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layer interfaces with schematic representation of the transmission proba-
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AA-BL leads with 2SL as intermediate region (AA-2SL-AA). (c) AA or
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cated above the respective junctions. . . . . . . .. ... ... L.
(Colour online) Schematic diagrams, for one domain wall separating 2SL
and AB-BL, showing the regions where the modes (%, k7) in AB-BL are
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of pristine 2SL and gated AB-BL and vice versa in (b). In the yellow
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(Colour online) The angle-dependent transmission and reflection probabili-
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(Colour online) Density plot of the transmission and reflection probabilities
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(Colour online) The same as in Fig. 3.4, but now with vy = 1.57; and
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(Colour online) Density plot of the transmission and reflection probabilities
through AA-2SI-AA as a function of Fermi energy and transverse wave
vector k, with vp = d = 0 and width of the 2SL d =25 nm. . . ... . ..
(Colour online) The same as in Fig. 3.7, but now with vy = 1.5 ;.

(Colour online) The same as in Fig. 3.7, but now with vy = 1.5y, and
0 = 0.371. Red and white dashed curves correspond to the bands of bottom
and top layers of 2SL, respectively, while the black dashed curves are the
AA-BL bands. . . . . . . ..
(Colour online) Conductance of two-block system for different magnitudes
of the applied gate: (a, b) vg = =0, (¢, d) vg = 371/2, 0 =0 . Gr is
the total conductance obtained by summation of all possible channels, (e,
f) the total conductance for 2SL-2SL. and AA-AA junctions, respectively,
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(Colour online) Conductance of three-block system with different magni-
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(Colour online) The angle-dependent transmission and reflection probabil-
ities through (a, b) 2SL-AB and (¢, d) AB-2SL junctions. The systems in
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(Colour online) Density plot of the transmission and reflection probabilities
through 2SL-AB-2SL as a function of Fermi energy and transverse wave
vector k, withvg = 0=0. . ... ... . ... oo
(Colour online) The same as in Fig. 3.13, but now with vy = 3v,/2.
(Colour online) The same as in Fig. 3.13, but now with vy = 37v,/2,
0 = 0.87;. New localized states appear inside the “Mexican hat” shape of
the low energy bands of AB-BL due to the strong gate potential. . . . . .
(Colour online) Transmission probabilities as function of Fermi energy and
bias for normal incidence. . . . . . ...
(Colour online) Density plot of the transmission and reflection probabilities
through AB-2SL-AB as a function of Fermi energy and transverse wave
vector k, with v =90 =0and d =25nm. . . ... ... ... .. ... ..
(Colour online) The same as in Fig. 3.17, but here with vy = 37 /2
(Colour online) The same as in Fig. 3.17, but here with vy = 3v;/2,
0 = 0.8v;. Red and white dashed curves correspond to the bands of bottom
and top layers of 2SL while the black dashed curves are the AB-BL bands.
(Colour online) Conductance of different junctions for different magnitudes
of the applied gate: (a, b) vo =0 =0, (¢, d) vo = 31 /2, § =0, (e, f) the
total conductance for 2SL-2SL and AB-AB junctions, respectively, with
vo = O(blue curves) and vy = 1.5v;(black curves). . . . ... ... ... ..
(Colour online) Conductance across the 2SL-AB system as a function of
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and double modes regime with £ = 0.3y, and F = 1.157;, respectively,
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(Colour online) Conductance of different junctions for different magnitudes
of the applied gate: (a, b) vo = 6§ =0, (¢, d) vo =371/2, 6 =0 and (e, f)
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4.2

4.3

(Colour online)Density plot of the transmission and reflection probabilities
through AA-2SL-AB junction as a function of Fermi energy and transverse
wave vector k, with vg = 1.5y;, 6 = 0 and d = 25nm. The superimposed

dashed curves represent the bands of AB-BL(black), AA-BL(green) and

2SL (white), with v, being the inter-layer coupling of AB-BL. . . . .. ..

(Colour online) (a) Transmission and reflection probabilities for normal in-
cidence for vy = 371/2, 6 = 0. (b) Transmission probabilities with normal
incidence for AA-BL (AB-BL) n-p-n junction, green (black) curves. Blue
(red) curves are the non-zero channels 77" (7'7) in AA-2SL-AB. All energies
are considered to be less than the electrostatic potential strength. Conduc-
tance of AA-2SL-AB junction for different magnitudes of the applied gate:
(¢)vg=0=0, (d) vo =37/2, 5 =0, (e) vg = 371/2, 6 = 0.6, with ¥

being the inter-layer coupling of AB-BL. . . . ... ... ... ... ....

(Colour on-line) (a) Schematic presentation of the proposed structure with
the indication of the top and back gate, the coupled region (BLG) and the
decoupled graphene sheets (2SLG). (b) and (c): cross section of the device
with abrupt and smooth transitions from the coupled to the decoupled

region respectively. The arrows in (b) indicate the different transmission

channels as discussed in the text. . . . . . . . . . . .. ... ... ..

(Colour on-line) Band dispersion relations around the Dirac point for single
layer graphene (left), AA-stacked (middle) and AB-stacked (right) bilayer

graphene. The dashed curves correspond to the spectrum of the system in

case of a finite bias, i.e. d 0. . . . . . . ...

(Colour on-line)Transmission and reflection probabilities at normal inci-
dence as a function of the Fermi energy, through 2SLG-AB-2SLG struc-
ture. (a, b) and (¢, d) for the non scattered and scattered channels with
d = vy = 0, respectively, solid (dashed) lines for abrupt(smoothed) struc-
ture with L = 25 nm, Ly, = Lg = 5 nm and Ly, = 20 nm, (see Fig.
4.1 (c¢)). For only abrupt structure with vy = 3v,/2, (e, f) and (g, h) for
0 =0, 0.3y, respectively. . . . . . ... ...
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4.5

4.6

5.1

(Colour on-line) Transmission and reflection probabilities at normal in-

cidence as a function of the bilayer width L for § = vy = 0. (a) for

AB-stacking with £ = 37+, /2 and (b) for AA-stacking with £ = 3v,/2.. . .

(Colour on-line) Conductance and reflectance along with their associated
layer filtering as a function of the bias through a 2SLG-AB-2SLG structure
for E = 0.3y, and vg = 1.8y; and L = 25.8 nm. (a) and (b) conductance
and reflectance; (c¢) and (d) the corresponding layer filtering, respectively.
(Colour on-line) Conductance and reflectance along with their associated
layer filtering as a function of the bias through 2SLG-AA-2SLG structure
for E = 0.3y, and vg = 1.8y; and L = 26.4 nm. (a) and (b) conductance

and reflectance, (c¢) and (d) the corresponding layer filtering, respectively.

(Color online) (a) Schematic representation of the structure of a circular
GQB with radius R. The graph shows the inter-layer distance (red) and
the local band gap (black) when a global bias § = 0.12 eV is applied. The
dashed blue curve corresponds to the approximate band gap profile with an
abrupt change at the interface R of the GQB. (b) Top view of the two layer
outside the blister placed in AB-stacking. (c) Schematic representation of a
cross section of the GQB depicting the position of the different atoms in the
unit cell. The black lines denote the 7 orbitals while the vertical green lines
represent the inter-layer coupling. Notice that for illustrative reasons only
a small number of atoms are shown. The discussed GQBs in this study
typically have radii of several hundreds of atoms or tens of nanometers.
(d) Energy spectrum inside (left) and outside (right) the GQB. Red and
blue bands in left panel correspond to top and bottom layers while the
horizontal black lines in the left figure represent the discrete energy levels
that occur due to confinement. These states are only allowed in the range

E < |d¢g| as delimited by the yellow region. The solid black curves in the

right figure denote the edge of the continuum spectrum outside the GQB. .
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2.9
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2.7

2.8

Energy levels of the GQB as a function of its radius with the same bias
inside and outside the GQB d. = 0~ = 0.25;. The dashed green vertical
lines in panel (a) represent the radii where the states residence is the same
in both layers. Gray dashed curves correspond to the first energy levels of
a biased bilayer nano-disk. . . . . . .. ... o Lo
(a-h) Radial probability density of m = 0 stats in Fig. 5.2(a) labelled by
(1-8), respectively. The green dashed vertical line represents the radius of
the GQB. Note that the states close to the continuum spectrum are mainly
localized outside the GQB and preferably on the disconnected sublattices
A2 and B1 as indicated in panels (g) and (h), respectively. . . . . . .. ..
Real part of the different components of the wavefunction for states with
energy ' = 0.29) meV and E = 0.057) for top and bottom rows, respec-
tively. We assume a blister with radius R = 10.5] and bias § = 0.257) .

The radius of the blister is indicated by white dashed circle. . . . . . . ..

Radial probability density outside the blister of the states €y ; in Fig. 5.2(a)
labelled by yellow points (4,9,10). The green vertical line represents the
radius of the GQB. . . . . . . . ..
The radial probability density of m = 41 states in Fig. 5.2(b) labelled by
red and green dots. Top and bottom panels are for the K — and K'—valley,

respectively. The green vertical line represents the radius of the GQB.

Note that [Py, (¢, p)] = [Pl n(=€0)] L pyero 20 [Prn(€.0)] ot =

Layerl
[P (e, ,z))]Layer2 while the total radial probability density is the same in

m,n

both valleys. . . . . . . . . .
LDOS of the GQB for layer 1 (left) and layer 2 (right), with R = 10/ and
d. = 6> = 0.257). The spectral width of the Gaussian profile is ' = 0.024-.

The dashed green vertical lines represent the radius of the GQB. . . . . . .

Energy levels of the GQB as a function of its radius with different bias
inside and outside the GQB d. = 0 and d~ = 0.257). Solid (dashed)
curves are for m > 0 (m < 0) where yellow horizonal lines delimit the gap

outside the GQB. . . . . . . . ...
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(a-d) Radial probability density of the m = 0 states in Fig. 5.8(a) labelled
by (1-4), respectively. The green vertical line represents the radius R = 30!
of the GQB. . . . . .
(a-f) Radial probability density of m = £(1,2, 3) states in Fig. 5.8(b,c,d)
labelled by green and red dots, respectively. The green vertical line repre-
sents the radius of the GQB R=30l. . . .. ... ... ... ... ....
Energy levels of a GQB as a function of angular momentum label m for
R =20l and 6~ = 0.257Y and for different values of .. . . . . ... .. ..
Energy levels of the GQB as a function of its radius for different strength
of the bias inside the GQB with J~ = 20 = 0.257;. Solid (dashed) curves
are for m > 0 (m < 0) where yellow horizonal lines delimit the gap outside
the GQB. . . . . .
Energy levels of the GQB as a function of its radius opposite bias inside
and outside the GQB with §. = —d- = 0.257Y. Solid (dashed) curves are
for m > 0 (m < 0) where yellow horizonal lines delimit the gap outside the
GQB. . e
Energy levels of the GQB as a function of the bias inside the GQB . with
6> = 0.257) and R = 10l. Solid (dashed) curves are for m > 0 (m < 0)
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(a-f) Radial probability density of states ey 41 in Fig. 5.13(b) labelled by
points (1-5). The green vertical line represents the radius of the GQB.
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Energy levels of GQB with different strength of the inter-layer coupling
inside it. Solid (dashed) curves are for m > 0 (m < 0) where yellow

horizonal lines delimit the gap in bilayer graphene with §- = 0.257).
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5.18

5.19

5.20

5.21

6.1

Energy levels of a GQB, same as in Fig. 5.2(a), but with a gaussian in-
terface. (a) Dashed-blue, black, and dashed-red curves correspond to a
gaussian dome of height (1.5, 3, 10)c¢y, respectively. (b) The height of the
gaussian dome is fixed at 3¢y while the inter-layer bias inside the blister is
considered constant (black curves) and varies with the inter-layer distance
(dashed-orange curves). . . . . . . . ...
(a, b) Show the energy levels where inside the GQB is purely hole- and
electron-doped, respectively. Outside the blister the bias is kept 0.25~Y. .
Energy levels of a GQB and corresponding layer occupation indicated by
the color as shown in the right color bar for angular quantum number m =
0. The solid curves in (a) and (b) correspond to the case of a blister with
homogenous bias § or an opposite bias inside the GQB, respectively. Yellow
horizonal lines delimit the energy range for confinement, i.e. £ = +d5. In
both graphs we have chosen § = 0.257? . Dashed and dotted-dashed curves

represent the first energy levels of pure holes and electrons confined states

inside the blister (the levels labeled by black dots in Fig. 5.19). . . . . ..

Energy levels of GQB as a function of the global homogeneous bias d. =

0~ = o for m = 0 and R = 21l . Red dashed and yellow solid curves

correspond to E = +§ and F = +0g, respectively. . . . . .. ... .. ..

Schematic illustration of (a) delaminated bilayer graphene connected to
AA-BLG, and (b) single layer graphene attached to AA-BL whose termi-
nated edge of the top layer either zigzag or armchair type. The energy
spectrum of (c) single-layer graphene, (d) AA-stacked bilayer graphene.
Yellow and Black bands correspond to electrons and holes carriers in SL

while in AA-BL they represent electron- and hole-like states. Red and blue

bands represents the upper and lower Dirac cones in AA-BL. . . . . . ..
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6.2

6.3

6.4

6.5

6.6

6.7

(a) Top panel illustrates the 2SLG-BLG junction with an incident and
transmitted electron beams in the z—y plane, while the bottom panel shows
the transmitted angle ¢ as a function of the Fermi energy and the incident
angle ¢ for SLG-AA junctions with vy = 0.1 eV. (b) Classical trajectories
of an electronic beam impinging on media with different refraction indices.
(c) Refraction index with the corresponding band diagram for SLG-AA as
a function of the electrostatic potential strength vy where the Fermi energy

of the incident particles £ = 12meV. Blue and red curves correspond to

the perspective mode in AA-BLG region. . . . . . . ... ... ... ...,

Cyclotron radius in pristine single-layer graphene, AA-stacked bilayer

graphene for different Fermi energy. The red and blue curves correspond

to the upper and lower cones in AA-BLG, respectively. . . . . . ... ...

Scattering from 2SLG into lower k™ (solid lines) and upper &k~ (dashed
lines) cones in AA-BLG with different incident energies . Both 2SLG and
AA-BLG are pristine where left and right columns show trajectories ob-

tained from semi-classical and wave-packet dynamics approaches, respec-

tively. Color bar represents the transmission probability. . . . . . . .. ..

The same as in Fig. 6.4 but scattering here from SLG to AA-BLG whose
top layer possesses armchair edge at the interface. . . . . . . . . ... ...
Comparison between the transmission probabilities obtained from SC ap-
proach for 2SLG-AA and SLG-AA with zigzag- and armchair-edges with

vo = 0. T and T are the intra-cone transmission probabilities where

carriers scatter into the lower and upper cones, respectively. . . . . .. ..

Comparison between the transmission probabilities obtained from the wave
packet dynamics (WD) and semi-classical approach (SC). Note that for
SLG-AA the WD results are only for AC-Edge. The incident energies are
(4, 16 meV for top and bottom rows, respectively, while the electrostatic

potential vg = 0.. . . . . . . ..
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6.8

6.9

Trajectories of the charge carriers scattering form 2SLG into AA-BLG in
the presence of a perpendicular magnetic field B = 1T (only in the yellow
region y>40 nm) in the z — y plane for 2SLG-AA junction with vy = 0.

Red and blue trajectories correspond to the upper £~ and lower k™ cones

as indicated in the top of Fig. 6.1(b). . . . . . ... ... ... .. ... ..

Contour plots of the time average for the squared modulus of the Gaussian
wave function scaterring from 2SLG into AA-stacked BLG with an initial
energy (a-b) F = 4 meV and (e-h) E = 16 meV, for an incident angle
¢ = m/6. The amplitude of the magnetic field was assumed to be (a, c, e,
g) B=0and (b, d, f, h) B =1 T. The Solid-dashed black line indicates

the interface of the junction . Top (bottom) panels correspond to the lower

kT (upper k7) cones in the AA-BLG spectrum. . . . . .. ... ... ...
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The contemporary isolation of single layer graphite, the so-called graphene, has engen-
dered an avalanche of interest due to its astonishing optical, electronic and mechanical
properties. Through this thesis, we will explore the electronic and transport properties of
locally delaminated bilayer graphene and give insights to the quest for the deployment of
graphene in the electronic industry. Using the continuum model, we show that domain
walls separating different inter-layer coupling domains have a considerable effect on the
chiral tunnelling properties of the charge carriers. In particular, a strong layer selectivity
exists when current flows from delaminated bilayer graphene through a coupled region and
this selectivity can be tuned by means of electrostatic gating. In addition, locally delamsi-
nated bilayer graphene can provide a perfect electrostatic confinement which is preclude by
Klein tunneling in single layer graphene. We scrutinize the electronic properties of these

confined states under the variation of interlayer bias, coupling, and size of the confine-
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ment area. Interestingly, we find that the discrete energy levels in the system correspond
to localized electron and hole states in the top and bottom layers. Finally, show how locally
delaminated AA-stacked bilayer graphene can be used to generate highly collimated electron
beams which can be steered by a magnetic fled. We investigate the electron scattering using
semi-classical dynamics and verify the results independently with wave-packed dynamics
simulations. This thesis provides new insights into the field of electronics of graphene and

could help to achieve the main goal of deployment of graphene-based electronics.
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CHAPTER 1

INTRODUCTION

Materials and their unique properties are always crucial to the science developments
and technological advances in all branches. For example, exploiting the sun light to
produce clean energy requires materials that are very efficient in converting the radiation
into another form of energy such as heat or electricity. In the electronic industry, one
of the biggest obstacle that it is facing is the overheat associated with the electronic
devices causing a problem in their durability and functionality. In medicine, for instance,
scientists are looking for materials that target and kill cancer cells without side effects on
the immune system.

Early in the twentieth century a two dimensional material of a one atom thick carbon
layer was synthesized for the first time. This material is called graphene and is essentially
one layer of the graphite; the well known malarial used in the pencils. A sheet of graphene
is 1000 times thinner than a usual paper and 100 times stronger than steel. A graphene
hammock can cradle a 4kg cat while it weighs no more than one of its whiskers. Graphene
is a good conductor of heat and electricity, stretchable and yet is almost transparent. It

acts as a mesh where it capture the smallest atoms of gas-Helium- and yet allows water



Carbon-nanotube fullerene

Figure 1.1: Graphene as the building block of the other carbon allotropes, image adapted
from Ref [1].

vapour to pass through.
As a physicist, the scope of this thesis is to investigate the electronic and transport
properties of graphene flakes composed of different stackings to provide a better under-

standing of the charge carriers behavior in this unique material.

1.1 From graphite to graphene

Graphite is a well known naturally-occurring material form of crystalline carbon atoms
and one layer of graphite is called Graphene. The terminology ”graphene” was introduced
by Boehm in 1986 [6,7] and its first part refers to graphite while the suffix is an indi-
cation of polycyclic aromatic hydrocarbons. The story of graphene can be tracked back
then to 1859 [8] when a British Benjamin Brodie exposed graphite to strong acids and

claimed that he discovered ”graphon” a new form of graphite. In fact, what he observed



was a graphene sheet covered with dense hydroxyl and epoxide groups [9]. Theoretically
graphene was studied in 1947 when P. Wallace [10] investigated the band structure of
graphite. Then, in 1962 Boehm performed the first experiment looking for the thinnest
flake of reduced graphite oxide which was identified as monolayer [11]. It was believed that
single layer of graphite, ”graphene”, cannot be isolated due to the strong 2D thermal fluc-
tuations which inhibits experimentalists looking for this material. The first ever success
to fabricate a single layer of graphene was achieved in 2004 at University of Manchester
by Sir Konstantin Novoselov and Sir Andre Geim [12]. They used a very simple technique
called Scotch tape technique. After they awarded the Nobel Prize in Physics in 2010 for
their discovery of Graphene, Novoselov commented on the simple idea behind synthesis
of graphene and said, “a playful idea is perfect to start things but then you need a really
good scientific intuition that your playful experiment will lead to something, or it will
stay as a joke for ever”. He continued, “joking for a week or two is the right way to go,
but you don’t want to make your whole research into a joke”.

After the discovery of graphene, scientists now have accessed to all allotropes of carbon-

based materials such as carbon-nanotubes and fullerene as illustrated in Fig. 1.1

1.2 Properties of graphene

Since its experimental realization in 2004, graphene, a two-dimensional (2D) layer of
carbon atoms with honeycomb crystal structure and its multilayer systems, as shown in
Fig. 1.1, have triggered an avalanche of scientific interest. Such enormous interest in

graphene resulted from its remarkable electronic, optical, mechanical properties as well
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Figure 1.2: Few properties of graphene compared with different elements, figure is adopted
from Ref [2].

as its potential use in sensors, detectors, electronics, ..etc. Some of these properties are
presented in Fig. 1.2 and compared with other traditional materials such as Silicon,
copper, steel, and diamond.

Among others, the relativistic nature of carriers in graphene is the most striking feature
where with move with speed of 300 times smaller than of light [13] and with no rest

mass (Dirac fermions). This enables researcher to use graphene as a test bed for ultra-



relativistic phenomena such as Klein tunneling [14]. Moreover, it allows the observation
of integer quantum Hall effect in single layer [15, 16] graphene and bilayer [17]. Such
phenomenon can be even observed even at room temperature in graphene [18] in contrast

to the non-relativistic systems where it demands a low temperature.

1.3 Motivation and organization of the thesis

The goal of this thesis is to investigate the electronic and transport properties in
locally delaminated bilayer graphene. In particular, it is aiming to examine the
charge carriers motion and investigate the possibility of confining them on pristine sin-

gle layer graphene as well as shading the light on the electron collimation in these systems.

This thesis is organized as follows:

e In chapter 2, we review some of the most important and relevent properties of
graphene and its bilayer. We start with the crystalline structures and by implement-
ing the tight binding model we obtain the band structure of single layer graphene.
Then we derive the continuum model that is valid at low energy which collapses
to the well-known Dirac equation. Afterward, we discuss the chirality and Klein
tunneling in graphene and bilayer graphene . In all chapters we solved the Dirac
equation in the vicinity K-point to investigate the transport and electronic proper-

ties of various systems.

e In chapter 3 the quantum transport across single and double domain walls of de-

laminated bilayer graphene is scrutinized in the presence of a finite bias.



e In chapter 4 structures whose source and drain is formed of delaminated bilayer
graphene is considered where a layer selectivity can exist. The interaction region
can be either AA- or AB-stacked bilayer graphene connected smoothly into the

leads.

e In chapter 5 the focus is shifted to the confinement in locally delaminated bilayer
graphene which we called graphene blister. The confinement is studied under the

variation of the inter-layer coupling and bias as well as the blister’s size.

e In chapter 6 a locally delaminated bilayer graphene is, again, considered but now
to study the electron collimation in such structure....The charge carriers behavior is
investigated within two approaches, namely, semi-classical model and wave-packet

dynamics simulation.

e In chapter 7 the main results and findings in this thesis are highlighted.

All the results presented in the current thesis are inspired by tremendous discussions with
Dr. Ben Van Duppen (University of antwerp, Belgium). Some of the results in this thesis

are the fruit of collaborations:

Chapter 5: for the part related to smoothed blister, the numerical calculations were

performed by Matthias Van der Donck (University of antwerp, Belgium).

Chapter 6: the wave-packet dynamics simulations were performed by Diego R. da Costa

( Universidade Federal do Ceard, Brazil).



CHAPTER 2

THEORETICAL ASPECTS OF

GRAPHENE AND ITS BILAYER

SYSTEMS

In this chapter we review the electronic properties of graphene and its bi-layered systems.
First we discussed the electronic configurations of carbon atoms and their hybridizations
in graphene. Understanding the electronic orbital hybridization allows us to introduce
the crystallography of graphene and derive its energy spectrum. The linear spectrum of
graphene is at the origin of peculiar phenomena such as Klein tunneling, chirality, and
negative refraction index. The so called Klein tunneling prevents confinement in graphene.
However, there are few methods which enable confinement and hence the realization of

quantum dots which are described in this chapter.



(b)

Figure 2.1: (a) crystalline structure of single layer graphene with red and black balls
representing carbon atoms at inequivalent sites that cannot be connected through the
lattice vectors a; and as. The lattice vectors can span the lattice and locate all the red
atoms where the vectors J; connect the three nearest neighbor black atoms. Dashed gray
region defines the unit cell which contains two atoms whose intralayer coupling is vy = 3
eV with an intra-atomic distance a = 0.142 nm. (b) First BZ with reciprocal lattice
vectors by and bs, the colored dots indicate the high symmetry points in graphene.

2.1 Electronic properties of graphene

2.1.1 Crystallographic structure

Single layer graphene has a hexagonal crystal structure with a unit cell comprises two
atoms denoted as A and B whose interatomic distance ¢ = 0.142 nm [19], see Fig. 2.1(a).
The strength of the coupling between the nearest neighbours is denoted by 7y ~ 3 eV [20].
Note that both atoms A and B are carbon atoms but we need two of them at different
sites (A, B) in the unit cell to construct the hexagonal Bravais lattice. This Bravais lattice

can be generated using the lattice basis vectors a; and ay superimposed on Fig. 2.1(a)

a, = g <3em + \/gey) , az = g (3696 - \/§ey> : (2.1)



where a, as mentioned above, is the carbon-carbon atom distance that is different from the
lattice constant given by v/3a. e; are unit vectors pointing in the i direction (i = .y, 2).
We can generate the sites of sublattice A in the lattice using the lattice translation vector
R, = maj + nas, where m and n are integers. Each A atom is surrounded by three B

atoms, see Fig. 2.1(a), and connected by three vectors §; given by

01 =5 (ex + V3ey ). 62 = 5 (en — V3ey) b3 = —aeq.  (2.2)

a a
2 2

Thus, within the same unit cell the B sublattice site can be determined by the vector
Rp = R4 + 03 as can seen in Fig. 2.1(a). The corresponding reciprocal lattice in the
crystal momentum (k) space, see Fig. 2.1(b), has the basis vectors

b, = 3—2 (ew - \/gey> ) by = 12’)_7; (ew - \/§ey> : (2.3)

Like the real space lattice, the first Brillouin zone (BZ) in the k-space has also a hexagonal
form as depicted in Fig. 2.1(b). The BZ has different high symmetry points and one of
them is located at the center of the BZ whose energy is the highest energy and is labeled
by I'. The corners of the BZ are also considered high symmetry points around the neutral
point and labeled by the K and K’ points. We consider these two points to be inequivalent
because they cannot be connected to each other by a reciprocal lattice vector. They are

situated at
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Figure 2.2: Electronic configuration of (a) isolated (in ground state) carbon atom and
being with same or different atoms (exited state).

The last high symmetry points are called M and situated inn the middle of the edge
connecting the corners K and K’. The K and K’ points are of particular interest in the
physics of graphene because, for pristine graphene, they are located at the Fermi level
where all the physical phenomena take place. Later on, the performed calculation of
transport properties in the following chapters considered energy ranges only around these

two points.

2.1.2 Tight-binding model for 7 electrons

Before going to the tight binding details let us understand what are the 7 electrons in
graphene. Carbon atoms possess six electrons in the ground states with the configuration
15%25*2p? as shown in Fig. 2.2(a). The inner shell is completely filled and its electrons
are not involve in the chemical reaction or in the transport properties. The outer shell
is partially filled with four electrons 2522p?. In the presence of other atoms carbon atom
tend to form covalent bonds with its neighbours. This covalent bond requires an extra

electron to be excited from the 2s orbital to the 2p, in this case 2p, as shown in Fig.

11



Figure 2.3: (a) Schematic explains the sp? hybridisation in graphene and (b) shows the
formation of the in-plane ¢ and out-of-plane 7 bonds which are responsible for the unique
mechanical and transport properties in graphene, respectively. Figure taken from Ref. |3,
p. 20]

2.2(b). In the excited state of carbon the four quantum states |2s), |2p,),|2p,) and |2p,)
are indistinguishable and thus an electron will occupy a superposition of these states.
A superposition of one s-orbital with n p-orbitals is called an sp™ hybridisation. The
number of the formed bonds depend on the hybridisation of the s- and p-orbitals of the
outer shell. In diamond carbon atoms has sp? hybridisation and form four covalent bonds
whose length is 0.154 nm [21]. On the other hand, carbon atoms in graphite possess sp?
hybridisation, see Fig. 2.3(a), and only three covalent bonds are present. The in-plane

bond length is 0.142 nm which makes it stronger than diamond. However, the successive

12



layers in graphite are weakly coupled by van der Waals bond with inter-layer distance
about 3.35 nm [19]. In graphene also the sp? hybridization allows each carbon atom
to form covalent bond (called o-bond) with the three neighbour atoms as illustrated in
Fig. 2.3(b). The last p, electron in the outer shell form a weak bond with one of the
neighbouring atoms, it is called 7-bond as shown in Fig. 2.3(b). The o-electrons are
strongly bounded to the atoms and thus cannot contribute to the transport properties
of graphene but they are responsible for the unique mechanical properties of graphene.
On the contrary, the m-electrons are weakly bounded and can move freely, rendering
them controllable by external fields and hence responsible for the transport properties in
graphene which are of interest in the study of this thesis.

The electronic band structure of graphene was derived in 1947 by Wallace [10]. He
used the tight binding (TB) approximation to describe m-electrons in graphite and along
the way he also showed the electronic band structure of single layer of graphite. Here we
will review the TB formalism and derive the band structure, following reference [22], as
well as setting the notation used in the current thesis.

The idea behind the TB formalism is to write the total wavefunction as a superposition
of the atomic orbitals ¢; wavefunctions which is called the linear combination of atomic

orbiltals (LCAO) approximation [23,24]

U(r) = Z Cigi, (2.5)

where C; are expansion coefficients and the sum runs over all orbits in the lattice. As

mentioned above, m-electrons are our main interest in this study and in graphene there
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is one electron associates with each atom and hence two electrons in the unit cell. Thus,

one orbital wavefunction must be considered per atom, as a result the total wavefunction

reads
W(r) = C’A<I>?(r) + C’B<I>kB(r) (2.6)
Where
- ,
Pl (r) = — ik-Bnoy(p — RIY, j = A, B. 2.7
k(T) \/N;(E ¢(T n) J ( )

These are the Bloch functions that obey the Bloch theorem:
@i(r + R) = *Foi(r), 2.8)

where N is the total number of unit cells in the lattice. Minimising the energy (FE) with

respect to the expansion coefficients C; leads to the secular equation

Vi: Y H;Cj=EY_ S;C;. (2.9)
J J
The expectation value for the energy can be found from

_ J¥i(r)H¥y(r)dr _ Zij C7CiH;

< B >= _
[ () e(r)dr Y, CrCiS;

(2.10)

and then one can use the variational approach for the minimization using % =0

[25].  Note that the variational approach is equivalent to the Schrodinger equation

H|¥,) = E|¥y). H;; and S;; are hermitian and called the transfer and overlap ma-
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trices, respectively, and defined by:
H, = / &I (r) FO (r)dr — (1| H|D!) (2.11)

5= [ o (r)elr)ar = (@jj0)) (2.12)

Alternatively, Eq. (2.9) can be written in the matrix form as

Hua Hap Ca Saa Sas Cy
—E , (2.13)

HBA HBB C’B SBA SBB CB

the components of these matrices are defined as follows:

Hpq = /(@‘,;‘)*Hd)fdr
1 al A al
- ]_V/ (Z e B p(r — Rﬁ)*) (HZ e* B o — Rﬁ)) dr
n'=1 n=1

N N
= % Z Z/e_ik-(R;?—Rf/) (¢(,,, . RZ‘/)*H¢(’I‘ _ Rﬁ)) dr (214)

n/=1n=1
/
0,n#n

!
€0,M ="

In the results above we used the fact that expected value of the energy is independent of
the cell number n i.e. Ho(r — RY) = gg¢p(r — RJ). The above integral only survives when
n = n’ and is zero otherwise, this means that no hoping between A atoms in different unit
cells which is an approximation. ¢, is called the on-site energy of the A atoms. Similarly,
one can show the same results holds for the element Hgp. The interesting elements are

the off-diagonal element H;; since they represent the major interaction between nearest
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neighbors. The first component H 4p is defined as

Hap = /(@Q)*ch,?dr

N N
1 . )
=N ( E e~k Ry (r — Rﬁ,)*) (H E etk Rl (r — Rf)) dr
=l (2.15)

n/=1

1 N N
= N Z Zeik-(RE*Rﬁl) / ((b(,r _ R;?/>*H¢(T' B RE)) dr

n/=1n=1

~ 70f (k)

Here the summations indices n and n’ run over the all A and B sublattices in the crys-
tal, respectively. Considering only the nearest neighbor interaction we can perform the
summation over all the A atoms in the crystal (n’ = 1,2,..,N) and with each step we
sum over the nearest neighbor atoms B which are three (n = 1,2,3) as illustrated in
Fig. 2.1(a). With this approximation the two summations above can be rewritten as
N N N 3 3 L
Dot Dy = D>y >y = N> and this will lead to the final result ~of(k).
7o denotes the coupling strength between nearest neighbors and is called the hopping

amplitude while f(k) called the geometrical factor and both are defined as follows

o = / o(r — RA) Ho(r — RP)dr, (2.16)

3
fllk) =Y ekon, (2.17)
n=1
where, 8, = (R? — R?) are the vectors defined in Eq. (2.2). Repeating the same steps

we obtain for Hga

Hpa = Hyp =10/ (k) (2.18)
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Similarly, the overlap matrix has the elements:
SBA:SZBZSOJC*(/{Z), SAAZSBB:1 (2.19)

where so = [ (¢(r — Ri)¢(r — RE)) dr is the overlap integral. Finally, we can now rewrite
the eigenvalue equation (2.13) as

€0 Yo f (k) Ca 1 sof Ca
= F . (2.20)

Yf*(k)  eo Cp sof* 1 Cp

The solutions of the above system must satisfy det[H — E's| = 0 which gives the energy

spectrum in the first BZ

ol f(K)|

+ = m, (2.21)

where the values of 75 = 3.033 eV and sy = 0.129 have been extracted experimentally [22].
The geometrical factor can be expanded further as follows

f(k)z Z oik-9

J=123

_ [ez‘k.zsl 4 eikd2 4 eik.ég}
(2.22)
_ [ei%(krz+\/§ky) 1 i (ka=Bhy) 4 eiakI:|

0 3 g
= —¢l2he [2003(\/7_61/@) + 6312’%]
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Figure 2.4: (a) Shows the 3D energy spectrum of single layer graphene obtained form
the TB approach, yellow and black colors correspond to conduction and valence bands,
respectively, while the colored balls at £/ = 0 are the high symmetry points and the black
lines represent the first BZ as illustrated in Fig. 2.1(b). For a better illustration, in
panel (b) we show contour plot of the conduction band by superimposing the first BZ and
the high symmetry points. (c) shows the valence and conduction bands along the high
symmetry points I', M and K connected by the dashed-red lines in panel (b).

where, &, = 2(1,v/3),d5 = %(1, —/3) and &3 = 2(—2,0) then,

lf(k)| = [40032 (?ak@) + 1+ 4cos (?aky) cos (gaky)] . (2.23)

In Eq. (2.21) we can set the parameter €y to be zero since it only causes a shift in the

spectrum. The overlap integral also can be neglected since it is small compared to the

hopping amplitude 9. With these approximations the energy spectrum becomes

Eo = ool f(F)], (2.24)

where o« = 1(—1) is the band index and corresponds to electrons (holes). This spectrum

is shown in Fig. 2.4(a) which exhibit four distinct high symmetry points as shown in Fig.
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Momentum

Figure 2.5: (a) shows angle-resolved photoemission spectroscopy (ARPES) measurements
of energy spectrum in the first BZ along the high symmetry points with the results from
the TB model superimposed as black curve. (b) shows the isotropic nature of the spectrum
at low energy Ep indicated in panel (a). (¢, d) same as (b) but at lower energies Fr nad
Ep — 1eV . Figure adapted from Ref. [4].

2.4(b). The energy spectrum along these high symmetry points is depicted in Fig. 2.4(c).
Notice that the spectrum exhibit the electron-hole symmetry. However, taking into ac-
count the overlap integral sy will break such symmetry. Furthermore, we remind the
reader that we consider only the nearest neighbour interactions in the above formalism.
Including the next nearest neighbour interaction has a small impact on the energy spec-
trum but will break the electron-hole symmetry [26]. The energy spectrum of graphene
was verified using angle-resolved photoemission spectroscopy (ARPES) measurements.
The observed energy spectrum in the first BZ is shown in Fig. 2.5. The tunnelling
spectra of quasifree-standing graphene monolayer usually measured using scanning tun-
neling microscope where some researcher showed that it has “V —shape” around the Dirac
point [27-31] while others observed an unexpected gap of 60 meV pinned to the Fermi
level [32-37]. Recent experiment showed that it is possible to switch the tunnelling spectra

between the two distinct features through voltage pulses applied to the STM tip [38].
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2.1.3 Continuum limit and Dirac-Weyl Hamiltonian

When studying the transport properties we are only interested in the energy regime near
the Fermi level, where the low excitations take place. In pristine graphene the Fermi level
is zero Er = 0 which coincides with the Dirac points K and K’, see Figs. 2.4(a, b). Thus,
it is convenient to expand the Hamiltonian in Eq. (2.20) near the Fermi energy according
to k = K + q. Assuming that |g| < |K| ~ 1/a the Hamiltonian can be expand up to
the first order in g. This approximation is known as the continuum limit and hence using

the Taylor expansion we can obtain the first order terms of the geometrical factor as

27 df (k) 27 df (k)
ke k) ~ f(K ky — —) —— k,——)——=| , 2.2
and we can show that
G 3%) =0
N (220
A FE 2 = boa(1+VE)
Then, according to k, = 2 + ¢, and k, = 327;a + ¢, Eq. (2.25) becomes
3 ‘ .
(G, qy) = 704 (V3 —i)gn + (1 + Z\/g)qy] (2.27)
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this equation can