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CHAPTER 1

INTRODUCTION

Materials and their unique properties are always crucial to the science developments

and technological advances in all branches. For example, exploiting the sun light to

produce clean energy requires materials that are very efficient in converting the radiation

into another form of energy such as heat or electricity. In the electronic industry, one

of the biggest obstacle that it is facing is the overheat associated with the electronic

devices causing a problem in their durability and functionality. In medicine, for instance,

scientists are looking for materials that target and kill cancer cells without side effects on

the immune system.

Early in the twentieth century a two dimensional material of a one atom thick carbon

layer was synthesized for the first time. This material is called graphene and is essentially

one layer of the graphite; the well known malarial used in the pencils. A sheet of graphene

is 1000 times thinner than a usual paper and 100 times stronger than steel. A graphene

hammock can cradle a 4kg cat while it weighs no more than one of its whiskers. Graphene

is a good conductor of heat and electricity, stretchable and yet is almost transparent. It

acts as a mesh where it capture the smallest atoms of gas-Helium- and yet allows water
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own antiparticle, and the interaction between the two
causes the path of the electron to jitter.

Normally this motion occurs too rapidly to be ob-
served. In a solid, however, the equivalent of an anti-
particle is a “hole”: that is the absence of an electron.
Thus, when Dirac fermions are confined in graphene
samples, zitterbewegung can be interpreted in terms
of the mixing of electron and hole states. Since the
Compton wavelength of the Dirac fermions is of the
order of a nanometre, it may be possible to spot the jit-
ter in graphene using a high-resolution microscope.

Another as-yet unobserved quantum-mechanical
effect is the “Klein paradox”, whereby a very large po-
tential barrier becomes completely transparent to rel-
ativistic electrons. But the probability that an electron
“tunnels” through drops exponentially with the height
of the barrier. However, calculations show that for

easily with the massless Dirac fermions in graphene.
They suggest a way to test the effect using a simple
graphene circuit that is broken by a semiconductor bar-
rier with an adjustable voltage: as the voltage is raised,
electrons should begin to tunnel through the barrier.

Sticking with the theme of fundamental physics,
graphene may also help address the puzzle of “chiral
symmetry breaking”. The chirality of a particle tells us
whether it differs from its own mirror image, like a right-
handed and left-handed screw, for example. In graphene
there are “left-handed” and “right-handed” Dirac fer-
mions, but they behave in the same way as each other.
This is in stark contrast to neutrinos, which only appear
in their left-handed form. Whether or not the symmetry
between the left-handed and right-handed particles 
in graphene can be broken may help us to understand
how the same symmetry is broken in particle physics.

Commercializing
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nanoelectronics.
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Figure 1.1: Graphene as the building block of the other carbon allotropes, image adapted
from Ref [1].

vapour to pass through.

As a physicist, the scope of this thesis is to investigate the electronic and transport

properties of graphene flakes composed of different stackings to provide a better under-

standing of the charge carriers behavior in this unique material.

1.1 From graphite to graphene

Graphite is a well known naturally-occurring material form of crystalline carbon atoms

and one layer of graphite is called Graphene. The terminology ”graphene”was introduced

by Boehm in 1986 [6, 7] and its first part refers to graphite while the suffix is an indi-

cation of polycyclic aromatic hydrocarbons. The story of graphene can be tracked back

then to 1859 [8] when a British Benjamin Brodie exposed graphite to strong acids and

claimed that he discovered ”graphon” a new form of graphite. In fact, what he observed
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was a graphene sheet covered with dense hydroxyl and epoxide groups [9]. Theoretically

graphene was studied in 1947 when P. Wallace [10] investigated the band structure of

graphite. Then, in 1962 Boehm performed the first experiment looking for the thinnest

flake of reduced graphite oxide which was identified as monolayer [11]. It was believed that

single layer of graphite, ”graphene”, cannot be isolated due to the strong 2D thermal fluc-

tuations which inhibits experimentalists looking for this material. The first ever success

to fabricate a single layer of graphene was achieved in 2004 at University of Manchester

by Sir Konstantin Novoselov and Sir Andre Geim [12]. They used a very simple technique

called Scotch tape technique. After they awarded the Nobel Prize in Physics in 2010 for

their discovery of Graphene, Novoselov commented on the simple idea behind synthesis

of graphene and said, “a playful idea is perfect to start things but then you need a really

good scientific intuition that your playful experiment will lead to something, or it will

stay as a joke for ever”. He continued, “joking for a week or two is the right way to go,

but you don’t want to make your whole research into a joke”.

After the discovery of graphene, scientists now have accessed to all allotropes of carbon-

based materials such as carbon-nanotubes and fullerene as illustrated in Fig. 1.1

1.2 Properties of graphene

Since its experimental realization in 2004, graphene, a two-dimensional (2D) layer of

carbon atoms with honeycomb crystal structure and its multilayer systems, as shown in

Fig. 1.1, have triggered an avalanche of scientific interest. Such enormous interest in

graphene resulted from its remarkable electronic, optical, mechanical properties as well

4
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Figure 1.2: Few properties of graphene compared with different elements, figure is adopted
from Ref [2].

as its potential use in sensors, detectors, electronics, ..etc. Some of these properties are

presented in Fig. 1.2 and compared with other traditional materials such as Silicon,

copper, steel, and diamond.

Among others, the relativistic nature of carriers in graphene is the most striking feature

where with move with speed of 300 times smaller than of light [13] and with no rest

mass (Dirac fermions). This enables researcher to use graphene as a test bed for ultra-
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relativistic phenomena such as Klein tunneling [14]. Moreover, it allows the observation

of integer quantum Hall effect in single layer [15, 16] graphene and bilayer [17]. Such

phenomenon can be even observed even at room temperature in graphene [18] in contrast

to the non-relativistic systems where it demands a low temperature.

1.3 Motivation and organization of the thesis

The goal of this thesis is to investigate the electronic and transport properties in

locally delaminated bilayer graphene. In particular, it is aiming to examine the

charge carriers motion and investigate the possibility of confining them on pristine sin-

gle layer graphene as well as shading the light on the electron collimation in these systems.

This thesis is organized as follows:

• In chapter 2, we review some of the most important and relevent properties of

graphene and its bilayer. We start with the crystalline structures and by implement-

ing the tight binding model we obtain the band structure of single layer graphene.

Then we derive the continuum model that is valid at low energy which collapses

to the well-known Dirac equation. Afterward, we discuss the chirality and Klein

tunneling in graphene and bilayer graphene . In all chapters we solved the Dirac

equation in the vicinity K-point to investigate the transport and electronic proper-

ties of various systems.

• In chapter 3 the quantum transport across single and double domain walls of de-

laminated bilayer graphene is scrutinized in the presence of a finite bias.
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• In chapter 4 structures whose source and drain is formed of delaminated bilayer

graphene is considered where a layer selectivity can exist. The interaction region

can be either AA- or AB-stacked bilayer graphene connected smoothly into the

leads.

• In chapter 5 the focus is shifted to the confinement in locally delaminated bilayer

graphene which we called graphene blister. The confinement is studied under the

variation of the inter-layer coupling and bias as well as the blister’s size.

• In chapter 6 a locally delaminated bilayer graphene is, again, considered but now

to study the electron collimation in such structure....The charge carriers behavior is

investigated within two approaches, namely, semi-classical model and wave-packet

dynamics simulation.

• In chapter 7 the main results and findings in this thesis are highlighted.

All the results presented in the current thesis are inspired by tremendous discussions with

Dr. Ben Van Duppen (University of antwerp, Belgium). Some of the results in this thesis

are the fruit of collaborations:

Chapter 5: for the part related to smoothed blister, the numerical calculations were

performed by Matthias Van der Donck (University of antwerp, Belgium).

Chapter 6: the wave-packet dynamics simulations were performed by Diego R. da Costa

( Universidade Federal do Ceará, Brazil).
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CHAPTER 2

THEORETICAL ASPECTS OF

GRAPHENE AND ITS BILAYER

SYSTEMS

In this chapter we review the electronic properties of graphene and its bi-layered systems.

First we discussed the electronic configurations of carbon atoms and their hybridizations

in graphene. Understanding the electronic orbital hybridization allows us to introduce

the crystallography of graphene and derive its energy spectrum. The linear spectrum of

graphene is at the origin of peculiar phenomena such as Klein tunneling, chirality, and

negative refraction index. The so called Klein tunneling prevents confinement in graphene.

However, there are few methods which enable confinement and hence the realization of

quantum dots which are described in this chapter.
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Figure 2.1: (a) crystalline structure of single layer graphene with red and black balls
representing carbon atoms at inequivalent sites that cannot be connected through the
lattice vectors a1 and a2. The lattice vectors can span the lattice and locate all the red
atoms where the vectors δi connect the three nearest neighbor black atoms. Dashed gray
region defines the unit cell which contains two atoms whose intralayer coupling is γ0 = 3
eV with an intra-atomic distance a = 0.142 nm. (b) First BZ with reciprocal lattice
vectors b1 and b2, the colored dots indicate the high symmetry points in graphene.

2.1 Electronic properties of graphene

2.1.1 Crystallographic structure

Single layer graphene has a hexagonal crystal structure with a unit cell comprises two

atoms denoted as A and B whose interatomic distance a = 0.142 nm [19], see Fig. 2.1(a).

The strength of the coupling between the nearest neighbours is denoted by γ0 ≈ 3 eV [20].

Note that both atoms A and B are carbon atoms but we need two of them at different

sites (A, B) in the unit cell to construct the hexagonal Bravais lattice. This Bravais lattice

can be generated using the lattice basis vectors a1 and a2 superimposed on Fig. 2.1(a)

a1 =
a

2

(
3ex +

√
3ey

)
, a2 =

a

2

(
3ex −

√
3ey

)
, (2.1)
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where a, as mentioned above, is the carbon-carbon atom distance that is different from the

lattice constant given by
√

3a. ei are unit vectors pointing in the i direction (i = x, y, z).

We can generate the sites of sublattice A in the lattice using the lattice translation vector

RA = ma1 + na2, where m and n are integers. Each A atom is surrounded by three B

atoms, see Fig. 2.1(a), and connected by three vectors δi given by

δ1 =
a

2

(
ex +

√
3ey

)
, δ2 =

a

2

(
ex −

√
3ey

)
, δ3 = −aex. (2.2)

Thus, within the same unit cell the B sublattice site can be determined by the vector

RB = RA + δ3 as can seen in Fig. 2.1(a). The corresponding reciprocal lattice in the

crystal momentum (k) space, see Fig. 2.1(b), has the basis vectors

b1 =
2π

3a

(
ex +

√
3ey

)
, b2 =

2π

3a

(
ex −

√
3ey

)
. (2.3)

Like the real space lattice, the first Brillouin zone (BZ) in the k-space has also a hexagonal

form as depicted in Fig. 2.1(b). The BZ has different high symmetry points and one of

them is located at the center of the BZ whose energy is the highest energy and is labeled

by Γ. The corners of the BZ are also considered high symmetry points around the neutral

point and labeled by the K and K ′ points. We consider these two points to be inequivalent

because they cannot be connected to each other by a reciprocal lattice vector. They are

situated at

K =
2π

3a

(

ex +
1
√

3
ey

)

, K
′
=

2π

3a

(

ex −
1
√

3
ey

)

. (2.4)
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The last high symmetry points are called M and situated inn the middle of the edge

connecting the corners K and K ′. The K and K ′ points are of particular interest in the

physics of graphene because, for pristine graphene, they are located at the Fermi level

where all the physical phenomena take place. Later on, the performed calculation of

transport properties in the following chapters considered energy ranges only around these

two points.

2.1.2 Tight-binding model for π electrons

Before going to the tight binding details let us understand what are the π electrons in

graphene. Carbon atoms possess six electrons in the ground states with the configuration

1s22s22p2 as shown in Fig. 2.2(a). The inner shell is completely filled and its electrons

are not involve in the chemical reaction or in the transport properties. The outer shell

is partially filled with four electrons 2s22p2. In the presence of other atoms carbon atom

tend to form covalent bonds with its neighbours. This covalent bond requires an extra

electron to be excited from the 2s orbital to the 2p, in this case 2pz as shown in Fig.

11



Figure 2.2: Two sp2 orbitals making a σ-bond in the xy-plane, while the 2pz forms
a π-bond with the other 2pz of the other carbon atom.

20

(a)

Figure 2.2: Two sp2 orbitals making a σ-bond in the xy-plane, while the 2pz forms
a π-bond with the other 2pz of the other carbon atom.

20

(b)

Figure 2.3: (a) Schematic explains the sp2 hybridisation in graphene and (b) shows the
formation of the in-plane σ and out-of-plane π bonds which are responsible for the unique
mechanical and transport properties in graphene, respectively. Figure taken from Ref. [ 3,
p. 20]

2.2(b). In the excited state of carbon the four quantum states |2s〉, |2px〉,|2py〉 and |2pz〉

are indistinguishable and thus an electron will occupy a superposition of these states.

A superposition of one s-orbital with n p-orbitals is called an spn hybridisation. The

number of the formed bonds depend on the hybridisation of the s- and p-orbitals of the

outer shell. In diamond carbon atoms has sp3 hybridisation and form four covalent bonds

whose length is 0.154 nm [21]. On the other hand, carbon atoms in graphite possess sp2

hybridisation, see Fig. 2.3(a), and only three covalent bonds are present. The in-plane

bond length is 0.142 nm which makes it stronger than diamond. However, the successive
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layers in graphite are weakly coupled by van der Waals bond with inter-layer distance

about 3.35 nm [19]. In graphene also the sp2 hybridization allows each carbon atom

to form covalent bond (called σ-bond) with the three neighbour atoms as illustrated in

Fig. 2.3(b). The last pz electron in the outer shell form a weak bond with one of the

neighbouring atoms, it is called π-bond as shown in Fig. 2.3(b). The σ-electrons are

strongly bounded to the atoms and thus cannot contribute to the transport properties

of graphene but they are responsible for the unique mechanical properties of graphene.

On the contrary, the π-electrons are weakly bounded and can move freely, rendering

them controllable by external fields and hence responsible for the transport properties in

graphene which are of interest in the study of this thesis.

The electronic band structure of graphene was derived in 1947 by Wallace [10]. He

used the tight binding (TB) approximation to describe π-electrons in graphite and along

the way he also showed the electronic band structure of single layer of graphite. Here we

will review the TB formalism and derive the band structure, following reference [22], as

well as setting the notation used in the current thesis.

The idea behind the TB formalism is to write the total wavefunction as a superposition

of the atomic orbitals φi wavefunctions which is called the linear combination of atomic

orbiltals (LCAO) approximation [23, 24]

Ψ(r) =
∑

i

Ciφi, (2.5)

where Ci are expansion coefficients and the sum runs over all orbits in the lattice. As

mentioned above, π-electrons are our main interest in this study and in graphene there
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is one electron associates with each atom and hence two electrons in the unit cell. Thus,

one orbital wavefunction must be considered per atom, as a result the total wavefunction

reads

Ψk(r) = CAΦA
k (r) + CBΦB

k (r) (2.6)

Where

Φj
k(r) =

1
√

N

N∑

n=1

eik.Rj
nφ(r − Rj

n), j = A,B. (2.7)

These are the Bloch functions that obey the Bloch theorem:

Φj
k(r + R) = eik.RΦj

k(r), (2.8)

where N is the total number of unit cells in the lattice. Minimising the energy 〈E〉 with

respect to the expansion coefficients Ci leads to the secular equation

∀i :
∑

j

HijCj = E
∑

j

SijCj . (2.9)

The expectation value for the energy can be found from

< E >=

∫
Ψ∗k(r)HΨk(r)dr
∫

Ψ∗k(r)Ψk(r)dr
=

∑
ij C∗

i CjHij
∑

ij C∗
i CjSij

(2.10)

and then one can use the variational approach for the minimization using ∂E
∂C∗

i
= 0

[25]. Note that the variational approach is equivalent to the Schrodinger equation

H |Ψk〉 = E|Ψk〉. Hij and Sij are hermitian and called the transfer and overlap ma-
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trices, respectively, and defined by:

Hij =

∫
Φi∗

k (r)HΦj
k(r)dr = 〈Φi

k|H |Φj
k〉 (2.11)

Sij =

∫
Φi∗

k (r)Φj
k(r)dr = 〈Φi

k|Φ
j
k〉. (2.12)

Alternatively, Eq. (2.9) can be written in the matrix form as







HAA HAB

HBA HBB













CA

CB





 = E







SAA SAB

SBA SBB













CA

CB





 , (2.13)

the components of these matrices are defined as follows:

HAA =

∫
(ΦA

k )∗HΦA
k dr

=
1

N

∫ ( N∑

n′=1

e−ik∙RA
n′φ(r − RA

n′)∗

)(

H

N∑

n=1

eik∙RA
n φ(r − RA

n )

)

dr

=
1

N

N∑

n′=1

N∑

n=1

∫
e−ik∙(RA

n−RA
n′ )
(
φ(r − RA

n′)∗Hφ(r − RA
n )
)
dr

≈






0, n 6= n
′

ε0, n = n
′

(2.14)

In the results above we used the fact that expected value of the energy is independent of

the cell number n i.e. Hφ(r−Rj
n) = ε0φ(r−Rj

n). The above integral only survives when

n = n′ and is zero otherwise, this means that no hoping between A atoms in different unit

cells which is an approximation. ε0 is called the on-site energy of the A atoms. Similarly,

one can show the same results holds for the element HBB. The interesting elements are

the off-diagonal element Hij since they represent the major interaction between nearest
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neighbors. The first component HAB is defined as

HAB =

∫
(ΦA

k )∗HΦB
k dr

=
1

N

∫ ( N∑

n′=1

e−ik∙RA
n′φ(r − RA

n′)∗

)(

H
N∑

n=1

eik∙RB
n φ(r − RB

n )

)

dr

=
1

N

N∑

n′=1

N∑

n=1

eik∙(RB
n −RA

n′ )

∫ (
φ(r − RA

n′)∗Hφ(r − RB
n )
)
dr

≈ γ0f(k)

(2.15)

Here the summations indices n and n′ run over the all A and B sublattices in the crys-

tal, respectively. Considering only the nearest neighbor interaction we can perform the

summation over all the A atoms in the crystal (n′ = 1, 2, .., N ) and with each step we

sum over the nearest neighbor atoms B which are three (n = 1, 2, 3) as illustrated in

Fig. 2.1(a). With this approximation the two summations above can be rewritten as

∑N
n′=1

∑N
n=1 →

∑N
n′=1

∑3
n=1 = N

∑3
n=1 and this will lead to the final result γ0f(k).

γ0 denotes the coupling strength between nearest neighbors and is called the hopping

amplitude while f(k) called the geometrical factor and both are defined as follows

γ0 =

∫
φ(r − RA

n′)∗Hφ(r − RB
n )dr, (2.16)

f(k) =
3∑

n=1

eik∙δn , (2.17)

where, δn = (RB
n − RA

n′) are the vectors defined in Eq. (2.2). Repeating the same steps

we obtain for HBA

HBA = H∗
AB = γ0f

∗(k) (2.18)
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Similarly, the overlap matrix has the elements:

SBA = S∗
AB = s0f

∗(k), SAA = SBB = 1 (2.19)

where s0 =
∫ (

φ(r − RA
n )φ(r − RB

n )
)
dr is the overlap integral. Finally, we can now rewrite

the eigenvalue equation (2.13) as







ε0 γ0f(k)

γ0f
∗(k) ε0













CA

CB





 = E







1 s0f

s0f
∗ 1













CA

CB





 . (2.20)

The solutions of the above system must satisfy det[H − Es] = 0 which gives the energy

spectrum in the first BZ

E± =
ε0 ± γ0|f(k)|
1 ∓ s0|f(k)|

, (2.21)

where the values of γ0 = 3.033 eV and s0 = 0.129 have been extracted experimentally [22].

The geometrical factor can be expanded further as follows

f(k) =
∑

j=1,2,3

eik.δj

= −
[
eik.δ1 + eik.δ2 + eik.δ3

]

= −
[
ei a

2
(kx+

√
3ky) + ei a

2
(kx−

√
3ky) + eiakx

]

= −ei a
2
kx

[

2cos(

√
3

2
aky) + e−3i a

2
kx

]

(2.22)
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Figure 2.4: (a) Shows the 3D energy spectrum of single layer graphene obtained form
the TB approach, yellow and black colors correspond to conduction and valence bands,
respectively, while the colored balls at E = 0 are the high symmetry points and the black
lines represent the first BZ as illustrated in Fig. 2.1(b). For a better illustration, in
panel (b) we show contour plot of the conduction band by superimposing the first BZ and
the high symmetry points. (c) shows the valence and conduction bands along the high
symmetry points Γ, M and K connected by the dashed-red lines in panel (b).

where, δ1 = a
2
(1,

√
3), δ2 = a

2
(1,−

√
3) and δ3 = a

2
(−2, 0) then,

|f(k)| =

√√
√
√
[

4cos2

(√
3

2
aky

)

+ 1 + 4cos

(√
3

2
aky

)

cos

(
3

2
aky

)]

. (2.23)

In Eq. (2.21) we can set the parameter ε0 to be zero since it only causes a shift in the

spectrum. The overlap integral also can be neglected since it is small compared to the

hopping amplitude γ0. With these approximations the energy spectrum becomes

Eα = αγ0|f(k)|, (2.24)

where α = 1(−1) is the band index and corresponds to electrons (holes). This spectrum

is shown in Fig. 2.4(a) which exhibit four distinct high symmetry points as shown in Fig.
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Figure 1 The band structure of graphene. a, The experimental energy distribution of states as a function of momentum along principal directions, together with a
single-orbital model (solid lines) given by equation (1). b, Constant-energy map of the states at binding energy corresponding to ED together with the Brillouin zone boundary
(dashed line). The orthogonal double arrows indicate the two directions over which the data in Fig. 2 were acquired. c,d, Constant-energy maps at EF (=ED +0.45) (c) and
ED −1 eV (d). The faint replica bands correspond to the 6

√
3×6

√
3 satellite peaks in low-energy electron diffraction9.
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Figure 2 The band structure of graphene near the Fermi level. a–d, Experimental energy bands along a line through the K point parallel to the �M direction (along the
vertical double arrow in Fig. 1b) as a function of progressively increased doping by potassium adsorption. The dashed lines are an extrapolation of the lower bands (below
ED), which are observed not to pass through the upper bands (above ED), suggesting the kinked shape of the bands around ED. The electron density (per cm2) is indicated in
each panel. e–h, Band maps for similar dopings acquired in an orthogonal direction through the K point (horizontal double arrow in Fig. 1b), for which one of the bands is
suppressed. The nonlinear, or ‘kinked’, dispersion of the bands together with linewidth variations (corresponding to real and imaginary parts of the self-energy Σ ) are clearly
visible in the fitted peak positions (dotted lines). The kinks, marked by arrows, occur at a fixed energy of 200 meV and near ED, the latter varying with doping. i, The
simulated spectral function, calculated using only the bare band (yellow dotted line) and ImΣ derived from the data in panel h.

overlap. Even there, we see no indication of interactions between
the graphene and substrate band structures in Fig. 1.

Such interactions are not expected considering the proposed
van der Waals bonding between graphene and SiC (ref. 9). Recent
experiments have shown that the SiC layer immediately below the
graphene is itself a carbon-rich layer, with an in-plane, graphene-
like network of sp2-derived σ-bands, but without graphene-like π-
bands23. The absence of states at the Fermi level suggests that the
pz orbitals are saturated, presumably owing to bonding with the
substrate as well as bonding within the C-rich interface layer. This
C-rich layer is a perfect template for van der Waals bonding to
the overlying graphene because it offers no pz orbitals for bonding
to the graphene. The photon-energy dependence of the π-band
intensities, absent for m = 1 films, but clearly observed for m ≥ 2,
confirms this lack of hybridization (T.O., A.B., J.L.McC., T.S., K.H.,
E.R., manuscript in preparation).

The only effect of the interface on the measurements is through
the nearly incommensurate (6

√
3 × 6

√
3)R30◦ symmetry of the

interface C-rich layer with respect to SiC. This interface induces
diffraction of the primary bands, resulting in the observed weak
satellite bands, similar to the satellite spots seen in low-energy
electron diffraction9.

Despite the overall good agreement between equation (1) and
the data in Fig. 1, profound deviations are observed when we
examine the region around EF and ED in more detail. Figure 2a
shows a magnified view of the bands measured along a line
(the vertical double arrow in Fig. 1b) through the K point. The
predicted, or ‘bare’ bands in this direction are nearly perfectly
linear and mirror symmetric with respect to the K point according
to equation (1), similar to the H point of bulk graphite21,22. The
actual bands deviate from this prediction in two significant ways.
First, at a binding energy h̄ωph ∼ 200 meV below EF, we observe
a sharpening of the bands accompanied by a slight kink in the
bands’ dispersions. We attribute this feature to renormalization
of the electron bands near EF by coupling to phonons24, as
discussed later.
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Figure 2.5: (a) shows angle-resolved photoemission spectroscopy (ARPES) measurements
of energy spectrum in the first BZ along the high symmetry points with the results from
the TB model superimposed as black curve. (b) shows the isotropic nature of the spectrum
at low energy ED indicated in panel (a). (c, d) same as (b) but at lower energies EF nad
ED − 1eV . Figure adapted from Ref. [4].

2.4(b). The energy spectrum along these high symmetry points is depicted in Fig. 2.4(c).

Notice that the spectrum exhibit the electron-hole symmetry. However, taking into ac-

count the overlap integral s0 will break such symmetry. Furthermore, we remind the

reader that we consider only the nearest neighbour interactions in the above formalism.

Including the next nearest neighbour interaction has a small impact on the energy spec-

trum but will break the electron-hole symmetry [26]. The energy spectrum of graphene

was verified using angle-resolved photoemission spectroscopy (ARPES) measurements.

The observed energy spectrum in the first BZ is shown in Fig. 2.5. The tunnelling

spectra of quasifree-standing graphene monolayer usually measured using scanning tun-

neling microscope where some researcher showed that it has “V−shape” around the Dirac

point [27–31] while others observed an unexpected gap of 60 meV pinned to the Fermi

level [32–37]. Recent experiment showed that it is possible to switch the tunnelling spectra

between the two distinct features through voltage pulses applied to the STM tip [38].
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2.1.3 Continuum limit and Dirac-Weyl Hamiltonian

When studying the transport properties we are only interested in the energy regime near

the Fermi level, where the low excitations take place. In pristine graphene the Fermi level

is zero EF = 0 which coincides with the Dirac points K and K ′, see Figs. 2.4(a, b). Thus,

it is convenient to expand the Hamiltonian in Eq. (2.20) near the Fermi energy according

to k = K + q. Assuming that |q| � |K| ∼ 1/a the Hamiltonian can be expand up to

the first order in q. This approximation is known as the continuum limit and hence using

the Taylor expansion we can obtain the first order terms of the geometrical factor as

f(kx, ky) ' f(K) + (kx −
2π

3a
)

df(k)

dkx

∣
∣
∣
∣
K

+ (ky −
2π

3a
)

df(k)

dky

∣
∣
∣
∣
K

, (2.25)

and we can show that

f(2π
3a

, 2π
3
√

3a
) = 0

d
dkx

f(2π
3a

, 2π
3
√

3a
) = 3

4
γ0a(

√
3 − i)

d
dky

f(2π
3a

, 2π
3
√

3a
) = 3

4
γ0a(1 + i

√
3)






. (2.26)

Then, according to kx = 2π
3a

+ qx and ky = 2π
3
√

3a
+ qy Eq. (2.25) becomes

f(qx, qy) =
3

4
γ0a

[
(
√

3 − i)qx + (1 + i
√

3)qy

]
(2.27)
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this equation can be simplified further to take the form

f(qx, qy) =
3

2
γ0a (qx + iqy) e−i π

6 (2.28)

the extra phase π
6

can be absorbed in the wave function and the Hamiltonian around the

K Dirac point becomes

H =







0 vF (px − ipy)

vF (px + ipy) 0





 (2.29)

where, vF = 3
2~γ0a ' 106 m/s [19,26,39] is the Fermi velocity of charge carriers in graphene

with px,y = ~qx,y being the particle momentum. Finally, we can write Eq. (2.29) as

HK = vF σ ∙ p. (2.30)

Here, σ = (σx, σy) are Pauli Matrices. The Hamiltonian in Eq. (2.30) is the Dirac-Weyl

Hamiltonian [40] that describes massless relativistic particles moving in two dimensions.

The only difference here is that the speed of light is replaced by the Fermi speed vF . The

eigenvalues of the Hamiltonian in Eq. (2.30) are given by E = αvF |p|. In Fig. 2.6(a)

we show the low energy bands obtained from the tight binding approach, in the first

BZ, given by Eq. (2.21), while in Fig. 2.6(b) we show the spectrum obtained using the

continuum limit described by Eq. (2.30) and in Fig. 2.6(c) we plot the energy spectrum

along the kx direction. In a similar way we can expand the Hamiltonian around the K ′
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Figure 2.6: Low energy spectrum of single layer graphene around the Dirac points obtained
from (a) tight binding (b) continuum approximation and (c) along qx, i.e. with qy = 0,
red-dashed and blue curves correspond to tight binding and continuum limit, respectively.

point and obtain the following result:

HK′ = vF σ′ ∙ p (2.31)

where σ′ = (−σx, σy). Note that this is not exactly the same as Eq. (2.30) where its

eigenvalues are given by E = −αvF |p|. Hence the Hamiltonian around either point can

be written as

Hτ = τ







0 vF (px − iτpy)

vF (px + iτpy) 0





 , (2.32)

where τ = 1(−1) indicates that the expansion is performed around the K (K ′) point.

Thus, the corresponding eigenvalues are

Eτ
α = ταvF |p| = ταvF~

√
q2
x + q2

y . (2.33)

As we mentioned earlier, this Hamiltonian is valid only in the continuum limit, i.e.

|q |= ξ/a with ξ � 1. Implementing this condition to the energy spectrum from Eq.
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(2.33) yields Eτ
α = ταξ(3γ0/2) � γ0. This explains the energy range where the contin-

uum limit is valid and thus the Hamiltonian defined by Eq. (2.32).

As we mentioned earlier that the two valleys K and K ′ are inequivalent hence a scattering

process may occur between the two valleys over the barrier at the M point. This scat-

tering can take place at high energy (of the order of γ0) and with short range interaction

i.e. Δk ∼ |K − K ′| ∼ 1/a. However, at low energy and for long range interaction, i.e.

Δk � |K − K ′| ∼ 1/a, we can consider the charge carriers living around either valley

as independent from each other and this is the so called single valley approximation or

valley degeneracy. This extra degeneracy of the charge carriers motivated researchers to

use graphene in logic operations or the so-called valleytronics [41–43]. Note the condition

for the single valley approximation is the is equivalent to the continuum limit.

2.1.4 Helicity and chirality

In the field of high energy physics, particles have real spin and its projection onto the

direction of motion is defined by a relevent quantity called helicity. In graphene particles

have sublattice pseudospin, instead of real spin, as illustrated in Fig. 2.7. Hence, we

call the quantity that defines the sublattice pseudospin projection into the direction of

propagation as chirality

ητ = τ
p ∙ σ
|p|

, (2.34)

where σ = (σx, σy) are the Pauli matrices and represent the sublattice pseudospin and p

denotes the particle momentum, and τ = +1(−1) is the valley index associate with the

K(K ′) valley . In nature, there are many objects that exhibit chiral symmetry such as

23



j

|A

|B

|A + e
ij |B

Spinor representation

Superposition:

A Sublattice: p  orbitals
z

B Sublattice: p  orbitals
z

Pseudo spin

Figure 2.7: Sublattice pseudospin representation in graphene, illustration taken from
Ref. [5, p. 22].

gloves, shoes, and the well known Möbius strip. Mathematically, we can say that an object

is chiral if it cannot be mapped to its mirror image by only rotations and translations.

Chirality operator in Eq. (2.34) is unitary and hermitian and can be expressed in

terms of the Hamiltonian defined in Eq. (2.30) as ητ = Hτ/vF |p|. In the single valley

approximation (i.e. absence of inter-valley scattering) chirality is a conserved quantity,

only in the absence of electrostatic potential, and hence commutes with Hτ and share

the same eigenstates. Since the eigenvaluse of Hτ are ατvF |p|, then the eignevalues of

chirality are ατ as can be deduced from the equations above. Here α = +1(−1) the band

index and correspond to electron (holes). In a specific valley, the chirality eigenvalues are

η = α = ±1 which indicates that electrons and holes have opposite chirality as shown in

Fig. 2.8. Note that this argument is valid only in the absence of the electrostatic potential

as will be elucidated when we discuss Klein tunneling later on.
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Figure 2.8: Chirality in K− and K ′−valleys and its relation with pseudospin and momen-
tum. Yellow and black bands correspond to electrons and holes, respectively, and have
opposite chirality in both valleys.

2.2 Bilayer graphene

Bilayer graphene consists of two single layers of graphene which can be stacked in two

stable configurations: AB-stacked bilayer graphene (AB-BLG) [44] or AA-stacked bilayer

graphene (AA-BLG). In this section we review the crystallographic and band structure

of AB- and AA- stacked bilayer graphene. These two types have distinct band structures

and thus their transport properties.

2.2.1 AB-stacking

The crystallographic structure of the AB-BLG is shown Fig. 2.9(a). It consists of two

single layer graphene where atom B1 in the top layer is placed directly above atom A2

in the bottom layer with van der Waals inter-layer coupling parameter γ1. The other

skew hopping parameters γ3 and γ4 describe the nearest interlayer coupling between the

atoms B2 ↔ A1 and (B1 ↔ B2 or A1 ↔ A2), respectively. γ0 represents the intra-layer

coupling between the atoms (B1 ↔ A1 or B2 ↔ A2).

To describe the tight binding model for AB-BLG, let us consider an infinite sheet as
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schematically shown in Fig. 2.9(c). The unit cell, delimitated by yellow region Fig. 2.9(c),

consists of four atoms instead of two as in SLG. We choose the origin of the system to be at

the center of the unit cell along the B1 ↔ A2 dimer and half way the inter-layer distance

c0 ≈ 0.3 nm [28]. We denote the origin by r and define a vector Gn pointing to the center

of any unite cell and n runs from one to the total number N of unit cells in the system.

Each atoms in a unit cell can be located from the center of the unit cell by the vector

Rj where j stands for the atomic sites A1, B1, A2, and B2. Since π electrons are the

only important one as mentioned above, thus only one orbital wave function φj
k(r) must

be considered per atomic site j. Assuming periodic boundary conditions and considering

that those orbital basis satisfy Bloch theorem, they reads:

ΦA1
k (r) =

1
√

N

N∑

n=1

eik∙(Gn−δ3−
c0
2

)φ(r − Gn + δ3 +
c0

2
) (2.35a)

ΦB1
k (r) =

1
√

N

N∑

n=1

eik∙(Gn−
c0
2

)φ(r − Gn +
c0

2
) (2.35b)

ΦA2
k (r) =

1
√

N

N∑

n=1

eik∙(Gn+
c0
2

)φ(r − Gn −
c0

2
) (2.35c)

ΦB2
k (r) =

1
√

N

N∑

n=1

eik∙(Gn+δ3+
c0
2

)φ(r − Gn − δ3 −
c0

2
). (2.35d)

It is clear now that RB1(A2) = −(+)c0/2ez while RA1(B2) = −(+) [δ3ex + c0/2ez].

The total wavefunction can be written then as a linear combination of the above

orbital wave functions as defined in Eq. (2.5). We choose the total wavefunction to be in

the basis (φA1
k , φB1

k , φA2
k , φB2

k )T . Hence the transfer matrix, defined in Eq. (2.11) can be
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Figure 2.9: Side and top views of the crystalline structure of AB-BLG and AA-BLG
crystalline structure with four atoms in the unit cell labeled by colored circle. In panel
(a) the direct interlayer coupling is indicated by black-dashed lines while the coupling
established by the skew hopping parameters is represented by green and red-dashed lines
which are shown as green and red bonds in panel (c). Dashed gray region defines the unit
cell in AB-BLG.

written as

HAB =















εA1 γ0f(k) γ4f(k) γ3f
∗(k)

γ0f
∗(k) εB1 γ1 γ4f(k)

γ4f
∗(k) γ1 εA2 γ0f(k)

γ3f(k) γ4f
∗(k) γ0f

∗(k) εB2















(2.36)
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where the new TB parameters are defined as:

γ1 = 〈φ(r − Gn − RB1) | H | φ(r − Gn − RA2)〉

γ3 = 〈φ(r − Gn − RA1) | H | φ(r − Gn − RA1 − c0 − δi)〉

γ4 = 〈φ(r − Gn − RB2) | H | φ(r − Gn − RB2 + c0 + δi)〉

= 〈φ(r − Gn − RA2) | H | φ(r − Gn − RA2 + c0 + δi)〉 (2.37)

εAi
= 〈φ(r − Gn − RAi) | H | φ(r − Gn − RAi)〉

εBi
= 〈φ(r − Gn − RBi) | H | φ(r − Gn − RBi)〉

the hoping parameters are illustrated in Fig. 2.9(a), where γ1 represents the direct inter-

layer coupling between the atoms(A2 ↔ B1), γ3 denotes the interlayer coupling between

the atoms (A1 ↔ B2) and γ4 describes the interlayer coupling between (A1 ↔ A2) as well

as (B1 ↔ B2). The typical values of these hoping parameters in bilayer graphene are

γ1 = 0.40 eV, γ3 = 0.30 eV, γ4 = 0.15 eV [22]. εA(B)i
characterizes the identical on site

energies and cause a shift in the whole spectrum thus we can consider them zero without

affecting the physical observation.

In the continuum limit the Hamiltonian defined in Eq. (2.36) can be written as

Hτ
AB = τ















0 vF π̂+ v4π̂+ v3π̂−

vF π̂− 0 γ1 v4π̂+

v4π̂− γ1 0 vF π̂+

v3π̂+ v4π̂− vF π̂− 0















(2.38)

where v3,4 = 3
2~γ3,4a are related to the skew hoping parameters, π̂± = p̂x ± iτ p̂y represents
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Figure 2.10: (a, b) show the energy spectrum along the high symmetry points of AB-
BLG and AA-BLG obtained from the TB approximation, respectively. (c, d) show the
corresponding energy spectrum around the Dirac point obtained using the continuum
approximation which is valid in the orange-dashed region in panels (a, b). For AB-BLG, in
the TB approximation (solid black bands) all interlayer coupling parameters are included
(i.e. γ1,3,4) while in the continuum approximation only the direct interlayer coupling γ1 is
considered whereas in AA-BLG only the direct interlayer coupling is considered in both
approximations.

the canonical momentum with p̂x,y = −i~∂x,y and τ = (+,−) for the valleys K and

K ′, respectively. In Fig. 2.10(a) we show the energy spectrum of the AB-BLG obtained

from the TB approach, see Eq. (2.36), along the high symmetry points in the first BZ

including the three hopping parameters. To compare it with the one from the continuum

approximation we show both spectra around the K−valley in Fig. 2.10(c) as solid black

and dashed orange curves, respectively. Note that the skew hoping parameters have a
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very small impact on the energy spectrum at high energy and the dominant parametr

is only γ1 in the high energy regime. The importance of the skew hopping parameters

becomes relevant only at low energy E < 1 meV [45]. Even though these parameters

have peculiar effects on the transport properties at low energy [46], their impact becomes

negligible at high energy [47]. In the current study we only consider high energy regimes

and thus the skew hoping parametres γ3 and γ4 will be neglected henceforth. The absence

of a band gap in graphene leads to different proposals for gap generation [48–50]. For

example, by changing the size of the graphene flakes into nanoribbons or quantum dots,

one can control the energy gap through size quantization [51–53]. In AB-BLG spectrum, a

tunable band gap can be opened and controlled by applying an interlayer bias [48,54,55].

Introducing an interlayer bias δ and considering only the direct interlayer coupling γ1, the

AB-BLG Hamiltonian in the K−valley reads

HAB =















δ vF π̂+ 0 0

vF π̂− δ γ1 0

0 γ1 −δ vF π̂+

0 0 vF π̂− −δ















(2.39)

whose eigenvalues are

Eα
s = α

[

~2v2
F (k2

x + k2
y) + δ2 +

γ2
1

2
− αs

√

~2v2
F (k2

x + k2
y)(4δ

2 + γ2
1) +

γ4
1

4

]1/2

, (2.40)

where α = 1(−1) is the band index and corresponds to electrons (holes) and s = 1(−1)

is the mode index (or chirality index). In Fig. 2.11(a) we show the energy spectrum
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of pristine AB-BLG and biased AB-BLG as solid and dashed curves, respectively, while

the blue and red colors stand for the modes s = +1 and s = −1, respectively. This

notation of the modes will become handy when we discuss the transport properties of

bilayer graphene in the coming sections. Note that in the literature a different basis may

be used and as a result we can see a different form for the Hamiltonian in Eq. (2.41). For

example, in the basis (φA1, φB1, φB2, φA2)
T it becomes

H ′
AB =















δ vF π̂+ 0 0

vF π̂− δ 0 γ1

0 0 −δ vF π̂−

0 γ1 vF π̂+ −δ















. (2.41)

Note that both Hamiltonains are connected by a unitary transformation U such that

H ′
AB = U †HABU with U = u1I + u2σx where

U =







I 0

0 σx





 , (2.42)

where I is 2×2 identity matrix and σx is Pauli matrix. In our notation above we assumed

that the direct interlayer coupling γ1 is between the dimer B1 ↔ A2. However, sometimes

the direct coupling is considered to be between B2 ↔ A1, in this case we will see the

AB-BLG Hamiltonian in the two different bases mentioned above takes the forms
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Figure 2.11: (a, b) show the four energy bands of AB-BLG and AA-BLG around the
K−valley. Solid and dashed curves correspond to pristine and biased (δ = 100 meV)
BLG, respectively, while the red and blue color label the two modes in AB-BLG and the
two Dirac cones in AA-BLG.

H1 =

φA1 φB1 φB2 φA2



























δ vF π̂+ γ1 0

vF π̂− δ 0 0

γ1 0 −δ vF π̂−

0 0 vF π̂+ −δ

, H2 =

φA1 φB1 φA2 φB2



























δ vF π̂+ 0 γ1

vF π̂− δ 0 0

0 0 −δ vF π̂+

γ1 0 vF π̂− −δ

, (2.43)

and again we can switch between both bases using the unitary transformation U mentioned

above such that H1 = U †H2U . So, it is arbitrary and a matter of convenience to choose

the suitable basis for specific problem.

2.2.2 Effective two-band Hamiltonian

The energy spectrum of the AB-BLG is parabolic with four bands, as shown in Fig.

2.10(c), two of them touch at zero energy, whereas the other two bands are split away by
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an energy γ1. It is useful when studying the low energy electronic excitations of a AB-

BLG to describe the system with an effective Hamiltonian (or two-band Hamiltonian).

Such Hamiltonian can be obtained by considering only the direct interlayer coupling γ1

and an interlayer potential difference δ, the Hamiltonian then reads

HAB =















δ vF π† 0 0

vF π δ γ1 0

0 γ1 −δ vF π†

0 0 vF π −δ















, U =















0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1















(2.44)

Performing the unitary transformation U ∙H ∙U † , the above Hamiltonian can be written

as

H =















−δ γ1 0 vF π†

γ1 δ vF π 0

0 vF π† δ 0

vF π 0 0 −δ















=







H11 H12

H21 H22





 (2.45)

where Hij is a 2 × 2 block. Using Schur determinant identity

Det[H − E] = Det[H11 − E] ∙ Det
[
H22 − E − H12(H11 − E)−1H21

]
= 0 (2.46)
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Figure 2.12: Low energy spectrum of AB-BLG obtained from the four-(dashed-orange)
and two-band (solid black) Hamiltonians described by Eqs. (2.41, 2.48), respectively. (a,
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and with H11 − E → H11 for E << γ1 [56], one obtain

H = Det
[
H22 − H12(H11)

−1H21

]

=







δ + [δv2
F π†π/(−γ2

1 − δ2)] γ1v
2
F π†2/(−γ2

1 − δ2)

γ1v
2
F π2/(−γ2

1 − δ2) −δ − [δv2
F ππ†/(−γ2

1 − δ2)]





 (2.47)

For δ << γ1, (−γ2
1 − δ2) → −γ2

1 , the effective Hamiltonian becomes

Heff =
1

2m







0 π†2

π2 0





+ δ





σz −

v2
F

γ2
1







π†π 0

0 −ππ†











 (2.48)

where, m = γ1/(2v2
F ) is the effective mass of electrons in bilayer graphene. An effective

Hamiltonian that also takes trigonal warping (v3) into account can be obtained in the same

manner. The same result can be obtained using Green function to derive the effective
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Hamiltonian [57].

Heff =
1

2m







0 π†2

π2 0





+ v3







0 π†

π 0





+ δ





σz −

vF
2

γ1
2







π† π 0

0 −π π†











 (2.49)

This effective Hamiltonian is applicable for energy range | E |< γ1

4
[57]. In Fig. 2.12(a)

we show the low energy spectrum from the two- and four-band Hamiltonians considering

only the interlayer coupling γ1 while the effect of bias is shown in Fig. 2.12(b).

2.2.3 AA-stacking

The crystallographic structure of the AB-BLG is shown Fig. 2.9(b, d). In the AA-stacked

graphene bilayer the two single layer graphene are placed exactly on top of each other

such that atoms A2 and B2 in the top layer are located directly above the A1 and B1

atoms in the bottom layer with a direct inter-layer coupling γ1 = 0.2 eV [58], see Fig.

2.9(b). Its unit cell also comprises of four atoms as in the AB-BLG and thus the same

steps can be followed to find the transfer matrix in the AA-BLG to obtain

HAA =















εA1 γ0f(k) γ1 0

γ0f
∗(k) εB1 0 γ1

γ1 0 εA2 γ0f
∗(k)

0 γ1 γ0f(k) εB2















. (2.50)
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In the continuum approximation and in the presence of an interlayer bias the AA-BLG

hamiltonian in the K− valley becomes

HAA =















δ vF π̂+ γ1 0

vF π̂− δ 0 γ1

γ1 0 −δ vF π̂+

0 γ1 vF π̂− −δ















. (2.51)

The eigenvalues of this Hamiltonian van be written in the form

Eα
s = α

[
~vF

√
k2

x + k2
y − αs

√
δ2 + γ1

]1/2

, (2.52)

while s = (+1,−1) associates with upper and lower Dirac cones shown by red and blue

bands in Fig. 2.11(b), while α = (+1,−1) stands for electron- and hole-like states [59]

coincided with each Dirac cone, respectively. In contrast to AB-BLG where the interlayer

bias opens a gap in the energy spectrum, in AA-BLG the bias just slightly shifts the

two Dirac cones without affecting the linearity of the spectrum, see dashed curves in Fig.

2.11(b). However, it significantly affects the transport properties of AA-BLG as we will

discover soon.

In AA-BLG all atoms take part in the interlayer coupling contrary to the AB-BLG

where only half of the atoms participate and as a consequence we see that the interlayer

coupling γAB
1 = 2γAA

1 ≈ 0.4 eV [60–62]. Another difference is that the latter one has

asymmetric interlayer coupling, in other words, atom A1 coupled to atom B2 while the

coupling is symmetric in the AA-BLG. Such differences give rise to the distinct band
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Figure 2.13: Schematic representation explains Klein tunneling in (a) single layer and
(b) bilayer graphene. Solid and dashed bands coincide with negative and positive group
velocity, respectively. Black, green, and yellow dots represent incident, transmitted, and
reflected particles, respectively. v0 indicates the strength of the electrostatic barrier and
EF is the Fermi energy.

structure and chirality transport in both types of stackings.

2.3 Klein tunneling

One of the peculiar properties as discussed earlier is the chirality of charge carriers in

graphene. Another peculiar phenomenon in graphene is Klein tunneling and was first

predicted by Oskar Klein in 1929 when he applied Dirac equation to the problem of

electron scattering from 1D potential barrier. He showed that for normal incidence elec-

trons unimpededly tunnel (full transmission) through an electrostatic barrier V (r) even

when the barrier width or strength approaches infinity. In graphene, Klein tunneling

also holds for normal incidence, but here it is a consequence of the pseudospin conser-

vation [26, 39, 63, 64]. Note that in the presence of a 1D electrostatic barrier V (x), the
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Hamiltonian becomes H = vF σ ∙ p + V (x)I where I stands for 2 × 2 identity matrix.

We can now see that the new Hamiltonian dose not commute with chirality as it was

the case in Sec. 2.1.4 when V (x) = 0. Therefore, chirality is not a conserved quan-

tity in the presence of an electrostatic potential. However, we can show that for normal

incidence pseudospin is a conserved quantity. So, The Hamiltonian can be written as

H = vF (pxσx + pyσy) + V (x)I and it can be shown that [σx, H ] = 2ipyσz where py here is

a conserved quantity since H is translational invariant along the y−direction. It is clear

now that the pseudospin along the x−direction σx is a conserved quantity only for normal

incidence, i.e. py = 0. Note that chirality in multilayer systems is different, in SLG the

pseudospin direction rotates as fast as the momentum while in AB-BLG it is twice faster

than momentum [65]. Hence, in AB-BLG a complete reflection coincides with normal

incidence as observed [63, 65]. In Figs. 2.13(a, b) we show the process of tunneling for

a particle impinging on an electrostatic barrier along the normal incidence direction in

single and AB-BLG, respectively. Note that, since AA-BLG has a linear energy spec-

trum Klein tunneling also holds through the intra-cone tunneling [59]. Experimentally,

Klein tunneling can be observed by measuring the angle-dependent transmission through

quasi-ballistic graphene heterojunction [66–68].
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CHAPTER 3

QUANTUM TUNNELING

ACROSS SINGLE AND DOUBLE

DOMAIN WALLS

1The increasing control over the structure of graphene flakes allowed for new devices that

could constitute the building blocks for a fully integrated carbon based electronics. An

example of this is deformed bilayer graphene, where the two layers are not aligned due to

a mismatch in orientation or stacking order resulting in e.g. twisted bilayer graphene. Its

electronic structure is strongly different from normal bilayer graphene and exhibits very

peculiar properties such as the appearance of additional Dirac cones [69–74]. Quantum

transport of single layer graphene and its multilayer have been intensely investigated in

the last decade. However, graphene composite made of two layers that are only locally

1The results of this chapter were published as:

Hasan M. Abdullah, B. Van Duppen, M. Zarenia, H. Bahlouli, and F. M. Peeters, J. Phys.: Condens. Matter 29, 425303

(2017). This paper was selected for the annual journal highlights (2017) among 5 top articles in the field of Nanostructures

and nanoelectronics.

39



coupled by van der Waals interaction to single layer remains open. Recent experiments

have shown that epitaxial graphene can form step-like bilayer/single layer (SL/BL) inter-

faces or that it is possible to create bilayer graphene flakes that are connected to single

layer graphene regions [75–77]. The appearance of these structures fueled theoretical and

experimental investigations on the behavior of massless and massive particles in such

junctions. For example, few works have investigated different domain walls that separate,

for instance, different type of stacking [78, 79] or even different number of layers [80–82].

Most of these recent theoretical works considered domain walls separating patches of bi-

layer graphene with different stacking type or where only a single layer was connected to

a bilayer graphene sheet. Very recently, however, a number of new bilayer graphene plat-

forms have been synthesized. These consist of regions where the coupling between the two

graphene layers is changed. For example in the case of folded graphene [83,84] part of the

fold forms a coupled bilayer structure, while other parts remained uncoupled [76, 85, 86].

One has also observed systems with domain walls separating regions with different Bernal

stacking [87, 88]. In general, these systems can be modelled as being composed of two

single layers of graphene (2SLG) which are locally bound by van der Waals interaction

into an AA- or AB-stacked bilayer structure.

From a theoretical point of view, one can wonder how charge carriers will respond

to transitions between systems that have completely different transport properties. For

example, single layer graphene and AA-stacked bilayer graphene are known to feature

Klein tunnelling at normal incidence while AB-stacked bilayer graphene shows anti-Klein

tunnelling [63,66]. It is, therefore, interesting to investigate under which conditions these

peculiar chirally-assisted tunnelling properties pertain in combined systems, as well as
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to investigate how the presence of multiple transport channels changes the transport

properties.

In this chapter we present a systematic study of electrical transport across domain

walls separating regions of different inter-layer coupling. We discuss the dependance on

the coupling between the graphene layers, on the distance between subsequent domain

walls and on local electrostatic gating. For completeness, we also present all possible

combinations of locally detached bilayer systems. Analytical expressions for the transport

across a single domain wall are also obtained.

3.1 The electronic model

From a theoretical point of view, one can wonder how charge carriers will respond to

transitions between systems that have completely different transport properties. For

example, single layer graphene and AA-stacked bilayer graphene are known to feature

Klein tunnelling at normal incidence while AB-stacked bilayer graphene shows anti-Klein

tunnelling [63,66]. It is, therefore, interesting to investigate under which conditions these

peculiar chirally-assisted tunnelling properties remain in combined systems, as well as

to investigate how the presence of multiple transport channels changes the transport

properties. So, in the next section we will start by describing the geometry of our system.
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Figure 3.1: (Colour online) Different geometries for bilayer and two decoupled graphene
layer interfaces with schematic representation of the transmission probabilities.(c) two
single graphene layers connected to AB-BL(2SL-AB). (b) AA-BL leads with 2SL as in-
termediate region (AA-2SL-AA). (c) AA or AB stacking bilayer graphene sandwiched
between two SL graphene layers (2SL-AA(AB)-2SL) and (d) similar to (b) but now with
AB-BL as the leads with two upper (red)-lower (blue) shifted Dirac cones (AB-2SL-AB).
(e) left and right leads are bilayer graphene with different stacking connected to the two
decoupled graphene sheets (AA-2SL-AB). The possible transmission processes between
the different conduction channel are indicated above the respective junctions.
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3.1.1 Domain walls in bilayer graphene

As we mentioned earlier, different domain walls have been introduced before and showed

distinctive transport properties and even supported topological states. In this work we

consider different junctions that comprise single or double domain walls and can be made

from different building blocks as depicted in Figs. 2.1(a) and 2.9(a, b): monolayer, AA-

stacked and AB-stacked bilayer graphene. Without loss of generality, we assume that

the charge carriers are always propagating from the left to the right hand side. Then

we consider four different configurations: (i) A structure where a single domain wall

separates an AB (AA) stacked structure from two decoupled single layers. We will assign

the abbreviation 2SL-AB (2SL-AA) to this structure if the charge carriers are incident on

one of the two decoupled layers or AB-2SL (AA-2SL) if the coupled bilayer structure is

connected to the source. This is depicted in Fig. 3.1(a). Then we consider structures with

two domain walls (ii) where the middle region is made up of two decoupled monolayers

and whose leads are AB (AA) stacked bilayer graphene. This is depicted in Figs. 3.1(b,

c). Such a configuration henceforth will be refereed to as AB-2SL-AB (AA-2SL-AA).

(iii) a structure where the leads on the left (x < 0) and on the right hand side (x > d)

consist of two decoupled single layers while in between they are connected into an AB-BL

(AA-BL) configuration. This is depicted in Fig. 3.1(d). We will refer to such a structure

as 2SL-AB-2SL (2SL-AA-2SL). (iv) left and right leads are bilayer graphene with AA-

and AB stacking, respectively, separated by a domain where the two layers are completely

decoupled (AA-2SL-AB), see Fig. 3.1(e).

To describe transport in the above mentioned structures, we allow for scattering be-

tween the layers as well as between the different propagating modes in an AB-BL or
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between the two Dirac cones in AA-BL. In the next section, we describe the transport

modes in 2SL and BL and how charge carriers can be scattered between them.

3.1.2 Scattering definitions

In this section we define the model Hamiltonian that describes the different structures.

For this purpose we use a suitable basis defined by Ψ = (ΨA1, ΨB1, ΨA2, ΨB2)
T , whose

elements refer to the sublattices in each layer. The general form of the Hamiltonian near

the K−point reads

H =















V1 vF π† τγ1 0

vF π V1 ζγ1 τγ1

τγ1 ζγ1 V2 vF π†

0 τγ1 vF π V2















. (3.1)

The coupling between the two graphene layers is controlled by the parameters τ and

ζ through which we can “switch on” or “switch off ” the inter-layer hopping between

specific sublattices. This allows to model different stackings by assigning different values

to these parameters. For τ = ζ = 0, the two layers are decoupled and the Hamiltonian

reduces to two independent SL sheets. To achieve AA-stacking we select τ = 1 and

ζ = 0 while for AB-stacking we need τ = 0 and ζ = 1. In Eq. (3.1) V1 and V2 are the

potentials on layers 1 and 2 [89]. In the present study, we only apply these potentials in

the intermediate region. We assume that the domain wall is oriented in the y-direction

and of infinite length. Therefore, the system is translational invariant and the momentum

py is conserved. This enables us to write the wave function as Ψ(x, y) = eikyyΦ(x).
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Delaminated bilayer graphene

The eigenfunctions of the 2SL Hamiltonian are those of the isolated graphene sheet [19],

Φ =







φ1

φ2





 , φj =







μ−
j −μ+

j

1 1













eikjx

e−ikjx





 , (3.2)

where j = 1, 2 is the layer index, kj =
√

(ε + sjδ)2 − k2
y with sj =sgn(j − 1.5), μ±

j =

(kj ± iky)/(ε + sjδ), ε = E − v0, δ = (V1 − V2)/2, v0 = (V1 + V2)/2. Introducing the

length scale l = ~vF /γ1, which represents the inter-layer coupling length, allows us to

define the following dimensionless quantities:

ε →
ε

γ1

, v0 →
v0

γ1

, δ →
δ

γ1

, ky → lky, and ~r →
~r

l
. (3.3)

Notice that for the two stacking, AB-BLG and AA-BLG, γ1 was found to be different.

For the AB-BL the value is γ1 ≈ 0.4 eV while for AA-BL it is γ1 ≈ 0.2 eV as discussed in

Sec. 2.2.

In order to discuss the different scattering modes, we introduce the notation Aoutgoing
incoming,

where A can stand for transmission (T ) or reflection (R) probabilities and the indexes

denote the mode by which the particles are incoming or outgoing. Fig. 3.1 depicts all

possible transitions that are considered in the present work. For example, Fig. 3.1(d)

shows all possible transmission processes in a 2SL-BL-2SL system where t denotes the top

layer on either side and b the bottom layer. For example, T b
t denotes a particle coming

through the top layer and exiting on the bottom layer.
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AB-stacking

For AB-BLG there are two branches corresponding to propagating modes. These branches

correspond to the wave vector ks that can be obtained from Eq. (2.40) and reads

ks =
[
−k2

y + ε2 + δ2 + s
√

ε2(1 + 4δ2) − δ2
]1/2

, (3.4)

again, s = ±1 here represents the mode index, see discussion of Fig. 2.11(a). The modes

presented in Eq. (3.4) labeled by “k+” correspond to eigenstates that are odd under layer

inversion, while the “k−”modes are even [47]. These modes are shown, respectively, in blue

and red in Fig. 3.1(c). This means that there are two available channels for transmission

at a given energy, and an additional two for the reflection probabilities. Note that for

energies 0 < E < γ1, there is only one propagating mode and one transmission and

reflection channel. Similarly, the wave function of AB-BL can be written as

Ψ(x, y) = GM(x)Ceikyy, (3.5)

where M(x) corresponds to a 4×4 diagonal matrix consisting of exponential terms, while

the components of the constant vector C depend on the propagating region, and G is

given by

G =















ξ+
− −ξ+

+ ξ−− −ξ−+

1 1 1 1

ρ+ ρ+ ρ− ρ−

ζ+
+ −ζ+

− ζ−
+ −ζ−

−















, (3.6)
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where ξ±± = (k± ± iky)/(E − δ), ρ± = (ε − δ)
[
1 − ((k±)2 + k2

y)/(ε − δ)2
]

and ζ±
± =

(ε − δ)ρ±ξ±±/(ε + δ). The use of the matrix notation will prove to be very useful to

construct the transfer matrix as outlined below.

AA-stacking

In the case of an AA-BL, the corresponding wave function can be written similar to Eq.

(3.5) but now with the matrix G given by

G =















ξ−+ ξ+
+ ξ−− ξ+

−

1 1 1 1

ζ−
+ ζ+

+ ζ−
− ζ+

−

ρ+ ρ+ ρ− ρ−















, (3.7)

where ρ± = 1
2ε

[
−(k2

y + (k±)2) + (ε − δ)2 + 1)
]
, ξ±± = (ρ±+δ+ε)(iky±k±)/(δ2−ε2+1) and

ζ±
s = (ξ±± − ρ±(iky ± k±)/(ε + δ). To investigate when scattering between the Dirac cones

of AA-BL is allowed or forbidden, one can apply a unitary transformation that forms

symmetric and anti-symmetric combinations of the top and bottom layer. This yields a

Hamiltonian in the basis Ψ = 2−1/2(ΨA1 + ΨA1, ΨB2 + ΨB1, ΨA2 − ΨA1, ΨB2 − ΨB1)
T of

the form:

HAA =















γ1 + v0 vF π† −δ 0

vF π γ1 + v0 0 −δ

−δ 0 −γ1 + v0 vF π†

0 −δ vF π −γ1 + v0















. (3.8)
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For δ = 0, this Hamiltonian is block-diagonal and represents two Dirac cones as shown in

Fig. 2.11(b). The two cones correspond to modes with wave vector k± given by

ks =

[

−k2
y +

(
ε + s

√
(1 + δ2)

)2
]1/2

. (3.9)

where s = ± is the cone index. In Fig. 3.1(b) the blue bands correspond to the odd

k+ modes (lower cone) and red bands denoting the even modes k− (upper cone). In

Eq. (3.8), v0 denotes the energy shift of the whole spectrum. This shift can be chosen

zero by assigning the same magnitude but different signs to the electrostatic potentials

on both layers V1 = −V2. Eq. (3.8) shows that for zero electric field (δ = 0) both

cones are decoupled and the scattering between them is strictly forbidden. This was

used before in Ref. [59] to propose AA-BL as a potential candidate for “cone-tronics”

based devices. However, this protected cone transport is broken for finite bias (δ 6= 0)

and hence scattering between the cones is allowed. Furthermore, one might wonder if

the charge carriers stay within their cone transport through a domain consisting of two

decoupled layers.

Scattering probability and conductance

In order to calculate the scattering probability in the reflection and transmission channel,

we use the transfer matrix method together with boundary conditions that require the

eigenfunctions in each domain to be continuous for each sublattice [90, 91]. To conserve

probability current we normalize transmission probabilities T and reflection probabilities
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R such that

∑

i,j

(
T j

i + Rj
i

)
= 1, (3.10)

where, the index i refers to the incoming mode while the index j denotes the outgoing

mode. For a coupled bilayer the different modes are labelled by “−” for the modes

that are even under in-plane inversion and by “+” for odd modes. For a decoupled 2SL

system, we employ the notation t for the top layer and b for the bottom layer. For

example, for the system 2SL-AB-2SL and for an incident particle in the top layer of 2SL

gives T t
t + T b

t + Rt
t + Rb

t = 1. In Fig. 3.1 all possible transition probabilities are shown

schematically.

To obtain measurable quantities, we finally calculate the zero temperature conductance

that can be obtained from the Landauer-Büttiker formula [92] where we have to sum over

all the transmission channels,

Gj
i (E) = G0

Ly

2π

∫ +∞

−∞
dkyT

j
i (E, ky), (3.11)

with Ly the length of the sample in the y-direction and G0 = 4 e2/h. The factor 4

comes from the valley and spin degeneracy in graphene. The total conductance of any

configuration is the sum of all available channels GT =
∑

i,j Gj
i .

3.2 Transmission across a single domain wall

Here we will present analytical expressions for the transmission probabilities of trans-

port across a single domain wall. These analytical expressions will shed light on the
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2SL-AB

R, R

R, I

I, R

R, R

I, I

(a)

v0

v0+γ1

v0-γ1

k

E

R, R

I, I

R, I

AB-2SL

(b)

v0

γ1

k

E

Figure 3.2: (Colour online) Schematic diagrams, for one domain wall separating 2SL
and AB-BL, showing the regions where the modes (k+, k−) in AB-BL are either real
(propagating) or imaginary (evanescent). (a) shows the bands of pristine 2SL and gated
AB-BL and vice versa in (b). In the yellow region both modes are real (R, R), while one
of them is real and the other is imaginary as in the green (I, R) and pink (R, I) regions.
In the gray region both modes are imaginary (I, I). Blue, red and dashed black bands
correspond to k+, k− and 2SL modes, respectively.

requirements for transport across a domain wall and how local electrostatic gating can

affect these transport properties. By doing so, we encounter that curiously, electrostatic

gates can break the symmetry between the layers in the transmission probability if there

are evanescent modes in the system. The breaking of the layer symmetry results in an

asymmetric angular distribution of the transmission probability as will be shown further.

We consider a situation where two propagating modes exist in the AB-BL or AA-BL.

This requires some caution in defining the incident angle in the calculation of the trans-

mission probabilities. Failing to do so may result in erroneous results such as transmission

exceeding unity or unexpected symmetry features [93, 94]. Considering one domain wall,

the simplest configuration, separating 2SL and either AA or AB-BL allows to obtain

analytic expressions for the transmission probabilities. The incident angle for each prop-

agating mode depends on the type of layer stacking in the incident region. Hence, for
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Figure 3.3: (Colour online) The angle-dependent transmission and reflection probabilities
through (a, b) 2SL-AA and (c, d) AA-2SL systems. The systems in (b, d) are the same
as in (a, c), respectively, but where now the right side of the junction is subjected to an

electrostatic potential of strength v0 = 1.5γ1. In the system 2SL-AA R
b(t)
b = R

t(b)
t and

T±
b = T±

t while R−
+ = R+

− = 0 and T b
± = T t

± in AA-2SL system. In all panels E = 1.2 γ1.

charge carriers incident from 2SL we define

kj = E cos φ, ky = E sin φ. (3.12)

On the other hand, when charge carriers are incident from AB-BL we need to define

incident angle for each mode separately such that

k± =
√

E2 ± E cos φ, ky =
√

E2 ± E sin φ. (3.13)

Finally, for charge carriers incident from AA-BL the associated angle is defined by

k± = (E ± 1) cos φ, ky = (E ± 1) sin φ. (3.14)

A straightforward calculation results in the transmission probability for charge carriers
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incident from 2SL and impinging on AA-BL

T±
j =

2(ε + v0)(±1 + ε)Re(k±)

kj

[
(±1 + ε + k± sec φ)2 + (∓1 + v0)2 tan2 φ

] , (3.15)

while for the reverse configuration (AA-2SL) it is given by

T j
± =

2εRe(kj)

cos φ
[
(ε + kj sec φ)2 + (∓1 + v0)2 tan2 φ

] . (3.16)

Similar as performed for the AA-BL Hamiltonian, also the AB-BL Hamiltonian can be

expressed in terms of symmetric and anti-symmetric combinations of the two layers. This

manipulation allows to determine a closed-form expression for the transmission probability

of the 2SL-AB structure. The derivation is outlined in Appendix A and results in

T±
j = 4Re(k±)




η
[
η2 + (Im(k∓) + κjv0 sin φ)

2
]

C0 +
∑4

m=1 Cm cos(mφ)



 , (3.17)

with η = ε cos φ and κj = +1(−1) for j = b(t). For the reverse configuration (AB-2SL)

the transmission probabilities are

T j
± = 4Re(kj)k

±λ [μ± + κjv0 sin φ Im(k∓)]

|Q±|2
, (3.18)

where λ, Cm, μ±, and Q± are functions defined in Appendix A.

For a domain wall separating 2SL and AA-BL, the transmission probabilities are

always symmetric with respect to normal incidence as indicated in Eqs. (3.15,3.16). In

other words, for the 2SL-AA T±
b (φ) = T±

t (φ) and similarly T b
±(φ) = T t

±(φ) for AA-2SL
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configuration, and this symmetry still holds when the right side of the junction is gated

(v0 6= 0). We will refer to this symmetry as “layer symmetry” since it is a consequence of

the equivalence of 2SL layers and the symmetric coupling of the AA-BL.

Notice that Klein tunnelling for normal incidence in SL and AA-BL is also conserved

in the combined structure. For example, in 2SL-AA and for normal incidence (φ = 0),

the modes become kj = ε + v0, k± = ±1 + ε and hence Eq. (3.15) reads T±
j = 1/2. Then,

for charge carriers propagating in the bottom (top) layer it may be transmitted into k+

or k− states and thus the total probability is T+
b(t) + T−

b(t) = 1/2 + 1/2 = 1. As a result of

Klein tunnelling at normal incidence, the corresponding reflection probabilities are zero

such that R
b(t)
b = R

t(b)
t = 0. In an analogous manner it can be shown that for normal

incidence Eq. (3.16) gives T j
± = 1/2.

Turning now to the 2SL-AB/AB-2SL case, one can infer from Eqs. (3.17,3.18) that

for v0 = 0 the layer symmetry holds since the only term carrying asymmetric features is

proportional to v0. However, for v0 6= 0 it is striking that despite the fact that a homoge-

neous electrostatic potential does not break any in-plane symmetry in the system, layer

symmetry is broken. This leads to an angular asymmetry in the transmission channel, i.e.

T±
b (φ) = T±

t (−φ) for 2SL-AB and T b
±(φ) = T t

±(−φ) for AB-2SL. Upon further analysis

of Eqs. (3.17,3.18), one notices that this asymmetric feature is present in regions in the

(E, ky) plane where one of the two modes is propagating while the other is evanescent. In

Figs. 3.2(a,b) we show a diagram for these different regions associated with 2SL-AB and

AB-2SL, respectively. The layer symmetry is broken in the green and pink regions while

in the yellow regions layer symmetry holds.

The mechanism for breaking the layer symmetry in configurations consisting of AB-BL
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is attributed only to the evanescent modes. For example, in 2SL-AB (see Fig. 3.2) the

transmission probability for charge carriers to be transmitted into k+ from either bottom

or top layers of 2SL is

T+
j = 4Re(k+)

η
[
η2 + (Im(k−) + κjv0 sin φ)

2
]

C0 +
∑4

m=1 Cm cos(mφ)
, (3.19)

where κb(t) = 1(−1). The above equation shows that layer symmetry is broken, T+
b (φ) =

T+
t (−φ), only when v0 6= 0 and Im(k−) 6= 0 which is satisfied in the pink and gray

regions in Fig. 3.2(a). However in the gray region there are no k+ propagating states

and consequently the transmission probabilities T+
j are zero. The same analysis applies

also to T−
j where the asymmetric feature is preserved only when Im(k+) 6= 0 as shown

by the green region in Fig. 3.2(a). For AB-2SL configuration, the layer asymmetry is

only reflected in the T j
+ , see Eq. (3.18), since Im(k−) 6= 0 corresponds to the pink

region in Fig. 3.2(b). While for T j
−, the k− propagating states are only available for

E > γ1 (yellow region in Fig. 3.2(b)) which coincides with Im(k+) = 0. Thus, the layer

symmetry is always conserved in T j
− as it can be seen in Eq. (3.18). Now it is clear why

layer symmetry is not broken in the AA-BL configuration; because there are always two

propagating modes associated with any energy value.

The breaking of angular symmetry in this situation is qualitatively similar to that

obtained in AB-BL [47] subject to an inter-layer bias. One can connect this layer asym-

metry in the vicinity of the two valleys K and K ′ through time-reversal symmetry. The

Hamiltonian HK′ can be related to the Hamiltonian HK through the transformation

HK′(k) = ΘHK(−k)Θ−1, (3.20)
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where Θ is the time-reversal symmetry operator. This implies, for example in the T+
b(t)

channel, that charge carriers moving from right to left and scattered from the bottom layer

to k+ in K valley are equivalent to those scattered from top layer to k+ but moving in the

opposite direction in the vicinity of K ′. If layer symmetry holds in the vicinity of one of

the valleys, then the transmission probabilities of charge carriers moving in the opposite

directions must be the same. It is worth pointing out here that the layer asymmetry in

the K valley is reversed in the K ′ valley and hence the overall symmetry of the system is

restored. Therefore, the macroscopic time reversal symmetry is preserved.

3.3 Transport across two domain walls

We first present the results for transmission, and reflection probabilities and for the con-

ductance in the case of domain walls separating 2SL and AA-BL structures. The different

regions as defined in Fig. 3.2 are superimposed as dashed black and white curves. More-

over, in calculating the transport properties we considered different magnitudes for the

electrostatic potential v0 and bias δ applied to the drain structure.

3.3.1 AA-Stacking

2SL-AA/AA-2SL

We consider charge carriers tunnelling through 2SL-AA and AA-2SL systems. In Fig.

3.3(a) we show the transmission and reflection probabilities for charge carriers impinging

on pristine AA-BL as a function of incident angle φ. As a result of the layer symmetry,

charge carriers incident from bottom/top layer of 2SL and transmitted into the lower
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Dirac cone (k+) in the AA-BL will have the same transmission probability T+
b = T+

t .

Similarly, for those charge carriers transmitted into the upper cone, they will also have

the same probability T−
b = T−

t regardless which layer they are incident from.

This symmetry stems from the fact that the wavefunction in the 2SL are a superposi-

tion of two spinors corresponding to the two sublattices while in AA-BL it is a superposi-

tion of four. For this reason, charge carriers incident from top or bottom layer of 2SL have

the same dynamics and hence share their transmission probability. A partial reflection

into the same layer, Rb
b = Rt

t is shown in Fig. 3.3(a), which corresponds to evanescent

modes associated with the upper Dirac cone (k−). As in transmission, charge carriers can

be back scattered between the layers. However, the absence of the electrostatic potential

results in a small scattering current as depicted in Fig. 3.3(a). In addition, scattering back

from top to bottom layer or vice versa occurs also with the same reflection probabilities

Rt
b = Rb

t .

Because of chiral decoupling of oppositely propagating waves in AA-BL and in SL,

back-scattering is forbidden for normal incidence (φ = 0) and thus the reflection probabil-

ities for each channel are zero, i.e. R
b(t)
b (0) = R

t(b)
t (0) = 0. This is associated with perfect

tunnelling T+
b (0) + T−

b (0) = T+
t (0) + T−

t (0) = 1. The effect holds for all forthcoming

structures composed of AA-BL and 2SL.

Fig. 3.3(b) shows the numerical results of the same system, 2SL-AA, but now in the

AA region, the potential is increased to v0 = 1.5γ1. This shifts the two Dirac cones in

energy to v0 ± γ1. As a result of the presence of the electrostatic potential, a strong

scattered reflection Rt
b/R

b
t takes place when there are no propagating modes in the AA

section.
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Figure 3.4: (Colour online) Density plot of the transmission and reflection probabilities
through 2SL-AA-2SL as a function of Fermi energy and transverse wave vector ky with
v0 = δ = 0 and width of the AA-BL d = 25 nm.

In Figs. 3.3(c,d), we show the reversed configuration, i.e. an AA-2SL system. The

transmission and reflection probabilities for zero (v0 = 0) and with nonzero (v0 = 1.5γ1)

electrostatic potentials applied to 2SL are reported in panels (c) and (d), respectively.

Similar to the 2SL-AA system, we can note that layer symmetry still holds such that

T b
+ = T t

+ and T b
− = T t

−. Furthermore, we find strong non-scattered reflection in the R+
+

and R−
− channels that is associated with evanescent modes on both sides of AA-BL and

2SL whereas the scattered reflection channels R+
− and R−

+ are always zero due to the

protected cone transport discussed earlier.
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Figure 3.5: (Colour online) The same as in Fig. 3.4, but now with v0 = 1.5γ1. Red and
white dashed curves correspond to the lower and upper Dirac cones in AA-BL, respec-
tively, while the black dashed curves are the bands of 2SL.

2SL-AA-2SL

In this Section, we show the results of transport across two domain walls forming a system

with three regions; where AA-BL is sandwiched between two regions of 2SL, see Fig.

3.1(b). Such a system can exhibit a strong layer selectivity when current flows through

the intermediate region , i.e. AA-BL. This behaviour will be investigated in detail in

the next chapter. Here, however, we go in much more detail to show how the different

transmission and reflection channels are affected by the electrostatic potential or finite

bias applied to the intermediate region.

In Figs. 3.4 and 3.5 we show the scattered and non-scattered channels for transmission

and reflection for pristine AA-BL and with electrostatic potential of strength v0 = 1.5 γ1,
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Figure 3.6: (Colour online) The same as in Fig. 3.4, but now with v0 = 1.5γ1 and
δ = 0.6γ1.

respectively. Layer symmetry is preserved in both reflection and transmission channels as

clarified in Figs. 3.4. and 3.5 which also show strong scattered transmission, especially at

normal incidence which can be altered depending on the width of the AA-BL. When an

electrostatic potential is applied to the middle domain, resonances appear in the trans-

mission probabilities for v0 +γ1 > E > v0−γ1 as shown in Fig. 3.5. This is a consequence

of the finite size of the AA-BL and the presence of charge carriers with different chirality

in the mentioned range of energies [59]. Introducing a finite bias δ = 0.6γ1 on AA-BL

breaks the layer symmetry of the system. As a result, T b
b 6= T t

t and Rb
b 6= Rt

t. However, it

is still preserved in the scattered channels T b
t = T t

b and Rb
t = Rt

b ( see Fig. 3.6).
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Figure 3.7: (Colour online) Density plot of the transmission and reflection probabilities
through AA-2SL-AA as a function of Fermi energy and transverse wave vector ky with
v0 = δ = 0 and width of the 2SL d = 25 nm.

It is worth mentioning here that the finite bias does not break the angular symmetry

with respect to normal incidence in the transmission and reflection probabilities as it does

for normal AB-BL [47]. This is a manifestation of the symmetric inter-layer coupling in

AA-BL.

AA-2SL-AA

In this system we interchange the AA-BL and 2SL as shown in Fig. 3.1(b). In this

case, scattering is defined between the two cones in the AA-BL regions. In Figs. 3.7 and

3.8 we show the transmission and reflection probabilities between the two Dirac cones
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Figure 3.8: (Colour online) The same as in Fig. 3.7, but now with v0 = 1.5 γ1.

through the pristine 2SL and in the presence of an electrostatic potential, respectively.

The first and the last rows of Figs. (3.7) and (3.8) show the non-scattered transmission

and reflection probabilities corresponding to the lower and upper Dirac cones, respectively.

We notice that Klein tunnelling is preserved at normal incidence. This shows that Klein

tunnelling in AA-stacked bilayer graphene is a robust feature that is insensitive to local

changes in the inter-layer coupling. On the other hand we see that scattering between

two different Dirac cones remains strictly forbidden even with a local decoupling of the

two layers. Therefore, these devices could be used for conetronics. As a result, in the

second row of Figs. 3.7 and 3.8 the scattered transmission and reflection channels are

61



Figure 3.9: (Colour online) The same as in Fig. 3.7, but now with v0 = 1.5γ1 and
δ = 0.3γ1. Red and white dashed curves correspond to the bands of bottom and top
layers of 2SL, respectively, while the black dashed curves are the AA-BL bands.

zero T−
+ = T+

− = R−
+ = R+

− = 0.

In Fig. 3.9 we plot the transmission and reflection probabilities for a potential strength

v0 = 1.5 γ1 and inter-layer bias δ = 0.3 γ1. The shift in the bands of the top (white)

and bottom (red) layer of 2SL is due to the inter-layer bias which couples the two Dirac

cones as shown in Eq. (3.8). Therefore, the suppression of the scattering transmission

and reflection probabilities due to the protected cone transport does not hold anymore.

It is, therefore, possible that scattering between different cones takes place as clarified in

the second row of Fig. 3.9.
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Conductance

The conductance of two and three-block systems is shown in Figs. 3.10 and 3.11, re-

spectively. For the two systems 2SL-AA and AA-2SL with pristine AA-BL and 2SL, the

conductance for different channels is shown in Figs. 3.10(a, b). It shows that the conduc-

tance of these two systems are identical. Referring to Figs. 3.3(a, c) we notice that the

transmission probabilities for pristine 2SL-AA and AA-2SL are quite different. However,

the corresponding conductances (see Fig. 3.10) exhibit time reversal symmetry in spite

of the fact that the domain wall separates two different systems. This is a strong point

which can be verified experimentally even in the case of zero electrostatic potential.

Adding an electrostatic potential to one of the two sides leads to different behavior in

the conductance of the above mentioned two systems as depicted in Figs. 3.10(c,d). In

Fig. 3.10(c) the charge carriers incident from 2SL and impinging on AA-BL whose bands

are shifted by v0. Each conductance channel gives zero at E = 0 due to the absence of

propagating states in the 2SL at this energy, even though there are propagating states

available in AA-BL corresponding to two cones. We note also that G±
b = G±

t are almost

zero at upper and lower cones v0 ± γ1 as a result of the absence of states at these points

as seen in Fig. 3.10(c). In Fig. 3.10(d) we see that the conductance of different channels

is not zero in contrast to the previous case because here at E = 0 there are propagating

states available in both AA-BL and 2SL. Furthermore, all channels have one minimum,

due to the lack of states, at E = v0 which corresponds to the Dirac cone in 2SL shifted by

v0 while G
t/b
− has also another minimum at the upper cone E = γ1 as shown in Fig. 3.10(d).

Finally, for comparison we add in Figs. 3.10(e, f) the conductance that will be measured

in the absence of a domain wall for 2SL-2SL and AA-AA junctions with v0 = 0 (blue
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curves). Our results indicate that domain walls are experimentally identifiable channels

even in the absence of a gate. As a reference we also calculate the total conductance

in the presence of an electrostatic potential (v0 = 1.5γ1) as shown with black curves in

Figs. 3.10(e, f) which corresponds, in this case, to the usual p-n junctions in single-layer

graphene and AA-BL, respectively.

The conductance of three-block systems is shown in Fig. 3.11 where left and right

panels correspond to AA-2SL-AA and 2SL-AA-2SL structure, respectively. Protected

cone transport leads to zero conductance in the scattered channels G+
− = G−

+ = 0 as

shown in Fig. 3.11(a). A close inspection also reveals that G−
− = G+

+ at E = 0 with finite

and non-zero values, regardless of the fact that in the 2SL region there are no available

propagating states. This is attributed to the evanescent modes in 2SL at E = 0 which

are responsible for ballistic transport in graphene [95]. We thus also expect that G−
− (red

curve in Fig. 3.11(a)) should be exactly zero at the Dirac cone E = γ1 as a result of the

absence of propagating states in the leads at this energy.

By shifting the bands of 2SL using a local potential with strength v0 = 1.5γ1, a local

minimum appears in the conductance GT at E = v0 which corresponds to the position

of the charge-neutrality point in 2SL as shown in Fig. 3.11(c). This minimum can be

obtained by aligning the upper cone in AA-BL and the Dirac cone in 2SL such that

they are located at the same energy, this can be achieved by choosing v0 = γ1. The

main difference introduced by applying an inter-layer bias is the broken protected cone

transport where now G−
+ = G+

− 6= 0 as depicted in Fig. 3.11(e). For completeness, we

performed similar calculations but now with 2SL as the leads (2SL-AA-2SL) and the

results for the conductance with pristine, gated and biased AA-BL are shown in Figs.
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Figure 3.10: (Colour online) Conductance of two-block system for different magnitudes
of the applied gate: (a, b) v0 = δ = 0, (c, d) v0 = 3γ1/2, δ = 0 . GT is the total
conductance obtained by summation of all possible channels, (e, f) the total conductance
for 2SL-2SL and AA-AA junctions, respectively, with v0 = 0 (blue curves) and v0 = 1.5γ1

(black curves).

3.11(b, d, f), respectively. Here, all conductance channels are zero at E = 0 such that

Gt
t = Gb

b and Gb
t = Gt

b as shown in Figs. 3.11(b, d). Similarly, the main features in Fig.

3.11(f) are in qualitative agreement with those shown in Figs. 3.11(b, d) but now the

tunnelling equivalence through the same channel is broken so that Gt
t 6= Gb

b. This is a

direct consequence of the perpendicular electric field which leads to the breaking of the

inter-layer sublattice equivalence. The peaks appearing in the total conductance are due

to the finite size of the AA-BL region.

3.3.2 AB-Stacking

2SL-AB/AB-2SL

In this section, we evaluate how the stacking of the connected region changes the trans-

port properties across a domain wall. The angle-dependent transmission and reflection
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Figure 3.11: (Colour online) Conductance of three-block system with different magnitudes
of the applied gate: (a, b) v0 = δ = 0, (c, d) v0 = 3γ1/2, δ = 0 and (e, f) v0 = 3γ1/2,
δ = 0.6γ1. GT is the total conductance obtained by summation of all possible channels.

probabilities for pristine systems 2SL-AB are plotted in Fig. 3.12(a). The charge carriers

can be incident from the two layers in the 2SL structure and impinge on AB-BL where,

depending on their energy, they can access only one propagating mode k+ or two k± if the

energy is large enough. Scattering from the top or bottom layer of 2SL into one of these

modes is equivalent T±
t = T±

b as well as backscattering R
t(b)
t = R

b(t)
b and hence, as before,

layer symmetry is preserved (see Fig. 3.12(a)). In Fig. 3.12(b) we show results with the

AB-BL region subjected to an electrostatic potential of strength v0 = 1.5γ1. Surprisingly,

we see that the layer symmetry is broken and an asymmetric feature with respect to

normal incidence shows up in the transmission and non-scattered reflection probabilities,

see Appendix A, such that [T/R](φ) = [T/R](−φ). For example, T±
b (φ) = T±

t (−φ) as

well as the non-scattered reflection channels Rb
b(φ) = Rt

t(−φ) as discussed in Sec. 3.2.

This asymmetric feature can be understood by resorting to the bands on both sides of the

junction, where due to the electrostatic potential the band alignment of 2SL and AB-BL
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Figure 3.12: (Colour online) The angle-dependent transmission and reflection probabilities
through (a, b) 2SL-AB and (c, d) AB-2SL junctions. The systems in (b, d) are the same
as in (a, c), respectively, but where the right side of the junction is subjected to an
electrostatic potential of strength v0 = 1.5γ1. In (a) E = 1.2γ1 for all channels while
in (b) E = 1.7γ1 for T+

b(t) and E = 0.6 γ1 for the rest of the channels and in (c, d)

E = (0.6, 1.7)γ1 for R+
+/T

b(t)
+ and R−

−/T
b(t)
− , respectively. We choose energy values in (b,

d) such that they correspond to only one propagating mode in the AB-BL region.

is altered. In this case, the center of the AB-BL band is shifted upwards in energy with

respect to the crossing of the 2SL energy bands [96]. The origin of such asymmetry is a

direct consequence of the asymmetric coupling in AB-BL which leads to shifting of the

bands by γ1. Therefore, at low energy |E − v0| < γ1 there is only one propagating mode

k+ (i.e one type of charge carrier ) and consequently only T+
b(t) is available. For larger

energy, on the other hand, there are two modes available giving rise to four channels T±
b(t).

The angular asymmetry feature is present only in the region in the (E, ky)-plane where

there is only one propagating mode. This can be also understood as a manifestation of

the asymmetric amplitude of the wave function in the AB-BL side due to the evanescent

modes in this region [97]. The theory of tunnelling through an interface of monolayer

and bilayer was presented earlier [97] and such asymmetry was noticed as well. Moreover,

in our case there are two single layer graphene sheets connected to the bottom and top
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Figure 3.13: (Colour online) Density plot of the transmission and reflection probabilities
through 2SL-AB-2SL as a function of Fermi energy and transverse wave vector ky with
v0 = δ = 0.

layers of the bilayer system but the asymmetric feature in Ref. [97] will be recovered when

considering only one propagation channel. For instance, the transmission probabilities T±
t

and T±
b presented in Fig. 3.12(b) show the same asymmetric features discussed in Ref.

[24]. This asymmetry feature is reversed in the other valley, so that the total transmis-

sion or reflection averaged over both layers is symmetric as can be seen from Fig. 3.12(b).

However, this valley-dependent angular asymmetry could also be used for the basis of a

layer-dependent valley-filtering device as proposed in other works [41, 51].

The above analogy, which is discriminating between the presence of one or two modes,

applies also to the non-scattered reflection probabilities Rb
b and Rt

t. These non-scattered

currents are carried by the states localized on the disconnected sublattices A2 and B1, as

seen in Fig. 2.9(a). In that case, there is one traveling mode [79] and thus, inherently, a

layer asymmetric feature will be present. In contrast, for the scattered channels Rt
b and

Rb
t the charge carriers must jump between the layers of AB-BL. This occurs through the
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localized states on the connected sublattices α1 and β2 where there are two travelling

modes and, hence, these probabilities exhibit layer symmetry as shown in Fig. 3.12(b).

In the AB-2SL configuration, where charge carriers incident from the AB-BL impinge on

the 2SL, we show the angle-dependent transmission and reflection probabilities in Fig.

3.12(c) for pristine 2SL and AB-BL.

Similar to the previous configuration 2SL-AB, the results are symmetric in this case

because the Dirac cones of both systems (2SL and AB-BL) are aligned. Furthermore,

there is an equivalence in the transmission channels such that T t
± = T b

± with partial

reflection associated with the non-scattered channels R−
− and R+

+. While for the scattered

channels R−
+ and R−

+ are almost zero. This is due to efficient transmission resulting from

the absence of the electrostatic potential in the 2SL. An electrostatic potential of strength

v0 = 1.5γ1 induces a scattering between the two modes in the reflection channels so that

now R+
− = R−

+ 6= 0 as depicted in Fig. 3.12(d). In addition, it breaks the band alignment

and gives rise to the layer asymmetry feature in the transmission probabilities T
b(t)
+ where

only one travelling mode exists i.e. E < γ1. Thus, T
b(t)
− always preserves layer symmetry

in this case, see Fig. 3.12(d), because the mode k− exists for E > γ1 where also the

mode k+ is available as discussed above. This is also the same reason that configurations

consisting of AA-BL always preserve layer symmetry. Indeed, AA-BL does not have a

region in the (E, ky)-plane with only one propagating mode, and there are always two

travelling modes for all energies.
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Figure 3.14: (Colour online) The same as in Fig. 3.13, but now with v0 = 3γ1/2.

2SL-AB-2SL

Now, two SL are connected to the AB-stacked bilayer, see Fig. 3.1(d). In Fig. 3.13 we

show the dependence of the transmission and reflection probabilities on the transverse

wave vector ky and the Fermi energy. It appears that all channels are symmetric with

respect to normal incidence since the Dirac cones of AB and 2SL are aligned. It also

implies that scattered and non-scattered channels of the transmission and reflection are

equivalent such that (T/R)t
b = (T/R)b

t and (T/R)t
t = (T/R)b

b (see Fig. 3.13).

Another interesting feature of this configuration is that for E < γ1 the scattered and

non-scattered transmissions are equal T j
i = T i

i . In this energy regime such a device can
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Figure 3.15: (Colour online) The same as in Fig. 3.13, but now with v0 = 3γ1/2, δ = 0.8γ1.
New localized states appear inside the “Mexican hat” shape of the low energy bands of
AB-BL due to the strong gate potential.

be used as an electronic beam splitter [98, 99].

Fig. 3.14 displays the same plot as in Fig. 3.13 but with an electrostatic potential on

the AB-BL region. There is an important difference as compared to the pristine AB-BL

case, the layer symmetry is broken such that T b
t (ky) = T t

b (−ky) as clarified in Fig. 3.14.
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Figure 3.16: (Colour online) Transmission probabilities as function of Fermi energy and
bias for normal incidence.

This can be also understood by pointing out that charge carriers scattered from top to

bottom when moving from left to right in the K valley are equivalent to charge carriers

scattering from bottom to top when moving oppositely in the second valley K ′.

Introducing a finite bias (δ > 0) to the AB-BL region along with an electrostatic

potential (v0 > 0) will shift the bands and opens a gap in the spectrum. As a result of the

presence of a strong electric field, the transmission channels are completely suppressed

inside the gap due to the absence of traveling modes as seen in Fig. 3.15. Moreover,

non-zero asymmetric reflection appears in the gap as well as a violation of the equivalence

of non-scattered transmission channels. This is a result of the breaking of inter-layer

sublattice equivalence [47]. In addition, some localized states appear inside the “Mexican

hat” of the low energy bands where they are pushed by the strong electric field (δ = 0.8γ1),

see Fig. 3.15.

There is a link between the transmission probabilities of our system 2SL-AB-2SL and

those investigated by González et al. [96]. The channels T b
b and T t

b are qualitatively

equivalent to those obtained in Ref. [96]. For example, T t
b shows electron-hole (e−h) and

δ → −δ symmetry whereas T b
b exhibits another symmetry which can be obtained under

the exchange (e, δ) ↔ (h,−δ). The results in Fig. 3.16 are in good agreement with those
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Figure 3.17: (Colour online) Density plot of the transmission and reflection probabilities
through AB-2SL-AB as a function of Fermi energy and transverse wave vector ky with
v0 = δ = 0 and d = 25nm.

of Ref. [34] where we fix v0 = 0 and d = 25 nm.

AB-2SL-AB

For leads composed of AB-BL where the intermediate region is pristine 2SL, we show the

results in Fig. 3.17 for the transmission and reflection probabilities. Now charge carriers

will scatter between the different modes of the AB-BL on the left and right leads as shown

in Fig. 3.1(c). As expected, all channels are symmetric and as a result of the finite size of

the 2SL region, resonances appear in T as shown in Fig. 3.17. These so-called Fabry-Pérot
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Figure 3.18: (Colour online) The same as in Fig. 3.17, but here with v0 = 3γ1/2

resonances appear at quantized energy levels [100]

En
SL(ky) =

√

k2
y +

(nπ

d

)2

. (3.21)

This is the dispersion relation for modes confined in the 2SL region of width d.

The results presented in Fig. 3.17 reveal no scattering between the two modes k+

and k− and charge carriers are only transmitted or reflected through the same channel

from which they came from. Unexpectedly, introducing an electrostatic potential induces

a strong scattering in the reflection channels (R−
+ = R+

− 6= 0) and very weak scattering in

the transmission channels (T−
+ = T+

− 6= 0), as seen in Fig. 3.18. When the 2SL are biased,
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the Dirac cones at bottom and top layers will be shifted up (white dashed lines) and

down (red dashed lines) in energy, respectively (see Fig. 3.19). This bias will strengthen

the coupling between the two modes resulting in a strong scattering between them. In

addition, the inversion symmetry is broken due to the bias leading to an asymmetry with

respect to normal incidence.

Conductance

The conductance of the two-block system consisting of 2SL and BA-BL is shown in Fig.

3.20 for different values of the applied gate voltage. Figs. 3.20(a,b) reveal that the system

where charge carriers are incident from the 2SL and impinge on AB-BL and vice versa are

equivalent to the case when both 2SL and AB-BL are at the same potential. As seen in

Figs. 3.20(a,b), G
t(b)
+ = G+

t(b) are contributing to the total conductance GT starting from

E = 0 where the k+ mode exists. On the contrary, G
t(b)
− = G−

t(b) only contributes when

E > γ1 where k− states are available and this appears as a sharp increase in GT at E = γ1.

On the other hand, considering an applied electrostatic potential on the right side of the

two-block system will break this equivalence as seen in Figs. 3.20(c,d). In addition, as a

result of the shift of the Dirac cone in AB-BL (see Fig. 3.20(c)) or 2SL (see Fig. 3.20(d))

due to the electrostatic potential, all conductance channels are zero at E = v0. Similar

to the AA-BL case, the conductances of the pristine systems 2SL-AB/AB-2SL (see Figs.

3.20(a, b)) clearly preserve the time reversal symmetry. Even though, both systems have

different transmission probabilities as can be seen from Figs. 3.12(a, c). We also show

in Figs. 3.20(e, f) the total conductance in the absence of domain wall in 2SL-SL and

AB-AB systems, respectively, for v0 = 0 (blue curves) and v0 = 1.5γ1 (black curves).
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Figure 3.19: (Colour online) The same as in Fig. 3.17, but here with v0 = 3γ1/2, δ = 0.8γ1.
Red and white dashed curves correspond to the bands of bottom and top layers of 2SL
while the black dashed curves are the AB-BL bands.

This shows that transport channels in the presence of domain walls are experimentally

distinguishable.

In Fig. 3.21 we show the conductance in a 2SL-AB system as a function of the bias

for transport using a single Fig. 3.21(a) or a double Fig. 3.21(b) mode. The results show

that the contribution from the top and bottom layers to the conductances have opposite
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Figure 3.20: (Colour online) Conductance of different junctions for different magnitudes
of the applied gate: (a, b) v0 = δ = 0, (c, d) v0 = 3γ1/2, δ = 0, (e, f) the total
conductance for 2SL-2SL and AB-AB junctions, respectively, with v0 = 0(blue curves)
and v0 = 1.5γ1(black curves).
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Figure 3.21: (Colour online) Conductance across the 2SL-AB system as a function of the
bias on the AB-BL with v0 = 0. (a) and (b) correspond to the single and double modes
regime with E = 0.3γ1 and E = 1.15γ1, respectively, with G±

T = G±
t + G±

b .

behaviours as a function of the inter-layer bias. The total conductance GT , however, has a

convex form, increasing with the application of an inter-layer bias. From Fig. 3.21(b), on

the other hand, we see that when a second mode is available, four channels contribute to

the conductance and the total conductance assumes a concave form, i.e. decreasing with

increasing inter-layer bias. This is a characteristic experimental feature that can signal

the presence of a second propagation mode.
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Figure 3.22: (Colour online) Conductance of different junctions for different magnitudes
of the applied gate: (a, b) v0 = δ = 0, (c, d) v0 = 3γ1/2, δ = 0 and (e, f) v0 = 3γ1/2,
δ = 0.8γ1.

For the three-block system we show the conductance of the configuration AB-2SL-AB

and 2SL-AB-2SL in the left and right columns of Fig. 3.22, respectively. The resulting

conductance of the first configuration shows only two non-zero channels G+
+ and G−

−, while

the scattered ones G−
+ = G+

− = 0 since T−
+ = T+

− = 0 (see Fig. 3.22(a)). Furthermore,

for low energy GT = G+
+ since the mode k− is not available in this regime but it starts

conducting when E > γ1. The applied electrostatic potential on the 2SL keeps the

scattered conductance channels at zero and a minimum in the conductance appears around

the shifted Dirac cone E = v0 of the 2SL as depicted in Fig. 3.22(c). As pointed out

before, if the Fermi energy approaches the strength of the electrostatic potential, a non-

zero minimum is present in the conductance because charge carriers can be transmitted

through a width d of 2SL via evanescent modes [95]. In Fig. 3.22(f) this minimum

disappears and the conductance dramatically increases at E = γ1. This is because the

bias will couple the two modes and two additional scattered channels G−
+ and G+

− start
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Figure 3.23: (Colour online)Density plot of the transmission and reflection probabilities
through AA-2SL-AB junction as a function of Fermi energy and transverse wave vector
ky with v0 = 1.5γ1, δ = 0 and d = 25nm. The superimposed dashed curves represent
the bands of AB-BL(black), AA-BL(green) and 2SL (white), with γ1 being the inter-layer
coupling of AB-BL.

conducting. The resonant peaks in the conductance, see Figs. 3.22(a,c,e), are due to the

finite size of the intermediate region and hence strictly depend on its width d. On the

other hand, the conductance of the configuration 2SL-AB-2SL has different features. In

Fig. 3.22(b) the four channels, in contrast to the previous configuration, start conducting

79



(a)
T-

-

R-
+

T+
+

R+
-

0 0.5 1 1.5 2 2.5 3
0

0.5

1

E/γ1

T
,R

T-
-

T+
+

TAB

TAA
(b)

0 5 10 15 20 25 30
0

0.5

1

d/l

T

AA-2SL-AB (c)

GT

G-
+ G+

-

G+
+

G-
-

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

E/γ1

G
l/
G
0
L
y

G-
+ G+

-

G-
-

G+
+

GT
AA-2SL-AB (d)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

E/γ1

G
l/
G
0
L
y

AA-2SL-AB (e)

G+
-

G-
+

G+
+

G-
-

GT

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

E/γ1

G
l/
G
0
L
y

Figure 3.24: (Colour online) (a) Transmission and reflection probabilities for normal in-
cidence for v0 = 3γ1/2, δ = 0. (b) Transmission probabilities with normal incidence for
AA-BL (AB-BL) n-p-n junction, green (black) curves. Blue (red) curves are the non-zero
channels T+

+ (T−
− ) in AA-2SL-AB. All energies are considered to be less than the electro-

static potential strength. Conductance of AA-2SL-AB junction for different magnitudes
of the applied gate: (c) v0 = δ = 0, (d) v0 = 3γ1/2, δ = 0, (e) v0 = 3γ1/2, δ = 0.6γ1, with
γ1 being the inter-layer coupling of AB-BL.

from E = 0. This possess layer symmetry such that Gt
t = Gb

b and Gt
b = Gb

t . Of particular

importance is the equivalence of the four channels for E < γ1 while for E > γ1 charge

carriers strongly scatter between the layers (i.e. Gj
i > Gi

i) as shown in Fig. 3.22(b). This

equivalence of the four channels in the regime E < γ1 vanishes when an electrostatic

potential is applied (v0 > 0) to the intermediate region as seen in Fig. 3.22(d). However,

the scattered and non-scattered conducting channels are still equivalent in this case where

G
t(b)
t = G

b(t)
b with Gj

i > Gi
i for all energy ranges, see Fig. 3.22(d).
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As discussed before, the most characteristic feature of the inter-layer bias in the AB-

BL is the opening of a gap in the energy spectrum between v0 ± δ which is reflected in

the conductance as seen in Fig. 3.22(f). The resonant sharp peaks in the conductance

near the edges of the gap result from the localized states inside the Mexican hat of the

low energy bands. Another consequence of the inter-layer bias is the breaking of the

equivalence in the non-scattered conducting channels where now Gt
t 6= Gb

b as seen in Fig.

3.22(f).

3.3.3 AA-2SL-AB junction

Here we consider the case where the leads consist of BL with different stackings separated

by two uncoupled graphene sheets. Such a structure can be formed if in the decoupled

region one of the graphene sheets has larger lattice constant, e.g. due to strain, leading

to an inter-layer shift when the two layers couple.

Notice that the inter-layer coupling strength γ1 differs for the two bilayer structures.

Their ratio is γAA
1 /γAB

1 ≈ 1/2 [58, 60, 61] . To account for this difference the energy

is normalized to γAB
1 such that the upper Dirac cone of pristine AA-BL is now located

at E = 1/2 instead of E = 1 as in the previous sections. In the junction AA-2SL-AB

the charge carriers incident from AA-BL and transmitted through 2SL into AB-BL. The

results for the transmission and reflection probabilities of this junction are shown in Fig.

3.23 for v0 = 1.5γ1, δ = 0 and d = 25 nm. The carriers incident from lower(k+)/upper(k−)

Dirac cones in AA-BL can be transmitted into one of the modes (k+ or k−) in the AB-BL,

see Fig. 3.1(e). On the other hand, the reflection process occurs between the intra- or

inter-cone in the AA-BL.
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Remarkably, Fig. 3.23 shows that the scattered transmission probabilities are very

small and that almost all transmission is carried by the non-scattered channels. This

is not immediately expected since a priori the k+−mode in AA-BL is not related to the

k+−mode in AB-BL. However, both modes have the same parity under in-plane inversion,

showing that this feature is robust against variations in the inter-layer coupling.

In contrast to the AA-2SL-AA junction where the scattering between lower and upper

cones is forbidden in case of zero bias, here the two cones are coupled even without bias.

This results in non-zero reflection in the scattered channels R−
+ and R+

−.

For normal incidence, the scattered transmission (T−
+ and T+

− ) and the non-scattered

reflection (R+
+ and R−

−) channels are zero (see Fig. 3.23) because in that case both the AA

and AB Hamiltonian are block diagonal in the even and odd modes basis. Now, we can

investigate Klein tunnelling when transitioning in-between the two types of stacking. For

this, we show the non-zero channels of transmission and reflection for normal incidence in

Fig. 3.24(a). We find that in contrast with the AA-2SL-AA case, perfect Klein tunnelling

does not occur in the junction AA-2SL-AB. However, as shown in Fig. 3.24(b), we do

find that the transmission probability does not depend on the length or even presence of

the 2SL region, in contrast to the previous cases with two domain walls.

For δ 6= 0 the coupling between the different modes is strengthened and, hence, strong

scattering in the transmission and reflection channels occurs. Furthermore, the symmetry

with respect to normal incidence in the reflection and transmission channels is broken.

The conductance for the discussed structure is shown in Figs. 3.24(c, d, e) for (v0 =

δ = 0), (v0 = 1.5γ1, δ = 0) and (v0 = 1.5γ1, δ = 0.6γ1), respectively. For pristine 2SL,

the dominant channels are G+
+ and G−

− . Notice that the latter one starts conducting
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only when E > γ1 and this shows up as a rapid increase in the total conductance GT at

E = γ1. The scattered channels G−
+ and G+

− are only weakly contributing to the total

conductance as a result of weak coupling of the modes. In contrast to the junctions

AA(AB)-2SL-AA(AB), in this case the scattered channels of the conductance are not

equivalent G−
+ 6= G+

−, see Fig. 3.24(c,d). This is because the scattering occurs between

modes in bilayer graphene of different stackings. The electrostatic potential introduces

a minimum at E = v0 in the total conductance due to the absence of propagating states

at this energy in the 2SL, see Fig. 3.24(d). Biasing the intermediate region (2SL) of

the junction AA-2SL-AB provides propagating states at E = v0, and hence removing the

minima in GT as shown in Fig. 3.24(e). In addition, the contribution of the scattered

channels G−
+ and G+

− becomes more pronounced as a result of the strong coupling between

the modes induced by the bias.

Finally, notice that the counterpart junction AB-2SL-AA, represents the time-reversal

case of the system discussed above. We have verified that the transmission channels are

equivalent in the absence of a bias. In the presence of a bias, the angular symmetry is

broken and, consequently, the reversed junction features the opposite angular asymmetry,

preserving time-reversal invariance.

In Conclusion, the results presented above reveal that the presence of the local domain

wall in bilayer graphene samples change the transport properties significantly. Our results

may shed light on the design of electronic devices based on bilayer graphene. Finally, we

showed that for a given sample with unknown sizes of local stacking domains, the average

inter-layer coupling can be estimated through quantum transport measurements.
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CHAPTER 4

GATE TUNABLE LAYER

SELECTIVITY OF ELECTRONIC

TRANSPORT

1In the previous chapter we studied the electronic transport of delaminated bilayer

graphene structurers. For example, we showed that the configuration 2Sl-BL-2SL shown

in Fig. 3.1(d) has the ability to be used as a beam splitter when the incident energy

E < γ1. In this chapter we will show the possibility to use such configuration as layer

switch and investigate the effect of the domain walls smoothness and the type of stacking

on the layer selectivity of the system.

1The results of this chapter were published as:

Hasan M. Abdullah, M. Zarenia, H. Bahlouli, F. M. Peeters and B. Van Duppen, Europhys. Lett. 113, 17006 (2016).
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Figure 4.1: (Colour on-line) (a) Schematic presentation of the proposed structure with
the indication of the top and back gate, the coupled region (BLG) and the decoupled
graphene sheets (2SLG). (b) and (c): cross section of the device with abrupt and smooth
transitions from the coupled to the decoupled region respectively. The arrows in (b)
indicate the different transmission channels as discussed in the text.

4.1 Layer switch formalism

We model the layer switch as two SLG that are locally joined together by van der Waals

forces into an AA- or AB-BLG structure as depicted in Fig. 4.1(a). We consider an

abrupt and smooth SLG-BLG interfaces (see Fig. 4.1(b, c). We describe the dynamics

of the carriers in the different regions by the continuum Hamiltonian written in the basis

of atomic orbitals Ψ = (Ψ1,Ψ2)
T with Ψi = (ΨAi, ΨBi) being the SLG spinor. Then the

Hamiltonian of the system is the one described in Eq. and can be written as

H(r) =







H1 Cτ,ζ(r)

C†
τ,ζ(r) H2





 , (4.1)
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Figure 4.2: (Colour on-line) Band dispersion relations around the Dirac point for single
layer graphene (left), AA-stacked (middle) and AB-stacked (right) bilayer graphene. The
dashed curves correspond to the spectrum of the system in case of a finite bias, i.e. δ 6= 0.

where Hi = vF~σ.~p + Vi is the SLG Hamiltonian with Vi the electrostatic potential on the

i-th layer which can be varied by gating the sample with top and back gates as shown in

Fig.4.1(a). In Eq. (4.1) Cτ,ζ(r) is the inter-layer coupling and is defined by

Cτ,ζ(r) =







τγ1(r) 0

ζγ1(r) τγ1(r)





 , (4.2)

where the parameters τ and ζ can model different stacking types by assigning different

values to these parameters as discussed in Sec. 3.1.2 . The strength of the interlayer

coupling γ1(r) is determined by the distance between both layers. Since the coupling

is related to the overlap between the orbital eigenstates of the two carbon atoms right

above each other, it decreases exponentially with inter-layer distance. For simplicity, we

consider in our model that the interlayer coupling decries linearly through the smooth

parts of the system whose widths are LR, LL Fig.4.1(c) while in the middle region with

width LM it retains its standard values for stable AB- and AA-BLG as γ1 = (0.4, 0.2) eV,

respectively. To remind the reader about differences of these types of stacking we show

the energy spectra of SLG and BLG in Fig. 4.2. Note that in Eq. (4.2) we neglected
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the skew inter-layer hopping parameters corresponding to the sublattices which are not

directly above each other. The final result does not depend strongly on this assumption

since these hopping parameters are off diagonal contributions accompanied by a term

linear in the momentum [47].

To determine the layer selectivity we first note that translation symmetry in the y-

direction implies conservation of ky. Then we connect the eigenstates of each region

defined in Fig. 4.1(b) as “2SLG” for the decoupled single layer and “BLG” for the bilayer

regions at the intermediate boundaries by matching each sublattice spinor component

with its counterpart in the other region.

The eigenstates in the 2SLG regions consist of a set of oppositely propagating states

in each layer separately. This allows us to define a layer resolved current by applying ap-

propriate boundary conditions and identifying the coefficients of each mode with electrons

propagating in one of the two SLG layers. In this manner we can calculate the inter- and

intra-layer transmission and reflection probabilities as the square of the modulus [ 90]. The

scattering probabilities are denoted by At
t or Ab

b for intra-layer transitions and by At
b or Ab

t

for inter-layer transitions where A stands for transmission T or reflection R. The different

transmission channels that are considered in this work are illustrated in Fig. 4.1(b). The

number of transmission channels depends on the availability of propagating modes in the

BLG part of the device. As can be inferred from the energy spectra depicted in Fig. 4.2,

for each energy it is possible to have up to two modes of propagation (indicated in red

and blue in Fig. 4.2). Note that for the AA-BLG part there are always two propagating

modes, while for AB-BLG it is possible to have none if the energy is in the gap, one if the

energy is below the second band (i.e. E < γ1) or two if the energy is sufficiently high.
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In order to take into account a smooth transition between the 2SLG and BLG regions,

we used the transfer matrix approach [90]. This approach subdivides the smooth transition

into a series of steps. As we mentioned above, we assume that the inter-layer hopping

γ1(r) increases linearly from zero in the SLG region until standard γ1 in the joined region

as shown in Fig. 4.1(c).

We derive the conductance of the sample from the transmission coefficients using the

Landauer-Büttiker [92] formula defined by

GT
ij = G0Ly

∑

ky

Tij (ky) , (4.3)

where G0 = 4e2/h and Ly is the length of the sample in the y-direction. Analogously we

can also obtain the reflectance as

GR
ij = G0Ly

∑

ky

Rij (ky) , (4.4)

which gives a measure for the amount of current that is reflected at the junction back

into the leads where it came from or into the other layer. These quantities can be used

to define a measure of layer filtering as follows

FA
ij =

GA
ij

GA
i,tot

, (4.5)

where GA
i,tot = GA

it +GA
ib such that, for example, F T

bt measures the filtering to the top layer

(t) in the transmission channel (T ) when the particle was incident in the bottom layer

(b).
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4.2 Smoothness effect on scattering probabilities

In Fig. 4.3 we show the transmission and reflection probabilities as a function of the

Fermi energy at normal incidence for different bias δ = (V1−V2)/2, and potential strength

v0 = (V1 + V2)/2 for an AB-stacked junction region. In Figs. 4.3 (a - d) the structure is

ungated (v0 = 0) and unbiased (δ = 0) with solid (dashed) lines for abrupt (smoothed)

interface. Tbb and Ttb are equal for energies less than the inter-layer hopping γ1. In

contrast, for E & γ1, the electrons strongly scatter from the top (bottom) layer on the

left lead into the bottom (top) layer on the right. This difference is due to the presence

of two possible transmission channels in BLG while only one channel exists for E < γ1.

On the other hand, the reflection probability shows no layer selectivity except for E = 0

where electrons completely reflect into the same layer. This is because at this energy

there are no available propagating states in BLG.

Applying an electric field on BLG (v0 > 0) will shift the energy spectrum and affect

the transmission probability as shown in Figs. 4.3(e, f). The high selectivity or strong

scattering between the layers is preserved in the region where the two channels are avail-

able, i.e. in the energy intervals 0 < E < v0−γ1 and E > v0 +γ1. Similarly, the reflection

probability here has no significant selectivity and the strong reflection in Rbb channel is

shifted by v0 since it occurs now at E = v0.

In the case when BLG is biased (δ > 0) and gated (v0 > 0), the band gap induced

by the inter-layer bias suppresses the transmission in the energy region between v0 ± δ,

as seen in Figs. 4.3(g, h). Moreover, T b
b (Rb

b) and T t
t (R

t
t) are almost the same, except in

the region where there is only one channel in the BLG region. However, T t
b = T b

t for all

energies, which is a manifestation of a breaking of the inter-layer sublattice equivalence.
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Figure 4.3: (Colour on-line)Transmission and reflection probabilities at normal incidence
as a function of the Fermi energy, through 2SLG-AB-2SLG structure. (a, b) and (c, d)
for the non scattered and scattered channels with δ = v0 = 0, respectively, solid (dashed)
lines for abrupt(smoothed) structure with L = 25 nm, LL = LR = 5 nm and LM = 20
nm, (see Fig. 4.1 (c)). For only abrupt structure with v0 = 3γ1/2, (e, f) and (g, h) for
δ = 0, 0.3γ1, respectively.
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Due to the finite size of the interaction region, the propagating mode in the BLG

region interferes with itself resulting in oscillations of the transmission probabilities, see

Figs. 4.3(a, c). These so-called Fabry-Pérot resonances appear at energies quantized as [?]

En
BLG =

1

2

(

−1 ±

√

1 + 4l2
(nπ

L

)2
)

, (4.6)

with l = ~vF

γ1
≈ 1.7nm (AB-stacking) and l ≈ 3.3nm (AA-stacking) is the inter-layer

coupling length.

The effect of smoothing the SLG-BLG interface on the transmission and reflection

probabilities is shown in Figs. 4.3. In this figure we show the non-scattered and scattered

channels in Fig. 4.3(a, b) and (c, d), respectively, for abrupt (solid curves) and smoothed

(dashed curves) structures. Our results show that the only effect of the smoothness is

to remove the oscillations in the transmission and reflection probabilities. However, the

qualitative and quantitative behaviour of the transmission and reflection coefficients is

preserved and the selectivity is not significantly influenced by the smoothness.
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Figure 4.4: (Colour on-line) Transmission and reflection probabilities at normal incidence
as a function of the bilayer width L for δ = v0 = 0. (a) for AB-stacking with E = 3γ1/2
and (b) for AA-stacking with E = 3γ1/2.

91



Gbt = Gtb
Gtt Gbb

(a)

-0.6 -0.3 0 0.3 0.6
0

0.05

δ /γ1

G
T
/G
0
L
y

Gbt = Gtb

Gbb Gtt

(b)

-0.6 -0.3 0 0.3 0.6
0

0.05

δ /γ1

G
R
/G
0
L
y

(c)

Ftb
Fbt

FbbFtt

-0.6 -0.3 0 0.3 0.6
0

0.5

1

δ /γ1

F
T

Fbb

Ftb

Ftt

Fbt

(d)

-0.6 -0.3 0 0.3 0.6
0

0.5

1

δ /γ1

F
R

Figure 4.5: (Colour on-line) Conductance and reflectance along with their associated layer
filtering as a function of the bias through a 2SLG-AB-2SLG structure for E = 0.3γ1 and
v0 = 1.8γ1 and L = 25.8 nm. (a) and (b) conductance and reflectance; (c) and (d) the
corresponding layer filtering, respectively.

Fig. 4.4 shows the AB-BLG (left panel) and AA-BLG (right panel) width dependence

of the transmission and reflection probabilities for normal incidence. For both types

of stacking, T t
t and T b

b are equal and oscillate with the width of the BLG, while the

transmission T t
b = T b

t oscillates out of phase. This behaviour is due to the interference

of the two propagating modes in BLG, but for AB-BLG this will not hold for E . γ1,

because there is only one propagating mode in this case. On the other hand, the reflection

probabilities for AA-stacking are zero for the whole range of L, which is due to Klein

tunnelling, while for AB-stacking we still have partial reflection. The location of the

resonances in T b
b (T t

b ) for AA and AB stacking are given by [52]

Lm = ξπl (m + η) (4.7)
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Figure 4.6: (Colour on-line) Conductance and reflectance along with their associated layer
filtering as a function of the bias through 2SLG-AA-2SLG structure for E = 0.3γ1 and
v0 = 1.8γ1 and L = 26.4 nm. (a) and (b) conductance and reflectance, (c) and (d) the
corresponding layer filtering, respectively.

with m an integer, ξ = 1 for AA-stacking and ξ = 2 for AB-stacking and η = 0, 1
2

for T b
b

and T t
b , respectively. The different value for ξ is due to the fact that when the crystal is

AB-stacked only half of the atoms contribute in the inter-layer coupling while all atoms

participate in AA-stacking.

The layer filtering can be controlled by applying an electric field which shifts the

potential of the total structure by an amount v0 > 0 and applies a finite potential difference

between the layers δ > 0.

4.3 Layer selectivity

In Fig. 4.5 we present the conductance and reflectance with the corresponding layer filter-

ing as a function of bias for AB-BLG. The conductance shows a certain complementarity:
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the maxima in the GT
bb (GT

tt) coincide with the minima in GT
bt (GT

tb) as seen in Fig. 4.5(a).

This behaviour clearly shows up in the layer filtering as shown in Fig. 4.5(c), where for

δ ≈ −0.35γ1 the particle is incident on the bottom layer and then is transmitted into the

same layer, resulting in F T
bb ≈ 1. While for δ = 0 we find that F T

bt = 1, which means

that the particle is incident on the bottom layer and is then transmitted into the top

layer on the other side of the junction. This result demonstrates that the structure under

consideration has a gate tunable layer selectivity and that it can act as a layer switch.

Indeed, by tuning the voltage across the joined region, one can switch the transmitted

current between the two layers.

The reflectance with the corresponding layer filtering is shown in Figs. 4.5(b, d),

respectively. We see small oscillations in GR
bb (GR

tt) which are out of phase compared to

GR
bt (GR

tb) with weak current flow. The results show that also the reflection can be tuned

by changing the bias potential δ, but not with the strong selectivity that is possible in

the transmission channel.

Also for the AA-stacked variant the scattered and non scattered conductances are

exactly out of phase as shown in Fig. 4.6(a). The layer filtering is nearly perfect for

δ ≈ ±0.63 γ1 with F T
bb ≈ 1 and F T

bt ≈ 0, whereas at δ ≈ 0 the particles are completely

scattered between the layers with F T
bt ≈ 1 and F T

bb ≈ 0 as shown in Fig. 4.6 (c). The same

analogy here applies to the reflectance and the associated layer filtering as shown in Figs.

4.6(b, d).

Finally, we can say that we perform our calculation for abrupt and smooth SLG-BLG

interfaces and showed that these types of interfaces show no quantitative or qualitative

differences. This reveals that the switching effect is robust against the smoothing of the

94



SLG-BLG junction. In addition, we found that the type of stacking configuration strongly

influences the layer selectivity of the system.
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CHAPTER 5

CONFINEMENT IN GRAPHENE

QUANTUM BLISTERS

1The previous chapters we focused on studying the transport properties and layer filtering

across Van der Waals domain walls in bilayer graphene. This chapter is devoted to

investigation confinement in delaminated bilayer graphene. Ever since the discovery of

graphene, researchers have tried to confine electrons in graphene-based quantum dots

(QDs) [101, 102]. Quantum dots are very interesting because of the vast range of new

applications in for instance electronic circuitry [103,104], photovoltaics [105], qubits [106],

and gas sensing [107]. The use of graphene as a basis for these quantum dots could

enable fast and flexible quantum computing devices. On a more fundamental level, the

gapless band structure of graphene has made researchers wonder how the electron and

hole states in such zero-dimensional quantum system would interact with each other and

how the ultra-relativistic nature of graphene charge carriers would respond to confinement

1The results of this chapter were published as:

H.M. Abdullah, M. Van der Donck, H. Bahlouli, F. M. Peeters and B. Van Duppen, Appl. Phys. Lett. 112, 213101 (2018).

Hasan M. Abdullah, H. Bahlouli, F. M. Peeters and B. Van Duppen, J. Phys.: Condens. Matter 30, 385301 (2018).
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[108–110]. It is, however, exactly this peculiar nature of the charge carriers that prohibits

the use of traditional QD fabrication techniques such as local electrostatic gating [111,112].

Indeed, because of the Klein tunnelling effect [14,63], electrons will use hole states in the

gated region to escape confinement. The graphene quantum blister (GQB), proposed in

this Article, overcomes these limitations and acts as a tunable graphene quantum dot

that still harnesses the peculiar electric properties of graphene charge carriers.

There have been many different propositions to confine Dirac fermions in graphene

quantum dots such as combining electrostatic gates with a magnetic field [108, 113–117],

cutting a graphene flake into small nanostructures [118–122], and introducing a gap in-

duced by the substrate [111, 123]. However, magnetic fields tend to bring along many

difficulties in nanostructured systems [124–126], QDs made in nanostructures are highly

sensitive to the precise form of the edge which is hard to control [117], and the band gap

produced in graphene by a substrate is very difficult to control which makes it far from

ideal in applications [127–133]. These difficulties have significantly limited experimental

realization of graphene QDs and hence hindering their possible applications.

However, this has not withheld researchers from trying to apply extreme external

conditions. Under high magnetic field [134] or supercritical charges [135] confinement was

realized but only quasi-bound states with a relatively short life time [136] were observed.

Recently, a few experiments [137–142] were conducted to detect quasi-bound states in

single layer graphene by using advanced substrate engineering and the incorporation of

an electrostatic potential induced by the tip of the scanning tunneling electron microscope

(STM). There is only one recent experiment [143] that realized bound states with a longer

lifetime in a QD in a graphene sheet through a strong coupling between the graphene sheet
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Figure 5.1: (Color online) (a) Schematic representation of the structure of a circular
GQB with radius R. The graph shows the inter-layer distance (red) and the local band
gap (black) when a global bias δ = 0.12 eV is applied. The dashed blue curve corresponds
to the approximate band gap profile with an abrupt change at the interface R of the GQB.
(b) Top view of the two layer outside the blister placed in AB-stacking. (c) Schematic
representation of a cross section of the GQB depicting the position of the different atoms in
the unit cell. The black lines denote the π orbitals while the vertical green lines represent
the inter-layer coupling. Notice that for illustrative reasons only a small number of atoms
are shown. The discussed GQBs in this study typically have radii of several hundreds of
atoms or tens of nanometers. (d) Energy spectrum inside (left) and outside (right) the
GQB. Red and blue bands in left panel correspond to top and bottom layers while the
horizontal black lines in the left figure represent the discrete energy levels that occur due
to confinement. These states are only allowed in the range E < |δG| as delimited by the
yellow region. The solid black curves in the right figure denote the edge of the continuum
spectrum outside the GQB.

and the substrate. However, the realized bound states in such systems are only externally

tunable through careful controlling of the distance between the sample and the STM tip.

An alternative way is to use bilayer graphene as a basis to make a QD [144–146].

For these systems the electronic energy spectrum is parabolic instead of linear as is the
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case in single layer graphene, and can be gapped by applying a potential bias to the

two layers [57]. By nano-engineering electrostatic gates such that the bilayer graphene

spectrum is gapped everywhere except in a locally defined region, charge carriers can

indeed be confined [145]. However, in practice it is challenging to engineer the gates such

that the bias profile has the desired shape and the resulting confined electron states loose

their interesting ultra-relativistic character.

Recently, delaminated bilayer graphene attracted attention because it can provide well-

defined one-dimensional channels and exhibit layer selectivity in transport [62, 147–149].

Such structures have been experimentally observed in mechanically exfoliated graphene

samples [78, 88]. GQBs are based on delaminated bilayer graphene, but here the delam-

ination is concentrated in a circular region. By application of a global bias gate, states

are trapped in this region and retain the interesting graphene-like characteristics.

The proposed GQB supports bound states and overcomes the above mentioned limita-

tions. It is free of magnetic fields, relatively easy to manufacture without losing graphene’s

quality. Finally GQBs also allow external tunability of the electronic spectrum by appli-

cation of a simple global gate [48, 150] and one can even control the layer localization of

the confined states themselves.

5.1 Graphene quantum blisters

A GQB can be made from Bernal bilayer graphene by locally deforming the upper layer,

hence creating a blister in the top layer as shown in Fig. 5.1. Its electronic spectrum

can be probed using STM [151], but in contrast to other experiments the electric field
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of the STM tip is not necessary to confine electrons [137, 138, 142]. As a result of the

deformation, the inter-layer coupling strength γ1 is strongly reduced and practically zero

inside the blister. Therefore, the charge carriers have a degenerate linear energy spectrum

inside the blister as they belong to independent layers. Outside the blister, however, the

two layers are coupled in a Bernal bilayer structure [57] and have the characteristics of a

parabolic energy spectrum. By applying a global gate that induces a potential difference

between top and bottom layer, a gap can be opened outside the GQB but inside the

blister the linear energy spectrum of the two separate layers is only shifted up and down

in energy, allowing states for energies in the bilayer gap. These states are bound in the

GQB as shown in Fig. 5.1(c). Since they cannot exist anywhere except in the GQB, the

life time of the state diverges and we, therefore, have real bound states.

In order to create the blister structure described in the previous paragraph, one could

follow several routes. This first one uses the local separation of two graphene layers that

is found in several samples [76, 77, 83, 86, 152]. By applying a global gate to these of

nanostructures, states will confine inside the blister. A second route follows a deliberate

introduction atoms in-between two graphene layers with, for example, intercalation tech-

niques [153–160]. A final route could consist of using graphene samples that are decorated

with nanoclusters as a basis material during growth of bilayer graphene. It was shown that

current techniques can precisely control over the size and content of these clusters [161].

It is, therefore, expected that by following this technique, we could also precisely control

the radius of the GQBs that are made in this way. Creating GQBs as such remains an

open quest, but a major advantage of using nanoclusters is that the material type also

influences the electronic properties of the confined modes. For example if the nanoclusters
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are metallic, an dipole will be induced in the nanocluster, which in its turn influences the

electric potential felt by the states in a specific and material-dependent way.

5.2 Theoretical aspects of GQB

5.2.1 Electrons in GQB

In Figs. 5.1(a, b) we show schematically the atomic structure of a circular GQB with

radius R. The continuum limit is valid if the size of the GQB is much larger than the

inter-atomic distance, then one can describe charge carriers by a 4 × 4 tight-binding

Hamiltonian written in an arbitrary basis of orbital eigenfunctions of the four atoms

making up the crystallographic unit cell of bilayer graphene [57]. The labelling of the

different atoms and the direct interlayer coupling are illustrated in Fig. 5.1(b, c). In the

basis Ψ = (ΨA1, ΨB1, ΨB2, ΨA2)
T , the Hamiltonian in position representation in valley Kτ

reads [95, 162–164]

Ĥ(r) =















δ(r) vFπ̂+ ξγ1(r) 0

vFπ̂− δ(r) 0 0

ξγ1(r) 0 −δ(r) vFπ̂−

0 0 vFπ̂+ −δ(r)















, (5.1)

In Eq. (5.1), π̂± = p̂x ± ip̂y is the canonical momentum, which in polar coordinates

become [120]

π̂τ
± =

~
i
e±iτφ

[
∂

∂ρ
±

iτ

ρ

∂

∂φ

]

. (5.2)
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In Eq. (5.1) the parameter ξ = (0, 1) defines the system inside and outside the GQB, which

stands for two decoupled graphene sheets and AB-stacked bilayer graphene, respectively.

5.2.2 Inter-layer coupling in a GQB

In Eq. (5.1) the function γ1(r) describes the coupling between the A1 and B2 atoms in

each layer and togheter with δ(r) determine the band gap throughout the device.. If we

consider the GQB as in Fig. 5.1(a) where one of the layers departs from the other one in

the form of a Gaussian dome, one can describe the inter-layer distance c(r) is given by

c(r) = cM exp

(

−4
ρ2

R2
QB

)

, (5.3)

where cM is the inter-layer distance at the top of the blister, RQB is the radius of the

blister and ρ is the radial component. Because the inter-layer coupling strength γ1(r)

arises from the overlap of two orbital eigenfunctions in the tight-binding formalism, its

value decreases exponentially with increasing inter-layer distance. Following standard

practice [69, 71, 73], we can write the inter-layer coupling function as

γ1(r) = γ0
1 exp

(

−β
c(r) − c0

c0

)

. (5.4)

In Eq. (5.4) we have introduced c0 ∼ 0.33 nm the equilibrium inter-layer distance and

γ0
1 = 0.38 eV [58, 60, 61] the equilibrium inter-layer coupling. The quantity β/c0 is the

inverse inter-layer coupling decay length. For the calculations in this paper we choose

β ∼ 13.3, as was used before to match with the values for the skew hopping parameters

in twisted bilayer graphene [73]. However, this value can be even larger when the blister
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is formed by insertion of nanoclusters in-between two graphene layers as these clusters

screen the van der Waals interaction between the layers.

By plugging Eq. (5.3) into Eq. (5.4), one can calculate the radial dependence of the

inter-layer coupling for a GQB.

In Fig. 5.1(a) we show the band gap in the GQB as a function of the distance to the

center of a gaussian GQB. The result shows that the gap vanishes inside the blister and

then increases very sharply at the edge of the GQB. This defines a sharp transition in the

energy gap inside and outside the blister.

5.2.3 Electronic confinement

In left and right panels of Fig. 5.1(d) we show the energy spectra, respectively, inside

and outside the GQB under the application of a finite inter-layer bias δ(r). Because

of the lack of inter-layer coupling the energy spectrum is linear and gapless inside the

GQB. The application of a different potential to both layers, therefore, shifts the Dirac

point in energy. As a result, for every energy there are electron or hole states available.

Outside the GQB, right panel of Fig. 5.1(d) shows that the situation is substantially

different. Because here the inter-layer coupling is strong, the inter-layer bias δ(r) opens

up a gap in the energy spectrum. In this region, only evanescent states are allowed and,

therefore, the energy spectrum inside the GQB will be discrete and the corresponding

modes are confined. The energy range where confinement appears is given by the range

[−δG(r), δG(r)], where δG(r)is related to the inter-layer bias as [165]

δG(r) = δ(r)

(

1 + 4
δ2(r)

γ2
1(r)

)−1/2

. (5.5)
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In the following section we calculate the energy spectrum and wavefunctions of the

confined states in a GQB assuming that the inter-layer coupling, and thus the band gap,

profile has an abrupt transition at position ρ = R as shown in Fig. 5.1(a) by the dashed-

blue line. For this, we first need to obtain the wavefunctions inside and outside the GQB

and require continuity for each of the spinor components at the interface ρ = R to find

the energy eigenstates of the GQB in the presence of an inter-layer bias [111, 166]. In

all calculations and results, the energy is scaled with the equilibrium inter-layer hopping

parameter, γ0
1 , while l = ~vF/γ0

1 ∼ 1.65 nm is the measure for the length scales.

5.2.4 Wavefunctions outside the GQB

In order to obtain the wavefunction outside the GQB, we solve the Schrödinger equation

Ĥτ (r)Φτ (r) = εΦτ (r) for the Hamiltonian given in Eq. (5.1) with γ1(r) = γ0
1 . The

equation for the angle φ(r) directly yields a relation between the phases of each spinor

component. This means that the four-component wave function Φτ (r) in the τ valley can

be written as [120]

Φτ (r) =















φτ
A1(ρ)eimφ

iφτ
B1(ρ)ei(m−τ)φ

φτ
B2(ρ)eimφ

iφτ
A2(ρ)ei(m+τ)φ















. (5.6)

104



Solving the Schrödinger equation for the radial functions φτ
i (ρ), we obtain the following

set of coupled equations:

[
d

dρ
−

(τm − 1)

ρ

]

φτ
B1 = (ε − τδ)φτ

A1 − φτ
B2 , (5.7a)

[
d

dρ
+

τm

ρ

]

φτ
A1 = −(ε − τδ)φτ

B1 , (5.7b)

[
d

dρ
+

(τm + 1)

ρ

]

φτ
A2 = (ε + τδ)φτ

B2 − φτ
A1 , (5.7c)

[
d

dρ
−

τm

ρ

]

φτ
B2 = −(ε + τδ)φτ

A2 . (5.7d)

We remind the reader that in this set of equations, the energetic quantities are scaled

with γ0
1 and the radial component ρ by l, yielding dimensionless equations. The set

of first-order differential equations can be written as a single fourth-order differential

equation. As explained previously [166], this fourth-order differential equation has two

sets of orthogonal solutions given by the solutions of the following second-order differential

equations:
[

d2

dρ2
+

1

ρ

d

dρ
−

(
m2

ρ2
+ α2

±

)]

φτ
A1(ρ) = 0 . (5.8)

The two equations only differ by the value of

α2
± = −(ε2 + δ2) ±

√
(ε2 − δ2) + 4ε2δ2 . (5.9)

In the energy range where confinement is expected, the square root of Eq. (5.9) is imag-

inary. As a consequence, the solutions to Eq. (5.8) are Bessel functions with a complex

argument [167]. Because we are outside of the GQB, the spinor components need to be

finite in the limit ρ → ∞, so we choose the modified Bessel function of the second kind
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Km(α±ρ) as solutions. Finally, notice that α+ = α∗
−, such that the two independent

solutions of Eq. (5.8) can be written as a superposition of the real and imaginary part of

Km(α±ρ), and we have

φτ
A1(ρ) = Cτ

1< [Km(α+ρ)] + Cτ
2= [Km(α−ρ)] , (5.10)

Using Eqs.(5.7a-5.7d) we can obtain the other components explicitly as

φτ
B1(ρ) =

1

(ε − τδ)
(Cτ

1< [α+Km−τ (α+ρ)] + Cτ
2= [α−Km−τ (α−ρ)]) , (5.11a)

φτ
B2(ρ) =

1

(ε − τδ)

(
Cτ

1<
[
η+Km(α+ρ)

]
+ Cτ

2=
[
η−Km(α−ρ)

])
, (5.11b)

φτ
A2(ρ) =

1

(ε2 − δ2)

(
Cτ

1<
[
η+α+Km+τ (α+ρ)

]
+ Cτ

2=
[
η−α−Km+τ (α−ρ)

])
. (5.11c)

In these equations, we have introduced the compact notation η± = α2
± + (ε − τδ)2.

5.2.5 Wavefunctions inside the GQB

Inside the GQB the inter-layer coupling vanishes and, therefore, in Eq. (5.1) we have to

put γ1(r) = 0. Although the angular solution of the Schrödinger equation stays the same

106



as in Eq. (5.6), the set of radial equations changes to

[
d

dρ
−

(τm − 1)

ρ

]

φτ
B1 = (ε − τδ)φτ

A1 , (5.12a)

[
d

dρ
+

τm

ρ

]

φτ
A1 = −(ε − τδ)φτ

B1 , (5.12b)

[
d

dρ
+

(τm + 1)

ρ

]

φτ
A2 = (ε + τδ)φτ

B2 , (5.12c)

[
d

dρ
−

τm

ρ

]

φτ
B2 = −(ε + τδ)φτ

A2 . (5.12d)

In this case, the set of equations is already decoupled for each layer. This allows to find

a second-order equation for each layer as

[
d2

dρ2
+

1

ρ

d

dρ
−

(
m2

ρ2
− μ2

±

)]

φτ
B2/A1(ρ) = 0. (5.13)

In Eq. (5.13), μ± = ε ± τδ and the subscript of the function φτ
i (ρ) refers to B2 for μ+

and to A1 for μ−. The solutions of Eq. (5.13) are Bessel functions. Dropping the ones

singular in the origin, we find

φτ
A1(ρ) = Dτ

1Jm(μ−ρ) , (5.14a)

and

φτ
B2(ρ) = Dτ

2Jm(μ+ρ) . (5.14b)

The other two components can then be found from Eqs. (5.12b) and (5.12d) and yield

φτ
B1(ρ) = −τDτ

1Jm−τ (μ−ρ) , (5.15a)
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and

φτ
A2(ρ) = τDτ

2Jm+τ (μ+ρ) . (5.15b)

We are now in a position to find the eigenstates and energylevels of a GQB. For this,

we need to equate the spinor components inside the GQB with those outside at position

ρ = R. Doing so, one obtains a set of four equations for four unknowns that can be

written in a matrix formalism as Mτ ∙ Dτ = 0 and gives















−Jm(Rμ−) 0 <[Km(Rα+)] =[Km(Rα−)]

τJm−τ (Rμ−) 0 <[b+Km−τ (Rα+)] =[b−Km−τ (Rα−)]

0 −Jm(Rμ+) <[c+Km(Rα+)] =[c−Km(Rα−)]

0 −τJm+τ (Rμ+) <[d+Km+τ (Rα+)] =[d−Km+τ (Rα−)





























Dτ
1

Dτ
2

Cτ
1

Cτ
2















= 0,

(5.16)

where b± = α±/(ε − τδ), c± =
[
(ε − τδ)2 + α2

±

]
/(ε − τδ), and d± =

α±

[
(ε − τδ)2 + α2

±

]
/(ε2 − δ2). The energy levels εm,n(R) of a GQB with radius R can

be found through the roots of the determinant of the matrix Mτ . Here, n is the radial

quantum number corresponding to states with |n| nodes in the radial direction. The

obtained eigenvalues are real and thus correspond to bound states with infinite lifetime.

This is a manifestation of the created gap outside the blister induced by the bias. This

contrasts with quasi-bound states in the presence of an electrostatic potential in single

layer graphene QDs. For these structures, the eigenvalues are complex and thus the states

have a finite lifetime [113,118,136]. Subsequently, one can obtain the corresponding wave-

function by solving at the given energy for the coefficients Cτ
i and Dτ

i and obtaining the
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Figure 5.2: Energy levels of the GQB as a function of its radius with the same bias inside
and outside the GQB δ< = δ> = 0.25γ1. The dashed green vertical lines in panel (a)
represent the radii where the states residence is the same in both layers. Gray dashed
curves correspond to the first energy levels of a biased bilayer nano-disk.

eigenwavefunction Φτ
m,n(~r). From this, the radial probability density (RPD) can be found

as [168, 169]

Pτ
m,n(ρ) = ρ

∣
∣Φτ

m,n(r)
∣
∣2 . (5.17)

Finally, the local density of states D(r, E) for a GQB with radius R can be derived from

the eigenstates as

D(r, ε) =
∑

m,n

δ(ε − εm,n)
∣
∣Φτ

m,n(r)
∣
∣2 . (5.18)

In the numerical results displayed in the following section we will replace the Dirac func-

tion by a Gaussian profile with a finite spectral width Γ [47].
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5.3 Confined states in a GQB

5.3.1 Homogeneous inter-layer bias

Now we turn to the discussion of the numerical results for the energy levels in various

configurations of GQBs. The first configuration is the simplest example, i.e. the case

where a homogeneous inter-layer bias potential δ is applied to the entire system. In Fig.

5.2 we show the energy levels as a function of the size R of the GQB for m = 0, . . . ,±3

with δ = 0.25 γ0
1 . The results indicate that, indeed, for the energy range as defined in

Eq. (5.5) the GQB has confined modes. Panel (a) of Fig. 5.2 shows that in the limit

R → 0, the GQB has two m = 0 confined modes at energy ±δG. As the radius of the

GQB increases, the modes approach each other, anti-crossing one another around ε = 0.

As the radius increases further, more m = 0 modes are allowed inside the GQB. For a

given radius, these modes are denoted by the quantum number n. The number of the

confined modes crucially depends on the strength of the applied bias outside the blister

δ> and its size R. The energy spectrum of the different modes form anti-crossings with

each other. As a consequence, the energy levels oscillate with the size of the GQB.

In panels (b) - (d) of Fig. 5.2 we show the energy levels for non-zero angular quantum

number m. These modes are only supported at larger radii R but their characteristic

behavior is similar as the m = 0 case shown in panel (a). Notice that the results are the

same for positive as for negative m. This is in contrast with previous studies where the

symmetry between both signs of the angular quantum number is broken [111, 119, 120]

To investigate the character of the different energy levels and the behaviour at the anti-

crossings, in Fig. 5.3 we show the RPD for m = 0 and different configurations as indicated
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Figure 5.3: (a-h) Radial probability density of m = 0 stats in Fig. 5.2(a) labelled by
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by the points in Fig. 5.2(a). We choose these points to be exactly at an anti-crossing

point (points 3 and 4) , before (points 1 and 2), and after it (points 5 and 6), and also

near the continuum spectrum (points 7 and 8). Furthermore, we show the contribution of

each sublattice to the probability density. Comparing for instance Figs. 5.3(a) and (b),

we see that inside the GQB, before an anti-crossing point, mainly layer 1 contributes on

the negative energy branch, while for the positive energy branch it is layer 2. In addition,

we infer from Figs. 5.3(c,d) that at the anti-crossing point both layers contribute exactly

the same on the negative and positive energy solutions. A transition in the residence of
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states takes place when passing an anti-crossing point. The states with negative energy

mainly reside on layer 2 instead of layer 1 before the anti-crossing point and vice versa for
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[
Pτ

m,n(ε, ρ)
]
Layer1

=
[
Pτ

−m,−n(−ε, ρ)
]
Layer2

and
[
Pτ

m,n(ε, ρ)
]
Layer1

=
[
P−τ

m,n(ε, ρ)
]
Layer2

while the total radial prob-

ability density is the same in both valleys.

the positive one as shown in Figs. 5.3(e,f). This means that the modes ε0,±1 anti-cross

each other in Fig. 5.2(a) and correspond mainly to states on one of the two layers before

or after an anti-crossing points. Since the inter-layer coupling is active only outside the

blister, therefore one expects that the eigenstates are mainly localised inside the radius of
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the GQB. Peculiarly, however, we find that this is not true for all spinor components of

the eigenstate as can be seen in see Figs. 5.3 (g,h). To thoroughly examine this behaviour

we show in Fig. 5.4 the real part for each component of the wave function of a blister

that supports two energy levels. While for the low-energy state (bottom row) the wave

function is almost completely localised inside the blister for all components, we see that

the high-energy state (top row) has a significant portion outside the blister’s radius on

the B1 component of the bottom layer.

We can find the radii Rj at which anti-crossing occur through the following partition-

ing relation:
∫ Rj

0

dρ
[
Pτ

m,n(ρ)
]
Layer1

=

∫ Rj

0

dρ
[
Pτ

m,n(ρ)
]
Layer2

, (5.19)

with

[
Pτ

m,n(ρ)
]
Layer i

= ρ
(
|φm,n,τ

Ai (ρ)|2 + |φm,n,τ
Bi (ρ)|2

)
(5.20)

where the radial part of the wave functions is normalized according to

2π

∫ ∞

0

dρ
∑

i=1,2

[
Pτ

m,n(ρ)
]
Layer i

= 1. (5.21)

In other words, two energy levels form an anti-crossing when the radius of the GQB is

such that the probability of finding a state inside the GQB is the same for both layers.

Note that a point in the middle between two subsequent anti-crossing points associated

with modes εm,n also satisfies Eq. (5.19). This point coincide with the anti-crossing point

in the second pair of energy branches, i.e. εm,|n|+1, in the spectrum as can be inferred

from Fig. 5.2(a).
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Using Eq. (5.19), we can find the radii Rj where the anti-crossing points occur for

any pair of energy branches εm,n. For example, the first three anti-crossing points of the

first pair of energy branches ε0,±1 in Fig. 5.2(a) are located at Rj = (8.30, 20.74, 33.27)l.

In between these three anti-crossing points, there are two points where both layers also

contribute the same to the RPD inside the GQB located at Rj = (14.46, 26.98)l. For large

GQB we notice that the strength of the anti-crossings becomes weaker. This is a result of

leaking interaction between the two layers through the BLG outside the blister. In Fig.

5.5 we show the RPD outside the GQB at the first three anti-crossings labelled by the

yellow dots (4, 9, 10) in Fig. 5.2(a). We see that the interaction between states on both

layers becomes smaller with increasing the raduis of GQB. Hence, in the limit R → ∞ we

expect the RPD to be zero outside the GQB and as result the anti-crossings will vanish

and the states will be completely localized inside the blister. In this case, the GQB can

be seen as a biased bilayer graphene nano-disk. We superimpose the first energy levels of

a biased bilayer nono-disk with the respective angular momentum as gray dashed curves

on Fig. 5.2. For a bilayer nano-disk we implement hard wall boundary conditions and

the energy levels can be found by solving

Jm(μ+R) = 0, Jm(μ−R) = 0 (5.22)

The asymptotic behaviors of bessel function for small and large argument are

J0(x) =






√
2/πx cos (x − π/4) x → ∞

1 − x2/4 x → 0

, (5.23)
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using Eq.(5.23) one can show that E ∼ 1/R.

For m 6= 0, we investigate the contribution of the two layers to the probability density

for only m = ±1 as shown in Fig. 5.6 , and the findings also apply for |m| > 1. We

choose two points before the first anti-crossing point of the modes ε1,±1 marked by red

and green dots in Fig. 5.2(b). Because of the symmetry between m and −m in this case,

these two points correspond to four modes as indicated in Fig. 5.6 .We see that the states

m = ±1 with negative energy (green dot) mainly reside on the lower layer and vice versa

for states with positive energy. This corresponds to the case with m = 0 and it also holds

here for the modes ε±1,|n|>1. Similar to the spectrum of m = 0, the radii for which the

energy forms anti-crossings can be also found using Eq. (5.19). Notice that from the top

panel of Fig. 5.6 the RPD acquires the layer symmetry

[
Pτ

m,n(ε, ρ)
]
Layer1

=
[
Pτ

−m,−n(−ε, ρ)
]
Layer2

. (5.24)

In the bottom panel of Fig. 5.6, we show the same results as in the top panel but in the

vicinity of the K ′−valley. Comparing top and bottom panels of Fig. 5.6, we find that the

RPD also attains the following symmetry

[
Pτ

m,n(ε, ρ)
]
Layer1

=
[
P−τ

m,n(ε, ρ)
]
Layer2

, (5.25)

[
Pτ

m,n(ε, ρ)
]
Layer i

=
[
P−τ

−m,−n(−ε, ρ)
]
Layer i

. (5.26)

Note that even though the RPD of each layer is different in each valley, the total RPD is

the same in both valleys.
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Figure 5.7: LDOS of the GQB for layer 1 (left) and layer 2 (right), with R = 10l and
δ< = δ> = 0.25γ0

1 . The spectral width of the Gaussian profile is Γ = 0.02δ>. The dashed
green vertical lines represent the radius of the GQB.

In Fig. 5.7 we show the local density of states for a GQB of fixed size R = 10 l as

a function of the energy and distance from the origin for both layers. The results show

that the layer selectivity of the modes is not only present for m = 0, but also for the

other angular quantum numbers. Very pronounced is for example the m = ±1 mode

that is strongly localized on layer 1 for negative energy and on layer 2 for positive energy.

Furthermore, the LDOS also shows that states with |m| > 1 are not positioned at the

center of the GQB, but more towards the edge or even outside the GQB in a classically

forbidden region, specially, for those states close to the continuum spectrum.

5.3.2 Non-homogeneous inter-layer bias

In the previous section we have considered the most straightforward case in which the

inter-layer bias is the same in all parts of the sample. However, if the blister is formed
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by encapsulation of a metal colloid, the applied electric field also induces a dipole in

the metallic nanoparticle. This will change the electrostatic potential on each layer. As a

result, it can be strongly reduced inside the GQB with respect to outside it. To incorporate

this difference, we investigate the case for which the inter-layer bias inside the GQB, δ<,

is smaller than the bias δ> outside.

In Fig. 5.8 we show the energy levels of a GQB with vanishing δ< inside as a function

of the radius of the blister for different values of the angular quantum number m. In this

case, the energy levels do not show anti-crossings and approach each other as the size of

the GQB increases in a monotonous way. In Fig. 5.8(a) we show the energy spectrum

of the state with zero angular momentum. Here, contrary to the homogeneous bias case,

each energy branch corresponds to states residing on a specific layer inside the GQB for

any R. In Fig. 5.9 we show the RPD for different energy branches, labelled by yellow

dots in Fig. 5.8(a). States on the first energy branch ε0,−1 reside on the lower layer, see

Fig. 5.9(a). While for the second branch ε0,−2, the states along it reside on the upper

layer as shown in Fig. 5.9(b). Similarly the third ε0,−3 and fourth ε0,−4 branches, marked

by points 3 and 4 in Fig. 5.8(a), the states reside mainly on the lower and upper layer

respectively. This is illustrated in Figs. 5.9(c,d). Note that for the counterpart branches

in the positive energy regime, the modes residence is opposite compared to the negative

energy branches.

For non-zero values of the angular quantum number, however, the symmetry between

positive and negative m is broken. This is most clear in the first pair of modes εm>0,±1 in

panels (b) - (d) in Fig. 5.8. The lowest of the two is only possible for negative m modes,

while the highest is for positive m. These two modes, labelled by green and red dots in

118



0 10 20 30
- 0.2

- 0.1

0.0

0.1

0.2

R/l

m=± 2

- 0.2

- 0.1

0.0

0.1

0.2

m=0

0 10 20 30 40

R/l

m=± 3

m=± 1

(a) (b)

(c) (d)
4

1

3
2

E
/ γ
1

E
/ γ
10

0

Figure 5.8: Energy levels of the GQB as a function of its radius with different bias inside
and outside the GQB δ< = 0 and δ> = 0.25γ0

1 . Solid (dashed) curves are for m > 0
(m < 0) where yellow horizonal lines delimit the gap outside the GQB.

Figs. 5.8(b-d), are mainly localized at the interface of the blister as can be seen in Fig.

5.10. Moreover, inside the blister they mainly reside on the upper and lower layer for

m < 0 and m > 0, respectively, as shown in Fig. 5.10. It turns out that they significantly

reside on the disconnected sublattices A2 and B1 for the negative and positive angular

momentum, respectively, as shown in Figs. 5.10(a-f). The appearance of these localized

modes at the interface of the blister is one of its quintessential traits.

Reminding ourselves that the lowest modes mainly reside on the upper layer while

the upper modes reside on the lower layer, it follows that small GQBs only can support

modes with a positive angular momentum on the lower layer while the negative angular

momentum-modes reside on the upper layer. For large R, we notice that the broken

symmetry between the negative and positive angular momentum is almost restored for

modes whose radial number |n| > 1 such that εm,n(R) ≈ ε−m,n(R) as shown in Figs.
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Figure 5.9: (a-d) Radial probability density of the m = 0 states in Fig. 5.8(a) labelled by
(1-4), respectively. The green vertical line represents the radius R = 30l of the GQB.

5.8(b-d). The contribution of each layer to these modes is exactly the same as in the case

of m = 0 discussed in Fig. 5.8(a). For example, in the case of m = ±1, the first pair

of modes labelled by the red circles in Fig. 5.8(b), mainly reside on the lower and upper

layer for modes whose energy is negative and positive, respectively. The opposite occurs

for the second pair of modes, labelled by the black circles, and such trend also holds for

|m| > 1.

In general, the energy levels still retain the following symmetry [166]

εm,n(R) = −ε−m,−n(R) . (5.27)

That this relation holds can be seen in Fig. 5.11 where the energy levels in a GQB with

radius R = 20 l are plotted for a homogeneous inter-layer bias (panel (a)) compared with

the case for a vanishing inter-layer bias (panel (b)) in the GQB. The results show that
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by changing the inter-layer bias inside the GQB, the m = 0 modes are pushed away from

each other while for the modes with finite angular momentum it even allows the total

number of states in the GQB to be reduced.

In Fig. 5.12 we show the energy levels as a function of the radius of the GQB when

the inter-layer bias inside the blister is smaller than outside but still non-zero. This result

allows to follow the behavior of the modes as the inter-layer bias δ< is reduced. We see

that in this case the energy levels start showing anti-crossings again, but now at larger

radius R. It also shows that for non-zero angular momentum the symmetry with respect

to the sign of m remains strongly broken for small R, but that the modes with opposite

m make a transition between different radial quantum number n.

Finally, in Fig. 5.13 we show the energy levels in the case when the bias inside the
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Figure 5.12: Energy levels of the GQB as a function of its radius for different strength of
the bias inside the GQB with δ> = 2δ< = 0.25γ1. Solid (dashed) curves are for m > 0
(m < 0) where yellow horizonal lines delimit the gap outside the GQB.

GQB is opposite to outside, i.e. δ< = −δ>. The m = 0 result look similar to the case of

a homogeneous bias, but they are slightly different, i.e. ε0,n(R, δ<) 6= ε0,n(R,−δ<), as one

would observe from Fig. 5.14(a). For example, the first three anti-crossing points associ-

ated with the first pair of energy branches ε0,±1 are located at Rj = (10.93, 23.42, 35.96)l.

The anti-crossings occur for slightly larger GQB in comparison with the homogeneous

inter-layer bias case. Of particular importance is also the layer residency of states, where

before the anti-crossing the states with negative energy mainly resided on the upper layer
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horizonal lines delimit the gap outside the GQB. The vertical dashed brown lines represent
the points δ< = ±δ>.

inside the GQB and vice versa for states with positive energy. This is exactly the oppo-

site to what happened in the case with homogeneous bias. The most important result

displayed in Fig. 5.14(b) is that the homogeneous case ( i. e. δ< = δ>) is distinctive since

it preserves the symmetry εm,n(R) = ε−m,n(R) as shown in panel (b).

For a finite angular momentum, the results in Fig. 5.13 show that the modes get

pushed into each other, forming anti-crossings when the angular momentum quantum
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Figure 5.15: (a-f) Radial probability density of states ε±1,±1 in Fig. 5.13(b) labelled by
points (1-5). The green vertical line represents the radius of the GQB.

number is the same, while it crosses when m is opposite. As a result, for a given inter-

layer bias, there is a radius R for which each of the non-zero m modes are degenerate at

εm,1 = ε−m,−1 = 0. We notice that the results of non-homogeneous bias also attains the

symmetry εm,n(R) = −ε−m,−n(R). In Fig. 5.15, we show the RPD of the modes ε1,1 and

ε−1,−1 at different radii indicated by the yellow dots in Fig. 5.13(b). It is evident from

Figs. 5.15(a,b), that the degenerated modes ε±1,±1 = 0, labelled by point 1 in Fig. 5.13(b),

are mainly localized at the interface of the blister. These modes are mainly confined on

the upper and lower layer inside the GQB for positive and negative angular momentum,

respectively, as can be seen from Figs. 5.15(a,b). While at points 2 and 3 the two layers

contribute exactly the same to the confinement of the two states ε±1,±1 = ∓0.1γ0
1 as

shown in Figs. 5.15(c,d). Then, a transition occurs in the layer confinement, where at
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1 .

the points 4 and 5 the states ε±1,±1 = ∓0.06γ0
1 mainly reside on the upper and lower layer

for positive and negative angular momentum, respectively. The behaviour of the rest of

modes ε±1,|n|>1 resembles that of the case m = 0 in Fig. 5.13(a). This means that before

and after anti-crossings, the states with negative and positive angular momentum reside

on the upper and lower layer, respectively, while at the anti-crossings they are equally

distributed. Analogously for |m| > 1, we find that modes behave similarly to the case of

m = ±1.
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5.3.3 Effect of the inter-layer coupling

The inter-layer coupling γ1 inside the GQB decreases very fast as the height of the blister

increases However, if the blister is small and the layers in the blister remain loosely

coupled, it is expected to show a band gap that is much smaller than outside the blister.

Therefore, one also expects to find confined modes in this case. In this section, we

investigate the energy levels of a non-zero inter-layer coupling in a GQB. In general, for

a fixed gap outside the blister, the number of anti-crossings and their location mainly

depend on the bias inside the blister. This allows to control the confinement to be mainly
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localized on a specific layer.

In Fig. 5.16 we show the energy levels of a GQB with a homogeneous inter-layer bias

but different inter-layer coupling inside the blister as a function of the radius R. We see

that for small radii, the energy levels are similar to the case of a completely decoupled

blister, but that as the GQB grows, the energy levels do not cross the gap formed inside

the GQB. As a consequence, for large R the oscillations of the lowest positive energy level

are decreased and this level approaches the value of δG, dashed yellow lines, from Eq.

(5.5) calculated with the inter-layer coupling inside the blister.

When the screening of the inter-layer bias inside the GQB is important, the inter-layer

coupling strongly affects the energy levels. In Fig. 5.17 we show the energy levels as a

function of the size of the GQB for different values of the inter-layer coupling and in the

absence of an inter-layer bias inside the GQB. The results show that as the inter-layer

bias is reduced, the energy levels are pairwise pushed away from each other forming the

layer polarized modes as discussed in the previous section.

5.3.4 Morphological effects

Up to now, the analysis was performed by modelling the edge of the blister as an abrupt

interface in the band gap parameter describing electronic states. This assumption is

justified because of the very sharp transition between gapless to gapped states as shown

in Fig. 5.1(a), which is a consequence of the exponential dependence of the inter-layer

coupling strength on the inter-layer distance expressed through Eq. (5.4). Because the

band gap changes sharply at the edge of the system, the morphological details of the

blister are obscured and many different shapes of circular blisters effectively have the
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Figure 5.18: Energy levels of a GQB, same as in Fig. 5.2(a), but with a gaussian interface.
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same energy spectrum. However, when the height variation of the blister becomes much

smaller, this argument might not hold any more. Therefore, in Fig. 5.18(a) we show the

energy spectrum for Gaussian GQBs with varying height. In contrast to the previous

analysis for these results we have resorted to numerical calculation of the energy levels

using a finite element package. The results show that even small blisters support localised

eigenstates with a similar energy spectrum. Notice that the morphology of the blister only

affects the strength of the anti-crossings but that already for a local doubling of the inter-

layer distance the energy levels are very close to the completely decoupled case discussed

above.

Finally we also investigate the effect of a change in inter-layer bias due to capacitive

effects. Indeed, since the bias arises due to electrostatic gates, the top layer will be

influenced differently when closer to the top gate than the bottom layer. In Fig. 5.18(b) we

show numerical results (dashed-orange) for a locally changing inter-layer bias. While also
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here the confined states result in a robustly discretized energy spectrum, the wavelength

of the oscillations due to anti-crossings is strongly reduced. This is because in the latter

case the cones inside the GQB are shifted more strongly in energy and, therefore, the

confined states have a shorter wavelength.

5.4 Controlling layer occupation

To thoroughly examine the layer localization in GQB and to understand the origin of

the confined energy levels and their anti-crossings, we discuss here in details the case of

zero angular momentum with homogeneous and non-homogeneous bias. Before going to

the desired system, let us first see what will happen if inside the blister is pure hole- or

electron-doped while outside the blister we keep the bias constant δ> = 0.25γ0
1 . The energy

levels of hole- and electron-doped systems are shown in Figs. 5.19(a, b), respectively, with

the corresponding energy bands inside and outside the GQB. The red and blue colors of

the energy levels indicate that they belong to the top and bottom layer, respectively,

i.e. localized on either layer. We note that each branch belongs to a specific layer and

that the layer localization of energy levels is opposite in case of electron- and hole-doped

systems. In other words, we can say that the electron- and hole-doped systems attain the

symmetry εe−doped
0,n = −εh−doped

0,n , however, they are localized on opposite layers. Now we

turn to our GQB systems with homogeneous and non-homogeneous. For the homogeneous

bias the inter-layer bias is applied to the entire sample, also inside the GQB the electronic

states are shifted by −δ or δ for states on the top or bottom layer, respectively, as shown

in the left panel of Fig. 5.1(d). Therefore, the bottom layer is effectively hole-doped
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1 .

while the top layer is electron-doped due to the bias gate. On the other hand, when a

non-homogeneous bias is applied the situation is opposite where now the bottom layer is

electron-doped and the top layer is electron-doped.

We calculate layer occupation defined by Eq. (5.19) for each state (m = 0 ) with

homogeneous and non-homogeneous bias as shown in Figs. 5.20(a, b), respectively. We

have color coded the spectrum indicating the layer to which the corresponding eigenstate

belongs. From this it is clear that in Fig. 5.20(a) the states with positive energy belong

to the top layer, while the negative energy states are positioned at the bottom layer. This

is reflected in the behaviour of the confined states; indeed the electron state on the top

layer decreases in energy as the GQB increases in size, while the hole state at the top

layer increases.

As the two energy levels approach each other, the levels show an anti-crossing at the
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radius for which the particles are equally distributed over both layers. This happens every

time a hole state from the bottom layer crosses an electron state from the top layer. The

level repulsion is consistent with the Wigner-von Neumann theorem and occurs because

the wave functions of both states share the same symmetry [170, 171].

As a further proof of the origin of the different energy levels, in Fig. 5.20, we also

show the energy levels of a pure hole (dashed) and electron (dot-dashed) doped (the ones

labeled by black dots in Fig. 5.19) GQB as a function of the radius of the GQB. In Fig.

5.20(a) the energy levels correspond very closely to the numerically calculated results in

the GQB. In this sense, the anti-crossing can be understood as the result of the wave

function overlap in the gap of the connected bilayer graphene region as discussed in Fig.

5.5.

In Fig. 5.20(b) we show the energy levels when the bias inside the GQB is opposite to

that in the rest of the sample. Since now the top layer is electron doped and the bottom

layer is hole doped, the layer occupation is reversed with respect to the previous case

with a homogeneous bias. We still observe anti-crossings when electron and hole states

become degenerate but they occur at larger radii. From Fig. 5.20(b) we see that the

electron states now belong to the bottom layer and the holes belong to the top layer.

Tunability of the GQBs is shown in Fig. 5.21 where the energy levels of a GQB of

fixed size are shown as a function of inter-layer bias. The result shows that the number

of confined energy levels can be tuned over a wide range by simply changing the applied

bias gate. These results can be directly verified by local scanning tunnelling microscopy

measurements [140].

Finally, note that the deformation of the top layer to form a GQB is in principle
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associated with a local triaxial strain. Therefore, the inter-atomic distance in the top layer

can be slightly larger than the equilibrium distance. This can affect the Fermi velocity

vF of the states in the top layer, however, as discussed by Neek-Amal et al [172], triaxial

strain will only introduce pseudo-magentic fields near the edge of a finite size graphene

flake and in the center it is zero. In our case, the size of the GQB is much smaller than

the total size of the bilayer graphene sheet and, therefore, strain has a negligible effect on

the results obtained in this study.
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CHAPTER 6

ELECTRON COLLIMATION AT

VAN DER WAALS DOMAIN

WALLS

1 In this chapter we calculate and compare the collimation of divergent electron beams

using two distinct formalisms. In the first formalism, we combine in a semi-classical

way quantum mechanical calculation of the transmission and reflection probabilities at a

domain wall with a wave propagation described as an optical analog, and in the second

formalism we calculate the dynamics of electron wave packets incident on a domain wall

to obtain the carriers trajectories.

The wave nature of electrons results in the analogy between optical and electronic

transport. For example, it was found that in SLG electrons have a negative refraction

index when passing through np junction [173] and, as a result, they converge on the other

1The results of this chapter were submitted as:

Hasan. M. Abdullah, D. R. da Costa M. H. Bahlouli, A. Chaves, F. M. Peeters and B. Van Duppen, ”Electron collimation

at van der Waals domain walls in bilayer graphene”.
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side of the junction at the focal point. This behavior is the analog of Veselago lens [174]

that was realized earlier in photonic crystals [175,176] and metamaterials [177,178]. These

findings led to profound theoretical investigations of electron focusing in SLG [179–181]

as well as in AA- [59] and AB-BLG [182] where a valley selective electronic Veselago lens

was proposed. Recently, the rigorous control and synthesis of graphene np junctions has

reinvigorated the experimental investigations. Two experiments were conducted where

a negative refraction was observed for Dirac fermions in graphene [183] and the angle-

dependent transmission coefficient was simultaneously measured [184].

Another analogue to light rays across an optical boundary is the collimation of elec-

trons across np junction. This analog becomes perfect in the absence of scattering; how-

ever, the disorder-induced scattering has hindered the implementation of such idea. Dif-

ferent proposals have been introduced to maintain collimation of an electron beam such as

using graphene superlattices with periodic [185] or disordered [186] potentials. Another

route was also established by introducing a mechanical deformation to form a parabolic

pn junction [187] or carving pinhole slits in hexagonal Boron Nitride (hBN) encapsulated

graphene [188] as well as creating zigzag side contacts [189].

Motivated by the recent experiments where a point source of current in single layer

graphene [190, 191] and bilayer [192] were achieved, we propose a new system to obtain

highly collimated electron beam. We consider a junction composed of a delaminated

bilayer graphene on one side and AA-stacked bilayer graphene on the other one as shown

in Fig. 6.1(e). Recently, it was shown that such systems exhibit distinct electronic

properties [62,120,148,149,193,194]. The energy spectra of SL and AA-BL are shown in

Figs. 6.1(c, d), respectively. The AA-BLG spectrum consists of two Dirac cones (lower
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and upper cones) shifted by 2γ1, see blue and red cones in Fig. 6.1(d). These two cones

are completely decoupled [59] such that electron- and hole-like carriers are associated with

each cone.

We assume that a point source is located in the delaminated bilayer graphene and

electrons are emitted and transmitting into AA-BLG. In the low energy regime, the Fermi

circle in delaminated region is much smaller than its counterpart in the AA-BLG. This

results in a small refraction index forcing the transmitted electrons to nearly move in

one-dimension. We used a semiclassical [182, 195–198] approach (SC) to investigate the

behavior of electrons in the proposed system and the results were verified by wave-packet

dynamics (WD) calculations [185,186,199–201]. To control the direction of the collimated

beam, we used a magnetic field to steer the electron beam. As a comparison, we also show

the collimation in case of only single layer graphene is connected to AA-BL with zigzag

or armchair edges as depicted in Fig. 6.1(b).

6.1 Semi-classical dynamics

To describe electron dynamics semi-classically one proceeds in two steps. We first use

quantum mechanical formalism to evaluate transmission and reflection probabilities, and

second determine the electrons trajectories using the classical approach. This requires to

define a general Hamiltonian that describes the delaminated bilayer graphene and AA-BL.

Near the K-point and in the basis Ψ = (ΨA1, ΨB1, ΨA2, ΨB2)
T , such Hamiltonian can be
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2SLG

AA-BLG

AA-BLGSLG ZZ/AC edge
x

y
(c) (d)

Figure 6.1: Schematic illustration of (a) delaminated bilayer graphene connected to AA-
BLG, and (b) single layer graphene attached to AA-BL whose terminated edge of the top
layer either zigzag or armchair type. The energy spectrum of (c) single-layer graphene,
(d) AA-stacked bilayer graphene. Yellow and Black bands correspond to electrons and
holes carriers in SL while in AA-BL they represent electron- and hole-like states. Red
and blue bands represents the upper and lower Dirac cones in AA-BL.

written as

H =















v0 vF π̂+ τγ1 0

vF π̂− v0 0 τγ1

τγ1 0 v0 vF π̂+

0 τγ1 vF π̂− v0















. (6.1)

The coupling between the two graphene layers is controlled by the parameter τ through

which we can “switch on” or “switch off ” the inter-layer hopping between sublattices.

For τ = 0, the two layers are decoupled and the Hamiltonian reduces to two independent

SL sheets while for AA-stacking we need τ = 1. The domain wall under consideration in

this chapter is, therefore, described by a local change in τ from zero to one.

Finally, notice that for the last case of this study, where transport from a single layer
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Figure 6.2: (a) Top panel illustrates the 2SLG-BLG junction with an incident and trans-
mitted electron beams in the x − y plane, while the bottom panel shows the transmitted
angle θ as a function of the Fermi energy and the incident angle φ for SLG-AA junctions
with v0 = 0.1 eV. (b) Classical trajectories of an electronic beam impinging on media with
different refraction indices. (c) Refraction index with the corresponding band diagram for
SLG-AA as a function of the electrostatic potential strength v0 where the Fermi energy
of the incident particles E = 12meV. Blue and red curves correspond to the perspective
mode in AA-BLG region.

into an AA-bilayer system is considered, the Hamiltonian in Eq. (6.1) does not suffice.

Rather one needs to resort to the 2 × 2 upper-left block that describes transport in a

single layer of graphene. The effect of the atomic structure on the electronic transport is

in that case determined through the boundary conditions (B.Cs).
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6.1.1 Transmission probabilities and classical trajectories

Before we proceed to show the electron collimation in different systems, we would like

to remind the readers of the following: there are three different junctions under the

consideration: (I) delaminated bilayer connected to AA-BL (2SL-AA) as depicted in Fig.

6.1(a), (II) single layer graphene connected to AA-BL whose terminated edge can be

either zigzag (ZZ-AA) or (III) armchair (AC-AA) as shown in Fig. 6.1(b). So, we need

to evaluate the transmission probability across each system. For the system 2Sl-AA, the

transmission probability has been calculated earlier in Ch. 3 and given by Eq. (3.15) as

follows:

T±
j =

2(ε + v0)(±1 + ε)Re(k±)

kj

[
(±1 + ε + k± sec φ)2 + (∓1 + v0)2 tan2 φ

] , (6.2)

where kj is the wave vector in top (j = 1) or bottom (j = 2) layer in 2SL region, note

that both k1,2 are the same. While k± are the wave vectors in AA-BL region. For the

ZZ-AA and AC-AA systems, the shape of disconnected edge of the bilayer graphene can

be either zigzag or armchair. Imposing zigzag boundary can be established through two

different ways, namely, ZZ1 and ZZ2 where the sublattices φB2 and φA2 are set to be zero

at the edge, respectively [97]. Note that the two types of the zigzag edges are equivalent in

AA-BLG such that TZZ1(φ) = TZZ2(−φ), where T is the transmission probability, which

is not the case for AB-BLG. This can be attributed to the symmetric and asymmetric

inter-layer coupling in the AA-BLG and AB-BLG, respectively. For the armchair edge,

the single valley approximation is not valid anymore and thus the B.Cs are inter-valley

mixed such that [97]

φK
A2 − φK

′

A2 = 0, and φK
B2 + φK

′

B2 = 0. (6.3)
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The wavefunction of each sublattice on both side of the junction is presented in Sec.

3.1.2, and by implementing the above BCs we can obtain the transmission probabilities

for ZZ-AA and AC-AA. Note that the solutions in both valleys are connected through

ΨK(ky) =ΨK′
(−ky) [202]. To calculate the electron trajectories, we assume a divergent

beam starting from a focal point and wave propagation given by the wave vector ~k.

Assuming that the propagation is a long the y− direction, the difference in wave vector

between the connect and delaminated regions are determined by the relative refractive

index as follows [100, 173, 183, 196, 203, 204]

n =
sin θ

sin φ
=

kj
y

k±
y

(6.4)

where φ and θ are the incident and transmitted angles, respectively, while kj
y and k±

y are

the wave vectors of the incident and transmitted electrons, respectively. For 2SLG-AA

junction these wave vectors are given by

kj
y =

E

vF~
, k±

y =
1

vF~
(ε ± γ1), (6.5)

where ε = E − v0. Using the above equations one can obtain the classical trajectories

[182, 197, 198, 205, 206]. In Fig. 6.2(a), we show the system geometry (top panel) and

the transmitted angle (bottom panel), according to Eq. (6.4), associated with the lower

and upper cones. To achieve perfect collimation, the transmission angle must be zero

which corresponds to zero refraction index. The refraction index of electrons incident

form SLG and transmitted into gated AA-BLG is shown in Fig. 6.2(b) as a function of

the electrostatic gate v0. It is clear that the refraction index is almost zero in pristine

140



0 1 2 3 4 5
0

20

40

60

80

100

B(T)

r (
nm

)

0 1 2 3 4 5

B(T)
0 1 2 3 4 5

B(T)

SLG
AA-BLG

E=5meV E=50meV E=150meV
(a) (b) (c)

Figure 6.3: Cyclotron radius in pristine single-layer graphene, AA-stacked bilayer
graphene for different Fermi energy. The red and blue curves correspond to the upper
and lower cones in AA-BLG, respectively.

AA-BLG(i.e. v0 = 0). Henceforth, the gate will be considered zero and the calculations

will be based only on pristine AA-BLG. A schematic of the classical trajectories of carriers

with different refraction indices is shown in Fig. 6.2(c) and our interest is when n = 0

where carriers move in one dimension.

In the presence of a perpendicular magnetic field, the motion of the charge carriers

follows a curved trajectory depending on its charge. In the ballistic transport regime

where the Fermi wavelength is much smaller than geometric size of the system the charge

carriers can be treated as classical point-like particles described by

m~a = −e~v × ~B, (6.6)
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where |~a| = |~v|2 /r and r the cyclotron radius. The effective mass in graphene is [207]

m∗ =
~2

2π

dA(E)

dE
, (6.7)

where A(E) indicates the area in k− space enclosed by a constant energy contour E. This

area is circular in single layer graphene and AA-BLG. Hence, from Eqs. (6.6) and (6.7)

we obtain the cyclotron radius for AA-BLG and SLG as follows:

rSL =
|E|

evF |B|
, (6.8a)

r±AA =
|E ± γ1|
evF |B|

. (6.8b)

Finally, the equations of motion in the x − y plane can be written as

x = xo + r cos(θ) − r cos(
vF

r
Δt + θ), (6.9a)

y = yo − r sin(θ) + r sin(
vF

r
Δt + θ), (6.9b)

where θ is the transmission angle in the system described in the top panel of Fig. 6.2(a)

and Δt is the time interval for the electron calculated once it enters the magnetic field

region. Using the above equations we can trace the trajectories of the charge carriers in

a magnetic field. In Fig. 6.3, we show the cyclotron radii for SLG and AA-BLG as a

function of the magnetic field at different Fermi energies. At low energy, we see that the

SLG cyclotron radius is sensitive to the magnetic field while in AA-BLG the cyclotron

radii of the lower and upper cones (blue and red curves, respectively) are almost the same,
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see Fig. 6.3(a). Note that as a result of the spectrum resemblance of SLG and AA-BLG,

we have r±AA(E) = rSL(E ± γ1) which can be inferred from Figs. 6.3(b, c).

6.2 Wave packet dynamics

To calculate the quantum electronic trajectories using a wave packet, we use the nearest-

neighbor tight-binding model Hamiltonian for the description of electrons in a bilayer

graphene system associated with the split-operator technique [51,200,208–216]. We have

added to this technique the van der Waals domain walls as a local variation in the inter-

layer coupling parameter as described by the parameter τ in Eq. (6.1). Following the

numerical procedure developed in details by da Costa et al. in Ref. [51], that is based on

the split-operator technique, we calculate the time-evolution of the wave packet for two

different setups composed of two disconnected SLG bounded with a AA-stacked BLG and

two disconnected SLG.

Among the many different techniques to treat the formal solution of the time-evolution

problem, such as Green’s functions techniques [217], here we decided to choose the split-

operator technique, since using this approach, one has the possibility of observing the

transmitted and reflected trajectories of the total wave packet describing the electron

propagating through the system, as well as the separated trajectories in each layer and also

the scattered trajectories projected on the different Dirac cones. Moreover, this approach

has the advantages of being faster and easier than e.g. Green’s functions techniques and,

is pedagogical and physically a transparent approach for the understanding of transport

properties in quantum systems, like the ones studied here.
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The wave packet propagates in a system obeying the time-dependent Schrödinger

equation i~∂Ψ(~r, t) = HΨ(~r, t) where the Hamiltonian H is defined in Eq. (6.1). The

bilayer graphene flake considered in our tight-binding calculations has 3601 × 1000 atoms

in each layer, thus being a rectangle with dimensions of ≈ 213 × 443 nm2. Such a

large ribbon-like flake is necessary, in order to avoid edge scattering by the wave packet.

Therefore, no absorption potential at the boundaries is needed to avoid spurious reflection.

The initial wave packet is assumed as a circularly symmetric Gaussian distribution,

multiplied by a four spinor in atomic orbital basis Ψ = [ψA1, ψB1, ψA2, ψB2]
T and by a

plane wave with wave vector ~k = (kx, ky), which gives the wave packet a non-zero average

momentum, defined as

Ψ(~r, t=0)=N















ψA1

ψB1

ψA2

ψB2















exp

[

−
(x−x0)

2+(y−y0)
2

2d2
+i~k ∙ ~r

]

, (6.10)

where N is a normalization factor, (x0, y0) are the coordinates of the initial position of

center of the Gaussian wave packet, and dx (dy) is its width in the x(y)-direction which

considered to be the same such that dx = dy = d. For all studied cases, the width of the

Gaussian wave packet was taken as d = 10 nm and its initial position as (x0, y0) = (0,−40)

nm.

The propagation direction is determined by the pseudospin polarization of the wave

packet and plays an important role in defining the direction of propagation. It is charac-

terized by the pseudospin polarization angle Θ, such as
(
1 , eiΘ

)T
for the components in
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each layer. The choice of the angle Θ depends also on which Dirac valley the initial wave

packet is situated [51, 200, 209, 212, 215, 216]. Our choice for the propagation direction

here is based on the previous knowledge reported in the literature for wave packet time

evolution on monolayer [200, 212, 216] and bilayer [51] graphene systems.

For the monolayer case, it was observed that the motion in the y-direction is perfectly

vertical, i.e. 〈x〉 = 0 during the whole propagation, whereas the case for propagation

along the x-direction is not perfectly horizontal, i.e. 〈y〉 does not stay the same, as the

wave packet slowly drags towards larger y during propagation, this effect is a manifes-

tation of the Zitterbewegung [199]. On the other hand, for the motion of an electron in

bilayer graphene it was reported that the oscillatory behavior of the average positions

and velocities are present along the wave packet dynamics as a consequence of the Zitter-

bewegung effect even for propagations along the y-direction. Although such oscillations

can not be avoided, their amplitudes are weaker for wave packet propagation along the

y-direction and exhibit a transient behavior that affects mostly at the first time steps at

the beginning of the propagation [51]. For these reasons, we assume the y-direction as

the preferential propagation direction.

The initial wave vector is taken in the vicinity of the Dirac point ~k = (kx, ky) + ~K,

where ~K = (0,±4π/(3
√

3a)) represents the two non-equivalent K and K ′ points. As

we intend to investigate the wave packet trajectories for different propagation angles

and their probabilities, we run the simulation for each system configuration, such as e.g.

initial propagation angle, initial wave vector and energy, and then as the Gaussian wave

packet propagates, we calculate for each time step the transmission (T ) and reflection

(R) probabilities for finding the electron after (y > 0) and before (y < 0) the interface at
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y = 0, respectively, as the integral of the square modulus of the normalized wave packet

in that region, given by

T =

∫ ∞

−∞
dx

∫ ∞

0

dy|Ψ(x, y)|2, (6.11a)

R =

∫ ∞

−∞
dx

∫ 0

−∞
dy|Ψ(x, y)|2, (6.11b)

and the total average position, i.e. the trajectory of the center of mass 〈~r〉 of the wave

packet, that is calculated for each time step by computing

〈x〉=
∫ ∞

−∞
dx

∫ ∞

−∞
dy|Ψ(x, y)|2x, (6.12a)

〈y〉=
∫ ∞

−∞
dx

∫ ∞

−∞
dy|Ψ(x, y)|2y. (6.12b)

For larger t, the value of the transmission (reflection) probability integral increases (de-

creases) with time until it converges to a number. This number is then considered to be

the transmission (reflection) probability of such system configuration.

Essentially, a wave packet is actually a combination of plane-waves, where the wave

packet width represents a distribution of momenta and, consequently, of energy. In this

sense, we are investigating the dynamics of a distribution of plane-waves with different

energies around some average value, whose width can be even related e.g. to the temper-

ature of the system. A large wave packet in real space implies a narrow wave packet in

k-space, thus it will be composed of a distribution of plane-waves with different velocities

and, therefore, exhibits a strong decay in time. We have checked that the wave packet

width in real space considered in our calculations is appropriate for the proposed problem,
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being large enough to avoid significant changes of the wave packet within the time scale

of interest.

As mentioned before, the propagation of charge carriers in AA-BLG can be described

as belonging to the upper or lower cone, respectively denoted by red and blue in Fig.

6.1(d). In order to investigate the wave packet scattering to these upper and lower Dirac

cones k+ and k− one can apply the following unitary transformation to the four-spinor in

Eq. (6.10)

U =
1
√

2















1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1















, (6.13)

that forms symmetric and anti-symmetric combinations of the top and bottom layer wave

functions components, i.e.

UΨ = Ψ′ =
1
√

2















ψA2 + ψA1

ψB2 + ψB1

ψA2 − ψA1

ψB2 − ψB1















. (6.14)

The symmetric and anti-symmetric components correspond to the k+ and k− energy

bands (For more details see Refs. [62]). In our results for AA-BLG case, we use the above

wave function to calculate the center mass position and the probability amplitudes.
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Figure 6.4: Scattering from 2SLG into lower k+ (solid lines) and upper k− (dashed lines)
cones in AA-BLG with different incident energies . Both 2SLG and AA-BLG are pristine
where left and right columns show trajectories obtained from semi-classical and wave-
packet dynamics approaches, respectively. Color bar represents the transmission proba-
bility.

6.3 Charge carriers collimation

For the SC, the classical trajectories in the three configurations are the same since they

depend only on the energy bands on both side of the junction. However, the transmission

probability associated with each system is indeed different. On the other hand, for WD

the electron trajectories and transmission probability are distinct in 2SLG-AA and AC-

AA, while the results for ZZ-AA are not applicable due to the Zitterbewegung effect along
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Figure 6.5: The same as in Fig. 6.4 but scattering here from SLG to AA-BLG whose top
layer possesses armchair edge at the interface.

the zigzag edge as discussed in Sec. 6.2. Additionally, the fact that the lower and upper

cones in AA-BLG are decoupled means that each cone exhibits electron- and hole like

carriers. For example, for γ1 > E > 0 electron- and hole-like carriers emerge from the

lower and upper cones, respectively. Consequently, there will be two different types of

collimated beams coming from the two cones as will henceforth be seen.

In Fig. 6.4 we show the carriers collimation through a domain wall that separates

2SLG and AA-BLG obtained from both SC and WD calculations with different Fermi

energies. The point source is suited at y = −40 nm and then electrons impinging on the
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Figure 6.6: Comparison between the transmission probabilities obtained from SC ap-
proach for 2SLG-AA and SLG-AA with zigzag- and armchair-edges with v0 = 0. T+ and
T− are the intra-cone transmission probabilities where carriers scatter into the lower and
upper cones, respectively.

domain wall located at the origin (y = 0), afterward they scatter to either lower (solid) or

upper (dashed) cones with different transmission angles. Both approaches show a strong

agreement for carriers trajectories. For example, according to SC the transmission angles

associated with φ = 50o and E = 4 meV are 0.17o(−0.18o) which coincide with lower (up-

per) cones, while the WD calculations give the transmitted angles as 4 .60o(0.17o). The

plus and minus signs of the transmission angle reveal that the respective charge carriers

will diverge and converge, respectively, at large distance. The transmission probabilities

obtained from the two approaches agreed qualitatively as will be explained later. Exper-

imentally, it is often found that some islands in the sample have single layer graphene

150



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ϕ

T

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T

ϕ ϕ

-25° 0 25°° -25° 0 25°° -25° 0 25°°

ZZ-AA AC-AA

T+T_ Ttot SC WD

2SLG-AA

Figure 6.7: Comparison between the transmission probabilities obtained from the wave
packet dynamics (WD) and semi-classical approach (SC). Note that for SLG-AA the WD
results are only for AC-Edge. The incident energies are (4, 16 meV for top and bottom
rows, respectively, while the electrostatic potential v0 = 0.

connected to bilayer graphene flakes. In Fig. 6.5, we show the carriers trajectories through

such structure. We notice that even though the transmission probabilities are slightly al-

tered, the system still attains the collimation. We can say that the results are almost

identical for 2SLG-AA and AC-AA as depicted in Figs. (6.4, 6.5), respectively.

To validate this understanding and quantitatively determine the degree of agreement,

we next carry out a transmission comparison between different systems and approaches.

Using the SC dynamics, we show in Fig. 6.6 the intra-cone as well as the total transmission

probabilities in 2SLG-AA, ZZ-AA, and AC-AA systems. In the intra-cone channels T+
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and T− the charge carriers scatter from SLG region into the lower and upper cones,

respectively. In 2SLG-AA system the transmission is symmetric with respect to normal

incidence, while it becomes asymmetric in ZZ-AA and AC-AA systems at high energy.

Such an asymmetry is a manifestation of inversion symmetry breaking of the system.

Notice that the transmission remains symmetric in the regions where both modes k+ and

k− are propagating and the asymmetry feature only appears when one of them becomes

evanescent. The critical energy that separates these two domains are given by E±
c (φ) =

±γ1/(1 + sin φ) and superimposed as dashed-black curves on Ttot in Fig. 6.6. The critical

energy decreases with increasing the incident angle which reaches E±
c = ±γ1/2 for φ =

π/2. Therefore, within this energy range, the electron beam is symmetrically collimated.

Moreover, within the same energy range the intensity of the collimated beam is almost the

same for all systems. Note that in the other valley K ′ the total transmission probability

in ZZ-AA and AC-AA attains the following symmetry TK(φ) = TK′(−φ). There is a trait

in Fig. 6.6 that is of particular importance, we see that around the normal incidence both

cones contribute equally, i.e. T+ = T− = 1/2. This suggests that the device can also be

used as a 50/50 electronic beam splitter [98].

For comparison with the WD calculations, we show in Fig. 6.7 the transmission

probabilities as a function of the incident angle at two different energies. The fundamental

characteristics of the system are qualitatively captured by both approaches. Of particular

importance is the deviation in the intra-cone transmission at higher incident angles in

2SLG-AA and AC-AA. At normal incidence and in the SC picture, the intra-cone channels

are equal, such that T+ = T− = 1/2, while for oblique angles they start deviating from

each other. For 2SLG-AA junction, we notice that T+ > T− while it is revers for AC-AA
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as can be inferred from the solid blue and red curves in Fig. 6.7. This behaviour is also

captured by the WD as can be seen from the dashed blue and red curves. For ZZ-AA, the

results are only shown for SC while they are not applicable in WD calculations due to the

Zitterbewegung effect, as we mentioned earlier. Furthermore, it is clear that transmission

amplitudes from SC and WD do not match precisely. For example, at normal incidence

Ttot is always unity for all systems according to SC, while it is significantly attenuated in

WD. In fact, this is expected since the first one consider a plane wave with single value

of the energy and momentum. While the latter one uses a wave packet that defines a

burst of particles with a momenta distribution ~Δkx. Thus a perfect transmission is not

expected since only part of the wave packet coincides with normal incidence which will

be completely transmitted. While the part the associates with kx 6= 0 will be partially

transmitted and reflected [216].

6.4 Effect of a magnetic field

So far, we have shown the electron collimation through different configurations in the

absence of a magnetic field. Gaining the control over the electron beams direction can be

accessed through a magnetic filed without losing collimation. To thoroughly examine the

effect of the magnetic field on the collimated beams, we assume that the magnetic field

is applied only in AA-BLG region, i.e. for y > 0. This can be justified by considering

the electron point source is located near the domain wall such that the distance is much

smaller than rSL. Note that even a global magnetic filed is subject to the system, the

directional collimation will be maintained as long as rSL >> y0. To assess the effect of the

153



-20 0
-40

-30

-20

-10

0

10

20

40

-30

-20

-10

0

10

20

30

20 -20 0 20 -20 0 20

x(nm)

y
( n

m
)

-

E=16 meV

E=4 meV

SC

2SLG-AA AC-AA

WD

(a) (b) (c)

(d) (e) (f)
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magnetic field, we calculate the classical trajectories in 2SLG-AA and AC-AA using SC

and WD as shown in Fig. 6.8. We consider an electron beams with maximum incidence

angles φ = ±50o. The essence of SC approach lies in expressing the relative refraction

index n in terms of the wave vectors on both sides of the domain wall. Consequently, the

classical trajectories for all considered configurations in the current paper are the same;

thus, we show in Fig. 6.8. the trajectories for only 2SLG-AA. This is also confirmed

by the WD calculation where it shows that the trajectories for 2SLG-AA and AC-AA
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are almost the same, see Fig. 6.8(b,c) & (e, f). Both SC and WD show contributions

from two types of trajectories which is a direct consequence of the electron- and hole-like

nature of the carriers associated with the lower and upper cones, respectively. The two

trajectories are steered by the magnetic filed in diametrically opposite directions.

Finally, to clearly visualize the effect of the magnetic field on the whole wave packet,

we show in Fig. 6.9 the contour plots of the time average for the squared modulus of the

Gaussian wave for 2SLG-AA. We set the incidence angle in all panels to be φ = 30o and

show the scattering to each cone separately in the presence and absence of the magnetic

field. For B = 0, once the wave packet reaches the domain wall it starts moving nearly

along the y− direction, see Figs. 6.9(a, c) &(e, g). In the presence of finite magnetic
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field, the weave packets corresponding to lower and upper cones are steered in different

directions without losing the collimation. Note that the wave packet feels the magnetic

field even before reaching the interface and this is can be clearly also seen in Fig. 6.8. Such

behaviour is a manifestation of the quantum non-locality nature of the charge carriers in

graphene.
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CHAPTER 7

CONCLUSIONS

In the current thesis, we theoretically investigated the electronic and transport properties

of locally delaminated bilayer graphene. Electron tunneling, confined states, and colli-

mation in this system are of particular importance. During this study, we solved the

Dirac-Weyl equation to explor the different properties in the proposed system.

In chapter 2, we briefly reviewed the electronic properties of graphene and its bi-

layered systems. In particular, we focused on those properties that are relevant to our

research such as band structure, chirality, and Klein tunneling in single layer graphene

and its bilayer with AA- and AB-stackings.

In chapter 3, we used the four-band model we obtained the conductance, trans-

mission and reflection probabilities through single and double domain walls separating

delaminated and AA/AB-stacked bilayer graphene. We discussed in detail the scattering

mechanism from detached layers to bilayer graphene and presented compact analytical

formulae for the transmission probabilities across single domain walls. These results

showed that one can find the inter-layer coupling strength solely through measuring the

conductance.
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We found that an electrostatic potential applied to AB-BL, in an 2SL-AB junction,

breaks the layer symmetry in the single-valley transmission probability channels. Such

asymmetry originates from the asymmetric coupling in AB-BL and arises as a conse-

quence of the mismatch in energy between the 2SL and AB-BL Dirac cones caused by

the electrostatic potentials applied to the AB-BL region. Layer asymmetry exists when

only one propagating mode is present and hence is not seen in configurations consisting

of AA-BL where the entire energy range is associated with two transport channels.

We have also evaluated the robustness of chirality-induced properties, such as Klein

tunnelling and anti-Klein tunnelling, to scattering on domains without inter-layer cou-

pling. We found that in domain walls separating 2SL and AA-BL, Klein tunnelling is

still preserved. On the other hand, for domain walls separating 2SL and AB-BL, the well

known anti-Klein tunnelling in AB-BL is not preserved any more, but neither is Klein

tunnelling itself. Moreover, in two domain walls separating three regions whose inter-

layer coupling is all different, i.e. the AA-2SL-AB case, we find that although perfect

Klein tunnelling does not hold, the tunnelling does not depend on the thickness of the

2SL region either. This remarkable effect is attributed to a conservation of parity of the

modes. Finally, we showed that for a given sample with unknown sizes of local stacking

domains, the average inter-layer coupling can be estimated through quantum transport

measurements.

In chapter 4, we have investigated a system consisting of two locally coupled graphene

sheets and have shown that it is a promising candidate for application as a layer switch.

We showed that independently of the BLG stacking configuration, the layer selectivity can

be controlled by an applied gate potential. The different peculiarities associated to the
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two stacking configurations for achieving maximal switching behaviour were discussed.

While our final results are calculated for abrupt interfaces, we showed that a smooth

interface does not affect our findings.

In chapter 5, we used the continuum model to analytically calculate the wave func-

tions and thus the discrete energy levels of bound states trapped in a locally delaminated

bilayer graphene system that is called GQB. We have investigated the energy spectrum

and eigenstates of such system under the application of an electrostatic potential differ-

ence between the graphene layers. GQBs are unique electrostatic tunable graphene-based

quantum dots. They support bound states with diverging lifetime that can be elegantly

realized by means of only electrostatic gating and are robust against changes in the GQBs

morphology. A big advantage of GQBs is the tunability through gate variations. Also, we

pointed out that by changing the contents of the blisters, one could access another degree

of freedom to establish quantum dot systems with specific energy levels as required for

different applications. Therefore, we expect that the GQBs can form the basis of a new

subfield in graphene physics where the graphene sheet structure is used together with

electric fields to achieve tunable quantum systems.

In chapter 6, we have shown that electrons can be highly collimated through locally

delaminated AA-BLG systems. We considered two domain walls that separate AA-BLG

and either 2SLG or SLG with zigzag and armchair edges. We have presented SC model

that combines quantum mechanical calculations of the transmission probabilities with

classical trajectories to explain the electron scattering. The SC model takes advantage of

representing the refraction index in terms of the wave vectors on both sides of the domain

wall. This results in identical trajectories for the two considered domain walls whose
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transmission probabilities are different. We found that charge carriers associate with

lower and upper cones are distinctly collimated in two beams. In particular, both beams

can be bent in opposite directions using a magnetic field.To validate the SC approach, we

carried out WD calculations that showed a strong quantitative and qualitative agreement

with SC model. Furthermore, the reported collimation is robust against the types edges

and domain walls.

Our study reveals that the presence of the local domain wall in bilayer graphene

samples change the electronic and transport properties significantly. Finally, we hope

that the results presented in this study may shed light on the design of electronic devices

based on bilayer graphene.
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APPENDICES

A Transmission across single domain wall

The transmission probabilities are calculated by applying appropriate boundary condi-

tions at the 2SL-BL interfaces together with the transfer matrix. After some cumbersome

algebra, we obtain for 2SL-AB

T±
j = 4Re(k±)

η
[
η2 + (Im(k∓) + κj v0 sin φ)

2
]

C0 +
∑4

m=1 Cm cos(mφ)
, (A1)

where

C0 = 2 (Im(k∓)Re(k±))
2
+ ε2

(
Im2(k∓) + Re2(k±)

)
+ Γ1,

Γ1 = 2v4
0 − 4v3

0E + 5v2
0E

2 − 3v0E
3 + 3

4
E4,

C1 = −εRe(k±)
[
4
(
v2

0 + Im2(k∓)
)
− 6v0E + 3E2

]
,

C2 = ε2
(
Im2(k∓) + Re2(k±)

)
+ Γ2,

161



Γ2 = E (−4v3
0 + 6v2

0E − 4v0E
2 + E3),

C3 = Re(k±)E (2v2
0 − 3v0E + E2),

C4 = 1
4
E2(E − 2v0)

2.

Similarly, the transmission probabilities for the AB-2SL system are obtained as

T j
± = 4Re(kj)k

±λ [μ± + κjv0 sin φ Im(k∓)]

|Q±|2
, (A2)

μ± =
ε
(
Im2(k

∓
) + E2

)
− E(±1 + E)(E + v0) sin2 φ

2
√

E(±1 + E)
,

λ = E
√

E(±1 + E),

Q± = 1
2
[z0 − z1 (k± + iIm(k∓)) + z2k

±Im(k∓)],

with

z0 = 2i [v0α − ikjE] [α (−ikj + α) + εE],

z1 = E
[
(ikj + α)2 − ε2

]
,

and finally

z2 = 2ε [ikj + α],

where α =
√

E2 ± E sin φ.
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