry, resulting from strong

correlations, and the resulting nematic ordering, have been observed to lead

to elongated vortices and corresponding anisotropic vortex lattices [15], at

odds with the elementary Abrikosov vortex lattice.

Other applications of Ginzburg-Landau theory. GL theory can

be generalized to include dynamical properties, as first done to investigate

dissipation in thin superconducting filaments, due to the presence of the

normal phase as a result of applied current [16]. The resulting time-dependent

GL theory (TDGL) can, for instance, be used to study vortex movement,

pinning and unpinning of vortices, etc. GL theory is also a useful formalism

to study the vortex matter in nanostructured superconductors, e.g., with

artificial pinning centers [17]. The major limitation inherent to GL theory is

its limited applicability range with respect to temperature.

1.1.4 Towards a microscopic theory

1.1.4.1 Key experiments

Crucial for the construction of the microscopic theory of conventional su-

perconductors were a series of experiments that each hold a clue as to the

microscopic origin of superconductivity. They reveal that superconductivity

arises as a boson-like coupling between pairs of electrons, mediated by the

crystal lattice, and leading to the opening of a superconducting gap.

The key experiments were as follows:

1. Microwave absorption

When electromagnetic waves are shone on a superconductor, the ab-

sorption has been found to be absent for the lower energy range, starting

only at a certain threshold value. This value is usually in the range of

a few tens of GHz for elemental superconductors (i.e. the µeV range).



Chapter 1. Introduction 11

Figure 1.4: Key experiments for the microscopic theory of super-
conductivity. (a) The peak in the specific heat of a superconductor
(i.c. NbSe2 [18]) around Tc, indicating the bosonic character of the
superconducting state. (b) The isotope effect in mercury, yielding

α = 0.504 in MαTc = const. [19].

This experiment indicates that there is an energy band gap in the su-

perconducting state.

2. Flux quantization

We already studied quantization of magnetic flux through a supercon-

ductor and saw that the quantum of flux depends on the charge carriers,

namely Φ = n h
|Q| . Experiments carried out on superconducting cylin-

ders revealed that Q = −2e, indicating that electrons pair up in the

superconducting state [20].

3. Specific heat peak

The specific heat, C, in a superconductor peaks around Tc. As an

example, we show the specific heat of NbSe2 in Fig. 1.4 (a) [18]. In the

normal state, the specific heat of an electron gas decreases linearly with

T , as also evidenced in the figure far enough below Tc. The peak in C,

however, is characteristic for bosonic quantum condensates, e.g., Bose-

Einstein condensates [6]. This experiment thus indicates that electrons

pair up to form a bosonic state.

4. Isotope effect

In this effect, the critical temperature of a crystal lattice of the same

superconducting element, e.g., mercury, is found to depend on the spe-

cific isotope. An example of this dependence is shown in Fig. 1.4 (b),

for mercury [19]. It is found that MαTc = const., with M the isotope
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mass, such that lighter isotopes produce a higher Tc, and α is moreover

found to be around 1
2 in most elemental superconductors (that can be

described by Bardeen-Cooper-Schrieffer theory as discussed in the fol-

lowing section). It became thus evident that superconductivity in many

materials originates from interactions with the crystal lattice, and the

quantitative description was initiated by, among others, H. Fröhlich

[21].

1.1.4.2 Bardeen-Cooper-Schrieffer theory

The model. J. Bardeen, L. Cooper and J. Schrieffer brought the micro-

scopic theory of superconductivity to a successful conclusion in 1957, hence

the theory is called Bardeen-Cooper-Schrieffer (BCS) theory [22]. BCS the-

ory starts from a series of successful assumptions. The first assumption is

that only electrons with energy −~ωD ≤ ξk ≤ ~ωD, where ~ωD signifies

the Debye energy – the characteristic energy scale of (acoustic) phonons –

participate in the Cooper pairing. This energy range is also known as the

Debye window, and we will denote the wave vectors that comply with it as

k ∈ D. The second assumption for BCS theory is that electrons with opposite

momentum and opposite spin form the superconducting pair. These states

with quantum numbers (k, σ =↑) and (−k, σ =↓) are related by time-reversal

symmetry. As such, the pair wave function has zero momentum and zero net

spin, the latter making it a boson state.

In a normal metal conduction electrons gradually lose their energy as a re-

sult of collisions with the lattice. In the superconducting state, however,

electrons thus condense into Cooper pairs adopting a superfluid state that

can carry electric current without dissipation. Since the energy spectrum of

the Cooper pair is gapped, a minimum amount of energy is required to break

the Cooper pairs into their single-particle excitations (by means of thermal

energy, applied current or magnetic field).

With these assumptions as the starting point, the BCS Hamiltonian can be

written as

ĤBCS =
∑
k,σ

ξkĉ
†
k,σ ĉk,σ − Ṽ

∑
k,k′∈D

ĉ†k,↑ĉ
†
−k,↓ĉ−k′,↓ĉk′,↑ , (1.14)
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where Ṽ is the effective attractive potential between the electrons pairs. The

ladder operators ĉk,↑ and ĉ−k,↓ annihilate electrons with corresponding quan-

tum numbers. In order to proceed BCS applied the following mean-field

approximation to the Hamiltonian

Ĥmf
BCS =

∑
k,σ

ξkĉ
†
k,σ ĉk,σ − Ṽ

∑
k,k′∈D

[〈
ĉ†k,↑ĉ

†
−k,↓

〉
ĉ−k′,↓ĉk′,↑

+ĉ†k,↑ĉ
†
−k,↓

〈
ĉ−k′,↓ĉk′,↑

〉
−
〈
ĉ†k,↑ĉ

†
−k,↓

〉 〈
ĉ−k′,↓ĉk′,↑

〉]
, (1.15)

where 〈...〉 is the expectation value. Defining the following expectation value

∆ = −Ṽ
∑
k∈D
〈ĉk,↑ĉ−k,↓〉 , (1.16)

the mean-field Hamiltonian becomes

Ĥmf
BCS =

∑
k,σ

ξkĉ
†
k,σ ĉk,σ +

∑
k∈D

(
∆∗ĉ−k,↓ĉk,↑ + ∆ĉ†k,↑ĉ

†
−k,↓

)
+
|∆|2

Ṽ
. (1.17)

Symmetries of the theory. Eq. 1.17 is an important result, since it

implies gauge field symmetry breaking in BCS theory. The gauge transfor-

mation in question is ĉ→ eiθ ĉ. It leaves all terms of the form ĉ†ĉ invariant, as

well as those of the form ĉ†ĉ†ĉĉ, etc. This symmetry is called U(1) symmetry,

denoting the symmetry of the unitary group of degree 1, i.e., rotations on

the unit circle. However the Hamiltonian in Eq. 1.17, specifically the term

of the form ∆∗ĉĉ + ∆ĉ†ĉ†, does not obey U(1) symmetry. Only θ = 0 and

θ = π leave the Hamiltonian invariant under the transformation ĉ → eiθ ĉ.

This group with two elements {0, π} is denoted Z2. The fact that there are

two values derives microscopically from symmetry between the valence and

conduction bands (particle-hole symmetry). Therefore, the microscopic cou-

pling mechanism leading to the BCS state is accompanied by a U(1)→ Z2

symmetry breaking.

According to Goldstone’s theorem, every continuous symmetry that is spon-

taneously broken4 results in the appearance of an associated boson. In case

4Spontaneously broken denotes that the Hamiltonian of the system obeys a certain
symmetry, however, the ground state does not. Here, it is clear that the Hamiltonian in
Eq. 1.14 obeys U(1) symmetry, however, the mean-field Hamiltonian of Eq. 1.17, which we
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Figure 1.5: The free energy of a superconductor, F as a function
of the condensate wave function ψ. For the superconducting ground
state ψ = ∆eiφ with ∆ > 0. Fluctuations in the amplitude of the
condensate wave function are indicated here with red arrows, and
lead to Anderson-Higgs modes, while fluctuations in the phase are
indicated with blue arrows, and give rise to Nambu-Goldstone modes.

the broken symmetry is a gauge symmetry, like U(1) in this case, the re-

sulting boson is massive, according to the Anderson-Higgs mechanism [23].

The gauge that is broken for superconductors is the electromagnetic gauge,

which can be understood as the carrier boson of the electromagnetic interac-

tion, the photon, acquiring a mass. This mass, as described by Proca theory,

accompanies the transition from an Ohmic conductor to a superconductor

obeying London theory, and in particular causes the Meissner effect [23].

The symmetry breaking can also be seen from a different angle, as in Fig. 1.5.

It represents the free energy functional, F , shaped as a Mexican hat. In the

normal state ∆ = 0 and φ ∈ [0, 2π], and thus it has U(1) symmetry. In the

superconducting state, on the other hand, F minimizes for a ring of minima

with a particular value for ∆ 6= 0 and arbitrary phase φ. When a state is

adopted, however, the phase φ becomes a fixed value, thus the state has a

lower symmetry than the functional it obeys. Therefore, U(1) symmetry is

indeed spontaneously broken in the superconducting state.

will show describes the ground state, does not. This is a case of spontaneous symmetry
breaking.
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When we introduced the mean-field Hamiltonian in Eq. 1.15, we discarded

second order terms in the deviations between the operator products and their

expectation values, i.e., of the form

[ĉ−k,↓ĉk,↑ − 〈ĉ−k,↓ĉk,↑〉]
[
ĉ†k,↑ĉ

†
−k,↓ − 〈ĉ

†
k,↑ĉ

†
−k,↓〉

]
. (1.18)

These higher order contributions, neglected in BCS theory, are called fluc-

tuations. As indicated in Fig. 1.5, both the wave function amplitude and

the phase can be subject to fluctuations, the former giving rise to Anderson-

Higgs (AH) modes and the latter to Nambu-Goldstone (NG) modes. The

main difference is that AH modes are accompanied by changes in F (they

are massive), while this is not the case for NG modes (they are massless).

In a multigap superconductor, with different Cooper pair condensates stem-

ming from separate parts of the Fermi surface (discussed in Sec. 1.2.1), an

additional type of fluctuations exists, namely collective fluctuations of inter-

band phase differences [24, 25].

Diagonalizing the BCS Hamiltonian. To proceed with studying the

predictions of BCS theory, we wish to rewrite the BCS Hamiltonian in a

diagonalized form. The first step towards this goal employs Nambu spinors

of the form c†k =
(
ĉ†k,↑, ĉ−k,↓

)
. Then, in terms of the Nambu spinors, the

BCS mean-field Hamiltonian, Eq. 1.17, can be written very succinctly as

Ĥmf
BCS =

∑
k/∈D,σ

ξkĉ
†
k,σ ĉk,σ +

∑
k∈D

(
c̄†kHkc̄k

)
+
∑
k∈D

ξk +
|∆|2

Ṽ
, (1.19)

where

Hk =

(
ξk ∆

∆∗ −ξ−k

)
. (1.20)

This Bogoliubov Hamiltonian plays a crucial role in Bogoliubov-de Gennes

theory, wherein non-homogeneous superconductors can be studied via the

spatial dependence in ∆(r) [26]. The first term in Eq. 1.19 simply expresses

the energy of the electrons outside the Debye window (k /∈ D). Since it is

identical in the normal and the superconducting state, and thus unimportant

for our investigations, we will simply refer to it as E0.
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In order to diagonalize Hk first its eigenvalues need to be sought. They are

±Ek with Ek =
√
ξ2
k + |∆|2. The signs denote that this so-called Bogoliubov

spectrum has solutions for both electrons (+) and holes (−). As the eigen-

values are always symmetric there is a particle-hole symmetry. We will get

back to the interpretation of the Bogoliubov spectrum further on.

Based on the corresponding eigenvectors the unitary transformation matrix

diagonalizing the Hamiltonian Hk is obtained as

Bk =

(
uk vk

−vk uk

)
. (1.21)

with uk =
√

(Ek + ξk) / (2Ek) and vk =
√

(Ek − ξk) / (2Ek), such that

Bk ·Hk ·B†k =

(
Ek 0

0 −Ek

)
. (1.22)

Bogoliubov spectrum. The preceding steps can be formalized by means

of the Bogoliubov transformation,

α̂k,σ = u∗kĉk,σ − σvkĉ†−k,−σ ⇐⇒ ĉk,σ = ukα̂k,σ + σvkα̂
†
−k,−σ . (1.23)

The Bogoliubov annihilation operators α̂k,σ reduce the BCS wave function,

|ΨBCS〉 =
∏
k

[
u∗k + vkĉ

†
k,↑ĉ

†
−k,↓|0〉

]
, (1.24)

|0〉 being the electron vacuum, to zero. As such one finds α̂k,σ|ΨBCS〉 = 0,

thus explaining their usefulness.

Finally, the mean-field Hamiltonian of Eq. 1.19 reads in diagonalized form

Ĥmf
BCS = E0 +

∑
k∈D

(ξk − Ek) +
|∆|2

Ṽ
+
∑

k∈D,σ
Ekα̂

†
k,σα̂k,σ . (1.25)

The first three terms describe the system at T = 0, while the fourth term

is only at play at nonzero temperatures. It describes Cooper pair breaking,

where the broken Cooper pairs carry energy Ek =
√
ξ2
k + |∆|2. As such, the

smallest energy needed to create an excitation is Ek = |∆|. This justifies the
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interpretation of the superconducting gap, |∆| as the binding energy of the

Cooper pair that needs to be exceeded in order to break the pair.

Superconducting density of states. Since the superconducting pairs

have a dispersion different from their normal state counterparts, their density

of states (DOS) is also altered. With a homogeneous distribution of these

states in k-space, the conservation of the number of states between the su-

perconducting (left hand side) and the normal (right hand side) states yields

NSdE = NFdξ, with NF the normal-state DOS at the Fermi level. Thus, the

DOS in the superconducting state is

NS(E) = NF
E√

E2 − |∆|2
, (1.26)

provided that |E| > |∆|. Within the gap energy, |E| < |∆|, the supercon-

ducting DOS vanishes, NS(E) = 0.

Result 1.26 is depicted in Fig. 1.6(a). The sharp peaks at E = |∆| are very

characteristic of the superconducting state. The superconducting DOS can

be measured using low-temperature scanning tunneling microscopy (STM)

or spectroscopy (STS) [27, 28]. In a realistic measurement at nonzero T , the

peaks will of course have a finite height and will be broadened due to thermal

fluctuations. Moreover, in a multigap material, e.g. MgB2, there are several

peaks related to the different superconducting gaps [27, 28].

Band gap equation. Minimizing the first three terms of Hamiltonian

1.25 with respect to |∆| one obtains the superconducting gap equation at

T = 0,

Ṽ

2

∑
k∈D

1√
ξ2
k + |∆|2

= 1 . (1.27)

It is reasonable to assume that the electronic density of states is constant in

the Debye window, as ~ωD is very small (∼ 10 − 100 meV) compared with

the electronic energy scale (Fermi energy EF ∼ 1 − 10 eV). Thus, Eq. 1.27
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Figure 1.6: Results of the BCS theory. (a) The density of states
in the superconducting state, NS, showing the opening of the gap
for −∆ ≤ E ≤ ∆, and the divergence at ±∆. (b) The evolution
of the superconducting gap with temperature, ∆(T ), obtained from

numerical solution of the gap equation.

can be put in infinitesimal form as∫ ~ωD

0

1√
∆2 + ξ2

dξ =
1

NFṼ
⇒ ∆(0) =

~ωD

sinh
(

1/(NFṼ )
) . (1.28)

This is the BCS result for the superconducting gap at T = 0. In many

elemental superconductors, the electron-phonon coupling is weak, i.e., λ =

NFṼ � 1. In this case ∆(0) ' 2~ωDe−1/λ.

To find out the value of ∆ at nonzero temperatures, we need to return to

the full Hamiltonian, including Bogoliubov excitations. With the help of the

Bogoliubov transformation and the fermionic anticommutation relations of

the Bogoliubov ladder operators,

{α̂k,σ, α̂
†
k′,σ′
} = δk−k′δσσ′ , (1.29)

the band gap equation, Eq. 1.16, becomes

∆ = Ṽ
∑
k∈D

[
(ukvk − ukvk)

(〈
α̂†k,↑α̂k,↑

〉
+
〈
α̂†−k,↓α̂−k,↓

〉)]
. (1.30)

Here, nk,↑ =
〈
α̂k,↑α̂

†
k,↑

〉
and n−k,↓ =

〈
α̂†−k,↓α̂−k,↓

〉
represent the number of

broken Cooper pairs with the corresponding quantum numbers. These are
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determined by the Fermi-Dirac distribution,

nk,↑ = n−k,↓ =
1

eβEk + 1
, (1.31)

where β = 1/(kBT ). Using this, Eq. 1.30 yields the T -dependent supercon-

ducting gap equation

Ṽ

2

∑
k∈D

1√
ξ2
k + ∆2

tanh

β
√
ξ2
k + ∆2

2

 = 1 . (1.32)

By numerical integration one can obtain ∆(T ) shown in Fig. 1.6 (b). It

shows ∆(T ) ∼ ∆(0) until 0.5Tc, decreasing more rapidly for higher T , until

it vanishes at T = Tc.

Critical temperature. Taking the limit ∆ → 0, such that T → Tc,

Eq. 1.32 becomes in infinitesimal form

NFṼ

∫ ~ωD

0
dξ

tanh
(

ξ
2kBTc

)
ξ

= 1 . (1.33)

With ∆(0)/(~ωD)� 15, the approximate solution reads [29]

kBTc ' 1.13 ~ωDe−1/λ . (1.34)

One notices that kBTc ∝ ~ωD ∝ 1/
√
M , with M the atomic mass, corre-

sponding to the isotope effect with α = 0.5. It should be stressed that this

value is not universal for all superconductors, even not within the category

of superconductors based on conventional electron-phonon coupling. For ex-

ample, in MgB2 a lower value of α = 0.3 is obtained [30, 31], and in PdHx

even an inverse isotope effect with α = −0.3 is observed [32]. The latter can

likely be attributed to anharmonic phonon effects due to hydrogen [32, 33].

5The band gap, ∆(0), is typically of the order of 0.1 to 1 meV for elemental supercon-

ductors, and ~ωD of the order of 10 to 100 meV. This means that the ratio ∆(0)
~ωD

is in the
order of 0.1 to 0.001.
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Material 2∆(0)/ (kBTc) (d.u.)

Al 3.37 ± 0.1

Cd 3.20 ± 0.1

Hg 4.60 ± 0.1

In 3.63 ± 0.1

Nb 3.84 ± 0.06

Pb 4.29 ± 0.04

Sn 3.46 ± 0.1

Ta 3.60 ± 0.1

Table 1.1: The ratio 2∆(0)/kBTc from tunnelling measurements for
a selection of superconducting materials [34]. BCS theory predicts a

material-independent ratio of 3.53.

Combining Eqs. 1.28 and 1.34, we obtain in the weak coupling limit

2∆(0)

kBTc
' 3.53 . (1.35)

As such this ratio is, in principle, material independent. In Table 1.1 exper-

imental values of this ratio are listed [34]. One concludes that BCS theory

gives a rather good account of this ratio, given the relative simplicity of the

model.

Critical magnetic field. The critical magnetic field can be directly

calculated from the band gap. Namely, as the Meissner effect destroys super-

conductivity, the energy of the applied field must match the energy difference

between the superconducting, BCS state and the normal state. To a first ap-

proximation, when ∆/(~ωD) � 1, this energy difference can be estimated

by means of the superconducting DOS, shown in Fig. 1.6(a). In the super-

conducting state, NF∆ electrons condense, each going to an energy state

−∆/2 below the energy of the normal state. Therefore, the energy difference

between the BCS and the normal state is roughly

EBCS − EN ' −
1

2
NF∆2 . (1.36)
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The energy density of the magnetic field acting on a material is H2/(8π).

Thus, we find that superconductivity is destroyed by the field when

H2
c /(8π) =

1

2
N(0)∆2 ⇒ Hc(T ) =

√
4πNF∆(T ) , (1.37)

so that the critical field completely follows the gap within BCS theory.

The extension of the BCS theory to include realistic electron-phonon cou-

pling, instead of the simplified Debye window and Coulomb interaction is

called Migdal-Eliashberg theory, and will be the subject of Chapter III of this

thesis.

1.1.4.3 Superconductors with unconventional coupling mechanisms

Timeline of conventional superconductors. Although the BCS the-

ory accounts for superconductivity in many elemental metals, and com-

pounds, it was realized a few decades ago that it does not properly describe all

experimentally discovered superconductors. Superconductors that do not fall

within the BCS theory are called unconventional superconductors. Fig. 1.7

presents a time line of experimentally discovered superconductors. It starts,

of course, with the discovery of superconductivity in mercury (Hg) by Kamer-

lingh Onnes in 1911, and other elemental superconductors, such as Pb, that

followed soon after. After that, compound superconducting materials – crys-

tals comprised of more than one atomic species – were synthesized. These

include NbN, Nb3Sn, etc., and ultimately led to a relatively high Tc of 23 K

in Nb3Ge in 1973. The coupling mechanism between the electrons is still the

electron-phonon coupling, described within the BCS theory. As such, it was

believed the maximal attainable Tc for superconductivity was about reached

in Nb3Ge. It held record Tc until 1986, when the high-Tc cuprate supercon-

ductors emerged. Much later, in 2001, a material with a much higher Tc of

39 K was discovered, though with a conventional coupling mechanism [35].

This material is magnesium diboride (MgB2), whose high Tc originates from

its two-gap character [27, 28, 36–39]. It can be described successfully by

multiband Migdal-Eliashberg theory, the extension of BCS theory mentioned

above. In this thesis, the atomically thin limit of MgB2 is investigated for

the first time.
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Figure 1.7: Chronological overview of discoveries of superconduc-
tors, and their critical temperatures [40]. The symbols denote the
families of the superconductors. Dark green circles denote conven-
tional, electron-phonon coupled superconductors, light green stars
heavy fermion compounds, blue rhombi cuprate superconductors, pur-
ple triangles fullerene superconductors, red triangles other C-based
materials, and orange squares the most recent category of Fe-based

superconductors.

Other families of superconductors depicted in Fig. 1.7, where the coupling

mechanism is conventional include carbon-based superconductors, such as

doped fullerenes (K3C60, Cs3C60, etc.), which can reach Tc’s up to 40 K under

pressure, and (metallic) carbon nanotubes (CNT). The most striking addition

to conventional superconductivity is that of sulfur hydride under ultrahigh

pressure of 155 GPa, generated with diamond anvil cells, in 2015 [41]. The

high pressure is needed to make the material metallic. This was predicted by

ab initio calculations on a very similar compound, dense molecular hydrogen

[42]. The very light mass of H renders its phonon modes extremely hard, thus

strongly boosting the Debye window and, hence, Tc, reaching the absolute

record value of 203 K in the experiment. The conventional nature of the

coupling mechanism was convincingly proven by means of the isotope effect.

Heavy fermion superconductors. In 1978, the first unconventional su-

perconductor, CeCu2Si2, was discovered [43]. It is a heavy fermion material,
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Figure 1.8: Crystal structures of unconventional superconduc-
tors. (a) Crystal structure of the prototype cuprate superconductor
La2CuO4. (b) Crystal structures of a selection of Fe-based supercon-
ductors [45], from left to right the oxypnictide LaFeAsO, the pnictide

BaFe2As2, and the chalcogenide FeSe.

in which the electrons have very high effective masses. In a heavy fermion

superconductor, there are 4f or 5f electrons present at the Fermi level, stem-

ming from heavy elements such as cerium (Ce) and uranium (U). Despite

the low Tc of CeCu2Si2, 0.5 K, its coupling mechanism cannot be described

by the BCS theory. The reason is that the localized f levels are mutually

strongly correlated, so that the electrons cannot be considered to be occu-

pying single-particle states in the normal (i.e., non-superconducting) state.

Thus, one of the starting points of the BCS theory breaks down in these

materials. Moreover, these materials display antiferromagnetism and anti-

ferromagnetic spin fluctuations, that can be the mediators of unconventional

pairing [44].

Cuprate superconductors. In 1986, the discovery of superconductivity

with Tc ∼ 30 K in Ba-doped La2CuO4 by Bednorz and Müller, by far exceed-

ing the Tc = 23 K of Nb3Ge, shook physics [47]. This discovery was awarded

the Nobel prize already in the next year, 1987. Later in 1986, supercon-

ductivity in Sr-doped La2CuO4 with Tc ∼ 35 K was achieved. In 1987, the

discovery of the related compound YBa2Cu3O7−x (YBCO) followed. Much

like in doped La2CuO4, its Tc depends on the doping level, in this case by

means of oxygen vacancies introducing holes in YBCO. Optimal doping for

superconductivity is reached when there are 0.16 holes per CuO2 layer, and

the corresponding Tc ∼ 100 K. Thus, YBCO was the first superconduc-

tor with a Tc exceeding the boiling point of liquid nitrogen. As a result,

this discovery enabled many new possibilities for applications. Subsequent
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Figure 1.9: Unconventional superconductors: cuprate and Fe-based
superconductor (pnictides and chalcogenides). (a) General phase di-
agram of cuprate superconductors as a function of doping and tem-
perature [46]. (b) Idem for the Fe-based superconductors. The inset
shows the real-space magnetic pattern in the SDW state, which is
ferromagnetic in one direction and anti-ferromagnetic in the other.
(c) The Fermi surface and symmetry of the superconducting gap of
cuprate superconductors. The signs denote ∆ < 0 (−) and ∆ > 0

(+). (d) Idem for the Fe-based superconductors.

record Tc’s were obtained in Tl2Ba2Ca2Cu3O10 (∼ 130 K) in 1988, and in

HgBa2Ca2Cu3O8+x in 1993. The latter to date holds the record Tc ∼ 135 K

at ambient pressure, but it can be boosted to above 150 K at high pressure,

as shown in Fig. 1.7.

The common crystal structure of the cuprate superconductor family is de-

picted in Fig. 1.8(a), specifically for La2CuO4. It is a tetragonal, layered,

and quasi-2D structure of the perovskite type, characterized by oxygen octa-

hedra with Cu in the center. In particular the CuO2 planes have been shown

to develop superconductivity. The cuprates belong to the family of ceramic
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materials, i.e., inorganic, mostly non-metallic oxides, nitrides and carbides.

These materials are brittle, they can withstand much compression but not

shear and tension.

Superconductivity is only one of the many phenomena occurring in the cupr-

ates. Fig. 1.9(a) depicts a typical phase diagram of the cuprates. Another

phenomenon is the pseudogap state, characterized by partial gapping of the

Fermi surface. As a result the Fermi surface consists of Fermi arcs instead

of the usual closed Fermi contours. When the temperature is lowered the

gap states ultimately reduce to the four points cutting the diagonals of the

Brillouin zone (depicted in Fig. 1.9(c)). At lower temperatures, below the

Néel temperature (TN), and with low doping the cuprates develop magnetic

order. The characteristic wave vector of this order (for which the susceptibil-

ity diverges) is (π, π), corresponding to an antiferromagnetic, checkerboard

(Néel) pattern [46, and references therein].

The superconducting phase emerges upon electron and/or hole doping. There

is a boundary regime where superconductivity and antiferromagnetism (AFM)

coexist. This points at a close relation between both phenomena. Although

there is no consensus for the coupling mechanism (‘glue’) between electrons

in the cuprates, the general viewpoint is that other bosons than phonons

mediate this interaction. The prime candidates for unconventional coupling

mechanisms are collective density wave excitations of the charges or the spins

[46]. These mediate a repulsive interaction between electrons, but once renor-

malized by the screening of the full electron cloud and the exchange inter-

action between the electrons, the coupling becomes a complex function of

reciprocal space, and is thus attractive for some wave vectors.

In the cuprates, specifically antiferromagnetic spin fluctuations are conjec-

tured to be at play [46, and references therein]. The resulting supercon-

ducting gap should thus contain gap nodes where ∆ = 0, as it switches

sign. These nodes are well established in cuprate superconductors, as they

have been detected directly by means of angle-resolved photoemission spec-

troscopy (ARPES) [46, and references therein]. These nodes occur at the

diagonals of the Brillouin zone, exactly like the pseudogap state right be-

fore its disappearance, as mentioned above. The resulting symmetry of the

superconducting gap is depicted in Fig. 1.9(c). The 2D projection of the
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Fermi surface (containing all vital information, since the structure is quasi-

2D) consists of a single sheet centered around the Brillouin zone boundary.

The coupling mediated by antiferromagnetic spin fluctuations is most attrac-

tive when Q = k− k’→ 0, and most repulsive when Q→ (π, π), hence the

gap nodes occur at the diagonals. The resulting sign of ∆ has the same sym-

metry as the electronic d orbital (albeit in reciprocal space, not in real space,

in case of the superconducting state), specifically the dx2−y2 orbital with

∆k = ∆0 (cos (kxa)− sin (kya)), where a is the lattice parameter. Hence,

this type of superconducting pairing is called d-wave pairing.

Iron-based superconductors. As can be seen in Fig. 1.7, another ma-

jor discovery followed in 2006, namely, that of superconductivity in Fe-based

materials. This is all the more remarkable, since iron (Fe) as a ferromagnetic

element is detrimental to the coupling strength in terms of conventional su-

perconductivity. It is thus said that superconductivity moved from the cop-

per to the iron age in 2008 [46]. The first Fe-based superconductor to be

discovered was the oxypnictide LaOFeP, otherwise known as a (1111) pnic-

tide, with Tc ∼ 4 K [48]. The name ‘oxypnictide’ denotes that the compound

contains both oxygen and a pnictogen atom, i.e., an atom of group V (N, P,

As, Sb, and Bi). In 2008, the discovery of another compound of this family

followed, namely LaO1−xFxFeAs, with a rather high Tc ∼ 26 K. In 2009,

samarium-doped SrFFeAs (a non-oxypnictide) with record Tc ∼ 56 K within

the ferropnictides was synthesized [49]. Ferropnictides exist in other compo-

sitions, like the (122) structures, of which BaFe2As2 is a prime example.

The structure of these materials is generally tetragonal and layered with pla-

nar layers of iron sandwiched in layers of tetrahedrally coordinated pnictogen

atoms [50]. These layers are stacked together with ‘buffer’ layers of alkali (Li,

Na, K,..), alkaline-earth (Sr, Ba,...), or rare-earth elements (Ce, La, Sm,...),

optionally joined by oxygen or fluorine. Two examples of ferropnictide struc-

tures are depicted in Fig. 1.8(b), namely the (1111) structure LaOFeAs, and

the (122) structure BaFe2As2.

Closely related materials are the iron chalcogenides, compounds of iron and

a chalcogen atom, i.e., S, Se, or Te. These materials have a (11) composition,

such as FeSe. It has the simplest structure among the Fe-based superconduc-

tors discovered to date, namely one iron layer per unit cell, with tetrahedrally
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coordinated Se atoms on both sides, as shown in Fig. 1.8(b). In its bulk form,

FeSe superconducts with Tc ∼ 8 K at ambient pressure, which can be boosted

to 37 K under high pressure (9 GPa) [51]. At ambient pressure, the Tc can

also be boosted by Te substitution of Se. The maximal Tc ∼ 15 K is reached

in FeSe1−xTex at x ∼ 0.35.

Contrary to the cuprates, no distinct Mott phase (pseudopgap) has been

found in the Fe-based superconductors, which are (poor) metals at higher

temperatures [46, and references therein]. The magnetic order is also different

from that of the cuprates, namely, in the iron pnictides there is a tendency

for ferromagnetism in one direction and antiferromagnetism in the other –

called a spin density wave (SDW) state – as shown in the inset in Fig. 1.9(b)

[46, 52]. A prevailing theory proposes that fluctuations of this competing

magnetic phase provide the glue between the electrons in the superconducting

phase [52]. It is proposed in Ref. 52 that antiferromagnetic spin fluctuations

prevail over ferromagnetic ones (which would be pair-breaking in case of spin

singlet coupling). Another important phenomenon in the Fe-based family

is the structural transition from tetragonal to orthorhombic, indicated in

Fig. 1.9(b), and the corresponding nematic phase (where the orbitals align

in a rotational symmetry breaking fashion, akin to, and named after the

longitudinal ordering of the molecules composing liquid crystals).

Fig. 1.9(d) shows a typical 2D-projected Fermi surface of the Fe-based family.

There are usually two hole-like bands at the Brillouin zone center, Γ, and at

least one electron-like band around point X6, and there can be additional

hole-like pockets around point M. While the hole-like pockets are usually

circular, the electron-like pockets often are quite ellipsoidal. The electron

and hole pockets are usually well nested (nesting is the occurrence of large

parallel portions of different Fermi sheets), which drives antiferromagnetic

spin fluctuations. This is compatible with an extended s-wave order param-

eter with opposite signs between electron and hole pockets [52], as shown

in Fig. 1.9(d). This type of pairing is denoted as s± pairing, and evolves as

∆k = ∆0cos (kxa) sin (kya) throughout the Brillouin zone. It is different from

d-wave pairing in that the full symmetry of the lattice is preserved. Some

other (Ba1−xKxFe2As2 and KFe2As2 [53]) have Fermi surface sheets at the

6Here, we employ the convention of the single-iron Brillouin zone. The Brillouin zone
of the whole structure is smaller, and the electron-like pockets are centered around point
M in this convention. Both are present in the literature.
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corner of the Brillouin zone shaped as a four-bladed propeller, with very little

to no nesting at all. Thus, it is currently not clear if this proposed coupling

mechanism provides an explanation for all Fe-based superconductors. The

fermiology of bulk FeSe is discussed in more detail in Appendix B, in the

light of quantum oscillations.

In summary, it is thought, though not proven, that superconductivity in both

the cuprate and the Fe-based superconductors is mediated by spin fluctua-

tions. We stress again here that no complete theory for unconventional and

high-Tc superconductivity has been established. It is one of the most out-

standing open problems in physics to date. The details in the phase diagrams

in Figs. 1.9(a) and 1.9(b) reveal that a good understanding of these materials

on the atomic level is crucial. First-principles theory, as developed in this

thesis, provides thus the most realistic and accurate basis to construct such

a microscopic theory.

Atomically thin structures of Fe-based superconductors harbor additional

surprises. A monolayer of FeSe grown epitaxially on the insulating substrate

SrTiO3 has Tc ∼ 60−70 K [54], by far exceeding that of its bulk counterpart,

and even above 100 K under certain growth conditions [55], as also shown in

Fig. 1.7. In this case, the Fermi surface has only got the electron pocket at the

Brillouin zone boundary. The hole pocket around the Brillouin zone center

has disappeared completely, as a result of electron doping by the substrate,

increasing the Fermi level [54]. This fermiology is thus no longer compatible

with s± pairing. Consequently, this discovery evokes many new questions

about the coupling mechanism in the Fe-based superconductors.

In this thesis, we will study an Fe-based superconductor, namely iron tetra-

boride (FeB4), with a conventional coupling mechanism, mediated by phonons,

albeit with ferromagnetic spin fluctuations as well, that strongly deplete the

strength of the superconductivity. FeB4 stands out from other Fe-based su-

perconductors discussed above since it has a tendency for ferromagnetic spin

fluctuations, as a result of its electronic structure.

Other. In view of the richness of unconventional superconductivity, this

overview is by no means complete. We wish to touch briefly on two other

types of unconventional coupling superconductors. Firstly, candidates for
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spin-triplet superconductivity have emerged in recent years. In an ordinary,

singlet superconductor the total spin of the pair is S = 0, as the electrons have

opposite spin. In a spin-triplet superconductor, on the other hand, the pairs

have total spin S = 1. Ferromagnetic spin fluctuations can induce such triplet

superconducting pairing, also called p-wave pairing due to the symmetry

of the order parameter7. The most notable candidate material is Sr2RuO4

(Tc = 1.5 K) [56], although the question of p-wave superconductivity in

this material is still highly debated (see Refs. 57 and 58 for reviews on this

topic). Interestingly, Sr2RuO4 is isostructural to the cuprate superconductor

La2CuO4.

One other recent addition to the list of potentially unconventional supercon-

ductors is that in quasi-one-dimensional (1D) organic chain link molecules.

These are polymers organized in a chain-like fashion. One notable example

is K-doped para-terphenyl, with reported Tc’s in the range 43-123 K [59, and

references therein], as obtained from magnetic measurements. It should be

stressed that the measurements currently cannot unequivocally be identified

as manifestations of superconductivity. In addition, a large superconducting

gap of 15 meV opening at 60 K has also been reported [59, and references

therein].

1.2 Recent breakthroughs

Here, we review recent breakthroughs in superconductivity research. We will

specifically focus on two major developments that are investigated in the the-

sis, namely multigap superconductivity and superconductivity in atomically

thin films. Strong interest in the former emerged in 2001-2002, following

the discovery of high-Tc superconductivity in magnesium diboride (MgB2).

Atomically thin superconductivity has gained a very strong interest ever since

the realization of superconductivity in a single layer of lead (Pb) and indium

(In) on a Si(111) substrate in 2010 [60]. It ought to be mentioned that there

are other important new trends that will not be treated here. A prime exam-

ple is topological superconductivity, i.e., ordinary superconductivity inside

the bulk of a material, combined with Majorana fermions at the surface [61].

7It is akin to p-wave superfluidity in the fermionic, spin-1/2 He-isotope He-3 (two pro-
tons and one neutron) [6].
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(a) (b)

Figure 1.10: (a) Crystal structure of bulk MgB2 in a side view
and a top view. (b) Scanning tunneling microscopy spectrum of bulk
MgB2, normalized conductance as a function of bias voltage, showing

the two-gap nature of its superconductivity [28].

1.2.1 Multigap superconductivity

1.2.1.1 Discovery and further experiments

In 2001, an unexpectedly high Tc = 39 K was reported in the intermetallic

binary compound magnesium diboride (MgB2) [35]. It is a layered material,

as shown in Fig. 1.10(a), with boron (B) arranged in a honeycomb pattern,

and magnesium (Mg) sitting above the center of the honeycomb tiles, such

that it adopts a hexagonal closed packed (hcp) structure. After this first

observation the mechanism for the high Tc was unclear. Among the many

competing theories ultimately two-gap interactions proved the correct one.

This was proven directly by means of scanning tunnelling spectroscopy (STS)

[27, 28, 62], which yields the density of states. In the superconducting state

the density of states is gapped and peaked at ∆ of the superconducting state,

as discussed in Sec. 1.1.4.2. Fig. 1.10(b) shows such STS spectrum of bulk

MgB2 [28, 62]. Here, there are two peaks, instead of one, as in a simple, BCS

superconductor. This indicates the presence of two different Cooper-pair

condensates, yielding two-gap superconductivity. Therefore, the glue between

the electrons in the condensate is conventional electron-phonon coupling, but

the distribution of the order parameter is non-standard. The electron-phonon

based nature of superconductivity in MgB2 was moreover convincingly proven

by the measurement of the B isotope effect on Tc [30, 31]. It should be noted

that the exponent in Tc ∝M−α is in the range α = 0.26− 0.32 [30, 31]. The

deviation from the BCS value α = 0.5 originates from the multiband nature of

superconductivity in MgB2. When there are more than two gaps, this concept
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can be extended to multigap superconductivity. Here, each condensate has

an amplitude and a phase, and is weakly coupled to the other condensates.

There is no general consensus on the terminology concerning superconduc-

tivity involving more than one band in the literature [63]. In this thesis, we

will uphold the following conventions. Multicomponent superconductivity is

used here as the most general, umbrella term8. By this we denote that there

is an increased number of degrees of freedom in the condensate wave function

[64]. This can involve multiple bands, spin degrees of freedom, competing

interactions, a combination of different order parameters (e.g., s+idx2−y2),

etc. On the other hand, multiband superconductivity denotes specifically

that several electronic bands are present at the Fermi level, which is the case

in most superconductors of interest today. This notion is all the more inter-

esting when the different bands have a different character. An anisotropic

single-gap superconductor denotes the case when the superconducting gap is

spread continuously over a range of values. The overlap of the gaps may be

accidental, when they have roughly the same intraband coupling, but may

also be due to strong interband coupling. Under a multigap superconductor

we understand that there are stronger and weaker gaps opening on separate,

disconnected parts of the Fermi surface. They are coupled through weak to

intermediate interband coupling.

The coupling between the two Cooper-pair condensates in bulk MgB2 is re-

sponsible for the enhancement of Tc to 39 K. Generally, the critical temper-

ature of a two-gap system is higher than the critical temperature associated

with the stronger of the two gaps. This important point was already rec-

ognized and proven in 1959 by Suhl, Matthias and Walker [65], as an ex-

tension of the BCS theory, that emerged shortly before. In this case only

attractive interactions between the bands were considered. However, Kondo

realized soon after that superconductivity can even be enhanced by repulsive

interband interactions if different parts of the Fermi surface support order

parameters of opposite sign [66]. Such effect was proposed to be relevant

for transition metal superconductors in particular. Subsequently, in 1964

Tilley developed a Ginzburg-Landau description of two-band superconduc-

tors based on the Gor’kov procedure [67]. With the discovery of multigap

8Note that in some references the term multicomponent superconductivity is restricted
to a specific case of a multigap superconductor, where the different gaps are all strong, and
very weakly coupled [63]. This convention is at odds with ours.



32 Chapter 1. Introduction

Figure 1.11: The two-gap superconducting gap spectrum of bulk
MgB2, calculated with anisotropic Eliashberg theory [39]. (a) The
distribution of the gap on the Fermi surface (calculated at T = 4 K
� Tc = 39 K), showing distinct contributions at 2 − 3.5 meV, the
π-gap, and 6− 8 meV, the σ-gap. (b) The evolution of the σ (blue)

and π (red) gaps with temperature.

superconductivity in MgB2 and possibly in iron based superconductors in the

last decade this field has experienced a strong resurgence of interest [63, 64,

and references therein].

The different gaps of a multigap superconductor open on distinct parts of

the Fermi surface. Several bands can contribute to one condensate. For

instance, bulk MgB2 is a four-band, two-gap superconductor. The different

parts of its Fermi surface – called Fermi sheets – derive from its layered

structure. The Mg planes dope electrons into the B layers, thus increasing

their intrinsic Fermi level (EF). The electronic states at EF are localized in

the B planes, and couple mainly to B related phonon modes, in particular the

E2g mode [36]. Specifically, four bands cross EF and form thus four sheets of

the Fermi surface, as shown in Fig. 1.11(a). The two nested, slightly warped

cylindrical sheets centred around Γ stem from in-plane σ bonds between B

px and py states, while the two other bands stem from out-of-plane π bonds

between B pz states. Anisotropic Eliashberg calculations have shown that
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the stronger gap opens on the σ bands, ∆σ ∼ 6 − 8 meV, while the weaker

gap opens on the π bands, ∆π ∼ 2− 3 meV [36, 38, 39]. Fig. 1.11(a) depicts

the gap spectrum calculated with Eliashberg theory on the Fermi surface,

as well as the distribution of the gap, ρ(∆). Two separate domes, the σ

dome at higher energy and the π dome at lower energy, are apparent in

ρ(∆). In Fig. 1.11(b) the temperature evolution of the dome averages are

shown, in zero applied magnetic field. Both gaps disappear at Tc = 39 K.

This result of the distribution of the gaps on the Fermi surface was confirmed

with low-temperature ARPES measurements, able to detect the opening of

superconducting gaps on different parts of the Fermi surface [68].

In Chapter 6 of this thesis we prove that in two-dimensional MgB2 structures

a surface band, with Mg character, emerges, and that it opens a separate gap.

In the thinnest limit, monolayer MgB2 becomes a three-gap superconductor.

1.2.1.2 Mean-field theory

To study the properties of multigap superconductors more deeply, an appro-

priate mean-field theory is required. Here, we will present multigap general-

izations of Ginzburg-Landau (GL) theory, introduced for ordinary, single-gap

superconductors in Sec. 1.1.3. There are several approaches to constructing

this multigap GL theory. We will present here the most important modern

approaches, namely, multicomponent GL theory, reconstructed multiband

GL theory, and Extended GL theory.

Multicomponent Ginzburg-Landau theory. The first approach that

was employed is also the simplest one [69]. The different superconducting

components are coupled via a simple Josephson term, that derives its name

from the coupling of two different superconductors through a weak link, i.e.

the Josephson effect [4, 6]. The first GL Eqs. are given by the following

system of N equations, where N is the number of bands,

(αi + γii −NF,iA) ∆i + βi∆i |∆i|2 −Ki∇2∆i +
∑
i 6=j

γij∆j = 0 , (1.38)

where αi, βi, and Ki are coefficients of the GL expansion, γij are the elements

of the inverted coupling matrix, NF,i is the electronic DOS at EF of band i,
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and A = ln
(

2eΓ~ωc
πTc

)
, Γ being the Euler constant and ωc the characteristic

electronic cutoff frequency.

A problem arises with multicomponent GL theory, as originally noted in

Refs. 70–72 when carrying out an expansion of the multicomponent order

parameter, ∆ = (∆1,∆2, ...,∆N ) as a function of τ = 1− T
Tc

, i.e., ∆ = ∆(0)+

∆(1) +O(τ5/2), with ∆(n) ∝ τ
1
2

+n. Namely, the coefficients of the first and

the last term of Eq. 1.38 do not vanish in the limit τ → 09, and consequently

filling in the expansion into Eq. 1.38 leads to solutions for ∆ containing terms

of arbitrarily high order. This result is at odds with the Gor’kov procedure,

truncating terms beyond τ
1
2 when deriving the GL equations from the BCS

theory [11]. As such, the solutions of the multicomponent GL equations

exceed the inherent accuracy of the formalism.

Reconstructed multiband Ginzburg-Landau theory. In the recon-

structed GL theory the problem described in the previous paragraph is re-

solved by a systematic perturbation expansion of the GL equation, collecting

terms up to order τ
1
2 [72]. In this way, the following GL functional is ob-

tained,

Fs = Fn0 +

∫
dr

∑
αβ

aαβψ
∗
αψβ +KαβD

∗ψ∗αDψβ +
1

2

∑
αβγδ

bαβγδψ
∗
αψβψ

∗
γψδ

+
B2

8π

 , (1.39)

where Fn0 is the free energy in the normal state in zero applied magnetic

field, D = ∇ + i e
∗

~cA (where A signifies the vector potential) and e∗ = −2e

is the Cooper-pair charge. The indices α, β, γ, δ run over 1, ..,M , where M

signifies the number of degenerate solutions of the gap equation to lowest

order, Ľ∆(0) = 0 yielding the same maximum Tc. Here, the gap function can

be expanded as ∆(0) =
∑M

α=1 ψαξα.

Furthermore, the coefficients in the functional can be related to microscopic

parameters, (i) the density of states per band at the Fermi level, NF,i, and

9Note that this problem does not occur in the single-band case, where γi 6=j = 0 and
γii = NF,iA.
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(ii) the average Fermi velocity per band, vF,i, by means of [72]
aαβ =

∑
i
aiξαiξβi with ai = −NF,iτ ,

bαβγδ =
∑
i
biξαiξβiξγiξδi with bi = NF,i · 7ζ(3)

8π2T 2
c
,

Kαβ =
∑
i
Kiξαiξβi with Ki = bi

6 ~
2v2

F,i .

(1.40)

Thus, microscopic parameters obtained from first-principles calculations can

be used directly in GL theory calculations.

It is instructive to apply this framework to a two-gap superconductor. In case

there are no degeneracies (so, M = 1), the first GL equation reads

−KD2ψ(r) + aψ(r) + b|ψ(r)|2ψ(r) = 0 . (1.41)

This is completely analogous to the single-band GL Eq. 1.6, except that the

coefficients are given by Eq. 1.40 in the multiband case. To proceed, we

need to solve the gap equation to lowest order, Ľ∆(0) = 0. For a two-gap

superconductor Ľ is given by [72]

Ľ =
1

Λ

(
λ22 − ΛNF,1A −λ12

−λ12 λ11 − ΛNF,2A

)
, (1.42)

where Λ = λ11λ22−λ2
12 is the determinant of the matrix of coupling constants.

The gap equation has non-trivial solutions only if det
(
Ľ
)

= 0, yielding 2

solutions for A,

A± =
NF,1λ11 +NF,2λ22 ±

√
(NF,1λ11 −NF,2λ22)2 + 4λ2

12NF,1NF,2

2NF,1NF,2Λ
,

(1.43)

which is essentially the same result as obtained in pioneering work on multi-

gap superconductivity, based on BCS theory [65]. The smallest solution, A−,

is the true solution minimizing the energy functional, and yields the maximal

critical temperature,

Tc =
2eΓ~ωc

π
exp(−A−) . (1.44)
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Figure 1.12: The temperature evolution of the gaps of a two-gap
superconductor, described by the coupling matrix shown in the in-
set [73]. The gap profile of the weaker gap, ∆2 in the absence of

interband coupling is also shown (dashed line).

The gap equation to lowest order, Ľ∆(0) = 0, yields the corresponding eigen-

vector ξ =

(
S−1/2

S1/2

)
with S = (λ22 − ΛNF,1A−) /λ12, and thus ∆(0)(r) =

ψ(r)

(
S−1/2

S1/2

)
. Therefore, this model maps onto a single-band model, so

that both gap function components vary on the same length scale [72]. So,

this model fails to describe the difference in the spatial profiles of the two

condensates. We will see in the next paragraph where differences occur.

Using Eq. 1.40, we find that the coupling of the Ginzburg-Landau coefficient

of Eq. 1.41 is given by

a = S−1a1 + Sa2 , b = S−2b1 + S2b2 , K = S−1K1 + SK2 . (1.45)

A special case occurs when interband coupling is entirely absent, i.e., λ12.

In this case uncoupled (uc) case, Eq. 1.43 reduces to A(uc)
− = 1/ (NF,1λ11),

where we have chosen NF,1λ11 > NF,2λ22, meaning that condensate 1 is the

stronger one. Such a situation is depicted in Fig. 1.12, namely, the two-gap

model for OsB2 that we will study further in Chapter 3. In the figure, the

situation is shown when the two condensates are completely uncoupled. In

this case, the gaps vanish at different temperatures. When the coupling is
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turned on, even if it is a very small coupling of λ12 = 0.01 as in the example,

the gaps vanish at the same critical temperature. The weaker condensate

displays a tail at higher temperatures. The weaker the coupling between the

condensates, the more convex the gap profile of the weaker condensate is.

The weaker of the two condensates is moreover visibly enhanced in Fig. 1.12

when the coupling is turned on. Similarly, the Tc of the system is enhanced

by attractive (positive) interband coupling. Namely, A− < A(uc)
− is always

strictly fulfilled (in case of attractive interband coupling), so that Tc > T
(uc)
c ,

so the critical temperature of the coupled system is higher than that of the

stronger of the two condensates would be if there were no interband coupling.

The difference between the two grows as the interband coupling increases.

MgB2 has a considerable interband coupling of λσπ ' 0.19 [73, 74]. Thus,

Tc of MgB2 is enhanced to 39 K, indeed the very first sign of its two-gap

superconductivity.

Extended Ginzburg-Landau theory. The basic idea behind the Ex-

tended GL theory is extending the GL framework to the next order in

τ = 1 − T
Tc

. As we discussed in the preceding paragraphs, the standard

Gor’kov truncation includes terms up to order τ1/2. In Extended GL the-

ory, the next order, τ3/2, is taken into account. It has been applied to both

single-gap [75] and two-gap superconductors [71]. In the latter case, the tem-

perature evolution of the gaps generally agrees much better with the original

BCS-type result than in the two-component model, especially away from

Tc, as a result of extending the perturbation series. A notable exception is

the evolution of the weaker gap, away from Tc, in case of weak interband

coupling. Furthermore, the identical spatial profiles of the condensates in a

two-gap superconductor predicted by multiband GL theory, demonstrated in

the previous paragraph, become different in order τ3/2 [71].

Even in the single-band case there are advances in the Extended GL theory.

For instance, the thermodynamic critical field, Hc, is extended from order τ

to order τ2, as Hc = H
(0)
c + τH

(1)
c , where H

(0)
c =

√
(4πα2) /β and H

(1)
c =

−H(0)
c

(
1
2 + αc

3β2

)
[71]. In an application of this formula in Chapter 3, to

OsB2, we will show that the formula provides a much improved comparison

to experimental values, away from Tc [73].
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1.2.1.3 First-principles theory

In order to study the gap spectrum of superconductors, and thus to find out

whether they are multigap or not, first-principles calculations that start from

the basic laws of quantum mechanics, are needed. These calculations are most

suited for superconductivity based on electron-phonon coupling, where the

coupling mechanism is well understood. Several materials have been investi-

gated in this way, with two main techniques. The first approach, anisotropic

Eliashberg theory, combined with first-principles calculations of the electron-

phonon coupling, is also the path we take in this thesis. The second ap-

proach is called density functional theory for superconductors (SCDFT), as

developed by Gross and coworkers [76–78]. In the latter, three densities en-

ter in the functional at the same time, namely the usual electronic density,

the nuclear density matrix, and the superconducting order parameter (in the

form of the anomalous density). We will return to a deeper discussion of

the first-principles calculation of the electron-phonon coupling, and of the

foundations of Eliashberg theory in Chapter 3.

As we mentioned before, through anisotropic Eliashberg theory, solid theo-

retical evidence for two-gap superconductivity in bulk MgB2 was delivered

[36]. This calculation was later reproduced independently on several occa-

sions [38, 39]. In this thesis I apply anisotropic Eliashberg theory of MgB2

to the atomically thin limit, including the influence of strain and hydrogen

impurities. We find that in this ultrathin limit MgB2 opens an extra band,

a surface band, yielding a third gap. Thus, monolayer MgB2 becomes a

distinctly three-gap superconductor. Very few other three-gap superconduc-

tors have been found so far, thus impeding experimental studies of multi-

gap superconductivity beyond two-gap. In recent years two other three-gap

superconductors were proposed theoretically by Gross and coworkers, using

SCDFT. One is molecular hydrogen, which under very high pressure develops

three superconducting gaps on different Fermi sheets [42]. However, due to

anisotropy two of the gaps strongly overlap. The other material is CaBeSi, a

MgB2-like compound in which splitting of the π-bands was predicted to give

rise to three-gap superconductivity [79], but with impractically low Tc
∼= 0.4

K.
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A similar analysis has led to a revision of the superconducting gap spectrum

in even the simplest elemental metals, like bulk lead (Pb), where calculations

have shown two different bands play a role in its superconductivity [80]. This

was confirmed by low-temperature scanning tunneling microscopy, however,

it also showed that the two resulting superconducting gaps differ merely by

150 µeV [81], so the condensates are virtually degenerate and multigap effects

are expected to be extremely subtle. Several graphene-based superconductors

have also been studied from first principles. These include Li-doped graphene

(LiC6) [82], Ca-doped graphene (CaC6) [83], and hole-doped graphane [83],

all having a single, anisotropic gap. Finally, some metallic transition metal

dichalcogenides (TMDs), of much recent interest, have equally been inves-

tigated in view of their superconducting properties. It was obtained that

NbS2 has a single, anisotropic gap [84], a result obtained, however, neglect-

ing charge density waves (CDWs) that can gap part of the Fermi surface,

and thus significantly alter the gap spectrum.

In this thesis, we furthermore prove that OsB2 and FeB4, both multiband

borides, are anisotropic single-gap superconductors, in Chapters 4 and 5,

respectively.

Quasiparticle interband scattering. In all these descriptions of multi-

gap superconductivity coupling between the condensates is considered to re-

sult from phonon exchange between the quasiparticles of the corresponding

electronic bands, following the seminal work of Suhl et al. [65]. It should be

noted that other mechanisms have been proposed, notably scattering of the

quasiparticles of a condensate to another band. This effect was first proposed

by Moskalenko et al. [85], and later extended by Schopohl and Scharnberg

[86]. This would induce superconductivity in the ‘passive’ band in the way

of a proximity effect (albeit in reciprocal space), leading to multigap features

in the superconducting tunneling spectrum [87, 88]. One example of a mate-

rial were the multigap signatures in the tunneling spectra can be described

within a model of interband quasiparticle scattering is the bulk transition

metal dichalcogenide 2H-NbSe2, although a possible role of anisotropy of

the gap spectrum has currently not been elucidated [87, 88]. The micro-

scopic mechanism behind the quasiparticle interband scattering considered

by Moskalenko et al. and Schopohl and Scharnberg was a scattering from

impurities. It is currently still under debate whether a similar result can be
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obtained in the clean limit from electron-electron interactions [88]. In this

thesis only interband coupling resulting from phonon exchange is taken into

account, following the successful description of two-gap superconductivity in

MgB2 [36, 38, 39].

1.2.1.4 New physics in multigap superconductors

Novel vortical states. The coupling of the different condensates leads to

important changes in their interaction with perturbations and external mag-

netic fields. It has been reported that vortices in MgB2 are not necessarily

arranged in an Abrikosov-type lattice but can form clusters and stripes [89].

This behavior was dubbed type-1.5 superconductivity, as it was reported to

result from two different coherence lengths related to the two band conden-

sates, the π condensate with κπ < 1/
√

2 (type-I) and the σ condensate with

κσ > 1/
√

2 (type-II). This interpretation has stirred a discussion, related to

the existence of two different coherence lengths or not, in the multiband GL

theory – as discussed in paragraph 1.2.1.2 [70, 90]. A different mechanism

that gives rise to the same phenomenon of vortex clustering are nonmono-

tonic vortex-vortex interactions [91]. It is shown that the sign of the surface

energy, introduced in Section 1.1.3 to distinguish type-I and type-II super-

conductors, is not a good criterion for long-range vortex-vortex interactions

in a multigap superconductor. For MgB2, based on its microscopic values, it

is found that short-range repulsion and long-range attraction coexist, which

can lead to the behavior observed in Ref. 89.

Moreover, different approaches to the two-gap GL theory have shown that

the coherence length of the weaker condensate diverges at its intrinsic Tc2

(i.e., the Tc it would have in the absence of coupling to the other condensate)

[92, 93], which has been called hidden criticality in Ref. 93. This phenomenon

is particularly pronounced in case the interband coupling between the con-

densates is weak, and should then be observable in the vortex core size near

the critical point Tc2.

Interband phase phenomena. Interesting new physics also emerges

from the intrinsically complex order parameter of multigap superconductors.

In 1966, inspired by transition metals, Leggett proposed that in a multiband
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superconductor fluctuations of the relative phase and pair densities of the

different condensates can occur [24]. The characteristic frequency of these

Leggett modes is

ω0 =

√
8J∆1∆2 (ρ1 + ρ2)

ρ1ρ2 (UV − J2)
, (1.46)

where parameters U , V and J are related to the coupling of the condensates

as ∆1 = V ψ1 + Jψ2 and ∆2 = Jψ1 + Uψ2, and where ρ1,2 are the densities

of states in the normal states of the respective bands. It follows from this

formula that the effect can be significant for two large gaps, with intermediate

interband coupling J . Leggett showed that this frequency manifests itself,

for example, in the specific heat as C ∝ ω4
0exp (−βω0), on the condition that

β−1 = kBT < ω0.

An effect that is stronger than these phase fluctuations are interband phase

difference solitons, called i-solitons [63, and references therein]. In this case

the interband phase difference varies spatially from 0 to π. It can be induced

in non-homogeneous superconducting systems, such as multilayer structures,

rings made of two-band superconductors, can also be induced by local current

injection, etc. [63, and references therein]. The energy cost for generating

i-solitons is generally reduced in mesoscopic samples. In case an i-soliton

coalesces with a vortex, the vortex can carry a fractional flux quantum, φ 6=
2πn.

Furthermore, in three-gap systems and beyond it is not a priori evident what

phases minimize the energy functional, especially when there are both at-

tractive interactions between certain bands, e.g. mediated by phonons, and

repulsive ones, e.g. mediated by spin fluctuation exchange. Between two

condensates, attractive interactions lead to 0 phase difference as the ground

state, while repulsive interactions favor a phase difference of π [94]. As before,

we define Vij > 0 as attractive and Vij < 0 as repulsive.

Let us consider all possibilities for the interband coupling in a three-band

superconductor. The condensate wave function components are ψ1 = ∆1,

ψ2 = ∆2e
iφ2 and ψ3 = ∆3e

iφ3 . In case all interactions are attractive, V12 =

V23 = V13 > 0, the situation is trivial: all components are aligned with φ2 =

φ3 = 0. Similarly, in case of two repulsive interactions and one attractive

interaction, e.g., V12, V13 < 0 and V23 > 0, the situation is also easy: ψ2 and
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(a)

(b)

(c)

Figure 1.13: Time-reversal symmetry breaking (TRSB) in three-
band superconductors. (a) Chiral three-gap states, originating from
repulsive interactions between all the bands [94]. (b) Chiral three
gap states, this time with a repulsive interaction between bands 2
and 3. (c) The phase diagram of a three-band system with repulsive
interaction between all the bands, namely V12 = V13 = V < 0 and

V23 = V ′ < 0 [95].

ψ3 are diametrical to ψ1 (φ2 = φ3 = π). However, in case V12V23V13 < 0,

two chiral, degenerate solutions appear. When all interactions are repulsive,

an interesting situation arises. None of the components can adopt a phase

that completely minimizes the energy with respect to either of the other

components. The phases can be both φ2 = −φ3 = 2π/3 and φ2 = −φ3 =

−2π/3, as shown in Fig. 1.13 (a), so that there is a frustration between

the chiral phase locking tendencies. Time-reversal symmetry is broken as

Ψ = (ψ1, ψ2, ψ3) and Ψ∗ cannot be related by a simple rotation. In other

words, there is no phase θ such that Ψ = eiθΨ∗. V11, V13 > 0 and V23 < 0

also yields two chiral solutions, with φ2 = −φ3 = π/3 and φ2 = −φ3 = −π/3,

as shown in Fig. 1.13 (b). This case equally breaks time-reversal symmetry.

A more detailed illustration of this physics was given by Stanev and Tešanović

[95]. Fig. 1.13(c) represents the case where all interband interactions are re-

pulsive, specifically, V12 = V13 = V < 0 and V23 = V ′ < 0, and all intraband

interactions are absent, V11 = V22 = V33 = 0. It is shown that three super-

conducting states can exist in this system: (i) ordinary three-gap supercon-

ductivity with a sign change of the order parameter between band 1 on the

one hand and bands 2 and 3 on the other, (ii) two-gap superconductivity

where only bands 2 and 3 are significantly gapped, and (iii) chiral three-gap

superconductivity with TRSB as shown in Fig. 1.13(a) [95]. The latter is
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expected to exhibit spontaneous currents and fields wherever translational

symmetry is broken in the sample (e.g., at edges, impurities, domain walls),

but has remained unobserved to date. Recent studies have also shown that

the TRSB state supports chiral domain walls that can act as pinning centres

for the fractional vortices discussed above [94]. For systems of four or five

bands the situation is more complex, but is again generally frustrated if there

is an uneven number of repulsive interactions between the bands.

1.2.2 Superconductivity in atomically thin materials

The realization of atomically thin materials. Dimensionality, rang-

ing from 0D to 3D, is one of the prime characteristics of materials, and has

seen a great resurgence of interest since the realization of two-dimensional

(2D), one-atom thick graphene layers in 2004 [96]. These graphene layers con-

sist of carbon atoms arranged in a planar honeycomb lattice, and form the

basis for graphite when stacked together under the influence of van der Waals

interactions. Two-dimensional systems were rather late to be realized com-

pared with other low-dimensional systems, such as quasi-0D systems, e.g.,

quantum dots, and quasi-1D systems, e.g, nanotubes and nanowires. Since

the discovery of graphene, many other 2D materials have been realized, both

within the graphene family, e.g., hexagonal boron nitride (hBN) and fluoro-

graphene (graphene decorated with F adatoms), and in other families, e.g.,

the chalcogenides (binary compounds containing chalcogen atoms such as S

and Se), phosphorene (a single layer of black phosphorus), etc.

The rapid progress in synthesis techniques for 2D materials, and in nanotech-

nology in general, lies at the base of recent advances in the field. Graphene

was isolated for the first time using a technique called mechanical exfolia-

tion [96]. It entails taking off part of a 3D sample with a sort of scotch

tape, subsequently depositing a fraction of the layers from the tape onto a

substrate. This technique is repeated on the new sample each time, so the

number of deposited layers decreases and can produce monolayer films. To

date mechanical exfoliation remains the preferred technique to make thin

films of van der Waals materials with weak forces between the layers. It is

a so-called top-down approach, where the 3D crystal is the starting point,

which is thinned down to obtain atomically thin samples. On the other hand,
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in bottom-up approaches the sample is grown from thin to thick, from mono-

layer to a specific number of layers if the growth is well controlled. In these

growth methods, the substrate is crucial, as there is usually a strong inter-

action with the film. The optimal situation is when substrate and film have

matching lattice parameters, or as little lattice mismatch as possible. There-

fore, this growth mode is also called epitaxy. One of the main bottom-up

growth techniques is molecular beam epitaxy (MBE), where effusion cells of

specific atomic elements are heated, resulting in a beam of these elements

directed at the substrate. MBE can be performed at a sufficiently slow rate,

so that the thickness of the film can be controlled. Ultra-high vacuum growth

conditions are needed for MBE. Another important method is chemical vapor

deposition (CVD) which uses precursor gases to carry elements onto the sub-

strate, where the desired compound forms due to chemical reactions. This

method can be performed in all ranges of pressure conditions, from atmo-

spheric pressure to high-vacuum. CVD is readily used nowadays to grow

graphene and 2D transition metal dichalcogenides (TMDs).

Crucial in these advances of the growth methods of 2D systems are also in

situ monitoring methods. The first category consists of electron diffraction

methods. In low-energy electron diffraction (LEED) electrons with energy

20-200 eV are bombarded on the sample, where the diffracted electrons give

information on the surface structure. Another set-up is reflection high-energy

electron diffraction (RHEED), where the electrons reflect from the sample un-

der a small angle. RHEED is particularly suited to monitor the growth of

films by MBE. The intensity of the RHEED signal namely fluctuates with the

number of layers of the film, that peaks each time a layer is completed. To

characterize the samples after growth, many scanning techniques are avail-

able to date that provide local information, often with atomic resolution.

A first way to perform such measurement uses electrons, and is therefore

called scanning transmission electron microscopy (STEM), where – contrary

to conventional transmission electron microscopy – the electron beam is fo-

cussed in a small spot. This is often combined in the same experimental

set-up with spectroscopic techniques such as energy dispersive X-ray (EDX)

and electron energy loss spectroscopy (EELS), that can be used to find out

the local chemical composition of the sample, as well as the energy levels

of the atoms. Another commonly used technique is based on quantum me-

chanical tunneling between a conducting tip and the sample, when a bias
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Figure 1.14: Van der Waals stacking of different monolayer ma-
terials, from different 2D materias groups, from the graphene fam-
ily (graphene, fluorographene, hexagonal BN) and from the chalco-
genides (MoS2, WSe2). The analogy is made here with assembling

lego blocks [97].

voltage is applied. The resulting tunneling current gives information on the

local density of states, and from this the structure of the sample can also be

determined.

Currently, even heterostructures composed of monolayer materials, and held

together by weak van der Waals interactions, are feasible [97]. This enables

combining the properties of the different monolayer materials. An example

is depicted in Fig. 1.14, where materials of the graphene family are combined

with chalcogenide monolayers. The most recent advance is that in addition

to these vertical heterostructures also lateral can be made, as realized, e.g.,

with the dichalcogenides MoS2 and WS2, by making use of different carrier

gases in CVD in subsequent stages of the growth [98]. Moreover, atoms can

be added to 2D materials, such as the above mentioned F in fluorographene.

With advanced growth methods these adatoms can be locally controlled, so

that 2D materials can be decorated to change the functional properties in

different parts of the sample.
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Superconductivity in two dimensions. This topic has emerged in

recent years, following the advances in synthesis of atomically thin 2D ma-

terials, and has received considerable interest, with several review papers

published already [99–101]. The now well-established fact that superconduc-

tivity can be realized in purely 2D systems is certainly not a priori evident.

As we discussed above, the transition to the superconducting state is a phase

transition accompanied by spontaneous symmetry breaking of a continuous

symmetry. For such a transition, Mermin and Wagner formulated the follow-

ing theorem in 1966 [102]10:

Continuous symmetries cannot be spontaneously broken at nonzero

temperature in systems with sufficiently short-range interactions in

dimensions equal to or smaller than two.

This implies that any attempt to introduce order in a low-dimensional system

will suffer from long-range spatial and temporal fluctuations of the order pa-

rameter. If these are too strong, they can completely counteract the ordered

state. This fundamental difference between normal 3D and low-dimensional

systems is reflected in the different behavior of the correlation of the order

parameter ψ =
√
nse

iθ. In 3D, the correlation 〈ei(θ(r)−θ(0))〉 of a condensed

phase takes the form e−c1T (where c1 is a constant), whereas in 2D it obeys

the power law c2

(
r
L

)−η
, where L is the system size and η is called the critical

exponent [102]. This means that in the long-range limit, r → ∞, 3D order

has a constant, nonzero correlation, whereas 2D inevitably vanishes. This

provides the mathematical formulation of the Mermin-Wagner theorem.

In ground breaking works (awarded with the 2016 Nobel prize in Physics)

Berezinskii (1972) [103] and Kosterlitz and Thouless (1973) [104] have demon-

strated that quasi-long range correlations that do not break any symmetry

can occur in 2D systems. The eponymous name of these new and unexpected

phase transitions is Berezinskii-Kosterlitz-Thouless (BKT) transitions. The

most simple case of a BKT transition appears in the XY model, a 2D model

of a spin lattice, characterized by Hamiltonian HXY = J
2

∫
d2r (∇θ(r))2.

So, the energy needed to create a vortex, with ∇θ(r) = 1/r, amounts to

Ev = J
2

∫ L
a d

2rr−2 = πJ ln
(
L
a

)
, a being the size of the vortex core. On the

other hand, the energy of a vortex-antivortex pair separated by distance r is

10It is interesting to note that the original work of Mermin and Wagner concerned
(anti)ferromagnetic order in 1D and 2D within a Heisenberg model.
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Ev−av = 2πJ ln
(
r
a

)
. Therefore, as r � a, such pairs are expected to be ener-

getically preferred. To refine this argument, there is entropy (S) to be consid-

ered, as included in the free energy F = E − TS. The Boltzmann entropy of

a vortex follows from the L2/a2 possible positions of the vortex (assuming for

simplicity the sample and the vortex to both be square), so S = 2kBln
(
L
a

)
.

Therefore, we find that the free energy, F = πJ ln
(
L
a

)
− 2TkBln

(
L
a

)
changes

sign at TBKT = πJ/ (2kB). So, for T < TBKT, in 2D systems there are

thermally excited, bound vortex-antivortex pairs related to quasi-long-range

order (with critical exponent η = T/ (4TBKT)), while for T > TBKT the ex-

citations are unpaired (anti)vortices. This is the physical origin of the BKT

transition that has been observed in several 2D superconducting systems

[105, 106].

Nevertheless, many other 2D superconductors display superconductivity with-

out a BKT mechanism. The reason is that long-range order at r → ∞ is

rather restrictive. If Cooper pair condensation with sufficiently developed

correlation takes place, the system is effectively superconducting [100]. In

other realizations of superconductivity in atomically thin materials, such as

Pb and In monolayers on Si(111) substrates, the Mermin-Wagner theorem is

circumvented by the (2 + δ)D nature of the system, since there significant in-

teraction with the substrate, characterized by the fractional dimensionality δ.

However, as mentioned above, the superconducting state often remains frag-

ile in the 2D limit. This shows, for instance, in the reaction to disorder. In a

3D material superconductivity is robust against disorder [107] (unless there

are magnetic impurities), but in 2D disorder can induce a superconductor-

insulator transition [100]. This effect was already seen in some of the first 2D

superconductors. These were not atomically thin, but the main criterion for

2D superconductivity is that the thickness of the film d � ξ, in which case

the pair wave function Ψ(x, y) is uniform in the out-of-plane direction [4].

An interesting example is the material bismuth (Bi), which is not supercon-

ducting in bulk form at ambient pressure, but becomes superconducting in an

amorphous 2D form, with Tc above 5 K [108]. However, thin samples become

superconducting, due to increasing disorder inherent to the thin limit leading

to pair-breaking scattering. This provides an example of a disorder-induced

superconductor-insulator transition.
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Material Thickness Tc (K) Bulk Tc (K) Reference

Pb/Si(111) 1 ML 1.5− 1.8 7.2 [60]

In/Si(111) 1 ML 3.2 3.4 [60]

Ga/GaN 2 ML 5.4 1.1 [109]

LaAlO3/SrTiO3 4 UC 0.2 0.3 [110]

La2−xSrxCuO4/LaCuO4 1 UC 40 40 [111]

Graphene/Re 1 ML 2.1 Re: 1.7 [112]

LiC6 1 ML 5.9 0.9 [113–115]

C6CaC6 2 ML 3 11.5 [116]

Twisted BLG 2 ML 1.7 / [117]

NbSe2 1 ML 3.1 7.2 [118, 119]

TaS2 1 ML 3.4 0.9 [120, 121]

MoS2 1 ML 10.8 7 [122, 123]

Mo2C ∼10 UC 2.6 3 [124]

FeSe/SrTiO3 1 ML 50− 100 8 [54, 55]

Table 1.2: Resume of the main atomically thin superconductors
(non-exhaustive), their Tc, and a comparison with their bulk Tc. The
thickness is expressed in monolayers (ML) and unit cells (UC). BLG

denotes bilayer graphene.

So, in summary, superconductivity in 2D is definitely possible, as recent

experimental and theoretical advances have demonstrated, but there is always

the challenge of optimally stabilizing the superconducting state, since it is

vulnerable. We will now proceed to review the main atomically thin 2D

superconductors that have been realized in the last decade. Table 1.2 gives an

overview of the main 2D superconducting systems that have been discovered

so far, and accompanies the discussion.

Atomically thin elemental metal films. Superconductivity in thin

lead (Pb) films has been a long-standing endeavor, and has steadily con-

verged to the monolayer limit. In 2006, superconductivity was realized in

7-monolayer thick crystalline films of Pb on Si(111) [126]. This limit was

subsequently reduced to just 2 monolayers [127], followed by the experimen-

tal proof of superconductivity in just one-atom thick Pb and In [60, 125].

The advantage of this system is that Pb/In and Si do not alloy, so that the

interface is atomically sharp. The structure of the films, grown epitaxially

on the Si substrate, depends on the termination of the latter – which in
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Figure 1.15: Experimental realizations of superconductivity in
monolayer materials. (a) Atomic-resolution scanning tunneling mi-
croscopy (STM) image of monolayer lead in the striped incommen-
surate (SIC) phase on a Si(111) substrate [60], and the resistance of
this system as a function of temperature, showing Tc ' 1 K [125].
(b) Atomic-resolution STM image of monolayer FeSe on a SrTiO3

(STO) substrate, and resistance as a function of temperature and
applied magnetic field, showing Tc ' 100 K in zero applied field [55].

turn varies according to the synthesis method. An unreconstructed bulk-

terminated Si substrate has been shown to lead to a striped incommensurate

(SIC) structure of the Pb monolayer, with 3 Si atoms per atomic layer and

4 Pb atoms in the unit cell [60, 125]. An atomic-resolution scanning tunnel-

ing microscopy (STM) image of monolayer Pb in this structure is shown in

Fig. 1.15(a), along with a measurement of the resistance as a function of tem-

perature, showing the emergence of the superconducting state around 1 K

[125]. Here, first-principles calculations have revealed that the Si substrate

plays an essential role in the superconducting properties, mainly through
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Figure 1.16: Quantum well states (QWS) in 9-ML Pb (hcp struc-
ture), calculated from first-principles (own calculation). (a) The
band structure and the DOS. The QWS closest to the Fermi level
has been indicated with an arrow. (b) The average Fermi velocity as
a function of the Fermi level (e.g. changed by electrostatic gating).
The Fermi surface at the intrinsic Fermi level and the one resulting

from the QWS are shown as insets.

interface electronic bonds between substrate and film, but also through in-

terface vibrational modes [128]. As a result, this system is not completely

2D, which helps to suppress the BKT transition, and thus fluctuations.

In these atomically thin metal films the quantum confinement in the per-

pendicular direction plays a crucial role. Owing to the resulting out-of-plane

quantum well states (QWS), the density of states (DOS) oscillates, and this

has a marked effect on the critical temperature of superconductivity in the
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system. As Tc ∝ e−1/(NFṼ ), it also oscillates as a function of film thickness

– also known as shape resonances – as witnessed both in theory [129] and in

experiments on thin Pb films [130]. As an example of the strong influence of

QWS, the electronic structure of 9-ML thick hcp Pb is shown in Fig. 1.16(a).

There is a QWS at ∼ 300 meV above the Fermi level, with little disper-

sion around Γ, and a resulting sharp peak in the DOS. In Fig. 1.16(b) I

demonstrate how the average Fermi velocity (vF), calculated from the band

structure, changes with the Fermi level – which can be altered electrostati-

cally. When the QWS is hit, this leads to a strong modification of the Fermi

surface, and a significant lowering of vF, with a considerable effect on the

length scales ξ ∝ vF and λL ∝ 1/vF.

Follow-up experiments have investigated different aspects of superconductiv-

ity in thin films, mainly the influence of nanostructuring. Several experi-

ments on In [131, 132] and Pb [133, 134] have explored the effect of atomic

step edges. It was found that these steps act as Josephson junctions where

superconductivity is locally suppressed [131], and that they induce remark-

able variations in the superconducting wave function on a scale significantly

shorter than the coherence length [133]. Furthermore, nanoislands of Pb

(12− 14 MLs thick) have been found with STM measurements to be coupled

– due to proximity effects – resulting in a weak link for superconductivity

[135]. So, they form superconductor-normal-superconductor (SNS) Joseph-

son junctions, wherein Josephson vortices were observed – where in the core

the proximity-induced gap is suppressed. A third road to alter the properties

of the elemental metal films is combining them with other chemical elements.

In a monolayer compound of Pb and thallium (Tl), the spin-orbit coupling is

increased, resulting in a Rashba-type split between the bands [136]. Recently,

a monolayer of Pb was grown on islands of the magnetic element cobalt (Co)

deposited on a Si substrate [137]. Due to the interplay with the magnetism,

2D topological superconductivity was obserevd, with an edge state in the

gap. Moreover, it was predicted that there can be Majorana bound states in

the vortex cores of this system.

Cuprate superconducting films. A single unit cell of the cuprate su-

perconductor La2−xSrxCuO4 has been electrically tuned (by gating) to su-

perconduct [111]. Different samples were made with different doping levels.
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Some samples were already superconducting with low Tc in zero electric field,

while other, underdoped samples were insulating. Both types of samples

could reach Tc ∼ 40 K with optimal gating. Notably, the transition from an

insulating (“off”) to a superconducting (“on”) state by an applied electric

field forms the basis for an atomically thin superconducting field effect tran-

sistor (FET). Interestingly, in this system a critical point was found with a

resistance of exactly R = h/Q2 with Q = 2e, which is the pair resistance

quantum, suggestive of a quantum phase transition.

2D electron gas at insulator interfaces. The 2D electron gas at the

interface between 2D perovskite oxide insulators, LaAlO3 and SrTiO3, dis-

plays superconductivity [110] up to Tc = 200 mK, as well as ferromagnetism

[138]. Direct imaging has indicated a nanoscale phase separation between

both phases [139]. A similar result was obtained at the interface of the Mott

insulator (i.e., insulating due to strong electronic correlation) LaTiO3 and

SrTiO3 (Tc = 300 mK) [140].

Atomic sheets. Truly 2D superconductivity has been achieved in atomic

sheets. This was first realized in graphite intercalation compounds (GICs),

where the intercalants are alkali, alkaline earth metals or lanthanide elements.

For instance, superconductivity has been established in Ca-intercalated gra-

phite (CaC6), with Tc = 11.5 K [83, 141], and in YbC6 [141], with Tc =

6.5 K. The mechanism here is that the intercalants donate electrons to the

unoccupied π∗ band of graphite, resulting in Fermi level shifts and changes

in the electron-phonon interaction [100]. In addition, an interlayer state

emerges at the interface between the carbon planes and the intercalant planes.

From intercalated graphite on, the thickness of the material has system-

atically been reduced. Thin laminates (multilayer structures) of Ca-doped

graphene were found to be superconducting [142], which was ultimately re-

duced to only bilayer graphene with Ca intercalation (C6CaC6) [116], albeit

with a depleted Tc (3 K) with respect to the bulk value. Superconductiv-

ity in monolayer CaC6, on the other hand, has not been realized, and the

reason behind this was revealed in a first-principles study [113]. Namely,

the crucial interlayer state is almost completely absent at the Fermi level in

monolayer CaC6, while in the bulk it is there. This work yielded another
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Figure 1.17: First-principles theory of superconductivity in LiC6

[113]. (a) Band structure of (top) bulk and (bottom) monolayer LiC6.
The interlayer state is indicated in red. (b) Top view of the crystal
structure of monolayer LiC6, where yellow spheres represent C atoms
and blue spheres Li atoms. (c) The calculated Eliashberg function
and electron-phonon coupling as a function of frequency for bulk and

monolayer LiC6.

interesting prediction, namely that in Li-intercalated graphene exactly the

opposite is true, as shown in Fig. 1.17(a). This interlayer state results from

specific positions of the Li atoms in LiC6 in one out of every three honey-

comb facets, as shown in Fig. 1.17(b). The effect of the interlayer state on

the electron-phonon (e-ph) coupling becomes apparent in Fig. 1.17(c), where

the Eliashberg functions, the spectral function of the e-ph coupling (to be
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explained properly in Chapter 3), of bulk and monolayer LiC6 are compared.

It is found that the e-ph coupling, obtained from the Eliashberg function us-

ing λ = 2
∫∞

0 dωω−1α2F (ω), of the monolayer (λ = 0.61) exceeds that of the

bulk (λ = 0.33) by far [113]. The resulting Tc of monolayer LiC6 amounted

to 8 K, which is in good agreement with the experimental value of 6 K, ob-

tained when this system was experimentally realized [115]. Later, anisotropic

Eliashberg calculations have confirmed this estimate of Tc [82], so it can be

concluded that the isotropic approximation used in Ref. 113 works well in the

case of LiC6 owing to its fairly isotropic Fermi surface. This is certainly not

always the case, as calculations of ultrathin MgB2, presented in this thesis,

have revealed.

Another pathway to establish superconductivity in graphene is depositing

it on a superconducting substrate, Re(0001), so that superconductivity is

induced by a proximity effect [112]. Other atomic sheets that are supercon-

ducting in the monolayer limit are transition metal dichalcogenides (TMDs),

such as NbSe2 [118, 119], TaS2 [120, 121] and (gated) MoS2 [122, 123]. These

materials exhibit very interesting and diverse quantum states. In addition to

superconductivity they host spin textures due to the spin-orbit interaction,

and charge density waves because of instabilities in the lattice at lower tem-

peratures. We will expand on this in Chapter 8. A related material group are

the MXenes, i.e., transition metal carbides and nitrides, like Mo2C, where

superconductivity is also approaching the atomically thin limit [124]. In bulk

alkali-intercalated black phosphorus superconductivity has also been realized

[143], therefore this system also holds promise for superconductivity in the

thinnest limit. In the related compound alkali-intercalated blue phospho-

rous superconductivity above 20 K has been predicted using first-principles

calculations [144].

The most recent, very unexpected discovery is that of superconductivity in

bilayer graphene (BLG) twisted at a ‘magic’ angle, where the Fermi veloc-

ities vanish (the first one being 1.1◦) [117]. Using transport measurements

the corresponding electronic state was found to be a strongly correlated Mott

insulating state. Upon electrostatic doping a superconducting state emerged

below the Tc of 1.7 K. Such superconducting state adjacent to a Mott state

is reminiscent of the unconventional cuprate superconductors. The Tc is

remarkably high in view of the very low carrier density (1011 cm−2), as
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obtained from quantum oscillation measurements. Thus, it was concluded

that the superconductivity in magic angle twisted bilayer graphene is un-

conventional and strongly coupled, lying in a regime close to the crossover

between Bardeen-Cooper-Schrieffer pairing and Bose-Einstein condensation

(BCS-BEC crossover).

Monolayer FeSe on a SrTiO3 substrate. Very unexpectedly, super-

conductivity in monolayer FeSe on a SrTiO3 (STO) substrate was found

to be dramatically different compared with bulk FeSe [54, 55], as shown in

Fig. 1.15(b). Not only does the monolayer have a much higher Tc = 50− 100

K than the bulk Tc = 8 K under ambient conditions (boosted to 37 K under

high pressure [145]), it also displays s-wave symmetry [146], as opposed to

(probably) s±-wave pairing symmetry in the bulk. These changes are accom-

panied with a drastic modification of the electronic structure. While bulk

FeSe is a multiband superconductor with two or three hole pockets around Γ

and two electron pockets around M (cf. Appendix B), in the monolayer only

the electron pockets are left. So, the primary effect of the STO substrate is a

change of the Fermi level due to electron doping, likely related to O vacancies

– eliminating the hole bands. The importance of this effect is apparent in a

different set-up where the electrons are provided by K doping on the surface

of a 3-ML thick FeSe film, that acquired Tc ∼ 50 K [147]. This indicates the

importance of the doping effect, however, the Tc of the monolayer remains

much higher. So, the general consensus now is that the change in Fermi level

allows for Tc ∼ 50 K, but that additional interface effects between substrate

and film (which are strongest in case of a monolayer) boost it further to above

100 K. This extra effect is thought to stem from interface electron-phonon

coupling, which a recent theoretical description has successfully linked to a

high Tc, albeit with some simplifications, like a single dispersionless phonon

mode and a lack of electron-electron interactions [148]. All by all this sur-

prising system requires more experimental and theoretical investigations to

be fully unraveled.

Superconducting strength as a function of thickness. As follows

from the preceding discussions, the evolution of the superconducting prop-

erties with film thickness is central in this research field. Looking at Table

1.2 one observes that in almost all categories there exist materials for which
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the Tc of a monolayer sample exceeds that of its bulk counterpart. The cases

of CaC6 and LiC6 are extremely interesting, since the former is by far the

stronger superconductor in bulk form, but completely the opposite is true for

the monolayer form. This indicates clearly that the microscopic properties

of the materials are extremely important for the superconducting behavior.

This is the motivation for the thesis. In Chapter 5 we will study how the

superconducting properties of MgB2 change when adding layer by layer.

1.3 Applications

The unique properties of superconductors, namely dissipation-free electric

conduction, extremely high current densities, high sensitiveness to and shield-

ing from magnetic fields, rapid transfer of quantized flux (e.g., vortices), etc.,

allow for a very diverse range of applications. These can roughly be divided

in two categories, namely the small and the large scale applications [29]11. In

the former there are electronic devices and sensors, while the latter consists

of magnets and electric power and transport applications. In the following

we will keep a focus on the category of small-scale applications since they are

most closely related to this thesis.

1.3.1 Large-scale applications

This category of applications profits from the high current densities that

superconductors can sustain. Since electric currents below the critical current

are carried by a superconductor without resistance, superconducting wires

are ideal for eliminating losses during electric transport. Currently, there

are several electricity networks where this is put into practice. The first

to be realized was the Holbrook Superconductor Project in the US, where

superconducting power lines carry currents over a distance of 600 m. The

material used there is the high-Tc cuprate superconductor Bi2Sr2CaCu2O8+x

(BSCCO), so that the cryostat surrounding the cables can rely on liquid

nitrogen cooling. This is fairly inexpensive, so that the gain in efficiency

11Another excellent reference is provided by the Coalition for the Commercial Application
of Superconductors (CCAS) on http://www.ccas-web.org/pdf/CCAS_Brochure.pdf. For
the large-scale applications this is the main reference used here.

http://www.ccas-web.org/pdf/CCAS_Brochure.pdf
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outweighs the cooling cost. A similar project was realized in Germany, called

the AmpaCity project, over a distance of 1 km between two power substations

in the city of Essen.

The very high attainable current densities also allow to make much stronger

electromagnets. These are now readily employed in several ways. The

most widespread application is a medical one, Magnetic Resonance Imaging

(MRI), where very strong magnetic fields (1.5 − 3 T) are needed to induce

a significant resonant response from the nuclear spins. For the same rea-

son superconductor-based magnets are used in Nuclear Magnetic Resonance

(NMR) spectroscopy, a widespread method to probe the composition and

the electronic structure of materials. Another application of these extremely

strong magnets for scientific research is as accelerator magnets in high-energy

physics, e.g., in the Large Hadron Collider in CERN. In transportation, su-

perconducting magnets are already in use in superconducting magnetically

levitated trains (SCMaglev), of which test lines have been built by the Central

Japan Railway Company. In Brazil, superconductor-based magnets are in use

in the MagLev Cobra system providing smaller vehicles for transportation in

urban areas [149]. Among other future applications of superconductors in

transportation magnetically assisted propulsion of spacecrafts has also been

proposed. Finally, superconductor-based magnets will very likely play an

important role in many future energy innovations. Nuclear fusion requires

very strong magnetic fields to confine and to shape the hot plasmas in the

reactor. Test projects like the International Thermonuclear Experimental

Reactor (ITER) employ superconductor-based electromagnets for this pur-

pose. Other possible applications in the domain of energy include rotors

for wind turbines (that can be made much lighter than conventional elec-

tromagnets), high-voltage transformers cooled with liquid nitrogen (instead

of the currently used, flammable oil-cooling), and flywheels with frictionless

superconductor-based bearing for energy storage.

1.3.2 Small-scale applications

We will distinguish two major categories of small-scale applications, namely

(i) in sensing and (ii) in communication and computation.
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1.3.2.1 Sensors

The main sensing abilities superconductors rely on Josephson junctions, where

a weak link between two superconductors – S – with a phase difference ∆φ

(e.g., a thin insulating barrier – I, a normal metal – N, or a constriction

weakening the superconductivity – s) enables a constant supercurrent Is =

Icsin(∆φ) in the absence of any applied bias voltage or magnetic field (DC

Josephson effect), and an alternating supercurrent Is = Icsin(∆φ + QV t/~)

under applied bias voltage V (AC Josephson effect) [29]. The Josephson fre-

quency resulting from the AC Josephson effect, ωJ = QV/~, thus allows for

a highly accurate conversion between frequency and voltage, resulting in the

Josephson voltage standard in metrology.

A particularly interesting type of Josephson junction in view of applications

is a SIS junction, also called a superconducting tunnel junction. Here, the su-

percurrent passes the insulating layer through quantum tunneling of Cooper

pairs. This type of tunneling is completely without dissipation, so there is

no voltage drop over the junction. If a bias voltage |V | > 2∆/e is applied,

there is a current of quasiparticles (electrons from broken Cooper pairs) with

an Ohmic, linear I − V relation. This principle can be applied for single-

photon detection. To this end a bias voltage V < 2∆/e is applied to the

junction. Photon absorption creates broken Cooper pairs, and the tunnel-

ing current due to the resulting quasiparticles is proportional to the energy

of the incident photon. Thus, single-photon detection can replace CCDs in

spectroscopic and astronomical instruments. Another route for single-photon

detection is based on superconducting nanowires. Incident photons locally

break Cooper pairs, creating a region with nonzero resistance in a part of the

wire, which produces a voltage pulse and enables fast photon counting.

When two Josephson junctions are put in a parallel circuit they form a Super-

conducting Quantum Interference Device (SQUID). In an applied magnetic

field with flux Φ through the circuit, the critical current in the SQUID result-

ing from Aharonov-Bohm-like quantum interference is Ic = 2ic |cos (πΦ/Φ0)|,
where ic is the critical current of the individual Josephson junctions. Thus,

SQUIDs provide the most accurate measurement tool for even the slightest

magnetic fields. There are many important medical applications for SQUIDs.
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First of all, helmets containing arrays of SQUIDs can scan the magnetic re-

sponse of the brain with a method called magnetoencephalography (MEG).

MEG provides information on the functioning of the brain and on possible

diseases. Analogously, magnetocardiography (MCG) can probe electromag-

netic signals from the nerves controlling the heart.

1.3.2.2 Communication and computing

Superconductors are also ideally suited for applications in communication

technology, since they can handle AC signals with ultra-low dissipation and

distortion, and since they possess intrinsic quantum efficiency. Superconductor-

based tools for communication that are already put to practice are filters

installed in cellular base stations reducing the interference of radiofrequent

signals. This is an analog application, however, in future an increasing num-

ber of digital applications are expected.

The power consumption of modern large-scale supercomputers, based almost

fully on semiconductors, poses an ever increasing power consumption prob-

lem [150]. Losses here are twofold, namely energy is dissipated in the form

of heat, and this heat needs to be removed to prevent damage. Maintenance

costs haven now risen to a level exceeding the expected cost of cryogenic cool-

ing of superconducting devices. Downsizing electronic devices brings along

additional challenges, such as gate leakage and reduced mobilities due to

quantum confinement [151]. Slowly but steadily the limit of making smaller,

higher performance integrated circuits is coming in sight, so that innovative

technologies are called for. Zero resistance, thus zero dissipation make super-

conductors an ideal candidate for faster and extremely low-power electronic

devices. The ultimate goal of the efforts to produce microelectronic devices

based on superconductors is the development of more powerful, less consum-

ing supercomputers. Therefore, very concrete actions are currently being

undertaken for the development of superconductor-based computing, for in-

stance by the US agency ‘Intelligence Advanced Research Projects Activity’

(IARPA).

In its Cryogenic Computing Complexity program12 IARPA has provided con-

ceptual estimates for a large-scale computer based on superconductors. In

12See http://www.iarpa.gov/index.php/research-programs/c3/baa.

http://www.iarpa.gov/index.php/research-programs/c3/baa
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2012 the most powerful supercomputer worldwide was Titan at the Oak Ridge

National Laboratory, with a computing capacity of ∼ 20 PFLOPS and a

power consumption of ∼ 8 MW13. IARPA predicts that a superconductor-

based supercomputer with the same computational power would only con-

sume 1% of Titan’s power consumption, including the cooling needed for the

superconducting state14. This can help to advance the development of exaflop

supercomputing and beyond that would consume several hundreds of MWs

if based on conventional semiconductor technology. The impact on society of

more powerful and efficient supercomputers cannot be overestimated. It can

enable simulations of outstanding complexity, ever gaining accuracy, relia-

bility and the possibility to make long-term predictions. Applications range

from high-throughput studies (e.g., in materials science), over real-scale neu-

rological simulations, to meteorological and geological simulations.

Very promising systems for both communication and computing applications

are the Rapid Single Flux Quantum (RSFQ) logic circuits. These are Joseph-

son junctions in which a single flux quantum can be stored in the form of

a vortex. RSFQ devices switch when current above the critical one is ap-

plied, causing them to output a single flux quantum voltage pulse. These

devices have ultrafast operation speeds with switching times of the order of

1 ps, and dissipate extremely little energy (∼ 10−19 J, which is thousands of

times smaller than in a semiconductor-based device). Together they can be

assembled into superconductor-based integrated circuits (IC).

Thus, RSFQ devices are ideally suited to construct superconducting transis-

tors, but they also provide a way for superconducting Random Access Mem-

ory (RAM) or cryogenic RAM. In this type of RAM, individual Abrikosov

vortices (AV), quantized amounts of flux in the superconductor, make up

an information bit, which is why this emerging technology is also dubbed

AVRAM [152, 154]. The size of the vortex cores is described by the super-

conducting coherence length which can be down to 10 nm. This means they

can be very densely packed, so that a lot of information can be stored in

a small space. Read and write operations are performed by injecting local

current pulses, as shown in Fig. 1.18(a) [152, 155]. Components based on

RSFQ effects can be combined with, e.g., the (ultrathin) superconducting

13For comparison, the whole of Belgium currently has an average power consumption of
∼ 20 GW.

14See http://www.ccas-web.org/pdf/CCAS_Brochure.pdf.

http://www.ccas-web.org/pdf/CCAS_Brochure.pdf
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(a) (b)

Figure 1.18: (a) Realization of an AVRAM device [152]. On the
left a scheme of the AVRAM, consisting of a vortex trap in between
two Josephson junctions is shown, as well as a SEM image. On the
right current pulses applied to the device are shown, which induce
write and erase operations. (b) I-V characteristics of an insulator
(top, red), a superconductor (top, blue) and a superconducting diode
(bottom) that can be made with a junction of a 2DEG and a metallic

nanofilm [153].

Field Effect Transistors (FET) [111] described in Sec. 1.2.2 to establish a

diverse set of functionalities.

A promising route to tailor and to enhance superconducting devices en-

tails hybrid systems. A famous, long-standing example are superconductor-

ferromagnet (S/F) systems, where the demagnetization fields of both com-

ponents influence each other [156]. In recent years, other hybrid systems

have been built. By bringing the 2D electron gas (2DEG) in AlGaAS/GaAs

in proximity to an Al nanofilm, both components are in electronic contact

[153]. When a positive voltage is applied to the Al film, the potential of

the film lies above that of the 2DEG, resulting in electrical screening that

reduces disorder in the latter. Therefore, when V > 0, superconductivity is

enhanced, while the opposite is true for V < 0, whereby the 2DEG turns

insulating. This causes the I-V characteristic of this system to lose its usual

antisymmetry, as depicted in Fig. 1.18(b). For V < 0 the behavior is insu-

lating, whereas for V > 0 it is superconducting, so the system functions as

a prototype superconducting diode [153]. Finally, hybrid structures of super-

conductors and quantum dots have also been built, enabling a combination
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of large numbers of condensed electrons in the former with control of single

electrons in the latter [157]. Interesting behavior is observed as a function of

coupling strength between a superconducting source and drain and a quan-

tum dot gate. In case of strong coupling, Cooper pairs tunnel from source to

drain via the quantum dot, whereas for weak coupling single electron tunnel-

ing is the preferred channel. The intermediate regime is arguably the most

interesting one, since there is a strong competition between the coupling of

the superconductors and the electron trapping of the quantum dot. This

can give an extra phase to the tunneling wave function able to reverse the

supercurrent across this device [157].

Superconducting devices provide moreover a route to quantum computing,

where the superposition nature of quantum states enables operations beyond

the binary level [158]. The elementary component of such a system, the su-

perconducting Qubit, can be constructed in several ways. There are three

archetypical systems, based on phase, flux and charge degrees of freedom

[158]. A phase Qubit makes use of the phase difference between condensates

in a Josephson junction, while SQUIDs form the base for a flux Qubit, op-

erating with magnetic flux quanta. Finally, charge Qubits make use of the

number of Cooper pairs within superconducting islands. These three Qubit

prototypes can be combined into hybrid systems, to establish improved per-

formances.

1.3.2.3 The prospect of atomically thin superconducting devices

It should be noted that the majority of the devices discussed above make use

of superconductors with bulk-like thicknesses or at least films with d > ξ,

so that they are not in the 2D regime. A highly notable exception is the

FET based on a single UC of La2−xSrxCuO4 [111]. Nevertheless, ultra-

thin superconductors are very promising for application in superconducting

devices. Atomically thin films can be patterned by electron-beam lithogra-

phy to create nanoscale circuitry. The resulting devices will be very com-

pact, due to their 2D character, and ultralight-weight. As such, the size of

superconductor-based supercomputers can be much reduced. Other applica-

tions where weight matters a lot – e.g., for the inclusion as sensors in satellite

and other applications in outer space – can profit from the ultra-low weight of
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the films, which together with ultra-low power consumption yields unrivalled

properties.

1.4 Motivation and organization of the thesis

The introduction has shown that superconductivity research has seen many

surprises in the last ten to twenty years. First, multigap superconductivity

was discovered in bulk MgB2, leading to revived interest in various multi-

component superconducting systems, where the condensate wave function

has an increased number of degrees of freedom, which can be multiple bands,

spins, competing interactions, topological effects, etc. Moreover, supercon-

ductivity down to the monolayer limit has been realized in diverse systems,

holding promise for ultra-efficient small-scale applications. With all the suc-

cesses that have been realized, still many pieces of the puzzle have remained

missing. The main reason for this is the lack of atomic-scale descriptions of

multicomponent superconductivity.

To accommodate this, the present thesis is devoted to constructing a coher-

ent ab initio description of multicomponent superconductivity, originating

from various different mechanisms. The overawing advantage of such ab ini-

tio (or equivalently, first-principles) description, that starts from the basic

quantum many-body problem, is that no tunable parameters, phenomenolog-

ical models, or other assumptions are employed. Thus, ab initio calculations

of the electronic and vibrational states, and their mutual coupling, provide

insight in how the superconducting pairing emerges, and how it is influenced

by quantum confinement, by strain, etc. The ab initio description of the

normal state properties of multicomponent superconductors is combined in

this thesis with accurate calculations of the superconducting pairing based on

statistical field theory, using the ab initio results as input. This provides un-

precedented access to novel phenomena in multicomponent superconductors.

The central question of this thesis can thus be summarized as:

How does multicomponent superconductivity originate and

evolve under the influence of atom-scale interactions, and

how does this change in the atomically thin limit?

To address this central question, the thesis is organized as follows.
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In Chapter 2 the foundations of ab initio electronic structure theory are

elaborated. Starting from the many-body problem various approximations

are elucidated. A strong emphasis lies on density functional theory, starting

from the underpinning Hohenberg-Kohn theorems, towards practical calcu-

lations.

In Chapter 3 the ab initio framework is extended to the calculation of

phonons, electron-phonon interaction and superconducting pairing. First, it

is explained how phonons are treated as perturbations in the density func-

tional perturbation theory, starting from the underpinning theory, towards

practical calculations. In the second part of this chapter the statistical field

theory for superconducting pairing, Migdal-Eliashberg theory, is presented.

In Chapter 4 multiband superconductivity in the bulk boride supercon-

ductor osmium diboride (OsB2) is investigated. To this end, we combine ab

initio calculations, quantum oscillations and anisotropic Eliashberg theory.

The main question addressed here is: Why is superconducting OsB2

fundamentally different from MgB2, and what causes its anoma-

lous superconducting behavior under the influence of temperature

and applied field?

In Chapter 5 superconductivity under the influence of coexisting lat-

tice vibrations and ferromagnetic spin fluctuations is investigated. For this

purpose a new, advanced Eliashberg framework is developed. It is applied

to the recently discovered iron-based multiband boride superconductor, iron

tetraboride (FeB4). The main question that is answered is: What is the

resulting superconducting pairing when lattice vibrations and spin

fluctuations both contribute?

In Chapter 6 superconductivity in atomically thin MgB2 is investigated

by a combination of ab initio calculations and Eliashberg theory. The theo-

retical results are compared to angle-resolved photoemission measurements.

The central question is: How does multigap superconductivity behave

in the monolayer limit, and how does this evolve with every added

monolayer?

In Chapter 7 nanoscale manipulations of atomically thin superconduc-

tors are considered. The influence of strain and of adatoms is investigated
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in atomically thin MgB2. The main question asked is: Can supercon-

ductivity in atomically thin materials be enhanced by nanoscale

manipulations?

In Chapter 8 superconductivity in conjunction with novel quantum

states, resulting from structural and spin degrees of freedom, is studied. The

material class where such quantum states – the Ising state and charge density

wave state – occur are the atomically thin transition metal dichalcogenides.

To this end, a fully ab initio description of these novel states is developed.

The question that will be addressed is: How does the interplay between

superconductivity and novel quantum states behave in atomically

thin materials?

Finally, in Chapter 9 a summary of the thesis and an outlook are pro-

vided, followed by a Dutch translation in Chapter 10.





Chapter 2

Electronic structure theory

2.1 Introduction

In this chapter, we explain the foundations of Density Functional Theory

(DFT), a quantum mechanical method for the solution of many-body prob-

lems. The charge density is the central variable in DFT, since the energy is

expressed as a functional (function with a function as variable) of the density.

DFT is a so-called first-principles or ab initio method, as it is based only on

the fundamental laws and constants of quantum mechanics and not on empir-

ical input. To start with, the general many-body problem will be introduced.

Approximations to the many-problem, such as the Born-Oppenheimer and

Hartree-Fock approximations will also be studied. Subsequently, the theo-

retical backbone of DFT, the Hohenberg-Kohn theorems and the Kohn-Sham

equations will be reviewed. Several functionals will be introduced, among

which the Perdew-Burke-Ernzerhof (PBE) functional mainly used in this

work. In a further section practical methods for DFT are summed up. This

includes the Bloch theorem, the basis set, the electronic wave vector k-point

grid, pseudopotentials and PAW pseudopotentials. Finally, we briefly discuss

the ABINIT package and the Vienna Ab initio Software Package (VASP),

that have been employed in the research presented in this thesis.

References used throughout the whole chapter are Refs. 159–163, while al-

ternative references are listed explicitly.

67
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2.2 The many-body problem in solids

The quantum mechanical many-body problem in a solid is described by the

time-independent Schrödinger equation,

ĤΨ (r1, σ1, r2, σ2, ...,R1,R2, ...) = EΨ (r1, σ1, r2, σ2, ...,R1,R2, ...) , (2.1)

where Ψ is the many-body wave function, dependent on the positions and

spin of the electrons, ri, σi and the positions of the nuclei, Ri. In principle,

the wave function also depends on the spins of the nuclei, but this will be

neglected. The reason is that we can treat the nuclei in a solid as classical

particles within the Born-Oppenheimer approximation (discussed in the next

section). The Hamiltonian Ĥ of the system of electrons and nuclei reads

Ĥ = −
∑
i

~2

2me
∇2
i −

∑
I

~2

2MI
∇2
I −

1

4πε0

∑
i,I

ZIe
2

|ri −RI |

+
1

2

1

4πε0

∑
i 6=j

e2

|ri − rj |
+

1

2

1

4πε0

∑
I 6=J

ZIZJe
2

|Ri −Rj |
,

(2.2)

where me and MI are the masses of electrons and nuclei, ZI are the atomic

numbers of the nuclei and ε0 is the vacuum permittivity. The five terms of

the Hamiltonian can be denoted as

Ĥ = T̂e + T̂n + V̂ext + V̂int + V̂n . (2.3)

In this Hamiltonian, T̂e and T̂n are the kinetic energy operators of the elec-

trons and nuclei respectively. V̂ext, V̂int and V̂n represent the electron-nucleus,

electron-electron and nucleus-nucleus Coulomb interactions. To simplify the

notation, we proceed with atomic units, i.e., ~ = e = me = 4πε0 = 1.

2.2.1 Born-Oppenheimer approximation

The many-body problem cannot be solved in an analytically exact way for

any system beyond the dihydrogen cation (H+
2 ) and thus approximations

have to be made. A first one is the Born-Oppenheimer approximation (BO),

where the electrons are considered to move in the field of fixed nuclei. The

justification of the BO approximation is the fact that the nuclei are much
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heavier than the electrons, the ratio of their masses being ∼1800 even for the

lightest chemical element, H. Within the BO approximation, the operators T̂n

and V̂n are reduced to classical energies Tn and Vn. The direct consequence of

the BO approximation is the decomposition of the many-body wave function

into an electronic wave function ψ and a nuclear wave function χ, namely

Ψ (r1, σ1, r2, σ2, ...,R1,R2, ...) = ψ (r1, σ1, r2, σ2, ...; R1,R2, ...)

×χ (R1,R2, ...) . (2.4)

The electronic wave function depends on the nuclear positions as parameters

and not as variables, since the electrons rearrange immediately as the nuclear

positions are altered. In relation to the Pauli exclusion principle for fermions,

the electronic wave function is antisymmetric under the interchange of two

electrons. Filling in wave function 2.4 into the Schrödinger equation 2.1, the

following electronic eigenvalue equation is obtained,

ĤBOψ (r1, σ1, r2, σ2, ...; R1,R2, ...) = Ee (R1,R2, ...) · ψ (r1, σ1, r2, σ2, ...

; R1,R2, ...) . (2.5)

The BO Hamiltonian contains only those terms of the general Hamiltonian

2.3 involving electrons:

ĤBO = T̂e + V̂ext + V̂int , (2.6)

and the associated energy Ee(R1,R2, ...) thus only depends on the nuclear

coordinates and not on the electronic coordinates. The total energy of the

many-body system in the BO approximation is

Etot = Ee + Tn + En , (2.7)

where the last two terms represent the classical kinetic energy and the clas-

sical electrostatic energy of the nuclei. The BO approximation is implied in

the rest of the chapter.
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2.2.2 Hartree-Fock approximation

A second approximation that can be applied, is the Hartree-Fock approxima-

tion (HF). In the HF approximation the electronic wave function ψ, intro-

duced in the BO approximation, is rewritten as an antisymmetric product of

one-particle wave functions φi(ri, σi),

ψ(r1, σ2, r2, σ2, ...) =
1√
N !

N !∑
p

(−1)pP̂ [φ1(r1, σ1) · φ2(r2, σ2) ...

×φN (rN , σN )] , (2.8)

where N is the number of electrons and P̂ is the permutation operator yield-

ing N ! permutations. Each of these is characterized by a number of elemen-

tary permutations of two electrons, p. As such, the wave function can be

rewritten as a determinant, the so-called Slater determinant :

ψ(r1, σ2, r2, σ2, ...) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1, σ1) φ2(r1, σ1) . . . φN (r1, σ1)

φ1(r2, σ2) φ2(r2, σ2) . . . φN (r2, σ2)

. . .

. . .

. . .

φ1(rN , σN ) φ2(rN , σN ) . . . φN (rN , σN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ 1√

N !
|φ1, φ2, ..., φN | .

(2.9)

An equation for the one-particle orbitals φi can be derived by making use

of the variational principle of quantum mechanics. It states that the energy

corresponding with a variational wave function ψ̃ always exceeds the ground

state energy E0,

E0 ≤
〈ψ̃|Ĥ|ψ̃〉
〈ψ̃|ψ̃〉

. (2.10)

Orthonormalization of the one-electron orbitals, 〈φi|φj〉 = δij , is imposed

by using Lagrange multipliers. Since the derivation of the HF equation is

lengthy, it will not be presented here1.

1It can be found in i.a. Ref. 159.
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The result of the HF approximation is the HF equation for the one-electron

orbitals φi(r1). The Hamiltonian consists of a one-electron operator, ĥ1 and

two two-electron operators, Ĵ and K̂,[
ĥ1 + Ĵ − K̂

]
φi(r1) = εiφi(r1) . (2.11)

The one-electron operator is

ĥ1 = −1

2
∇2

1 −
∑
I

ZI
r1I

, (2.12)

where r1I = |r1 −RI |. The first term represents the kinetic energy of the

electrons and the second term is the operator of the Coulomb interaction

between electrons and nuclei. The first two-electron operator, Ĵ , is the direct

operator. It is given by

Ĵ =
∑
j

∫
φ∗j (r2)

1

r12
φj(r2)dr2 , (2.13)

with r12 = |r1 − r2|. The second two-electron operator, K̂, is the exchange

operator:

K̂ =
∑
j‖i

∫
φ∗i (r1)φ∗j (r2)(1/r12)φj(r1)φi(r2)

φ∗i (r1)φi(r1)
dr2 . (2.14)

The summation over j ‖ i runs over all electrons with spin parallel to the

spin of particle i.

From this some important conclusions can be drawn about the HF approx-

imation. First, an exchange density is subtracted and accordingly electrons

with spin parallel to that of electron i are located outside a region around i.

This region is called the Fermi exchange hole. Moreover, the self-interaction

of the electrons cancels in the HF approximation due to the presence of the

exchange operator. In the historical predecessor of the HF approximation,

the Hartree approximation, the antisymmetrization of the wave function is

not carried out. As a result, there is no exchange term within the Hartree

approximation. Therefore, it suffers from self-interaction. We have men-

tioned that the HF equation is derived using the variational principle. This

is why the corresponding energy EHF is always an upper bound of the true
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ground state energy E0. The energy difference is called the correlation en-

ergy, EC = EHF−E0. The second consequence is that one can systematically

improve the accuracy of the approximation in post-HF methods. One of these

post-HF methods is the configuration interaction method using a linear com-

bination of Slater determinants. The HF equation can be solved in practice

by expanding the orbitals in a basis set, e.g., a plane wave basis. The plane

wave basis is a complete basis set, yet for practical calculations, a finite num-

ber of basis functions, M , is selected. The computational cost of the integral

evaluation scales as M4 in the HF method.

2.3 The fundamentals of Density Functional The-

ory

In Density Functional Theory (DFT) the electron density n(r) is the principal

quantity. The aim of DFT is to reformulate the quantum mechanical theory

in terms of the density instead of the wave function. As such, the historical

predecessor of DFT is the Thomas-Fermi approach dating back to 1927. The

electron density n(r) can be calculated from the electron wave function using

n(r) =
N∑
i=1

∫
...

∫
ψ∗(r1, ..., rN )δ(r− ri)ψ(r1, ..., rN )dr1...drN , (2.15)

where N is the number of electrons.

A functional is a function with another function as a variable, and is denoted

F [f ]. In DFT, the energy is written as a functional of the density, E [n].

The functional derivative is defined as

δ

δf(x)
F [f ] = lim

ε→0

F [f(x) + εδ(x− x′)]− F [f(x)]

ε
. (2.16)

Important properties of functional derivation include

δ

δf(x)

(∫
F [f ] dx

)
=
∂F [f ]

∂f(x)
, (2.17)

δ

δf(x)

(∫
F [f ] f(x) dx

)
=
∂F [f ]

∂f(x)
f(x) + F [f(x)] , (2.18)
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δ

δf(x)

(
1

2

∫∫
g(x, x′) f(x) f(x′) dx dx′

)
=

∫
g(x, x′) f(x′) dx′ . (2.19)

2.3.1 The Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems (HK), have been formulated in 1964 by P. Ho-

henberg and W. Kohn [164]. The HK theorems form the foundation of DFT.

The first HK theorem reads:

For any system of interacting particles in an external potential Vext(r),

this potential is determined uniquely – except for a constant – by the

ground state density n0(r).

This can be proven by a reductio ad absurdum. Suppose two different Hamil-

tonians exist, 
Ĥ1 = −1

2

N∑
i=1

∇2
i + V̂int + V̂

(1)
ext ,

Ĥ2 = −1
2

N∑
i=1

∇2
i + V̂int + V̂

(2)
ext ,

(2.20)

with V̂
(1)

ext and V̂
(2)

ext differing by more than a constant. This is combined with

the following set of Schrödinger equations:Ĥ1Ψ1 = E1Ψ1 ,

Ĥ2Ψ2 = E1Ψ2 .
(2.21)

In this expression Ψ1 6= Ψ2. To prove this lemma, suppose that Ψ1 = Ψ2 = Ψ,

then subtracting the equations in Eq. 2.21 produces(
V̂

(1)
ext − V̂

(2)
ext

)
Ψ = (E1 − E2)Ψ . (2.22)

The energy difference E1 − E2 is a constant shift and so V̂
(1)

ext and V̂
(2)

ext also

differ by merely a constant. This contradicts our previous assumption and

thus Ψ1 6= Ψ2. However, both wave functions lead to the same electron

density. Returning to the main proof, one uses the variational principle

yielding

E1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ1 − Ĥ2 + Ĥ2|Ψ2〉 . (2.23)
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Using Eqs. 2.20 and 2.21 results in

〈Ψ2|Ĥ1 − Ĥ2 + Ĥ2|Ψ2〉 = 〈Ψ2|V̂ (1)
ext − V̂

(2)
ext |Ψ2〉+ E2

=

∫
n0(r)

(
V

(1)
ext (r)− V (2)

ext (r)
)
dr + E2 ,

(2.24)

and combining Eqs. 2.23 and 2.24 gives

E1 − E2 <

∫
n0(r)

(
V

(1)
ext (r)− V (2)

ext (r)
)
dr . (2.25)

An analogous derivation starting from

E2 < 〈Ψ1|Ĥ2|Ψ1〉 (2.26)

produces

E1 − E2 >

∫
n0(r)

(
V

(1)
ext (r)− V (2)

ext (r)
)
dr . (2.27)

Since the inequalities are strict, Eqs. 2.25 and 2.27 cannot both be true and

therefore the assumption that the external potentials differ by more than a

constant does not hold. This proves the first HK theorem.

The second HK theorem reads:

A universal functional for the energy E [n] in terms of the density

n(r) can be defined, valid for any external potential Vext(r). The ex-

act ground state energy of the system is the global minimum of this

functional and the density that minimizes the functional is the exact

ground state density n0(r).

The first part of this theorem follows immediately from the first HK theorem,

upon fixing the possible constant shift in the potential. The functional E [n]

takes the form

E [n] = T [n] + Eint [n] + Eext [n] , (2.28)

determined uniquely by the density. The second part of the theorem provides

a method to determine the ground state density.

The proof follows directly from the variational principle. The ground state

energy is

E0 = 〈Ψ0|Ĥ|Ψ0〉 , (2.29)
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Ψ0 being the true ground state wave function. The variational principle can

then be stated as

E = min
Ψ
〈Ψ|Ĥ|Ψ〉 . (2.30)

This minimization over Ψ produces the correct ground state density n0, since

n 6= n0 corresponds to a wave function different from Ψ0. Therefore, the

ground state density minimizes the energy functional, leading to the ground

state energy

E0 = E [n0] = min
Ψ→n0

〈Ψ|Ĥ|Ψ〉 . (2.31)

This proves the second HK theorem.

In the proofs of the HK theorems we have used that two different wave

functions cannot both minimize the expectation value of the Hamiltonian.

This means that non-degenerate states are implied. The HK theorems can

be extended to include degenerate states, in the Levy-Lieb formulation.

2.3.2 The Kohn-Sham equations

2.3.2.1 Derivation

The HK theorems provide a formal framework to find the ground state density

and the ground state energy of a many-body system. Yet, so far, we do

not have a method to simplify the many-body problem within DFT. The

most widely method for this purpose has been established by W. Kohn and

L. J. Sham [165]. The essence of the Kohn-Sham approach (KS) is rewriting

the many-body problem as an auxiliary system of non-interacting electrons

moving in an effective potential. The constraint is that this auxiliary system

should lead to the same electron density as the real system (i.e. n must be

‘V-representable’). The functional of the real system is

E [n] = T [n] + Eint [n] + Eext [n] . (2.32)

We can rewrite Eint [n] as

Eint [n] =
1

2

∫∫
n(r) n(r′)

|r− r′| dr dr
′ + E′XC

= EH + E′XC ,

(2.33)
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where the first term is the Hartree energy, the classical Coulomb interaction

energy in the electron gas, while E′XC is the correction due to quantum me-

chanical exchange and correlation (XC). According to the second HK theorem

the energy functional is minimal for the true ground state density. Therefore,

functional derivation with respect to n, using Eqs. 2.17 and 2.19, yields

δE [n]

δn
=
δT

δn
+ VH(r) +

δE′XC

δn
+ Vext(r) = µ . (2.34)

In this expression

VH(r) =

∫
n(r′)

|r− r′|dr
′ (2.35)

is the the Hartree potential and µ is the chemical potential, fixing the num-

ber of electrons in the system. The functional of the auxiliary system of

non-interacting electrons contains an effective potential VKS(r) replacing the

interaction. The functional reads

E [n] = T0 [n] +

∫
VKS(r) n(r) dr , (2.36)

where T0 [n] is the kinetic energy of the fictitious non-interacting electrons.

Functional derivation using Eq. 2.17 leads to:

δE [n]

δn
=
δT0

δn
+ VKS(r) = µ . (2.37)

From the equality the chemical potential in Eqs. 2.34 and 2.37, the effective

KS potential can be specified as

VKS(r) =
δT

δn
− δT0

δn
+
δE′XC

δn
+ VH(r) + Vext(r) . (2.38)

Here, the first three terms can be combined to give

δT

δn
− δT0

δn
+
δE′XC

δn
=
δEXC

δn
= VXC , (2.39)

an XC-type potential. As such, the KS potential is

VKS(r) = VXC(r) + VH(r) + Vext(r) . (2.40)
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The corresponding Hamiltonian of the non-interacting system is

Ĥ =

N∑
i=1

(
−1

2
∇2
i + VKS(ri)

)
=

N∑
i=1

ĥKS(i) . (2.41)

The solution of the Schrödinger equation ĤΨ = EΨ is – since there are no

interactions – a Slater determinant, Ψ = |φ1, φ2, ..., φN |, leading to the KS

equations

ĥKS(i)φi(r) = εiφi(r) . (2.42)

Here, φi(r) are the KS orbitals and εi are the KS eigenvalues. The ground

state density is related to the KS orbitals by

n0(r) =

N∑
i=1

|φi(r)|2 , (2.43)

the sum running over the N orbitals with the lowest eigenvalues. The chal-

lenge in the KS approach is to find suitable approximations for the XC func-

tional,

EXC [n] = T [n]− T0 [n] + Eint [n]− EH [n] . (2.44)

This will be the subject of the next section, in which several functionals will

be discussed. In the Hartree energy EH [n], the electron in the KS orbital

under study is included in n(r). Consequently, when the XC energy is approx-

imated, the self-interaction does not fully cancel anymore. The generalization

of the KS approach to allow for spin-polarization is fairly straightforward.

KS equations for both spin components can be established.

2.3.2.2 Total electronic energy

We will now derive an expression for the total electronic energy in the KS

method. The total energy functional reads, using Eq. 2.44,

E [n] = T0 [n] + EH [n] + EXC [n] + Eext [n] . (2.45)

We can rewrite T0 [n], making use of the KS equations,

T0 [n] =
N∑
i=1

εi −
∫
VKS(r) n(r) dr , (2.46)
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and fill in VKS(r) as given in Eq. 2.40, obtaining

T0 [n] =

N∑
i=1

εi −
∫
VXC n(r) dr− 2EH [n]− Vext [n] . (2.47)

Combining this with Eq. 2.45 produces

E [n] =
N∑
i=1

εi − EH [n] + EXC [n]−
∫
VXC n(r) dr . (2.48)

It is thus found that the total electronic energy is not simply a summation

of the KS eigenvalues εi. The functional EXC [n] can be written as

EXC [n] =

∫
εXC [n(r)] n(r) dr . (2.49)

From Eq. 2.18 for functional derivation it follows that

VXC [n] =
δEXC [n]

δn(r)
= εXC [n(r)] +

∂εXC [n]

∂n(r)
n(r) . (2.50)

Therefore, the total energy of the electrons (Ee in Eq. 2.7) reads

E [n] =
N∑
i=1

εi − EH [n]−
∫
∂εXC [n]

∂n(r)
n(r) dr . (2.51)

Contrary to the HF method, the total energy in the Kohn-Sham DFT ap-

proach is not necessarily an upper bound of the true total energy, when the

XC energy is approximated.

The KS equations can be solved self-consistently. This is shown schematically

in Fig. 2.1. The iteration starts with an initial (trial) value for the electron

density n(r). Given an XC functional, the KS potential VKS(r) follows from

the initial density. Now the KS equations can be solved, yielding the KS

orbitals φi(r). They lead to a new electron density n(r) and a total energy.

The density is fed as input to the iteration and this is repeated until self-

consistency is reached. In practice, this self-consistency is assessed in terms of

the convergence of the total energy. If subsequent values of the total energy

differ less than the convergence criterion that has been selected, the total

energy, forces, stresses, etc., can be output.
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Figure 2.1: Scheme of the self-consistent solution of the Kohn-
Sham equations.

2.4 Exchange-correlation functionals

We will review the most widely used exchange-correlation (XC) approxima-

tions, LDA, GGA, and (briefly) hybrid functionals.

2.4.1 Local density approximation

The local density approximation (LDA) is the most simple XC functional,

defined as

ELDA
XC [n] =

∫
εUEG

XC (n(r)) n(r) dr , (2.52)

where εUEG
XC (n(r)) is the XC energy of an electron in a uniform electron gas

(UEG) of density n(r). It depends solely on the local density at point r. The
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XC energy per electron can be split into the X and the C contribution:

εUEG
XC [n] = εUEG

X [n] + εUEG
C [n] . (2.53)

The X energy of an electron in a uniform electron gas has the following

analytic form:

εUEG
X [n] = − 3

4π

(
3π2n(r)

)1/3
, (2.54)

which in the LDA functional is to be evaluated point-wise. There are, on the

other hand, no exact analytic expressions available for εUEG
C [n] (except in the

high- and low-density limit). Approximations can be obtained from quantum

Monte-Carlo simulations, as introduced by Ceperley and Alder [166].

2.4.2 Generalized gradient approximation

The LDA approximation can be improved on, taking into account the spatial

change in the local density by including (powers of) the gradient in the XC

functional. This approach is called the generalized gradient approximation

(GGA). It is important to note that the GGA is still a semi-local approxi-

mation, since only the gradient at the same coordinate is taken into account.

The XC functional thus takes the form

EGGA
XC [n] =

∫
εXC

(
n(r), |∇n(r)| ,∇2n(r), ...

)
n(r) dr , (2.55)

A commonly used GGA functional is the Perdew-Burke-Ernzerhof (PBE)

functional [167].

2.4.3 Limitations of the local approximations

LDA and GGA functionals are meritful in predicting lattice parameters and

atomic positions within 1−5% of the experimental values. Also, the electronic

structure of metals is reasonably well described. It is however important to

realize that the KS eigenvalues do not necessarily agree with the real energy

spectrum. In the derivation of the KS equations, we have only imposed that

the density of the KS system coincides with the real density. Accordingly,

the excitation energies are not accurately described by DFT in local approx-

imations like LDA and DFT. As a consequence, the band gaps of insulators
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and semiconductors are systematically underestimated – which is known as

the DFT band gap problem. This can be understood by carefully studying

the KS spectrum. The KS band gap is determined in terms of the N -electron

eigenvalues,

EKS
g = εN+1(N)− εN (N) , (2.56)

while the real band gap is given by

Eg = εN+1(N + 1)− εN (N) . (2.57)

The deviation between both band gaps corresponds to a difference of XC

potentials [168]:

Eg − EKS
g ≡ ∆XC = εN+1(N + 1)− εN+1(N)

= lim
η→0

[(
δEXC [n]

δn(r)

)
N+η

−
(
δEXC [n]

δn(r)

)
N−η

]
,

(2.58)

where η is a fractional number of electrons. ∆XC describes the discontinuity

of the functional derivative of EXC [n] around N . This discontinuity is not

captured by the local functionals and consequently, in LDA and GGA, ∆XC =

0. The resulting band gap is the pure KS band gap, leading to a consistent

underestimation of the band gap. This is illustrated in Fig. 2.2 for a wide

range of semiconductor and insulator materials [169]. The LDA band gaps

are compared to the band gaps in the GW approximation (GWA) and the

experimental gaps.

One of the most recent and best solutions to the DFT band gap problem

is the hybrid functional method, where exact (Hartree) exchange is mixed

into the functional, at the short range [170, 171]. Hybrid functional calcula-

tions are very computationally intensive. The HF method, on which hybrid

functionals are based, uses the wave functions instead of the density, which

have less symmetry, as a result of the Bloch theorem that will review in

Sec. 2.6.1. The main computational challenge in this thesis is dealing with

the gigantic task of performing all perturbation calculations needed to de-

scribe the phonons and electron-phonon coupling from first principles, as we

will review in Chapter 3. This computational load is therefore currently not

compatible with hybrid functionals because of limitations in the computing

capacity. Therefore, almost all calculations in this thesis have been carried
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Figure 2.2: Comparison of LDA, GWA and experimental band gaps
of insulator and semiconductor materials [169]. It is apparent that

LDA consistently leads to an underestimation of the band gap.

out with GGA functionals, specifically the PBE functional. This is justified

since we deal mainly with metallic and superconducting systems, that do not

suffer from the band gap problem.

2.5 Geometry optimization using the Hellmann-

Feynman theorem

The forces acting on the nuclei are obtained as the derivative of the total

energy with respect to the atomic positions. In equilibrium, all forces are

zero, i.e.,

FI = − ∂E

∂RI
= 0 . (2.59)

The derivative can be evaluated using the Hellmann-Feynman theorem. It is

valid for an eigenvalue E(λ) of the Hamiltonian Ĥ, λ being a parameter, the
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derivative with respect to λ is obtained from

∂E

∂λ
= 〈ψ|∂Ĥ

∂λ
|ψ〉 , (2.60)

where |ψ〉 is an eigenstate of the Hamiltonian. The proof of the Hellmann-

Feynman theorem requires a simple application of the product rule of deriva-

tion. In our case, the Hamiltonian is given by

Ĥ = T̂ + V̂int + V̂ext + Ĥn . (2.61)

Following the Born-Oppenheimer approximation the nuclear Hamiltonian Ĥn

can be evaluated classically. Application of the Hellmann-Feynman theorem

yields

FI = −〈ψ0|
∂Ĥ

∂RI
|ψ0〉

= −
〈
∂T̂

∂RI

〉
︸ ︷︷ ︸

=0

−
〈
∂V̂int

∂RI

〉
︸ ︷︷ ︸

=0

−
〈
∂V̂ext

∂RI

〉
− ∂En

∂RI
.

(2.62)

The first two terms vanish, since T̂ and V̂int do not depend explicitly on {RI}.
We obtain that the forces can be calculated as

FI = −
∫
∂Vext(r)

∂RI
n0(r) dr− ∂En

∂RI
. (2.63)

Practical schemes for the variation of the atomic positions to approximate

the equilibrium structure will be discussed in a Sec. 2.7.

2.6 Practical calculations

Previously, we have laid the foundation for DFT (the Hohenberg-Kohn the-

orems) and we have derived a set of equations that simplifies the many-body

problem (the Kohn-Sham equations), studying also the crucial exchange-

correlation energy. Now, we will investigate how DFT can be implemented

practically, for numerical computation.
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2.6.1 The Bloch theorem

The first requirement for a practical approach to DFT, is the use of the spatial

periodicity of the crystal lattice. Accordingly, the KS potential is periodic

for all lattice parameters R of the lattice:

VKS(R) = VKS(r + R) . (2.64)

A periodic structure is defined by a unit cell, which is repeated in all spatial

directions. This may be a supercell of the simple lattice of a material, to

implement more complex structures, such as a slab, point defects, etc.

For the periodic lattice that has been introduced, the Bloch theorem holds:

The wave function of a particle in a periodic potential can be written

as a product of a plane wave and a periodic function with the same

periodicity as the lattice.

This wave function can be written as

φik = eik·r uik(r) (2.65)

with

uik(r) = uik(r + R) . (2.66)

It follows easily that the energy spectrum is periodic with respect to the

reciprocal lattice,

Ei(k) = Ei(k + G) , (2.67)

for all reciprocal lattice vectors G. Therefore, the energy spectrum is fully

represented within the first Brillouin zone (BZ), the primitive cell of the

reciprocal lattice. This representation is called the band structure. It will

continuously be used within this thesis to display the electronic structure.

2.6.2 Plane wave basis set

It is convenient to expand a periodic function such as unk(r) using a plane

wave basis set,

uik(r) =
∑
G

cik(G) eiG·r , (2.68)
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where the summation runs over all reciprocal lattice vectors. The plane waves

form a complete basis set and thus the expansion is a Fourier series. Herein

lies one of the main advantages of a plane wave basis, namely, a fast Fourier

transform (FFT) can be performed to switch between real and reciprocal

space. Using the Bloch theorem, it follows that the electronic wave functions

are

φik =
∑
G

cik(G) ei(k+G)·r . (2.69)

The kinetic energy related to plane waves in this expansion is (k+G)2/2. The

summation over G is infinite and thus for practical reasons an upper bound-

ary should be set, the cutoff energy Ecut, so (k+G)2

2 < Ecut or, equivalently,

|G| < Gmax. The cutoff energy can be understood in terms of a ‘resolution’:

details in the wave function smaller than 2π/Gmax are neglected. It results

in the second important advantage of the plane wave basis set, namely the

accuracy can be improved systematically by increasing Ecut.

2.6.3 Integration over the first Brillouin zone: the k-point

grid

In DFT, all quantities are derived from the electron density,

n(r) =

∫
BZ
dk

Nk∑
i=1

fik |uik(r)|2 , (2.70)

where the sum runs over all bands at point k, Nk, and fik is the occupancy

of the band, either 1 – below the Fermi level – or 02. In order to facilitate

the convergence of the integration with respect to the number of k-points,

it is advantageous to replace the step function by a smooth function. This

is a so-called finite-temperature approach, also known as smearing, since it

mimics the effect of temperature [172]. Gaussian functions are frequently

used to describe this smearing.

For an infinitely extended real space lattice, k is a continuous variable, re-

stricted to the first BZ owing to periodicity. In a numerical calculation,

2The occupancy is in principle either 1 or 0, but can be 2, 1 or 0 in case spin-orbit
coupling is omitted. In the absence of spin-orbit coupling a fully occupied band contains 2
electrons.
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Figure 2.3: The IBZ of a simple square reciprocal lattice in 2D.
The IBZ contains the wave vectors k1 =

(
3
8 ,

3
8

)
with weight wk1 = 1

4 ,
k2 =

(
1
8 ,

1
8

)
with weight wk2 = 1

4 and k3 =
(

3
8 ,

1
8

)
with weight wk3 =

1
2 .

integration over a continuous variable is not attainable. Therefore, a k-point

grid is constructed to sample the first BZ. Commonly, a Monkhorst-Pack

grid, an equidistant grid, is selected [173]. Additionally, sampling of the ir-

reducible Brillouin zone (IBZ), the reduction of the first BZ by the lattice

symmetries, is sufficient for the calculation of the density. The normalized

weight wk has to be included, to take into account the multiplicity of each

k-point. Consequently, the electron density becomes

n(r) ∼=
∑

k∈IBZ

wk

Nk∑
i=1

fik |uik(r)|2 . (2.71)

As an example, the IBZ of a simple square reciprocal lattice in 2D is depicted

in Fig. 2.3.

2.6.4 Pseudopotentials

The electronic wave functions (orbitals) of the elements contained in the unit

cell are fed as input to a practical DFT routine. The true orbitals may

contain many nodes, leading to a huge basis set (a high Ecut). Moreover,

for bonding, the core electrons are usually not relevant. The oscillations

of the true (all-electron) valence electron orbitals near the core are due to

the core electrons. The nodes - and thus the oscillations - arise from the
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Figure 2.4: The original (black curve) and smoothed (red curve)
wave function for the Si 3s state [163].

orthogonality of the orbitals to the core orbitals. In a pseudopotential (PP)

method, the effect of the core electrons is removed from the true orbitals

yielding a smoothed function. Let us consider an orbital ψ, resulting from a

one-electron Schrödinger equation, e.g., the Kohn-Sham equation ĥψ = εψ.

Following the principle of the PP method, ψ can be written as:

ψ = φ+
∑
c

bcψc , (2.72)

where φ is a smooth function, corresponding to the true wave function ψ

outside of a cutoff radius rc, in the region of chemical bonds. An example

of a pseudopotential for Si is shown in Fig. 2.4, where the red curve is the

smooth wave functions coinciding with the true wave function outside the

cutoff radius rc. The summation over c runs over all core orbitals and bc

are the coefficient of the linear combination. As such, we have split the true

wave function into a smooth and an oscillating contribution. The constants

bc can be determined from the orthogonality of ψ to the core orbitals. We
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select any of the core orbitals ψc0 to obtain

〈ψc0|ψ〉 = 〈ψc0|φ〉+ bc0 . (2.73)

Therefore bc0 = −〈ψc0|φ〉, which is combination with Eq. 2.74 results in

ψ = φ−
∑
c

〈ψc|φ〉ψc . (2.74)

This formula is related to the Gramm-Schmidt orthogonalization procedure.

Then, using ĥψc = εcψc, the one-electron eigenvalue equation Kohn-Sham

becomes

ĥψ(r) = ĥφ(r)− εc
∑
c

∫
ψ∗c (r

′)φ(r′)dr′ψc(r) . (2.75)

Alternatively, we can write ĥψ = εψ as

ĥψ(r) = εφ(r)− ε
∑
c

∫
ψ∗c (r

′)φ(r′)dr′ψc(r) . (2.76)

Combining Eqs. 2.75 and 2.76 gives a single-electron equation for the smooth

wave function φ,

ĥφ(r) +
∑
c

(ε− εc)
∫
ψ∗c (r

′)φ(r′)dr′ψc(r) = εφ(r) . (2.77)

The left hand side consists of the one-particle Hamiltonian ĥ and a non-local

operator, both acting on φ(r). Therefore, it can be rewritten by introducing

the PP V̂ps, (
−1

2
∇2 + V̂ps

)
φ(r) = εφ(r) . (2.78)

2.6.5 Projector augmented waves

Another method used to reduce the computational cost of electron-ion inter-

action in DFT, is the projector augmented wave (PAW) method, developed

by Blöchl [174]. It is closely related to the PP method, since the aim is still to

distinguish between the oscillating part of the orbitals close to the core and

the smooth part of the orbitals further away. In contrast to the PP approach,
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the all-electron character of the wave function is conserved. This is done as

follows.

First, the true orbitals ψi of the isolated atom are obtained from an all-

electron calculation. Then, as was the case for PP, the true wave functions

are transformed into smoother wave functions φi, the so-called partial waves.

Hereby the constraint is that the true and partial wave functions should

coincide outside the core region (beyond the cutoff distance rc). The inverse

transformation is achieved by a linear transformation, ψi = T̂ φi. The third

step consists of expanding the smooth valence wave functions of the electrons,

Φi =
∑
i

ciφi. The true wave function is obtained by the transformation with

T̂ ,

Ψi = T̂

(∑
i

ciφi

)
=
∑
i

ciψi . (2.79)

The PAW method can furthermore be formulated using projectors pi that

operate only in the core region, within the radius rc. With the definition of

the projectors, 〈pi|φj〉 = δij the operator T̂ can be rewritten as

T̂ = 1 +
∑
j

(|ψj〉 − |φj〉) 〈pj | . (2.80)

Thus we obtain

|ψi〉 = T̂ |φi〉 = |φi〉+
∑
j

(|ψj〉 − |φj〉) δij , (2.81)

which is consistent. Consequently, the true electron wavefunction in the

system can be written as

|Ψi〉 = T̂ |Φi〉 = |Φi〉+
∑
j

(|ψj〉 − |φj〉) 〈pj |Φ〉 . (2.82)

According to this expression, the all-electron wavefunction is reconstructed

from the smooth pseudowavefunction by correcting for the differences be-

tween the true orbitals and the partial waves of the atoms. This is how the

PAW method retains the all-electron character of the wavefunctions. As a

result, the PAW method is generally more accurate than the PP method.
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2.7 Implementations

We have seen that DFT can be used to reduce the many-body problem. Still,

the KS equations are to be solved self-consistently and a sufficiently large ba-

sis set has to be selected, as well as an appropriate supercell to implement

more complex systems. So, DFT is implemented numerically in a wide vari-

ety of software packages, such as ABINIT, Gaussian, Quantum ESPRESSO,

SIESTA, VASP, WIEN2k etc. These differ in several aspects, i.a., the choice

of the basis functions, the pseudopotentials, and the algorithms used for di-

agonalization of the KS Hamiltonian. All results presented in this thesis have

been obtained using either ABINIT [175] or the Vienna Ab initio Simulation

Package (VASP) [172, 176].

Both implementations have a lot in common. In both packages, several ap-

proaches to solve many-body problems are implemented, the main ones being

Kohn-Sham DFT and the GW approximation (a method originating from

many-body perturbation theory). Both also offer several XC functionals for

the DFT, such as the LDA, the GGA, van der Waals functionals, hybrid

functionals, etc. Wave functions and potentials are expanded in a plane

wave basis set in both programs, and the electron-ion interactions can be

treated either using PPs or PAW potentials. As we will see in more detail

in Chapter 3, in addition in ABINIT density functional perturbation theory

(DFPT) is implemented, which yield efficient calculations of phonons, and of

the electron-phonon coupling. This is why the majority of the first-principles

results in this thesis has been obtained in ABINIT. VASP is used in some

cases, where it has very specific advantages; this will be pointed out explic-

itly where relevant. Computational details in the different systems that are

studied will always be provided in the corresponding chapters.

In the self-consistent solution of the KS equations, several methods for the

diagonalization of the KS Hamiltonian can be employed, such as the blocked

Davidson algorithm, and the conjugate gradient algorithm (CGA). The effi-

ciency of the self-consistency cycle can be improved by charge density mixing,

i.e., taking a combination of previous output charge densities to create the

input charge density for a new iteration step. Geometry optimization of the

ionic structure is also executed in an iterative way. The geometry is con-

sidered optimized or relaxed if the forces on all ions are below the selected
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convergence criterion. Within each step of the relaxation, the electronic

structure has to be calculated in a self-consistency cycle. Subsequently, the

forces can be calculated using the Hellmann-Feynman theorem, as we have

explained in Sec. 2.5. One of the most reliable method for relaxations is

based on a conjugate gradient algorithm. In the first step, the ionic positions

are altered in the direction of the forces acting on them. This is a so-called

line minimization. Similarly, the cell shape is changed in the direction of the

calculated stress. The forces, stress tensor and total energy are recalculated,

which concludes the trial step. For the corrector step, a third-order inter-

polation is performed to further approximate the minimum in total energy.

Again, the forces on the ions are calculated. In case any force on an ion in

the system exceeds the convergence criterion, the procedure is repeated. The

new search direction are conjugated to the previous search directions.

To meet the computational demands, ABINIT and VASP support parallel

computing, i.e., subtasks are divided over multiple central processing units

(CPUs). Parallelization can be achieved over energy bands, k-points or a

combination of both. For this thesis, dealing with metallic systems, very

dense k-point grids were necessary to accurately describe the Fermi surface.

Therefore, usually parallelization over the k-points was the preferred method.





Chapter 3

Phonons, electron-phonon

interaction and Migdal-Eliashberg

theory

3.1 Introduction

As we have reviewed in Chapter 1, phonons and electron-phonon coupling

play a central role in the superconducting pairing of conventional supercon-

ductors. In Chapter 2 we saw how the electronic properties of materials can

be calculated with ab initio methods. Since the aim of this thesis is devel-

oping a complete ab initio method to study the superconducting properties

of multicomponent and atomically thin superconductors, we need to extend

this framework to include the dynamical properties. To that end, we will

start this chapter by briefly reviewing phonons in 3D and in 2D materials.

Then, we will introduce the many-body description of electron-phonon inter-

action. With the acquired fundamental insight into this system, we will be

able to subsequently extend DFT with the inclusion of lattice perturbations.

This leads to adapted Kohn-Sham equations that form the base of density

functional perturbation theory (DFPT), which is the workhorse tool for the

ab initio study in this thesis. For an accurate description of the supercon-

ducting properties, we will explain how the ab initio results can be employed

in a field theoretical description of superconductivity that is an extension

of the BCS theory, reviewed in Chapter 1, namely Migdal-Eliashberg theory.

93
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We will investigate the assumptions used to arrive at this theory, and the

resulting strengths and weaknesses.

3.2 Phonons

Phonons are quantized lattice vibrations, with quantized energy levels at any

particular wave vectors q. Just like electrons in a solid, the energy of phonons

depends on this wave vector, leading to the dispersion relation ω(q). These

energies are the phonon eigenvalues, and the corresponding eigenvectors are

the lattice displacements. Two main types of phonons exist, namely acoustic

(A) and optical (O) phonons. In the former, the atom displacements are

mutually in phase, while in the latter they are out of phase. This distinc-

tion already arises in the quantum-mechanical description of linear chains of

atoms, with at least two atoms per unit cell [177, 178]. It can be proven that

a material with N atoms in the unit cell has 3 acoustic phonon modes and

3N − 3 optical modes, with a total of 3N phonon modes. These modes will

be numbered as ων with ν = 1, .., 3N . Therefore, a material with a unit cell

consisting of a single atom only has acoustic modes – which is exactly what

justifies the use of the Debye model for many elementary superconductors as

we did in Chapter 1. Within these categories one distinguishes, as always

in the case of wave phenomena, longitudinal (L) and transverse (T) modes.

In the longitudinal case, the phonon eigenmodes, eκν(q) where κ indicates a

specific nucleus, are parallel to the propagation direction of the wave, char-

acterized by wave vector q, while in the transverse case it is perpendicular.

Thus, phonons can be divided in 4 categories: LA, TA, LO and TO. Of the

3 acoustic modes in a bulk material 1 is LA and 2 are TA, and of the 3N − 3

optical modes N − 1 are LO and 2N − 2 are TO.

To a first approximation phonons are harmonic. In this limit they couple

atoms in the way springs do, namely according to Hooke’s law, where the

reaction force is F = −kr, k being the spring constant. This leads to poten-

tial energy of the form U = k |r|2 /2, as shown in Fig. 3.1. The springs in

a solid are the electronic charge densities. Beyond the harmonic approxima-

tion, there can be anharmonic phonons, also shown in Fig. 3.1, which are not

symmetric upon r→ −r. Phonon eigenvalues are generally positive real num-

bers, but not always. Imaginary phonon modes indicate that the structure is
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Figure 3.1: Schematic representation of the potential energy as a
function of internuclear separation, for an harmonic and an anhar-
monic case. Some phonon modes are shown as insets, the harmonic
ones being symmetric with respect to the minimum, while the anhar-

monic ones are not.

not stable1. The resulting time evolution is exp(iωt) = exp(−Im(ω)t), which

is a damped, evanescent oscillation. Fig. 3.1 also indicates that the lowest

phonon mode is the ground state, the other modes being filled up according

to the Bose-Einstein distribution at T > 0, since phonons are bosons.

3.2.1 Phonons in 2D materials

Phonons in 2D materials are substantially different from their bulk coun-

terparts. In the direction perpendicular to the crystal plane there are no

neighbors and therefore reduced reactive forces. This gives rise to different

types of modes compared with 3D. The out-of-plane modes are indicated with

Z (referring to the z-direction) [179]. Thus, 2D materials have 1 ZA mode,

1 TA mode and 1 LA mode, and N − 1 ZO modes, N − 1 TO modes and,

finally, N −1 LO modes. The LA and TA modes in 3D and 2D materials are

linear with the wave vector in the vicinity of Γ (ω = vsq with vs the sound

velocity in the material). Owing to rotational invariance in 2D materials,

the first term of order q2 vanishes in the expansion of ω2 of the ZA mode, so

that the leading order is q4 [180]. Thus, it follows that the phonon dispersion

1We wish to comment here already that often, in this thesis too, these imaginary phonon
eigenvalues are mapped to negative real numbers, for graphical convenience.
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Figure 3.2: Phonons in graphene calculated using density func-
tional perturbation theory (implemented in ABINIT). (a) Phonon
dispersion, where the character of the modes is indicated. (b) All 6

eigenmodes of graphene at wave vector Γ.

of the ZA mode goes as ω = αq2 in the vicinity of Γ. This mode is also

called the flexural mode, since it corresponds to rippling of the 2D sheet in

the out-of-plane direction (for q 6= Γ).

As an example, we will discuss the phonon modes of graphene. This is a

very relevant example for this thesis, as the ultrathin MgB2 sheets that we
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will study in Chapters 6-7, as well as the ultrathin dichalcogenide sheets

that will form the subject of Chapter 8 all have hexagonal symmetries like

graphene. The result of a first-principles calculation of the phonon disper-

sion of graphene (performed in ABINIT using density functional perturbation

theory – to be discussed further on in this chapter) is shown in Fig. 3.2(a).

The quadratic dependence of the ZA mode is clearly visible here. It is in-

structive to study the eigenmodes at Γ. Since graphene has point group D6h,

the modes consist of four representations: E2g, B2g, E1u and A2u [181]. Here,

g stands for gerade (German for even) and u stands for ungerade (German

for odd). The gerade representations are symmetric under r → −r, while

the ungerade representations are antisymmetric under this transformation.

The eigendisplacements of graphene at Γ are depicted in Fig. 3.2(b). At Γ

the TO and LO phonon modes are part of the E2g representation (doubly

degenerate at Γ), the ZO mode of B2g, the TA and LA modes of E1u, and

the ZA mode of A2u [181]. In this figure one can nicely trace back everything

we have introduced up to now regarding phonons. Notice, for example, that

in the ZA, TA and LA modes the atoms move in-phase, while the atoms of

the A and B sublattices move out-of-phase in the ZO, TO and LO modes.

Theoretically speaking only the E2g mode is Raman active – it is also called

the G mode in this context – however, the TO branch around K can become

Raman active under the influence of disorder, hence the name D mode. The

E2g mode moreover has a strong interaction with electrons, that leads to cusps

in the phonon dispersion, called Kohn anomalies [181]. These are absent in

the phonon dispersion in Fig. 3.2(a) since it was calculated within the Born-

Oppenheimer approximation, where the electrons see the lattice as static.

The strong electron-phonon coupling of the E2g mode will play an important

role in Chapters 6-7, as we will prove that it is the main contribution to the

phonon-mediated superconductivity in MgB2.

3.3 Electron-phonon interaction

The electron-phonon (e-ph) interaction plays a crucial role in various phe-

nomena occurring in solids [182, 183]. In metals, the electrical resistivity

depends on e-ph interaction, and in semiconductors the carrier mobility does

so as well. In indirect semiconductors the optical transitions are enabled
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by e-ph interaction. Even more generally, the e-ph coupling can distort the

electronic band structure (in phenomena such as the Peierls distortion and

charge density waves) as well as the phonon dispersion (leading, e.g., to the

Kohn anomalies introduced in Sec. 3.2.1). By coupling lattice and spin de-

grees of freedom the e-ph interaction even plays a role in electrically active

magnons (called electromagnons) which hold promise for spintronics [183].

Finally, it lies at the base of conventional pairing in superconductors – as we

have already seen in Chapter 1 – which will be the focus of the discussion

that follows.

The Hamiltonian describing the coupled electron-phonon system to first order

is

Ĥ =
∑
ki

εikĉ
†
ikĉik +

∑
qν

~ωqν

(
â†qν âqν +

1

2

)
+

N
− 1

2
p

∑
kqijν

gνk,k+q,ij ĉ
†
jk+qĉik

(
âqν + â†−qν

)
,

(3.1)

where i, j are electronic band indices, the ν’s are phonon band indices and Np

is the number of unit cells in the system. The first two terms are the individ-

ual electron Hamiltonians (with creation/annihilation operators ĉ†ik/ĉik) and

phonon Hamiltonians (with operators â†qν/âqν) in second quantization. The

third term provides the coupling between these particles, where gνk,k+q,ij are

the e-ph couplign matrix elements. The second order correction to Eq. 3.1

involves matrix elements of the form g̃νν
′

k,k+q,k+q′,ij and depends on operator

products
(
âqν + â†−qν

)(
âq′ν′ + â†−q′ν′

)
, indicating the two-phonon nature of

the second order [183]. In this thesis we will only consider the e-ph interaction

to first order.

The main question to address is how to calculate the e-ph matrix elements.

For scattering of electrons moving in an effective potential V0 by acoustic

phonons with wave vector q one finds [183]

gνk,k+q,ij = −i
∑
κ

(
~

2NpMκωqν

) 1
2

q · eκν V0 . (3.2)

Here, eκν is the eigenmode of the κ-th nucleus. This matrix element demon-

strates that among the acoustic phonons only the longitudinal ones (with

eκν ‖ q) can couple to electrons. Notice that there is no dependence on
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the electronic band indices in this formula, so that it is only really valid for

monovalent metals (with a single valence electron per atom). To extend this

to systems with several different, interacting electron a more elaborate de-

scription that includes electronic screening is needed. This is the subject of

the next section.

3.4 First-principles calculations

The majority of historical and present theoretical investigations of phenom-

ena enabled by e-ph interaction rely on semi-empirical model Hamiltonians.

However, it is possible to calculate the e-ph interaction completely from first

principles, albeit with considerable computational complexity. The under-

pinning theory enabling these calculations is density functional perturbation

theory (DFPT) [184–186].

3.4.1 Calculating phonons

The first step to compute phonon dispersions is to calculate how the total

energy depends on atomic displacements. We will denote the position vectors

of the nuclei as τ κ, with components τκα. Thus, the position of a nucleus in

the p-th unit cell is τ κp = Rp + τ κ. To second order in the displacements,

∆τκpα, the expansion of the total energy of the electrons and the nuclei

around the equilibrium value E
(0)
tot is

Etot({τ κp}) = E
(0)
tot +

1

2

∑
κκ′αα′pp′

∂2Etot({τ κp})
∂τκpα∂τκ′p′α′

∆τκpα∆τκ′p′α′ . (3.3)

This total energy can be calculated in DFT along the lines elaborated in

Chapter 2, within the Born-Oppenheimer approximation. Thus, the inter-

atomic force constants Cκpα,κ′p′α′ emerge as an extension of the spring con-

stant:

Cκpα,κ′p′α′ =
∂2Etot({τ κp})
∂τκpα∂τκ′p′α′

. (3.4)
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The Fourier transform of these interatomic force constants is the dynamical

matrix,

Dκα,κ′α′ = (MκMκ′)
− 1

2

∑
p

Cκ0α,κ′pα′exp (iq ·Rp) . (3.5)

It is a Hermitian matrix, so with real eigenvalues,∑
κ′α′

Dκα,κ′α′(q)eκ′να′(q) = ω2
qνeκνα(q) , (3.6)

where eκνα is again the eigenmode of nucleus κ under the influence of phonon

branch ν. From this eigenvalue equation the phonon dispersion ωqν and the

eigenmodes can be determined.

3.4.2 Calculating the electron-phonon interaction

While the derivatives of the total energy suffice to calculate the phonon dis-

persions and eigenmodes, for the e-ph coupling the Kohn-Sham (KS) po-

tentials – perturbed under the influence of the atomic displacements – are

needed. We denote the variations in the KS potential under the influence of

phonon mode ν and wave vector q as ∆qνV
KS. Then, the matrix elements

arising in the third term of Eq. 3.1 are given by [183]

gνk,k+q,ij = 〈ψjk+q|∆qνVKS|ψik〉 , (3.7)

where the integral is carried out over the Np unit cells we are considering.

3.4.3 Frozen-phonon method

The first approach to evaluate the variation of the KS potential in Eq. 3.7 is

to expand it around the equilibrium position τ0
κp as

∆qνVKS =
∑
κp

∂VKS

∂τκpα

∣∣∣∣
τ0
κp

∆qντκpα , (3.8)
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and to approximate the derivative with finite differences b:

∂VKS

∂τκpα

∣∣∣∣
τ0
κp

'
[
VKS

(
r; τ0

κpα + b
)
− VKS

(
r; τ0

κpα

)]
/b . (3.9)

To this end, atom κ in cell p needs to be displaced along direction α. This

means that in principle all atoms in the Np unit cells need to be moved in

all directions to obtain a complete description of the phonons. This supercell

approach to calculating the e-ph coupling is also called the frozen-phonon

method, as chosen vibrational eigenmodes are frozen in to evaluate Eq. 3.9.

Clearly, this method comes with a great disadvantage, namely, that one needs

to consider a set of Np unit cells, not taking fully advantage of the periodic

lattice symmetry. This leads to serious computational restrictions. Therefore,

a more efficient approach is to include lattice periodicity, which forms the base

of DFPT, discussed in the next section.

3.4.4 Density functional perturbation theory (DFPT)

3.4.4.1 Formalism

To fully take advantage of the lattice periodicity we define

∆qνv
KS = e−iq·r∆qνV

KS (3.10)

as the lattice-periodic variation of the KS potential. It can be related to the

differential variation, ∂κα,qvKS, through

∆qνvKS =
∑
κα

√
~

2Mκωqν
eκνα∂κα,qvKS . (3.11)

The lattice-periodic differential variation can be explicitly calculated as

∂κα,qvKS =
∑
p

e−iq·(r−Rp) ∂VKS

∂τκα

∣∣∣∣
r−Rp

. (3.12)

Here τ κ = r −Rp indicates that the whole system is indeed described by a

single unit cell. From Eq. 3.10 it immediately follows that matrix element

3.7 can be stated in terms of the lattice-periodic factors |uik〉 of the Bloch
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wave function,

gνk,k+q,ij = 〈ujk+q|∆qνvKS|uik〉uc , (3.13)

‘uc’ indicating that the integral is restricted to a single unit cell.

Density functional perturbation theory (DFPT) can now be constructed anal-

ogously to DFT. The DFPT equivalent of the KS potential in Eq. 2.40 reads

∂κα,qvKS = ∂κα,qvXC + ∂κα,qvH + ∂κα,qvext . (3.14)

The DFPT equivalents of the KS equations can be obtained from first-

order perturbation theory. In terms of the KS Hamiltonian, ĤKS,k+q =

e−i(k+q)·rĤKSe
i(k+q)·r, and the wave function change, ∂uik,q, the first-order

variation of the KS equations takes the form of the Sternheimer equations

[183] (
ĤKS,k+q − εvk

)
∂uvk,q = −∂κα,qvKS uvk , (3.15)

where v replacing electronic band index i indicates that only the occupied,

valence states play a role here. Eq. 3.15 is restricted to q 6= 0. At q = 0 one

obtains instead(
ĤKS,k − εvk

)
∂uvk,q=0 = − [∂κα,q=0vKS + 〈uvk|∂κα,q=0vKS|uvk〉]uvk .

(3.16)

3.4.4.2 Computational approach and challenges

To step from the formalism elaborated in the preceding section to practical

calculations, some additional considerations are required.

Projectors and iterations. In practice, evaluating Eqs. 3.15 and 3.16

yields problems in case of near-degeneracy εv′k+q ' εvk, whereby the left-

hand side of the Sternheimer equations becomes ill-conditioned. To resolve

this issue, one defines the projector over occupied states with wave vector

k + q as P̂ occ
k+q =

∑
v |uvk+q〉〈uvk+q|. The resulting changes in the wave
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functions can be denoted as

∂ũvk,q =
(

1− P̂ occ
k+q

)
∂uvk,q , (3.17)

so that this rewritten variation of the wave function involves only unoccupied

components [187]. By projecting Eq. 3.15 onto
(

1− P̂ occ
k+q

)
and by adding

αP̂ occ
k+q∂ũvk,q (α being a parameter larger than the valence bandwidth) –

which is zero by construction – to the left-hand side, one obtains(
ĤKS,k+q − εvk + αP̂ occ

k+q

)
∂ũvk,q = −

(
1− P̂ occ

k+q

)
∂κα,qvKS uvk . (3.18)

Now, the left-hand side is well-conditioned in case of (near-)degeneracies.

The corresponding electronic density response is [183]

∂nq(r) = 2N−1
p

∑
vk

u∗vk∂ũvk,q , (3.19)

where the prefactor 2 stems from time-reversal symmetry.

Just like in the solution of the KS equations in DFT, in DFPT the Stern-

heimer equations are solved iteratively. First, an initial guess for the per-

turbation ∂κα,qvKS – q being a specific wave vector under consideration – is

chosen. Then, Eq. 3.18 is solved, yielding the density response ∂nq(r). This

density gives the updated KS potential. This procedure is repeated until

the result is self-consistent, in other words, until the changes in ∂nq(r) are

converged within the chosen tolerance.

Acoustic sum rule. The perturbation ∂κα,qvKS is also the main ingre-

dient for calculating the interatomic force constants. However, since finite k

grids are used in these calculations, numerical errors can introduce a violation

of the invariance of the crystal energy under uniform translations. A major

problem that arises is that in this case ων(q→ 0) 9 0 for the acoustic modes.

To ensure that translational symmetries are obeyed, the force constants are

corrected by imposing the constraint∑
κ′

Cκα,κ′α′(q = 0) = 0 , (3.20)
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which is called the acoustic sum rule (ASR), that needs to be evaluated for

all components α and α′.

Implementation in ABINIT. For this thesis DFPT as implemented in

ABINIT was employed [185, 188–190]. In order to calculate the phonons,

the first step is to carry out a ground state calculation that yields the wave

functions needed to evaluate Eq. 3.18. In the next step, perturbations are

carried out one by one, for each atom, each q vector and for all Cartesian

directions (x, y, z). The grid of q-points needs to be a subgrid of the k-point

grid. E.g., when the latter is 24× 24× 1 for a 2D material, a q-point grid of

12× 12× 1 can be selected. Finally, the e-ph matrix elements are evaluated

as in Eq. 3.13.

Finally, the last steps of phonon and e-ph coupling calculations in ABINIT

consist of constructing the dynamical matrices, and one can obtain isotropic

estimates of superconducting properties, such as the isotropic Eliashberg

function, α2F , and the critical temperature, Tc.

Computational cost. From the preceding section one can see that DFPT

calculations are computationally very challenging. In order to obtain accu-

rate and well-converged results one needs to use a dense grid of phonon wave

vectors, q, and for each of the points of this grid one has to consider all

atomic displacement, in all three Cartesian directions. So, per q point, the

number of perturbations that needs to be treated is 3N , N being the number

of atoms in the unit cell. Therefore, DFPT calculations bear the computa-

tional cost of 3N · Nq self-consistent field (SCF) calculations (where Nq is

the number of phonon wave vectors). Moreover, each of these calculations

also need very dense k-point grids for the electronic wave vectors, in order to

correctly describe the Fermi surfaces of the metals under consideration. The

computational cost increases further with the number of atoms. Not only

does 3N · Nq grow linearly, but the computational cost of each SCF calcu-

lation also increases as more electronic states have to be taken into account.

Since DFT routines typically scale as N3, DFPT routines scale as N4 with

the system size. This leads to restrictions in feasible system sizes that can

currently be investigated.
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For some materials – those consisting of heavy nuclei – spin-orbit coupling

(SOC) is considerable and needs to be taken into account. One example of

such a system are the transition metal dichalcogenides (TMDs) in Chapter

8 of this thesis. The inclusion of SOC doubles the number of KS equations,

since spin degeneracy is lifted. This increases the computational cost fur-

ther. Fortunately, DFPT can be parallelized efficiently, as the Sternheimer

equations can be solved independently for each k-point (and each band, if

necessary). Thus, large-scale k-point parallelization on high-performance

computational infrastructure has enabled the calculations needed for this

thesis.

3.5 Migdal-Eliashberg theory

The aim of Migdal-Eliashberg theory is to describe the superconducting state

in a more realistic way than BCS theory [191, 192]. In the BCS theory, the

e-ph interaction is instantaneous and restricted to acoustic phonons. Eliash-

berg theory includes a more realistic description of the e-ph interaction, with

retardation effects in the electronic states under the influence of the interac-

tion with the phonon. Moreover, Coulomb interactions between the electrons

are taken into account, leading to competition between phonon-mediated cou-

pling and Coulomb repulsion. After this point, we will refer to the theory as

Eliashberg theory in brief. As we will see, Migdal has provided the foundation

for the theory, in the form of Migdal’s theorem, but Eliashberg derived the

central Eliashberg equations of the theory. Eliashberg theory is a statistical

field theory, so we will use the concepts of field operators, propagators and

Feynman diagrams [11].

3.5.1 Nambu spinor formulation

The electron-phonon coupling Hamiltonian of Eq. 3.1 can be restated in terms

of the Nambu 2-component spinors, introduced in Chapter 1. The electronic

field operators in Nambu form read,

ψ̂k =

(
ĉk↑

ĉ†−k↓

)
; ψ̂†k =

(
ĉ†k↑ ĉ−k↓

)
, (3.21)
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while the phonon field operators, âqν and â†qν , remain unaltered, and their

combination can be written as ϕ̂qν =
(
âqν + â†−qν

)
. With this notation the

e-ph coupled Hamiltonian introduced in Eq. 3.1 becomes2

Ĥ =
∑
k

εkψ̂
†
kτ̂3ψ̂k +

∑
qν

~ωqν

(
â†qν âqν +

1

2

)
+
∑
kqν

gνk,k+qψ̂
†
k+qτ̂3ψ̂kϕ̂qν

+
1

2

∑
k1k2k3k4

〈k3k4|VC|k1k2〉
(
ψ̂†k3

τ̂3ψ̂k1

)(
ψ̂†k4

τ̂3ψ̂k2

)
,

(3.22)

where the extra last term describes the Coulomb interaction, VC being the

Coulomb potential. Translational invariance dictates that k1 +k2−k3−k4 =

nG, where n ∈ Z and G is a reciprocal lattice vector. We used here and

will use throughout this chapter the following Pauli matrices (including the

identity matrix), usually denoted τ̂i in Nambu space:

τ̂0 =

(
1 0

0 1

)
, τ̂1 =

(
0 1

1 0

)
, τ̂2 =

(
0 −i
i 0

)
, τ̂3 =

(
1 0

0 −1

)
. (3.23)

In the Nambu formalism the electron and phonon Green’s functions, in terms

of imaginary time τ , become respectively [191]

Ĝ(k, τ) = −〈T̂ {ψ̂k(τ)ψ̂†k(0)}〉 ,
Dν(q, τ) = −〈T̂ {ϕ̂qν(τ)ϕ̂†qν(0)}〉 ,

(3.24)

where the average is over the grand canonical ensemble, i.e.,

〈Q〉 = Z−1Tre−βĤQ , (3.25)

with Z = Tre−βĤ and β = T−1, and where T̂ is the time-ordering operator

[11]. The electron Green’s function is a 2×2 matrix here owing to the Nambu

formulation. The diagonal elements are the conventional Green’s functions,

while the off-diagonal elements describe the pairing. We will calculate it

explicitly in the following sections. Both Green’s functions can be expanded

2For notational simplicity within the Nambu formulation we omit electronic band indices
here. It is implied that there are different bands, so that the formalism derived here holds
entirely in the multiband case. The matrix elements gνk,k+q,ij therefore also simplify to
gνk,k+q.
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Figure 3.3: Feynman diagrams related to Migdal-Eliashberg theory.
(a) The self-energy of the electron under the influence of electron-
phonon interaction. The diagram on the left is a schematic represen-
tation of this system where the thick horizontal line is the interacting
electron propagator, the wavy line interacting phonon propagator and
Γ the vertex. On the right the Dyson series of this diagram is shown
with increasingly higher orders of phonon exchange. (b) First-order
vertex correction, which according to Migdal’s theorem is negligible in
most systems. (c) Fermi surface with second order phonon exchange
depicted in (a). (d) Fermi surface corresponding to the vertex cor-

rection depicted in (b). Adapted from Ref. 191.

into Fourier series,

Ĝ(k, τ) =
1

β

∞∑
n=−∞

e−iωnτ Ĝ(k, iωn) ,

Dν(q, τ) =
1

β

∞∑
n=−∞

e−iω̃nτDν(q, iω̃n) ,

(3.26)

where iωn = i(2n+1)π/β are the fermionic Matsubara frequencies and iω̃n =

i2nπ/β are the bosonic Matsubara frequencies, with integer n.

3.5.2 Migdal’s theorem

The starting point of Eliashberg theory is the Dyson summation of the

electron-phonon interaction, shown as a Feynman diagram in Fig. 3.3(a).

This also includes vertex corrections, like the one shown in Fig. 3.3(b). How-

ever, Migdal’s theorem states that the vertex correction is smaller than the
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leading terms in the Dyson summation by a factor ωph/EF
∼
√
me/M � 1,

where me and M are electronic and nuclear masses respectively [193]3.

An intuitive picture of Migdal’s theorem is provided in Figs. 3.3(c) and (d).

These depict scattering between electronic states, where the solid line in-

dicates the Fermi surface and the arrows indicate the scattering vectors

[191]. Fig. 3.3(c) corresponds to the second-order phonon exchange shown

in Fig. 3.3(a). The energy difference between two states, ε12 and ε23, are

small as all states, 1 to 3, are very near to the Fermi surface. These energy

differences appear in the denominator of the self-energy due to the vertex

correction, Σ̂Γ, so this contribution is important. This is why all orders are

included in the Dyson summation of the e-ph interaction. Fig. 3.3(d) depicts

the scattering of the Feynman diagram in Fig. 3.3(b). Here, ε14 is gener-

ally large, since state 4 does not lie near the Fermi level contrary to the

other states, leading to a very small contribution to Σ̂Γ. This corresponds to

Migdal’s theorem.

Migdal’s theorem does not necessarily hold in two cases, namely,

1. when either phonon has small |q|,

2. when the Fermi surface has a 1D topology.

We can see this visually. In the first case, let us say that |q23| ∼ 0, then the

parallelogram describing the scattering in Fig. 3.3(d) becomes elongated and

skinny, so that state 4 lies close to state 1. Thus, all energy differences are

small, and Σ̂Γ is large, so that Migdal’s theorem does not necessarily hold in

this case4. In the second case, the Fermi surface consists of parallel planes

kx = ±kF). When the parallelogram has two sides parallel with these planes,

states 2 and 3 will have the same kx, hence the same energy, and the same

for states 1 and 4. Clearly, Migdal’s theorem also does not hold in this case.

3A modern version of the proof can be found in Ref. 182, pp. 115-116
4Nevertheless, recently Eliashberg theory within the Migdal approximation has been

applied to superconductors with small-q phonons, such as MgB2, yielding results in qual-
itatively good agreement with the experiments [36, 38, 39]. Other cases exist where the
vertex corrections are small despite the small-q nature of the exchanged phonons [194].
This indicates that while the validity of Migdal’s theorem is not guaranteed in the small-q
case, the vertex corrections can still be negligible. This justifies our treatment of atomically
thin MgB2 within the Migdal approximation in Chapters 6 and 7.
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For 2D topologies, on the other hand, Migdal’s theorem holds entirely, which

is crucial for the study of atomically thin superconductors in this thesis.

In the case of multiband superconductors, with several different sheets at

the Fermi level, Migdal’s theorem also remains generally valid. Namely, the

chance that the four vertices of parallelograms such as in Fig. 3.3(d) are all

connected to points close to the Fermi level is not significantly higher than in

the single-band case. Accidentally, two phonon wave vectors can exist such

that point 4 lies near a second sheet (just like in the single-band case point

4 may accidentally lie near the sheet), but interband coupling according to

a rainbow diagram as in Fig. 3.3(a) will generally outweigh this scenario by

far, also in the multiband case.

So, owing to Migdal’s theorem the vertex Γ in Fig. 3.3(a) can be set to the bare

(non-interacting) vertex to a very good approximation, in other words, the

diagram in Fig. 3.3(b) is disregarded in the Dyson summation. The electronic

self-energy following from Fig. 3.3(a) within the Migdal approximation is

[191]

Σ̂(k, iωn) = −T
∑
qn′ν

τ̂3Ĝ(k + q, iωn′)τ̂3

[
|gν(q)|2Dν(q, iωn − iωn′)

+ VC(k,k + q)
]
, (3.27)

where Dν(q, iωn− iωn′) is the dressed (interacting) phonon Green’s function,

Dν(q, iωn − iωn′) =
2ωqν

(ωn − ωn′)2 + ω2
qν

. (3.28)

3.5.3 Eliashberg equations

As stated in the previous section, we can determine the interacting electron

Green’s function by means of the Dyson equation,

Ĝ−1(k, iωn) = Ĝ−1
0 (k, iωn)− Σ̂(k, iωn) , (3.29)

where Ĝ0(k, iωn) is the bare electron Green’s function,

Ĝ0(k, iωn) = [iωnτ̂0 − εkτ̂3]−1 . (3.30)
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Owing to Migdal’s theorem vertex contributions in the electronic self-energy

Σ̂ can be disregarded. In this we can use Eq. 3.27, which can be restated in

the general form,

Σ̂(k, iωn) = iωn [1− Z(k, iωn)] τ̂0 + χ(k, iωn)τ̂3 + φ(k, iωn)τ̂1 + φ̄(k, iωn)τ̂2 ,

(3.31)

where Z, χ, φ and φ̄ at this point are independent, arbitrary functions. By

combining Eqs. 3.29, 3.30 and 3.31 we obtain

Ĝ−1(k, iωn) = iωnZτ̂0 − (εk + χ) τ̂3 − φτ̂1 − φ̄τ̂2 , (3.32)

and inverting yields

Ĝ(k, iωn) =
1

detĜ−1

[
iωnZτ̂0 + (εk + χ) τ̂3 + φτ̂1 + φ̄τ̂2

]
=

1

detĜ−1

(
iωnZ + (εk + χ) φ− iφ̄

φ+ iφ̄ iωnZ − (εk + χ)

)
,

(3.33)

with detĜ−1 = (iωnZ)2 − (εk + χ)2 − φ2 − φ̄2. The poles of the Green’s

function matrix – which are the quasiparticle excitation energies – occur

when detĜ−1 = 0, yielding

Ek =
1

Z

√
(εk + χ)2 + φ2 + φ̄2 . (3.34)

By defining the gap function ∆(k, iωn) = (φ− iφ̄)/Z we obtain

Ek =

√
(εk + χ)2

Z2
+ |∆|2 . (3.35)

This corresponds to the Bogoliubov spectrum, introduced in Chapter 1, albeit

with extra contributions χ and Z. Naturally, the diagonal Green’s functions,

with φ = φ̄ = 0 corresponds to the normal state. We can also interpret χ and

Z from Eq. 3.35. The function χ shifts the electronic energies, while Z is a

renormalization function. More specifically, it introduces a renormalization

of the electron mass, hence the name mass renormalization function. It can

be understood intuitively as the phonons slowing the electron down. To a

first approximation, the Fermi velocity is renormalized by the average e-

ph coupling constant λ as v∗F = vF/(1 + λ) [182]. This can be described
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alternatively as an increase in the electron mass, m∗e = me(1 + λ).

In order to fully characterize the quasiparticle spectrum, a recipe to calculate

χ, ∆ and Z needs to be provided. We will proceed immediately to the central

result, the anisotropic Eliashberg equations [195, 196]5. Under ‘anisotropic’

we understand that the spatial dependence (in reciprocal space, k) of the

functions ∆ and Z is fully accounted for. This is crucial to study anisotropic,

multiband and multigap superconductors.

The resulting anisotropic Eliashberg equations are the following two coupled

equations:

Z(k, iωn) = 1 +
πT

ωn

∑
k′n′

δ(εk′)

NF
λ(kk′, iωn − iωn′)

× ωn′√
ω2
n′ + ∆2(k′, iωn′)

(3.36)

∆(k, iωn)Z(k, iωn) = πT
∑
k′n′

δ(εk′)

NF

[
λ(kk′, iωn − iωn′)−NFVC(k,k′)

]
× ∆(k′, iωn′)√

ω2
n′ + ∆2(k′, iωn′))

. (3.37)

Here, the anisotropic e-ph coupling is

λ(kk′, iωn − iωn′) =

∫ ∞
0

dω α2F (kk′, ω)
2ω

(ωn − ωn′)2 + ω2
, (3.38)

where we can clearly distinguish the phonon Green’s function (cf. Eq. 3.28),

and where α2F (kk′, ω) is the anisotropic Eliashberg function defined as

α2F (kk′, ω) = NF

∑
ν

|gνkk′ |2δ(ω − ωqν) , (3.39)

where q = k′−k and where gνkk′ and ωqν are the phonon branch-resolved e-ph

scattering matrix elements and phonon frequencies, respectively. This func-

tion can be viewed as the phonon DOS renormalized by the e-ph coupling.

Function χ has vanished from the Eliashberg equations within the approxi-

mation that the electronic DOS is constant in the vicinity of the Fermi level,

5The derivation of the Eliashberg equations is rather lengthy, therefore we do not show
it here. It can be found in Ref. 191, pp. 41-45.
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resulting to χ ≡ 0. In the more general case two extra equations for χ needs

to be taken into account [192].

The Eliashberg equations are to be solved self-consistently. Furthermore,

the solution yields ∆(k, iωn) and Z(k, iωn). Of course, we are interested in

the real-frequency dependence of these functions. To that end, an analytic

continuation needs to be carried out. We will briefly explain a practical

scheme to do so in Sec. 3.5.7.2.

In Chapter 5 we will present an extension of the anisotropic Eliashberg equa-

tions that includes the interaction with ferromagnetic spin fluctuations.

3.5.4 Coulomb repulsion

The Coulomb repulsion VC(k,k′) in Eq. 3.37 is hard to evaluate. In full, it

reads VC(k,k′) = 〈k′,−k′|W |k,−k〉, where W signifies the screened Coulomb

interaction. The e-ph interaction acts on a long, thus low-frequency time-

scale, ωph. This can be identified with the largest phonon frequency of the

system, ωph,max. On the other hand, the electron-electron interaction hap-

pens on a much larger energy scale, that of the Fermi energy, EF
6. It is

typically two orders of magnitude larger than ~ωph. Thus, VC(k,k′) cannot

be treated with the same Matsubara frequency cutoff as the e-ph interaction.

A solution was provided by Morel and Anderson [197]. First one performs a

double Fermi surface average of the Coulomb repulsion, µ = 〈〈VC(k,k′)〉k′F〉kF
,

defined as 〈. . .〉kF
= 1

NF

∑
k δ(εk) (. . .). To address the difference in the two

time scales µ is renormalized as

µ∗ =
µ

1 + µlog
(

EF
~ωph

) . (3.40)

This µ∗ is called the Morel-Anderson pseudopotential. Empirically, the val-

ues have been found to be rather uniform for different materials. For the

elemental metals the values are in the range 0.1− 0.13, where the lower val-

ues are usually found for simple metals and the higher values for transition

metals [182]. In more complex compound superconductors µ∗ is in the range

6Alternatively the electron plasma frequency is sometimes considered [182].
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0.1 − 0.25. It is common practice to fit it to the experimental critical tem-

perature. Fortunately, the superconducting gap spectrum does not change

qualitatively with an isotropic µ∗. From Eq. 3.37 we can see that an isotropic

repulsion term merely introduces a rigid decrease of the e-ph interaction, so

the distribution of the gap remains principally unaltered as µ∗ is varied.

3.5.5 Isotropic approximations

Often isotropic solutions to the Eliashberg equations are employed, that disre-

gard the dependence on k and k′ entirely. In this case the isotropic Eliashberg

function is obtained from

α2F (ω) = 〈〈α2F (k k′, ω)〉k′F〉kF
, (3.41)

with the double Fermi surface average defined in the previous section. From

Eq. 3.38 we see that the isotropic e-ph coupling function is the first inverse

moment of the isotropic Eliashberg function,

λ(ω) = 2

∫ ω

0
dω′ω′−1α2F (ω′) . (3.42)

The electron-phonon coupling constant is λtot = λ(ωmax), where ωmax is the

maximum phonon frequency.

As an isotropic solution to the Eliashberg equations, McMillan derived a

formula for Tc, valid up to λtot ∼ 1.5 [198]. This formula was later refined

by Allen and Dynes [199]. The McMillan-Allen-Dynes formula is

Tc =
~ωlog

1.2kB
exp

(
− 1.04(1 + λtot)

λtot − µ∗(1 + 0.62λtot)

)
, (3.43)

where

ωlog = exp

(
2

λtot

∫ ∞
0

dωω−1ln(ω)α2F (ω)

)
. (3.44)

In this thesis, we solve the fully anisotropic Eliashberg equations, however,

sometimes we make the comparison to isotropic approximations, to charac-

terize the importance of anisotropy.
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3.5.6 Quasiparticle DOS in the superconducting state.

The Eliashberg framework also provides a way to calculate the quasiparticle

DOS in the superconducting state, that can be probed by single-particle

tunneling measurements, such as scanning tunneling spectroscopy (STS). It

can be calculated as [39, 200]

NS(Ω) ∝
∑
k

A(k,Ω) ≈ NF

〈∫ ∞
−∞

dξAk(ξ,Ω)
〉
kF

, (3.45)

with the spectral function,

A(k,Ω) = − 1

π
Im
[
Ĝ(k,Ω)

]
11

, (3.46)

where
[
Ĝ(k,Ω)

]
11

is the (11) element of the interacting Green’s function ma-

trix obtained after analytic continuation of the Green’s function in Eq. 3.33.

3.5.7 Uppsala superconductivity code (UppSC)

The aim of this thesis is combining accurate ab initio input of the elec-

tronic structure, the phonons and the e-ph interaction with fully anisotropic

Eliashberg theory, to discover new properties of superconductors. The Up-

psala Superconductivity Code (UppSC) uses this ab initio input to solve

the anisotropic Eliashberg equations [39, 73, 148, 200–202]. Moreover, it is

compatible with ABINIT, which we used for the DFPT calculations in this

thesis. Here, we will discuss some practical considerations, needed to obtain

accurate solutions to the Eliashberg equations.

3.5.7.1 Interpolation of the electron-phonon coupling

As stated above, carrying out the perturbations to obtain the e-ph matrix

elements is a formidable task. The resulting amount of phonon wave vec-

tors is therefore limited. To achieve good accuracy the matrix elements

obtained from ABINIT are interpolated by the UppSC code used in this

thesis [39, 73, 148, 200–202]. The main difference between the UppSC code

and the Electron-Phonon Wannier (EPW) code distributed by the university
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Figure 3.4: The frequency dependence of the superconducting gap of
bulk MgB2 obtained from solving the anisotropic Eliashberg equations
for different points of the Fermi surface (T = 4.2 K) within the

UppSC code [39].

of Oxford is that the former does not employ maximally-localized Wannier

functions [38, 183].

3.5.7.2 Numerical treatment

In the UppSC code, the coupled equations 3.36–3.37, supplemented by the ab

initio electron and phonon band structure and the electron-phonon coupling,

are solved self-consistently in Matsubara space and the converged solutions

are analytically continued to real frequencies. The analytic continuation

is performed numerically by employing the high-accuracy Padé scheme [39,

203].

The Eliashberg equations need to be solved for a range of temperatures,

to investigate the temperature-evolution of the superconducting state. The

critical temperature, Tc, is obtained as the lowest T for which the solution

∆ = 0 is found. The superconducting gap can be expressed by means of the

gap edge, defined as Re(∆(k, ω)) = ω [39]. An example of the frequency-

dependence of the gap function of bulk MgB2 is shown in Fig. 3.4. Near zero

frequency (specifically where Re(∆(k, ω)) = ω) the superconducting gaps of

bulk MgB2 are retrieved. There is a clear split between the σ states with

∆(0) ∼ 7 meV and the π states with ∆(0) ∼ 3 meV, as discussed in Chapter

1.
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3.5.8 Density functional theory for superconductors (SCDFT)

A different approach to treating e-ph-based superconductivity from first prin-

ciples was elaborated by Gross and coworkers, and was named DFT for

superconductors (SCDFT) [76–78]. The starting point is an extension of

the Hohenberg-Kohn theorems underpinning DFT, to include three densi-

ties instead of one density. These are (i) the usual electronic density, n, (ii)

the nuclear density matrix, and (iii) the superconducting anomalous den-

sity χ(r, r′) = 〈ψ̂↑(r)ψ̂↓(r
′)〉. Just like in DFT, in SCDFT the interacting

system is mapped to effective Kohn-Sham equations, that take the form of

Bogoliubov-de Gennes equations. The main advantage of SCDFT is that the

e-ph interaction and the Coulomb repulsion are treated on the same footing,

which eliminates the need for an adjustable parameter µ∗ like in Eliash-

berg theory. However, recent advances in the development of the anisotropic

Eliashberg theory are also starting to enable ab initio calculations of the full

VC(k,k′) based on the random phase approximation [84].

3.5.9 Nuclear quantum effects and phonon anharmonicity

In some special cases two of the approximations made in this chapter may

not be justifiable. These approximations are the Born-Oppenheimer (BO)

– or adiabatic – approximation, i.e., that nuclei can be described classically

because they move on much longer time scales than electrons, and the har-

monic approximation (cf. Fig. 3.1). Both approximations are not generally

valid for the lightest nuclei, such as hydrogen (H) and deuterium (D). Based

on path-integral molecular dynamics it was shown that nuclear quantum ef-

fects beyond the BO approximation strongly affect the bond stability in liquid

H under high pressure [204]. Moreover, non-local electronic interactions such

as van der Waals interactions are also shown to be important in this system.

For H2S and D2S it was demonstrated that phonon anharmonicity leads to a

reduction of the e-ph coupling by 30% [205]. Finally, for H3S and D3S it was

equally shown that the stabilities of certain bonds are strongly influenced by

phonon anharmonicity, leading to a strong reduction of the critical pressure

for phase transitions [206].



Chapter 4

Anomalous multiband super-

conductivity in osmium diboride

A microscopic study of superconductivity in osmium diboride (OsB2)

is presented, with a discussion of the origin and characteristic length

scales of the superconducting state. From first-principles I show that

OsB2 is characterized by three different Fermi sheets, and prove

that this fermiology complies with recent quantum-oscillation exper-

iments. Using the found microscopic properties, and experimental

data from the literature, I employ Ginzburg-Landau relations to re-

veal that OsB2 is a distinctly type-I superconductor with very low

Ginzburg-Landau parameter κ – a rare property among compound

materials. I show that the found coherence length and penetra-

tion depth corroborate the measured thermodynamic critical field.

Moreover, the calculation of the superconducting gap structure us-

ing anisotropic Eliashberg theory and ab initio calculated electron-

phonon interaction as input reveals a single but anisotropic gap.

The calculated gap spectrum is shown to give an excellent account

for the unconventional behavior of the superfluid density of OsB2

measured in experiments as a function of temperature. This reveals

that gap anisotropy can explain such behavior, observed in several

compounds, which was previously attributed solely to a two-gap na-

ture of superconductivity.

117
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4.1 Introduction

The question of particular types of superconductivity emerged in the early

years of the Ginzburg-Landau (GL) theory [5, 8]. In type-I superconductors

under applied magnetic field, an interface between normal (N) and super-

conducting (S) domains is energetically costly, causing normal domains to

merge, whereas type-II superconductors minimize the normal domains to

single vortices (which repel and organize in an Abrikosov lattice [8]). Type-I

superconductivity mainly occurs in elemental metals (Pb, Sn, In, Al, etc.),

but is very rare in compounds. The fact that virtually all superconducting

compounds discovered since the early 1960s are type-II superconductors [9]

(with a few notable exceptions such as YbSb2, TaSi2, etc. [207, 208, and refer-

ences therein.]) reduced the interest in type-I superconductors, until modern

experimental and numerical techniques enabled more careful investigations of

their rich intermediate state due to demagnetization effects in applied mag-

netic field: topological hysteresis of tubular/laminar domains depending on

sample shape [209–211], the ‘suprafroth’ ground-state [212], mesoscopic ef-

fects [213, 214], intricate dynamics of normal domains under applied current

[215], etc. Moreover, a transitional regime between standard types I and II

exists, that has been noted in both experiment [216, 217] and microscopic the-

ory [218–220]. Its rich physics can become accessible by adding a controlled

rate of non-magnetic impurities in a type-I superconductor [217, 221].

One recently studied superconducting compound of which the length scales

remained elusive is osmium diboride (OsB2). Its rather low critical temper-

ature (2.1 K) and the recently measured magnetization and heat-capacity

of single-crystal samples [222] pointed at possible type-I superconducting be-

havior, but that was not corroborated by simplified estimates of the supercon-

ducting length scales and the Ginzburg-Landau parameter κ ∼ 1−3� 1/
√

2.

OsB2 displayed additional unconventional properties, notably the tempera-

ture dependence of the superfluid density that deviates from the Bardeen-

Cooper-Schrieffer (BCS) result. In order to explain this observation, a two-

gap model was proposed for superconductivity in OsB2 [222].

Here, an extensive theoretical study that clarifies all of the anomalous prop-

erties of OsB2 outlined above is presented. Based on a combination of first-

principles calculations and mean-field theory, I provide proof of deeply type-I
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behavior in OsB2. Detailed knowledge of microscopic parameters and super-

conducting length scales obtained in this study enabled us to perform a very

accurate analysis of the experimental data of Ref. 222, notably the critical

magnetic field, supporting this conclusion. Furthermore, I reveal, based on

Eliashberg calculations, that the superconducting gap spectrum of OsB2 is

anisotropic rather than multigap as previously proposed [222]. These revi-

sions of both the superconducting spectra and the length scales of OsB2,

starting from first principles, make an exemplary case for the interaction be-

tween experiment and theory in the description of superconductivity on the

nanoscale.

This chapter is organized as follows: first, the crystal structure and ground

state electronic structure of OsB2 are discussed in Secs. 4.2 and 4.3, fol-

lowed by a thorough comparison to available experimental data such as

Shubnikov-de Haas measurements in Sec. 4.4. I proceed by presenting the

phonon structure and the electron-phonon coupling in Sec. 4.5. In Sec. 4.6

the superconducting gap spectrum is discussed, where I show an excellent

comparison with superfluid density measurements. Finally, in Sec. 4.7 the

length scales of OsB2 are derived from the calculated microscopic properties

using Ginzburg-Landau relations, and the resulting interaction with applied

magnetic fields. Throughout, I make the comparison between the OsB2 and

MgB2, the archetypical two-gap superconductor, pointing out both similari-

ties and differences. Ultimately, Sec. 4.8 summarizes the findings.

4.2 Crystal structure

OsB2 adopts the orthorhombic space group Pmmn (No. 59) [223], depicted

in Fig. 4.1(a). One should note a very good agreement between calculated

and experimental [222] lattice parameters, displayed in Table 4.1, with rel-

ative deviations below 1%. Os occupies Wyckoff position 2a depending on

one internal parameter zOs and B Wyckoff position 4f depending on in-

ternal parameters xB and zB, giving a total of 6 atoms in the OsB2 unit

cell. The internal parameters compare equally well with experimental values

(added between parentheses): zOs = 0.155 (0.153), xB = 0.056 (0.049) and
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Mg

BB

Os

Figure 4.1: (a) The orthorhombic crystal structure of OsB2. (b)
The hexagonal crystal structure of MgB2. In both cases, the unit

cells are indicated by grey boxes.

zB = 0.638 (0.641). For comparison, we show in Fig. 4.1(b) the crystal struc-

ture of MgB2 (hexagonal space group P6/mmm), that is clearly layered in

consecutive planes of Mg and B, as opposed to the structure of OsB2.

4.3 Electronic properties

We start from a first-principles study of the electronic structure of OsB2

based on density functional theory (DFT), implemented in VASP [172, 176].

In this study – for which computational details can be found in Appendix

A – we take into account spin-orbit coupling, in view of the high atomic

number of Os. The band structure according to orbital character, shown

in Fig. 4.2(a), reveals predominant Os-d character of the bands crossing the

Fermi level (EF). A fraction of B-p states also contributes to the band we

denote M because of this mixed character. A total of three bands is present

at EF, so the resulting Fermi surface, depicted in Fig. 4.2(b), consists of

three sheets. First, there are two nested quasi-ellipsoidal sheets with pure

Os-d character, centered around X, the inner one denoted E1 and the outer

Parameter Calc. (Å) Exp. (Å) [222] relative dev. (%)

a 2.893 2.870 +0.8

b 4.098 4.079 +0.5

c 4.705 4.673 +0.7

Table 4.1: Lattice parameters of OsB2: a comparison between cal-
culations and experiment [222], including the relative deviation be-

tween them.
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Figure 4.2: (a) The calculated band structure of OsB2 around the
Fermi level EF. The color code denotes the character of the band (s,
p or d), while the line thickness denotes the band character varying
between pure Os (thickest) and pure B (thinnest). (b) The Fermi
surface, consisting of 3 sheets: two quasi-ellipsoidal sheets E1 (red)
and E2 (blue) and an anisotropic sheet M (green). Shubnikov-de
Haas orbits in applied magnetic fields H ‖ b and H ‖ c are also

indicated, b and c being the unit cell vectors.

one E2. The third sheet M, with central axis along direction Y-S, is more

anisotropic.
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4.4 Shubnikov-de Haas oscillations

4.4.1 Theory behind Shubnikov-de Haas oscillations

One of the most successful experimental techniques to probe Fermi surfaces

is the one of quantum oscillations, utilizing the Shubnikov-de Haas (SdH)

effect. In this effect, the conductivity of a metal shows oscillations with

frequencies proportional to the areas of extremal orbits of the Fermi surface,

A(EF), perpendicular to the applied magnetic field [10]:

F =
~

2πe
A(EF) , (4.1)

where F is expressed in units of Tesla. The amplitude of the SdH oscillations

depends on the cyclotron mass of the electrons, mc. To find mc we can start

from the definition of the cyclotron frequency, ωc (in SI units):

2π

ωc
=

~
eH

∮
dk

v⊥
, (4.2)

where H is the magnitude of the applied field and v⊥ is the velocity perpen-

dicular to the orbit. This cyclotron frequency is ωc = eH/mc, so mc of an

electron in a Fermi surface orbit is given by

mc =
~

2π

∮
dk

v⊥
. (4.3)

The perpendicular velocity can be expressed by

v⊥ =
1

~
dE

dk⊥
, (4.4)

where dk×dk⊥ = dA, i.e., an infinitesimal area in reciprocal space. Therefore,

the contour integral integrates to

mc =
~2

2π

∂A

∂E

∣∣∣∣
E=EF

. (4.5)



Chapter 4. Anomalous multiband superconductivity in
osmium diboride 123

Figure 4.3: A comparison between the calculated Shubnikov-de
Haas frequencies (in units of kilotesla – kT) and the experimental
values from Ref. 222. The resulting electron-phonon coupling values
λ are added in red. Slashes indicate that the experimental cyclotron

masses were not available.

Numerically, this derivative with respect to E can be approximated by the

central difference approximation,

∂A

∂E

∣∣∣∣
E=EF

≈ A(EF + ε)−A(EF − ε)
2ε

. (4.6)

In experimental measurements, where the electrons are ‘dressed’ with phonon

interactions, the cyclotron masses are enhanced to m∗c (analogously to the en-

hancement of the band mass, discussed in Sec. 3.5.3). Therefore, an estimate

of the e-ph coupling constant λ can be calculated from the mass enhancement

using

m∗c = (1 + λ)mc . (4.7)

This gives access to the e-ph coupling in different Fermi sheets, averaged over

specific orbits.

4.4.2 Shubnikov-de Haas oscillations in OsB2

The extremal orbits contributing to SdH oscillations in the case of OsB2 are

indicated in Fig. 4.2(b) for two different magnetic fields. From the Fermi
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surface I calculated the SdH frequencies f and the bare cyclotron masses mc

(i.e., without phonon dressing)1.

The agreement between theoretical and experimental SdH frequencies, dis-

played in Fig. 4.3, is excellent, validating the electronic structure of OsB2

presented in Figs. 4.2(a) and (b). The e-ph coupling λ in specific orbits, also

shown in Fig. 4.3, is obtained from the cyclotron mass renormalization.

This analysis reveals that the e-ph coupling in E1 and E2 is strongly anisotro-

pic. The coupling is strong in E1 in the orbit perpendicular to b, while it is

very small in E2. The orbits of E1 and E2 perpendicular to c show similar,

moderate e-ph coupling. Band M has no closed orbits perpendicular to b,

but the e-ph coupling in the other direction ranges from almost zero to quite

strong, depending on the orbit. The most important conclusion from this

analysis is that all bands contribute to the e-ph coupling. The question of

how the superconducting gap is distributed over the bands is treated in the

following sections.

Extension to iron selenide. Having established SdH oscillations as a

powerful tool to probe the Fermi surface of metals, I extended this study to

bulk iron selenide (FeSe). As explained in Sec. 1.1.4.3 of this thesis, FeSe is

an unconventional Fe-based superconductor akin to the pnictides. Therefore,

it is of great interest to gain more insight into its microscopic properties,

first and foremost the electronic behavior. Two independent experimental

SdH studies available in the literature give similar values [224, 225]. In a

comparison of these experimental SdH frequencies to values calculated from

the Fermi surface topology – analogously to what I did for OsB2 – a large

discrepancy is found. The predicted cross sectional areas are about 5 −
10 larger than the experimental values. Details of this study are given in

Appendix B, including figures showing the FeSe band structure and Fermi

surface. In this band structure, it becomes clear that the bands crossing

the Fermi level have dominant Fe-d character. Such d-bands are not always

well-described by DFT. There is growing evidence of strong correlations in

bulk FeSe [226, 227] leading to a renormalization of the electronic structure

1Here, I accounted for the fact that the applied field was not exactly parallel to unit
cell vector c in the corresponding experiment (noted in Ref. 222). I found that calculations
performed for field angle 23◦ with respect to c in the ac plane yield the best fit to the
experimental values.
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Figure 4.4: (a) and (b) The phonon band structure calculated us-
ing density-functional perturbation theory, for OsB2 and MgB2 re-
spectively. (c) and (d) Top panel: The phonon DOS of OsB2 and
MgB2 respectively, split into contributions of Os/Mg and B. Bottom
panel: The Eliashberg function α2F describing the energy-dependent
electron-phonon coupling, and the resulting isotropic electron-phonon

coupling constant λtot.

as shown here. This electronic structure could be treated by methods beyond

DFT, such as dynamical mean field theory (DMFT).

4.5 Phonons and electron-phonon interaction

In order to analyze the mechanism leading to superconductivity in OsB2, I

carried out a first-principles calculation of the e-ph interaction. To this end

we used Eliashberg theory combined with density functional perturbation

theory (DFPT), as implemented in ABINIT [175, 185, 188–190], and details

on which are specified in Appendix A. The phonon band structure, shown in

Fig. 4.4(a), is characterized by a distinct gap of ∼ 25 meV. The characteristic
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Debye temperature is obtained from the speed of sound vs in the material as

ΘD =
hvs

2kB

3

√
6

π
N(EF) , (4.8)

where N(EF) is the total density of states at the Fermi level. The effective

speed of sound is calculated as the following average of the values due to

the transversal and longitudinal acoustic modes, vt and vl (the slope of the

phonon dispersions near Γ) [228]:

vs =
3
√

3

(
2

v3
t

+
1

v3
l

)− 1
3

. (4.9)

This yields ΘD = 471 K, in good accordance with the experimental value of

539 K [222]. The origin of the gap in the phonon band structure becomes

clear in the phonon density of states (PHDOS) shown in Fig. 4.4(c). Owing

to the high mass of Os, its phonons are low-energy ones, in contrast with

B-related phonons extending up to energies of ∼ 100 meV. The Eliashberg

function and e-ph coupling shown in Fig. 4.4(c) indicate the dominance of Os-

related phonons in the coupling constant. Therefore, both the fermionic and

the phononic features of superconductivity in OsB2 are driven by Os. The

total isotropic coupling amounts to λtot = 0.52. Using the McMillan-Allen-

Dynes formula [199], the critical temperature Tc = 2.1 K is found (taking as

Coulomb pseudopotential µ∗ = 0.13).

A comparison of the e-ph interaction in OsB2 to the case of the well-known

two-gap superconductor MgB2 is instructive. As shown in Fig. 4.4(b), the

contributions of Mg and B to the phonon DOS are again quite distinguish-

able, due to the mass difference, similar to the case of OsB2. In the latter,

the Os modes are even lower in energy because of the high atomic number

of Os. From the Eliashberg function, shown in Fig. 4.4(d), coupling con-

stant λtot = 0.81 is obtained for MgB2, compared to λtot = 0.52 for OsB2.

This yields Tc = 24 K for MgB2, significantly higher than for OsB2. The

main contribution to this strong coupling in MgB2 is the pronounced peak in

the Eliashberg function around ∼ 75 meV, stemming from B-related phonon

modes, in contrast with the findings for OsB2. Tc = 24 K is still an underes-

timation of the experimental Tc = 39 K for bulk MgB2, due to the limitations

of the isotropic Eliashberg theory. In reality, the electron-phonon coupling in

bulk MgB2 is very anisotropic and this anisotropy has a pronounced effect on
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Tc [229]. This fact has been established by combined anisotropic Eliashberg

theory and DFT calculations that have been very successful in explaining

superconductivity in this material [36, 38, 39] and also made predictions for

further experiments [39].

The anisotropic electron-phonon coupling and the particular Fermi surface

of MgB2 result in two distinct superconducting gaps over different Fermi

surface sheets in this material. Therefore, it is possible to obtain an effective

isotropic two band model that captures the essential characteristics of two-

gap superconductivity in MgB2 [230]. In this case, the coupling is described

by a 2× 2 matrix of coupling constants. For MgB2, it has been measured to

be [74]

Λ =

(
0.84 0.19

0.19 0.39

)
, (4.10)

with the largest eigenvalue of this matrix playing the role of an effective

coupling constant in the multigap case [231]: λeff = 0.91. In this approach,

the multigap effect accounts for a higher Tc = 37 K (using µ∗ = 0.1). In the

next section I show that the application of a similar effective two-gap model to

OsB2 leads to incorrect conclusions about the nature of the superconducting

state of the material.

In MgB2, the dominant phonon mode in the e-ph coupling is the in-plane

hexagon deformation mode E2g of the B atoms [36]. In OsB2, on the other

hand, 80% of all e-ph coupling is contributed by Os-related modes. The

strongest coupling resides in the three optical modes of Os, with energy

values between 9 and 26 meV, cf. Fig. 4.4. Although spread over q-space2,

the coupling in these modes is strongest at q = (0, 0, 0) = Γ, thus promoting

intraband coupling. In its turn, it bears important consequences for the

superconducting gap spectrum, as will be shown in the next section. The

atomic displacements corresponding to the different optical modes of Os (with

mode numbers n = 4, 5, 6) at Γ are shown in Fig. 4.5. The displacements

are directed along the three crystal axes, along c, a and b for n = 4, 5, 6

respectively. The mode with the lowest energy (the softest mode), n = 4,

carries the strongest e-ph coupling λq=Γ,n=4 = 0.69, compared to λq=Γ,n=5 =

0.19 and λq=Γ,n=6 = 0.21 for the other two modes. The residual 20% of the

2For the choice of the q-point grid, see Appendix A.
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λq=Γ,n=4 = 0.69 λq=Γ,n=5 = 0.19

λq=Γ,n=6 = 0.21 λq=Γ,n=14 = 0.14

Figure 4.5: Atomic displacements of phonon modes that couple
strongly to electrons in OsB2. In each case λq,n is given. Modes
n = 4, 5, 6 are optical modes of Os, along the three crystal axes.
Mode n = 14, with displacements along axis b, is the optical B-mode
with strongest coupling to electrons. The inset shows the legend for

the atom types and the crystal axes.

total e-ph coupling is contributed by B-related optical modes. It is strongest

in mode n = 14, at Γ, and corresponds to a displacement of the B-atoms

along b, as shown in Fig. 4.5, and leads to the peak in α2F at 81 meV.

4.6 Anisotropic superconducting gap and anoma-

lous superfluid density

Starting from the electron-phonon interaction obtained in the previous sec-

tion, the superconducting gap spectrum was calculated using fully anisotropic

Eliashberg theory. Technical aspects of this calculation can be found in Ap-

pendix A. The resulting superconducting gap spectrum ∆(k) of OsB2, at an
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T=1 K

a
b

c

Figure 4.6: The superconducting gap spectrum of OsB2 on the
Fermi surface, calculated using fully anisotropic Eliashberg theory
at T = 1 K, using the electron-phonon coupling obtained from first-
principles as input. ρ(∆) is the distribution of the gap, thus showing

a single anisotropic gap.

intermediate temperature of T = 1 K, is displayed in Fig. 4.6. The distri-

bution ρ(∆) shows that the gap varies continuously over all Fermi sheets.

Therefore, OsB2 is identified as an anisotropic, due to the spread of the gap

spectrum, but single-gap superconductor. It is apparent that the gap spec-

trum is entirely symmetric within the bc-planes, but has a strong evolution

along the a-axis. A rather strong electron-electron interaction is found to be

at play between the condensed electrons, since an elevated Coulomb pseu-

dopotential, µ∗ = 0.215, is needed to obtain the correct Tc in the Eliashberg

calculations. As a result of this and the moderate electron-phonon coupling,

the gap values are on the low side, ranging between 0.15 and 0.37 meV at 1

K.
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Figure 4.7: (a) The two-gap γ fit of the superfluid density ρs from
Ref. 222 (normalized with the superfluid density at zero temperature
ρs,0), using the microscopic parameters calculated here from first-
principles. The matrix of coupling constants obtained from the fit is
shown as inset. (b) The gap profiles as a function of temperature, ob-
tained by solving the BCS gap equations for two coupled condensates.
Dashed line shows the weaker gap (∆2) in the absence of interband
coupling, with Tc2 = 1.35 K. (c) The superfluid density calculated
from anisotropic Eliashberg theory, both isotropic and along specific
directions. Component ρaaS matches the experimental data extremely

well.

This result of a single, anisotropic gap in OsB2 seems to contradict the find-

ings in Ref. 222 at first sight, where two-gap superconductivity in OsB2

was suggested based on a successful fit of the two-gap γ model [232]. In

Fig. 4.7 an updated version of this fit is shown, using the calculated density
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of states per band. The obtained coupling constant matrix, shown as inset in

Fig. 4.7(a), was subsequently used in the Bardeen-Cooper-Schrieffer (BCS)

gap equations to calculate the evolution of both gaps with temperature, dis-

played in Fig. 4.7(b). The obtained values of the gaps at zero temperature

are ∆1(0) = 0.36 meV and ∆2(0) = 0.24 meV.

It follows thus that a two-gap superconductivity model is sufficient to fit

the superfluid density measurements, but is it necessary? To answer this

question, the superfluid density was calculated within anisotropic Eliashberg

theory. The normalized superfluid density tensor is given by

ραβs (T )

ραβs (0)
= T

∑
n

〈
(∇αEk∇βEk)

∆2(k, iωn)

Z(k, iωn) [ω2
n + ∆2(k, iωn)]

3
2

〉
kF

, (4.11)

where ωn are the Matsubara frequencies, Ek signifies the normal-state elec-

tronic spectrum, Z(k, iωn) is the mass renormalization and 〈...〉kF
denotes

the Fermi surface average.

We plot the evolution of the different elements of the superfluid density tensor

as a function of temperature in Fig. 4.7(c). For OsB2, all off-diagonal terms

of the superfluid density tensor are zero. In the isotropic approximation,

∇αEk∇βEk (product of Fermi velocity components) is pulled out of the

Fermi surface average in Eq. 4.11. Within this approximation, the superfluid

density matches ρbbS = ρccS . Along the b and c directions, the superfluid

density is the same, due to the bc-symmetry of the superconducting gap

spectrum that we pointed out earlier. The superfluid density along the a

direction, however, is significantly different and matches the experimental

measurement extremely well.

Importantly, in the case of OsB2, the convex shape of ρaaS is not a result

of the multigap character [65], but follows naturally from the temperature

evolution of the anisotropic condensate. This comparison of Eliashberg the-

ory to the experiment provides a clear example of an anomalous superfluid

density of a single gap superconductor, and hence an important caveat for

future identifications of multigap superconductors.
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Figure 4.8: (a) The density of states per band of OsB2, where
the line colors indicate the bands according to Fig. 4.2(b), i.e., red
corresponds to E1, blue to E2 and green to M. (b) The Fermi velocity
field calculated from the DFT band structure projected onto the ac

plane.

4.7 Superconducting length scales and type-I be-

havior

To further understand the superconducting behavior of OsB2, particularly

under applied magnetic field, I calculate the characteristic length scales of

superconductivity, i.e., the coherence length at T = 0 [72]

ξ(0) =
~vF

4πTc

√
7ζ(3)

3
, (4.12)

and the London penetration depth at T = 0

λL(0) =

√
3c2

16πe2v2
FN(EF)

. (4.13)

The microscopic parameters coming into play here are the Fermi velocity, vF,

and the density of states, N(EF). The components of the Fermi velocity are

defined as

vF,i =
1

~
∂E

∂ki

∣∣∣∣
E=EF

, (4.14)
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Sheet NF vF,x vF,y vF,z vF

name (states/eV/f.u.) (105 m
s ) (105 m

s ) (105 m
s ) (105 m

s )

E1 0.086 4.31 2.63 3.80 6.32

E2 0.141 3.01 3.23 4.98 6.65

M 0.395 1.79 2.21 2.39 3.71

Table 4.2: Density of states at EF (states/eV/f.u., f.u. being the
formula unit OsB2), per band. The total DOS, 0.6209 states/eV/f.u.,
is in good agreement with the experimental value obtained from heat

capacity measurements (0.55 states/eV per formula unit) [222].

where in an orthorhombic structure such as OsB4 one can choose i to be

x, y, z, so the total Fermi velocity follows as

vF =

√∑
i

v2
F,i . (4.15)

The band-resolved density of states (DOS), Di(E), is obtained from the DFT-

calculated eigenvalues En,k using

Di(E) =
∑

k∈IBZ

wk δ(E − Eik) , (4.16)

where wk is the weight of the k-point in the irreducible Brillouin zone (IBZ).

To obtain a smooth DOS the Dirac delta function is to be replaced by its

Gaussian approximant (where we use σ = 0.05 eV):

Di(E) =
∑

k∈IBZ

wk√
πσ

exp

(
−(E − Eik)2

σ2

)
. (4.17)

The band-resolved DOS around EF is depicted in Fig. 4.8(a) and the Fermi

velocity field in Fig. 4.8(b). The values are also specified in Table 4.2. There

are significant differences between the quasi-ellipsoids and sheet M with re-

gard to the microscopic parameters. The former account for a density of

states of 0.23 states/eV per formula unit, whereas the latter occupies 0.39

states/eV per formula unit. On the other hand, the quasi-ellipsoidal sheets

are more highly curved than sheet M, with respective average Fermi velocities

of 6.5 · 105 m/s and 3.7 · 105 m/s.
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Figure 4.9: The thermodynamic critical magnetic field Hc calcu-
lated using the extended Ginzburg-Landau formalism [75], compared
to experimental data from Ref. 222. To further illustrate the strong
type-I character of OsB2 we include the calculated upper critical field

Hc2 to visualize that Hc2 � Hc.

Nevertheless, since a single condensate in OsB2 was found in the previous

section, I perform a weighted average over the whole Fermi surface within

mean-field theory. This leads to N(EF) = 0.62 states/eV per formula unit

and vF = 4.7 · 105 m/s. The resulting length scales are λL(0) = 27 nm and

ξ(0) = 229 nm. The GL parameter κ = λL/ξ = 0.12 is therefore far below κ =

1/
√

2, the value separating type-I from type-II superconductors [8], indicating

that OsB2 is deeply in the type-I regime. The small penetration depth and

large coherence length in OsB2 occur due to the large vF, comparable to the

high Fermi velocities in elemental metals, and due to the rather low Tc.

To further corroborate our findings, I will show the compliance of our conclu-

sions with the available experimental data. Specifically, we can look at the

experimental critical magnetic fields [222], to determine whether they corre-

spond to the thermodynamic critical field Hc or the upper critical field Hc2.

Experimentally, it is not trivial to distinguish between both critical fields,

since samples of a type-I superconductor can equally show an intermediate

state between the superconducting and normal states (where normal and su-

perconducting domains coexist) as a result of demagnetization, as discussed

in the Introduction. To calculate Hc, I use the expression from the recently

developed Extended Ginzburg-Landau (EGL) theory, stated in Sec. 1.2.1.2 of
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this thesis. EGL was demonstrated to be in very good accordance with BCS

results even quite far from Tc [71, 75]. The hereby obtained Hc of OsB2 is

presented in Fig. 4.9 – revealing a very good agreement with the experimental

values, in a broad temperature range. The non-linearity of Hc away from Tc is

captured by the EGL theory. As expected for a pure type-I superconductor,

the calculated upper critical field Hc2 = Φ0
4πξ2(0)

τ , where τ = 1− T
Tc

, is much

lower, since Hc2/Hc ∝ κ. The fact that EGL theory, in combination with

the calculated microscopic parameters, predicts Hc so well, yields another

proof of the type-I behavior of OsB2, be it indirect. For direct experimental

proof, imaging of the intermediate state of OsB2 can be performed, which

may show the large normal domains characteristic of type-I materials, but

may also reveal surprises related to the anisotropy of the gap spectrum.

Recently, the superconducting properties of RuB2, a compound isostructural

to OsB2 with a very similar Fermi surface, were studied experimentally in

applied magnetic field [233]. The GL parameter in this material was es-

timated to be below 1/
√

2, corroborating the type-I behavior expected for

RuB2, owing to the similarity to OsB2.

4.8 Conclusions

In summary, I presented solid and multiscale proofs for anisotropic type-

I superconductivity in OsB2, combining first-principles calculations, mean

field theory and recent experimental data. The Fermi surface of OsB2 con-

sists of two nested quasi-ellipsoidal Fermi sheets with Os-d character and a

third sheet with mixed band character. From a first-principles calculation

of the electron-phonon coupling, I found that OsB2 has very moderate cou-

pling amounting to the isotropic value λ = 0.52. The main contribution

to this value (80%) stems from the low-energy Os-related modes. This is

a very different situation from the coupling in MgB2, due to the entirely

different crystal structure of the two compounds, where a particular optical

vibration of B-atoms couples strongly with the electrons. From the electron-

phonon coupling the superconducting gap spectrum was calculated using

fully anisotropic Eliashberg theory. The result is a single, anisotropic gap

at odds with the available two-gap fit of the superfluid density in Ref. 222.

To settle this issue, the superfluid density was calculated within Eliashberg
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theory, taking into account the anisotropy in the Fermi surface. This calcu-

lation shows that the superfluid density along the shortest lattice axis (a in

Fig. 4.5) matches the experimental data with excellent accuracy. Thus, OsB2

provides an instructive example of an anomalous temperature dependence of

the superfluid density due to a single, anisotropic gap, that cannot be fitted

within the simplest BCS model.

The relatively high Fermi velocities in OsB2 combined with its rather low Tc

result in a very low Ginzburg-Landau parameter – setting OsB2 deeply in the

type-I superconducting regime. Moreover, I showed that this complies with

the available measurements of the critical magnetic field. The here revealed

characteristics of OsB2 provide a general recipe for other type-I supercon-

ducting compounds to be discovered, combining moderate electron-phonon

coupling (thus low Tc, and long coherence lengths), and a highly curved

Fermi surface (thus high Fermi velocities, diminishing κ with a squared de-

pendence). Such materials will in turn provide more direct access to the

scarcely studied regimes of superconductivity away from the standard type-

II, especially interesting in multigap superconductors and superconductors

with an anisotropic gap.
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Chapter 5

Coexisting lattice vibrations and

spin fluctuations, with application

to iron tetraboride

An advanced method to study spin fluctuations in superconductors

quantitatively, and entirely from first principles is presented. This

method can be generally applied to materials where electron-phonon

coupling and spin fluctuations coexist. I employ it here to examine

the recently synthesized superconductor iron tetraboride (FeB4) with

experimental Tc ∼ 2.4 K [H. Gou et al., Phys. Rev. Lett. 111,

157002 (2013)]. I prove that FeB4 is particularly prone to ferro-

magnetic spin fluctuations due to the presence of iron, resulting in

a large Stoner interaction strength, I = 1.5 eV, as calculated from

first principles. The other important factor is its Fermi surface that

consists of three separate sheets, among which two nested ellipsoids.

The resulting susceptibility has a ferromagnetic peak around q = 0,

from which the repulsive interaction between Cooper pair electrons

is calculated using the random phase approximation. Subsequently,

the electron-phonon interaction calculated from first principles is

combined with the spin fluctuation interaction in fully anisotropic

Eliashberg theory calculations. I show that the resulting supercon-

ducting gap spectrum is conventional, yet very strongly depleted due

137
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to coupling to the spin fluctuations. The critical temperature de-

creases from Tc = 41 K, if they are disregarded, to Tc = 1.7 K, in

good agreement with the experimental value.

5.1 Introduction

Spin fluctuations are magnetic excitations in materials without long-range

magnetic order. Ferromagnetic spin fluctuations (FSFs), or paramagnons,

specifically arise in materials which are close to ferromagnetic instabilities,

as described by Stoner theory [234]. In the case of spin singlet Cooper pair-

ing, the interaction between electrons mediated via FSFs is repulsive, and

therefore competing with Cooper pairing, in addition to the Coulomb in-

teraction between electrons [235]. On the other hand, the opposite is true

for spin triplet pairing, where paramagnons are considered as the primary

mediators [235], although not the only ones [236].

Competition between attractive electron-phonon interaction and the repul-

sive interaction mediated by FSFs forms a long standing problem that emerged

less than a decade after the theory of Bardeen-Cooper-Schrieffer (BCS) [237].

Among the earliest attempts for a quantitative analysis, Riblet introduced

the coupling to FSFs in the isotropic McMillan formula for the critical tem-

perature (Tc) [182, 238]. Similar attempts have also been made for anti-

ferromagnetic spin fluctuations [239]. Dolgov et al. subsequently derived

an improved McMillan formula for Tc [240]. The latter can be combined

with first-principles calculations as was done for, e.g., hole-doped CuBiSO,

where pairing to spin fluctuations was found to be very strong and able to

induce spin triplet superconductivity under certain doping conditions [241].

Another notable example where spin triplet superconductivity is rather well

established and where FSFs have been proposed to play a role is Sr2RuO4

(Tc = 1.5 K) [56], although the microscopic pairing mechanism is still not

completely understood (see Refs. 57 and 58 for reviews on this topic).

I revisit here the question of spin fluctuations, with a new and advanced

computational method. It consists of first calculating the microscopic pair-

ing mechanisms, i.e., electron-phonon coupling and coupling of electrons to
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FSFs. The electron-phonon interaction is calculated using density func-

tional perturbation theory (DFPT) [242], similar to what is done in, e.g.,

Refs. 39, 73, 200, 201. Spin fluctuations are treated by means of the ran-

dom phase approximation (RPA), afterwards building it into the anisotropic

Eliashberg equations. Specifically, the susceptibility is calculated from the

electronic band structure, and so is the interaction strength, in this case the

Stoner interaction strength. Subsequently, the multiband anisotropic Eliash-

berg equations are solved self-consistently using the full ab initio calculated

input [36, 38, 39, 73, 73, 200, 201].

Here, this technique is applied successfully to the recently discovered su-

perconductor iron tetraboride (FeB4). A famous example of first-principles

materials design, superconductivity in FeB4 was first predicted in silico by

Kolmogorov et al. in 2010 [243], after which the material was synthesized

and measured to be superconducting with Tc ∼ 2.4 K by Gou et al. in 2013

[244]. The crystal structure of FeB4 is orthorhombic – shown in Fig. 5.1

– and consists of FeB12 polyhedra stacked in columns along the a-direction

(where we defined a < b < c). A more detailed description of the crystal

structure is given in Sec. 5.3.1. This crystal structure, and in particular

the presence of the light element boron, gives FeB4 a very high mechanical

hardness [244–247].

The motivation to study FeB4 in more depth stems from several aspects.

First of all, its Tc was severely overestimated (by an order of magnitude) in

the theory of Ref. 243 with respect to the experimental value [244]. The pre-

diction was based on the isotropic McMillan-Allen-Dynes formula where only

electron-phonon interaction and usual Coulomb repulsion was taken into ac-

count. I recognized this as a smoking gun for unconventional interactions in

FeB4, which I will prove to be FSFs in this chapter. Secondly, superconduc-

tors containing Fe have attracted much interest recently, since the discovery

of superconductivity in the iron-oxypnictides (e.g., F-doped LaFeAsO [248]),

the iron-arsenides (e.g., Ba1−xKxFe2As2 [249], and LiFeAs [250]), and the

iron-chalcogenides (e.g., FeSe [251, 252]). In this respect, the analysis in this

chapter contributes to the understanding of the microscopic mechanisms at

work in the Fe-based superconductors. I must stress, however, that the prop-

erties of spin fluctuations in FeB4 are fundamentally different from those of

other Fe-based superconductors, e.g., the iron pnictides. F-doped LaFeAsO,
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for instance, shows a susceptibility peak at nonzero q =
(
π
a ,

π
a

)
, as discovered

by Mazin et al. [52], and thus a tendency for antiferromagnetic spin fluctu-

ations. As such, the study presented in this chapter establishes Fe-based

superconductors as a diverse family, in which various different types of spin

fluctuations occur. Thirdly, the multiband and multigap superconductivity

in borides such as MgB2 [28, 35–39, 200, 201], OsB2 [73, 222], and ZrB12

[253, 254] is known to be very rich, and consequently possible relations to

superconductivity in FeB4 are worthy of further exploration.

This chapter is organized as follows. First, in Sec. 5.2, I elaborate on the

methodology developed in this work, building FSFs calculated from first-

principles into the anisotropic Eliashberg equations. In Sec. 5.3.1 the crystal

structure of FeB4 is discussed, followed by the multiband electronic structure

of FeB4 in Sec. 5.3.2 (showing its Fermi surface, not available in the literature

to date) and the electron-phonon (e-ph) interaction in Sec. 5.3.3. I proceed

by discussing first-principles calculations of the FSFs and their coupling to

the electrons in FeB4 in Sec. 5.3.4. This is followed by a discussion of the

superconducting properties of FeB4, the gap spectrum and the very good

agreement between the theoretical and experimental Tc, in Sec. 5.3.5. Finally,

a summary is provided in Sec. 5.4.

5.2 Methodology

The idea is to build FSFs into the anisotropic Eliashberg equations within the

random phase approximation (RPA). The tendency for spin fluctuations is

mainly determined by the susceptibility, and in particular its behavior at the

Fermi level (EF). The bare (i.e., noninteracting) susceptibility at EF (known

as the Lindhard function), is given by the following function of momentum

(q) and Matsubara frequencies (ωn):

χ0 (q, iωn) =
∑
jj′

χ0
jj′ (q, iωn) =

∑
jj′

∑
k

nF (ξk,j)− nF

(
ξk+q,j′

)
ξk,j − ξk+q,j′ + iωn

δ (ξk,j) δ
(
ξk+q,j′

)
, (5.1)
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where nF (ξk,j) is the Fermi-Dirac distribution, ξk,j = Ek,j − EF is the elec-

tronic band structure relative to EF, and where we sum over the electronic

band indices j and j′. To arrive at this expression, the constant matrix ele-

ment approximation (CMEA) has been employed [255], as explained in Ap-

pendix C. The Dirac δ-functions are introduced in order to restrict the suscep-

tibilities to the Fermi surface contributions. For practical calculations in this

chapter δ (ξk,j) is evaluated numerically as δ (ξk,j) = 1√
πσ

exp

(
−
(
ξk,j
σ

)2
)

with broadening σ = 0.01 Ha.

In compounds with more than one atomic species one needs to take into ac-

count that not necessarily all the electronic states are involved in the FSFs.

This is only the case for the states belonging to the element(s) with a ferro-

magnetic tendency. To take the example of FeB4, as I will show in Sec. 5.3.4,

Fe lies at the origin of the fluctuations. This means that the susceptibility to

FSFs needs to be normalized with the ratio of Fe-electronic states (NFe) to the

total intraband susceptibility in the limit q → 0, ω → 0, i.e.,
∑

j χ
0
jj(0, 0).

I will denote this fraction as FFe = NFe/
∑

j χ
0
jj(0, 0). Thus, for the total

susceptibility the following RPA expression can be used,

χRPA (q, iωn) =
FFeχ

0 (q, iωn)

1− IFFeχ0 (q, iωn)
, (5.2)

where I is the ferromagnetic interaction strength. I will expand on how the

latter can be calculated from first-principles in Sec. 5.3.4. Then, based on

the RPA susceptibility, the coupling of electrons to FSFs can be calculated

as

λsf (q, iωn) =
3

2
NFeI

2χRPA (q, iωn) . (5.3)

Finally, we can include FSFs in the anisotropic Eliashberg equations [39, 73,

200, 201] within spin singlet pairing by means of two pairing kernels, one

expressing mass enhancement of the electrons (K+), the other expressing

the net coupling strength (K−). As the electron mass is enhanced by both

e-ph interaction, λep (q, iωn), and by FSFs, the kernel is given by

K+ (q, iωn) = λep (q, iωn) + λsf (q, iωn) . (5.4)
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On the other hand, the coupling strength in the spin singlet case is depleted,

as expressed by

K− (q, iωn) = λep (q, iωn)− λsf (q, iωn) . (5.5)

The momentum-dependent e-ph coupling, λep (q, iωn), can be calculated

within density functional perturbation theory (DFPT) [242].

As we saw in Chapter 3, for spin singlet superconductivity the coupled

anisotropic Eliashberg equations assume the generic form,

Z (k, iωn) = 1 +
πT

ωn

∑
n′

〈
K+(kk′, iωn, iωn′)

× ωn′√
ω2
n′ + ∆2 (k′, iωn′)

〉
k′F

(5.6)

∆ (k, iωn)Z (k, iωn) = πT
∑
n′

〈[
K−(kk′, iωn, iωn′)− µ∗(ωc)

]
× ∆ (k′, iωn′)√

ω2
n′ + ∆2 (k′, iωn′)

〉
k′F

, (5.7)

where
〈
. . .
〉
k′F

=
∑

k′F

δ(ξk′ )
NF

(. . .) denotes a Fermi surface average, ξk are the

electron energy dispersions relative to the Fermi level, NF is the density of

states at the Fermi level, T is temperature and ωn = πT (2n + 1) are the

fermionic Matsubara frequencies. The momentum and frequency dependent

functions Z (k, iωn) and ∆ (k, iωn) describe electron mass renormalization

and even-frequency spin singlet superconductivity, respectively, and µ∗(ωc)

is the Anderson-Morel Coulomb pseudopotential which comes with a cut-

off ωc, as explained in Sec. 3.5.4. The e-ph coupling is treated in the way

described in Chapters 3 and 4. Similar equations as for the e-ph coupling

apply for the electron-spin fluctuation coupling,

λsf(q, iωm) =
3NFe

2π

∫ ∞
0

dω I2χ′′(q, ω)
2ω

ω2
m + ω2

, (5.8)

where χ′′(q, ω) is the imaginary part of the RPA susceptibility and ωm =

ωn − ωn′ .
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To study spin-triplet pairing, one needs to adapt the Eliashberg kernels.

The mass enhancement remains unaffected (K+ = λep + λsf), while, on the

other hand, FSFs become attractive in the spin triplet channel. Moreover,

only longitudinal spin fluctuations contribute to spin triplet pairing [235]

(hence a factor 1/3), so that the coupling kernel in the spin triplet channel

(substituting K− in Eq. 5.7) amounts to

Kt(kk′, iωn, iωn′) = λep(kk′, iωn, iωn′) +
1

3
λsf(kk′, iωn, iωn′) . (5.9)

It is worth noting that even in the presence of spin-orbit coupling, inversion

and time-reversal symmetries and the combination thereof, still guarantee

Kramers degeneracy throughout the whole Brillouin zone, so that one can

work in a pseudospin space where labelling the superconducting state as

singlet or triplet is possible. Moreover, due to spatial inversion symmetry,

singlet and triplet superconducting components cannot mix, so that we can

look for different solutions (singlet or triplet) of the Eliashberg equations

separately.

5.3 Application to FeB4

Here, the approach described in Sec. 5.2 is applied to FeB4, in order to

demonstrate that quantitative results can be obtained.

5.3.1 Crystal structure

The FeB4 crystal structure is depicted in Fig. 5.1. Its oP10 phase (where

o stands for othorhombic, P for primitive and 10 for the number of atoms

in the unit cell) consists of the primitive orthorhombic space group Pnnm

(No. 58). As can be found in the supplementary information of Ref. 244,

Fe occupies Wyckoff position 2a, i.e., (0, 0, 0) and
(

1
2 ,

1
2 ,

1
2

)
, and B Wyckoff

position 4g, i.e., (±x,±y, 0) and
(
±x+ 1

2 ,∓y + 1
2 ,

1
2

)
, where x and y are

internal parameters.

The results of our calculations are listed in Table 5.1, and compared to the

experimental values. It is observed that the deviations from the experimental
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Figure 5.1: Crystal structure of FeB4.

values are all well below 1%. This very good agreement on the structural level

propagates a high level of accuracy to all further calculations, of the electronic

structure, phonons, spin fluctuations, and ultimately of the superconducting

properties.

5.3.2 Electronic structure

This investigation starts from the electronic structure of FeB4, near EF, cal-

culated using density functional theory (DFT) as implemented in ABINIT

[175]. More detailed information on the first-principles calculations is given in

Appendix A. The band structure of FeB4 around EF is shown in Fig. 5.2(a).

Three bands are observed to cross EF, as indicated with three different col-

ors (red, blue and green). The corresponding Fermi surface is displayed in

Fig. 5.2(b), where the same colors are used. Around point R, the center of the

Experimental Calculated

a = 2.999 Å 3.023 Å (+ 0.8%)

a = 4.579 Å 4.552 Å (-0.6%)

b = 5.298 Å 5.309 Å (+0.2%)

x = 0.249 0.247 (-0.8%)

y = 0.312 0.312 (+0.0%)

Table 5.1: Comparison between experimental [244] (from room-
temperature, single-crystal x-ray diffraction) and calculated struc-
tural parameters of FeB4, obtained using the PBE exchange-
correlation functional. The relative deviations of the calculated pa-
rameters from the experimental ones are added between parentheses.
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Figure 5.2: The electronic structure of FeB4, calculated using DFT.
(a) The band structure around the Fermi level (EF), where three
bands are seen to cross EF. (b) The calculated Fermi surface of
FeB4, where the colors correspond to those of (a). It consists of two
nested ellipsoids around high-symmetry point R (blue and green), as
well as a third, anisotropic sheet (red). (c) and (d) The two nested

ellipsoids pictured individually in frontal view.

cell, there are two nested ellipsoidal sheets (blue and green), while the third

sheet (red) is more anisotropic. In Figs. 5.2(c) and (d) the nested ellipsoids

are depicted individually, so that also the inner ellipsoid (green) becomes

visible. The ellipsoids touch along all principal directions in the BZ (S-R,

T-R and U-R). Due to their nesting, ξk,j − ξk+q,j′ ∼ 0 in the denominator

of Eq. 5.1, which contributes to the peak around Γ in the susceptibility, and

thus to the enhancement of FSFs.
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Figure 5.3: Phonons and electron-phonon coupling, calculated
within DFPT. (a) The phonon dispersion, extending as high as ∼ 115
meV. (b) The phonon density of states (PHDOS), including the con-
tributions of Fe (purple) and B (green). (c) The isotropic Eliashberg
function, obtained as α2F (ω) = 〈〈α2F (k k′, ω)〉k′F〉kF

(i.e., the dou-
ble Fermi surface average of the full Eliashberg function), and the

corresponding total e-ph coupling.

5.3.3 Electron-phonon interaction

Subsequently, I calculated the phonon dispersion and the e-ph coupling in

FeB4 using DFPT. The phonon dispersion is shown in Fig. 5.3(a). The high-

est phonon frequencies reach almost 120 meV, a considerably high value, due

to the very light B atoms. This maximum frequency is even higher for FeB4

than for other borides such as MgB2 [200, 201] and OsB2 [73]. It corroborates

its extreme hardness, also mentioned in the introduction. Moreover, the dif-

ference in mass between Fe and B explains why their respective vibrational

modes are well separated, as shown in the phonon density of states (PHDOS)

in Fig. 5.3(b). In Fig. 5.3(c), the isotropic Eliashberg function is displayed,

obtained from the full Eliashberg function as the double Fermi surface aver-

age α2F (ω) = 〈〈α2F (k k′, ω)〉k′F〉kF
, and the resulting isotropic e-ph coupling

λ(ω) = 2
∫ ω

0 dω′ω′−1α2F (ω′). The contributions of the two atomic species to
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Figure 5.4: (a) The bare susceptibility of FeB4, χ0 (q, ω), for qx = 0
and ω = 0 (static), calculated from the band structure at T = 1.5 K.
It shows a strong peak around the Γ point, corresponding to FSFs.
(b) The nesting function of FeB4 on a path along the first Brillouin

zone.

the e-ph coupling are comparable, in contrast to, e.g., MgB2 (where B domi-

nates) [36, 200, 201] and OsB2 (where Os dominates) [73]. The e-ph coupling

amounts in total to a very high value, λ = 1.131, much too high to corrob-

orate the experimental Tc ∼ 2.4 K. This is the motivation for the following

section, where we address FSFs in FeB4.

5.3.4 Ferromagnetic spin fluctuations and their coupling to

electrons

5.3.4.1 Susceptibility

In this section I demonstrate the occurrence of FSFs in FeB4 from first prin-

ciples, and calculate their coupling to the electronic states. First, the bare

susceptibility of FeB4 at EF was calculated, from the band structure shown in

Fig. 5.2, using Eq. 5.1. The result is shown in Fig. 5.4 (a), in the static limit,

and for qx = 0. The peak in χ0 around Γ indicates FSFs. It can be traced

back to small-q intraband transitions, as well as to interband contributions

of the nested ellipsoidal Fermi sheets, as discussed in the previous section.

1It was found that a high degree of interpolation of the ab initio electron-phonon cou-
pling was necessary to obtain a well-converged result. With a lesser degree of interpolation
isotropic e-ph coupling values similar to those of Ref. 243 are obtained, but with sufficient
interpolation the e-ph coupling increases to λep = 1.13.
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To investigate further the influence of nesting, I also calculated the nesting

function,

Fnest =
∑
kij

δ (Ek,i − EF) δ (Ek,i − Ek+q,j) , (5.10)

where i and j are band indices. This function peaks at |q| if the conditions

described by the δ-functions are fulfilled by many q’s, called nesting vec-

tors. This happens in case of parallel Fermi sheets, hence the term nesting.

The nesting function corresponds to limω→0{χ′′0(q, ω)/ω}, where χ′′0 is the

imaginary part of the bare susceptibility, as proven in Appendix C. Thus, the

peak of Fnest around Γ corroborates the peak in the susceptibility originating

from band nesting.

For small, though nonzero q, there are strong interband contributions to the

peak, which ultimately vanish for q → 0. The value of χ0(0, 0) therefore

reduces in principle to the electronic DOS at EF. The numerical evaluation

of Eq. 5.1 depends, however, also on the broadening factor σ. A significant

broadening of σ = 0.01 Ha was needed for a well-converged susceptibility. As

such, χ0(0, 0) is artificially enhanced beyond the DOS at EF [N(EF) = 0.70

states/(eV spin)]. The definition of FFe in Sec. 5.2, entering in Eq. 5.2,

nevertheless ensures that this enhancement cancels out completely in the

RPA susceptibility.

5.3.4.2 Stoner interaction strength

The susceptibility peaking at Γ is a necessary condition for FSFs, but is not

sufficient for a significant effect of these FSFs on superconductivity. The

important other factor is the interaction strength, which is given by the

Stoner parameter in the ferromagnetic case. I obtained the Stoner parameter

by introducing nonzero magnetization into the material within a fixed spin

moment (FSM) calculation, resulting in an energy shift between majority

and minority spin states. The results of this calculation are depicted in

Fig. 5.5(a), where the electronic density of states (DOS) in different states of

magnetization is shown. In the case where m = 0 (m being the magnetization

per Fe atom) the contributions of different atomic states are also depicted.

This DOS corresponds to the electronic structure shown in Fig. 5.2. The

states at and near EF are dominated by Fe-d and B-p character. NFe(EF) =



Chapter 5. Coexisting lattice vibrations and spin fluctuations, with
application to iron tetraboride 149

Figure 5.5: (a) The electronic density of states (DOS) per for-
mula unit (f.u.) of FeB4 for different levels of magnetization of
the Fe atoms: the paramagnetic case with m = 0 (top panel),
m = 0.13 µB/Fe-atom (middle panel), and m = 0.24 µB/Fe-atom
(lower panel), where in the latter two cases an energy shift between
spin-up and spin-down states is apparent. In the top panel, the con-
tributions of Fe-d, B-s and B-p states are also shown. (b) The corre-
sponding energy shift, which obeys ∆E = Im/µB for small m (dashed
line), from which the Stoner parameter is obtained. For FeB4, the

result is I = 1.54 eV.

0.29 states/(eV spin) was obtained, compared to the total N(EF) = 0.70

states/(eV spin). For nonzero m, the energy shift between spin-up and spin-

down bands can be clearly observed, and can be seen to increase with m in

Fig. 5.5(a).

Extracting the shifts near EF from Fig. 5.5(a), for different values of m, I ob-

tained Fig. 5.5(b). Within Stoner theory, this shift due to the magnetization

obeys the linear relation ∆E = Im/µB. For low values of m, the linear rela-

tion is indeed obeyed, as shown in Fig. 5.5(b), whereby a fit yields I = 1.54

eV. For higher values of m, the increase in ∆E weakens, as expected. Since

we obtain that NFe(EF)I = 0.45 < 1 (the Stoner criterion), FeB4 indeed

does not have a ferromagnetic ground state. On the other hand, the Stoner

parameter is certainly high enough to induce considerable FSFs.

It is interesting to note the importance of restricting the interaction strength

to the Fe states, mentioned already in Sec. 5.2. If the total DOS were
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used instead, FeB4 would come out as marginally ferromagnetic according

to N(EF)I = 1.08 > 1. This may be related to the tendency of DFT in

local spin density approximation (LSDA) or generalized gradient approxima-

tion (GGA) to overestimate static magnetism [241]. However, I found the

magnetic moments to be completely localized on the Fe atoms, in the FSM

calculations. This provides me with the physical rationale for limiting the

Stoner-type interaction to Fe states only. Thus, by avoiding to treat I as a

free parameter – as in, e.g., Ref. 241 – I have remained close to a fully ab

initio approach.

5.3.4.3 Coupling of electrons to ferromagnetic spin fluctuations

The interaction strength plays a crucial role in the coupling of FSFs to elec-

trons, according to Eqs. 5.2 and 5.3. Here, λsf (kF, ω) is evaluated for FeB4

using these equations, where the dependence on kF is obtained by convo-

lution with the Fermi surface. The result in the static limit, ω → 0, in

particular λsf in the Γ-Y-T-Z plane (kx = 0), is shown in Fig. 5.6(a). It is

observed that there is strong coupling to FSFs in the direction Γ-Y, since in

this direction small q’s connect parts of the anisotropic Fermi sheet (red),

evident from Fig. 5.2(b). In the other directions λsf drops significantly. In

Fig. 5.6(b) I show λsf in the X-S-R-U plane (kx = π
a ), that cuts through

the center of the nested ellipsoidal Fermi sheets. Here, the coupling λsf

shows a broad peak around R, due to nesting of these sheets with small q.

It diminishes accordingly in all other directions. The total static coupling

of FSFs to electrons, calculated as the Fermi surface average, amounts to

λsf = 〈λsf (kF, ω = 0)〉kF
= 0.55.

5.3.5 Superconducting properties

Having established the e-ph coupling and the coupling of electrons to FSFs

in Secs. 5.3.3 and 5.3.4.3, we can now study the competition between these

interactions in relation to superconductivity. To this end, the anisotropic

Eliashberg equations are solved including both the e-ph coupling and the

coupling to FSFs in the interaction kernel of the spin singlet channel. Here,

the full momentum and frequency dependence of the coupling are retained.
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Figure 5.6: The coupling between electrons and FSFs in FeB4,
λsf (kF, ωn), in the static limit (ω = 0), calculated using Eq. 5.3, and
convoluted with the Fermi surface to obtain the dependence on kF.
(a) The coupling for kx = 0, (b) The coupling for kx = π

a . The
average over the whole Fermi surface is λsf = 〈λsf (kF, ω = 0)〉kF

=
0.55.

More information on how the anisotropic Eliashberg equations are solved

numerically is provided in Appendix A.

We started by solving the anisotropic Eliashberg equations, taking into ac-

count just the e-ph coupling, not yet the interaction with FSFs. The resulting

superconducting gap spectrum ∆(kF, T ) at low temperature (T = 0.5 K) is

shown on the Fermi surface in Fig. 5.7(a). The gap spectrum consists of a sin-

gle, anisotropic gap with large values for ∆, ranging from 5 to 8 meV (again

at T = 0.5 K). The corresponding critical temperature obtained from solving

the anisotropic Eliashberg equations for a range of temperatures is Tc = 41 K

(using the standard value for the Coulomb pseudopotential, µ∗ = 0.1). This

value exceeds the experimental value (Tc ∼ 2.4 K) by more than an order of

magnitude.

When including the effect of FSFs, this changes drastically. In this case, the

superconducting gap spectrum at low temperature (T = 0.5 K) is shown in

Fig. 5.7(b). ∆(kF, T ) presents again a single, anisotropic gap, but now in the

range ∆(kF, T ) ∼ 0.1− 0.3 meV. With such anisotropic, single-gap, FeB4 is

more similar to OsB2 (an orthorhombic material, like FeB4, also with three

bands at EF, cf. Chapter 4) [73] than to MgB2 (a layered hexagonal material,

cf. Chapters 6 and 7), which is a well-established two-gap boride supercon-

ductor [28, 36–39]. As the superconducting gap depletes rather uniformly
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Figure 5.7: The superconducting gap spectrum, ∆(kF, T ), of FeB4

on the Fermi surface at T = 0.5 K, calculated using anisotropic
Eliashberg theory with ab initio input (and using µ∗ = 0.1). (a) Gap
spectrum obtained when only e-ph coupling is taken into account. (b)
Gap spectrum obtained when both e-ph coupling and interaction with
FSFs are taken into account. ρ(∆) represents the distribution of the
gap, showing a single, yet anisotropic gap in both cases. However,
the superconducting gap is strongly depleted from the range 5−8 meV

to the range 0.1− 0.3 meV, under the influence of the FSFs.

under the influence of FSFs, as seen in Fig. 5.7, we can conclude that the

effect of FSFs is fairly isotropic in FeB4.

Subsequently, we again solved the anisotropic Eliashberg equations for a

range of different temperatures, now taking into account both the e-ph cou-

pling and coupling to FSFs (using µ∗ = 0.1 for the Coulomb pseudopoten-

tial). The resulting gap spectrum as a function of temperature is displayed

in Fig. 5.8. The critical temperature obtained here is Tc = 1.65 K, in very

good agreement with the experimental value Tc ∼ 2.4 K2. FeB4 is thus a

superconductor with very strong e-ph coupling, that in itself would lead to

Tc = 41 K, which is however depleted to Tc ∼ 2 K due to FSFs. The very

good agreement with the experimental value demonstrates that FSFs can be

2In Ref. 244, in Fig. 2 specifically, critical temperatures are obtained for FeB4 with two
different B isotopes. For 10B, Tc ∼ 2.7 K is obtained, while for 11B, Tc ∼ 2.4 K. In my
calculations a weighted average of these isotopes was used (mass of 10.81 atomic units),
based on the natural occurrences of these isotopes. The resulting mass is closest to that
of the heavier isotope, therefore our result can be compared to the experimental value
Tc ∼ 2.4 K.
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Figure 5.8: The superconducting gap distribution as a function of
temperature, calculated using anisotropic Eliashberg theory with ab
initio input, including FSFs. The critical temperature can be seen to
be Tc = 1.65 K. The red line represents the average value of the gap

weighted with the distribution.

included in the anisotropic Eliashberg equations, to obtain a quantitatively

accurate superconducting gap spectrum. To the best of my knowledge, the

analysis provided here is the first to report on this.

In addition, the tendency for spin triplet pairing in FeB4 due to FSFs was

investigated. Solving the anisotropic Eliashberg equations with the ker-

nels outlined in Sec. 5.2, we did not obtain a gap function with symmetry

∆ (kF) → −∆ (−kF), i.e., with an odd (ungerade) momentum dependence.

Therefore, within the theoretical framework established here we can exclude

the possibility of spin triplet pairing in FeB4.

5.4 Conclusions

In summary, I have presented an advanced approach to treat both lattice

vibrations and ferromagnetic spin fluctuations in superconductors, entirely

from first principles. Specifically, I extended the framework where the ab

initio calculated electron-phonon coupling (λep) is used to solve to anisotropic
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Eliashberg equations for the gap spectrum (which has been done for materials

like MgB2 [36, 38, 39, 200, 201] and OsB2 [73]). The first step is to calculate

the bare susceptibility of the material from the electronic structure (in this

work also calculated from first principles), specifically that near the Fermi

level [cf. Eq. 5.1]. The next step is calculating the interaction strength of the

ferromagnetic spin fluctuations. This can be achieved by means of the energy

shift between minority and majority bands in the competing, ferromagnetic

phase, which obeys ∆E = Im/µB, where the Stoner parameter I yields the

interaction strength. Then, the RPA susceptibility can be calculated, yielding

directly the coupling of ferromagnetic spin fluctuations with electrons λsf

[using Eqs. 5.2 and 5.3]. For the spin singlet superconducting channel, the

resulting total coupling is λep − λsf , while for the spin triplet channel it

amounts to λep + λsf
3 [256].

I have applied this new approach to the recently discovered Fe-based su-

perconductor iron tetraboride (FeB4) [244], to resolve the large discrepancy

between the predicted [243] and measured [244] critical temperature, and to

learn more about its superconducting gap structure. I showed first that the

Fermi surface has contributions from three different bands, resulting in two

nested ellipsoids and an anisotropic sheet. This nesting at small q is the main

contribution to the peak in the calculated susceptibility of FeB4, for small

wavevectors, corresponding to ferromagnetic spin fluctuations. The Stoner

parameter in FeB4 is considerably high (∼ 1.5 eV) – though not high enough

for a ferromagnetic ground state. Accordingly, a strong coupling of the spin

fluctuations to the electronic states was found, in particular to the nested

ellipsoids, with an average of 〈λsf〉kF
= 0.55 over the Fermi surface. This

mediates a repulsive interaction between the electrons that is in direct com-

petition with the strong, attractive interaction mediated by phonons (with

Fermi surface average λep = 1.13). By solving the anisotropic Eliashberg

equations, it was revealed that the spin fluctuations are able to reduce the

critical temperature from a very high Tc = 41 K to Tc = 1.7 K, in very good

agreement with the experimental value (Tc = 2.4 K [244]). In spite of this

drastic effect on Tc, I found that the distribution of the gap spectrum on the

Fermi surface, namely a single anisotropic gap (similar to, e.g., OsB2 [73]),

is largely unaltered.

The excellent agreement between the results obtained with this new method
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and the corresponding experiment demonstrates the potential of an ab ini-

tio approach to anisotropic Eliashberg theory in describing interactions that

coexist and compete with the electron-phonon interaction. Although ferro-

magnetic spin fluctuations showed a primarily detrimental effect on supercon-

ductivity in FeB4, I expect that the approach will lead to the detection and

quantification of spin fluctuations in other materials with coexisting conven-

tional and unconventional pairing mechanisms, resulting in nontrivial con-

tributions to the superconducting gap spectrum and to the superconducting

properties in general.
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Chapter 6

Multigap superconductivity in the

atomically thin limit: magnesium

diboride

Two-dimensional materials are known to harbor properties very dif-

ferent from those of their bulk counterparts. Recent years have seen

the rise of atomically-thin superconductors, with a caveat that su-

perconductivity is strongly depleted unless enhanced by specific sub-

strates, intercalants or adatoms. Surprisingly, the role in supercon-

ductivity of electronic states originating from simple free surfaces

of two-dimensional materials has remained elusive to date. Start-

ing from first principles, I show the formation and evolution of su-

perconducting gaps in MgB2 at its ultrathin limit. Atomically thin

MgB2 is distinctly different from bulk MgB2 in that surface states

become comparable in electronic density to the bulk-like σ and π

bands. Combining the ab initio electron-phonon coupling with the

anisotropic Eliashberg equations, I show that monolayer MgB2 de-

velops three distinct superconducting gaps, on completely separate

parts of the Fermi surface due to the emergent surface contribution.

These gaps hybridize nontrivially with every extra monolayer added

to the film, owing to the opening of additional coupling channels.

Furthermore, I reveal that the three-gap superconductivity in mono-

layer MgB2 is robust over the entire temperature range that stretches

157
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up to a considerably high critical temperature of 20 K. Subsequently,

an experimental validation by means of angle-resolved photoemission

spectroscopy (ARPES) of the predicted emerging surface state and

the resulting superconducting gap is provided in this chapter. These

findings establish free surfaces as an unavoidable ingredient in un-

derstanding and further tailoring of superconductivity in atomically

thin materials.

6.1 Introduction

As explained in Sec. 1.2.1, competition and coupling between the multiple

condensates in a multigap superconductor can lead to rich new physics [64].

In that sense, one expects superconductors with three or more gaps to be

far more exciting than the two-gap ones, due to additional competing effects

and possible quantum frustration between the condensates [95]. However, a

major roadblock is the lack of distinctly multi-gap (beyond two-gap) super-

conductors. In recent years two such materials were proposed theoretically

by Gross and coworkers, using density functional theory for superconductors

[83]. One is molecular hydrogen, which under very high pressure develops

three superconducting gaps on different Fermi sheets [42]. However, due to

anisotropy two of the gaps strongly overlap. The other material is CaBeSi, a

MgB2-like compound in which splitting of the π-bands was predicted to give

rise to three-gap superconductivity [79], but with impractically low Tc
∼= 0.4

K.

Here, we follow a different route, namely that of atomically-thin instead of

bulk superconductors. Recently, owing to immense experimental progress

[100, 101], superconductivity was realized down to monolayer thickness in

several materials, as discussed in Sec. 1.2.2. It is well known that quan-

tum confinement in the vertical direction generally separates subbands in

ultrathin films, innating multiband and thereby potentially multigap super-

conductivity [129]. We note here an additional, natural connection between

two-dimensional and multigap superconductors, much less explored to date:

surface states can equally host new superconducting gaps without equivalent

in the bulk material.
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Hints of additional superconducting gaps opening in 2D materials have been

suggested in recent works, for materials such as two-dimensional Ga and

FeSe [257]. They are deduced from fitting of the measured temperature

dependence of, e.g., the London penetration depth, which unfortunately does

not provide much insight into the origin of the proposed additional gaps.

The fitting technique is moreover not fully waterproof, as the measurements

can equally result from just anisotropy of the superconducting gap, and no

additional gap opening, as shown in Chapter 4.

A particularly interesting candidate to examine the effect of thinning on

superconductivity is hexagonal magnesium diboride (MgB2), owing to its

conveniently layered, graphene-related structure as well as to its high critical

temperature of 39 K in bulk form. MgB2 consists of alternating Mg- and B-

planes, with stronger in-plane (σ) than out-of-plane (π) electronic bonds. As

such, its anisotropic layered crystal structure gives rise to innate multigap su-

perconductivity, while also enabling growing the material at atomic thickness,

layer by layer. In bulk MgB2, superconductivity is fully governed by B-atoms

[36, 231, 258, 259], since both the σ and π gaps originate from electrons in B-

planes that couple to lattice vibrations of the B-atoms. In the thinnest limit,

however, the relative importance of the free Mg surface increases, which may

influence the role Mg plays in the superconducting properties1. It is therefore

of particular interest to understand how superconductivity would change in

the thinnest limit.

Using a combination of first-principles calculations and anisotropic Eliash-

berg theory, we reveal the major influence of an emerging surface state on

superconductivity in ultrathin MgB2. This contribution hybridizes with those

of the σ and π bands in a highly nontrivial manner, changing the multigap

physics with every additional monolayer. This finally leads to pure three-

gap superconductivity in one-monolayer MgB2, retained up to a high critical

temperature of 20 K. This is to date the highest Tc among monolayer super-

conductors without coupling to a substrate.

1This goes beyond a previous study of few-monolayer MgB2, based on the tight-binding
formalism, in which surface states (electronic as well as vibrational) were completely omit-
ted [260].
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1 ML 2 ML

top view

Figure 6.1: Crystal structure of one-monolayer (1 ML) and two-
monolayer (2 ML) MgB2, both depicted under an angle as well as
in side view. On the right a top view of MgB2 is given, showing the
honeycomb structure of the boron atoms. The lattice vectors a, b

and c are also shown in this case.

Finally, in collaboration with several experimental groups, 1− 8 monolayers

(MLs) of MgB2 were realized using molecular beam epitaxy, and using in-

situ room- and low-temperature angle-resolved photoemission spectroscopy

(ARPES) the theoretical predictions for the surface state were validated

(where I performed the theoretical interpretation of the results). By com-

paring the ab initio anisotropic Eliashberg theory results and the measured

superconducting gap for six MLs MgB2, we can fully assess the surprisingly

distinct and influential contribution of the surface states to the supercon-

ducting gap spectrum and tunneling properties of few-layer MgB2.

6.2 Crystal structure

Bulk MgB2 consists of hexagonal Mg layers intercalated with B layers in

a honeycomb lattice. It thus adopts the hexagonal space group P6/mmm

(No. 191) [223]. Mg occupies Wyckoff position 1a, i.e., (0, 0, 0), while B

occupies Wyckoff position 2d, i.e.,
(

1
3 ,

2
3 ,

1
2

)
and

(
2
3 ,

1
3 ,

1
2

)
.

Albeit not being the thermodynamic ground state, MgB2 with this structure

thinned down to the atomic limit has been predicted to be mechanically stable

and to be realizable owing to kinetic barriers [261]. Magnesium is crucial in
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forming ultrathin MgB2, and in its absence a monolayer of boron organizes

in a more intricate way, known as borophene [262]. As such, few-monolayer

MgB2 has already been synthesized experimentally, on a Mg substrate [263].

Here, we first consider freestanding MgB2 films, but in Sec. 6.5 we investigate

the influence of attaching the film onto a Mg substrate.

One monolayer (1-ML) of MgB2 consists of one magnesium and one boron

layer, the latter in a honeycomb lattice, and thus structurally similar to doped

graphene. Magnesium is positioned above the center of the boron honeycomb

tiles, and thus forms an hexagonal close packed (hcp) structure. The in-plane

lattice vectors of the hexagonal lattice of MgB2, shown as a and b in Fig. 6.1,

thus have an angle of 120◦ between them. The in-plane lattice vectors are

thus given by

a =
a

2
x̂−
√

3a

2
ŷ , b =

a

2
x̂+

√
3a

2
ŷ , (6.1)

where a is the in-plane lattice parameter and x̂ and ŷ are the Cartesian

unit vectors. Atomic-scale structures of one-monolayer and two-monolayer

(or bilayer) MgB2 are depicted in Fig. 6.1. Here, the space group is P6mm

(No. 183), where Mg still occupies Wyckoff position 1a, while B now occupies

position 2b, i.e.,
(

1
3 ,

2
3 , z
)

and
(

2
3 ,

1
3 , z
)
, where z is the distance from the

Mg plane. These Wyckoff positions correspond to the two sublattices of

the honeycomb structure (usually called A and B). The DFT calculations

yielded for ML MgB2 that the equilibrium values are a = 3.04 Å as the

lattice parameter and z = 1.65 Å as as the distance between the B and Mg

planes.

I modeled these structures using DFT (using ABINIT [175], details given in

Appendix A) by constructing slabs, where a sufficient amount of vacuum is

implemented by means of an elongated lattice vector perpendicular to the

2D crystal plane. No tendency to break the in-plane lattice symmetry (no

buckling, etc.) was found.
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Figure 6.2: Electronic properties of 1-monolayer MgB2. (a) The
band structure obtained from DFT, where the three different states
near the Fermi level (σ, π and S) are indicated. (b) Wave functions
of the states at the Fermi level. σ1 and σ2 indicate the wave functions
of respectively the inner and outer σ band (the inner band cuts EF

closer to Γ). For σ1, σ2, and π the real part of the wave function is
shown (obtained along Γ-K), the color change between blue and green
indicating a change of sign. For S the norm of the wave function is
shown (obtained along Γ-M), giving a better representation because
there is a large imbalance between the magnitudes of the real and

imaginary parts.

6.3 Properties of the monolayer

6.3.1 Electronic structure

The electronic structure lies at the base of the superconducting properties. I

performed DFT calculations (again in ABINIT) to characterize the electronic

properties of 1-ML MgB2. The result is shown in Fig. 6.2(a). Three distinctly

different types of bands are seen to cross EF, namely σ, π and S. These are

the σ bands – two of them (around Γ), the π band (around K), and the surface

band S. The character of these bands can be studied from the corresponding
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wave functions, shown in Fig. 6.2(b). The σ wave functions originate from

σ bonds between the boron atoms. These are made up of px and py orbitals

(mutually hybridized to accommodate the hexagonal structure), that overlap

with their axes aligned along the interatomic axis. The fact that there are

two σ bands originates from the two boron atoms in the unit cells (occupying

different sublattice sites). The π wave function, on the other hand, stems

from π bonds between the boron pz orbitals, with their axes perpendicular

to the interatomic axis. The overlap thus creates a nodal plane with zero

electronic density, in this case the boron plane.

So far, the σ and π bands are essentially the same as in bulk MgB2. However,

the surface band, S, is a distinct feature of two-dimensional forms of MgB2,

and is thus not present in the bulk. As can be deduced from its wave func-

tion shown in Fig. 6.2(b) it originates directly from the Mg atoms that face

vacuum, in other words the free Mg surface. As such, it possesses predom-

inant Mg-p character, as opposed to the B-p character of the other bands.

It can be observed in Fig. 6.2(b) to contain a fraction of B-pz character in

addition. So, there is increased hybridization between B and Mg state in the

atomically thin limit. The S state is very delocalized, thus, archetypically

metallic-like. The corresponding Fermi surface is depicted in Fig. 6.5(a) –

the colors corresponding to the superconducting gap, we will get back to that

in the next sections.

6.3.2 Electron-phonon interaction

To find out if 1-ML MgB2 can develop superconductivity I calculated the

electron-phonon (e-ph) coupling from first principles, employing density func-

tional perturbation theory (DFPT), introduced in Chapter 3. The resulting

phonon band structure, phonon DOS and Eliashberg function are shown in

Fig. 6.3. The flexural ZA mode (cf. Sec. 3.2.1) displays the expected quadratic

dispersion prominently. As in bulk, discussed in Sec. 4.5, the phonon ener-

gies reach quite high values of almost 100 meV. As for the phonon density

of states (DOS), Mg-related modes are still at lower energies than B-related

modes, due to their mass difference. However, there is more hybridization

for energies 30 − 50 meV, due to increased interaction between the layers,

manifesting also in the hybridization of the electronic states discussed above.
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Figure 6.3: The phonon dispersion, phonon density of states
(DOS) and the isotropic Eliashberg function of 1-ML MgB2, cal-
culated using DFPT. The isotropic Eliasberg function is defined as
α2F (ω) = 〈〈α2F (k k′, ω)〉k′F〉kF

(i.e., the double Fermi surface av-
erage). The resulting isotropic electron-phonon coupling, λ, is also

shown.

The isotropic Eliashberg function, α2F , of 1-ML MgB2 shows similarities

with that of bulk MgB2, discussed in Sec. 4.5. The strongest peak in α2F

occurs slightly below 80 meV in the monolayer and around 75 meV in the

bulk. This mode is an optical B-mode, specifically the doubly degenerate

E2g mode2. The eigendisplacements are along the armchair direction of the

honeycomb lattice, as depicted in Fig. 6.4, in the LO case. In this mode, B

atoms of the two sublattices move out-of-phase (as required for an optical

mode), so that the honeycomb tiles are deformed. The TO mode is also part

of the doubly degenerate E2g. In this case the phonons move similarly, yet

along the zigzag direction. The TO and LO modes by symmetry host the

same electron-phonon coupling, so that the total coupling is double.

The main difference between bulk and monolayer MgB2 is that in the latter

the E2g is narrower and more sharply peaked. Therefore, it contributes less

to the total e-ph coupling in the monolayer compared with the bulk. As a

2The E2g mode is generally present in honeycomb lattices, and thus also in graphene,
as we saw in Sec. 3.2.1.
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Figure 6.4: The E2g phonon mode of the B atoms giving the dom-
inant contribution to the electron-phonon coupling in 1-ML MgB2.

result, the total e-ph coupling is mildly depleted in the monolayer (λ = 0.68)

compared with the bulk (λ = 0.81). In Chapter 7 I will offer several pathways

to increase the e-ph coupling in monolayer MgB2.

6.3.3 Superconducting properties

With the ab initio e-ph coupling as input, the anisotropic Eliashberg equa-

tions were subsequently solved self-consistently (more details are provided in

Appendix A). The Coulomb repulsion is described by µ∗ = 0.13, yielding cor-

rect Tc for bulk MgB2. This value is also in line with previously established

values [36, 264]. The Coulomb pseudopotential is not expected to change

drastically in the 2D limit, owing to the layered structure of MgB2. Namely,

superconductivity of the dominant σ-bands is quasi-two-dimensional even in

bulk MgB2, so the same is expected for the screening.

In Fig. 6.5(a) the resulting superconducting gap spectrum on the Fermi sur-

face, ∆(kF, T ), at T = 1 K, is shown as well as the distribution of the gap,

ρ(∆). This result shows that 1-ML MgB2 is a distinctly three-gap super-

conductor, with separate gaps opening on the σ, π and S bands. The gap

amplitudes are about half of those of bulk MgB2, with Fermi surface aver-

ages at zero temperature of 〈∆σ(0)〉 = 3.3 meV, 〈∆S(0)〉 = 2.7 meV and

〈∆π(0)〉 = 1.4 meV. The critical temperature of Tc = 20 K, compared to the

bulk Tc
∼= 39 K [28, 36–39], follows the same trend.
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Figure 6.5: The superconducting spectrum of 1-ML MgB2, calcu-
lated by anisotropic Eliashberg theory with ab initio input. (a) The
distribution of the three superconducting gaps ∆(kF, T ) on the Fermi
surface: π, S (for surface) and σ, at T = 1 K. (b) The density of
states in the superconducting state at T = 1 K, showing three dis-
tinct peaks corresponding to the three gaps. (c) The evolution of
the gap spectrum with temperature, including the gap averages. The

calculation shows that 1-ML MgB2 has Tc
∼= 20 K.

One should note that the McMillan-Allen-Dynes formula using the isotropic

e-ph coupling, λ = 0.68, produces merely Tc = 11 K, which is a severe un-

derestimation compared with the proper value Tc = 20 K. This demonstrates

the importance of multiband effects in MgB2, which makes that isotropic

approximations do not suffice at all.

To corroborate further the predicted three-gap superconductivity in 1-ML

MgB2, we calculated the density of states (DOS) in the superconducting state

NS, using the Eliashberg expression given in Sec. 3.5.6. The result displayed
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in Fig. 6.5(b) shows that NS for 1-ML MgB2 consists of three distinct and

narrow peaks, corresponding to the three superconducting gaps. On the other

hand, in bulk MgB2 the DOS in the superconducting state consists of only two

peaks, corresponding to the σ and π gaps (as shown both in theory [39] and

in scanning-tunneling spectroscopy experiments [27, 28, 62, 265]). As such,

the tunneling properties undergo equally radical changes going from bulk to

ML MgB2. Since NS determines the superconducting tunneling properties,

the predicted three-gap superconductivity in ML MgB2 can be verified with

low-temperature scanning tunneling spectroscopy [28].

Last but not least, I want to note that three-gap superconductivity in 1-ML

MgB2 is very robust with temperature. Fig. 6.5(c) displays the calculated

temperature evolution of the superconducting gap spectrum, proving that

the three superconducting gaps are well separated up to 18 K, very close to

Tc = 20 K.

6.4 Evolution with added monolayers

6.4.1 Evolution of the superconducting gap spectrum

To provide a deeper understanding of the origin of three-gap superconduc-

tivity in 1-ML MgB2, we will study what changes when adding monolayers

to the system, by considering in particular 2-ML and 4-ML thick MgB2. The

superconducting gap spectra, again obtained using anisotropic Eliashberg

theory, are displayed in Fig. 6.6(a) and (b). One observes in Fig. 6.6(a) that

a hexagonal band lying between the S band and the σ bands develops an

additional gap in 2-ML MgB2. This band is a split-off band of the σ-bands

(with B-p character), indicated with S’ as it originates from a surface state

of the free B surface. The superconducting gap opening on band S’ is weakly

linked to the gaps opening on the π and S bands, but (barely) separate from

the gap on the σ bands, making 2-ML MgB2 an anisotropic two-gap (nearly

single-gap) superconductor. In 4-ML MgB2 we see a higher degree of hy-

bridization between the π, S and S’ condensates, forming an anisotropic gap

clearly separated from the σ gap.
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Figure 6.6: (a) and (b) The distribution of the superconducting gap
spectrum on the Fermi surface of 2-ML and 4-ML MgB2, respectively
calculated from anisotropic Eliashberg theory with ab initio input.
Both are anisotropic two-gap superconductors, with surface conden-
sates S and S’ hybridized with the π condensate. (c) The density
of states in the superconducting state for 2 and 4 MLs, calculated at
T = 1 K, showing the overall two gap-nature as well as the anisotropy
of the gap spectrum. The critical temperatures found for 2 and 4 MLs

MgB2 are 23 K and 27 K respectively.

In Fig. 6.6(c) the corresponding quasiparticle DOS in the superconducting

state is shown. For 2-ML MgB2, NS clearly reflects the anisotropy of the gap

spectrum, while for 4-ML MgB2 NS consists of two broader peaks, resulting

from the strong hybridization between the condensates. The critical temper-

atures we obtained from the solution of the anisotropic Eliashberg equations

are larger than that of 1-ML MgB2, namely 23 K and 27 K for 2-ML and



Chapter 6. Multigap superconductivity in the atomically thin limit:
magnesium diboride 169

Figure 6.7: The overall e-ph coupling λ(q) =
∑

ν λν(q) (i.e.,
summed over all phonon nodes) as a function of phonon wave vectors

q for (a) 1-ML, (b) 2-ML and (c) 4-ML MgB2.

4-ML MgB2 respectively (still well below the bulk value of 39 K3).

The transition from three-gap superconductivity in ML MgB2 to anisotropic

two-gap superconductivity and 2-ML and 4-ML MgB2 can be explained by

means of the e-ph coupling field shown in Fig. 6.7. In all cases, the e-ph cou-

pling peaks for phonon wave vectors q ' 0 (i.e., Γ), which promotes intraband

coupling, giving rise to separate condensates on different sheets. However,

in Fig. 6.7 one observes also a clear evolution towards stronger coupling at

non-zero wave vectors going from a ML to thicker structures. These emerging

coupling channels enable scattering between different sheets, notably between

the close-lying S, S’ and π bands. This leads to the hybridization between

the corresponding condensates shown in Fig. 6.6.

These results show thus a drastic change from the distinctly three-gap su-

perconductivity in single ML MgB2 to very anisotropic two-gap supercon-

ductivity by addition of even a single monolayer. Bearing in mind that the

superconducting gap opening on the surface band in very thick MgB2 films

3We note here that this result is different from that obtained in Ref. 266 for 2-ML MgB2,
where Tc was found to exceed the bulk value. The difference can be traced back to the
unreasonably low Coulomb pseudopotential used in this work, to compensate the lack of
multi-band effects in their isotropic Eliashberg approach.
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Figure 6.8: Prototype nano-engineered superconducting junction of
1-ML and 2-ML MgB2.

was found experimentally to be nearly degenerate with the gap on the σ band

[68], further rich behavior of the gap spectrum is to be expected as the MgB2

film is made progressively thicker beyond 4 MLs. Besides accompanying fun-

damental physics, this strong variation of the gap structure with the number

of MLs opens perspectives for nano-engineered superconducting junctions us-

ing one single material with spatially varied thickness on the atomic scale.

Such local control of thickness is readily available for, e.g., Pb films [100, 101].

In Fig. 6.8 I show such prototype junction of 1-ML and 2-ML MgB2, along

with their superconducting gap spectra.

6.4.2 Evolution of the superconducting length scales

To characterize further the evolution of the condensates with the number

of layers of the films, I calculated the nominal characteristic length scales

of superconductivity using Ginzburg-Landau (GL) relations. The coherence

length at temperature zero is given by

ξi(0) =
~vF,i

4πTc

√
7ζ(3)

3
, (6.2)

and the London penetration depth by

λL,i(0) =

√
3c2

16πe2v2
F,iNi(EF)

, (6.3)

where the index i runs over the different band condensates, and vF,i and

Ni(EF) are the Fermi velocity and density of states at the Fermi level [72].

Here, vF,i is restricted to the in-plane values, hence we are describing only
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(a) (b)

(c)

Figure 6.9: The evolution of the superconducting length scales with
added monolayers. (a) The London penetration depths (λL). (b)
The coherence lengths (ξ). (c) The Ginzburg-Landau parameters (κ).

The lines serve as a guide for the eye.

the effect of in-plane supercurrents shielding out-of-plane applied magnetic

fields, and the in-plane component of ξi only.

The GL parameter κi = λL,i/ξi indicates whether the band condensate dis-

plays type-I (κi < 1/
√

2) or type-II (κi > 1/
√

2) behavior under applied

magnetic field, as we saw in Chapters 1 and 4. In bulk MgB2, a disparity

between the length scales of the σ and π condensates was found experimen-

tally (the former having a much larger GL κ than the latter), proposed to

give rise to unusual vortex matter [89].

The results for 1− 6 MLs are displayed in Fig. 6.9. The length scales change

quite strongly with each added ML. In a single ML, the coherence lengths

are generally larger than their bulk counterparts. The coherence lengths

decrease strongly upon addition of a second ML, because of lower Fermi

velocities, especially of the π condensate4.

4The length scales in the 2D case do not exactly converge to the bulk values. The
reason is that the perpendicular direction is omitted so that some features of the bulk
Fermi surface are not recovered even for a quite large number of layers.
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Thus, the length scales of atomically thin MgB2, and the associated behavior

in applied magnetic field, are intrinsically different from their bulk counter-

parts. Moreover, by layer addition the length scales can be adapted, from

large coherence lengths in the single ML limit (and associated low κ’s lying

around the critical value κc = 1/
√

2) to smaller coherence lengths (whereby

κ > κc, i.e., type-II behavior).

6.5 Influence of a magnesium substrate

6.5.1 Structural properties

It is interesting to consider what the influence would be if the atomically

thin MgB2 is deposited on a magnesium substrate, which is readily done

experimentally [263], and will be the approach in the experiments described

in Sec. 6.6. The substrate we will consider is specifically hexagonal Mg(0001),

terminated by a hcp Mg plane.

The crystal structure of one ML of MgB2 on a Mg-substrate is depicted in

Fig. 6.10(a). The calculated in-plane lattice parameter of the Mg substrate

is slightly larger than that of a freestanding ML of MgB2 (3.16 Å compared

with 3.09 Å5), resulting in an advantageous, small lattice mismatch (below

3%) in case the ML is grown on this substrate. The calculated interlayer

distance evolves from 3.34 Å for one ML to 3.49 Å for eight MLs, steadily

converging towards the bulk value 3.52 Å. Few-layer MgB2 on a substrate

can adopt two different forms, namely with B or Mg termination.

To find out which termination is energetically favored, I calculated the heat

of formation of both possible structures. The heat of formation per atom,

Hf (MgxBy), of the binary structures with stoichiometry MgxBy, including

the Mg substrate, is calculated as

Hf (MgxBy) =
1

x+ y

[
Etot (MgxBy)− x

Etot (elem. Mg2)

2

−yEtot (elem. B12)

12

]
.

(6.4)

5These values have been obtained using VASP. As mentioned above, the value of the
in-plane lattice parameter in ABINIT is 3.04 Å for freestanding ML MgB2.
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(a) (b)free surface

Figure 6.10: (a) Atomistic picture of a single Mg-terminated
monolayer MgB2 on a Mg(0001) substrate. The inset shows the crys-
tal axes and the atomic species. (b) The Fermi surface of ML MgB2

with and without substrate, depicted in the first hexagonal Brillouin
zone (solid black line).

Here, the total energies are calculated using DFT. The total energy of ele-

mental metallic Mg2 was calculated in its hexagonal form (identical to the

substrate), while for B12 the trigonal α-phase was selected. The results are

listed in Table 6.1. Mg terminated structures consistently have a lower heat

of formation compared with B-terminated structures for more than one ML,

the difference being in the order of a few tens of meV per atom. For one

ML, the difference in heat of formation of both terminations is small. There-

fore we find that Mg-termination is preferred in few-layer MgB2. Thus, the

surface band, S, can be expected to play a crucial role in the electronic and

superconducting properties of this structure.

Number of MLs B-terminated Mg-terminated Difference

1 0.1211 0.1260 -0.0049

2 0.0761 -0.0114 0.0875

4 0.0030 -0.0542 0.0572

6 -0.0354 -0.0781 0.0427

8 -0.0593 -0.0935 0.0342

Table 6.1: Heat of formation Hf , in units of eV/atom, as a func-
tion of the number of MLs for B- and Mg-termination, as well as
the difference in heat of formation between B- and Mg-termination.
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s

p

d

Figure 6.11: Calculated band structure of two MgB2 monolayers on
the Mg substrate, where colors denote the band character (s, p, d),
as shown in the inset, and line thickness denotes the atomic species

it originates from (thin for B and thick for Mg).

6.5.2 Electronic properties

In Fig. 6.10 the Fermi surface of ML MgB2 with and without Mg(0001)

substrate (calculated using DFT) is displayed. The σ band is thus eliminated

as part of the Fermi surface of one ML of MgB2 on the Mg-substrate, as seen

in Fig. 6.10(b). Band S, on the other hand, remains present as a very robust

feature of ultrathin MgB2 films.

In MgB2, the Mg atoms donate electrons to the B planes, hence, the inter-

layer bond has an ionic character (this makes that MgB2 cannot be exfoliated

easily). For a better understanding of the origin of this large difference be-

tween freestanding and epitaxial films I carried out a Bader charge analysis.

I found that in bulk MgB2 Mg-atoms donate approximately 0.8 electrons per

B atom. In a freestanding ML, Mg donates 0.7 electrons to each B-atom,

hence the similarity of its Fermi contour to the bulk Fermi surface, less the

presence of surface band S. However, in one ML on the Mg(0001) substrate,
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the single B layer is sandwiched between two Mg layers. As such, each atom

in this B-layer receives 1.3 electrons from the two adjacent Mg-layers, in

other words, it is overdoped. As a result, the σ band is pushed down, and

thus eliminated from the Fermi surface.

For two MLs, the σ band reappears at the Fermi level, and the difference

in electronic structure at EF between freestanding and epitaxial structures

vanishes. For four MLs and more, the σ band starts converging towards its

bulk limit. In contrast, the Mg-based surface band S persists as a distinct

and prominent feature. As in freestanding films, band S has Mg-p character,

as shown in Fig. 6.11, where the DFT-calculated orbitals are projected onto

atomic orbitals (for the example of 2-ML MgB2). Owing to its pz-character,

the π band of few-monolayer MgB2 hybridizes with Mg-pz states of the sub-

strate. This effect, due to Kronig-Penney-like interaction between Mg-layers

in the substrate and the films, diminishes with an increasing number of layers,

becoming weak in six MLs and more.

Finally, there is an interesting difference between the electronic states in free-

standing MgB2 films and those attached to the Mg(0001) substrate. The σ

bands of epitaxial 2-ML-thick films (and more) deposited on the Mg(0001)

substrate lie close together (cf. Fig. 6.11). As stated in Sec. 6.4.1, in freestand-

ing form one band splits off from the σ bands. This is shown in Fig. 6.12, for 6

ML thickness (treated further in the next section regarding its superconduct-

ing properties). This split-off band, S′, has B-pxy character and originates

from a surface state of the free B surface, in the absence of the substrate.

6.6 ARPES experiments

I now present a series of angle-resolved photoemission spectrosocpy (ARPES)

experiments aimed to validate the predictions of this chapter. With room-

temperature ARPES the normal-state electronic structure is probed, while

with low-temperature ARPES the superconducting gap can be measured.

The experiments were performed by the group of Prof. dr. Petra Rudolf at

the Zernike Institute for Advanced Materials (University of Groningen, the

Netherlands), the group of Dr. Cinzia Cepek at the ‘Istituto Officina dei

Materiali’ (IOM) in Trieste (Italy), and the group of Dr. Andrea Goldoni at
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Figure 6.12: The calculated band structure of freestanding 6-ML
thick MgB2. In addition to the surface band S, originating from the
Mg-terminated site, the absence of the substrate opens an additional
surface band, S′, as a split-off band from the σ bands. It arises from
the B layer facing vacuum instead of facing the substrate, so contrary

to band S, it has the same B-p character as the σ bands.

the Elettra Sincrotrone Trieste, where the ARPES measurements have been

performed. A list of all collaborators can be found in Ref. 201. I carried out

the theoretical interpretation of the results.

6.6.1 Sample growth

MgB2 films were grown on a Mg(0001) substrate using molecular beam epi-

taxy, using a technique developed for high-purity and high-quality films

[263, 267]. The Mg(0001) substrate was selected because of the minimal

lattice mismatch with few-layer MgB2, as mentioned above. The thickness

of the samples was monitored in situ by a combination of photoemission and

calibrated evaporators, a technique explained in more detail in the resulting
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Figure 6.13: Room-temperature ARPES measurements of ultrathin
MgB2. Data is shown for the valence bands of one, two, four, and
eight MLs MgB2, along Γ-K, with band structure calculations plotted
on top. In the latter, thin lines indicate states originating for 75
to 90% from the layers adjacent to the Mg-vacuum interface, namely
those states spatially localized within at most 2 nm from the top of the
film – corresponding to the depth down to which ARPES can probe –
while thick lines indicate states where this contribution exceeds 90%.

publication (Ref. 201) and in Refs. 263, 267. All measurements were per-

formed in situ, under ultra-high vacuum conditions, to avoid contamination

of the samples.

6.6.2 Normal-state electronic properties

To verify the appearance of the surface band near EF in few-monolayer MgB2,

room-temperature ARPES measurements were performed, shown in Fig. 6.13
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together with the σ and S bands obtained from DFT. The latter becomes in-

creasingly localized near the surface for thicker films, explaining the increase

in intensity of the ARPES signal. The ARPES signal from the σ bands is

significantly weaker than that of the S band, especially in the one-ML case.

The lack of intensity at Γ for MgB2 layers thicker than 1 ML indicates that

the σ band is shifted towards lower binding energies in the 1-ML case, as

predicted by the calculations in Sec. 6.5.2.

6.6.3 Superconducting properties

To study superconductivity stemming from the surface band in few-layer

MgB2, low-temperature ARPES measurements were performed, down to 20

K. Given the very strong ARPES signal on band S (cf. Fig. 6.13), the su-

perconducting gap opening on this band can be determined very accurately.

Therefore, the experiment focusses on superconductivity in band S, unique

to ultrathin MgB2. The spectral edge of 6-ML and 8-ML samples was ob-

served shift towards lower energies, indicating a vanishing density of states

at the Fermi level and therefore the opening of a superconducting gap [268].

For samples thinner than six MLs no superconducting gap is observed in the

temperature range attainable with our experimental set-up.

For six MLs, measurements were performed at several temperatures in the

range 20 – 30 K, shown in Fig. 6.14(a). The gap width, ∆, was obtained by

fitting the valence band spectra with a BCS spectral function multiplied by

a Fermi-Dirac distribution and convoluted with the experimental Gaussian

broadening. The measurement enables us to fit the superconducting gap as

a function of temperature according to ∆(T ) = ∆(0) (1− (T/Tc)
p)1/2, from

which p = 2.4, ∆(0) = 3.6 meV, and a critical temperature of this gap,

Tc,S = 31 K were obtained.

6.6.4 Theoretical interpretation

To unravel the origin of the measured superconductivity in the surface band

of 6-ML MgB2, and its relation to the other gaps, anisotropic Eliashberg

calculations were carried out on a freestanding 6-ML film, using the electron-

phonon coupling coefficients obtained from first-principles as input. The
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Figure 6.14: (a) The evolution of the gap on the surface band with
temperature, as measured using low-temperature ARPES. A fit of the
profile yields ∆S(0) = 3.6 meV and Tc,S ∼ 31 K, the critical temper-
ature of superconductivity stemming from the surface band. The σ
gap profile of bulk MgB2 is added for comparison. (b) The tempera-
ture dependence of the superconducting gap spectrum, ∆, of six MLs
of MgB2 calculated using Eliashberg theory. The spectrum consists
of three distinct contributions (domes), Sπ, S′π and σ. The dome
averages are also indicated, as well as the gap specifically opening
on the S band along Γ−K, for direct comparison to the experimen-
tal result. The theoretical critical temperature Tc,S = 33 K of this
band and the strength of the gap are in excellent agreement with the

experiment.

calculated distribution of the gap opening specifically on band S as a function

of temperature is shown in Fig. 6.14(b) (dashed line). It is observed that this

S gap closes at Tc,S = 33 K – in excellent agreement with the experimental

value (Tc,S = 31 K). The overall Tc of 6-ML MgB2 is found to be 35 K,

thus it has almost reached the bulk value of 39 K. There is also a very good

agreement for the characteristic exponent p of the temperature dependence

of the gap opening on S, obtained as p = 2.2 in the theory (vs. p = 2.4 in
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Figure 6.15: (a) The calculated superconducting gap spectrum of
six-ML MgB2 at temperature T = 1 K, obtained using Eliashberg the-
ory, plotted on the Fermi surface. The inset shows the distribution of
the gap, ρ(∆), whereby the three distinct domes are indicated, show-
ing their origin from the bands of the Fermi surface. (b) The density
of states in the superconducting state at 1 K, with three distinct peaks

related to the three domes in the superconducting gap spectrum.

the experiment). The calculated gap on S, ∆S(0) = 3.3 meV is also in very

good accordance with ARPES result (∆S(0) = 3.6 meV). In the anisotropic

Eliashberg calculation we employed the standard value µ∗ = 0.13. From the

close agreement between our theoretical predictions and experimental data

it can be concluded that the screening modeled by µ∗ does not change in the

ultrathin limit in the case of MgB2, as opposed to, e.g., ultrathin TaS2 where

it was proposed that a renormalization of this repulsion lies at the base of

the increase in critical temperature in thinner samples [269].

The gap spectrum displayed in Fig. 6.14(b) consists of three domes. The cor-

responding distribution of the gap on the Fermi surface, ρ(∆) at 1 K, is shown

in Fig. 6.15(a). The Mg-based band S contributes to the first dome by hy-

bridizing with the π gap (denoted Sπ dome), similar to the case of 2-ML and

4-ML MgB2. The gap on band S′ is in the range 4–5 meV and is also mixed

with the π-gap, forming the central dome of ρ(∆) denoted S′π. Compared

with 2-ML and 4-ML we see that the gaps are steadily increasing towards

the bulk values. The gap opening on S evolves more slowly than those of σ

and π (that have already reached their bulk values in the 6-ML case). This

difference in evolution between surface and π states is closely linked to the
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hybridization between both. The effect of the surface contributions on the

DOS in the superconducting state NS, displayed in Fig. 6.15(b), is also very

pronounced. NS exhibits three sharply resolved peaks, corresponding to the

three domes in ρ(∆).

As bands S and S′ stem from the free surfaces of opposite sides of the film,

they are to a large extent mutually independent. Therefore, separate control

of the contributions of these two surface states to the gap spectrum can be

achieved by means of chemical functionalization of one or either of these free

surfaces. In Chapter 7 it will be demonstrated that the surface bands can be

eliminated from the Fermi surface by means of adatoms on either side.

6.6.5 Path to experimental realization of superconductivity

in the thinnest limit

Further measurements below 20 K are needed to explore possible supercon-

ductivity in the thinnest structures of MgB2 – in line with theoretical predic-

tions presented in this chapter. In that limit, our results indicate a consid-

erable role of the substrate owing to several proximity effects. Firstly, there

is the purely electronic proximity effect for one ML MgB2 (cf. Figs. 6.10(b)

and 6.13), where charge transfer from the substrate to the film eliminates the

σ bands from the Fermi surface. The second kind of proximity effect stems

from a transfer of Cooper pairs from the superconducting film to the metallic

substrate, which also depletes superconductivity.

Since purely from theory there is no reason why there would be no super-

conductivity in the thinner films, it is very likely that the second kind of

proximity effect inhibits superconductivity in films thinner than six MLs.

Using non-metallic substrates would exclude the possibility of Cooper-pairs

escaping and would thus make the superconducting state more robust. On a

related note, recent experimental advances enable non-epitaxial fabrication

of not only weakly bound layered materials, e.g., NbSe2 [270], but also of

ultrathin compounds with ionic interlayer bonds, like MgB2 [271]. It is thus

envisioned that the full potential of superconductivity from free surfaces can

be explored using the already available technology.
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6.7 Conclusions

In summary, I presented the formation and evolution of three-gap super-

conductivity in few-monolayer MgB2, by solving the anisotropic Eliashberg

equations with full ab initio input. I showed that the electronic surface band,

originating from the free Mg-surface, plays a major role in ultrathin MgB2,

and hosts a third superconducting gap that coexists with the bulk-like π

and σ gaps. The impact of free surfaces on superconductivity is inherent to

atomically thin materials, but also susceptible to further chemical function-

alization and nanoscale engineering. The gaps in one-monolayer MgB2 are

distinctly separate, so the resulting three pronounced peaks in the supercon-

ducting tunneling spectrum provide a clear signature for further experimen-

tal validation of our prediction. The shown three-gap superconductivity is

moreover very robust with temperature, persisting even close to the critical

temperature of 20 K. As more monolayers are added to the film, different

condensates hybridize, changing the multi-gap spectrum drastically with ev-

ery added monolayer. Our investigation therefore establishes atomically thin

MgB2 as a unique system to explore tunability of high-Tc, multi-gap super-

conductivity, and its possible applications in ultrathin cryogenic electronics

engineered by atomically controlled thickness.

In the second half of this chapter, I presented a combined theoretical and

experimental study of few-monolayer MgB2, grown on a hexagonal Mg(0001)

substrate. The predicted surface band originating from the free Mg surface

was indeed observed very clearly in ARPES measurements. Superconductiv-

ity was observed by means of a vanishing density of states in low-temperature

ARPES measurements. A comparison of the measured and calculated gap

spectra of six-ML MgB2 shows a very good agreement between both regarding

the evolution of the amplitude of the gap opening on the surface band with

temperature and the Tc. I showed furthermore that also for 6 MLs the con-

densate originating from the surface state hybridizes with the π condensate.

This is entirely different from bulk-sized MgB2 where ARPES experiments

indicate near-degeneracy of a surface state gap with the σ gap, without any

clear influence on the measured two-gap superconductivity [68]. Supercon-

ductivity in samples thinner than 6 MLs was not observed, which can be

traced back to proximity effects due to the metallic Mg substrate. There-

fore, I finished with prospective ideas on how to realize superconductivity
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in the thinnest limit, by using insulating substrates and by exploiting recent

advances in non-epitaxial growth.
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Chapter 7

Strain- and adatom-enhanced

superconductivity in monolayer

magnesium diboride

Here, we investigate how superconductivity in the atomically thin

limit can be enhanced. There are several pathways to achieve this,

all based on nano-engineering of the structural and electronic prop-

erties of the 2D materials. We will explore these specifically for

monolayer magnesium diboride, in view of its interesting multigap

characteristics. First, we explore biaxial strain, which is shown to

boost the critical temperature above 50 K under the influence of

limited biaxial tensile strain of ∼4%. This enhancement is stronger

than in any other 2D superconductor known to date. We demon-

strate that the principle behind this enhancement, namely phonon

softening, is intrinsic to many 2D materials, thus opening a very

general road for stronger superconductivity in the atomically thin

limit. As a second option, we investigate the influence of adatoms,

specifically hydrogen, which is abundantly present during and after

synthesis of 2D materials. It is shown that hydrogen adatoms at

the magnesium plane eliminate the characteristic surface band of

monolayer magnesium diboride. Nevertheless, the electron-phonon

coupling strongly increases due to hydrogenation, under the influ-

ence of an increased electronic density of states, and of adatom-host

185



186
Chapter 7. Strain- and adatom-enhanced superconductivity

in monolayer magnesium diboride

hybridized states with strong coupling to phonons. Thus, the critical

temperature is strongly enhanced above that of the pure monolayer.

This can be enhanced even further by applying biaxial strain, reach-

ing unexpectedly strong electron-phonon-based superconductivity.

7.1 Introduction

There is a long-standing tradition of investigating the influence of pressure

and strain on superconductivity. They have been found to exert very di-

verse effects on the superconducting properties of both bulk and 2D mate-

rials. Historically, it was first discovered that the critical temperature (Tc)

of elemental metallic superconductors (Al, Bi, Pb, Sn, etc.) decreases with

compression [272, 273]. The main mechanism behind this decrease is a shift

of the Eliashberg function to higher energies, leading to a decrease in the

electron-phonon (e-ph) coupling λ, and thus in Tc according to the BCS

relation Tc ∝ ωDexp(−1/λ). This exponential effect dominates over the ac-

companying decrease of the Debye frequency ωD, with a linear relation to Tc.

To give an example, for Al, λ decreases from 0.45 to 0.42 under a pressure of

2 GPa [273].

However, many other conventional e-ph-based superconductors exhibit a dif-

ferent behavior. Alkaline metals (Ba, Ca, Li, Sr, etc.) have increasing Tc

with pressure (up to a certain point where the trend is reversed) [273]. What

is more, they are even non-superconducting at ambient pressure. Transition

metals display even more complicated trends. Some have increasing Tc with

pressure (e.g., V and Zr), while others display the opposite trend (e.g., Nb)

[273]. This indicates that in such metals changes in the electronic structure

outweigh monotonous changes in the Eliashberg function. The most extreme

example of such a system are the sulfur hydrides. Very high pressures (in-

duced with a diamond anvil cell) are needed to create sufficient orbital over-

lap for superconductivity. Tc keeps on increasing with pressure, ultimately

reaching values above 200 K [41]. A similar behavior has been predicted for

metallic hydrogen under high pressure [42].

For MgB2 some experiments on the effect of lattice deformation have been

carried out. In bulk MgB2, Tc decreases under the influence of hydrostatic
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pressure, following the trend in many elemental metallic superconductors

[274]. An expansion of the MgB2 lattice was equally realized, via strain in-

duced in few-100 nm thick MgB2 islands [275]. However, the largest increase

in Tc that could be realized in this way was 5% [275], and the theoretical

limit for bulk-sized MgB2 was found to be 10% [276]. However, in the atom-

ically thin limit, nothing was known yet on the response of MgB2 to lattice

deformations until the investigations presented in this chapter were carried

out.

Generally, in 2D and atomically thin materials more options are available to

adapt the structural properties externally. Not only compression but also

stretching of the lattice can be applied. Both in electron- [277] and hole-

doped [278, 279] graphene significant enhancements of the e-ph coupling and

of Tc were found, albeit only at larger strain levels beyond 5%. Since Tc of

unstrained monolayer Li-doped graphene is only about ∼ 8 K, Tc does not

exceed 30 K, even at 10% tensile strain [277]. Moreover, Li-doped graphene

has been found to be an isotropic single-gap superconductor [82], as opposed

to the distinct three-gap superconductivity in monolayer MgB2, revealed in

Chapter 7. This opens possibilities in the latter to obtain stronger supercon-

ductivity, due to intrinsic enhancement in the multigap case (as explained in

Sec. 1.2.1). Moreover, the preferred experimental growth method of atomi-

cally thin MgB2 is epitaxial growth on a substrate, with ever-present lattice

mismatch [263]. Therefore, it is very interesting to consider the effect of

strain on atomically thin MgB2.

Here, I demonstrate that three-gap superconductivity in monolayer MgB2

remains robust under strain, and that tensile strain of just ∼ 4% boosts

Tc to above 50 K. The general principle behind this enhancement will be

unraveled in this chapter, based on Eliashberg theory. Considering that such

amount of straining can be conveniently realized by growing the monolayer

MgB2 on substrates with a somewhat larger lattice constant (e.g., Si1+xC1−x

or AlxGa1−xN alloys, with a lattice constant tunable by x) [276], these results

are expected to be of immediate experimental relevance.

The second option we will explore to modify and to enhance superconductiv-

ity in the atomically thin limit is motivated by a plethora of recent advances

on functionalization of 2D materials. A particularly promising route is that

of adatoms on their surface, i.e., dopants of a different atomic species from
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those contained in the host material, arranged in a regular pattern. The moti-

vation for this route is fairly straightforward. The surface band in monolayer

MgB2 originates from the interaction between the Mg layer and the vacuum.

Therefore, it is easily accessible, and can be suppressed by the adatom layer.

Specifically, I considered hydrogen as the adatom species. The reason is that

with this element with the lowest atomic number charge transfer between the

adatoms and the film can be limited. In this way, the σ and π states can

remain largely unaltered. This provides for a unique (possibly local) control

of the superconducting gap spectrum through easily accessible surfaces.

Very surprisingly, the calculations presented in this chapter have revealed

that the hydrogenation not only suppressed the surface band, but that it

also boosts the e-ph coupling and thus the Tc. At the origin of this en-

hancement are profound changes in the electronic and vibrational properties,

characterized by hybridized states that form between hydrogen and boron.

This finding demonstrates in general the potential of enhancing and tailoring

2D superconductivity.

7.2 Strain-enhanced superconductivity

7.2.1 The effect of strain on the electron-phonon interaction

In a strained material the lattice parameters are fixed to non-equilibrium

values (by means of epitaxial growth on a substrate, by forces exerted on

a suspended monolayer, etc.). Here, I concentrate on biaxial strain applied

with respect to the in-plane cell parameter. Such biaxial straining of a 2D

hexagonal material preserves the hexagonal symmetry, since biaxial refers to

treating both lattice directions (viz., a and b in Fig. 7.1) on the same footing.

Another type of strain where only one of the two directions is deformed, is

called uniaxial strain. Here, symmetry breaking can lead to very drastic

changes. However, I will show that biaxial strain also hosts surprises with

regard to the superconducting properties. The experimental realization of

biaxial strain is furthermore very convenient, when a hexagonal substrate

with a lattice parameter different from that of MgB2 is used, as mentioned

in the introduction.
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Compressive Equilibrium Tensile

Figure 7.1: Different monolayer MgB2 lattices under the influence
of biaxial strain. From left to right compressive strain, the equilib-
rium case, and tensile strain are depicted. The strain level used in
this visualization is 10%, which is exaggerated for the sake of clarity
with respect to what can realistically be realized in monolayer MgB2

(up to ∼ 5%).

In Fig. 7.1 I show the different types of lattice deformations in the biaxial

case. When the lattice parameter is decreased with respect to the equilibrium

value, this is called compressive strain. When on the other hand the lattice

parameter is increased, this is called tensile strain. I will refer to strain levels

relative to the equilibrium values. Supposing that a0 is the equilibrium lattice

parameter, strain is thus denoted as (a − a0)/a0. Therefore, compressive

strain yields negative fractions and tensile strain positive ones.

In MgB2, the lattice parameter equals the Mg-Mg distance, with equilibrium

value a0 = 3.04 Å. The structural changes induced by strain have a profound

effect on the lattice vibrations. In Fig. 7.2(a), the equilibrium phonon band

structure of 1-ML MgB2 (already presented in Chapter 6) is compared with

the cases of −4.5% compressive strain and +4.5% tensile strain. One observes

that the phonon frequencies increase with compressive strain and decrease

with tensile strain. As such, the maximum phonon frequency – around 100

meV in the equilibrium case – increases to ∼120 meV in the compressive case

and decreases to ∼80 meV in the tensile case.

The explanation for this trend starts from the interatomic charge densities.

In the compressive case, they are enlarged as the distances between atoms

decrease, while the total amount of charge is, of course, unaltered. In the

tensile case, exactly the opposite occurs. The charge densities act as spring

constants in the (simplified) description of lattice vibrations. Denser charge

clouds act as stronger springs (in the compressive case), and less dense clouds
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Figure 7.2: Phonons and electron-phonon coupling of biaxially
strained 1-ML MgB2 calculated using DFPT. (a) The phonon dis-
persion for strains of −4.5%, +0% and +4.5%. Increasing strain
leads to lower phonon frequencies. (b) The isotropic Eliashberg func-
tion under different strains, α2F (ω) = 〈〈α2F (k k′, ω)〉k′F〉kF

(i.e., the
double Fermi surface average). The peaks originating from the E2g

mode are indicated by arrows. The resulting electron-phonon cou-
pling λ is shown as inset.

as weaker ones (in the tensile case). Spring constants are related to frequen-

cies as ω =
√
k/m, so phonon frequencies indeed go up (down) in the com-

pressive (tensile) case. A schematic description of this argument is provided

in Fig. 7.3. Similarly, due to enlarged (depleted) charge densities in the inter-

layer space, the Mg and B planes move further apart (come closer together)

under the influence of compressive (tensile) strain, to partially compensate
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Figure 7.3: Schematic description of how different types of strain
influence the atomic bond between two atoms (black dots), and how
this influences the spring constants resulting from the atomic bonds
in each case. Darker colors represent higher electron densities. The
general finding is that the compressive, equilibrium and tensile spring

constant are related as kc > ke > kt.

the change in the bonding. In spite of this, the electron clouds effectively be-

come less dense in the tensile case, leading to the phonon softening described

above.

In Fig. 7.2(b) the corresponding Eliashberg functions, α2F , are shown in

isotropic form for±4.5% strain and in the equilibrium case. The peaks in α2F

due to the E2g mode (indicated by arrows), introduced in Chapter 6, remain

prominent in case of applied strain. The peak even becomes stronger in the

case of tensile strain. Its shift to lower energy (following the general trend

for the phonons) and amplification due to tensile strain lead to a significant

enhancement of the e-ph coupling, as shown in the inset of Fig. 7.2(b). This

results in enhanced e-ph coupling, since the integrand of

λ = 2

∫ ∞
0

dωω−1α2F (ω) (7.1)

is weighted by ω−1 within Eliashberg theory, as explained in Chapter 3 (where

a more general expression is given in the anisotropic case, cf. Eq. 3.38). I

must stress that this effect is particularly strong in 1-ML MgB2 due to the

occurrence of the E2g phonon mode, which not only goes down in energy

but also develops stronger intrinsic coupling to electrons, as follows from the

evolution of the Eliashberg function shown in Fig. 7.2(b). A similar trend in

the e-ph coupling under the influence of strain in both electron- and hole-

doped graphene [277–279] was found to be much less pronounced at such

limited straining levels, as explained in the introduction to this chapter.
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Figure 7.4: The distribution of the superconducting gap for +4.5%
tensile strain as a function of temperature, displaying the same three
gaps (π, S and σ) as in the unstrained case (cf. Fig. 6.5). The
calculation shows an enhancement of the critical temperature to Tc =

53 K.

7.2.2 The effect of strain on the superconducting properties

With the first-principles results for strained 1-ML MgB2 as input, the anisotropic

Eliashberg equations were again solved. In the studied range of straining of

−4.5% to +4.5%, the Fermi surface of the strained structures is almost unal-

tered with respect to that of unstrained 1-ML MgB2, shown in Fig. 6.5(a) of

Chapter 6. This, in combination with the robust coupling to the E2g mode,

leads to a conservation of three-gap superconductivity in ML MgB2 under all

strains considered here1.

In Fig. 7.4(a) the temperature evolution of the gap spectrum of 1-ML MgB2

subject to tensile strain of +4.5% is shown, proving the robustness of its three-

gap superconductivity even under a considerable amount of strain. Owing

to the enhanced e-ph coupling [cf. Fig. 7.2(b)] the superconducting gaps are

much larger than in the equilibrium case. For +4.5% strain, the average gaps

amount to 〈∆σ(0)〉 = 10.0 meV, 〈∆S(0)〉 = 8.4 meV and 〈∆π(0)〉 = 4.3 meV,

1Note that for compressive strains exceeding −1.5% σ and S gaps become hybridized,
albeit that their contributions can still be distinguished. Their partial overlap is not due
to new physics – it is provoked by a general depletion of the superconducting gap values,
forcing the gaps closer together.
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(K
)
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Figure 7.5: (a) The maximum value of the superconducting gap,
∆max, as a function of temperature and strain. Superconductivity is
depleted upon compression and is strongly boosted with tensile strain.
(b) Tc as a function of the film thickness (units of ML), and as a
function of strain for 1-ML MgB2. The bulk value, Tc = 39 K, is

shown for comparison.

with a corresponding critical temperature as high as Tc = 53 K, compared

with 20 K for the equilibrium case. I must again stress the importance of

anisotropy and multigap effects, since an isotropic approximation (using the

McMillan-Allen-Dynes expression) severely underestimates Tc (yielding just

20 K).

In Fig. 7.5(a) the temperature evolution of the maximum (σ) gap value is

displayed – effectively the edge of the σ gap – comparatively for different

strains. This reveals that upon compression, superconductivity is greatly

suppressed (Tc drops to 11 K for −4.5% strain), while it is strongly boosted

when the ML is subject to tensile strain. The changes are particularly drastic

for such limited amounts of strain, in comparison to, e.g., superconducting

doped graphene [277–279]. In Fig. 7.5(b) the evolution of Tc with strain is

shown, as well as the evolution with the number of monolayers (discussed



194
Chapter 7. Strain- and adatom-enhanced superconductivity

in monolayer magnesium diboride

already in Chapter 6), for comparison. It is apparent that the effect of strain

on superconductivity is stronger, with a ML strained at +3% already surpass-

ing bulk MgB2 as to its Tc. A major difference between layer addition and

strain is that the latter preserves the three-gap superconductivity of mono-

layer MgB2, while increasing thickness strongly changes the gap spectrum

with every added monolayer, as shown in Sec. 6.4.1.

7.3 Superconductivity enhanced by hydrogen ad-

atoms

Here, we consider how the superconducting properties of monolayer MgB2

change under the influence of adatoms, specifically focussing on hydrogen2.

7.3.1 Structural properties

The main motivation for adding hydrogen adatoms was already provided in

the introduction to this chapter, namely, to tweak the electronic properties

of the surface state. We found that the result depends critically on the

concentration of the hydrogen adatoms. Hydrogen donates electronic density

to the MgB2 layer. Therefore, if two hydrogen atoms per unit of MgB2

are added, the DFT calculation shows that the Fermi level shifts up by so

much that the π bands are eliminated from the Fermi surface, and the Fermi

contours due to the σ bands become very small. Because a sufficient density

of states at the Fermi level is required to achieve superconductivity, this is

certainly no benign scenario.

Therefore, we restrict the adatoms to only one hydrogen atom per unit cell –

on the Mg side – which we will refer to as H-MgB2 in brief. For the preferred

crystal structure two different options were explored. First, the structure

where the H atom is positioned directly above the Mg atom was considered.

A calculation of the phonons proved, however, that this structure is not

dynamically stable. The second highly symmetric option is to place hydrogen

2This work was carried out together with Mikhail Petrov, who performed the calculations
in the context of his Master thesis in the period 2017-2018. I acted as co-supervisor of his
thesis, helped with the calculations and with the interpretation of the results, which I
describe in my own words here.
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Figure 7.6: Equilibrium structure of hydrogen adatoms on mono-
layer MgB2. The hydrogen atoms, one per unit cell, are positioned
above one of the boron sublattices, on the side of the magnesium

plane.

above one of the two B sublattices, with a resulting trivalent coordination

of the Mg atoms, as shown in Fig. 7.6. This structure was found to be

dynamically stable (cf. the phonon dispersion in Fig. 7.8).

There are some remarkable changes in the lattice parameters of ML MgB2

upon hydrogen addition. First of all the in-plane lattice parameter slightly

shrinks to a = 3.00 Å, compared with a = 3.04 Å for pure ML MgB2. So,

there is an intrinsic compression of the lattice by ∼ 1%. In addition, the

B layer becomes slightly buckled, with a distance of 0.04 Å between the two

sublattice planes. The reason for this emerging buckling is the position of H

on one of the two sublattice sites, which breaks the sublattice symmetry. On

the other hand, the distance between the Mg and the B layer increases, to

z = 1.80 Å (distance to the closest B plane), compared with z = 1.65 Å for

the pure ML. The distance between the Mg and the H layer is found to be

1.01 Å.

7.3.2 Electronic properties

The resulting electronic band structure of H-MgB2 is displayed in Fig. 7.7(a).

The two σ bands around Γ are there, like they are for ML MgB2 – cf. Fig. 6.2(a).

However, the surface band of ML MgB2 (band S) is eliminated. We observe

in Fig. 7.7(a) that this is not just due to a rigid shift of EF. On the con-

trary, the there is no trace of band S even away from EF. The main effect
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Figure 7.7: The electronic structure of monolayer H-MgB2. (a)
The band structure obtained with DFT. Two bands cross EF, the σ
band and the hybrid band π-Hs. (b) The corresponding Fermi surface
in the first Brillouin zone. (b) The norm of the wave function of the

π-Hs state at EF, obtained along the direction Γ-K.

of the H adatoms is thus that they spatially isolate the Mg plane from the

vacuum. Quite counterintuitively the H-s state forms a distant bond with

the B-pz states instead of with Mg states. This explains why the hydrogen

atoms prefer to occupy a position with the same in-plane coordinate as one

of the B sublattices. In Fig. 7.7(a) I have denoted this hybrid state of the

boron-π bond and the hydrogen-s state as band π-Hs. The corresponding

Fermi surface is shown in Fig. 7.7(b). It consists of the σ sheets around Γ

and the π-Hs state centered at K. In Fig. 7.7(c) the wave function of the

π-Hs state is depicted. There, it is clearly visible that this state is indeed

comprised of a spherical s state, centered around the hydrogen atoms and of

the boron-π bonds.

In spite of the elimination of band S from the Fermi surface the DOS at

EF is higher for ML H-MgB2 compared with ML MgB2. The ratio of the

two DOS values is ∼ 1.5 (1.41 states/eV for H-MgB2 and 0.96 states/eV for

MgB2). This enhanced DOS plays an important role in the increase of the

e-ph coupling which we will discuss in the next section.
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(a)

(b)

Figure 7.8: The phonon dispersion, phonon DOS, Eliashberg func-
tion (α2F ) and electron-phonon coupling (λ) of H-MgB2, calculated
using DFPT. In the phonon dispersions the colors (see the color leg-
end) as well as the size of the dots (larger means stronger coupling,
with the radius of the dots directly proportional to the coupling) in-
dicate the coupling strength phonon mode ωqν to the electrons, i.e.,
λqν . (a) The unstrained, equilibrium case. (b) The case of +5%

biaxial tensile strain.

7.3.3 Electron-phonon interaction and superconducting prop-

erties

To study the e-ph interaction in ML H-MgB2 we again employed DFPT as

implemented in ABINIT (computational details provided in Appendix A).

The result is shown in Fig. 7.8(a). As expected, the H-related phonon modes

occur at the highest energies because of its very low mass. Therefore, H also
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Figure 7.9: The eigendisplacements corresponding to the three
phonon modes of H-MgB2 that couple most strongly to the electrons.

enhances the maximal phonon frequency of the system to above 125 meV. The

isotropic Eliashberg function α2F and the resulting e-ph coupling constant λ

shown in Fig. 7.8(a) reveal an enhancement of the e-ph coupling to λ = 1.46,

compared with λ = 0.68 in pure ML MgB2. This strong enhancement is

caused by two factors. First of all, the electronic DOS at EF of H-MgB2 is

about 1.5 times higher than that of MgB2. As we saw in Chapter 3, λ ∝ NF,

so this accounts for a part of the enhancement.

Secondly, due to the structural and electronic changes induced by the H

adatoms, there are now several (three) emerging strongly coupling channels

instead of the one dominant E2g B mode in MgB2. These three main modes

can be observed in Fig. 7.8(a), where the band-resolved λqν values are plotted

into the phonon band structure. In all cases the coupling is maximal at and

around Γ, so there is a strong tendency for intraband coupling. Such small-

momentum coupling was also present in MgB2 (monolayer to bulk), and lies

at the origin of the multigap behavior there. The first strongly coupling

mode occurs at ∼ 27 meV (degenerate phonon bands 4 and 5). As shown in

Fig. 7.9(a), the Mg atoms and B atoms move out-of-phase with each other

along the zigzag direction (the H atoms follow the Mg atoms to a lesser

extent). The second strongly coupling mode, shown in Fig. 7.9(b), occurs

at ∼ 76 meV (degenerate bands 8 and 9), and is akin to the E2g mode in

MgB2. However, here the H atoms also move, specifically out-of-phase (in-

phase) with the B atoms of the same (other) sublattice. Finally, the mode at

∼ 126 meV (band 12), depicted in Fig. 7.9(c), consists of Mg and H atoms

moving out-of-phase in the out-of-plane direction. The details of these modes

indicate that hydrogen plays a direct role in most of the strong e-ph coupling

channels.
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With λ = 1.46 – and using as before µ∗ = 0.13 – we obtain Tc ' 45 K

from the isotropic McMillan-Allen-Dynes formula. This is a large enhance-

ment with respect to ML MgB2 (where anisotropic Eliashberg calculations

yielded Tc = 20 K, and the isotropic approximation 11 K). Bearing in mind

that the Fermi surface of H-MgB2 consists of two distinctly different sheets

(σ and π-Hs) and that the small-momentume-ph coupling favors multigap

superconductivity (likely two-gap in this case), I expect that this Tc may

in fact be significantly larger. To investigate this, anisotropic Eliashberg

calculations will be performed in the near future.

7.3.4 Additional enhancement with strain

In view of the results I obtained for the effect of biaxial strain on the super-

conducting properties of ML MgB2, it is certainly of interest to also consider

strain in ML H-MgB2. The evolution of the e-ph coupling and of Tc with

strain is listed in Table 7.1. The strains considered here are in the range

−1% to +5%. Larger compressive strain resulted in structural instabilities.

H-MgB2 is thus found to be much less compressible than ML MgB2. We see

again an enhancement of λ and of Tc with tensile strain, on top of the intrin-

sic enhancement due to the hydrogen atoms. The mechanisms at play in this

additional enhancement are essentially the same as in ML MgB2. First and

foremost, there is a softening of the main coupling modes, which leads to the

peaks in α2F moving to lower energies, and thus contributing more to the

e-ph coupling. This is shown in Fig. 7.8(b) for a tensile strain of +5%3. In

addition, the electronic DOS at EF increases significantly with tensile strain

(and decreases with compressive strain), by 45% for tensile strain of +5%,

compared with the equilibrium value.

These trends make that the e-ph coupling systematically increases with biax-

ial tensile strain. At +5% tensile strain, λ attains a very high value of 2.03,

as shown in Fig. 7.8(b). This leads to a considerable enhancement of the Tc,

to 53 K (cf. Table 7.1 for the complete data). Again, this result is obtained

within the isotropic approximation, so it necessarily is an underestimation of

the true Tc that can be obtained with anisotropic Eliashberg theory. Thus,

3One notices on the other hand that the upper phonon band does not change by much
between 0% and +5% strain. The reason is that the atoms move in the out-of-plane
direction here and are consequently less affected by in-plane strain.
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Strain (%) ωlog (K) λ Tc (K)

-1 500.6 1.21 39.9

0 441.6 1.46 44.7

+1 483.9 1.41 47.2

+2 515.5 1.38 48.8

+3 457.8 1.62 51.4

+4 377.8 1.89 48.6

+5 393.4 2.03 53.4

Table 7.1: The evolution of the isotropic electron-phonon coupling
properties of H-MgB2 with strain, specifically the logarithmic fre-
quency ωlog (Eq. 3.44), the electron-phonon coupling constant λ and
the Tc obtained from the McMillan-Allen-Dynes formula (Eq. 3.43)

using µ∗ = 0.13.

we have found a new pathway to bring Tc of 2D superconductors to unprece-

dentedly high values. Here, only a single layer of H adatoms is needed, and

not a substrate like in high-Tc ML FeSe [54, 55]. Moreover, in (strained)

ML H-MgB2 the coupling mechanism is completely conventional, but as yet

unknown for ML FeSe.

7.4 Conclusions

In this chapter we have studied how superconductivity in a single-monolayer

superconductor can be enhanced. Here, we specifically focussed on monolayer

magnesium diboride (MgB2), because of the promising properties emerging

from its three-gap superconductivity.

The first route that was investigated is that of biaxial strain applied to mono-

layer MgB2. First-principles indicate a strong phonon softening with tensile

strain (i.e., expanding the lattice), as a result of depleted electron densi-

ties, thus weaker response to atomic displacements. Consequently, also the

main coupling mode, the E2g mode, is lowered in energy. This results in a

shift of the main peak of the Eliashberg spectral function to lower energies,

and thus an enhancement of the electron-phonon coupling. From anisotropic

Eliashberg calculations it was found that with only ∼ 4% tensile strain, the

superconducting critical temperature is boosted to temperatures beyond 50
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K (compared with 20 K in the unstrained case). Important for this en-

hancement is that it fully profits from multigap effects, since the three-gap

superconductivity of ML MgB2 is preserved under applied strain.

The second route that was explored here is that of adatoms on ML MgB2,

specifically hydrogen atoms. From ab initio calculations it was found that

the equilibrium structure contains one hydrogen atom per MgB2 unit, at

the side of the magnesium plane and with an in-plane position identical to

one the boron sublattice sites. The electronic structure of this resulting

H-MgB2 compound has two different electronic bands at the Fermi level,

namely the σ bands and a novel state comprised of hybridized hydrogen s

and boron π states. The surface band characteristic of atomically thin MgB2

is eliminated by the hydrogen adatoms. From the ab initio calculations a

considerable enhancement of the electron-phonon coupling in H-MgB2 with

respect to MgB2 was found. This can be attributed to a higher density of

states, especially due to the hybrid electronic state, as well as changes in the

phonon modes mainly due to the hydrogen adatoms.

Finally, these two routes were combined in studying the effect of strain on

ML H-MgB2. It was found that there is an additional enhancement of the

electron-phonon coupling, for which phonon softening just like in strained

MgB2, as well as a significant increase in the electronic density of states

lie at the base. Within an isotropic approximation to Eliashberg theory a

Tc above 50 K was obtained, which is expected to increase further when

properly taking into account multiband effects (which will be performed at

a later stage).

Both pathways explored in this chapter unequivocally prove the potential of

boosting superconductivity in 2D materials on the nanoscale, by engineering

the structural, electronic and vibrational properties with strain and adatoms.
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Chapter 8

Interplay of superconductivity and

novel quantum states in 2D

transition metal dichalcogenides

Two-dimensional transition metal dichalcogenides (2D TMDs) are

atomically thin materials at the forefront of research, owing to their

special electronic and optical properties, their tunability by electric

gating and mechanical strain, and easy heterostructuring. It is much

less explored that they also exhibit a wealth of collective quantum

phases, characterized by a collective behavior of electrons that is

entirely different from their individual states. One such phase is

a charge density wave, where the electrons form an ordered quan-

tum fluid at lower temperatures that restructures the host mate-

rial. Another low-temperature collective quantum phase emerging

in 2D TMDs is superconductivity. Furthermore, the spins of the

electrons add to the combinatorial possibilities for novel quantum

states, forming Ising spin textures in monolayer TMDs that are

wholly absent in the bulk. All these states are strongly intertwined,

but the fundamentals of their interplay are not well understood. In

this chapter, it is proven that superconductivity in 2D TMDs can-

not be described adequately when disregarding the coexisting novel

quantum states, such as the charge density wave and Ising states.

203
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Subsequently, the basis is laid for studying this interplay by establish-

ing adequate ab initio descriptions of the Ising and charge density

wave states.

8.1 Introduction

Many ordered quantum phases in 2D materials are characterized by collective

behavior, whereby the electrons collaborate in forming a new state that is

fundamentally different from their single-particle states. Superconductivity

in 2D materials, which we have been studying in Chapters 1, 6 and 7, is one

of the the most prominent examples of a collective phase occurring in the 2D

limit. Another notable example of collective behavior in some 2D metallic

systems is an instability of the electron cloud, evoking a structural phase

transition upon cooling, akin to the Peierls transition in 1D systems. As the

phase transition results in a modulation of the electronic charge density, it is

known as the charge density wave (CDW) phase [280].

Prime candidates to study collective phases in 2D materials are the transition

metal dichalcogenides (TMDs), where both superconductivity and CDWs

have been observed [280]. TMD monolayers consist of a transition metal

layer in between two layers of chalcogen atoms. The coupling between such

TMD monolayers is mediated by van der Waals (vdW) interaction, so that

ultrathin samples can be mechanically exfoliated [118, 269, 270, 281], but

also synthesized by controlled molecular beam epitaxy [119] and chemical

vapor deposition [282]. Moreover, TMDs can be stacked in both vertical

and lateral heterostructures, so that properties of different TMDs can be

combined [97, 98].

The key ingredient in TMDs is the richness of their structural phases, the

main two being theH phase (with ABA stacking) and the T phase (with ABC

stacking) [280]. Depending on the structural phase and the atomic species,

TMDs can have highly versatile electronic properties [280]. For instance,

TMDs based on group V (Nb, Ta) and group VI (Mo, W) transition metal

elements both adopt the H phase, but the former are metallic while the latter

are semiconducting. The metallic TMDs are generally superconductors, and

display an interesting behavior when their thickness decreases to the atomic
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scale, namely a reduction of the critical temperature in NbSe2 [118], opposed

to an enhancement in TaS2 [121, 269], hypothesized to be related to changes

in the coexisting CDW state [121]. Superconducting TMDs exhibit moreover

features indicating multiple and/or anisotropic gaps in the superconducting

state [283]. Interestingly, 2D superconductivity can also be established in

intrinsically semiconducting 2D TMDs by altering the Fermi level by gating

[122, 123, 282, 284–286], doping [287] or high pressure [288, 289].

The other collective quantum state in TMDs, the CDWs, can also change

drastically in the 2D limit, where enhancement [290, 291], depletion [121]

and non-monotonic behavior [281] of the CDW phase have all been observed.

Other nanoscale manipulations influencing the CDW order include interlayer

twist [120], doping in the vdW gap [292–294] and gating [295]. Being both

based on collective behavior of the electrons, and sharing several means of

manipulation, it remains as an open question to date if CDWs and super-

conductivity actually compete, and if their interplay can be tuned to achieve

novel hybrid phases.

A characteristic example of the richness in structural phases and collective be-

havior in 2D TMDs is TiSe2 with controlled Cu intercalation in the vdW gap.

Fig. 8.1(a) shows different CDW orders, depending on the Cu concentration.

At higher concentrations, the CDW transition is suppressed and the system

becomes superconducting [292]. Gating provides another route to suppress

CDWs and to stimulate superconductivity in TiSe2 [295]. CDWs are often

thought to be in direct competition with superconductivity, as the Fermi sur-

face can become fully or partially gapped due to CDW order [119, 296, 297].

However, the most recent experiments indicate that the relation between

CDWs and superconductivity may be more intricate, and that the precise

effect of the CDWs on the electronic properties should be considered [298].

Adding further to the richness of 2D TMDs, a splitting of the electronic

bands and pinning of the electron spins perpendicular to the crystal plane

takes place in films consisting of an odd number of monolayers, as a result of

strong spin-orbit coupling (SOC) and a lack of a spatial inversion center. As

depicted in Fig. 8.1(b), electrons in the same band with opposite momentum

necessarily have opposite spin due to spin-valley locking. The same effect

lies at the base of valleytronics in 2D semiconducting TMDs [299, 300]. The
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Figure 8.1: Novel quantum states in 2D TMDs. (a) A structural
model of Cu-intercalated 1T -TiSe2, and a low-temperature, atomic-
resolution STM image showing striped CDW order (panels 1 and 4)
and a 2 × 2 CDW reconstruction (panels 2 and 3) [294]. (b) The
Ising state in monolayer NbSe2, both in real space and on the Fermi

surface [118].

resulting spin texture is known as the Ising state, and exerts a strong influ-

ence on the collective states. For instance, experiments have shown a strong

enhancement of the in-plane critical magnetic field in superconducting mono-

layer NbSe2 [118, 301], and in gated thin flakes of MoS2 [123, 284]. This effect

promises to be only the tip of the iceberg, as the Ising state can lie at the

base of unconventional and topological superconductivity as well [302, 303].

Interesting physics is also achieved by coupling TMDs with magnetic im-

purities. For instance, Fe atoms on 2D NbSe2 [304] give rise to long-range

Yu-Shiba-Rusinov (YSR) bound states. It is convincingly shown that the

long range of the state originates from the 2D nature of the sample. Chains

of these impurities can yield topological superconductivity with Majorana

quasiparticles at the extremities of the sample, applicable in quantum com-

puting. The samples considered there are still thick compared with the

monolayer limit, where the Ising state becomes of increasing importance.

On a related note, it has been shown that magnetism can also be induced in

2D TMDs by applying strain [305], pressure [306], or by means of adatoms

[305, 307, 308].

Altogether, 2D TMDs provide an unprecedented combination of controllable

structural phase transitions, spin-valley coupling and (topological) supercon-

ductivity. This makes them a unique 2D platform to explore the interplay

between collective quantum phases, prone to tailoring on the atomic scale

by means of strain, gating and doping. The main objectives of this chapter
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Figure 8.2: TaS2 monolayer and bilayer in the H crystal structure,
shown in a top and in a side view.

are (i) to provide further evidence from theory that the different components

of 2D TMSs indeed exert a strong mutual influence, and (ii) to construct a

proper ab initio description of the Ising state and the CDW state. Here, I

will focus on intrinsically metallic TMDs such as NbSe2 and TaS2.

8.2 Crystal structure

The intrinsically metallic TMDs like NbSe2 and TaS2 adopt the H crystal

structure. As shown in Fig. 8.2 the monolayer is characterized by ABA

stacking. The H structure is hexagonal (space group P6̄m2, No. 187), and

shows a honeycomb pattern in the top view, where one sublattice consists of

the transition metal (Nb, Ta, etc.) and the other of the chalcogen atom (S,

Se, etc.). The corresponding unit cell of the monolayer shown in Fig. 8.2 lacks

an in-plane inversion center. This has important consequences for the spin

parts of the electronic states, as I will discuss in more detail in Sec. 8.5. This

lack of an inversion center is the case for all H-structured TMDs consisting of

an odd number of monolayers. On the other hand, Fig. 8.2 also shows that

2 monolayers, and with them all structures consisting of an even number
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of monolayers, do possess an in-plane inversion center, namely the center of

the unit cell. In two monolayers the stacking is ABA in the first monolayer,

followed by CBC in the second monolayer. The bulk has two monolayers in

its unit cell, hence its structure is called the 2H structure, following space

group P63/mmc (No. 194) – which possesses an in-plane inversion center.

The transition metals occupy the corresponding Wyckoff positions 2b, i.e.,

(0, 0, 1
4) and (0, 0, 3

4), and the chalcogen atoms the Wyckoff positions 4f, i.e.,

(1
3 ,

2
3 , z), (2

3 ,
1
3 , z + 1

2), (2
3 ,

1
3 ,−z) and (1

3 ,
2
3 ,−z + 1

2).

8.3 Electronic structure

The electronic structure of TMDs is strongly influenced by spin-orbit coupling

(SOC), owing to their high atomic masses, e.g., Z = 41 for niobium (Nb)

and Z = 73 for tantalum (Ta). Therefore, in all the calculations presented

here SOC has been taken into account in a fully relativistic way (details on

which can be found in Appendix A). The resulting electronic band structures

of monolayer (ML) NbSe2 and TaS2 are shown in Fig. 8.3 (a) and (b). Two

bands, stemming from one band split under the influence of SOC, cross the

Fermi level (EF).

With SOC, the wave functions take the spinor form

|ψ〉 =

(
|ψ(1)〉
|ψ(2)〉

)
. (8.1)

Fig. 8.3 shows the leading spinor components of the lowest band crossing the

Fermi level in ML NbSe2 – which I will call the inner band (i) because it lies

on the inside of the other, outer band (o) [cf. the Fermi surfaces in Figs. 8.1(b)

and 8.5]. The leading component is each time an order of magnitude larger

than the other one. Fig. 8.3(c) shows the leading component of the band i

around Γ, viz., ψ
(2)
iΓ . The relation to the dominant component of band o is

ψ
(2)
iΓ ' −ψ

(1)
oΓ . (8.2)

The wave function in Fig. 8.3(c) shows mixed Nb 4d and Se 4p character.

Here, the wave function is a combination of atomic orbitals oriented in the

out-of-plane directions, with respectively 4dz2 and 4pz character.
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Nb

Se

Figure 8.3: The electronic structure of TMDs monolayers, specifi-
cally the band structure of (a) NbSe2 and (b) TaS2. The bands cross-
ing EF are plotted in cyan. (c) and (d) Wave functions obtained on
the lower band crossing EF (thus inner band in terms of the Fermi

surface), around respectively (c) Γ and (d) K.

Around point K, the wave function is a combination of in-plane atomic or-

bitals displaying Nb 4dx2−y2 and Se 4px,y character respectively, as shown in

Fig. 8.3(d). The leading spinor components are related as

ψ
(2)
iK ' ψ

(1)
oK . (8.3)

Here, the difference between the bands is larger than at Γ, as a result of the

larger split between the bands around K, that can be evidenced in Fig. 8.3(a).

Namely, band i shows slightly more overlap between the orbitals than band

o.

The electronic structure and wave functions of TaS2 are similar to those of

NbSe2. One major difference between the two is that the SOC split between

the bands crossing EF is larger in TaS2 – as observed in Fig. 8.3(b) – because

of the higher atomic number of Ta compared with Nb.
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Figure 8.4: Phonon band structure, phonon DOS, Eliashberg func-
tion (α2F ) and electron-phonon coupling constant (λ) of monolayer

TaS2, calculated using DFPT.

8.4 Phonons, electron-phonon coupling and Eliash-

berg theory

Since we want to study superconductivity resulting from e-ph interaction,

the phonons and e-ph coupling matrix elements were again calculated using

DFPT. The resulting phonon band structure, phonon DOS and Eliashberg

function (α2F ) of ML TaS2 are depicted in Fig. 8.4. The phonon band struc-

ture shows a clear flexural ZA mode with quadratic dispersion. From the

phonon DOS it follows that the lower, acoustic phonon modes have predom-

inantly Ta character, owing to the higher mass of the Ta atoms. The e-ph

coupling constant attains a high isotropic value of λ = 1.20 in ML TaS2, with

the main contribution at 13 meV stemming from the LA mode. This mode

accounts for 81% of the total e-ph coupling.

8.4.1 Issue of the overestimated superconducting strength

The Tc resulting from the e-ph coupling shown in Fig. 8.4 is 13.7 K (using

standard µ∗ = 0.13). As listed in Table 8.1 the experimental value is much

lower, namely 3.4 K [121]. Such overestimations are generally observed in
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Material d (ML) λ, calc. Tc (K), calc. Tc (K), exp. Ref., exp.

1 1.00 9.8 3.0
NbSe2 2 1.05 10.4 5.3 [118]

bulk 0.93 9.9 7.0

1 1.20 13.7 3.4
TaS2 2 1.26 14.4 2.8 [121]

bulk 1.26 10.3 0.8

Table 8.1: The evolution of the isotropic electron-phonon cou-
pling properties of NbSe2 and TaS2 with thickness d, the calcu-
lated electron-phonon coupling constant λ and Tc obtained from the
McMillan-Allen-Dynes formula (Eq. 3.43) using µ∗ = 0.13, com-

pared to available experimental values.

Table 8.1, albeit that in bulk NbSe2 it is rather limited. The systematic

overestimations are a smoking gun for a strong impact of CDWs on super-

conductivity in atomically thin TMDs. In Sec. 8.6 I will show that the mode

with the strongest contribution to the e-ph coupling constant is exactly the

one inducing the CDW instability. Therefore, this contribution to the e-ph

coupling is invested in the structural transition and no longer in establish-

ing superconductivity. This is a case of pure competition between the CDW

state and the superconducting state, as discussed in the introduction to this

chapter.

I envisage that the only truly unambiguous theoretical solution of this prob-

lem consists of reconstructing the crystal under the influence of the CDW,

and re-evaluating the e-ph interaction of the resulting structure. Older, more

approximative approaches to include the effect of the CDWs on supercon-

ductivity were based on the self-energy of the CDW state [309] and on the

susceptibility resulting from the Fermi surface [310]. The clear benefit of

calculating the reconstruction of the crystal structure within the ab initio

approach is that the effect on the atomistic properties are taken into account

self-consistently. I will present a proof of concept of this idea in Sec. 8.6. This

case proves once more the power of ab initio calculated e-ph interactions to

assess the main processes at the base of multicomponent superconductivity.

As we saw in the previous section, there are two different electronic con-

tributions at EF, namely pockets around Γ and K. To find out the effect

of this multiband character of the superconductivity, anisotropic Eliashberg
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calculations were carried out. The main result is that the multiband effect is

much smaller in TMDs than in MgB2 (cf. Chapters 6–7). The obtained gap

spectrum shows a single, anisotropic gap, in all cases ranging from a single

ML to the bulk limit. However, it should be noted that it is not a priori clear

that this type of gap spectrum would be conserved upon the CDW-driven

reconstruction of the crystal structure described above. The overestimation

of Tc is confirmed in the anisotropic calculations. To give an example, to

match the calculated Tc of bulk NbSe2 with the experimental value of 7.0 K

[118], an enhanced Anderson-Morel pseudopotential of µ∗ = 0.23 − 0.24 is

required in the model. It is more likely that in reality the competition with

the CDW state lowers Tc, as discussed above.

8.5 The Ising state

As discussed in Sec. 8.3, spin-orbit coupling (SOC) plays a crucial role in

TMDs. We will review here how this affects the behavior of the electron

spins, especially in stacks consisting of an odd number of monolayers that

lack an in-plane inversion center. First, I will review how the behavior of

the spins can be studied in a quantum-mechanical fashion, by calculating the

spin expectation values, then I will present the crucial role of symmetries,

and finally I will show how to couple this to ab initio calculations.

8.5.1 Spin expectation values

Spin expectation values are the matrix elements of the operators Ŝi = ~
2 σ̂i,

where i = x, y, z and where σ̂i are the Pauli matrices1. Here we need to bear

in mind that the wave functions are spinors of the form given in Eq. 8.1.

Thus, the spin expectation values are
Sx = ~

2〈ψ|σ̂x|ψ〉 = ~
2

(
〈ψ(1)|ψ(2)〉+ 〈ψ(2)|ψ(1)〉

)
,

Sy = ~
2〈ψ|σ̂y|ψ〉 = ~

2 i
(
〈ψ(2)|ψ(1)〉 − 〈ψ(1)|ψ(2)〉

)
,

Sz = ~
2〈ψ|σ̂z|ψ〉 = ~

2

(
〈ψ(1)|ψ(1)〉 − 〈ψ(2)|ψ(2)〉

)
,

(8.4)

1The Pauli matrices read σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, and σ̂z =

(
1 0
0 −1

)
.
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which are to be divided by the square of the norm, 〈ψ(1)|ψ(1)〉+〈ψ(2)|ψ(2)〉, in

case the spinors were not yet normalized. Note that all of these expectation

values are real2, as they should be in order to be correct physical observables.

8.5.2 The crucial role of symmetry

Spin expectation values in condensed matter are dictated by symmetry [311].

The two main symmetries at play here are spatial inversion symmetry and

time-reversal symmetry. Spatial inversion symmetry means invariance under

the transformation r → −r. This immediately translates into the relation

E(k, ↑) = E(−k, ↑) for the energy spectrum of a solid with spatial inversion

symmetry.

On the other hand, time-reversal symmetry (TRS) in solids describes the

transformation of the wave function under the influence of the time reversal

operator T̂ that transforms |k〉 → | − k〉 and | ↑〉 → | ↓〉, so that T̂ψ(k, ↑
) = ψ(−k, ↓). This implies for the energy spectrum of the solid that E(k, ↑
) = E(−k, ↓). Thus, if both symmetries are combined – as is the case in

centrosymmetric materials – the energy spectrum obeys E(k, ↑) = E(k, ↓),
so that two states with opposite spin are completely degenerate.

Time-reversal symmetry breaking (TRSB) can occur in relatively simple con-

densed matter systems, for instance in ferromagnetic materials. As a result,

even though, e.g., ferromagnetic iron adopts the centrosymmetric space sym-

metry of group Im3̄m (No. 229), E(k, ↑) 6= E(k, ↓). A traditional supercon-

ductor in a singlet state (electrons with opposite spin are paired up) and

a simple Fermi surface, as described by Bardeen-Cooper-Schrieffer theory,

obeys fully time-reversal symmetry. However, in some less conventional su-

perconductors, such as three-gap superconductors with phase frustration and

triplet superconductors, TRSB can occur, as discussed in Chapters 1 and 5.

2Sx is of the form
∫
dr
(
ψ(1)(r)ψ(2)∗(r) + c.c.

)
, and is thus real and Sy is of the form

i
∫
dr
(
ψ(1)(r)ψ(2)∗(r)− c.c.

)
, which also proves it being real, while for Sz, it suffices to

note that it is a sum of squared norms.
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8.5.3 Rashba effect and spin-valley locking

A notable example of a spin texture phenomenon occurring in two-dimensional

materials is the Rashba effect [311]. It originates from spatial inversion sym-

metry breaking in the out-of-plane direction. This can for instance be realized

by an applied electric field perpendicular to the crystal plane. The resulting

spin texture is characterized by in-plane spins with a momentum-dependence

parametrized by a circle. Bulk, non-centrosymmetric crystals display related

behavior, called the Dresselhaus effect [311].

In contrast to the in-plane spins emerging in the Rashba effect, odd-layered

TMDs display a spin texture which we will denote as spin-valley locking, and

the resulting quantum state as the Ising state. It results from the crystal

structure of these materials – as discussed in Sec. 8.2 and depicted in Fig. 8.2

– combining out-of-plane mirror symmetry (for instance, in TaS2 the mirror

plane corresponds to the Ta plane), a lack of in-plane inversion symmetry

and strong SOC.

Before going to the complete ab initio description, we will make full use

of the symmetries to derive as much of the properties of the Ising state as

possible. Due to the mirror plane, the crystal field originating from the SOC,

ε, cannot have a gradient perpendicular to this plane. As such it is confined

to the (x, y)-plane of the atoms, and therefore takes the form ε = (εx, εy, 0).

Since the electron motion is also confined to the (x, y)-plane, k= (kx, ky, 0).

As a consequence, the effective magnetic field due the SOC reads

HSO = k× ε = (εykx − εxky) ẑ , (8.5)

and is therefore polarized completely in the z-direction. Under the influence

of this SO magnetic field the spin expectation values also polarize in the

z-direction.

This phenomenon is called spin-valley locking, as the spin polarization de-

pends on the electronic valleys related to the two sublattices. Namely, owing

to TRS, the spin expectation values are reversed in K’ with respect to K,

for the same band. The resulting state is called the Ising state in view of its

likeness to the Ising model for ferromagnetism.
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Figure 8.5: Calculated Fermi surfaces of 1 − 3 ML TaS2, includ-
ing the calculated band- and momentum-dependent spin expectation

values.

It is instructive to consider the relation of spin-valley locking to magnetism.

Locking of specific spin states to electronic bands is a property of the re-

ciprocal space, and the bands result from hybridization between states from

different atoms, so the spins cannot be mapped to a magnetic state. What is

more, the net polarization of spins over the whole unit cell amounts to zero,

since TRS is conserved – so there is no spontaneous magnetization.

8.5.4 Ab initio description

To a first approximation the spin expectation values are dictated by the

spinor properties described in Sec. 8.3. These indicate first of all that since

there is always a leading spinor component, an order of magnitude larger

than the other one, cross terms containing both ψ(1) and ψ(2) are small.

As such, according to Eq. 8.4 that Sx and Sy are negligible. Moreover, the

specific relation between the leading spinor components of both bands, given

by Eqs. 8.2 and 8.3, dictates that they have opposite sign.

A more detailed ab initio description of the spin texture can be obtained by

explicitly carrying out the integrals contained in the spinor inner products

of Eq. 8.4. Apart from very small numerical rounding errors, almost perfect
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polarization of the spin expectation values in the z-direction is obtained.

These are depicted in Fig. 8.5, plotted onto the Fermi surfaces of 1 − 3

ML TaS2. The case of 1-ML TaS2 is the one discussed earlier, namely the

Ising state. Around K, there is an inner and an outer band, which have

opposite spin expectation values polarized in the z-direction. Around K’, the

expectation values carry the opposite signs with respect to those around K,

as a result of TRS. Around Γ, we see a different situation to that depicted

in Fig. 8.1(b) – which I took from the existing literature – where no spin

expectation values are depicted on those bands. In reality, the calculations

show that the two bands around Γ display spin-valley locking too, touching

in six points (nodes) to ensure TRS.

In the 2-ML case there are two spin states per band – stemming from the two

layers – such that there is usual spin degeneracy of each band. Notice that

the nodes around Γ have vanished, since they are not required to ensure TRS

here. Therefore, this case does not have a special effect on superconductivity.

In the 3-ML, there is a fine-structure consisting of four bands around both

Γ and K. In this case, the Ising state re-emerges, albeit not explicitly shown

here because of the required detail.

The relevance or strength of the Ising state depends on the split between the

bands. So, especially the TMDs consisting of heavier transition metals hold

promise for a maximal Ising state that might show unconventional and/or

topological superconductivity.

8.6 Ab initio description of the charge density wave

state

In addition to the Ising state, the CDW state is also crucial for a proper de-

scription of superconductivity in 2D TMDs, as already indicated in Sec. 8.4.1.

In case of a CDW instability, the eigenvalues of the corresponding phonon

mode turn imaginary, provided that the electronic smearing in the calcu-

lations (introduced in Sec. 2.6.3) is sufficiently small to resolve this effect

[312, 313]. The electronic smearing can be linked to an effective temperature,

since the electronic occupancies are distributed according to a Fermi-Dirac
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Figure 8.6: First-principles approach to the CDW state. (a)
Phonons of 1-ML TaS2 calculated at high and at low temperature (T ),
the latter showing a CDW instability at QCDW. (b.) The LA phonon
mode, showing the triple nature of the CDW, characterized by vec-
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where σ is the smearing factor. In the majority of the calculations presented

in this thesis an electronic smearing amounting to σ = 0.01 Ha was used, but

for resolving CDW instabilities I used σ = 0.0025 Ha. It should be stressed

that the equivalent temperature of this smearing factor cannot be directly

related to the transition temperature for the CDW phase. It merely corre-

sponds to the numerical precision needed to resolve the CDW ground state.

To determine the transition temperature a description of finite-temperature

excitations beyond DFT would be required.

The main goal here is to determine the atomic reconstruction from the CDW

vector describing the displacements of the atoms. The strength of the CDW

can then be calculated by means of a structural relaxation (e.g., in ABINIT)

of the reconstructed unit cell. Subsequently, the electronic and vibrational

properties of this relaxed supercell, as well as the reconstructed e-ph coupling

can be calculated.
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As a proof of concept, I considered monolayer TaS2. Fig. 8.6(a) shows two

regimes in the phonon eigenvalues, namely the high temperature (T ) regime

(modeled with large electronic smearing) with stable phonon modes, and the

low T one (modeled with lower electronic smearing). The latter shows an

instability in the LA mode around the CDW, vector QCDW.

This is just the manifestation of the CDW in the irreducible BZ. In the full BZ,

the CDW instability has a triple nature, with three fundamentally different

minima, as shown in Fig. 8.6(b). The minima are given by Q
(1)
CDW = 3

4M=(
3
8 , 0, 0

)
, Q

(2)
CDW = 3

4M’=
(
0, 3

8 , 0
)
, and Q

(3)
CDW = 3

4M”=
(
−3

8 ,
3
8 , 0
)

3, with

each time an angle of 60◦ in between. The reconstruction following from the

eigendisplacements of the unstable mode is described a large unit cell of size

8× 8× 1, containing 192 atoms.

The eigenvalue of the LA mode at M is only slightly larger than that at

QCDW, as seen in Fig. 8.6, so the CDW reconstruction can be approximated

by the one exactly at M. The advantage is that this instability corresponds

to a smaller reconstructed unit cell of size 2×2×1, thus containing 12 atoms

– making it more feasible to be treated computationally. It is characterized

by the formation of trimers, where the bond lengths between the Ta and the

S atoms are shorter, as depicted in Fig. 8.7.

The variation in the overestimation of the calculated Tc’s for different cases,

listed in Table 8.1, indicates that the CDW amplitudes (i.e., how large the

changes in the crystal structure due to the CDW instability are) are influ-

enced by dimensionality and material-specific characteristics. Interestingly,

the Tc of TaS2 increases as the thickness is reduced, while in NbSe2 the oppo-

site trend is observed. In the experimental study of Ref. 121 it is suggested

that CDW transitions in TaS2 are suppressed in the monolayer limit, leading

to a higher Tc. This scenario is plausible, but not yet supported by calcula-

tions proving directly the effect of dimensionality on the CDW amplitudes.

3The different copies of point M in the full Brillouin zone are M=
(

1
2
, 0, 0

)
, M’=

(
0, 1

2
, 0
)
,

and M”=
(
− 1

2
, 1

2
, 0
)
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Figure 8.7: The high and low T phases, the latter with 2 × 2 × 1
CDW reconstruction.

8.7 Interplay between the states

Having established in the previous sections how the novel quantum states in

2D TMDs can be described from first principles, I will discuss here prospec-

tive ideas on how the interplay between the different states in these materials

might function. This lays the basis for future research.

The Ising state strongly influences the superconducting state, as the spin

texture puts restrictions on the coupling between specific spin states, so that

Bardeen-Cooper-Schrieffer-like spin singlet pairing (between opposite spin

states) is likely not the only mechanism at play. This opens the possibility

of unconventional spin-triplet pairing (between equal spin states) in TMDs4,

especially when the splitting between the bands can be enhanced. Such

spin-triplet pairing has topological properties, and can support and stabi-

lize Majorana fermions in hybrid devices based on 2D TMDs [302], holding

promise for future quantum computing [314].

In practice, both the singlet and the triplet pairing channels are available in

2D TMDs. To introduce the Ising state into the Eliashberg framework, the

electron kinetic energy can be separated into normal and SOC components,

with the latter containing the effect of the Ising spin texture. Due to the

potentially mixed singlet-triplet pairing both need to be included in the form

of coupled equations.

4It should be noted that during the superconducting condensation, the direction of the
spin expectation values changes from the out-of-plane direction to the in-plane direction
[302].
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Figure 8.8: Scheme resuming the main questions related to the
interplay between the different phases, as well as the pathways aimed

at tailoring them.

As explained in the previous section, the crystal structure reconstructs into

a larger unit cell under the influence of the CDW instability. This results

in drastic changes in the electronic structure and the e-ph coupling. It is

very important to consider whether the CDW gap opening in the electronic

structure occurs exactly at the Fermi level, and to what extent the e-ph

coupling is affected. This corresponds to the scenario of pure competition

between CDWs and superconductivity. Other scenarios are also possible. For

instance, a regime may exist where CDWs enhance superconductivity due to

decreased electron-electron repulsion as a result of the reconstruction.

While Ising superconductivity and the CDW state can be considered as inde-

pendent to a first approximation, the CDW state will exert an influence on

the Ising state. The Fermi surface reconstruction that CDWs induce affects

the electronic structure, and thus also the spin texture.

The interplay between superconductivity, CDWs and the Ising state is sum-

marized in Fig. 8.8.

8.7.1 Tailoring the interplay

Finally, I will discuss some ideas to tailor the interplay between the different

states of the preceding sections on the nanoscale. The main conclusions are

summarized in Fig. 8.8.

The first route is gating the system (i.e., adding or removing electrons), to

change the Fermi level, thereby altering the electronic structure. Gating is
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moreover required to render the intrinsically semiconducting TMDs (MoS2,

WS2, etc.) metallic and thus potentially superconducting. Interestingly,

gating renders the outermost layer of a few-monolayer stack electrically de-

coupled from the other layers, thus mimicking a freestanding monolayer –

including its Ising state [284]. Changes of the Fermi level and the Fermi sur-

face due to gating can be probed by means of quantum oscillations in applied

magnetic fields, in comparison with calculations, as explained in Chapter 4.

A second interesting route is that of doping. With doping the Fermi level

is altered, but additionally the electronic structure is adapted through hy-

bridization of the electronic states of the dopants with those of the host

atoms. Such profound changes in the electronic structure also alter the e-

ph interaction. Recall, for instance, the results of Chapter 7, where the

e-ph interaction of 1-ML MgB2 was strongly enhanced by means of hydro-

gen adatoms. Also, a strong influence of dopants like Cu in the vdW gap

of TiSe2 has been observed (as explained in the introduction). Magnetic

dopants would in addition affect the spin texture and may thus promote the

triplet superconducting state. The ultimate goal of this investigation is to

realize local control of the system through nanopatterning with dopants.

A third route for tailoring the properties of the 2D TMDs is strain. Owing to

recent advances, non-epitaxial 2D materials can be strained by bending the

substrate [315]. Since it directly influences the structural properties, strain

can significantly affect the CDW order. However, it is also likely to strongly

enhance the e-ph coupling, similarly to what I reported for ML MgB2 in

Chapter 7 [200]. A closely related route is that of pressure, which mainly

reduces the vdW gap. The latter has been observed to suppress CDWs

and to boost superconductivity [316], although the mechanism is not well

understood.

8.8 Conclusions

In conclusion, in this chapter I introduced the different quantum states at play

in two-dimensional transition metal dichalcogenides (2D TMDs), resulting

from structural, electronic and spin degrees of freedom. This richness in
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quantum states makes them a very interesting system for multicomponent

superconductivity.

An important property of the crystal structure is that an inversion center

is absent in case of an odd number of monolayers, and present otherwise.

Due to the heavy mass of the transition metal, TMDs host strong spin-orbit

interaction. The combination of this spin-orbit coupling with the lack of an

inversion center, leads to a splitting of the electronic bands. By calculat-

ing the spin expectation values from the ab initio spinor wave functions I

demonstrated that in this case the spins are polarized in the out-of-plane

direction. Moreover, they are opposite for the two split bands, and they

depend on the electronic valley, as a result of time-reversal symmetry. As

such, this effect is known as spin-valley locking and the resulting state as the

Ising state. Because of the influence of the spin texture on superconducting

coupling, the Ising state can lead to mixed singlet-triplet pairing and, thus,

to unconventional superconductivity.

A calculation of the phonons and the electron-phonon interaction of the 2D

TMDs using density functional perturbation theory (DFPT) revealed poten-

tially very strong superconductivity. However, I showed here that the ob-

tained values give a serious overestimation compared with the experimental

values. This discrepancy can be solved by lowering the electronic smearing

in the DFPT calculations, which resolves an instability of the longitudinal

acoustic phonon mode, in the case of monolayer TaS2. Such an instabil-

ity, resulting from strong electron-phonon interaction coupling nested Fermi

sheets, is called a charge density wave (CDW). The crystal reconstruction

following the eigendisplacements of the CDW mode can be used to correct

the electron-phonon interaction at the base of the superconducting state.

All of these quantum states are closely related because they originate from

the same degrees of freedom (structural, electronic and spin). Hence, their

interplay is a subject of much current interest. A preliminary requirement

to study this interplay is a complete ab initio description of the Ising and

CDW states, as established in this chapter. Because of the importance of

the atomic-scale interactions in establishing these states, they are prone to

be tailored on the nanoscale, by means of, e.g., gating, doping and strain.



Chapter 9

Summary and outlook

9.1 Summary

Recent years have seen important breakthroughs in superconductivity re-

search, as discussed in Chapter 1. In 2001 a layered material, magnesium

diboride (MgB2), was discovered to host two distinctly different supercon-

ducting condensates. The first, strongest condensate originates from the

in-plane boron electron states (the σ condensate), the other from the out-of-

plane boron states (the π condensate). Therefore, bulk MgB2 is a four-band,

two-gap superconductor. More recently, efforts have been made to reduce

superconducting systems spatially in one or more dimensions. Contrary to

all expectations – based on limitations on order in low-dimensional systems

– superconductivity was realized down to a single monolayer in various sys-

tems, ranging from epitaxial monolayers of elemental metals to (doped or

gated) atomic sheets of the graphene family.

The quantum confinement in such 2D materials leads to profound changes

in the electronic and vibrational properties. For instance, confinement can

lead to different subbands at the Fermi level, and is therefore directly linked

to multiband superconductivity. Thus, there is a growing interest in the

influence of multiple degrees of freedom on the superconducting state – such

as multiple bands, spin degrees of freedom, but also different interactions

competing with the superconducting state. In general this emergent behavior

can be referred to as multicomponent superconductivity.

223
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In this thesis it was studied how multicomponent superconductivity behaves

in materials ranging from bulk -sized to atomically thin. For this purpose an

appropriate ab initio framework was developed here, starting from the ba-

sic laws of quantum mechanics without further assumptions. The ab initio

framework established and employed in this thesis consists of two distinct

steps, namely (i) calculations of the normal-state properties and (ii) calcula-

tions of the superconducting state based on quantum-field theory. The first

step consists of a full description of the electronic and vibrational proper-

ties of the crystal, based on density functional theory (DFT). As reviewed in

Chapter 2, DFT is based on the existence of a universal energy functional

of the electronic density, of which the minimum provides the ground state

density (Hohenberg-Kohn theorems). In practice, the system of interacting

electrons is mapped to an effective system of non-interacting electrons moving

in an effective potential, leading to the Kohn-Sham equations.

How one includes vibrations in the ab initio description was shown in Chapter

3, by taking them into account as perturbations, resulting in a framework

called density functional perturbation theory (DFPT). Here, a lot of emphasis

was put on how the vibrational properties of two-dimensional materials differ

from their three-dimensional counterparts, e.g., the emergence of a flexural

mode. It was shown that from DFPT the electron-phonon interaction can

also be obtained, as matrix elements of the perturbed Kohn-Sham potential.

While the normal-state properties – structural, electronic, vibrational and

electron-phonon coupling properties – can be obtained from DF(P)T, for the

description of the superconducting state an adequate quantum-field theory

is employed. This theory is called Eliashberg theory, and can be combined

with the ab initio calculated electron-phonon interaction. In this thesis,

the momentum-dependent (i.e., anisotropic) Eliashberg equations are solved,

where the anisotropy of the superconducting gap is taken into account to

characterize the possible multigap nature of superconductivity.

The first application of this ab initio description, presented in Chapter 4, was

aimed at clarifying the anomalous behavior of the multiband superconductor

osmium diboride (OsB2), with a superconducting gap spectrum and behavior

in applied magnetic field that were not well understood. From DFT calcu-

lations OsB2 was found to be a three-band material, harboring two similar

quasi-ellipsoidal osmium-derived Fermi sheets and a third anisotropic sheet
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with mixed osmium-boron character. I demonstrated that this calculated

electronic structure can be validated by means of quantum oscillations, specif-

ically Shubnikov-de Haas oscillations. By solving the anisotropic Eliashberg

equations, a single, anisotropic gap was obtained. The apparent discrepancy

with the two-gap fit of the experimental superfluid density evolution with

temperature (data of Ref. 222) was elucidated by calculating the superfluid

density from the gap spectrum. This yielded the correct convex profile pre-

viously exclusively attributed to the two-gap nature, but due to anisotropy

of the superconducting gap here. This provides a clear and important caveat

for future identifications of multigap superconductors based on superfluid

density measurements. It is advisable to supplement these measurements

by more direct measurements of the superconducting gap (e.g., using angle-

resolved photoemission spectroscopy) and by calculations as performed here.

To characterize the behavior of the superconducting state in OsB2 in ap-

plied magnetic field, I calculated the superconducting length scales from its

electronic properties using Ginzburg-Landau relations. The combination of

high Fermi velocities and a limited Tc leads to a very low Ginzburg-Landau

parameter in OsB2, and thus to type-I behavior – a very rare property among

compound superconductors.

As mentioned above, multicomponent superconductivity can also originate

from interactions competing with the superconducting state, for instance,

mediated by spin fluctuations, i.e., magnetic excitations in materials without

long-range magnetic order. A new ab initio approach was developed in Chap-

ter 5 to treat lattice vibrations and ferromagnetic spin fluctuations (FSFs) on

the same footing, within Eliashberg theory. This approach employs the sus-

ceptibility to FSFs within the random phase approximation, calculated from

the ab initio band structure and Stoner parameter. The latter is obtained

from the band splitting resulting from applied magnetic moments accord-

ing to Stoner theory. Spin-singlet and spin-triplet superconductivity can be

treated in a similar way, only in the former the coupling to FSFs is repulsive

and in the latter attractive. This novel method was used to study a recently

discovered iron-based superconductor, iron tetraboride (FeB4), in particular

to elucidate its lower than expected critical temperature (Tc) [244]. I ob-

tained that FeB4 has a strong tendency for FSFs, as a result of two nested

ellipsoidal Fermi sheets. By solving the anisotropic Eliashberg equations, it
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was revealed that the FSFs in FeB4 reduce Tc by more than an order of mag-

nitude (yielding a value in excellent agreement with the experiment), while

not qualitatively changing the anisotropic single-gap spectrum.

In Chapter 6, the formation and evolution of multigap superconductivity in

the atomically thin limit was studied, by solving the Eliashberg equations

with ab initio input. The study was specifically focussed on atomically thin

MgB2, in view of its bulk two-gap superconductivity. In the atomically thin

limit an emerging surface band, originating from the magnesium surface, hosts

a third gap, in addition to the bulk-like σ and π gaps. In monolayer MgB2,

the three gaps are very distinct, even at temperatures close to Tc. This cal-

culation thus reveals monolayer MgB2 as the first known purely three-gap

superconductor, moreover with a relatively high Tc of 20 K. Here, it needs

to be stressed that taking into account multigap effects by solving the fully

anisotropic Eliashberg equations is crucial, since the Tc thus obtained is twice

that of the isotropic approximation. Moreover, the three gaps translate to

three very distinct peaks in the superconducting tunneling spectrum. The

gap spectrum was found to change profoundly with every monolayer added to

the structure, due to increased hybridization between the condensates. This

property can be exploited in nano-sized junctions between different super-

conducting spectra, relying simply on local thickness control of MgB2. The

theoretical results were subsequently compared to angle-resolved photoemis-

sion spectroscopy (ARPES), where the surface band of six-monolayer MgB2

was indeed observed to host a new superconducting gap in quantitatively

good agreement with the theoretical prediction.

Several pathways to enhance superconductivity in the monolayer limit were

explored in Chapter 7, focussing again on MgB2. First, it was found that

applying tensile biaxial strain leads to significant phonon softening, accompa-

nied by strongly enhanced electron-phonon coupling according to Eliashberg

theory. By solving the anisotropic Eliashberg calculations it was found that

with merely 4−5% tensile strain, Tc is boosted beyond 50 K, profiting from the

intrinsic enhancement due to the preservation of three-gap superconductivity

in the strained monolayer. The second route that was explored to enhance

the superconductivity is that of adatoms, specifically the omnipresent ele-

ment hydrogen. Under the influence of adatom-host hybrid electron states

with a strong coupling to phonons the Tc was found to double at least with
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respect to that of pure monolayer MgB2, and is boosted further with strain.

Using an isotropic approximation to the Eliashberg theory, a Tc above 50 K

was attained already at 3% tensile strain, and is expected to increase further

when taking into account multiband effects. Both pathways explored in this

chapter unequivocally prove the potential of enhancing superconductivity in

atomically thin materials using nanoscale manipulations.

In Chapter 8, the study of multicomponent superconductivity in atomically

thin materials was extended to the transition metal dichalcogenides (TMDs).

They display several novel quantum states coexisting with superconductivity,

as a result of structural, electronic and spin degrees of freedom. The calcu-

lation of the electron-phonon interaction within DFPT proved that phonons

alone do not suffice to describe the superconducting state in TMDs, in com-

parison to available experimental data. In particular, the calculated Tc is

strongly overestimated. Thus, this analysis proves that the novel quantum

states coexisting with superconductivity need to be taken into account. To

that end, an ab initio description of these states was developed here. Firstly,

spin textures originating from strong spin-orbit coupling are described by a

calculation of the spin expectation values from the ab initio spinor wave func-

tions. It was shown that this yields an accurate description of the Ising state –

characterized by spin-valley locking – which can lie at the base of topological

and unconventional superconductivity in atomically thin TMDs. Secondly,

it was shown that DFPT calculations are able to describe the appearance

of structural instabilities in TMDs, called charge density waves (CDW). To

this end, special care is to be taken of resolving small energy differences (by

means of a lowered electronic smearing). I demonstrated that based on the

eigendisplacements of the CDW instability the low-temperature crystal re-

construction can be performed. The reconstructed unit cell can subsequently

be used to study the interplay between the superconducting and CDW state.

Finally, a roadmap was provided to study the interplay between supercon-

ductivity and the novel quantum states in TMDs in general, based on the

established ab initio description, able to take into account nanoscale tailoring

by means of gating, doping and strain.
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9.2 Outlook

The research field of multicomponent superconductivity is rapidly progress-

ing. So, in spite of the effort invested in this thesis to provide a general frame-

work to treat multicomponent superconductivity, applied to several cases of

current interest, the investigation is not completed. There are several routes

to continue the research initiated in this thesis.

A first route is to include electronic interactions beyond the generalized gra-

dient approximation to DFT. For example, the van der Waals correlations

between different monolayers in certain materials – such as TMDs – can be

included in DFT owing to recent advances [317, 318]. Some interactions may

even go beyond the DFT description, for instance, the strong correlations

indicated by the anomalous Fermi surface of iron selenide (cf. Appendix B).

These can be treated using dynamical mean-field theory. Many-body descrip-

tions of the electronic structure may also lead to an improved accuracy. One

such description, albeit currently computationally restrictive, is provided by

the GW approach (cf. Sec. 2.4.3). Another improvement that can be made

is in the description of the electron-electron interaction within the Cooper-

pair. In the approach to Eliashberg theory employed in the present the-

sis this was approximated by the isotropic Morel-Anderson pseudopotential

(cf. Sec. 3.5.4). Owing to recent advances in the field, ab initio calculations

of the full, anisotropic interaction kernel based on the random phase approx-

imation have become feasible [84]. This approach is still to be introduced

into the UppSC code.

Chapter 5 has provided a new and accurate framework to study supercon-

ductivity under the influence of both lattice vibrations and spin fluctuations.

The possibility of triplet superconducting pairing in iron tetraboride was in-

vestigated, with the result that it is entirely absent. However, using the new

framework possible triplet pairing in other material classes with a competing

ferromagnetic phase can be explored.

The calculations of Chapters 6–7 were focussed on multigap superconduc-

tivity in atomically thin magnesium diboride, yielding concrete pathways to

enhance superconductivity in the ultrathin limit by means of biaxial strain

and adatoms. These can be explored further in other material classes, e.g.,

in materials of the graphene family and in MXenes. Other pathways that
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can be additionally explored are uniaxial strain – i.e., strain applied along

one of both in-plane crystal directions – and other geometries such as one-

dimensional nanoribbons. In addition, for hydrogen-doped monolayer MgB2

it would be interesting to investigate nuclear quantum effects and phonon

anharmonicities due to hydrogen, as explained in Sec. 3.5.9.

In Chapter 8 of this thesis, a proper ab initio description of the novel quan-

tum states coexisting with superconductivity in 2D TMDs (the Ising and

CDW states) was developed. Future work will consist of characterizing the

behavior of these states further, for different TMD materials, and under

the influence of several tailoring methods (strain, doping and gating). The

superconducting behavior resulting from the interplay with these states will

subsequently be explored by constructing an extended Eliashberg framework,

able, for example, to describe Ising superconductivity.

Finally, some prototype ideas have been introduced in this thesis that can

be developed into devices based on atomically thin superconductors, e.g., the

superconducting junction by local thickness control described in Chapter 6.

In order to characterize the operation of such devices theoretically, the ab

initio results presented here can be used as input for Ginzburg-Landau and

Bogoliubov-de Gennes simulations describing a larger spatial scale. Such

multi-scale approach is ideally suited for in silico design of new devices.





Chapter 10

Samenvatting en

toekomstperspectieven

10.1 Samenvatting

In recente jaren zijn er enkele belangrijke doorbraken in het onderzoek naar

supergeleiding verwezenlijkt, zoals besproken in Hoofdstuk 1. In 2001 werd

ontdekt dat een gelaagd materiaal, magnesium diboride (MgB2), twee ver-

schillende supergeleidende condensaten bevat. Het eerste en sterkste con-

densaat is afkomstig van de elektronische toestanden van boor die in het

kristalvlak liggen (het σ-condensaat) en het tweede condensaat van de toe-

standen van boor die loodrecht op het kristalvlak staan (het π-condensaat).

Bulk MgB2 is dus een vier-band supergeleider met twee verschillende superge-

leidende bandkloven. Recenter, werden er succesvolle pogingen ondernomen

om supergeleidende materialen ruimtelijk in te perken in één of meerdere di-

mensies. Tegen alle verwachtingen in – gebaseerd op beperkingen om orde te

creëren in laag-dimensionale systemen – werd supergeleiding tot in een enkele

monolaag gerealiseerd en dit in uiteenlopende systemen, gaande van epitaxi-

aal gegroeide monolagen van elementaire metalen tot atomaire monolagen

van de grafeenfamilie (gedoteerd of in een aangelegd elektrisch veld).

De kwantuminperking van zulke 2D materialen leidt tot diepgaande veran-

deringen in de elektronische en vibrationele eigenschappen. Bijvoorbeeld

kunnen er verschillende subbanden bij het Ferminiveau ontstaan, wat direct

231
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gerelateerd is aan multiband supergeleiding. Daarom neemt de interesse voor

de invloed van een veelheid aan vrijheidsgraden in de supergeleidende toe-

stand dus alsmaar toe. Deze vrijheidsgraden kunnen niet enkel meerdere

banden zijn, maar ook spinvrijheidsgraden en interacties die met de super-

geleidende toestand concurreren. In het algemeen worden deze opkomende

fenomenen in deze thesis aangeduid als multicomponent supergeleiding.

In deze thesis werden de eigenschappen van multicomponent supergeleiding

bestudeerd in materialen die variëren van bulk tot atomair dun. Hiervoor

werd een adequaat ab initio raamwerk ontwikkeld, dat vertrekt van de ba-

siswetten van de kwantummechanica, zonder verdere aannames. Het ab

initio raamwerk ontwikkeld en toegepast in deze thesis omvat twee stap-

pen, namelijk (i) het berekenen van de eigenschappen van de normale (niet-

supergeleidende) toestand en (ii) het berekenen van de supergeleidende toe-

stand door middel van kwantumveldentheorie. De eerste stap bestaat uit een

volledige beschrijving van de elektronische en vibrationele eigenschappen van

het kristal, gebruik makend van dichtheidsfunctionaaltheorie (DFT). Zoals

uiteengezet in Hoofdstuk 2 is DFT gebaseerd op het bestaan van een uni-

versele energiefunctionaal van de elektronische dichtheid, waarvan het mi-

nimum met de grondtoestandsdichtheid overeenkomt (de Hohenberg-Kohn

theorema’s). In de praktijk wordt het systeem van interagerende elektronen

gemapt op een effectief systeem van niet-interagerende elektronen bewegend

in een effectieve potentiaal, wat leidt tot de Kohn-Sham vergelijkingen.

Hoe roostertrillingen aan de ab initio beschrijving toe te voegen werd uit-

gelegd in Hoofdstuk 3, namelijk door hen als perturbaties te beschouwen,

resulterend in dichtheidsfunctionaalperturbatietheorie (DFPT). Hier werd er

bijzondere aandacht gewijd aan hoe de vibrationele eigenschappen van twee-

dimensionale materialen verschillen van die van driedimensionale materialen,

bijvoorbeeld, het tevoorschijn komen van een ‘flexural mode’. Er werd aan-

getoond dat vanuit DFPT de elektron-fonon interactie kan worden bekomen

als matrixelementen van de geperturbeerde Kohn-Sham potentiaal. Terwijl

de eigenschappen van de normale toestand – structureel, elektronisch en vi-

brationeel – dus door middel van DF(P)T berekend kunnen worden, wordt

voor de beschrijving van de supergeleidende toestand een aangepaste kwan-

tumveldentheorie gebruikt. Deze theorie, Eliashbergtheorie genaamd, kan
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gecombineerd worden met de elektron-fonon interactie, bekomen uit ab ini-

tio berekeningen. In deze thesis worden de impuls-afhankelijke (anisotrope)

Eliashbergvergelijkingen opgelost, waarbij de anisotropie van de supergelei-

dende bandkloof in rekening wordt gebracht om het mogelijke multicompo-

nent karakter van de supergeleiding te ontwaren.

De eerste toepassing van deze ab initio beschrijving werd voorgesteld in

Hoofdstuk 4 en was gericht op het verhelderen van het abnormale gedrag

van de multiband supergeleider osmium diboride (OsB2), waarvan het su-

pergeleidend spectrum en gedrag in aangelegd magnetisch veld helemaal niet

goed begrepen waren. Vanuit de DFT berekeningen werd gevonden dat OsB2

een drie-band materiaal is, bestaande uit twee gelijkaardige quasi-ellipsöıdale

Fermi oppervlakken afkomstig van osmium en een derde anisotroop opper-

vlak met gemengd osmium- en boorkarakter. Ik heb aangetoond dat de

berekende elektronische structuur kan worden gevalideerd door middel van

kwantumoscillaties, specifiek Shubnikov-de Haas oscillaties. Met behulp van

de anisotrope Eliashbergvergelijkingen werd een enkele, anisotrope bandkloof

gevonden. Ik heb vervolgens de schijnbare discrepantie met de dubbele-kloof

fit van de experimentele superflüıde dichtheid als functie van de tempera-

tuur (data uit Ref. 222) opgehelderd door de superflüıde dichtheid te bereke-

nen uit het theoretische spectrum. Dit leverde het correcte, convexe profiel

op dat voorheen exclusief aan een dubbele-kloof karakter werd toegewezen,

maar dat hier voortkomt uit de anisotropie van de supergeleidende bandkloof.

Deze analyse levert dus een duidelijke en belangrijke waarschuwing aan voor

toekomstige identificaties van supergeleiders met meerdere bandkloven, ge-

baseerd op metingen van de superflüıde dichtheid. Mijn advies luidt dus om

deze metingen steeds aan te vullen met meer directe metingen van de super-

geleidende bandkloof (bijvoorbeeld, met behulp van ‘angle-resolved photoe-

mission’ spectroscopie (ARPES)) en met berekeningen analoog aan wat hier

werd gedaan. Om het gedrag van de supergeleidende toestand van OsB2 in

aangelegd magnetisch veld te karakteriseren heb ik de supergeleidende leng-

teschalen berekend vanuit de elektronische eigenschappen met behulp van

Ginzburg-Landau uitdrukkingen. De combinatie van hoge Fermisnelheden en

een beperkte Tc leidt tot een zeer lage Ginzburg-Landau parameter en dus

tot type-I gedrag – een zeer zeldzame eigenschap voor een samengestelde su-

pergeleidende stof als OsB2.
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Zoals eerder gesteld, kan multicomponent supergeleiding ook voortkomen uit

interacties die met de supergeleidende toestand concurreren, bijvoorbeeld

overgebracht door magnetische spinfluctuaties, d.w.z. magnetische aangesla-

gen toestanden in materialen zonder magnetische orde met lange dracht.

Hiertoe werd een nieuwe ab initio aanpak ontwikkeld in Hoofdstuk 5, waar-

mee roostertrillingen op gelijke voet in rekening gebracht kunnen worden met

ferromagnetische spinfluctuaties (FSFs) binnen de Eliashbergtheorie. Deze

aanpak maakt gebruik van de susceptibiliteit voor FSFs binnen de ‘random

phase approximation’ (RPA), berekend met de ab initio bandenstructuur en

met de Stonerparameter. Die laatste wordt bekomen uit de bandensplitsing

onder invloed van aangelegde magnetische momenten volgens Stoner theo-

rie. Spin-singlet en spin-triplet supergeleiding kunnen op eenzelfde wijze

behandeld worden, enkel is voor de eerste de koppeling met FSFs afstotend

en voor de tweede aantrekkend. Deze nieuwe methode werd toegepast om

een recent ontdekte ijzerhoudende supergeleider, namelijk ijzer tetraboride

(FeB4), te bestuderen, in het bijzonder om te verklaren waarom de kritische

temperatuur (Tc) veel lager ligt dan verwacht [244]. Ik vond dat FeB4 een

sterke neiging vertoont tot FSFs, ten gevolge van twee geneste Fermiopper-

vlakken. Door de anisotrope Eliashbergvergelijkingen op te lossen, toonde ik

dat FSFs de Tc van FeB4 met méér dan een orde van grootte verlagen (wat

een waarde oplevert die zeer goed overeenstemt met het experiment), terwijl

het anisotrope spectrum met een enkele bandkloof kwalitatief niet verandert.

In Hoofdstuk 6 werd de vorming en de evolutie van supergeleiding met meer-

dere bandkloven in de atomair dunne limiet onderzocht, op basis van het

oplossen van de Eliashbergvergelijkingen met ab initio input. Deze studie

focuste specifiek op atomair dun MgB2 omwille van de dubble-kloof super-

geleiding in de bulk. In de atomair dunne limiet werd gevonden dat een

oppervlakteband tevoorschijn komt, die van het magnesiumvlak stamt. Deze

levert een derde bandkloof op, bovenop de σ- en π-bandkloven die ook in de

bulk voorkomen. In monolaag MgB2 zijn de bandkloven duidelijk geschei-

den, zelfs bij temperaturen dichtbij Tc. Deze berekening onthult dus dat

MgB2 de eerste als dusdanig gekende supergeleider met een pure drievoudige

bandkloof is en bovendien een relatief hoge Tc van 20 K heeft. Het moet

benadrukt worden dat het in rekening brengen van de meerdere bandkloven

– door de volledig anisotrope Eliashbergvergelijkingen op te lossen – cruciaal

is, aangezien de Tc die zo gevonden wordt het dubbele is van wat gevonden
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wordt binnen de isotrope benadering. De drie bandkloven leiden bovendien

tot drie verschillende pieken in het supergeleidende tunnelspectrum. Er werd

ook gevonden dat het supergeleidende spectrum drastisch verandert met elke

monolaag die aan de structuur toegevoegd wordt, door een toenemende mate

van hybridisatie tussen de condensaten. Deze eigenschap kan toegepast wor-

den in nanoscopische juncties van verschillende supergeleidende spectra, alle

gemaakt van MgB2 met lokaal gevarieerde dikte. De theoretische resultaten

werden vervolgens vergeleken met ARPES metingen. Er werd waargenomen

dat de oppervlakteband in MgB2 met een dikte van zes lagen inderdaad een

nieuwe supergeleidende bandkloof voorbrengt, met een kwantitatief goede

overeenkomst met de theoretische voorspelling.

In Hoofdstuk 7 worden verschillende paden verkend om supergeleiding in de

monolaaglimiet te versterken, waarbij weer gefocust wordt op MgB2. Ten

eerste werd er gevonden dat het biaxiaal uitrekken van het rooster tot een

aanzienlijke verzachting van de fononen leidt, gepaard met een sterke toename

van de elektron-fononkoppeling volgens de Eliashbergtheorie. Bij het oplos-

sen van de anisotrope Eliashbergvergelijkingen werd gevonden dat slechts

4 − 5% uitrekking nodig is om de Tc te verhogen tot boven 50 K. Hierbij

wordt ook voordeel gehaald uit de intrinsieke verhoging door koppeling tus-

sen de condensaten, doordat de drievoudige bandkloof behouden blijft voor

de uitgerekte monolaag. Het tweede pad om de supergeleiding te versterken

dat gevolgd werd is dat van de adatomen, specifiek het alomtegenwoordige

element waterstof. Er werden hybride elektronische toestanden – gevormd

tussen de adatomen en de andere atomen – gevonden, die sterk koppelen

met de fononen. Hierdoor verdubbelt de Tc op zijn minst vergeleken met een

pure MgB2 monolaag, wat nog versterkt wordt door uitrekking. Binnen een

isotrope benadering van de Eliashbergtheorie werd een Tc boven 50 K gevon-

den bij slechts 3% uitrekking. Het wordt verwacht dat deze nog verder stijgt

wanneer de multibandeffecten volledig in rekening gebracht worden. Beide

paden die onderzocht werden in dit hoofdstuk demonstreren dus op ondub-

belzinnige wijze het potentieel om supergeleiding te versterken in atomair

dunne materialen met behulp van nanoscopische ingrepen.

In Hoofdstuk 8 werd de studie van multicomponent supergeleiding in atomair

dunne materialen uitgebreid naar de transitiemetaaldichalcogeniden (TMDs).
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Deze vertonen verschillende nieuwe kwantumtoestanden die samen met su-

pergeleiding optreden, en die voortkomen uit structurele, elektronische en

spinvrijheidsgraden. De berekening van de elektron-fonon interactie met be-

hulp van DFPT toonde aan dat enkel fonons niet voldoende zijn om de super-

geleidende toestand in TMDs correct te beschrijven, wanneer we vergelijken

met beschikbare experimentele data. Meer bepaald is de berekende Tc sterk

overschat. Deze analyse toont dus aan dat de nieuwe kwantumtoestande die

samen met de supergeleiding voorkomen ook in rekening gebracht moeten

worden. Met dat doel werd hier een ab initio beschrijving van deze toestan-

den ontwikkeld. Ten eerste worden de spintexturen die onstaan uit sterke

spin-baankoppeling beschreven door de spinverwachtingswaarden te bereke-

nen vanuit de ab initio spinor golffuncties. Er werd getoond dat dit een ac-

curate beschrijving van de Isingtoestand – gekarakteriseerd door ‘spin-valley

locking’ – die aan de basis kan liggen van topologische en onconventionele

supergeleiding in atomair dunne TMDs. Ten tweede werd aangetoond dat

DFPT-berekeningen het verschijnen van structurele instabiliteiten in TMDs,

die ‘charge density waves’ (CDWs) worden genoemd, kunnen beschrijven.

Hiervoor moet speciale aandacht besteed worden om de kleine energiever-

schillen waar te nemen (door middel van een verlaagde elektronische ‘sme-

aring’). Ik heb gedemonstreerd dat de reconstructie van het kristal bij lage

temperaturen uitgevoerd kan worden door gebruik te maken van de eigenver-

plaatsingen van de CDW-instabiliteit. De gereconstrueerde eenheidscel kan

vervolgens gebruikt worden om de wisselwerking tussen de supergeleidende

en de CDW-toestand te bestuderen. Tot slot werd een stappenplan gegeven

om de wisselwerking tussen supergeleiding en de nieuwe kwantumtoestanden

in TMDs in het algemeen te onderzoeken met behulp van de hier ontwikkelde

ab initio beschrijving. In dit kader kunnen ingrepen op de nanoschaal, door

middel van een aangelegd elektrisch veld, van dotering en van deformatie,

ook beschouwd worden.

10.2 Toekomstperspectieven

Het onderzoeksdomein van multicomponent supergeleiding kent een snelle

ontwikkeling. Hoewel in deze thesis getracht werd om een algemeen kader

te voorzien om multicomponent supergeleiding te bestuderen, en dit toe te
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passen op verschillende actuele gevallen, is het onderzoek dus niet voltooid.

Er zijn verschillende opties om verder te bouwen op het onderzoek dat in

deze thesis werd aangevat.

Een eerste mogelijkheid is om elektronische interacties voorbij de ‘generalized

gradient’ benadering in de DFT mee te nemen. Bijvoorbeeld kunnen van der

Waals correlaties tussen de monolagen in bepaalde materialen – zoals TMDs

– toegevoegd worden dankzij recente ontwikkelingen [317, 318]. Sommige in-

teracties kunnen zelfs de DFT-beschrijving zelf overstijgen, bijvoorbeeld de

sterke correlaties aangetoond door anomalieën in het Fermi-oppervlak van

ijzerselenide (cf. Appendix B). Deze kunnen behandeld worden met de dy-

namische gemiddeld-veldtheorie. Veeldeeltjesbeschrijvingen van de elektroni-

sche structuur kunnen ook de nauwkeurigheid van de berekeningen verhogen.

Eén van deze beschrijvingen is de GW-benadering (cf. Sec. 2.4.3), maar deze

is wel computationeel zeer belastend. Ook de beschrijving van de elektron-

elektron interactie in het Cooperpaar kan verder verfijnd worden. In de

aanpak van de Eliashbergtheorie die in deze thesis gebruikt werd, was deze

benaderd door de isotrope Morel-Anderson pseudopotentiaal (cf. Sec. 3.5.4).

Dankzij recente ontwikkelingen in dit onderzoeksdomein, zijn ab initio be-

rekeningen van de volledige, anisotrope interactiekernel binnen de RPA mo-

gelijk geworden [84]. Deze uitbreiding moet nog wel aan de UppSC code

toegevoegd worden.

In Hoofdstuk 5 werd een nieuw en accuraat kader ingevoerd om supergeleiding

onder de invloed van zowel roostertrillingen als spinfluctuaties te bestuderen.

De mogelijkheid tot spin-tripletsupergeleiding in ijzertetraboride werd onder-

zocht, met als resultaat dat deze geheel afwezig is. Niettegenstaande kan dit

nieuwe kader aangewend worden om spin-tripletparing in andere materiaal-

klassen met een concurrerende ferromagnetische fase te exploreren.

De berekeningen van Hoofdstukken 6–7 waren gefocust op supergeleiding

met meerdere bandkloven in atomair dun magnesium diboride, en hebben

concrete methodes opgeleverd om supergeleiding in de ultradunne limiet te

versterken door middel van biaxiale deformatie en adatomen. Deze paden

kunnen verder verkend worden voor andere materiaalklassen, bijvoorbeeld in

de grafeenfamilie en in de MXenes. Andere wegen die nog verder verkend kun-

nen worden zijn die van uniaxiale deformatie, d.w.z. deformatie langs één van

beide kristalrichtingen – en die van andere geometrieën zoals ééndimensionale
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nanolinten. Bovendien zou het interessant zijn om kern-kwantumeffecten en

fononanharmoniciteit ten gevolge van waterstof te onderzoeken voor mono-

laag MgB2 gedoteerd met waterstof, zoals uitgelegd in Sec. 3.5.9.

In Hoofdstuk 8 van deze thesis werd een aangepaste ab initio beschrijving

ontwikkeld van nieuwe kwantumtoestanden die samen met supergeleiding

voorkomen in 2D TMDs (de Ising- en CDW-toestanden). Toekomstig werk

zal toegespitst op het verder karakteriseren van het gedrag van deze toestan-

den, voor verscheidene TMD materialen, al dan niet onder de invloed van

nanoscopische ingrepen (deformatie, dotering en aangelegd elektrisch veld).

Het supergeleidende gedrag dat voortkomt uit de wisselwerking met deze

toestanden zal vervolgens onderzocht worden door een veralgemeend Eliash-

bergkader op te stellen dat bijvoorbeeld Isingsupergeleiding kan beschrijven.

Ten slotte werden enkele prototypes voorgesteld in deze thesis die ontwik-

keld kunnen worden tot apparaten die gebruik maken van atomair dunne

supergeleiders, bijvoorbeeld de supergeleidende juncties verkregen door lo-

kale controle van de dikte van de films beschreven in Hoofdstuk 6. Om de

werking van zulke apparaten te karakteriseren kunnen de ab initio resultaten

die hier werden voorgesteld gebruikt worden als input voor Ginzburg-Landau

en Bogoliubov-de Gennes simulaties, die een grotere ruimtelijke lengteschaal

omvatten. Dergelijke multi-schaal aanpak is uiterst geschikt voor het in silico

ontwerpen van nieuwe apparaten.



Appendix A

Computational details

A.1 Calculations of Chapter 4

The density functional theory (DFT) calculations in this chapter make

use of the Perdew-Burke-Ernzerhof (PBE) functional, including spin-orbit in-

teraction, implemented within a plane wave basis in the VASP code [172, 176].

Electron-ion interactions are treated using projector augmented wave (PAW)

potentials, taking into account Os-5p66s25d6 and B-2s22p1 as valence elec-

trons. The energy cutoff for the plane-wave basis is set to 500 eV, to achieve

convergence of the total energy below 1 meV per atom. To obtain a very

accurate description of the Fermi surface, also needed for accurate calcula-

tion of the Fermi velocities and electronic density of states per band, a very

dense 40×32×24 Γ-centered Monkhorst-Pack k-point grid is used. For high-

symmetry k-points, we use the notational convention established in Ref. 319.

The optimized crystal structure was obtained using a conjugate-gradient al-

gorithm so that forces on each atom were below 1 meV/Å. A smearing of

ε = 0.05 eV was used in the numerical evaluation within the central differ-

ence approximation to ∂A
∂E

∣∣
E=EF

of the cyclotron masses according to Eq. 4.5.

Density functional perturbation theory (DFPT) calculations were car-

ried out within the framework of ABINIT [175], keeping the same valence

electrons as in VASP, and also using the PBE functional. The crystal struc-

ture was optimized again in ABINIT, with no significant differences with

the values reported in Table 4.1. The total number of perturbations due

239
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to atomic displacements (in other words, the number of phonon branches)

amounts to 3N = 18. The summation to obtain the Eliashberg function was

carried out over a 21× 15× 15 k-point grid and a 7× 5× 5 q-point grid.

The Eliashberg calculations were performed with the Uppsala Supercon-

ductivity code (UppSC). The anisotropic Eliashberg equations were solved

self-consistently in Matsubara space, starting from the electron and phonon

band structures and electron-phonon coupling obtained with DFPT. In this

scheme, we iterated until convergence better than 10−3 on the relative gap

values between each iteration step was reached. In all calculations, we em-

ployed standard µ∗ = 0.215 for the Coulomb pseudopotential, in order to

match the experimental Tc. For the sums over Matsubara frequencies a cut-

off energy of up to 0.7 eV was used (total of 2592 Matsubara frequencies).

In order to find the superconducting gap-edge, the converged solutions were

analytically continued to real frequencies with a Padé approximation proce-

dure.

A.2 Calculations of Chapter 5

The density functional theory (DFT) calculations make use of the gen-

eralized gradient approximation (GGA), specifically of the Perdew-Burke-

Ernzerhof (PBE) functional, implemented within a planewave basis in the

ABINIT code [175]. Electron-ion interactions are treated using norm-conser-

ving pseudopotentials [320], taking into account Fe-3d74s1 and B-2s22p1 as

valence electrons. The energy cutoff for the plane-wave basis was set to 60

Ha, to achieve convergence of the total energy below 1 meV per atom. To

obtain a very accurate description of the Fermi surface, a dense 25× 15× 15

Γ-centered Monkhorst-Pack k-point grid was used. The notational conven-

tion established in Ref. 319 is used to denote the high-symmetry k-points.

The optimized crystal structure was obtained using a conjugate-gradient al-

gorithm so that forces on each atom were below 1 meV/Å.

The density functional perturbation theory (DFPT) calculations of the

phonon dispersion and the electron-phonon coupling coefficients were also

carried out using ABINIT. Here, a 25× 15× 15 k-point grid is employed for
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the electronic wave vectors and a 5× 3× 3 q-point grid for the phonon wave

vectors.

The numerical solution of the extended Eliashberg equations (5.6-5.7)

along with an efficient calculation procedure of the coupling in equation

(5.8) were implemented in the Uppsala Superconductivity Code (UppSC)

[39]. Using UppSC, the coupled equations (5.6-5.7), supplemented by the

electron and phonon band structure and the electron-phonon and electron-

(para)magnon coupling, calculated by first principles, were solved self-consis-

tently in Matsubara space within a strict convergence criterion of xn−xn−1

xn
<

10−6 and with up to 1000 iteration cycles allowed. In all the calculations

presented here we set µ∗(ωc) = 0.1 for the Coulomb pseudopotential with a

sufficient value of ωc to ensure that the results are well converged.

A.3 Calculations of Chapter 6

The density functional theory (DFT) calculations make use of the Perdew-

Burke-Ernzerhof (PBE) functional implemented within a plane wave ba-

sis in the ABINIT code [175]. Electron-ion interactions are treated using

norm-conserving Vanderbilt pseudopotentials [321], taking into account Mg-

2s22p63s2 and B-2s22p1 as valence electrons. An energy cutoff of 60 Ha for

the planewave basis was used, to achieve convergence of the total energy

below 1 meV per atom. In order to simulate the atomically thin films, we

used unit cells that include 25 Å of vacuum. A dense 22× 22× 1 Γ-centered

Monkhorst-Pack k-point grid is used for an accurate description of the Fermi

surfaces. The lattice parameters were obtained using a conjugate-gradient

algorithm so that forces on each atom were minimized below 1 meV/Å.

In addition, the DFT calculations in Sec. 6.5 and 6.6 make use of the Perdew-

Burke-Ernzerhof (PBE) functional implemented within a plane wave basis in

the VASP code. Electron-ion interactions are treated using projector aug-

mented wave (PAW) potentials, taking into account Mg-2p63s2 and B-2s22p1

as valence electrons. An energy cutoff of 450 eV for the planewave basis was

used, to achieve convergence of the total energy below 1 meV per atom.

To obtain a very accurate description of the Fermi surface, a very dense
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35× 35× 31 Γ-centered Monkhorst-Pack k-point grid is used for bulk MgB2,

and a 35× 35× 1 grid for the few-layer structures.

To calculate phonon dispersions and electron-phonon coupling, density func-

tional perturbation theory (DFPT) calculations were carried out, also

within the framework of ABINIT. The total number of perturbations due to

atomic displacements to be treated (in other words, the number of phonon

branches) amounts to 3 · Natoms, ranging from 9 for a ML to 54 for 6 MLs.

Thus, the phonon spectrum and electron-phonon coupling coefficients, ma-

trix elements of the perturbative part of the Hamiltonian [242], are obtained.

We carried out the DFPT calculations on a 22 × 22 × 1 electronic k-point

grid and a 11× 11× 1 q-point grid as phonon wave vectors. Here, an energy

cutoff of 60 Ha was used.

Subsequently, the anisotropic Eliashberg equations, supplemented by

the electron and phonon band structure and the electron-phonon coupling,

calculated by first principles, were solved self-consistently in Matsubara space

and the converged solutions were then analytically continued to real frequen-

cies. In order to ensure a good accuracy, a strict convergence criterion of
xn−xn−1

xn
< 10−6 was imposed and up to 1000 iteration cycles were allowed.

In all the calculations presented here µ∗(ωc) = 0.13 was set for the Coulomb

pseudopotential, with a cut-off frequency ωc > 0.5 eV. It was checked that

ωc is sufficiently large and that results are well converged with this cut-off.

The analytic continuation was performed numerically by employing the high-

accuracy Padé scheme based on symbolic computation [39, 203] with a chosen

precision of 250 decimal digits. After this procedure, the retarded momentum

dependent Green’s function, the tunneling spectra and the superconducting

gap-edge were calculated.

A.4 Calculations of Chapter 7

The main computational details are identical to those of Sec. A.3. Strain

was implemented by changing the in-plane lattice parameter with respect to

the equilibrium value. For well-converged results denser k-point and q-point

grids were found to be required, 40 × 40 × 1 and 20 × 20 × 1 respectively.

The plane wave cutoff was also augmented to 65 Ha. For consistency, the
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Figure A.1: Eliashberg function (α2F ) and electron-phonon cou-
pling constant (λ) of a monolayer TaS2, obtained using a 12×12×1
q-point grid. The results obtained with a 12×12×1 and a 24×24×1
k-point grid are compared, showing a very good convergence with re-

spect to the k-point grid.

Anderson-Morel pseudopotential describing Cooper pair breaking was chosen

as µ∗(ωc) = 0.13, the same as for pure atomically thin MgB2 in Sec. A.3.

A.5 Calculations of Chapter 8

The density functional theory (DFT) calculations make use of the Perdew-

Burke-Ernzerhof (PBE) functional implemented within a plane wave basis in

the ABINIT code [175]. Electron-ion interactions are treated using fully

relativistic Goedecker pseudopotentials, taking into account spin-orbit cou-

pling [322, 323]. Here, Nb-4s24p64d45s1, S-3s23p4, Se-4s24p4 and Ta-5d36s2

states were included as valence electrons. An energy cutoff of 50 Ha for the

planewave basis was used, to achieve convergence of the total energy below 1

meV per atom. In order to simulate the atomically thin films, we used unit

cells that include 25 Å of vacuum. A 24× 24× 1 Γ-centered Monkhorst-Pack

k-point grid was used for the 2D structures and a 16×16×6 k-point grid for

the bulk structures, to achieve an accurate description of the Fermi surfaces.

The lattice parameters were obtained using a conjugate-gradient algorithm

so that forces on each atom were minimized below 1 meV/Å.



244 Appendix A. Computational details

The density functional perturbation theory (DFPT) calculations of the

phonon dispersion and the electron-phonon coupling coefficients were also

carried out using ABINIT. Here, a 24 × 24 × 1 k-point grid is employed for

the electronic wave vectors and a 12×12×1 q-point grid for the phonon wave

vectors in case of the 2D structures. For the bulk structures, a 16 × 16 × 6

k-point grid and a 8 × 8 × 3 q-point grid were used. To ensure a good

convergence of the results with respect to the k-point grid a comparison was

made between a 24 × 24 × 1 and a 12 × 12 × 1 grid. The results are shown

in Fig. A.1, proving that the Eliashberg function and the electron-phonon

coupling constant are very well converged.
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Shubnikov-de Haas analysis of bulk

iron selenide

A Shubnikov-de Haas (SdH) analysis of bulk FeSe is carried out, to investigate

its electronic structure. A van der Waals functional is used for an accurate

description of the distance between subsequent layers, the so-called vdW

gap. The specific functional employed here is the optPBE vdW functional

[317, 318], as implemented in VASP [172, 176].

Fig. B.1 shows the crystal structure, Fermi surface, band structure and DOS.

There Fermi surface consists of five sheets, three hole pockets around Γ and

two electron pockets around M. When a magnetic field is applied in the per-

pendicular direction to the crystal planes, as indicated in Fig. B.1(b), the

maximal areas occur at half of the BZ’s z-axis. The corresponding calcu-

lated frequencies and cyclotron masses are listed in Table B.1, and compared

to available experimental data [224]. The conclusion is that the theoretical

results overestimate the cross-sectional areas by more than an order of mag-

nitude in case of the hole pockets and by a factor 4−5 in case of the electron

pockets. This discrepancy is very likely related to the iron-d character of the

bands crossing the Fermi level, as shown in Fig. B.1(c). In addition to the

SdH study of OsB2 in Chapter 4 – where the electronic structure very well

described by DFT – this analysis of FeSe proves that SdH oscillations are a

powerful tool to probe the Fermi surface, to (dis)prove the DFT prediction.
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Sheet A B C D E

Fth (kT) 0.571 1.282 2.910 3.278 2.836

Fexp (kT) / 0.06 0.20 0.57 0.68

Ath(EF) (% BZ) 1.88 4.23 9.59 10.80 9.35

Aexp(EF) (% BZ) / 0.20 0.69 2.00 2.30

mc/me 0.52 1.66 1.28 1.52 0.87

m∗c/me / 1.9 4.3 7.2 4.2

Table B.1: The theoretical and experimental [224] cyclotron masses
mc and m∗c (in units of the free electron mass me), frequencies F
(kT) of the Shubnikov-de Haas oscillations in bulk FeSe, and the
corresponding areas as a percentage of the whole Brillouin zone (BZ)
plane. Slashes indicate that the corresponding signals were entirely

absent in the experiment. The sheets are labeled as in Fig. B.1.
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Figure B.1: (a) The crystal structure of bulk FeSe. The grey box
depicts the unit cell. (b) The Fermi surface of bulk FeSe, calculated
using the vdW-type optPBE functional. There are 3 hole-like pock-
ets around Γ and 2 electron-like pockets around M. From Γ to M
the sheets are labeled A to E. (c) The corresponding electronic band
structure and DOS. In the band structure the electronic character is
indicated in colors, as defined by the color triangle. The contribu-
tions of the atomic types are indicated using the line thickness, where

thick lines indicate iron character and thin lines boron character.





Appendix C

Relation between susceptibility and

nesting in metals

Here, we prove Eq. 5.10, highlighting also the approximations that are made

in this framework. The general form of the susceptibility in a crystal within

the RPA is [255]

χ0
G,G’(q, ω) =

∑
kij

(f (Ek+q,j)− f (Ek,i))

× 〈k, i|e
−i(q+G)·r|k + q, j〉〈k + q, j|ei(q+G)·r|k, i〉

Ek+q,j − Ek,i − ω − iη
,

(C.1)

where fk,i is the Fermi-Dirac distribution for a band i at wave vector k, G

and G’ are reciprocal lattice vectors and η is an infinitesimally small number.

The dependence of the susceptibility on the reciprocal lattice vectors is a

result of crystal symmetry. Often the approximation is made of a macro-

scopic susceptibility χmac(q, ω) = χ0,0(q, ω) (and corresponding macro-

scopic dielectric function εmac(q, ω) = ε0,0(q, ω)). It means that local effects

are ignored, as only the long range (|G| → 0 in reciprocal space) is taken

into account.

Furthermore, within the constant matrix element approximation (CMEA),

the dependence on k and k + q of the matrix elements Mij(k,k + q) =

〈k+q, j|ei(q+G)·r|k, i〉 is assumed to be negligible, in which case M∗jiMij = 1.
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We obtain thus

χ0
mac(q, ω) =

∑
kij

f (Ek+q,j)− f (Ek,i)

Ek+q,j − Ek,i − ω − iη

=
∑
kij

f (Ek+q,j)− f (Ek,i)

Ek+q,j − Ek,i − ω
+ i
∑
kij

(f (Ek+q,j)− f (Ek,i)) η

(Ek+q,j − Ek,i − ω)2 + η2
,

(C.2)

where in the last step we split the real and the imaginary part into separate

terms, which we can denote as χ0 = χ′0 + iχ′′0. The first, real term is the

Lindhard function, while the second term is the imaginary part, χ′′0, that we

want to connect to the Fermi surface topology. Using that

lim
η→0

{
η

(Ek+q,j − Ek,i − ω)2 + η2

}
= δ (Ek+q,j − Ek,i − ω) (C.3)

we obtain

χ′′0(q, ω) =
∑
kij

(f (Ek+q,j)− f (Ek,i)) δ (Ek+q,j − Ek,i − ω) . (C.4)

The difference of Fermi-Dirac functions can be expanded as

f (Ek+q,j)− f (Ek,i) = q ·∇kf (Ek,i) +O(q2) , (C.5)

where band index j can be omitted in case q and ω are small (i.e., only

keeping intraband terms). Using f (Ek,i) =

[
e
Ek,i−EF
kBT + 1

]−1

we can rewrite

∇kf (Ek,i) = −∂f (Ek,i)

∂EF
∇kEk,i . (C.6)

This yields

χ′′0(q, ω) = −
∑
kij

∂f (Ek,i)

∂EF
q ·∇kEk,iδ (Ek+q,j − Ek,i − ω) , (C.7)

whereby the δ-function imposes Ek+q,j−Ek,i = ω, so that with an expansion

this becomes Ek+q,j − Ek,i = q ·∇Ek,i + O(q2) = ω. This assumes again

that the curvatures of both bands is equal. At sufficiently small |q| we find
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q ·∇Ek,i ' ω. Therefore, we obtain

χ′′0(q, ω) = −ω
∑
kij

∂f (Ek,i)

∂EF
δ (Ek+q,j − Ek,i − ω) , (C.8)

and at T = 0,
∂f(Ek,i)
∂EF

= −δ (Ek,i − EF), so that

χ′′0(q, ω) = ω
∑
kij

δ (Ek,i − EF) δ (Ek+q,j − Ek,i − ω) , (C.9)

which proves Eq. 5.10.
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B. Partoens, and M. V. Milošević, Anisotropic type-I superconductivity

and anomalous superfluid density in OsB2, Phys. Rev. B 94, 144506

(2016).



260 Bibliography

[74] S. A. Kuzmichev, T. E. Kuzmicheva, and S. N. Tchesnokov, Determi-

nation of the electron-phonon coupling constants from the experimental

temperature dependences of superconducting gaps in MgB2, JETP Let-

ters 99, 295 (2014).

[75] A. V. Vagov, A. A. Shanenko, M. V. Milošević, V. M. Axt, and F. M.
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Suzuki, R. Arita, and S. Uji, Anomalous Fermi surface in FeSe seen by

Shubnikov-de Haas oscillation measurements, Phys. Rev. B 90, 144517

(2014).

[225] A. Audouard, F. Duc, L. Drigo, P. Toulemonde, S. Karlsson, P. Strobel,

and A. Sulpice, Quantum oscillations and upper critical magnetic field

of the iron-based superconductor FeSe, EPL 109, 27003 (2015).

[226] A. Tamai, A. Y. Ganin, E. Rozbicki, J. Bacsa, W. Meevasana, P. D. C.

King, M. Caffio, R. Schaub, S. Margadonna, K. Prassides, M. J. Ros-

seinsky, and F. Baumberger, Strong Electron Correlations in the Nor-

mal State of the Iron-Based FeSe0.42Te0.58 Superconductor Observed

by Angle-Resolved Photoemission Spectroscopy, Phys. Rev. Lett. 104,

097002 (2010).

[227] M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M. Imada, The-

oretical evidence for strong correlations and incoherent metallic state

in FeSe, Phys. Rev. B 82, 064504 (2010).

[228] J. Long, L. Yang, and X. Wei, Lattice, elastic properties and Debye

temperatures of ATiO3 (A = Ba, Ca, Pb, Sr) from first-principles, J.

Alloys Compd. 549, 336 (2013).



Bibliography 275

[229] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, First-

principles calculation of the superconducting transition in MgB2 within

the anisotropic Eliashberg formalism, Phys. Rev. B 66, 020513 (2002).

[230] H. J. Choi, M. L. Cohen, and S. G. Louie, Anisotropic Eliashberg

theory and the two-band model for the superconducting properties of

MgB2, Phys. Rev. B 73, 104520 (2006).

[231] A. Y. Liu, I. I. Mazin, and J. Kortus, Beyond Eliashberg Superconduc-

tivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple

Gaps, Phys. Rev. Lett. 87, 087005 (2001).

[232] V. G. Kogan, C. Martin, and R. Prozorov, Superfluid density and spe-

cific heat within a self-consistent scheme for a two-band superconductor,

Phys. Rev. B 80, 014507 (2009).

[233] J. Singh, A. Jayaraj, D. Srivastava, S. Gayen, A. Thamizhavel, and

Y. Singh, Possible multigap type-I superconductivity in the layered

boride RuB2, Phys. Rev. B 97, 054506 (2018).

[234] T. Moriya, Developments of the theory of spin fluctuations and spin

fluctuation-induced superconductivity, Proc. Jpn. Acad., Ser. B 82, 1

(2006).

[235] D. Scalapino, Superconductivity and Spin Fluctuations, J. Low Temp.

Phys. 117, 179 (1999).

[236] A. Aperis, P. Kotetes, G. Varelogiannis, and P. M. Oppeneer, Small-

q phonon-mediated unconventional superconductivity in the iron pnic-

tides, Phys. Rev. B 83, 092505 (2011).

[237] N. F. Berk and J. R. Schrieffer, Effect of Ferromagnetic Spin Correla-

tions on Superconductivity, Phys. Rev. Lett. 17, 433 (1966).

[238] G. Riblet, Superconductivity and Spin Fluctuations in the Ir-Ni, Ir-Co,

and Ir-Fe Alloy Systems, Phys. Rev. B 3, 91 (1971).

[239] A. J. Millis, Nearly antiferromagnetic Fermi liquids: An analytic

Eliashberg approach, Phys. Rev. B 45, 13047 (1992).

[240] O. V. Dolgov, I. I. Mazin, A. A. Golubov, S. Y. Savrasov, and E. G.

Maksimov, Critical Temperature and Enhanced Isotope Effect in the



276 Bibliography

Presence of Paramagnons in Phonon-Mediated Superconductors, Phys.

Rev. Lett. 95, 257003 (2005).

[241] L. Ortenzi, S. Biermann, O. K. Andersen, I. I. Mazin, and L. Boeri,

Competition between electron-phonon coupling and spin fluctuations in

superconducting hole-doped CuBiSO, Phys. Rev. B 83, 100505 (2011).

[242] S. Y. Savrasov and D. Y. Savrasov, Electron-phonon interactions and

related physical properties of metals from linear-response theory, Phys.

Rev. B 54, 16487 (1996).

[243] A. N. Kolmogorov, S. Shah, E. R. Margine, A. F. Bialon, T. Hammer-

schmidt, and R. Drautz, New Superconducting and Semiconducting Fe-

B Compounds Predicted with an Ab Initio Evolutionary Search, Phys.

Rev. Lett. 105, 217003 (2010).

[244] H. Gou, N. Dubrovinskaia, E. Bykova, A. A. Tsirlin, D. Kasinathan,

W. Schnelle, A. Richter, M. Merlini, M. Hanfland, A. M. Abakumov,

D. Batuk, G. Van Tendeloo, Y. Nakajima, A. N. Kolmogorov, and

L. Dubrovinsky, Discovery of a Superhard Iron Tetraboride Supercon-

ductor, Phys. Rev. Lett. 111, 157002 (2013).

[245] A. F. Bialon, T. Hammerschmidt, R. Drautz, S. Shah, E. R. Margine,

and A. N. Kolmogorov, Possible routes for synthesis of new boron-rich

FeB and Fe1−xCrxB4 compounds, Appl. Phys. Lett. 98, 081901 (2011).

[246] M. Zhang, M. Lu, Y. Du, L. Gao, C. Lu, and H. Liu, Hardness of

FeB4: Density functional theory investigation, J. Chem. Phys. 140,

174505 (2014).

[247] K. Kotmool, T. Kaewmaraya, S. Chakraborty, J. Anversa, T. Bovorn-

ratanaraks, W. Luo, H. Gou, P. C. Piquini, T. W. Kang, H.-K. Mao,

and R. Ahuja, Revealing an unusual transparent phase of superhard

iron tetraboride under high pressure, Proc. Natl. Acad. Sci. U.S.A. 111,

17050 (2014).

[248] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-Based

Layered Superconductor LaO1−xFxFeAs (x = 0.05−0.12) with Tc = 26

K, J. Am. Chem. Soc. 130, 3296 (2008).



Bibliography 277

[249] M. Rotter, M. Tegel, and D. Johrendt, Superconductivity at 38 K in the

Iron Arsenide Ba1−xKxFe2As2, Phys. Rev. Lett. 101, 107006 (2008).

[250] X. Wang, Q. Liu, Y. Lv, W. Gao, L. Yang, R. Yu, F. Li, and C. Jin,

The superconductivity at 18 K in LiFeAs system, Solid State Commun.

148, 538 (2008).

[251] F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M.

Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu,

Superconductivity in the PbO-type structure α-FeSe, Proc. Natl. Acad.

Sci. U.S.A. 105, 14262 (2008).

[252] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano,

Superconductivity at 27 K in tetragonal FeSe under high pressure, Appl.

Phys. Lett. 93, 152505 (2008).

[253] R. Lortz, Y. Wang, S. Abe, C. Meingast, Y. B. Paderno, V. Filip-

pov, and A. Junod, Specific heat, magnetic susceptibility, resistivity

and thermal expansion of the superconductor ZrB12, Phys. Rev. B 72,

024547 (2005).

[254] Y. Wang, R. Lortz, Y. Paderno, V. Filippov, S. Abe, U. Tutsch, and

A. Junod, Specific heat and magnetization of a ZrB12 single crys-

tal: Characterization of a type-II/1 superconductor, Phys. Rev. B 72,

024548 (2005).

[255] M. L. Cohen and S. G. Louie, Fundamentals of Condensed Matter

Physics, Cambridge University Press, 2016.

[256] M. Sigrist and K. Ueda, Phenomenological theory of unconventional

superconductivity, Rev. Mod. Phys. 63, 239 (1991).

[257] E. F. Talantsev, W. P. Crump, J. O. Island, Y. Xing, Y. Sun, J. Wang,

and J. L. Tallon, On the origin of critical temperature enhancement in

atomically thin superconductors, 2D Mater. 4, 025072 (2017).

[258] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L.

Boyer, Superconductivity of Metallic Boron in MgB2, Phys. Rev. Lett.

86, 4656 (2001).



278 Bibliography

[259] A. A. Golubov, J. Kortus, O. V. Dolgov, O. Jepsen, Y. Kong, A. O.

K., B. J. Gibson, K. Ahn, and R. K. Kremer, Specific heat of MgB2 in

a one- and a two-band model from first-principles calculations, J. Phys.

Condens. Matter 14, 1353 (2002).

[260] K. Sza lowski, Critical temperature of MgB2 ultrathin superconducting

films: BCS model calculations in the tight-binding approximation, Phys.

Rev. B 74, 094501 (2006).

[261] H. Tang and S. Ismail-Beigi, Self-doping in boron sheets from first

principles: A route to structural design of metal boride nanostructures,

Phys. Rev. B 80, 134113 (2009).

[262] Z. A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, and L.-S. Wang,

Planar hexagonal B36 as a potential basis for extended single-atom layer

boron sheets, Nat. Commun. 5, 3113 (2014).

[263] C. Cepek, R. Macovez, M. Sancrotti, L. Petaccia, R. Larciprete,

S. Lizzit, and A. Goldoni, Epitaxial growth of MgB2(0001) thin films

on magnesium single-crystals, Appl. Phys. Lett. 85, 976 (2004).

[264] C.-Y. Moon, Y.-H. Kim, and K. J. Chang, Dielectric-screening prop-

erties and Coulomb pseudopotential µ∗ for MgB2, Phys. Rev. B 70,

104522 (2004).

[265] K. Chen, W. Dai, C. G. Zhuang, Q. Li, S. Carabello, J. G. Lambert,

J. T. Mlack, R. C. Ramos, and X. X. Xi, Momentum-dependent multiple

gaps in magnesium diboride probed by electron tunnelling spectroscopy,

Nat. Commun. 3, 619 (2012).

[266] T. Morshedloo, M. Roknabadi, and M. Behdani, First-principles study

of the superconductivity in MgB2 bulk and in its bilayer thin film based

on electronphonon coupling, Physica C Supercond. 509, 1 (2015).

[267] L. Petaccia, C. Cepek, S. Lizzit, R. Larciprete, R. Macovez, M. San-

crotti, and A. Goldoni, Characterization of high-quality MgB2(0001)

epitaxial films on Mg(0001), New J. Phys. 8, 12 (2006).

[268] J. M. Harris, P. J. White, Z. X. Shen, H. Ikeda, R. Yoshizaki,

H. Eisaki, S. Uchida, W. D. Si, J. W. Xiong, Z. X. Zhao, and D. S.



Bibliography 279

Dessau, Measurement of an anisotropic energy gap in single plane

Bi2Sr2−xLaxCuO6+δ, Phys. Rev. Lett. 79, 143 (1997).

[269] E. Navarro-Moratalla, J. O. Island, S. Mañas-Valero, E. Pinilla-
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[318] J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density

functionals applied to solids, Phys. Rev. B 83, 195131 (2011).

[319] W. Setyawan and S. Curtarolo, High-throughput electronic band struc-

ture calculations: Challenges and tools, Comput. Mater. Sci. 49, 299

(2010).

[320] M. Fuchs and M. Scheffler, Ab initio pseudopotentials for electronic

structure calculations of poly-atomic systems using density-functional

theory, Comput. Phys. Commun. 119, 67 (1999).

[321] D. R. Hamann, Optimized norm-conserving Vanderbilt pseudopoten-

tials, Phys. Rev. B 88, 085117 (2013).

[322] S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian

pseudopotentials, Phys. Rev. B 54, 1703 (1996).

[323] M. Krack, Pseudopotentials for H to Kr optimized for gradient-corrected

exchange-correlation functionals, Theor. Chem. Acc. 114, 145 (2005).



Publication list

Publications related to this thesis

1. J. Bekaert, S. Vercauteren, A. Aperis, L. Komendóva, R. Prozorov,
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and J. Poortmans, Investigation of properties limiting efficiency in

Cu2ZnSnSe4-based solar cells, IEEE J. Photovolt. 5, 649 (2015).

9. S. Oueslati, G. Brammertz, M. Buffière, H. El Anzeery, O. Touajar,
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