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CHAPTER 1

Introduction

1.1 Short history of quantum transport

The field of quantum transport can be placed within a broader discipline

called nanoscience.1 We can view nanoscience as a combination of several

historically well established science branches, such as physics, chemistry, and

materials science (as well as engineering) with each branch being applied

to solve specific problems in the field. The major goal of nanoscience is to

control and manipulate matter on very small scales. With that aim, typical

research in nanoscience serves a double purpose. On the one hand, it ex-

plores the fundamental physical phenomena operating at the nanoscale, and

on the other hand, it searches for possible utilization of these phenomena.

Nanoscience also deals with constructing nanoscaled devices, or nanostruc-

tures. The word “nano” comes from Greek, and it means “dwarf”, therefore

the literal translation of the word “nanostructure” is a “dwarf-structure”.2

Quantum transport stemmed from the field of mesoscopic physics in the

early 1980s.1,3 The word “meso” also comes from the Greek language, mean-

ing “intermediate” or “middle”, and for mesoscopic physics this has a double

meaning. The first interpretation is related to the size of studied systems,

because they are in between the atomic (microscopic) scales and the (macro-

scopic) scales of everyday objects. The word “meso” then signifies the scales

in between the “micro” and the “macro”. The second meaning is related to

1



1.1. Short history of quantum transport
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Figure 1.1: Logarithmic length scales: scales relevant for mesoscopic physics

are those in the nanometer range, which is a typical size for a mesoscopic

device.

the main physical laws operating at these two scales. In contrast to atoms,

which are governed by quantum mechanics, the macro world obeys classical

laws. Therefore the “meso” scales are those in between quantum and clas-

sical scales. Since there is no clear demarcation between the quantum and

classical scales (the quantum features disappear gradually as we increase the

scale of the studied system), the term mesoscopic is now mainly used to con-

nect the two separate transport regimes, the quantum and the classical one.1

In Fig. 1.1 we present the wider length range, centered around scales relevant

for mesoscopic physics and transport.

When it comes to transport in mesoscopic devices it is also important to

separate few important lengths and their relations to transport. Beside the

size of the device (L), important lengths are the electron wavelength and the

electron mean free path. The mean free path is the distance that an electron

travels before its momentum is significantly changed due to impurity scat-

tering.4 If the device size is larger than the mean free path (the momentum

relaxation length as it is sometimes called), then electron transport is con-

sidered to be diffusive. On the other hand, if an electron travels across the

device without significant change in its momentum, then we are in the bal-

listic regime. Another transport regime occurs in samples exposed to high

magnetic fields, where the emergence of edge channels suppresses electron

2 1. INTRODUCTION



1.1. Short history of quantum transport

scattering. In this thesis we investigate only ballistic transport regime, and

transport in high magnetic fields. It is also important to stress that this the-

sis deals only with systems in which electrons are free to move in two spatial

dimensions, while their motion is confined in the third dimension as is the

case in two-dimensional electron gas 2DEG.

Ref. [2], which focuses on electrical transport in semiconductor nanos-

tructures, traces the origin of transport studies back to the Drude model,

and later to the discovery of the first transistor in the 1940s. With Moore’s

law, and the consequent miniaturization, the necessity for quantum mechan-

ical description of transport phenomena became apparent in the following

decades. There are several experimental milestones which paved the way to

modern research, to name a few:

• The discovery of integer quantum Hall effect (IQHE) in 2DEG.5

• The discovery of fractional quantum Hall effect (FQHE) in 2DEG.6

• The measurement of conductance quantization in quantum point con-

tacts (QPC).7,8

• The realization of quantum dots (QD)†.

• The Coulomb-blockade effect in quantum dots.

• The Aharonov-Bohm effect (AB).

• The discovery of graphene and other 2D materials.

• The measurements of QHE in graphene.

Although some of these discoveries are more than twenty years old, they

they are still very important topics of present day research.

The exploration of nanoscales would not be possible without significant

improvements in measuring techniques. The construction of scanning tun-

neling microscope10 (STM) in 1981–82, and the first successful STM ex-

periments11 opened the whole field of nanoscience. Using similar principles

the atomic force microscope was constructed in 1985. Most of the previous

experimentally observed phenomena required extreme operating conditions

such as high magnetic fields, low temperatures (few Kelvins), high vacuum,

†According to Ref. [2], the term quantum dot appeared first in the year 1986 in Ref. [9],

but the first experiments on confined electrons were performed several decades earlier.

1. INTRODUCTION 3



1.2. 2D electron gas

or special care in patterning the devices. Therefore new techniques for ef-

fective cooling, etching, and sample preparation were developed in order to

perform these previous measurements. On the other hand, some effects were

predicted before the experiment was performed (e.g. Aharonov-Bohm effect).

The experimental discoveries and improvements in measuring techniques

were complemented with theoretical breakthroughs. Each of the previous

experimental discoveries was accompanied with theoretical explanation of

the underlying physics behind the observed effect. The theoretical approach

we take in this thesis is the so-called S-matrix approach, pioneered by Lan-

dauer.12 We devote the whole next chapter to the explanation of this ap-

proach, but now we would like to point out that the main idea behind it is

that the transport characteristics of a device are directly related with the

charge carrier transmissions.

In the rest of this chapter we give a short introduction to each of pre-

viously mentioned main topics in quantum transport that is of interest to

this thesis. We start with electron confinement in two dimensions in con-

ventional semiconductor nanostructures. Next, we give a short introduction

to graphene, and describe the basis of Aharonov-Bohm effect. In the last

subsection we explain a typical scanning gate experiment.

1.2 2D electron gas

One of the major steps in the development of all modern electronic devices

was the realization of a two-dimensional electron gas. A typical example is a

MOSFET device in which the carriers are confined in a two-dimensional (in-

version) layer. In modern experiments, nanodevices are usually made from

semiconductor heterostructures. The important concept here is doping. Im-

purities can be added to semiconducting materials to modify their chemical

potential. The material can be p-doped or n-doped depending on whether

the embedded impurities add or extract electrons from it. Heterostructures

are formed when two different materials are deposited on top of each other.

Usually the two materials have matching lattice constants, therefore the con-

nection is smooth and there is no strain induced. After they are brought in

contact, the electrons from the n-doped layer would eventually go to the

p-doped layer and localize on the interface of the two materials, forming a

two-dimensional layer. A typical band diagram close to the interface is pre-

sented in Fig. 1.2. The electrons in n-doped GaAlAs enter p-doped GaAs

leaving behind positively charged donors. The conduction and valence bands

4 1. INTRODUCTION



1.2. 2D electron gas

Figure 1.2: Band edges in GaAlAs-GaAs heterostructure along the growth

direction (full curves). The Fermi energy is given by the horizontal dashed

line. Image taken from Ref. [1].

in GaAs bend and there is a very narrow region on the interface where elec-

trons are confined only in one direction.

Due to the very narrow size of this localization region, electrons inside

it exhibit quantization in the normal, growth direction (z). Since con-

finement occurs only in the z direction, and electrons are free in the x

and y direction, the electron wave function can be divided in two parts

Ψ(x, y, z) = ψ(x, y)Φn(z). The wave function in the plane is given by plane

waves, and there are different subbands due to the quantization along the

z direction. Usually (because of the narrow spatial confinement along the

z direction) the energy separation between the different localized states is

large, so only the lowest localized state is occupied. Because this part of the

wave function is the same in the whole plane, and it can’t change, the wave

function along z is sometimes not considered in transport studies.

After the 2DEG is created between the two layers, it can be further pro-

cessed into nanostructured devices, such as Hall bars, small rings, quantum

point contacts etc. This is usually performed through several techniques such

as photolithography, electron beam lithography or AFM lithography.2 The

first two are similar, and involve depositing a layer of photoresist on top

of the sample, which is then exposed to UV light or to electrons with high

energies. A mask with a specific pattern of the device is used to define the

1. INTRODUCTION 5
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exposed regions. After the exposure, the photoresist in the exposed region is

easily removed. Next step in the process depends on the purpose. To struc-

turally delimit the 2DEG, the sample needs to be etched, and the 2DEG is

removed beneath those areas not covered with the photoresist. In the final

step the remaining resist is also removed. If the purpose is to create metallic

contacts, the procedure is different. After the development of a photoresist,

a thin layer of metal is deposited on top of the device. The so-called lift-off

technique is used to remove the metal in areas of the photoresist. The third

technique of creating patterns in 2DEG involves a biased tip of the atomic

force microscope (AFM). If a proper potential is applied on top of the tip,

the tip will oxidize the top surface of the sample. The created oxide layer will

deplete the 2DEG beneath it. This technique allows to separate the 2DEG

in different regions, and impose additional confinement on the electrons.

1.3 Graphene

Semiconductor heterostructures were widely used materials capable of sus-

taining two-dimensional electron gases. However, with the discovery of gra-

phene, a new opportunity to study 2D electrons emerged. Graphene is a 2D

material consisting of a single layer of carbon atoms. Beside a single layer,

graphene can be produced and stacked in two, three or even several layers.

For a very large number of layers the material is known as graphite. Be-

fore the discovery of its two dimensional form, graphene was known through

its non planar allotropes, such as carbon nanotubes and fullerenes. Carbon

atoms in graphene are arranged in a honeycomb crystal lattice shown in

Fig. 1.3. The lattice consists of two groups of carbon atoms arranged in two

interpenetrating triangular lattices, usually marked with A and B. A single

carbon atom in graphene posses six electrons orbiting its nucleus, therefore

its electron configuration is (1s)2(2s)2(2p)2. This is the case when carbon is

in its ground state. However, when excited, one electron from the 2s orbital

can populate one 2p orbital, and the other two 2p electrons can mix with 2s to

form a sp2 hybridized state. The hybridization causes carbon atoms to bond

in structures with characteristic angle of 120◦. After the hybridization, one

2p electron is left unhybridized, and perpendicular to the sp2 hybridization

plane (2pz), and these electrons form π bonds.

Long before it was experimentally discovered, graphene was studied the-

oretically by Wallace in Ref. [13], in order to understand the electronic struc-

ture of graphite. The wave function of an electron in a monolayer graphene

6 1. INTRODUCTION
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B

A

x

y

k1

k2

K

K'

ky

kx

a1

a2

b1
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Figure 1.3: (Left side) Graphene honeycomb lattice with two carbon atoms

in the unit cell (A and B). Distance between carbon atoms is a0 = 1.42 Å,

and the two lattice vectors are a1 = (a, 0), and a2 = (a/2, a
√
3/2), where

a = a0
√
3. The three nearest neighbor vectors are b1 = (a0

√
3/2,−a0/2)

b2 = (−a0
√
3/2,−a0/2), and b3 = (0, a0). (Right side) The first Brillouin

zone (dark inner hexagon) with six corner points. The two basis vectors in

the reciprocal space are k1 = (2π/a,−2π/a
√
3), and k2 = (0, 4π/a

√
3).

can be written as a sum of contributions coming from the two sublattices

ψk(r) = akψ
(A)
k (r) + bkψ

(B)
k (r), (1.1)

where ψ
(A,B)
k are Bloch functions

ψ
(j)
k (r) =

∑

Rl

eikRlφj (r− δj −Rl) . (1.2)

Index j in previous equation signifies a sublattice type (A or B), and Rl is

the position vector of l-th unit cell. Vector δj is a displacement vector from

the center of the current cell to a lattice site j, and φj is the orbital wave

function of the carbon atom belonging to sublattice j. The two-component

wave function could be used to solve the Schrödinger equation Ĥψk = ǫkψk,

and an approximate solution in the tight-binding model yields the graphene

dispersion

ǫλk = t′NNN

(

3 + 2
3
∑

i=1

cos(k · ai)

)

+ tλ

√

√

√

√3 + 2
3
∑

i=1

cos(k · ai), (1.3)

1. INTRODUCTION 7



1.3. Graphene

where vector a3 is defined as a3 = a2 − a1. Terms t = −2.7 eV and t
′

NNN ≈
0.1t are nearest- and next-nearest-neighbour hopping terms, defined as

t =

∫

d2r φA∗(r)∆V φB(r+ b3), (1.4)

t
′

NNN =

∫

d2r φA∗(r)∆V φA(r+ a1), (1.5)

and λ = ±1 signifies two possible solutions (bands). The ∆V term in previ-

ous two integrals is the potential energy coming from all other atoms in the

sample.

Figure 1.4: Graphene dispersion relation: The two bands (electron band—

red surface, and hole band—blue surface) touch at six corners of the first

Brillouin zone. Only two corners from these six are unique, and the other

four corners can be obtained by appropriate translations by reciprocal lattice

vectors. Figure is obtained from Eq. (1.3) by setting tNNN = 0.

The two dispersion bands described by Eq. (1.3) are shown in Fig. 1.4.

They touch at six corners of the Brillouin zone, known as Dirac points. In

the low energy part of the spectrum, the dispersion can be expanded in

8 1. INTRODUCTION
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Figure 1.5: Comparison of the dispersion given by Eq. (1.3) for ky = 2π/a
√
3

(black curve), and the linear dispersion given by Eq. (1.8) (blue lines).

the vicinity of the six Dirac points. Starting from a low-energy effective

Hamiltonian,14

Ĥeff, ξ
q = ξ

3ta

2
(qxσx + ξqyσy) , (1.6)

where σx and σy are Pauli matrices

σx =

(

0 1

1 0

)

and σy =

(

0 −i
i 0

)

, (1.7)

and q is a small wave vector around one of the six Dirac points. The param-

eter ξ is used to separate between Hamiltonians of the two valleys (ξ = 1 for

the K valley, and ξ = −1 for the K ′ valley). The low-energy solution of the

Schrödinger equation is then linear in momentum, and does not depend on

the valley index ξ

ǫλ, ξq = λh̄vF |q|, (1.8)

where vF = −3|t|a/2h̄ is known as the Fermi velocity in graphene. Because

of linearity, and the fact that q can point in any direction, the low energy

solutions can be approximately represented as six narrow cones, placed at

the six Dirac points. Also, due to the linearity in the low energy part of

the spectrum, the collective low-energetic excitations are treated as mass-

less particles, also known as massless Dirac fermions. Zero mass cariers in

1. INTRODUCTION 9



1.4. Aharonov-Bohm effect

graphene behave similar to relativistic particles, and that is why they show

some similar relativistic effects, such as for example Klein tunneling.15

Linear approximation is only valid for low energies as shown in Fig. 1.5,

where we compare approximate tight-binding solution with its linear approx-

imation. From the figure it is evident that the linear approximation is only

valid for energies below 1 eV.

1.4 Aharonov-Bohm effect

The Aharonov-Bohm effect (AB) is an interference phenomenon in which a

charged particle acquires a phase by moving in an electromagnetic potential.

The most interesting feature of the AB effect is that gauge potentials, which

were for a long time considered as only mathematical constructs, could lead

to measurable effects such as electron interference. A simple thought exper-

iment proposed by Yakir Aharonov and David Bohm in their 1959 paper16

explains how electron wave functions are affected by potentials even when

they move in regions where no electrical or magnetic forces act on them. In

this subsection we introduce the AB effect by summarizing one of the two

thought experiments proposed in Ref. [16]. According to this reference, a

general phase picked by a charged particle traveling along a closed space-

time path l is equal to

∆ϕ =
e

h̄

∮

l

(φ dt−A · dr/c) , (1.9)

where φ and A are scalar and vector potentials. A more special case is the

time-independent one, considered in Fig. 1.6. An electron beam is split in

two paths moving along opposite sides of a narrow solenoid which creates

a nonzero flux only in the center of the system, while the vector potential

is present in the entire space. The electron wave traveling along these two

paths acquires a different phase, and this phase is proportional to the action

S along each path. The two wave functions (for two paths) at the interference

region can be written as

ψ1 = ψ0
1e
−iS1/h̄, and ψ2 = ψ0

2e
−iS2/h̄. (1.10)

Here, ψ0
1 and ψ0

2 are the wave functions for the case when no flux penetrates

the system. The phase difference between the two interfering waves is

∆φ = (S2 − S1)/h̄ =
e

ch̄

(∫

l1

A · dr−
∫

l2

A · dr

)

=
e

ch̄

∮

l1−l2

A · dr. (1.11)

10 1. INTRODUCTION



1.4. Aharonov-Bohm effect

Electron

source Detector

Figure 1.6: Scheme of the device proposed to measure the Aharonov-Bohm

effect: A beam of electrons is split into two paths surrounding a nonzero

flux thread. Electron wave function can be split into two parts ψ1, and ψ2

corresponding to two paths the electron can take in the system. The two

paths are then merged and a detector is placed in the interference region.

This experiment is somewhat similar to a two-slit experiment, but instead of

measuring interference minima and maxima in real space, they are mapped

as a function of a changing magnetic flux.

Taking into account Stokes theorem, the circulation of A on a closed path l

is equal to the magnetic flux enclosed by l

∮

l

A · dr =

∫

S

(∇×A) · n dS =

∫

S

B · n dS = φ. (1.12)

Here, S is the surface enclosed by l and n is the surface normal vector.

Based on this the phase difference is proportional to the magnetic flux pass-

ing through the system. By changing the flux strength, the phase differ-

ence between the two interfering electron paths changes from constructive to

destructive. Therefore, the total electron transmission probability changes

depending on the flux through the system.

The most important message of this thought experiment (which has been

realized in several experimental setups) is that no magnetic field acts on

electrons as they circle around the system. The other setup presented in

Ref. [16], deals with electrons moving in a time varying scalar potential.

Aside of the Aharonov-Bohm effect there is its dual known as the Aharonov-

Casher effect, where a charge-neutral particle with spin travels around a line

of charge and gains an additional phase.
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1.5 Scanning gate microscopy

The invention of the optical microscope greatly improved our understanding

of the physical phenomena on length scales comparable to the wavelengths

of the visible part of the spectrum. With increase in energy of used particles

and decrease in wavelength, even smaller features were revealed — such as

the crystal structure of solids, and ultimately the composition of atomic nu-

cleus and its constituent particles. With the invention of scanning tunneling

microscopy mentioned above,10 a completely new class of microscopy tech-

niques suitable for nanoscale measurements came into the existence. The

basic idea behind all scanning techniques is more or less the same, a probe

(similar to that presented in Fig. 1.7) is brought in close proximity of a ma-

terial surface. Depending on the applied technique, position of the probe is

connected with some local property, which allows for the spatial mapping of

this local property. In case of scanning tunneling microscopy, a voltage bi-

ased metallic probe is brought very close to the sample, and it measures the

strength of the tunneling current (therefore the word “tunneling” in STM)

into the sample. The current decreases exponentially with the tip height,

and this dependence is used to position the tip very close to the sample at

constant height. This is achieved by locking the current, in other words by

adjusting the tip height so the current is kept constant. Keeping the dis-

tance between the tip and the sample constant allows for scanning of the

sample surface topography. This method is very precise and is used to image

arrangements of individual atoms in a crystal lattice. Another technique is

the so-called atomic force microscopy (AFM). In contrast to STM, what is

measured in AFM scans is the force acting between a tip and a sample. The

force bends the arm holding an AFM and this deflection is measured using

a laser pointed to the top of the AFM tip. Instead of a constant tunneling

current, the tip is now locked to a constant force. This method can be also

applied to image sample topography.

The method we are mostly interested in this thesis is known as scanning

gate microscopy (SGM). Ever since its early applications in imaging elec-

tron transport,17,18 SGM was used to study 2DEG buried under insulating

surfaces. Connection between the tip and the sample is established through

capacitive coupling, and not through direct tip-sample contact. In other

words, the tip changes the electron density beneath it, which manifests as

an induced electrical potential. In case of graphene, the tip can be placed

very close to the conducting layer, or it can be coated with a dielectric19 and
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SiO2

Si (VBG)
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ne
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Figure 1.7: A simplified scheme of an SGM experiment of a graphene 6-

terminal Hall bar. A biased SGM tip is scanning the graphene sample placed

on top of the SiO2 layer. Current is injected into the source contact and

extracted from the drain contact, while the voltage is measured across the

device. The graphene electron density (and consequently the Fermi energy)

is controlled through the voltage on the back gate (VBG).

placed in direct contact with the sample. In some experimental setups a layer

of hexagonal boron-nitride (h-BN) is placed on top of graphene.20 The basic

idea behind all SGM measurements is the same. The device conductance (or

resistance) is measured simultaneously as the tip is scanned over the sam-

ple. The tip-induced potential perturbs the passage of electrons. Since the

tip acts as a movable gate, this technique can be used to study localization

effects in quantum dots and in narrow constrictions. As we explain later, the

interpretation of SGM resistance maps varies depending on the particular

device setup and characteristics. In some cases, the interpretation is that

the tip is mapping the local flow,17 while in others it is believed to map the

local density of states.21,22 In case of experiments on quantum dots and con-

strictions,23,24 the tip can be used to map the distribution of energy levels

in a quantum dot. The energy levels manifest in real space as concentric

haloes distributed around the localization point. On the other hand, these

distributions reveal the equipotential lines of the tip induced potential, and

the quantum dot is used as a primitive potentiometer for measuring the tip

potential.

In Fig. 7.9 we present a characteristic SGM map showing branched flow
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Figure 1.8: SGM conductance map showing branched flow around a quantum

point contact in GaAs/AlGaAs 2DEG. Figure taken from Ref. [26].

coming out of a QPC.

Some progress in interpreting SGM maps has been made so far.25 In

the case of a weak tip potential, the conductance correction due to a local

tip perturbation was calculated up to the second order. The expansion was

applied to a specific case of quantum point contact (QPC), but it is also valid

in other geometries. The first-order correction term is dominant only at a

conductance step, when a new mode opens in the system, and depends mostly

only on transmission of this new mode. On the other hand, the second order

correction is more dominant at the conductance plateau, and depends on the

transmissions of all open modes. Although this interpretation of the SGM

maps is valid only in the perturbative regime, some conclusions should still

apply in the other regime, when the SGM tip depletes the two-dimensional

electron gas.

1.6 Motivation and organisation of the thesis

This thesis deals with electrical transport in micro- and nano-systems made

either from conventional 2DEG or from graphene. The main motivation for

14 1. INTRODUCTION
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this work is to understand the influence of external potential perturbations

on electron transport in nano-sized devices. This is particularly related to

the SGM experiments. Understanding how the SGM tip interacts with the

sample can help not only to interpret the present experiments, but possibly

design new ones. The ultimate goal of the SGM technique is to use the mea-

sured conductance maps to obtain local properties, e.g. spatial distributions

of currents in a scanned sample. Since these local properties are not known

in advance, it is our goal to guide the experiments by giving comparisons of

simulated local properties with the simulated conductance maps.

Although we provide some insights, a lot more questions remain unan-

swered and they require further research. For example, if tip dependent

conductance is related to some of the local properties, then there must be

some sort of transforming function that relates that property with the con-

ductance. In other words, the tip influence can be interpreted as a convolu-

tion of the initial function (e.g current density) with the tip potential. If such

transforming function exists, then interpretation of SGM maps would involve

the deconvolution of the measured conductances in order to obtain that local

property which is related to the conductance. Again, some progress in find-

ing this relation has been made in the case of a weak tip potential.25 It was

shown that first-order and second-order correction terms in the conductance

depend on the integrals connecting the tip potential with the scattered states

in the leads.

The second, but equally significant question is to understand transport

in nanostructured graphene under the influence of external electric and mag-

netic fields. Due to its gapless nature and its massless charge carriers, but

also due to the edge and valley effects, graphene behave very differently

than classical 2DEG. Even for interpretations of the SGM experiments, it is

important to understand the transport physics of graphene (e.g. intervalley

scattering, edge states, snake states, Klein tunneling etc.).

This thesis is organised as follows. After a brief introduction to graphene

and 2DEG, and the phenomena encountered in nanostructures made from

these materials, we proceed by investigating some of the special cases re-

lated to some specific geometries. In Chapter 2 we present the theoretical

framework used to calculate the transport properties, and then in the next

five chapters we discuss the application of this framework for specific cases.

Chapter 3 deals with scanning gate microscopy of small Aharonov-Bohm

rings, where we apply the wave-packet approach to calculate the device

conductances. Our initial idea was to study scanning gate microscopy in
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graphene, but in order to gain some familiarity with graphene, we first turn

to some simpler cases. In Chapters 4, 5, and 6 we focus on transport in

graphene nanoribbons and Hall bars without the SGM tip. Chapter 4 deals

with resonance effects in narrow graphene ribbons exposed to two side gates.

This chapter emphasizes the differences coming from the different edge types

a graphene sample can have. Also, in the ending section we briefly touch

on effects due to vacancy disorder. Chapter 5 further investigates the effects

of vacancy disorder but in strong magnetic fields. We demonstrate that va-

cancy disorder affects quantum Hall measurements by inducing new states

in the Landau spectrum. In Chapter 6, a remarkable effect of current guid-

ing is studied in a Hall bar geometry. We propose a simple picture which

explains the current flow along the guided (snake) states. The guiding leads

to an interesting quantization of the bend resistance, and in the absence

of backscattering we are able to calculate the quantized resistances analyt-

ically. Lastly, we simulate some of the recent scanning gate experiments in

graphene in micrometer scaled devices. We differentiate between several dif-

ferent regimes in which a scanning gate tip can operate in graphene, and

investigate each of them separately. Due to the large system size, we give a

comparison between results obtained in quantum and classical simulations.
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CHAPTER 2

Theoretical background

In this chapter we discuss the main theoretical frameworks used to study

electrical transport in nanodevices. We start with Landauer formula, con-

necting the conductance of a nanostructure with the electron transmission.

Next, we expand this basic idea to the case of a multiterminal device, and we

introduce Büttiker’s formula. These formulas can be applied only if the full

device transmission matrix is known, and there are several ways to obtain

this matrix. One of them is the non-equilibrium Green’s functions method

(NEGF), which we describe in this chapter, the other is the wave packet

propagation method, which we describe in the next chapter. Since most of

our numerical results are obtained using KWANT [27], a Python package

for quantum transport simulations, we dedicate one part of this chapter to

KWANT.

2.1 Landauer-Büttiker formalism

2.1.1 Landauer formula

Most of the concepts that we present in this subsection are based on Refs. [28,

4]. The idea that the conductance of a device is proportional to the prob-

ability that the charge carriers travel through it seems very intuitive. It is

17



2.1. Landauer-Büttiker formalism
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Figure 2.1: Two terminal device (left), and electron band structure in left

and right lead of the system (right).

well known that the conductance of a large conductor scales as

G = σW/L, (2.1)

where σ is the conductivity of the material, L is its length, andW is its width.

Based on this formula, the conductivity of a short ballistic conductor would

converge to infinity as its length decreases (its resistance would converge

to zero). However, this is not what is measured. No matter how short or

narrow a conductor is, there is always some resistance Rc which could not be

eliminated. This is the so called contact resistance. Another feature of the

narrow conductors is that their conductance becomes quantized, which is due

to the existence of a discrete set of transversal modes. The contact resistance

Rc can be connected with the number of transverse modes M through the

relation

Rc =
h

2e2
1

M
=

12.9kΩ

M
. (2.2)

Both of these features, the contact resistance and the transverse quantization,

are incorporated in the Landauer formula.

The Landauer formula deals with a two terminal device, as that presented

on the left side of Fig. 2.1. The chemical potential for electrons in the left

contact is µ1, and for electrons in the right contact it is µ2. Electrons from

both contacts can travel to the opposite side through the main scattering

region. The dispersion relations in the leads are presented on the right side

of Fig. 2.1. The conductance of the device is determined by the behaviour

of electrons with energies between µ1 and µ2. If contacts are reflectionless,

meaning that the outgoing electrons do not backscatter, than the right-going

electrons in the left lead (lead 1) all originate from the left contact, and

they all have electrochemical potential µ1. Also, the left-going electrons in

the right lead (lead 2) all have electrochemical potential µ2, and they all

originate from the right contact.
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The right-going current in the left lead is then

I+1 =
2e

h
M(µ1 − µ2), (2.3)

and the left-going current is simply the current reflected from the scattering

region (since there is no left-going current from the right contact for energies

above µ2)

I−1 =
2e

h
M(1− T ) (µ1 − µ2) . (2.4)

Similarly, the right-going current in the right lead (lead 2) is

I+2 =
2e

h
MT (µ1 − µ2) . (2.5)

The conductance is then

G =
I+2

(µ1 − µ2)/|e|
=

I+1 − I−1
(µ1 − µ2)/|e|

=
2e2

h
MT. (2.6)

Previous expression is only valid when the temperature is equal to zero,

and there are M transverse modes in the system with approximately equal

transmission probabilities (T ) in the considered energy range. For example,

if transmissions are not equal, then the conductance is given by

G =
2e2

h

M
∑

i=1

Ti, (2.7)

where Ti is the transmission probability of the i-th mode. In case of nonzero

temperature, the energy distributions of electrons in the contacts are no

longer given by a Heaviside step function. Instead of all states below the

contact chemical potential being occupied, the occupation is now spread in

energy and given by the Fermi-Dirac distribution

f(E, µ) =
1

exp [(E − µ) /kBT ] + 1
. (2.8)

Assuming that transmissions change with energy, and that each mode has a

different transmission Ti, a more general current formula can be written as

I =
2e

h

M
∑

i=1

∫

Ti(E) [f1(E)− f2(E)] dE. (2.9)
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Figure 2.2: A multi-terminal device with N contacts and N leads. The

electrochemical potential on the i-th contact is µi.

It is obvious that for equal chemical potentials on the two contacts, the

system is in equilibrium (f1(E) = f2(E)), and there is no net current flowing.

For small bias µ1 − µ2, the current can be expanded around the equilibrium

point as

δI =
2e

h

M
∑

i=1

∫

Ti(E) δ [f1(E)− f2(E)] dE. (2.10)

Here, the expansion around δTi is not necessary, since f1(E)− f2(E) = 0 at

equilibrium. The term δ [f1(E)− f2(E)] can be rewritten as

δ [f1(E)− f2(E)] =

(

−∂f(E)
∂E

)

(µ1 − µ2) (2.11)

giving a linear response current

δI =
2e

h

M
∑

i=1

∫

Ti(E)

(

− ∂f

∂E

)

(µ1 − µ2) dE, (2.12)

from which we can obtain the conductance.

G =
δI

(µ1 − µ2) |e|
=

2e2

h

M
∑

i=1

∫

Ti(E)

(

− ∂f

∂E

)

dE. (2.13)
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2.1.2 Büttiker multi-terminal formula

The Landauer conductance formula was generalized by Büttiker to include

multi-terminal devices. For a N -terminal device, such as that presented

in Fig. 2.2, there are several combinations in which the current and volt-

age probes can be connected to the device. Therefore in order to properly

describe any measurements, it is necessary to specify where the measuring

probes are attached. For example, Gij,km is the conductance measured when

the current probe is attached on contacts i and j, and voltage is measured be-

tween contacts k and m. Since any terminal can be either voltage or current

probe, the basic idea is to treat all terminals on equal footing.

For the zero temperature case, the current in the p-th lead can be written

as

Ip =
2e

h

∑

q

[

T̄q←pµp − T̄p←qµq

]

, (2.14)

where T̄q←p is a sum of transmissions over all transverse modes that originate

from the p-th lead and scatter to some mode in the q-th lead

T̄q←p =
∑

m∈q

∑

n∈p

Tm←n. (2.15)

Based on Eq. 2.14, the current in lead p consists of two parts: the first part

represents the outgoing current, originating from contact p, while the second

part represents the incoming current, originating from all other contacts and

being drained to contact p.

Previous current formula can be rewritten using the relations Vi = µi/e,

and (2e2/h)Tpq = Gpq:

Ip =
∑

q

[GqpVp −GpqVq] . (2.16)

If we set potentials on all gates equal, then the current in lead p is equal to

zero

Ip =
∑

q

[Gqp −Gpq]Vp = 0, (2.17)

from which it follows
∑

q Gqp =
∑

q Gpq. Since Vp is constant in Eq. (2.16),

then
∑

q GqpVp =
∑

q GpqVp and therefore the previous sum can be rewritten

as

Ip =
∑

q

Gpq [Vp − Vq] . (2.18)
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Grouping expressions for all N leads, the general current-voltage relation can

be written in matrix form.










I1
I2
...

IN











=









∑

iG1i −G12 · · · −G1N

−G21

∑

iG2i · · · −G2N

· · · · · · · · · · · ·
−GN1 · · · · · ·

∑

iGNi



















V1
V2
...

VN











. (2.19)

The sums in previous matrix do not include the diagonal terms (Gii). These

sums can be rewritten as
∑

i 6=P GiP = G0(M − TPP ), where M is the total

number of modes in a lead, and TPP is a reflection coefficient. The resistances

can be obtained by inverting the conductance matrix










V1
V2
...

VN











=









R11 R12 · · · R1N

R21 R22 · · · R2N

· · · · · · · · · · · ·
R11 R12 · · · R1N



















I1
I2
...

IN











. (2.20)

For nonzero temperatures, the expression for the current is

Ip =
2e

h

∑

q

T̄pq(E) [fp(E)− fq(E)] , (2.21)

where the transmission functions are defined as in Eq. (2.15)

Similarly to the two-terminal case, the conductance for small bias can be

calculated as

Gpg =
2e2

h

∫

T̄pq(E)

(

−∂f0
∂E

)

dE (2.22)

2.2 S-matrix and Green’s functions

One way to obtain transmissions in a device is through the application of

Green’s functions. In order to explain Green’s functions, first we need to

explain the scattering matrix. The scattering matrix (or S matrix) relates

modes which enter the device, with the ones which exit from it. For each

incoming mode aj, there is an amplitude sij that this mode will scatter into

an outgoing state bi. The transmission from aj to bi is then Tij = |sij|2. In

matrix representation, the S matrix can be written as











b1
b2
...

bN











=









s11 s12 · · · s1N
s21 s22 · · · s2N
· · · · · · · · · · · ·
sN1 sN2 · · · sNN



















a1
a2
...

aN











(2.23)
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Figure 2.3: Discretized two-terminal device consisting of two semi-infinite

leads (colored red), both connected to a main scattering region (colored blue).

Each site in the main region can be labeled using two indices (i, j), and the

distance between neighbouring sites is a. Hopping between sites is constant,

and equals t. The dashed rectangle marks the lead unit cell.

Knowing the S matrix of a system allows one to calculate transmissions

for all modes, and from there (using Landauer-Büttiker formulas) obtain the

conductances. Scattering matrix is usually obtained from the system Green’s

function. Therefore the general scheme for obtaining the conductances is the

following

Ĥ → GR(A) (x, x′) → S → T̄ (E) → G.

Namely we start from the system Hamiltonian Ĥ (usually in a discretized

form) and after solving the inverse problem, we obtain the system Green’s

function GR(A)(x, x′). This Green’s function is then used to obtain the S-

matrix and transmissions T̄ (E), and consequently the conductance G.

As shown in Eq. (2.24), the first step in calculating the conductance is in

obtaining the Green’s function from the Hamiltonian of the system. Green’s

functions are usually used as a tool to solve equations of the general form

DR = S, (2.24)

where R is the response function to some excitation S, and D is a differential

operator. In order to find the solution of this system R, it is necessary to

find the operator G such that

GS = R. (2.25)

From here, it follows

G = D−1 or GD = 1. (2.26)
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In the context of quantum mechanics, the equation we are interested in is

[

E − Ĥ
]

Ψ = S, (2.27)

where we would like to know what is the response function of the system

Ψ, caused by an excitation coming from the leads S. In other words, what

is the probability distribution inside the system, for an electron originating

from the leads. The inverse of the differentiation operator is

G =
[

E − Ĥ
]−1

, (2.28)

and it is the Green’s function of our system. There are always two solu-

tions to Eq. (2.28), corresponding to two boundary conditions. One is called

advanced, and the other is called retarded Green’s function, and they are

usually labeled as GA, and GR. By adding or subtracting a small imagi-

nary number iη, the two boundary conditions (of an incoming or outgoing

waves) can be imposed on the system. This is very useful in numeric cal-

culations, since in general the inverting procedures are usually iterative in

nature, and during iterations both solutions (retarded or advanced) could be

obtained. By adding an infinitesimal ±iη the iteration process is then driven

to converge towards one specific solution.

The Hamiltonian in previous equations can be represented in real space

as

ĤΨ(x, y) =

[

− h̄2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ U(x, y)

]

Ψ(x, y), (2.29)

and it can be discretized. Imagine that a two-terminal conductor, e.g. the one

presented in Fig. 2.3, is divided in an array of lattice points, each separated

from its neighbours by a distance a. Then all points (x, y) can be labeled by

indices (i, j), and previous equation can be rewritten in a discrete form

[

ĤΨ
]

ij
= − h̄2

2m

1

a2
[

Ψ(i−1)j +Ψ(i+1)j +Ψi(j−1) +Ψi(j+1) − 4Ψij

]

+ UijΨij.

Here, the second order derivatives are replaced with their finite difference

counterparts. For every point (i, j), there are four terms − h̄2

2ma2
= t, con-

necting that point with its neighbours, and one term (Uij − 4t) for the on-site

energy.

Inverting this Hamiltonian might seem like a straightforward problem,

however this is not the case. Since the two leads are semi-infinite, the system
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contains an infinite number of sites, and thus the dimension of the Hamilto-

nian is infinite. One way to approach this problem is to separate parts that

deal with the main scattering region (which is finite), and the infinite leads.

Similarly as in Ref. [4], we will present this separation for a system with only

one lead attached, and then extend it to the case of a multi-lead device.

For an open system with a single semi-infinite lead, the discretized Hamil-

tonian matrix can be divided in two parts

Ĥ =

[

Hl τ

τ ∗ HS

]

, (2.30)

where Hl is the infinite Hamiltonian of the lead, HS is the Hamiltonian of

the scattering region, and τ is the hopping matrix that connects the lead

with main region (hoppings marked with red in Fig. 2.3). Green’s function

in this case will also be divided into several parts.

[

Gl GlS

GSl GS

]

=

[

(E + iη)Il −Hl τ

τ ∗ (EIS −HS)

]−1

(2.31)

which could also be written as
[

(E + iη)Il −Hl τ

τ ∗ (EIS −HS)

] [

Gl GlS

GSl GS

]

= I. (2.32)

From this system of equations we obtain

[(E + iη)Il −Hl]GlS + τGS = 0, (2.33)

τ ∗GlS + [EIS −HS]GS = I. (2.34)

From here, Eq. (2.33) gives

GlS = −[(E + iη)Il −Hl]
−1τGS, (2.35)

GlS = −gRl τGS, (2.36)

where gRl is the Green’s function in the lead. Replacing this in Eq. (2.34),

we obtain

GS =
[

EIS −HS − τ ∗gRl τ
]−1
. (2.37)

In other words, the Green’s function of the scattering region can be obtained

if the Green’s function of the lead is know. Term τ ∗gRl is sometimes marked

as
∑R, and called the lead self-energy. It is a finite term, since the matrix
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that connects the system with the lead (τ) reduces the leads Green’s function

only jthose sites which are actually connected to the scattering region.

For a multi-lead system, the self-energy can be expressed as

ΣR =
∑

p

ΣR
p , (2.38)

where ΣR
p is the self-energy of the p-th lead, and the Green’s function of the

scattering region is then,

GS =
[

EIs −Hs − ΣR
]−1
. (2.39)

Connection between scattering matrix and Green’s function is given in

Ref. [29]. This is known as the Fisher-Lee relation. The transmission function

T̄pq can be expressed as

T̄pq = Tr
[

ΓpG
R
S Γq G

A
S

]

, (2.40)

where matrices Γp and Γq can be related to the lead self-energies

Γp = i
[

ΣR
p − ΣA

p

]

. (2.41)

2.3 KWANT

The Green’s function method is only one way to obtain the elements of

the scattering matrix. In order to calculate the resistances using Green’s

functions, two problems need to be solved. The first problem is finding

the Green’s functions of the leads gRl , and the second is finding the Green’s

function of the main scattering region GS. For example, the first problem can

be solved by dividing the leads into unit cells, and then using some iteration

scheme to compute the Green’s functions on the surface, One of the ways to

solve the second problem is by direct inversion of the Hamiltonian matrix,

although this might be computationally demanding in systems with larger

number of atoms. Most of the numerical results presented in this thesis

were obtained using KWANT. KWANT is a software package developed in

the Python language, and its main purpose is to implement methods to

obtain the main transport quantities (S-matrix, propagating modes, lead

dispersions, wave functions) on a system defined in the tight-binding model.

Although it can be used to obtain Green’s functions, the default method

used by KWANT is the so-called wave function method. In this part, we
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(a) (b)

Figure 2.4: (a) Hamiltonian submatrices corresponding to the scattering

region (blue) and one lead (red). (b) Wave functions in the lead ΨL, and in

the main scattering region ΨS.

give some main features of this method. This explanation is completely

based on Ref. [27], which additionally explains the main usage cases.

The basic problem remains the same as that presented in previous sub-

section. That is solving the eigenvalue problem of an open system with

semi-infinite leads. The case considered in Ref. [27] is that of a system with

a single lead, as presented in Fig. 2.4, but the problem can be easily gener-

alized to a multi-lead system. The Hamiltonian matrix in this case is also

infinite

Ĥ =











. . . Vl
V †l Hl Vl

V †l Hl VlS
V †lS HS











, (2.42)

where HS is the Hamiltonian of the main scattering region, and Hl is the

Hamiltonian of the lead unit cell. Hopping matrices Vl, and VlS connect two

neighbouring unit cells in the lead, and the lead surface with the surface of the

system, respectively (see Fig. 2.4). Similarly to the Hamiltonian, the wave

function in the system can be divided into parts belonging to the lead (ΨL(i),

i = 1, 2, . . .) and a part belonging to the main scattering region ΨS. Since

away from the main scattering region the lead is translationally invariant,

the wave function can be written as a superposition of the eigenstates of the

translation operator. The eigenstate wave functions φn can be decomposed

into two parts

φn(j) = (λn)
jχn, (2.43)

where χn is the transversal part for the n-th eigenstate, and λjn is a longitu-
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dinal part. Previous states are the eigenstates of the system of equations

(

Hl − Vlλ
−1
n − V †l λn

)

χn = Eχn, (2.44)

and depending on the value of λn, they describe evanescent modes (|λn| < 1),

or propagating modes (λn = eikn).

Using these precalculated eigenmodes, the wave function in the lead can

be written as

Ψn(i) = φin
n (i) +

∑

m

Snmφ
out
m (i) +

∑

m

S̃npφ
ev
p (i). (2.45)

Inserting this equation back in the previous Hamiltonian, due to the fact

that we are using eigenstates of the infinite part of the Hamiltonian reduces

the problem to solving the part inside of the main scattering region. This is

done by wave function matching, where the coefficients of the S-matrix are

obtained in such a way that the wave functions on the lead-system interface

match.
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CHAPTER 3

Scanning gate microscopy of 2DEG

Aharonov-Bohm rings in weak magnetic fields

3.1 Scanning gate microscopy of 2DEG rings

In the introductory chapters, we briefly described the basic principles of scan-

ning gate microscopy (SGM), a measuring technique that uses a charged tip

of the atomic force microscope (AFM) to scan two-dimensional nanostruc-

tured systems. In this chapter∗ we study the electron transport inside a small

2DEG ring by applying the wave packet dynamics method. As demonstrated

in Ref. [23], a tip-induced local potential perturbs the transport of electrons

at low temperatures (see Fig. 3.1(a) which shows experimentally measured

tip-induced potential). This is reflected in an overall conductance, which

now becomes dependent on the tip position. This technique was successfully

used to study electron transport in quantum point contacts (QPC) [17, 21,

30], quantum rings (QR) [31, 32, 33], Hall bars [34], quantum dots [35], and

quantum billiards [36].

Experiments on quantum rings (Refs. [31, 32, 33]) showed two types of

conductance oscillations: radial fringes—when the tip was located directly

∗Results presented in this chapter are based on our publication: M. D. Petrović,

F. M. Peeters, A. Chaves, G. A. Farias, Conductance maps of quantum rings due to a local

potential perturbation, Journal of Physics: Condensed Matter 25, 495301 (2013).

29



3.1. Scanning gate microscopy of 2DEG rings

(a)(a) (a)(b)

Figure 3.1: (a) Measured tip-potential profile (figure taken from Ref. [23]).

The white curves outline the regions where 2DEG is depleted by oxidation

to produce a quantum dot. (b) SGM map of a quantum ring (figure taken

from Ref. [31]). According to Ref. [31] the inner and outer radius of the ring

in (b) are 210 nm and 600 nm, respectively.

above the ring, and concentric fringes—when the tip was moved away from

the ring. In Fig. 3.1(b) we present an experimentally measured SGM map

taken from Ref. [31]. The map shows previously mentioned two types of

conductance oscillations. Only the conductance change is shown (∆G), there

is a high background conductance which is subtracted from the map, and

which is not shown. Reference [31] reported background conductance of

G0 ≈ 7.5 2e2/h. The interpretation of these experiments was that the radial

fringes originate from the tip influence on semi-classical electron trajectories,

while the concentric fringes were connected with the change in the electron

phase. It was also demonstrated that a perpendicular magnetic field causes

the occurrence of Aharonov-Bohm [16] conductance oscillations.

Although there is a considerable amount of data available from SGM

measurements, a clear interpretation of these data, and a connection with

the local properties, is still missing. Ref. [37] treated SGM experiments from

a theoretical point of view, and studied symmetric, abrupt quantum point

contact. Connection between the conductance change and the current den-
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sity was demonstrated, but only in this specific geometry. Previous studies

of quantum rings [21, 32, 22] showed that there is a relation between the

local density of states (LDOS) at the Fermi energy and the recorded con-

ductance maps. This was done for a weak perturbing potential which did

not significantly change the distribution of energy levels in the system. In

a recent theoretical work by B. Szafran [38], these results were confirmed

and extended to a strongly interacting tip. With screening included, the tip

potential was calculated even when the tip was not directly above the ring.

The perturbing potential was shown to be anisotropic, but along the ring

arms it could be approximated with a Lorentzian function. Additionally, a

recent study [39] investigated the interference effects coming from charge dis-

order. In the following, we will extend these findings, and explain the origin

of oscillating features in the conductance maps. We will show that tip does

not influence all modes equally.

In this chapter, extend the previous study of quantum rings done by

A. Chaves [40], and use the Landauer formula to obtain the two-terminal

conductance. In contrast to recent work done by Chwiej and Szafran [41],

which focuses on the electron transport in a multi-mode regime, we concen-

trate only on single, and two-mode occupancy cases. First, we consider single

mode transport, which allows us to tell what are the general effects of the

tip acting on a single electron state, and what are the main characteristics

of the conductance maps obtained in this regime. When placed away from

the ring, the tip creates a dynamical phase difference between the two ring

arms, causing a change in the conductance and modifying the AB oscilla-

tion period. For two occupied subbands, our results suggest the tip is more

selective to higher subbands (the subbands appearing at higher energies).

Electrons occupying these higher subbands are more perturbed by the tip,

which results in a larger conductance change.

Refs. [21, 32, 22] showed that for a weak tip, the measured conductance

maps reflect the electron wave functions. Since we deal with a strong per-

turbing tip (which acts as a scattering center), our conductance maps do not

precisely reflect this connection.

The rest of this chapter is organized as follows. In the next section, we

define the ring system and present the wave packet method. Next, we present

conductance maps for one and two subband occupancy cases. Our findings

are summarized at the end of the chapter.
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Figure 3.2: (a) Quantum ring system: Radius of the inner circle is

Rin = 550 Å, and of the outer is Rout = 650 Å. Radius of a circle used to

create a smooth lead-ring connection is Rc = 300 Å, while the channel width

is w = 100 Å. Potential outside of the ring is Vout = 600meV (gray area),

while in the ring is Vin = 0 meV (white area). (b) Electron dispersion rela-

tion for a 100 Å wide channel. Selected wave packet energies are ǫ1 = 115.4

meV and ǫ2 = 270 meV, with distribution widths ∆1 = 40 meV and ∆2 = 75

meV.

3.2 Theoretical model

We consider a quantum ring obtained of e.g. an InGaAs/InAlAs heterostruc-

ture with two smoothly connected leads, as shown in Fig. 3.2(a). The dis-

persion relation for an electron placed inside one of the leads is given by

En(kx) = E(y)
n +

h̄2(kx)
2

2me

, (3.1)

where E
(y)
n is the confinement energy along the y direction (for an electron

in the n-th subband), and kx is the wave vector in the x direction. me is the

electron effective mass (me = κm0), and for InGaAs/InAlAs heterostructures

κ = 0.041.

In the wave packet dynamics approach, the electron wave function is

defined for a given geometry in the initial time moment, and then it is prop-

agated using the time evolution operator. In two terminal geometries, the

wave packet is usually positioned in one of the leads at the initial time, and

32 3. SGM OF AHARONOV-BOHM RINGS



3.2. Theoretical model

given an initial momentum. By calculating the percentage of the packet that

arrives in the output lead, after a sufficient amount of time, the transmission

is obtained. The initial wave function for an electron positioned far away

from the ring can be written as a product of two independent parts

Ψ(x, y) = ψ(x)φn(y). (3.2)

Since we define the leads using a finite confinement potential, the ener-

gies E
(y)
n and functions φn(y) are obtained by numerically solving the 1D

Schrödinger equation with the finite difference method. Calculated disper-

sion relations for the first two subbands are shown with the solid black curves

in Fig. 3.2(b). For the wave packet shape in the x direction, we choose a

Gaussian function

ψ(x) =
1

√

σ
√
π
e−(x−x0)

2/(2σ2)e−ikxx, (3.3)

with the probability density

|ψ(x)|2 = 1

σ
√
π
e−(x−x0)

2/σ2

. (3.4)

The wave packet maximum in the initial time moment is positioned at

x0 = −1100 Å.

The probability density in the Fourier-inverse space is also a Gaussian

|ψ(k)|2 = σ√
π
e−(k−kx)

2σ2

, (3.5)

with width inversely proportional to the packet width in the real space. Full

width at half maximum (FWHM) in the x direction is then ∆x = 2
√
ln 2σ,

and in the inverse space ∆kx = 2
√
ln 2/σ. For our numerical calculations the

parameter σ is set to 200 Å, hence ∆x = 333 Å and ∆kx = 0.0083 Å
−1
. Since

the electron wave vector is given by a probability distribution, and not by

a single value, the electron energy is also given by a distribution of possible

values. Full width at half maximum of this non-Gaussian distribution is

∆n =
h̄2

2me

[

(kx +
∆kx
2

)
2

− (kx −
∆kx
2

)
2]

=
h̄2

me

kx∆kx. (3.6)

Subband energies for the first two modes are E
(y)
1 = 53.2 meV and E

(y)
2 =

207.7 meV. Wave packet energies are set to ǫ1 = 115.4 meV and ǫ2 =

270 meV, with ∆1 = 40 meV and ∆2 = 75 meV (see Fig. 3.2(b)). The
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wave packet length determines its spread in energy. Ideally, the wider the

packet—the narrower the energy range, but the downside is that propagation

time then rises. The chosen value of σ = 200 Å is a compromise between the

accuracy and the performance.

The wave packet energies are chosen so that the ǫ2 packet (situated in the

second subband) has the same kinetic energy as the ǫ1 packet (situated in the

first subband). This will allow us to study the influence of the confinement

energy and the wave packet symmetry on the final conductance maps, since

the wave function for the first subband is symmetric, and for the second

subband is asymmetric.

We propagate this initial wave function using the time-evolution operator

Ψ(x, y, t+∆t) = e−iĤ∆t/h̄ Ψ(x, y, t), (3.7)

expanded as

e−iĤ∆t/h̄ = e−iV̂∆t/(2h̄) × e−iT̂x∆t/h̄ ×
e−iT̂y∆t/h̄ × e−iV̂∆t/(2h̄) +O(∆t3). (3.8)

Exponents containing the potential operators are ordinary complex numbers,

while exponents with T̂ operators can be rewritten in the form

e−iT̂i∆t/h̄ ≈
[

1 +
i∆t

2h̄
T̂i

]−1 [

1− i∆t

2h̄
T̂i

]

, (3.9)

where kinetic energy operators can be represented as

T̂i =
1

2me

(

−ih̄ ∂

∂xi
+ eAi

)2

. (3.10)

The vector potential is chosen in the Coulomb gauge A = (−y, x, 0)B/2,
while the magnetic flux is calculated for the average ring radius (Rin+Rout)/2,

and expressed in units of the flux quantum φ0 = h/|e|. Magnetic field of

B = 0.18 T corresponds to a flux value of φ = φ0/2.

Transmission and reflection coefficients are calculated by integrating the

probability current that passes through a certain point xR (xL) in the output

(input) lead after a sufficiently long period of time τ .

T =

∫ τ

0

dt

∫ ∞

−∞

dy jx(xR, y), (3.11)

R =

∫ τ

0

dt

∫ ∞

−∞

dy jx(xL, y), (3.12)
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where the probability current is given by

jx(x, y, t) = −i h̄

2me

(

Ψ∗
∂

∂x
Ψ−Ψ

∂

∂x
Ψ∗
)

+
e

me

AxΨ
∗Ψ. (3.13)

Error of this method depends on the length of the time interval τ . For all

results presented in this chapter, the wave packet is propagated until the sum

T +R reaches a value of at least 99%. The probability current is integrated

at points xL = −1680 Å, and xR = 1680 Å.

As the packet reaches the lead boundaries, it gets scattered backwards.

This backscattering prevents the calculation of T and R, since it affects the

current density at points where T and R are calculated. This effect can be

neglected, if the input and output leads are sufficiently long, so that the

backscattering does not occur before most of the packet has already left the

ring. Another approach, the one we consider here, is to use an imaginary po-

tential near the boundary. This imaginary potential will decrease the value

of the wave function as wave packet moves closer to a boundary, and com-

pletely suppress any reflection back into the ring. We model this imaginary

potential (following [40], and [42]) as

V R
im(x̄) = −iEmin

[

ax̄− bx̄3 +
4

(c− x̄)2
− 4

(c+ x̄)2

]

. (3.14)

Where

Emin =
h̄2k2min

2me

=
h̄2

2me

[

c

2(x2 − x1)δ

]2

(3.15)

is the minimum energy at which the absorption starts. Imaginary potential

is expressed as a function of a dimensionless x̄ = 2kmin(x − x1)δ, with x1
and x2 marking the beginning and the end point of the absorption region.

Coefficients a and b are a = 1 − 16/c3, and b = (1 − 17/c2)/c3, where

c = 2.62206. Parameter δ is set to δ = 0.2, and x2 − x1 = 420 Å, where x2 is

placed at the boundary of the computational box (x2 = 2100 Å). Minimum

energy for previously defined parameters is Emin ≈ 25 meV. Similarly to V R
im

placed after xR, we can construct V L
im placed before xL by applying x→ −x

in all expressions defining V R
im.

Following Ref. [23], the perturbing SGM potential is taken as a Lorentzian

function

V (x, y) = Vt
w2

t

w2
t + (x− xt)

2 + (y − yt)
2 , (3.16)
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Figure 3.3: Conductance map for the wave packet with energy ǫ1 = 115.4

meV, situated in the first subband, for (a) φ = 0 and (b) φ = φ0/2. Tip

potential width is wt = 140 Å, and Vt = 70 meV.

with wt = 140 Å and Vt = 70meV, unless stated otherwise. The total con-

ductance is then calculated using the Landauer formula

G(xt, yt) =
2e2

h

∑

n

Tn(xt, yt), (3.17)

where n runs over the occupied subbands. Coefficients Tn are calculated by

putting the wave packet in a given subband n (at the initial time moment),

and integrating the probability current as explained by Eq. (3.11).

3.3 Single band transport

Conductance maps obtained with the method described above, for two mag-

netic flux values (0 and φ0/2) are presented in Fig. 3.3. The scan is performed

only over the area close to the ring, in order to prevent the wave packet scat-

tering from the tip potential at the initial time moment. The wave packet

energy is ǫ1 = 115.4 meV, and it is situated in the first subband. The fig-

ure shows similarities between the two cases, but also differences originating

from the introduction of the magnetic field and the Aharonov-Bohm phase.

We will focus our attention to Fig. 3.3(a), and discuss the magnetic field

influence later.
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Figure 3.4: Snapshot of the wave packet propagation at t = 130 fs. Wave

packet energy is ǫ1 = 115.4meV and φ = 0. (a) |ψ|2 for a system without

the tip. (b) |ψ2| for AFM tip with Vt = 70meV, and width wt = 140 Å,

placed at xt = −250 Å, yt = 430 Å as shown by the cross in the figure

(Although the tip is not present in (a), we mark its position from (b) in (a)

for better comparison). The radius of a small circle is equal to a Lorentzian

half-width at half-maximum (HWHM) and it is wt = 140 Å. (c) Difference

between probability distributions from (b) and (a). (d) Difference in the

wave function phase between (b) and (a).

In the absence of magnetic field, the system is fully symmetric with re-

spect to mirror reflection over the y = 0 axis, and this property is completely

preserved in the overall conductance map. There are concentric fringes of

oscillating conductance outside of the ring, and radial ones inside the chan-

nel. The first are associated with the phase change and the equiphase lines,

while the second are caused by an interference of backscattered parts of the

wave packet, as it will be explained in the following subsection.

3.3.1 Radial fringes

Tip potential can influence the wave packet in two different ways: by chang-

ing its phase and/or amplitude in every point. The amount of phase and

amplitude change depends mostly on the strength of the tip potential at
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that particular point. Tip positioned far away from the ring will act more

uniformly across the whole channel, and it will affect mostly the phase. On

the other hand, tip placed right above the channel (depending on its strength)

could affect the amplitude and cause backscattering. This is illustrated in

Fig. 3.4, where we present the wave packet at t = 130 fs for two cases: no

tip (a), and tip positioned at (−250, 430) Å (b). In order to separate the in-

fluence of the tip on the phase and the amplitude, we plotted the differences

in probability density and the wave function phase between these two cases

in Figs. 3.4(c) and 3.4(d), respectively.

When tip is positioned at the ring center (xt = 0, yt = 0), it hardly

causes any backscattering. As it approaches one of the ring arms, it starts

to deform the part of the wave packet that travels through that arm. This

is clearly seen in Fig. 3.4(c), where one part of the wave packet is slowed by

the tip. At later times, the packet still manages to go through the potential

obstacle. If the tip potential is larger than the particle kinetic energy, and

the tip is positioned at the channel center, the packet will not be able to go

through the obstacle and it will undergo backscattering. Interference of these

backscattered waves will create patterns of oscillating conductance seen in

Fig. 3.3(a).

To get the basic understanding of the evolution of amplitude differences

as the packet propagates, in Fig. 3.5 we compare time snapshots for two

cases: no SGM tip, and SGM tip present. The tip creates a disbalance

between the two arms, which can be seen in different interference patterns

at the output ring-lead connection (compare 1st and 2nd column in Fig. 3.5

for times greater than 50 fs).

For conductance oscillations inside the ring arms, caused by the backscat-

tering, positions of conductance maxima and minima can be predicted by

using the model of a 1D quantum ring (with radius Rm = (Rin + Rout)/2),

and an infinite potential obstacle placed at one of its arms at distance l=αRm

from the input lead. Electrons can backscatter from the front or the back side

of this obstacle, once or several times, or they can avoid it by traveling in the

opposite arm. A scheme of the first three electron paths is shown in Fig. 3.6.

If we ascribe certain amplitude tie
−iβi to each of these possible paths, and we

approximate the transmission coefficient T=|
∑

i tie
−iβi |2 by using just the

first three paths, one where electron avoids the obstacle (i = 1), and the two

other where it backscatters only once from the front (i = 2) and the back

side of the potential (i = 3), we get three main transmission contributions

in the form 2 titj cos(βi − βj). When there is no magnetic field, the phase
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Figure 3.5: Snapshots of the wave packet propagation at different times for

no tip present (first column on the left), and with the tip (middle column).

The third column shows differences between the first two columns. Tip po-

tential in this case is modeled as a sum of two Lorentzian functions, one

with width w1 = 120 Å and height V1 = 140meV, and the other with width

w2 = 50 Å, and height V2 = −70meV. Wave packet energy is 140 meV.

difference ∆βij = βi − βj depends only on the difference in length between

paths i and j. For paths 1 and 2 we mark this difference as 2l (see Fig. 3.6).

For paths 1–3 we mark it as 2l′, where 2l′ = 2(πRm − l), and for 2–3 this

difference is 2(l − l′). Each time this difference in length is equal to a mul-

tiple of a wavelength nλ we will have a maximum, therefore conductance

maxima are spaced across the ring circumference by λ/2 for the 1–2 and 1–3

interferences, and by λ/4 for the 2–3 interference. First maximum for the

1–2 interference is located near the input lead-ring junction, while for the 1–3

interference, it is on the output lead-ring junction. First maximum for the

interference between paths where electron backscatters only once is located

halfway between the input and the output lead. The wavelength in this case

is obtained from the average wave vector of our wave packet, and is equal to
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Figure 3.6: Electron paths: Figures on the left side show first three possible

paths (i = 1, 2, 3) an electron can take inside the ring. Differences in length

between these paths are shown on the right side.

λ = 243 Å. Because of the smooth lead-ring connections used in the simula-

tion, predictions for the interference maxima based on the 1D model are not

accurate in these regions (the lead-ring connection points). Figure 3.3(a) still

shows first three maximums in the input and output lead-ring connections,

originating from the 1–2 and 1–3 interferences. Maximums produced by the

2–3 interference are clearly visible in the ring arms, half way between the

input and the output lead.

Compared with the experimental results in Ref. [31], conductance map

in Fig. 3.3(a) shows more periodic radial oscillations along the ring arms.

There are several possible reasons for this difference. The geometry of the

system studied here has a reflection symmetry in both x and y direction,

and the tip potential function is chosen to be the same in every point. Real,

experimental systems are not fully symmetric due to the existence of charged

impurities or rough edges. Electron scattering from the impurities alone, or

double scattering from the tip and the impurities will in general modify the

oscillation patterns seen in Fig. 3.3. Although it is hard to determine the

tip potential profile in real experiments, our results suggest that the ratio

between the width of the tip potential and the width of the ring’s arm is

very important. The tip potential used here is wide enough that it covers

the whole ring arm in the radial direction, and completely blocks the passage

of electrons. When the ring arm is wider than the tip potential, this blockade

(and thus the backscattering) is only partial. There will be new paths, where

electron scatters from the tip, but still progress forward through the ring.
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Including these new paths will modify the oscillation patterns inside the

ring.

Another aspect to be considered is the relationship between the width of

the ring’s arm and the electron wavelength. In our simulation, the packet

wavelength (obtained from the average value of kx) is 243 Å or 130 Å, which

is comparable to the width of the ring’s arm. In the case when electron wave-

length is much smaller than the ring’s arm, the situation is more complex,

since the electron can backscatter within the ring’s arm. This situation is

investigated in Ref. [21], where it is shown that radial fringes in this case can

originate from these internal electron reflections.

Figure 3.7: Local density of states at EF = 95.9 meV (the ring’s arm width

is 125 nm). Figure taken from Ref. [21].

3.3.2 Concentric fringes

As noted in the experiments on QRs, concentric oscillations of the conduc-

tance outside of the ring are related to electron phase. Tip potential slows

the wave packet, leaving a trail of modified phase behind it, as it can be

seen in Fig. 3.4(d). The value ∆ϕ plotted in 3.4(d) is defined as a relative

difference in wave function phase, when the tip is present and when there is

no tip

∆ϕ(x, y, t, Vt) = ϕ(x, y, t, Vt)− ϕ(x, y, t, Vt = 0). (3.18)

Red and blue stripes in the upper arm in Fig. 3.4(d) are fully saturated,

meaning that the phase difference is very close to π. On the other hand, in

the lower arm, the phase is changed by a value far less than π. Since the
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wave packet energy is a distribution, rather than a single value, this phase

difference ∆ϕ varies in time as the packet moves through the ring. In order to

quantitatively describe the phase difference that the tip introduces between

the two arms, we average the spatial phase difference from Fig. 3.4(d) in two

areas: the upper-right part of the ring (area Su: x > 0, y > 0), and the

lower-right part of the ring (area Sd: x > 0, y < 0).

〈|∆ϕ(t)|〉Su
=

1

A(Su)

∫∫

Su

|∆ϕ(x, y, t)| dxdy (3.19)

then represents the total phase difference in the upper arm at the time mo-

ment t, while 〈|∆ϕ(t)|〉Sd
represents the phase difference for the lower arm.

A(Su) is the surface area of Su. Difference between these two

∆ϕud(t) = 〈|∆ϕ(t)|〉Su
− 〈|∆ϕ(t)|〉Sd

, (3.20)

gives the average phase difference that the tip introduces between the arms

at the time moment t. In Fig. 3.8(a) we show how this difference changes

with time, as we move the tip in the radial direction along the y-axis (xt = 0).

For comparison, Fig. 3.8(b) gives the conductance profile as a function of the

tip position.

In order to better explain the features of Fig. 3.8(a), we divide the prop-

agation time into three different intervals. In the first interval (I), most of

the wave packet is in the left part of the system (x < 0), and has not reached

the area where ∆ϕud(t) is calculated. In this region, ∆ϕud increases as tip

approaches one of the ring arms. Note that the value of ∆ϕud in this time

interval is not reflected in the final conductance in Fig. 3.8(b). Region A2 of

a very high phase difference does not cause a decrease in the conductance in

Fig. 3.8(b). This is because most of the wave packet is still in the input, left

part of the system.

In the second interval II, the wave packet enters the area where we calcu-

late ∆ϕud, and this is followed by a decrease of ∆ϕud. In the area above A1

(yt > 500 Å) the phase does not recover, because of the tip backscattering.

In the third time interval (III) ∆ϕud decreases again. The reason is the mix-

ing of the parts of the wave packet coming from the two arms at the output

lead-ring junction. Part of the wave packet that traveled in the lower arm

starts to enter the upper arm, and part from the upper arm enters the lower

arm. This mixing changes the value of ∆ϕud, making it less useful in telling

the phase difference between the arms. We mark the time moment when this

mixing starts to considerably affect ∆ϕud as the beginning of the third time
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Figure 3.8: (a) Averaged phase difference as defined by Eq. (3.20) for the

tip with Vt = 70 meV and wt = 140 Å, positioned along the y axis (xt = 0).

Tip trajectory is marked with the red line in the small ring scheme (two

gray circles). For better orientation, we also superimposed ring geometry in

relation to the y axis (black curves). (b) Conductance for a tip scan in the

radial direction (0, yt). Wave packet energy is ǫ1 = 115.4 meV, and magnetic

field is set to zero.

interval III. In this interval, there is no obvious connection between ∆ϕud

and the ring conductance.

After time evolution, and we turn to the effects produced by the tip

movement. For yt = 0 (and xt = 0) the system is fully symmetric with

respect to mirror reflection over the x-axis, and the tip affects both arms

equally. The phase difference between the ring arms is then zero, as shown

in Fig. 3.8(a). As the tip moves along the radial direction, it starts affecting

the packet phase in one arm more than that in the other arm. The increase

in phase difference ∆ϕud with yt (in the region below v1 in the second time

interval in Fig. 3.8(a)) is followed by a decrease in G in Fig. 3.8(b). Also, for

the largest phase difference (the region A1 in Fig. 3.8(a)) the conductance

experiences the largest suppression (the valley around v2 in Fig. 3.8(b)).

This valley corresponds to concentric, low conductance fringe in Fig. 3.3(a).

As the tip moves closer to the upper arm, it causes the backscattering as

explained previously, and the conductance increase above the v3 comes from

this backscattering. The only feature in Fig. 3.8(b) without a clear connection

with ∆ϕud is the peak between v1 and v2. As said before, due to the mixing of
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Figure 3.9: Conductance oscillations with magnetic flux for the AFM tip

scan along the y axis (xt = 0). All parameters are the same as in Fig. 3.8.

different parts of the wave packet, ∆ϕud describes phase difference accurately

only in short time interval.

3.3.3 Magnetic field dependence

Applying a perpendicular magnetic field in the absence of the tip will cause

known AB oscillations in the conductance. Parts of the wave packet travelling

in the opposite arms will acquire different phase, and interfere constructively

or destructively depending on the field strength. The tip potential will change

the packet phase (as shown in Fig. 3.4(d)), and create a phase difference

between the parts travelling in the two arms (as shown in Fig. 3.8(a)). This

phase will then modify the AB oscillation pattern. This is shown in Fig. 3.9,

where we compare the conductance change with the magnetic flux and the

radial tip movement. As the tip approaches the ring and creates the phase

difference, φ0 periodic AB oscillations continuously turn into φ0/2 periodic

Altshuler-Aronov-Spivak [43, 2] (AAS) oscillations. AB oscillation minima

disappear because phase difference created by the tip compensates the one

created by the φ0/2 magnetic flux. AAS oscillations are more resistant to the

tip potential, because they are produced by the interference of parts of the

wave packet that traveled across the whole ring circumference, and therefore
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gained equal phase. Since the phase difference created by the tip never

exceeds π, these AAS oscillations do not fully turn into a φ0/2 translated

initial AB pattern. Because the phase difference decreases, they start to

change back to the initial AB oscillation pattern. This suppression of AB

oscillations and occurrence of φ0/2 oscillation pattern was shown in previous

works on quantum rings [40, 44], where impurity potentials inside the ring

were used to create a phase difference between the ring arms. Here we show

that such an impurity is not needed, and that the tip potential can already

lead to shortening of the AB oscillation period.

This modification of the AB oscillation pattern is characterised by the

occurrence of “V” shaped regions in Fig. 3.9. As the AFM tip approaches

the arm, AB maxima split in two parts and each part starts to move to-

ward the initial AB minimum. When phase difference created by the tip is

equal to π these two parts, originating from two different maxima, should

combine and create a new maximum. At this point, the initial AB oscilla-

tion pattern is completely inverted. V shaped regions shown in Fig. 3.9 are

somewhat similar to conductance patterns observed in the real experiments.

In Fig. 3.10 we present experimental data showing conductance change in

the radial direction versus the magnetic flux (the figure is taken from [31]).

By similarity here we mean that initially φ0 periodic oscillation pattern for

yt = 0 in Fig. 3.9, and d = 0.5µm in the left inset of Fig. 3.10, turns into

φ0/2 periodic oscillation pattern for yt ∼ 200 Å and d ∼ 0.4µm in the re-

spective figures (we additionally marked this pattern in Fig. 3.10 with two

black lines).

The conductance pattern inside the ring is created by interference of

backscattered parts of the wave packet, and although the magnetic field

changes the amplitude of these oscillations, positions of all maxima and min-

ima remain unchanged, as shown in Fig. 3.3(b). This can be explained by the

fact that electron does not gain any AB phase when moving back and forth

along the same path, as in the case of backscattering. Differences between

Figs. 3.3(a) and 3.3(b) show which G-map features can be related with the

change in the electron phase, and similarities show features which are phase

independent.

3.4 Multiband transport

In real systems, the total conductance is a sum of contributions coming from

electrons moving in several subbands. We populate the second subband in
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Figure 3.10: Conductance change ∆G as a function of magnetic flux through

the ring versus the radial distance d from the ring. Figure is taken from [31].

Notice that instead of a single radial line, these conductances were obtained

by averaging results in narrow rectangles. Graph on the left is obtained by

averaging radial conductances on the left side of the ring (the ring is shown

in Fig. 3.1(b)), while graph on the right is obtained by averaging radial

conductance on the right side of the ring. In both cases d is used to measure

radial distance, but it is relative to the averaging rectangle, and not to the

ring center. We mark with two black lines in the left figure the V-shaped

region similar to that obtained in our Fig. 3.9.

our system by raising the total wave packet energy to ǫ2 = 270 meV. This

energy is set so that the kinetic energy for an electron in the second subband

is equal to the kinetic energy for an electron in the first subband (studied

previously). This allows us to analyze the influence of confinement along the

y, since the transverse wave function is symmetric for the first subband, and

asymmetric for the second subband.

Conductance maps for an electron in the first subband, and the sec-

ond subband are presented in Figs. 3.11(a) and 3.11(b), respectively. In

Fig. 3.11(c) we show the sum of these two. For a particle in the first sub-

band, there is a drastic difference when compared with the results from the

previous section. Tip parameters are the same, therefore all the differences

come from an increase in the particle kinetic energy. The wave packet wave-

length is ∼ 130 Å, and the radial fringes inside the ring are smeared out.

For the second subband, the results are similar to the ones presented in the

previous section. Positions of the radial fringes inside the ring match those for

a particle in the first subband (from the previous section), since their kinetic

energy along the x is equal. Conductance map outside of the ring shows the
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Figure 3.11: Multiband transport: Conductance map for the wave packet

with energy ǫ2 = 270 meV situated in the first subband (a), and the second

subband (b). (c) Conductance map obtained by summing (a) and (b). Mag-

netic field is set to zero, the tip potential is Vt = 70meV, and the potential

width is wt = 140 Å.

effects of the wave function symmetry along the y direction. Regions of a

low conductance for a symmetric packet (presented in the previous section)

turn into regions of a high conductance for the asymmetric packet.

Summing the conductance maps for the first and the second subband, we

obtain the total conductance map as presented in Fig. 3.11(c). Contributions

from the second subband are clearly visible in the total conductance map.

This is because the amplitude of the conductance oscillations is larger for a

particle in the second subband than that for a particle in the first subband,

as a consequence of lower ǫnk/Vt ratio and therefore more backscattering (ǫnk
is the kinetic energy of a particle traveling in the n-th subband). These re-

sults suggest that, in case of a multiband transport, the tip might be more

selective to higher modes, which lack the kinetic energy in the direction of

propagation. These modes will backscatter from the tip and create the inter-

ference patterns, while the lower modes (with the kinetic energy several times

larger than the tip potential) will manage to go through the tip potential and

contribute to the total conductance.

To test this further, we perform a tip scan along the average ring circum-

ference (in the upper part of the system, yt > 0) and continuously increase

the tip potential. We calculate the average deviation of the conductance for

each subband separately
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Figure 3.12: Conductance profile along the average ring circumference

α(Rin+Rout)/2 in the upper part of the system (yt > 0) for Vt = 10 meV (a),

and Vt = 40 meV (b). Red (black) line shows results for the first (second)

subband. α is the angle between the tip position vector (xt, yt) and the −x
axis. Wave packet energy is ǫ2 = 270 meV. (c) Average conductance devia-

tion calculated along the average ring circumference as a function of the tip

strength. Magnetic field is set to zero.

δGn =
√

〈G2
n〉 − 〈Gn〉2 n = 1, 2, (3.21)

where

〈Gn〉 =
1

π

∫ π

0

Gn(α)dα, (3.22)

and

〈G2
n〉 =

1

π

∫ π

0

(Gn(α))
2dα. (3.23)

Here, α is the angle between the tip position vector and the −x axis, and

Gn(α) is the conductance in the n-th subband when the tip is placed at

(-Rm cosα, Rm sinα). Results are presented in Fig. 3.12. For a weak tip po-

tential, there is no backscattering and the conductance profile in Fig. 3.12(a)

shows weak G oscillations. As the tip potential rises so does the backscat-

tering, and the interference pattern becomes visible. The amplitude of these

oscillations is a linear function of the tip potential strength, with linear co-

efficient being inversely proportional to the particle kinetic energy in the

direction of propagation ǫnk . When the tip potential exceeds ǫnk this curve

saturates, because most of the wave packet has already backscattered from

the tip. These results are in agreement with experiments on QRs [32], where
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measurements show similar conductance behavior with the tip potential (see

Fig. 2(d) in Ref. [32]). Conductance profile along the average ring circumfer-

ence in Fig. 3.12(b) shows that for a stronger tip there is a mixing of different

interference patterns discussed previously, as with larger tip potential they

extend further through the ring. As a result of this mixing, the average dis-

tance between the interference maxima and minima is not constant along

the conductance profile. The value of δGn shows how visible will the sub-

band n be in the total conductance map. Higher subbands reach saturation

quickly and they become clearly visible even for weak tip potentials, while

lower subbands saturate for very high tip potentials, exceeding their kinetic

energy.

A recent work by T. Chwiej and B. Szafran [41] also focuses on multiband

transport in QRs, in the case when many subbands are occupied. They solved

the Schrödinger and Poisson equation self-consistently, and investigated the

scattering problem. This allowed them to calculate the linear conductance.

Using this method, conductance maps for as much as eight subbands in the

channel were calculated. Although this is very different from the two subband

case considered here, results turned out to be remarkably similar. One of the

possible explanations of this similarity lies in previously noted tip selectivity

to higher subbands. If lower subbands do not contribute to conductance

oscillations in the final conductance map, then simulating electron transport

with the weak tip potential and several subbands in the channel is equivalent

to performing simulations with one or two subbands and a stronger tip.

Next, we compare previously calculated conductance maps with the elec-

tron probability density. Early experiments [32, 22] showed that the conduc-

tance maps probe the interference patterns in the electron density. This was

done for a weak tip-induced potential. We obtain the electron density by nu-

merically solving 2D Schrödinger equation in case with no external magnetic

field. Leads are excluded from the calculation, and the electron motion is

confined to the ring and the smooth lead-ring connections. Since the wave

packet energy is given by a distribution of values, rather than a single value,

we consider only those states with energy as close as possible to the average

wave packet energy. Results for electrons with energies ǫ1 = 116.39meV,

and ǫ2 = 270.35 meV are presented in Fig. 3.13. Comparing |ψ|2 with the

previous conductance maps, we can conclude that (for a strongly interacting

tip) there is no direct correspondence between the conductance oscillations

inside the ring and the electron probability density. The conductance maps

are richer in features than |ψ|2. As we explained earlier, these features origi-
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Figure 3.13: Electron probability density for energy levels ǫ1 = 116.39 meV

(a), and ǫ2 = 270.35 meV. Magnetic field is set to zero.

nate from the tip acting as a scattering center for electrons moving in differ-

ent subbands. In that sense, our results are closer to [45] where conductance

maps of a Hall bar were calculated in the ballistic transport regime, but for

classical electrons. Similar results were obtained for Hall bars in the diffusive

regime [46]. Since we consider electrons as quantum particles, our results

exhibit interference effects not present in the previous two works [45, 46].

3.5 SGM of AB rings: Conclusions

In this chapter, we investigated the position dependent conductance of a

small quantum ring made from 2DEG. In case of a single subband trans-

port, we showed that concentric conductance oscillations outside the ring are

connected with the phase difference created by the AFM tip in the two ring

arms. The radial conductance oscillations inside the ring originate from the

interference of parts of the wave packet backscattered from the tip potential.

The oscillations of the conductance inside the ring are not necessarily λF/2

periodic, since they are the sum of several interference patterns, each dom-

inant in different parts of the ring. In regions where the ring is smoothly

connected to the leads, the oscillations depend on the shape of the lead-ring

connection. The relation between the wave function phase and the conduc-

tance pattern outside of the ring is shown explicitly, as was intuitively hinted

in the first experiments on QRs [31]. As compared to the previous interpre-

tation, where the conductance change at a particular point was connected

with the electron probability density |ψ|2, our approach is different, since we
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considered the tip acting as a scattering center.

The tip-induced phase difference between the two arms will modify the

Aharonov-Bohm interferences. This modification of AB oscillations is char-

acterized by the occurrence of V shaped features, i.e. φ0 periodic patterns

in the conductance maps, very similar to the experimentally observed V

patterns. We found a linear dependence between the amplitude of the con-

ductance oscillations and the tip potential strength, for weak tip potentials.

For stronger tip potentials (of the order of the electron kinetic energy) there

is no longer a linear dependence. In case of the multiband transport, the

coefficient of this dependence is different for different subbands, and depends

on ǫnk . These results suggest that the contribution of each subband in the

final conductance map is not equal, and that the tip might be more selective

to higher modes.
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CHAPTER 4

Fano resonances in the conductance of

graphene nanoribbons with side-gates

4.1 Introduction

In the introductory chapter we already described the electronic structure of

graphene.47 Before we start investigating SGM in graphene, it is important

to understand how this band structures changes when we cut graphene into

ribbons, and what happens if we apply electrostatic gating∗. Another ques-

tion is what are the effects of different edge types introduced after cutting?

Although large sheets of graphene have no band gap, measurements [48, 49]

have shown that cutting them into narrow ribbons leads to the opening of

a so called transport gap, a narrow region of suppressed conductance near

the neutrality point (see Figs. 4.1(a) and 4.1(b)). The influence of side gates

on electron transport in these systems was measured in Ref. [50], and it was

found that the side gates shift the position of the gap in the back-gate volt-

age. Similar experiments were performed in wider Hall bars [51], where the

effect of the side gates was explained in terms of two parallel conducting

channels running along the edges and inside the Hall bar.

∗Results presented in this chapter are based on our publication: M. D. Petrović,

F. M. Peeters, Fano resonances in the conductance of graphene nanoribbons with side

gates, Physical Review B 91, 035444 (2015).
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(a)
(b)

(c)

Figure 4.1: (a) Transport gap measured in narrow graphene nanoribbon

shown in (b). Both figure are taken from Ref. [50]. (c) STM image of

chemically produced GNRs with ideal armchair edges. Image taken from

Ref. [52].

The understanding of nanoribbons is also important from another point of

view. Graphene nanostructures are usually connected with metallic contacts

through leads which can be modeled as semi-infinite nanoribbons, therefore

understanding of nanoribbons is very important if we want to understand

more complicated geometries.

In this chapter we analyze the electronic transport through a potential

constriction in narrow graphene ribbons. The transport gap is usually con-

sidered to originate from localisation due to the edge disorder. Although all

to date experiments utilize ribbons with some degree or disorder, whether on

the edges or in the bulk, there is a possibility of creating atomically precise

ribbons. In Ref. [52] production of ideal armchair ribbons was achieved using

the bottom-up approach from precursor monomers (see Fig. 4.1(c)). Experi-

ments like this suggest that pure side-gated ribbons could be experimentally

obtainable in the future. Based on this, we restrict ourselves to ideal ribbons,

and study the influence of a side potential on the electronic transport (How-

ever, at the end of this chapter, we will comment on the effects introduced

by disorder in the form of carbon vacancies).

Previous theoretical research on bearded zigzag ribbons and ribbon junc-
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tions [53, 54] found zero-conductance dips in the low energy region, near the

neutrality point, and explained them as Fano resonances. Similar theoreti-

cal results were obtained for constrictions induced by electrical potentials in

zigzag ribbons [55], where it was shown that the energy of those dips strongly

depends on the impurity distribution inside the ribbon. Another work on po-

tential constrictions [56] reported abnormal paths of electron current flowing

along the high potential regions. In this chapter we will investigate what

happens in the center of the constriction when several modes are present

in the input lead. Four ribbons with different edge orientation (zigzag or

armchair) and conducting properties are studied.

The studied ribbon system is described in the next section, where we

briefly repeat our discussion on the graphene tight-binding model. First, we

investigate the dispersion relations of graphene ribbons and their transmis-

sion functions. Next, we show what are the effects of the side-gate misalign-

ment in zigzag ribbons. The conductance of these ribbons exhibits peaks for

specific combinations of Fermi energy and side-side gate potential. We give a

comparison between the conductance as a function of the Fermi energy and

the side-gate potential G(EF , Uc) and the eigenenergies in a closed system

En(Uc). Peaks in the conductance closely follow the eigenlevels in a closed

system. At the end of the chapter, we study the behaviour of current density

and LDOS at the resonant energies.

4.2 System and Methods

The studied system is schematically shown in Fig. 4.2(a). It is a graphene

nanoribbon (GNR) connected to two leads and exposed to a symmetric po-

tential from the two side gates. We consider four different ribbon types, two

with zigzag (Fig. 4.2(b)) and two with armchair (Fig. 4.2(c)) edges. The

two ribbons with zigzag edges differ in width only by a single line of carbon

atoms. We call the one with even number of carbon lines (ny) the zigzag rib-

bon, while the one with odd ny is called the anti-zigzag ribbon. The spatial

distribution of the potential from a side gate (Ug) is chosen to be a Gaussian

function, so the total potential is modeled by

U(x, y) = Ug1(x, y) + Ug2(x, y), (4.1)

where

Ug1(2)(x, y) = Uc e
−(x−xg1(2))

2/(2σx)
2

e−(y−yg1(2))
2/(2σy)

2

. (4.2)
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Figure 4.2: (a) Graphene nanoribbon system: colormap represents the

change in the electron on-site energy caused by the two side gates SG1, and

SG2. (b)–(c) Zoom of the nanoribbon showing the zigzag, and the armchair

edge. Ribbon width (Wy) is defined by a number ny of atom lines (horizontal

dashed blue lines) in the y direction. Four ribbon types are considered: the

zigzag (ny = 46, Wy = 9.66 nm), the anti-zigzag (ny = 47, Wy = 9.87 nm),

the semiconducting armchair (ny = 82, Wy = 9.96 nm), and the metallic

armchair (ny = 80, Wy = 9.72 nm). All of these have a length (Wx) of 45 nm.

Maxima yg1, and yg2 are positioned on the upper, and lower edge of the rib-

bon, respectively. We took σx = 6nm, and σy = 2nm. A small misalignment

between the side gates is described using a parameter ∆x = xg1 − xg2. ∆x

is used to modify the ratio of backward and forward intervalley scattering

in ribbons with zigzag edges. Usually, just xg1 is changed, while xg2 is kept

constant.

As described in the introduction, our results are obtained using KWANT.27

KWANT uses the wave function approach to solve the scattering problem in

a tight-binding system. Due to the Fisher-Lee relation the wave function

approach is mathematically equivalent to non-equilibrium Green’s functions

formalism. The graphene tight-binding Hamiltonian is defined as

Ĥ =
∑

〈i,j〉

(tij ĉ
†
i ĉj + h.c.) +

∑

i

Uiĉ
†
i ĉi +

∑

〈i,k〉

(t′ikĉ
†
i ĉk + h.c.), (4.3)
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where ĉ†i and ĉi are the creation and annihilation operators for π electrons

on the i-th carbon atom, Ui is the on-site potential, and tij and t′ik are the

hoppings between pairs of nearest 〈i, j〉 and next-nearest 〈i, k〉 neighbours.

We implement this Hamiltonian by setting tij = −2.7 eV for all pairs of

neighbouring carbon atoms, and Ui = U(xi, yi), where (xi, yi) is the position

of i-th carbon atom. Most of the following results are obtained without

consideration of the next-nearest neighbour hopping (t′ik = 0), but in later

subsections, we test the effects of next-nearest neighbour hopping on our

results.

4.3 Dispersion relation

To better understand the electron behaviour inside the leads, and in the

constriction region, we calculate the dispersion relations for an infinitely long

ribbon. The transverse potential across this ribbon is equal to the potential

in across the constriction

U ′(y) = U(xg1, y), (4.4)

with ∆x set to zero. Results are presented in Fig. 4.3. For no side-gate

potential (thick black lines), the dispersion describes states in the input and

output lead, while for Uc = 0.2 eV (thick blue lines), it describes states inside

the constriction region.

Results for the zigzag ribbon in Fig. 4.3(a) show the lowest conduction

and the highest valence band consisting of the well known dispersionless edge

states [57, 58] in the ( 2π
3a0

, 4π
3a0

) range of kx values. The side gate potential

has the strongest influence in this part of the dispersion relation, moving

these states in energy by Uc. It was shown previously [59], that applying

two oppositely-biased side gates can open up an energy gap in a ribbon with

zigzag edges. Here, the gates are equally biased and therefore there is no

gap opening. This one-to-one connection between the gate potential and the

band energy of the edge states depends on their spatial overlap. States at

kx=π/a0 are completely localized on the edges, and for them this connec-

tion always holds. States outside of the ( 2π
3a0

, 4π
3a0

) range extend across the

whole ribbon, and they move in energy proportionally to Uc. This different

influence on different parts of the dispersion relation causes a deformation of

the lowest conduction band. With this deformation (encircled in Fig. 4.3(a))

the maximum energy of the highest valence band becomes larger than the

minimal energy of the lowest conduction band. This band bending allows
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Figure 4.3: The dispersion relations for the considered four types of ribbons:

the zigzag (a), the anti-zigzag (b), the semiconducting armchair (c), and the

metallic armchair (d) ribbon. The thick black lines show bands for no side

gate potential (Uc = 0), while the thick blue lines show bands for Uc = 0.2 eV.

We mark the incoming modes at EF = 0.3 eV with colored dots, and in (a)

they are labeled by the decreasing value of their kx vector. The encircled

area in (a) is shown enlarged and it emphasizes the deformation of the first

conduction band and the opening of new modes n1 and n2.

modes from both bands to coexist in the constriction region (for a certain

range of Uc and EF values), as well as new modes to open up (see the zoomed

area in Fig. 4.3(a)).

Results for the anti-zigzag ribbon (Fig. 4.3(b)) are almost identical to the

previous, which is expected, since the two ribbons differ in width only by

a single line of carbon atoms. In the semiconducting and metallic armchair

ribbons all bands move in energy as a linear function of Uc. Beside this, there

is a shift of the band minima in kx for the metallic ribbon.
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Figure 4.4: Conductance (thick black curves) as a function of the side gate

potential at EF = 0.3 eV for the zigzag (a), the anti-zigzag (b), the semicon-

ducting armchair (c), and the metallic armchair (d) ribbon. Colored curves

show the transmission probabilities of individual modes, and they are ver-

tically displaced by ∆T = 3 for clarity. The legend in (a) indicates which

line color corresponds to which incoming mode (the modes are numbered

in Fig. 4.3(a)). Gray areas in (a) and (b) mark Uc values for which modes

from both conduction and valence bands coexist in the constriction region.

This is illustrated schematically in insets of (b), which show the dispersion

in the constriction for different side gate potentials. The band bending is

exaggerated for better view.

4.4 Transmission of individual modes

We calculate the conductance of these ribbons using the Landauer formula

G(E) =
2e2

h
T (E). (4.5)

The transmission functions T (E) are obtained using KWANT [27], directly as

is implemented in the software package. The conductance of the four ribbons

as a function of the side gate potential is presented in Fig. 4.4. Next to the

total conductance, we separately plotted the transmission probability of each

individual incoming mode. These probabilities are obtained by summation

of the squared amplitudes in the transmission part of the scattering matrix

related to a specific mode.

Results for the zigzag ribbon (Fig. 4.4(a)) exhibit an array of transmission

and reflection peaks. They appear when Uc goes above the Fermi energy (0.3

eV), when states from the valence band open in the constriction region (see

the insets in Fig. 4.4(b) for the dispersion in the constriction), and pn inter-
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faces start to form near the edges. It is relevant to know that a pn interface

near the edge can be a source of strong intervalley scattering [60], responsible

for the valley valve effect [61]. All reflection peaks originate from the first

incoming mode, while peaks in the transmission relate to electrons in the

second and the third mode. These abrupt changes of the conductance ap-

pear whenever a combination of E and Uc matches one of the resonant states

as described in Ref. [55], and demonstrated below. The zero-conductance

resonances occur when Uc goes above the electron energy but, due to band

deformation, the first incoming mode is still open in the constriction region

(gray area in Fig. 4.4(a)). In this regime the electrons in the first mode are

transmitted normally (not changing modes) unless they hit a resonant state

in which case they undergo a backward intervalley scattering. Behaviour of

electrons in the other two modes (2nd and 3rd) is different. They have identi-

cal transmissions, and the sum of conductance peaks coming from these two

modes equals one conductance quantum, which could be explained if they

both scatter into a single open n2 mode in the constriction.

For the anti-zigzag ribbon (Fig. 4.4(b)), which exhibits forward intervalley

scattering of electrons in the first mode [60], results significantly differ. The

ribbon is conductive even for high side gate potentials, because electrons in

the first mode are almost fully transmitted. Although the overall conductance

does not show any resonant reflection peaks, peaks are visible in transmission

of electrons in the first mode. The complementary reflection and transmission

peaks coming from the first and the third mode suggest that these two now

scatter into the available n2 state in the constriction. On the other hand,

electrons in the second mode show only small transmission peaks, and only

when state n1 is open.

The ratio of backward and forward intervalley scattering determines how

modes reorganise in the constriction region, because incoming modes compete

to populate a small number of states available in the constriction. When

electrons in the first mode scatter backward, the electrons in the second

mode are transmitted (Fig. 4.4(a)), and when electrons in the first mode

scatter forward, the ones in the second mode are blocked (Fig. 4.4(b)).

At higher potentials, conductance peaks also appear in the armchair rib-

bons. In the semiconducting ribbon, all modes transmit at specific side

potentials. In the metallic ribbon the electrons in the first mode are fully

conducting, while peaks originate from the electrons in higher subbands.

There are two possible explanations for these peaks. They occur every time

a new mode opens in the constriction, or every time there is an eigenstate in
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a closed system. Below we demonstrate that similarly to the zigzag ribbons,

the latter is the case.

4.5 Mirror symmetry and intervalley scatter-

ing

Figure 4.5 shows colormaps of the conductance versus the Fermi energy

and the side gate potential. In ribbons with zigzag edges the conductance

plateaus are unaffected by the gate potential for negative energies, and in

armchair ribbons they are weakly affected (not shown). For all four rib-

bons the results are asymmetric with respect to changing sign of Uc (not

shown), i.e. G(E,−Uc) = G(−E,Uc). Similar results were obtained in the

experiments of Ref. [50] (see Fig. 4(b) in this reference).

In order to explain these data in terms of the number of occupied modes

inside the constriction, we plotted the minimal (maximal) energies of the

electron (hole) bands on top of the conductance colormap. These energies

are obtained from the dispersion relations of infinite ribbons with transversal

potential profile equal to the one in the center of the constriction.

In general, the conductance plateaus of all four ribbons follow the extreme

energies of electron and hole bands, most of which behave as a linear function

of Uc. Particularly interesting are the zigzag ribbons, where due to previously

described band bending the maximal energy of the highest hole band goes

above the minimal energy of the lowest electron band. In this specific regime

(area in Fig. 4.5(a) bounded by the highest green and the lowest blue line

and marked with I) states from both bands coexist in the constriction region,

and also a new state (n1) opens up. This is the area where most of the peaks

appear. The main difference between the zigzag (Fig. 4.5(a)) and the anti-

zigzag (Fig. 4.5(b)) ribbon is seen in the area below the lowest blue line

(regions II and III), when no open electron states exist in the constriction.

In area III in the zigzag ribbon the electron transport is completely blocked,

since there is only one incoming mode in the input lead, while in area II (when

the second and the third mode open in the input lead) positive conductance

peaks appear. This is consistent with previous results in Fig. 4.4(a) where the

positive conductance peaks originated from the second and the third mode.

The anti-zigzag ribbon is completely conducting in this region (II and III),

due to the forward intervalley scattering.

The main difference between the zigzag and the anti-zigzag case origi-
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Figure 4.5: The conductance as a function of the Fermi energy and the side

gate potential Uc for zigzag (a), anti-zigzag (b), semiconducting armchair (c),

and metallic armchair (d) ribbon. The blue (green) lines mark the minimal

(maximal) energies of the electron (hole) bands. The white boxes highlight

the areas with resonance peaks where a comparison with the eigenstates is

made.

nate from the valley-valve effect [61]. In Ref. [62], the valley-valve effect

was interpreted in terms of the honeycomb topology and crystal structure

symmetry. The perfect electron reflection in zigzag ribbons with pn junc-

tion was explained using the parity of the wave function under the mirror

reflections with respect to the central line of the ribbon. This study treated

a special case of a potential step, where the potential across the ribbon (the

y direction) is constant. On the other hand, the potential in our system
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Figure 4.6: Conductance of the zigzag ribbon (ny = 46) for different mis-

alignments between the side gates: (a) ∆x = 0, (b) ∆x = lc/2, (c) ∆x = lc
and (d) ∆x = 3lc/2, where lc is the graphene lattice constant.

is not constant, but posses a mirror symmetry with respect to the central

line of the ribbon. Since we still observe valley-valve effect, we predict that

results of Ref. [62] could probably be extended to a case of potential with

mirror symmetry, where instead of constant potential condition (Vmj = Vm),

a more general condition of mirror symmetry (Vmj = Vm(2Nz+j−1)) could be

used. Note that this does not imply that all symmetric potentials will cause

a perfect reflection, just the ones creating a pn junction.

Conductance in the armchair ribbons (Figs. 4.5(c) and 4.5(d)) also ex-

hibits abrupt changes. These peaks do not coincide with new modes opening

in the constriction. This leads us to search for different explanation of their

origin.

The two studied zigzag ribbons are just two extreme cases of intervalley
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Figure 4.7: Conductance (thick black lines) thought the zigzag ribbon as

a function of the side gate potential for ∆x = 0.5lc (a) and ∆x = lc (b).

The Fermi energy is 0.3 eV. Similarly to Fig. 4.4, transmissions of individual

modes are displaced by ∆T = 2.

scattering according to Ref. [60]. Here we show that by introducing a small

misalignment between the side gates (which tunes the ratio of forward and

backward intervalley scattering) the results for the zigzag ribbon can be con-

tinuously changed to resemble the ones for the anti-zigzag ribbon. The ratio

of backward and forward intervalley scattering can be tuned by changing the

misalignment between the two side gates (∆x). Results for the zigzag ribbon

for different misalignments are presented in Fig. 4.6. With increasing ∆x,

the conductance map of the zigzag ribbon starts to resemble the one of the

anti-zigzag ribbon shown in Fig. 4.5(b). At first, narrow conductance peaks

appear, and as the forward scattering rises they broaden until the ribbon

becomes fully conductive in the low energy region. These results, and that

of Ref. [60] point out that beside the purity of the nanoribbon, one of the

main prerequisites for observation of the valley-valve effect in experiments

is a good control of the ribbon gating. Perfect electron reflection or perfect

transmission can be observed in both ribbon types, zigzag and anti-zigzag,

depending on the gate misalignment. Therefore control of the misalignment

between the side-gates or in other words, between the p-n interfaces on the

opposite ribbon edges, is of crucial importance for experimental observation

of this effect.
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Behaviour of individual modes with changing ∆x is presented in Fig. 4.7.

The abrupt positive conductance peaks in Fig. 4.7(a) are very similar to

the ones in Fig. 4.4(a), but now they all originate from the first mode, and

not from the second and the third mode. Change of the ratio of intervalley

scattering has led to recomposition of scatterings inside the constriction,

blocking the second and the third mode in favor of the first mode.

4.6 Fano resonances

Previously it was pointed out [55] that sudden changes in the conductance of

the zigzag ribbons are Fano resonances [63]. To confirm this, and to extend

it to the armchair ribbons, we plotted the eigenenergies of a closed system (a

ribbon detached from the leads) on top of the conductance data in Fig. 4.8.

We focus on a narrow range of E and Uc values as indicated by the white

rectangles in Fig. 4.5. A closed system is defined by the two new lateral

edges along the y direction. In the zigzag and anti-zigzag ribbons these new

edges are of the armchair type, while in the armchair ribbons they are of the

zigzag type.

The sudden changes in the conductance follow closely the eigenlevels of

a closed system. In all four ribbons the eigenlevels go along and switch

between two groups of lines. The first group appears not to depend on the

gate potential and spans over the whole range of Fig. 4.5 (not shown). The

second group is linearly dependent on Uc. Differences between these two

groups of eigenlevels are best seen if we look at their corresponding wave

functions. The probability densities of the four states labeled in Fig. 4.8

(Ψi, i=1, 2, 3, 4) are shown in Fig. 4.9. Because of the similarity of results

for ribbons with the same edge type (for example between the zigzag and

the anti-zigzag ribbon) we showed results only for two ribbons with different

edges.

States Ψ2 and Ψ4 are from the first group of states (not dependent on

Uc) and they occur because of the quantization along the x and y direction

due to the final dimensions of a closed system. These states appear even

when there is no side gate potential. For a finite potential their probability

distributions are pushed toward the lateral edges, leaving a low probability

region in the center of the constriction. States Ψ1 and Ψ3, from the second

group, occur because of the quantization due to the final dimensions of the

high potential regions. Their eigenenergies are always lower than Uc, and
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Figure 4.8: Comparison between the conductance of an open system and the

eigenenergies (black lines) of a closed system (a ribbon detached from the

leads) for the zigzag (a), the anti-zigzag (b), the semiconducting armchair

(c), and the metallic armchair (d) ribbon. E and Uc run over the ranges

bounded by the white rectangles in Fig. 4.5.

they are localized in areas where U(x, y) goes above their eigenenergy. In

the zigzag ribbon the |Ψ1|2 peaks on the p-n interfaces near the edges, with

the wave function peaks of each sublattice associated with one of the edges.

The length of a closed system is set to 45 nm, which leaves some dangling

atoms on the new lateral edges, particularly in the armchair ribbons. These

atoms affect our results, but do not alter the states from the second group.

Because these states are localized in the high potential regions, they do not

significantly depend on the boundary conditions on the new lateral edges

(along the y direction), or for example the length of the ribbon.

It has been shown [64, 65] that considering only the nearest neighbour

interaction in graphene quantum dots and zigzag ribbons can lead to unphys-

ical effects which vanish when next-nearest neighbor hoppings are added.

To make a numerical verification that this is not crucial in a situation with
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Figure 4.9: The probability density of the eigenstates Ψi (i=1, 2, 3, 4) from

Fig. 4.8. The white lines are equipotential lines for which U(x, y) is equal to

the eigenstate energy.

nonuniform onsite potential, we include the next-nearest neighbour hoppings

(t′=0.1t) and repeat the calculations from Fig. 4.8. Results are presented in

Fig. 4.10. In general, the inclusion of next-nearest neighbour hoppings shifts

the dispersion relations in energy for approximately ∼ 0.8 eV and the disper-

sionless edge states in zigzag ribbons become dispersed. Beside the change

of energy scale, the qualitative features of Fig. 4.8 remain unchanged when

next-nearest neighbour interaction is included. The only difference that we

noticed is the reduction of number of anti-resonances in the zigzag ribbon,

We now observe just one of two anti-resonances, and they do not show a

total reflection, meaning that G does not reach zero at anti-resonance point.

One possibility is that narrow anti-resonances are smeared out due to this
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Figure 4.10: Comparison between the conductance of an open system and

the eigenenergies (black lines) of a closed system (with next-nearest neighbor

interaction included, t′ = 0.1t) for the zigzag (a), the anti-zigzag (b), the

semiconducting armchair (c), and the metallic armchair (d) ribbon.

partial reflection, the other is that they are very narrow, beyond the current

resolution of our calculations.

The presented match between the conductance peaks and the positions of

the eigenlevels indicate that these peaks originate from the Fano resonances.

To test this further we fitted some of them with the normalized Fano curve

f(ǫ) =
1

1 + q2
(ǫ+ q)2

1 + ǫ2
, ǫ = (E − E0)/Γ, (4.6)

to obtain E0 (the peak position), Γ (the width of the resonance), and q (the

shape parameter). The fitted curves are shown in Fig. 4.11. Although all the

peaks in Fig. 4.11 look symmetric, they actually exhibit a small asymmetry
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Figure 4.11: Fano resonances: comparison between the numerical results

obtained by KWANT (dots) and lines fitted by the normalized expression

for the Fano resonance. (a) The sum of transmissions of the second and the

third mode for the zigzag ribbon Uc=0.3 eV. (b) The transmission of the

first mode for the zigzag ribbon Uc=0.3 eV. (c) The transmission of the first

mode for the semiconducting armchair ribbon Uc=0.45 eV. (d) The sum of

transmissions of the second and the third mode for the metallic armchair

ribbon Uc=0.9 eV.

which is best fitted by a Fano line shape, as is clearly apparent from the

figure.

4.7 LDOS and the electrical current

Previous resonances are also characterized by a specific behaviour seen in the

local density of states (Fig. 4.12) and the electron current (Fig. 4.13).

The fact that most of the electron transport in ribbons with zigzag edges

in the low energy regime is a consequence of intervalley scattering [60] can be

seen in Figs. 4.12(a) and (b). The kinetic energy of the edge states decreases

as they propagate through the constriction, and they are pushed closer to the

edge of the ribbon, creating peaks in the LDOS at the p-n interfaces. Peaks

on the two sublattices appear on the opposite edges, similarly to peaks in

the wave functions of the eigenstates.
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Figure 4.12: LDOS at E = 300meV for the zigzag ribbon at Uc = 737meV

(a), the anti-zigzag ribbon at Uc = 750meV (b), the metallic armchair ribbon

at Uc = 1084meV (c), and the semiconducting armchair ribbon at Uc =

1276meV (d). The white lines are equipotential lines for which U(x, y) = E.

In armchair ribbons the LDOS starts decreasing in the areas of applied

gate potential as Uc rises from zero to EF . When Uc goes above the Fermi en-

ergy, a high local density of states appears in the gate potential regions. Very

high densities occur at conductance peaks, resembling the wave functions in

a closed system.

Since KWANT does not provide a direct procedure to obtain the electron

current, we calculated current on the i-th atom using

ji(E) =
4e

h

∑

n

3
∑

j=1

Im
[

Ψn∗
i (E)HijΨ

n
j (E)

]

dij , (4.7)

70 4. FANO RESONANCES



4.7. LDOS and the electrical current

Figure 4.13: The relative current density at E = 300meV for the same

parameters as in Fig. 4.12.

where Hij is the Hamiltonian element between i-th and j-th atoms, Ψn
i is

the wave function of the n-th incoming mode on the i-th atom, and dij is

a unit vector between the two neighbouring atoms. In order to present all

results in one graph (Fig 4.13), we scaled the current intensities relative to

the maximal current in the system |jmax|.
The current behaviour in the zigzag ribbon, near one of the conductance

peaks, is shown in Fig. 4.13(a) and in the anti-zigzag ribbon in 4.13(b). In

both these ribbons, the current in the constriction experiences a uniform flow

in the x direction. Current in the zigzag ribbon shows no change in direction

when Uc goes from one side of the conductance peak to the other.

In armchair ribbons, when there is no gate potential, the current near

the edges flows only along certain separate horizontal lines of carbon atoms.
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Further away from the edges these lines mix, meaning that the current flows

between them. Similar results were reported in Ref. [66] where it was shown

that the current flow along these streamlines depends on the ribbon width,

and these streamlines are used to explain how the sensitivity of the ribbon

conductance depends on a transverse position of a single adsorbate. Our

results point out additionally that when exposed to the side gate poten-

tial, these streamlines mix at the beginning of the constriction, with most

of the current tending to flow near the edges in the high potential regions

(Figs. 4.13(c) and 4.13(d)).
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(Å

)

x (Å)
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Figure 4.14: The current in the zigzag ribbon at E = 0.3 eV for (a) Uc =

Umin − ∆u before the zero-conductance dip, and (b) Uc = Umin + ∆u after

the zero-conductance dip (Umin = 374.82meV, ∆u = 0.15meV). For clarity,

results are averaged and presented on a square mesh.

Another transport property is different behaviour of the electrical cur-

rent in the zigzag ribbon near the positive conductance peaks as compared

to the behaviour near the zero-conductance dips. The current near one of

the zero-conductance dips is shown in Fig. 4.14. It is characterized by the

occurrence of two vortices (one in the upper and one in the lower half of

the ribbon) rotating in the opposite directions. When Uc crosses the zero-

conductance potential, the spinning direction of these vortices changes. As

Uc approaches closely the anti-resonance potential, the current inside the
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constriction starts flowing in a closed loop, and it’s intensity starts decreas-

ing, reaching almost zero at the anti-resonance minimum. This is similar to

Kekulé like currents reported in bearded ribbons and ribbon junctions. [53,

54] According to these references, the anti-resonances are interpreted as su-

perpositions of two states mutually connected by time reversal operation.

Breaking of the time reversal symmetry (for example, by introduction of ex-

ternal magnetic field) eliminates these dips and smooths out the conductance.

Including the next-nearest neighbor interaction in calculations does not lead

to qualitative change in the current patterns, except for the anti-resonance

points. As we noted previously, including the next-nearest neighbor inter-

action reduces the number of anti-resonances. Change in the current flow

direction at anti-resonance points still occurs, but it is less pronounced then

in the case without additional hopping terms, meaning that narrow current

vortices appear close to the edges.
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Figure 4.15: Conductance through the zigzag ribbon as a function of the side

gate potential for different number (n) of randomly removed carbon atoms.

The Fermi energy is E = 300meV. For clarity, results for different n-s are

moved vertically by ∆T = 2.
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4.8 Fano resonances in GNR: Conclusion

Before stating our conclusions, we make few notes regarding actual exper-

iments [50, 51]. Although ideal armchair nanoribbons can be produced by

bottom-up approach [52], and production of ideal zigzag ribbons could be

possibly achieved in the near future using different precursors, the experi-

ments up to now deal with disordered ribbons. The presence of bulk and

edge disorder suppresses electron transport, and leads to localisation. In

contrast to this, our system is in different (ballistic) regime where interfer-

ence effects are seen more clearly. Here we investigate the effects of a special

type of disorder, a random distribution of vacancies, on our results (a more

detailed study of vacancy effects in graphene in high magnetic fields is given

in the following chapter). Figure 4.15 shows how conductance of the zigzag

ribbon presented in Fig. 4.4(a) changes when we randomly remove n carbon

atoms. For the reference, the whole ribbon contains approximately ∼ 19000

atoms. Conductance is considerably suppressed with increase in the num-

ber of random vacancies. Notice that some of the resonance peaks (for Uc

approximately above 0.5 eV) remain unaffected for small number of vacan-

cies. New resonant peaks also appear due to change in the ribbon structure.

These results suggest that our findings could be still applicable in the limit-

ing case of very low level of disorder created by the vacancies, where just few

carbon atoms are removed from the graphene lattice, with addition of new

resonances originating from these vacancies.

To conclude, in this chapter we investigated electron transport in four

types of graphene nanoribbons with potential constriction created by two side

gates. In zigzag ribbons, the application of side gate potential deforms of the

lowest conduction band, which allows for modes from both conduction and

valence bands to coexist in the constriction region. The change in the ratio

of backward and forward intervalley scattering, introduced through the side

gate misalignment, leads to a reorganisation of modes that are transmitted

through ribbons with zigzag edges. The reason is that in the low energy

regime, the individual modes compete to populate a small number of states

available in the constriction.

Transport in these narrow ribbons is characterized by abrupt changes in

the conductance, which occur whenever there is an eigenstate in a closed

system. These resonances have a specific signature in their current patterns

and the LDOS. In zigzag ribbons, LDOS peaks at the pn interfaces near the

edges, while in the armchair ribbons it is concentrated in the high potential
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areas, resembling the bound states in a closed system. In zigzag ribbons

the current is suppressed at the zero-conductance anti-resonances, flowing

along vortices and changing the flow direction as the system goes through

the anti-resonance dip. On the other hand, at positive conductance peaks,

the current flows uniformly across the whole constriction. In the armchair

ribbons there is a mixing of individual horizontal current streamlines at the

beginning of the constriction, and the current inside the constriction tends

to flow along high potential areas, near the edges of a ribbon.
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CHAPTER 5

Vacancy disorder in graphene Hall bars

5.1 Introduction

At the end of the previous chapter we briefly touched upon the subject of

disorder in graphene. The disorder was introduced in the form of carbon

atom vacancies. In this chapter∗ we will further investigate effects of va-

cancy disorder, but in the quantum Hall regime, when graphene sheets are

exposed to quantizing external magnetic fields. Ever since its discovery [47],

graphene generated new interest in the quantum Hall effects governed by rel-

ativistic particles. Quantum Hall resistance plateaus different from those of

a classical 2DEG were observed in graphene [67, 68]. A comparison between

experimentally measured quantized resistances in a classical 2DEG and in

graphene is presented in Fig. 5.1. Later experiments reported new, more

detailed features such as the splitting of the zeroth Landau level (LL) due to

breaking of the valley and spin degeneracies [69, 70].

Disorder in experimentally available honeycomb graphene lattices is in-

evitable, whether it is structural like reconstructed and non-reconstructed

vacancies, substituted carbon atoms, or it originates from charged impurities

such as adatoms. Therefore disorder in graphene is a very active area of

∗Results presented in this chapter are based on our publication: M. D. Petrović,

F. M. Peeters, Quantum transport in graphene Hall bars: Effects of vacancy disorder,

Physical Review B 94, 235413 (2016).
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(a)(a) (b)

Figure 5.1: Comparison between experimentally measured quantization

in the Hall resistance for (a) semiconductor heterostructure (b) graphene.

Quantization in graphene is different due to its valley degrees of freedom.

Figures are take from Refs. [71] and [72], respectively.

research, both experimentally in devising ways to characterize it [73], and

theoretically in studying its influence on electron transport [74, 75], with

even possible applications in future spintronic devices [76]. Carbon atom

vacancies can be introduced in graphene by ion irradiation. An STM image

of monovacancies on the surface of graphite is shown in Fig. 5.2 (the figure

is taken from Ref. [73]). Due to the relativistic nature of its charge carriers,

disordered graphene offers a tabletop environment for the study of previously

experimentally inaccessible phenomena, such as the atomic collapse reported

recently in charged vacancies in graphene [77]. Vacancy disorder in case of

a zero external magnetic field was extensively studied in Refs. [78, 79, 80],

where new states localized around missing carbon atoms were reported. Ef-

fects of vacancies in the quantum Hall regime were studied in Refs. [81, 82],

which reported on the occurrence of a zero-resistance quantum Hall plateau,

and breaking of the Landau level degeneracy. Graphene with on-site poten-

tial disorder was also used in Ref. [83] to test a new numerical approach to

calculate the Kubo conductivities.

In this chapter we simulate the transport of electrons in a Hall bar made

from a single layer of graphene. Our main goal is to study the influence of

various types of vacancy disorder on the electron transport in the quantum
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(a)

(b)

Figure 5.2: (a) Single atom vacancies imaged using STM on an irradiated

surface of graphite. (b) a 3D image of a single monovacancy. Both insets are

taken from Ref. [73].

Hall regime. We report that vacancy disorder can cause the appearance of

new states in the Landau spectrum, which are observable in the bend resis-

tance as well as in the total density of states (DOS) and in the distributions

of eigenenergies in a closed system (a system detached from the leads). For

monovacancies the energies of these new states scale as the square root of

the magnetic field, similarly to the energies of relativistic Landau levels, but

with a different scaling coefficient. The local density of states (LDOS) re-

veals a strong localization around the monovacancy sites, with localization

length proportional to the cyclotron radius. The localization on divacancies

is somewhat different: their localization energy scales linearly with the mag-

netic field, while their localization radius appears to be constant. We further

study how the electron current flows in the presence of vacancies, and what

are the effects of the next nearest neighbor interaction (NNN).

The rest of this chapter is organized as follows: In Sec. 5.2 we describe

our system and methods used to obtain our results. The graphene tight-

binding Hamiltonian was already introduced in previous chapters, but here

we additionally implement magnetic field in graphene through Peierls phase

factor, and we also use the specific four-terminal formula derived by Büttiker,

which is a special case of the more general N -terminal formula introduced in

the previous chapters. In order to focus on specific aspects of the problem,
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Figure 5.3: Graphene Hall bar system (left), and three studied disorder

types (right). Widths of the horizontal and vertical leads are set to wh =

49.71 nm, and wv = 49.94 nm, respectively, while lengths of the horizontal

and vertical arms (lv and lh) are equal, and set to 50 nm. Before disorder is

introduced, all edges are considered to be clean, meaning that there are no

dangling bonds on them.

ranging from vacancy concentration to NNN hopping, we discuss our results

(Sec. 5.3) in several subsections (from 5.3.1 to 5.3.5). All these insights are

combined and summarized at the end of this chapter, in the last (concluding)

section (Sec. 5.4).

5.2 System and Methods

The studied system is shown in Fig. 5.3, it is a graphene Hall bar with

zigzag edges along the horizontal leads, and armchair edges along the vertical

leads. The width of the vertical, armchair, arms (wv) is chosen so that the

corresponding leads are metallic, meaning that there is no gap around zero

energy.

We introduce vacancy disorder in this system by randomly removing car-

bon atoms from the graphene lattice. Three different disorder types are

studied, as shown in the right insets in Fig. 5.3. The first is a single va-

cancy/single sublattice disorder (SVA). Here, we randomly remove carbon
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atoms only from one sublattice (e.g. sublattice A). The second type is ordi-

nary single vacancy disorder (SV), where carbon atoms are removed without

any respect to the sublattice to which they belong. The third type is a dou-

ble vacancy disorder (DV), where only pairs of neighbouring atoms, each

belonging to a different sublattice, are removed. It is known that single va-

cancies (or monovacancies) break the sublattice symmetry, while divacancies

preserve it. Here we choose two types of monovacancy distributions, since

one (SV) should preserve the sublattice symmetry on the average, while the

other (SVA) is the extreme case of sublattice symmetry breaking.

When discussing the effects of vacancy disorder it is important to inves-

tigate the general effects introduced by disorder and to separate them from

effects that occur only for some specific disorder distributions. Therefore we

will present two types of results. In order to capture the general disorder

effects, for each disorder type and concentration, we perform calculations

over a sample of N = 10 different vacancy distributions. Results for specific

distributions Ri (i = 1, 2, . . . , 10) are then averaged R̄ =
∑N

i=1Ri/N (we

mark the averaged quantities with a bar line on top). On the other hand,

in order to better understand the origin of these effects, we often analyze

results for some specific distribution, or compare results of several different

distributions.

As in the previous chapter, for our numerical calculations we use KWANT.27

The graphene tight-binding model Hamiltonian

Ĥ =
∑

〈i,j〉

(t̃ij ĉ
†
i ĉj +H.c.) +

∑

〈〈i,k〉〉

(

t̃′ikĉ
†
i ĉk +H.c.

)

(5.1)

is now slightly different than that presented in Chapter 4. Operators ĉ†i (ĉi)

still create (annihilate) a pz electron on the i-th carbon atom, but no external

electric potential is included, except that of the back gate which controls the

Fermi energy. The hopping terms t̃ij = teiϕij and t̃′ik = t′eiϕik are defined

using the electron nearest neighbor hopping energy t = −2.7 eV, the NNN

hopping term t′, and the Peierls phase factor ϕij (which we discuss below).

Although most of our results deal only with nearest neighbor interaction

(t′ = 0), in the last subsection of the next part (5.3.5) we comment on the

effects of a nonzero NNN term.

Defining a magnetic field in a multi-lead system, where some leads point

in different directions, is a problem that needs to be carefully considered. The

vector potential along the leads needs to be translatory invariant in order to

simulate each lead as a semi-infinite system. Following this condition, we
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set the vector potential in horizontal leads using the Landau gauge AH =

−Byex, and that in vertical leads as AV = Bxey. To connect these two, the

gauge in the main region is set to change smoothly from AH to AV in the

upper and lower arms of the cross. This is achieved by using an additional

scalar function f(x, y) which rotates the vector potential A′ = A + ∇f

locally, without changing the orientation and strength of the magnetic field.

This scalar function is defined in Ref. [84] as

f(x, y) = Bxy sin2θ +
1

4
B
(

x2 − y2
)

sin 2θ, (5.2)

where θ is the angle of rotation. In order to apply f(x, y) only in a spe-

cific subregion of the cross, we multiply it with a smooth step function

ξi(y) =
1
2
[1 + tanh(2(y − y0)/d)], which is nonzero only very close to one

of the vertical leads (here the index i specifies the lead number). Previous

expression defines y0 as a crossover position, where ξi(y0) = 1
2
, and d as a

width of the crossover region, where ξi smoothly goes from 0 to 1. For our

numerical calculations we used d = lv/5 = 10 nm. Based on this, we can

define a rotation function for the second lead

F2(x, y) = f(x, y)ξ2(y)

=
1

2
Bxy

[

1 + tanh

(

2
y − yu
d

)]

, (5.3)

and similarly for the fourth lead

F4(x, y) = f(x, y)ξ4(y)

=
1

2
Bxy

[

1 + tanh

(

2
yd − y

d

)]

. (5.4)

In both cases θ is set to π/2 (since neighboring leads are perpendicular to

each other), and yu = −yd = (lv +wh)/2. We also define the sum of the two

rotation functions as F = F2 + F4.

In order to check that the modified vector potential A′(x, y) = A(x, y) +

∇F (x, y) is properly defined, this function is presented in Fig. 5.4. The

AH gauge oriented in the x direction in the horizontal part of the cross

transforms smoothly to a y oriented gauge AV in the vertical part of the

cross, thus confirming the correctness of A′.

Note that functions ξ2 and ξ4 are chosen because they are smooth, thus

guaranteeing the smoothness of the vector potential. But in a tight-binding

system, due to its discreteness, and the constant distance between the atoms,
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Figure 5.4: Modified vector potential A′(x, y): arrows show the direction

of A′(x, y), and their color represents its intensity. System shape is marked

by the gray area. The derivation of the vector potential is presented in

Appendix B.

this is not a necessary condition. The discontinuous Heaviside step function

could also be used instead. We tested this by changing the width d from

a value used in all our calculations (d = lv/5), to values well below the

carbon-carbon distance (equivalent to a discontinuous step function), with

no observable changes in the final results.

The Peierls phase factor between sites i and j for the modified vector

potential is

ϕij =
e

h̄

∫ ri

rj

(AH +∇F ) · dr

=
e

h̄

∫ ri

rj

AH · dr +
e

h̄
(Fi − Fj)

= ϕL
ij + Φi − Φj, (5.5)

where ϕL
ij is the Peierls phase factor for the translatory invariant Landau
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gauge in the x direction

ϕL
ij = − e

h̄
B
(yi + yj)

2
(xi − xj) , (5.6)

as is also explained in Ref. [85]. Note that ϕL
ij does not depend on the x

coordinates, since differences xi − xj are constant.

Resistances in this four-terminal device are obtained using the Landauer-

Büttiker formula [86, 87, 28]

Rmn,kl =
h

2e2
(TkmTln − TknTlm) /D, (5.7)

where Rmn,kl is a resistance measured when the current is injected from lead

m and collected at lead n, and the voltage is measured between leads k and

l. Tij is the transmission function between the corresponding leads, while

parameter D is defined as

D = (α11α22 − α12α21)S, (5.8)

where

α11 = (T21 + T31 + T41)−
(T14 + T12)(T41 + T21)/S, (5.9)

α22 = (T12 + T32 + T42)−
(T21 + T23)(T12 + T32)/S, (5.10)

α12 = (T12T34 − T14T32)/S, (5.11)

α21 = (T21T43 − T41T23)/S, (5.12)

with

S = T12 + T14 + T32 + T34. (5.13)

The previous resistance formula (Eq. 5.7) defines six different resistances,

and when used with transmission functions at a specific Fermi energy Tij(EF )

it provides resistances for the zero temperature case. To obtain the re-

sistances at a nonzero temperature, the previously calculated transmission

functions need to be additionally convoluted in energy

T ′ij(EF , T ) =

∫ ∞

−∞

Tij(E
′)FT (E

′ − EF )dE
′, (5.14)

where the convolution function [4]

FT (E, T ) =
1

4kBT
sech2

(

E − EF

2kBT

)

, (5.15)
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is the temperature dependent negative derivative FT (E) = −∂f/∂E of the

Fermi-Dirac distribution

f(E) =
1

exp[(E − EF )/kBT ] + 1
. (5.16)

Since vacancy disorder introduces a considerable amount of noise in all calcu-

lated quantities, in some cases we perform temperature smoothing by setting

T = 16 K, the temperature is considered to be zero otherwise. In case of the

averaged results, the temperature smoothing is always performed before the

averaging.

5.3 Results

5.3.1 Effects of different disorder types

Here we discuss the general transport effects of the three disorder types,

observable in the Hall (RH = R13,42), and the bend (RB = R12,43) resistances.

Note that actual Hall measurements are usually performed on devices with

six or more terminals, with current and voltage probes usually set on different

terminals. That is why we focus here on the bend resistance RB, and not on

R13,13, since RB should be closer to experimentally measured Rxx.

It is widely known [14] that the Hall resistance in graphene exhibits quan-

tized plateaus

RH =

(

h

2e2

)

1

1 + 2n
, n = 0,±1, . . . (5.17)

between the energies of the Landau levels

En = sgn(n)
√

2eBv2F h̄|n|, (5.18)

where n is the Landau level number, and vF is the Fermi velocity (vF =

3|t|a/2h̄ ≈ 106 m/s, with parameter a = 1.42 Å being the carbon-carbon

distance). At the steps in the Hall resistance, the longitudinal resistance

exhibits peaks. Beside these expected features, our results for a disordered

system (presented in Fig. 5.5) show some additional features. Disorder type

and concentration are shown in every subplot of Fig. 5.5, in the lower-left

corner. Results for the bend resistance depend strongly on the vacancy con-

centration, therefore we scale R̄B by multiplying it with a scaling coefficient.

This scaling is done in order to present all results in the same range. A scaling

coefficient is presented in every subplot, above the vacancy concentration.
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Figure 5.5: Average Hall (R̄H = R̄13,42, red curves) and bend (R̄B = R̄12,43,

blue curves) resistances for various types and concentrations of vacancy dis-

order. Thin gray vertical lines mark the energy of Landau levels given by

Eq. (5.18) for B = 20 T, while black vertical lines mark the position of the

new peaks at E = ±33.9 meV. The temperature is 16K.

Monovacancy disorders (SV and SVA) induce two new peaks in the bend

resistance, around E = ±33.9 meV. These peaks do not agree with the an-

alytic formula for Landau levels given by Eq. (5.18). In contrast, peaks

induced by double vacancies (DV) appear to agree with Eq. (5.18) (i.e. they

correspond to the expected Landau levels, broadened by temperature and va-

cancy scattering). Each row in Fig. 5.5 presents data for one type of vacancy

disorder, for two different concentrations. For each vacancy type, the increase

in vacancy concentration leads to an increase in RB, which can be seen in a

decreasing scaling coefficient (given in the insets of the figure). The higher

the vacancy concentration the larger the bend resistance, and consequently

the smaller the scaling coefficient. For higher concentrations (Figs. 5.5(b)

and (d)), two peaks in R̄B are not well defined, and R̄H also slightly devi-

ates from the expected Hall plateaus. Although we discuss the effects of a

vacancy concentration further below, it is important to state that new peaks

86 5. VACANCY DISORDER



5.3. Results

in R̄B occur only in a certain range of concentrations, and that above some

critical concentration, these peaks broaden and merge. This critical concen-

tration depends on the ratio of the average vacancy-vacancy distance and

the magnetic length. It also depends on the type of monovacancy disorder,

since for SVA disorder, the two peaks disappear for smaller concentrations

(0.01% in Fig. 5.5(b)) as compared to SV disorder (0.02% in Fig. 5.5(d)).

Another interesting feature is the negative bend resistance in Fig. 5.5(b).

As explained in Ref. [87] (page 321, below Eq. 13 in that reference), and

in Ref. [28] (section 3.4.4.2 in that reference), Büttiker formula for a four

terminal device can produce negative non-local resistances. This is usually

the case when the second term in the numerator of Eq. (5.7) is larger than

the first term. We obtain negative RB peaks for almost all concentrations,

but for low concentrations they do not appear often (because the scattering

is weak), and are not very pronounced (they usually disappear after temper-

ature smearing). In general, if the number of vacancies exceeds the critical

value, vacancy scattering becomes too strong that no general features exist

in the low energy region. The bend resistance then strongly depends on a

particular vacancy distribution.

Another characteristic of the averaged resistance R̄B is that it is fairly

symmetric with respect to electrons and holes, whereas results for individual

distributions (used to calculate R̄B) are not. This means that in general a

random monovacancy distribution induces two new peaks in the bend re-

sistance, but the actual relative height of those two peaks depends on a

particular arrangement of vacancies. For some distributions there is only

one peak in RB, at positive or negative energy, and for some distributions

there are no peaks at all (a question which we address in subsection 5.3.4).

This asymmetry between electrons and holes is expected, since exchanging

electrons for holes is equivalent to flipping the magnetic field, which in turn

is equivalent to keeping the field fixed and flipping the system around the z

axis. A clean system is symmetric with respect to this transformation, but

a disordered system is not. After the flip the incoming electrons see a differ-

ent arrangement of vacancies. A vacancy distribution can be constructed to

be symmetric with this flip transformation, in which case all results would

also be electron-hole symmetric. This asymmetry between electrons and

holes occurs only for a fixed field orientation (RB(E,B) 6= RB(−E,B)), and

should not be confused with the case when both magnetic field and Fermi

energy change sign. Results for electrons and holes are then symmetric:

RB(E,B) = RB(−E,−B).
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Figure 5.6: Averaged DOS (black curves, arbitrary units) and distributions

of eigenenergies in a closed system (orange histograms in the background).

Red lines mark the positions of the two new peaks at E = ±33.9 meV, while

dotted lines mark the energies of Landau levels. Magnetic field is B = 20 T,

and T = 16 K.

Results for the averaged total density of states (DOS) and distributions

of eigenlevels in a closed system, presented in Fig. 5.6, are obtained for the

same set of vacancy distributions as in Fig. 5.5, and they exhibit similar

effects to those seen in the bend resistance in Fig. 5.5. For every vacancy

type and concentration, the DOS is first smoothed and then averaged over

N = 10 different vacancy samples. In case of the eigenenergies, results for

positive energies for N = 10 distributions are summed without smoothing or

averaging, and mirrored around E = 0 axis.

Monovacancy distributions induce two new broad peaks in the total DOS

(around E = ±33.9 meV, marked with red lines in Fig. 5.6), while double-

vacancy distributions appear only to broaden the DOS around the expected

Landau levels. We show below that the energy of these broadened peaks

(E = ±33.9 meV) corresponds to an energy of a monovacancy localized state.

Similar behaviour is seen in distributions of eigenlevels in a closed system (a
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Figure 5.7: (a) DOS for a single DV distribution (n = 0.01%, B = 14 T) (b)

LDOS for a single SVA distribution (n = 0.005%, B = 20 T) at the vacancy

localization energy (E = 33.9 meV). (d) LDOS for a single DV distribution

(n = 0.01%, B = 14 T) at the localization energy (E = 1.45 meV, marked

with red vertical line in (a)). (c) and (e) Zoom around particular vacancies

in (b) and (d). Vacancies are marked with green circles and green dots in

the center. Temperature is set to T = 0 K.

Hall bar detached from the leads). Usually, the eigenlevels of a closed system

in a high magnetic field tend to cluster around the energies of the Landau

levels. Here we plot histograms (orange areas in Fig. 5.6) showing how many

eigenlevels occupy a narrow energy range around each energy, and these plots

also show two distributions around E = ±33.9 meV.

According to Refs. [88, 81], divacancies in graphene should also induce

new states in the Landau spectrum. Our results for DV distributions appear

to contradict those of these two references. However, a higher resolution

DOS plot around the zeroth Landau level (shown in Fig. 5.7(a)) for one

particular DV distribution, reveals additional DOS peaks. These peaks are

positioned only few meV away from the LLs, and that is why they were not

well distinguishable from the LLs in the previous results. This suggests that

additional peaks coming from the divacancies would be harder to observe

experimentally, since they would be usually smeared by temperature.

Previous experiments on graphene in high magnetic fields [70] reported

splitting of the zero Landau level, which was attributed to the breaking of
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Figure 5.8: (a-d) LDOS for SV disorder type, for different vacancy con-

centrations: 0.001%, 0.005%, 0.01%, and 0.02%, and at different energies:

33.9 meV, 33.9 meV, 45 meV, and 52 meV, respectively. Vacancy positions

are marked with green circles. (e-h) DOS for SV disorder type, for the cor-

responding concentrations. Energies at which we calculated LDOS in (a-d),

are marked with red vertical lines in (e-h). Magnetic field is B = 20 T, and

T = 0 K.

the sublattice symmetry. One of the possible explanations of the new DOS

peaks is that they correspond to the occurrence of new states, localized in

areas close to the vacancies. The unsplit zeroth Landau level is still present

in the DOS of the whole device (for all disorder types), since it originates

from local density of states (LDOS) in areas which are vacancy free. This

connection between the new DOS peaks and the vacancy localized states

becomes apparent if we look at the LDOS at one of the two peak energies.

A LDOS at one of the two new peaks, for one particular SVA distribution,

is shown in Fig. 5.7(b). The LDOS is highly localized around the vacancies

(marked with green circles). A zoom in Fig. 5.7(c) shows states localized

mostly on one sublattice, which could be connected with the breaking of

sublattice symmetry. These states that are localized around single vacancies

are the origin of the two new peaks in RB and DOS. Similarly, in Figs. 5.7(d)

and (e) we show LDOS for one particular DV distribution, at energy of

one of the new peaks (marked with red line in Fig. 5.7(a)). Divacancies

also induce localized states, but these states are localized equally on both

sublattices, since divacancies do not break the sublattice symmetry. For

90 5. VACANCY DISORDER



5.3. Results

other energies (when there is no localization), divacancies act similarly to

graphene structural armchair edges, namely LDOS spreads in areas between

them, as if they repel it. Similar behaviour was observed in Ref. [81].

5.3.2 Changing vacancy concentration

As stated previously, all these results depend strongly on the vacancy con-

centration. To illustrate this, we present in Fig. 5.8 how DOS and LDOS

change with increasing number of vacancies belonging to a SV disorder type.

Here, we show results for specific vacancy distributions without any tempera-

ture smoothing or averaging. For low concentrations (Figs. 5.8(a) and 5.8(e))

DOS shows two well-defined peaks at ±33.9 meV. These correspond to one

state localized around one monovacancy. Other vacancies in Fig. 5.8(a) are

very close to the system edges and localization on them is very weak. These

results explain why smoothed and averaged RB and DOS exhibit strong

peaks around ±33.9 meV, because this corresponds to the energy of a state

localized around one isolated monovacancy. The localization happens at this

specific energy only if a vacancy is in the bulk and sufficiently away from

the system edges, but also far from the other vacancies, which is satisfied

only for low concentrations. With increasing concentration, the average dis-

tance between the vacancies decreases, and vacancies start to “see” each

other, meaning that they start to influence the formation of localized states

on their neighbours. This is demonstrated in Figs. 5.8(b) and 5.8(f), where

several peaks appear in the total DOS. However the peak at the monova-

cancy localization energy (±33.9 meV) is still well defined. This is because

there is still one well isolated monovacancy in the upper arm of the cross (see

Fig. 5.8(b)). For even higher concentrations there are no longer well isolated

vacancies, therefore there is no well defined localization energy. Instead, the

monovacancies start to form something which resembles bond states. In a

vague analogy with atoms and molecules, these bond states correspond to

groups of vacancies which are sufficiently close to each other so that localiza-

tion occurs over the whole group, and not on separated, individual vacancies.

This bonding, shown in Figs. 5.8(c) and 5.8(d), is responsible for spreading

of the localization energy and consequently for broadening of the new peaks

in RB and DOS.
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5.3.3 Changing the magnetic field

In this part we investigate how these localized states behave when we change

magnetic field B. In Figs. 5.9(a) and 5.9(b) we show that the localization

energy for monovacancies scales with the square root of the magnetic field

E ∼ ±
√
B, similarly to the relativistic Landau levels. The blue curves in

Figs. 5.9(a) and 5.9(b) show the parabolic function B = αE2, where param-

eter α = 17500 T/(eV)2 is set to fit the peak positions. This dependence can

also be expressed as E = ±
√

γ2ev2F h̄B, where γ ≈ 0.057. It is important to

note that Fig. 5.9(a) presents results for the same vacancy distribution as

Fig. 5.8(a), with only one monovacancy capable of sustaining the localized

states. The DOS in this case exhibits two narrow peaks at positive and neg-

ative localization energy. For weak fields (B < 5 T) these peaks are almost

unobservable, whereas for stronger fields they become better and better de-

fined in energy. Beside these two localization peaks, Fig. 5.9(a) shows some

additional peaks for B = 0 T (e.g. two peaks at approximately ±35 meV).

According to Pereira et al. [78], localization of electrons on vacancies also

occurs for B = 0 T, but localization energy is then equal to zero, therefore

these extra peaks should not be connected with the localized states. Indeed,

a closer study reveals that these peaks originate from new modes opening

in the leads, and can be predicted by calculating the lead minimal subband

energies.

For larger concentration of monovacancies (Fig. 5.9(b)) the localization

energy is not well defined, and the two narrow DOS peaks from Fig. 5.9(a)

split into two distributions of peaks. As we explained in the previous subsec-

tion, this is mainly due to a decrease of the average vacancy-vacancy distance

and is thus due to an increase of the interference between vacancies, result-

ing in the formation of bond localized states. Since the localization radius

around a monovacancy is inversely proportional to the square root of the

magnetic field (as we show below), the field strength determines how far a

single vacancy actually “sees” its surroundings (i.e. it determines the bond

length of previously described bond states). Because this length changes with

magnetic field, various groups of vacancies bond together at different field

strengths and the two distributions of DOS peaks in Fig. 5.9(b) evolve quite

unpredictably with B. However, the average energies of the two distribu-

tions still tend to follow the parabolic B dependence as is apparent from the

graph. Thus, for extremely large fields, the localization would be so strong

that the bond length will go below the average vacancy-vacancy distance,

and the vacancies would no longer “see” each other. All these separate DOS
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Figure 5.9: DOS for different values of magnetic field and different dis-

order distributions: (a) n = 0.001% SV distribution, (b) n = 0.005% SV

distribution, (c) single divacancy located at the center of the system, (d)

n = 0.01% DV distribution. The two distributions of monovacancies are the

same as those used in Figs. 5.8(a) and 5.8(b), respectively. In all four cases

T = 0 K. The green arrows mark (E,B) points at which we study LDOS in

Figs. 5.10, 5.11, and 5.13.

peaks would then converge to a single energy—equal to that of an isolated

monovacancy.

Scaling of the localization energy with magnetic field is different for di-

vacancies. As Figs. 5.9(c) and 5.9(d) show, the localization energy for di-

vacancies scales linearly with the magnetic field. The red lines in these two

figures mark the linear dependence B = βE, where β ≈ 9700 T/eV. Con-

trary to monovacancies, where the bond states evolve rather unpredictably

with magnetic field, the bond states of divacancies evolve very predictably

with the field. The two DOS peaks at positive energies, and the two peaks at

negative energies in Fig. 5.9(d), move proportionally to the magnetic field.

There are no additional peaks which would correspond to different bonding

of divacancies. These results suggest that bonding of divacancies is weaker

when compared to monovacancies. One of the possible reasons for this weaker
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Figure 5.10: The evolution of LDOS around a single monovacancy. The

magnetic field strengths are 5T, 10T, 15T, and 20T. The two circles mark

radii Rc, and 2Rc. Insets in the lower-right corners show the total DOS in a

6 meV energy range around the localization energy.

bonding might be the constant localization length for divacancies, which we

discuss below.

Reference [88] also studied the E(B) dependence of the new (localized)

states, and for both mono- and divacancies found it to be neither linear,

nor parabolic. However, the lowest field considered in that reference (beside

B = 0 T) was around 300 T, therefore our results can be understood as a

low field limit of those presented in Ref. [88].

As we stated previously, the localization radius for monovacancies rL is in-

versely proportional to the square root of the magnetic field. It is also propor-

tional to the cyclotron radius rL ∼ Rc = E/(evFB), and since E ∼
√
B, then

rL ∼ 1/
√
B. To demonstrate this, in Fig. 5.10 we follow how LDOS around

an isolated monovacancy evolves as we increase the magnetic field. In other

words, we follow the localized state along the αE2 parabola in Fig. 5.9(a).

The two circles in each inset in Fig. 5.10 have radii Rc and 2Rc, and they
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Figure 5.11: Same as Fig. 5.10 but now showing normalized LDOS, where

LDOS in each subplot is divided by a maximum LDOS value for that sub-

plot. The lower-right insets (showing the total DOS around the energy of a

localized state) are also scaled, so that the DOS peak maximum is equal to

one.

are centered on the vacancy site. The corresponding energies and cyclotron

radii are: E = 16meV, Rc = 36.7 Å (a), E = 23.4meV, Rc = 26.8 Å (b),

E = 29meV, Rc=22.1 Å (c), and E = 33.9meV, Rc = 19.4 Å (d).

A first look at Fig. 5.10 suggests that localization radius is not propor-

tional to the cyclotron radius Rc. While Rc decreases with rising magnetic

field, the localization radius appears to increase and LDOS forms intricate

flower-like patterns. The answer to this contradiction lies in the lower-right

insets in Fig. 5.10, which show the total DOS around the localization energy.

For stronger fields the localized state is better defined in energy, therefore the

total DOS is larger. In order to properly compare these four cases, we need

to normalize the LDOS in each subplot. This is done in Fig. 5.11, where each

LDOS distribution is divided by its maximal value. With these normalized

results the localization radius scales proportionally to the cyclotron radius

5. VACANCY DISORDER 95



5.3. Results

0

250

500

L
(r
)

(a)
5 T

10 T

15 T

20 T

0

5
ln
(L

(r
))

(b)

0 50 100 150 200 250 300

r (Å)
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Figure 5.12: (a) Radial distribution L(r) of DOS around a single monova-

cancy shown in Fig. 5.11, for the same values of EF and B. For each r, the

distribution is obtained by integrating LDOS in circular region of radius r

and width ∆r, L(r) =
∫ 2π

0

∫ r+∆r

r
LDOS(r′, ϕ) dϕdr′. (b) Logarithm of L(r).

(c) Sum of the radial distribution I(r) =
∫ r

0
L(r′) dr′ showing radial distance

(vertical lines) for which the given distribution reaches half of its maximal

height.

Rc, as is intuitively expected. The scaled results also point to another in-

teresting feature. We stated earlier that the LDOS around a monovacancy

is localized mostly on one sublattice—opposite to that of the vacancy. How-

ever, the scaled results show that at the localization energy, LDOS around a

monovacancy spreads over both sublattices. Nonzero LDOS on the vacancy

sublattice is located mostly in the symmetric—flower-like area. Outside of

this area, states are still localized only on one sublattice. LDOS is also

C3v symmetric, which can be connected with the underlying C3v (structural)

lattice symmetry.

Another way to look at results presented in Fig. 5.10 and 5.11 is to plot

the radial distribution of DOS around a single monovacancy. We show this

distribution in Fig. 5.12. The high concentration of LDOS close to the va-

cancy, and the dependence of L(r) on the width of a circular region over
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Figure 5.13: Same as Fig. 5.11 but now showing normalized LDOS and DOS

for a single divacancy located at the center of the system. The (E, B) points

at which we calculated LDOS and DOS are marked with green arrows in

Fig. 5.9(c).

which we perform the angular integration for each r, presents an obstacle

to accurately determine the half-width of these distributions. Another ap-

proach, which does not depend on the details of angular integration, is to

calculate the radial integral I(r) and to determine the distance at which this

integral reaches one half of its maximal (saturated) value. These distances

are presented as vertical lines in Fig. 5.12(c), and they are proportional to

Rc (their values are 108 Å, 57 Å, 42.7 Å, and 36.7 Å, respectively).

A similar LDOS comparison as in Fig. 5.10, but for an isolated diva-

cancy, is presented in Fig. 5.13. Contrary to monovacancies, a divacancy

localization length does not change significantly with magnetic field. This

can be understood just based on the linear E(B) dependence of the di-

vacancy localization energy. If we assume that localization length is still

proportional to the cyclotron radius, then since E = B/β, it follows that

rL ∼ Rc = E/(evFB) = 1/(βevF ). The LDOS around a divacancy is C2v
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Figure 5.14: Decomposition of the bend resistance RB =

(T41T32 − T42T31) /D, where D = (α11α22 − α12α21)S. Results for two

SV distributions (n = 0.01 %) in (a) and (b) are decomposed in (c) and (d),

respectively. Most of the terms in (c) and (d) are vertically displaced, with

dashed lines marking the corresponding positions of the zero axes. Magnetic

field is B = 20T, and T = 0K.

symmetric, which is also related with the underlying lattice symmetry. Con-

trary to monovacancies, divacancies preserve the sublattice symmetry, and

this is the origin of the different behaviour of these two disorder types.

5.3.4 Decomposition of RB and the current density

When discussing results for the averaged bend resistances R̄B in 5.3.1, we

mentioned that although the averaged results appear to be symmetric for

electrons and holes, the results for individual distributions are not, and for

some distributions there are no new peaks in RB. In this subsection we study

why this is the case. We compare bend resistances for two specific mono-

vacancy distributions: one for which there are new peaks in RB, and one
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for which there are not. In order to understand how these peaks come into

existence from the different transmission terms in the S matrix, we decom-

pose RB on its constituent parts according to the Landauer-Büttiker (LB)

formula [86]. Results are presented in Fig. 5.14. Here we focus only on a

narrow energy range where new peaks in RB appear. Analysis of the main

LB terms in Fig. 5.14(c) reveals that only one term (T41T32, green curve) is

responsible for the appearance of the RB peaks. The other term in the nu-

merator (T42T31, gray line) is always equal to zero. A further decomposition

of the first term (T41T32, green curve) shows that one transmission function

(T32, blue curve) is very close to unity, and that only T41 (red curve) dictates

where a new RB peak appears. Only when this transmission (T41) is nonzero,

we have peaks in RB. Therefore (to a first approximation) we can say that

RB is proportional to modulated T41. One might argue that T32 is also im-

portant, but since B is perpendicular, T32 will always be close to unity in this

energy range, because of the edge states that go from the second to the third

lead. This RB-T41 connection is also confirmed in Figs 5.14(b) and 5.14(d),

where both main LB terms in the numerator are equal to zero as well as T41,

and thus RB is also equal to zero.

The only way to understand why for some vacancy distributions the par-

ticular T41 transmission is equal to zero, and for some it is not, is to inves-

tigate how electron current flows in the presence of vacancy disorder. This

is presented in Fig. 5.15 for the same two SV distributions as those used in

Fig. 5.14. In a clean system without vacancies, and with a perpendicular

magnetic field, all current from the first lead would go to the second lead

because of the current carrying edge states. This is mostly what we see in

both cases (Figs. 5.15(a) and 5.15(b)) where T21 term is the most dominant

when compared with the other transmission functions. This is also visible

in Fig. 5.15(c), where most of the current from the first lead travels to the

second lead along the edges. The two vacancy distributions differ in the way

they scatter this edge current from the first to the second lead. The first

distribution (Fig 5.15(a)) is causing more backscattering (T11), and scatter-

ing to the fourth lead (T41), whereas the second distribution is causing more

scattering to the third lead (T31 in Fig 5.15(b)). Where this edge current

is diverted depends mostly on a particular arrangement of vacancies, since

current flow is pinned by the vacancies. For example, T41 (and consequently

RB) exhibits narrow peaks because of a particular arrangement of vacancies

in the central part of the cross. As shown in Fig. 5.15(d), the current starts

to flow around these vacancies, and it is diverted to the fourth lead. In a
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Figure 5.15: (a)-(b) Electron transmission functions from the first lead for

two specific disorder distributions (the same two distributions as used in

Figs. 5.14(a) and 5.14(b), respectively). The transmission functions are ver-

tically displaced by ∆T = 2 for clarity. (c)-(f) Current densities at energies

marked in (a) and (b) by vertical red lines. Magnetic field is B = 20T, and

temperature is T = 0K.

similar way, the current flow in Figs. 5.15(e) and 5.15(f) is also pinned by

the vacancies and diverted to the third lead.

Reference [4] (and particularly Chapter IV in this reference) gives a valu-

able explanation of the QHE in terms of electron propagation along the

sample edges. According to this reference, the rise of longitudinal resistance

(for Fermi energies coinciding with the Landau levels) occurs due to the ex-

istence of states in the interior of the sample. These bulk states connect

the otherwise separated edges channels, and give rise to their backscattering,

and this backscattering manifests in a nonzero longitudinal resistance. The

existence of vacancy localized states in our system, with energies in-between

the Landau levels, leads to the expected LL broadening. Additionally, these

vacancy states can provide a narrow pathway between the channels propa-
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gating along the opposite edges of the system. In our particular setup, the

nonzero T41 term is due to a backscattering between a channel going from

the 1st to the 2nd lead (1→2), and the one going from the 3rd to the 4th

lead (3→4). This edge state scattering is responsible for the nonzero bend

resistance.

Similar analysis can also explain the asymmetry between the resistance

results for electrons and holes (when the field direction is fixed). In a clean

sample with no vacancies, T21 = 1 and T41 = 0 for electrons, while T21 = 0

and T41 = 1 for holes. Also T32 = 1 for electrons, while T32 = 0 for holes. We

already showed that the first term in the Büttiker formula (term T41T32 in

Eq. (5.7)) determines the bend resistance. For electrons this term depends

mostly on T41, since T32 = 1. For holes, on the other hand, it depends on

T32, since T41 = 1. Because T32(−E,B) 6= T41(E,B), the bend resistance

in a disordered system is not the same for electrons and holes. The bend

resistance becomes equal only if we additionally change the magnetic field

direction (from B to −B) when we switch from electrons to holes.

In summary, although the two new peaks in RB should in general appear

at the vacancy localization energy, they are very sensitive to a particular

distribution of vacancies. The vacancies significantly disrupt and divert the

current flow. However, if not in RB, this current guiding will probably man-

ifest itself in measurements of some other non-local resistance.

5.3.5 NNN interaction

In this section we study the effects of a nonzero hopping between the second

nearest neighbours (t′ 6= 0). Figure 5.16 shows the averaged results for the

SV disorder type, for increasing value of the next-nearest neighbour (NNN)

hopping. According to Pereira et al. (Refs. [79, 78]), for the B = 0 case, there

are vacancy localized states even when t′ 6= 0. Although NNN hopping breaks

the electron-hole symmetry, the localized states are still preserved. Here,

we study the non-zero magnetic field case, and we still observe localization

peaks. Breaking of the e-h symmetry leads to a displacement of the two

peaks, and this displacement (as we show in Fig. 5.16) depends linearly on

the NNN hopping energy t′. One of the peaks moves toward the n = −1

Landau level, whereas the other moves to the zeroth Landau level. Although

the two new peaks are clearly visible in the bend resistance, they are not

so distinguishable in the DOS. DOS exhibits considerable broadening, and

the two peaks are barely visible after temperature smoothing. A closer look
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Figure 5.16: Smoothed and averaged bend resistances (R̄B, red curves),

and total DOS (blue curves) for increasing value of the next-nearest neigh-

bour hopping energy t′. All results are obtained for the SV disorder type

(n = 0.01%), for N = 10 different disorder distributions. Magnetic field is

B = 20 T, and T = 16 K. Green, dashed lines are linear fits of the R̄B peak

energy versus the NNN hopping energy t′. Results for t′ 6= 0 are displaced

horizontally by ∆E = −3|t′| in order to align the Landau levels. The RB

peaks at the zeroth Landau level are cut-off above 0.09 h/(2e2) for clarity.

in the LDOS for t′ 6= 0 (not shown) reveals a strong localization on the

horizontal, zigzag edges. This edge localization causes this wide background

in DOS and masks the narrow vacancy localization peaks.

The linear energy dependence of the new peaks can be further explained

if compared with the zero field results of Ref. [78]. The introduction of a

nonzero NNN hopping shifts the whole Landau spectrum by ∆E = 3|t′|.
According to Ref. [78], the shift of the zero mode is less than ∆E, and pro-

portional to t′. If we assume the two localized states that we obtain originate

from this shifted zero mode, than we expect them to also shift linearly and fol-

low the zero mode. On the other hand, the two linear coefficients in Fig. 5.16

are different (the distance between the peaks increases with t′). If we assume

the parabolic E(B) dependence is preserved, than we can conclude that t′
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also modifies the scaling coefficient α, which is then a linear function of t′.

5.4 Conclusions

In this chapter we studied electron transport in graphene Hall bars in quan-

tizing magnetic fields in the presence of three different types of vacancy

disorder. All three types of vacancy disorder induce new states in the rela-

tivistic Landau spectrum, but these states behave differently depending on

the disorder type. The new states localized around monovacancies, are in-

directly observable in the bend resistance and in the total DOS, but only

for vacancy concentrations below a critical concentration. These states are

localized mostly only on one sublattice, but at the localization energy they

spread on both sublattices in C3v symmetric, flower-like patterns.

Another interesting feature is different behaviour of the two monovacancy

distribution types. SVA disorder, although inducing approximately equal

number of states as SV disorder (compare DOSs in Fig. 5.6 for these two dis-

order types for n = 0.01%) creates considerably different results in the bend

resistance. The origin of these differences is not known and requires further

study. We speculate that these differences might come from different current

flow patterns around different types of vacancy pairs. For example, Ref. [88]

showed that vacancy coupling does not depend on their type, however, we

showed that these states have a certain symmetry, therefore the coupling

strength will also depend on direction, and not only on distance. Divacan-

cies also cause localization, but for fields that we consider, their localization

energies are much closer to those of the relativistic LLs, which makes them

harder to observe experimentally. Since they do not break the sublattice sym-

metry, they are usually C2v symmetric, and they have a constant localization

length.

Depending on the ratio between the average vacancy-vacancy distance

(which depends on the vacancy concentration) and the field strength, lo-

calized states around several monovacancies can bond together—forming lo-

calized bond states. These bond states have a localization energy different

from that of an isolated monovacancy, but on average they spread equally

around this energy. The localization energy around a single monovacancy

is proportional to the square root of the magnetic field, while the localiza-

tion radius (and consequently the possible radius of the bond states) scales

with the cyclotron radius. The behaviour of divacancies is different. Their

localization energy scales linearly with the field, and their localization length
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is independent of the field. Based on this, whether they form bond states

depends solely on their mutual distance, and not on the field strength.

A decomposition of the bend resistance reveals that only one transmission

function (T41) is responsible for the appearance of additional peaks in RB,

which we additionally connect with the vacancy guided current flow inside the

system. All these results are slightly modified when a next-nearest neighbor

interaction is included, and the symmetry between electrons and holes is

broken.
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CHAPTER 6

Electron guiding in graphene

6.1 Introduction

In this chapter∗ we investigate electron guiding in graphene in high magnetic

fields. Quantum Hall measurements67,68 in graphene47 revealed the relativis-

tic nature of its charge carriers and its gapless spectrum. Long before the

discovery of graphene, it was known that carriers in a conventional two-

dimensional electron gas (2DEG) tend to move along snake like paths when

exposed to inhomogeneous magnetic fields, the so called snake states.89,90

Similar effects were explored even earlier in the studies of electron propaga-

tion on the boundary of magnetic domains in metallic systems.91,92,93,94 Ex-

periments in non-planar 2DEG95 and in systems with a ferromagnetic stripe96

indirectly measured the effects of snake states on the longitudinal and the

Hall resistance. In graphene, theoretical predictions of snake-states97 were

quickly followed by experiments confirming their existence.98 Snake states

in a Hall bar were previously studied in Ref. [99] using a classical billiard

model. A top-gate was used to create a pn-junction along the main diagonal

of the Hall cross, and oscillations of the bend resistance were connected with

electron guiding along the snake-like paths at the pn-interface. Two very re-

∗Results presented in this chapter are based on our publication: M. D. Petrović,

F. M. Peeters, Quantum transport in graphene Hall bars: Effects of side gates, Solid State

Commun. 257 20–26 (2017).
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cent studies100,101 on graphene Josephson junctions reported electron guiding

near nanoribbon edges due to an edge potential. This guiding was visible in

the local current density, which was obtained using Fourier methods.

In this chapter we study quantum transport of electrons in graphene Hall

bars surrounded with four side-gates (see Fig. 6.1). This chapter combines

the side-gate potential (introduced in Chapter 4) with the high magnetic

fields (introduced in the previous chapter), and shows that this combina-

tion leads to interesting effects such as electron guiding. The gates modify

the local electron density on the edges of the Hall bar, and induce a local

electric potential. If the system is placed in an external magnetic field, this

edge potential guides the charge carriers along specific equipotential lines.

For weak fields, these states move along the previously mentioned snake-like

paths, while for stronger fields, we prefer to call them guided states. Our

main goal in this chapter is to understand how this guiding occurs locally,

and which paths electrons take in the system. Our second goal is to predict

measurable effects of this guiding. We start by investigating how side-gate

potential modifies the electron dispersion relation in each lead. By study-

ing the current density profiles of the incoming and outgoing states in two

representative leads, we are able to build a physical picture of electron trans-

port in this inhomogeneous system. This picture, in combination with the

Landauer-Büttiker formalism, allows to analytically predict the quantization

of the bend and Hall resistances. The quantized resistance values match the

ones that we obtain with our numerical (tight-binding) method. Although

we choose one specific potential configuration, with asymmetrically biased

side-gates, our results are equally extendable to other gate configurations,

and possibly even to other geometries.

This chapter is organized as follows: In Section 6.2 we describe our system

and we briefly repeat discussion on our numerical methods. Section 6.3 is

divided in four parts. In the first part (6.3.1) we analyze the dispersion

relations of the leads, and in the second (6.3.2) we show how guided states

look in real space. A scheme for electron guiding is presented in the third

part (6.3.3), and we use this scheme to analytically calculate the bend and

the Hall resistances in the last subsection (6.3.4). Our conclusions are given

at the end of the chapter, in Sec. 6.4.
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Figure 6.1: Side-gated Hall bar system: four leads are marked with numbers,

and they all have approximately equal widths (W1 = W3 = 49.71 nm, and

W2 = W4 = 49.94 nm, lx = ly = 50nm). Horizontal leads have zigzag edges,

while vertical leads have armchair edges. All dangling bonds are removed.

Three lines r1, r2, and r3 show the minimal distances from the system edge to

three arbitrary points A1, A2, A3, respectively. These distances are used in

Eq. (6.1) to calculate the gate potential of the 1st lead at the corresponding

points A1, A2, and A3. The potential profiles inside the leads are depicted

by the blue curves above the 2nd and below the 4th lead (black dashed lines

mark the position of the zero potential).

6.2 System and Methods

The studied system is shown in Fig. 6.1, it is a graphene cross with four side

gates (G1, G2, G3, G4) placed between four orthogonal leads. When biased,

the gates create a local potential at the system edges which decreases towards

the interior of the system. We model the potential of a single side gate by a

Gaussian function

Ug(rn) = U0 exp(−r2n/2σ2), (6.1)

where rn is the minimal distance from the present point to the system edge

(see Fig. 6.1). Potential width σ is set to 10 nm, so that potentials of neigh-

bouring gates do not overlap. We use G1 as a reference gate, and set po-
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tentials of other gates (G2, G3, and G4) opposite to that of G1, as shown in

Fig. 6.1.

As explained in previous chapters, for our numerical calculations we use

KWANT.27 We already explained previously how we model the graphene TB

Hamiltonian, therefore we do not repeat that explanation here. We would

just point out that the hopping term t̃ij = teiϕij is defined using the electron

hopping energy t = −2.7 eV, and the Peierls phase factor

ϕij =
e

h̄

∫ ri

rj

A(r) · dr, (6.2)

where A(r) is the vector potential. The vector potential in the horizontal

leads is set using the Landau gauge AH = −Byex, and that in the vertical

leads is AV = Bxey. These two potentials are smoothly connected in the

main scattering region using the procedure described in the previous chapter

(see also Refs. [84, 85]).

6.3 Results

6.3.1 Dispersion relations

First we study the dispersion relations (presented in Fig. 6.2) of the side-

gated graphene leads. We compare three cases with different combinations of

side-gate potential and magnetic field. The dispersion relations are obtained

by considering semi-infinite graphene nanoribbons with the same transversal

potential profile as potentials presented in Fig. 6.1. Dispersion relations of

clean nanoribbons (without magnetic field or external potential) were exten-

sively studied in Refs. [57, 58], and therefore we do not present them here.

Dispersions for a nonzero potential (U0 = 100meV) are shown in the first

row in Fig. 6.2. In Chapter 4 we investigated dispersions of symmetrically

gated leads using the same Gaussian potential as given by Eq. (6.1). Here,

for zigzag leads, we focus on a narrow wave-vector range in close proximity

of the two valleys (K and K ′). The edge potential in zigzag leads determines

the energy of dispersionless bands. In case of a symmetric potential, as in

the 3rd lead, dispersionless bands shift in energy to a value of −U0. On the

other hand, in asymmetrically gated 1st lead, the side-gates open a small

energy gap between the two flat bands. The gap energy is determined by the

lead width. Asymmetric potential in the 2nd (armchair) lead preserves the

electron-hole symmetry, while symmetric potential in the 4th lead moves the

Dirac point towards the negative energies.
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Figure 6.2: Lead dispersion relations (columns) for different combinations of

magnetic field and side-gate potential (rows): B = 0T, U0 = 100meV (case

I, first row), B = 20T, U0 = 0meV (case II, second row), and B = 20T,

U0 = 100meV (case III, third row). Gray horizontal lines mark the zero

energy, while gray areas in the third row show the lead potential profile along

the positive x and y directions. Since KWANT produces dispersions along

the lead direction, we inverted the dispersions of the first and the fourth lead,

because they point in negative x and y directions. The red line in the third

row marks the minimal energy of the first band in the zigzag leads—compare

it with the minimal energy of the first band in the armchair leads (orange

line).

Results for a nonzero magnetic field (second row in Fig. 6.2) were ex-

plained in Ref. [102]. In this case, both armchair and zigzag leads show

dispersionless surface states, appearing exactly at the energy of Landau lev-

els (LLs). In this regime, graphene exhibits specific quantization of the Hall

resistance, as was measured in Refs. [67, 68].

The most relevant case for us is when both magnetic field and side-gate

potential are present in the system (third row in Fig. 6.2). First noticeable

difference introduced by the side-gates is twisting of the otherwise flat bands

of the surface states (compare the second and the third row in Fig. 6.2). As a

consequence of this twisting, surface states become dispersed and new states

appear in the bulk. As we show below new states appear only in specific

areas of the sample. In general, symmetry of the lead potential is reflected

in the lead dispersion. We plot potential profile of each lead in the third

row of Fig. 6.2 (gray areas) to show this connection. Asymmetrically gated
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leads (the 1st and the 2nd lead) have asymmetric dispersions, while symmet-

rically gated leads (the 3rd and the 4th lead) have symmetric dispersions. For

symmetrically gated leads this connection can be explained in the following

way: suppose we are interested in how the dispersion relation changes when,

instead along the lead, we look in the opposite direction (towards the sys-

tem). To do this we have to invert the potential profile relative to the middle

line of the lead. In the inverse space (the space of wave vectors k) this view

change is equivalent to inverting the dispersion relative to the k = 0 axis (all

k values go to −k, and the opposite). If the lead potential is symmetric, then

this change of view has no effect. We would obtain the same potential and

the same dispersion relation. In other words, the inverted dispersion is equal

to the initial one En(−k) = En(k). This is the case with the 3rd and the 4th

lead.

For asymmetrically gated leads this connection between the lead poten-

tial and the dispersion is not so straightforward. If the magnetic field is

sufficiently strong, states moving along the opposite edges are completely

separated. These edge states on the opposite edges then feel different po-

tentials. For example, when there is no edge potential, electrons in the 2nd

lead with positive velocity (and positive k) move along the left edge, while

electrons with negative velocity (and negative k), move along the right edge.

For holes, states with positive k (and negative velocities) move along the left

edge, while states with negative k (and positive velocities) move along the

right edge. From this we see that states with positive k always move along

the left edge, while states with negative k always move along the right edge.

Therefore, if we apply a potential on the left edge, it will only affect states

with positive k, while if we apply a potential only on the right edge, it will

only influence states with negative k. Assuming that an electron state with

positive k is shifted in energy (due to the side gate potential) by some value

∆E, then electrons with negative k are shifted by -∆E, as well as hole states

with the same negative k. From here, we see that the dispersion is asym-

metric En(k) = −E−n(−k). This explanation is similar to the one given in

Chapter 4 in Ref. [4].

Before we proceed to the next part, we would like to stress one very im-

portant difference between armchair and zigzag leads. Although the minimal

band energies appear to be similar for all leads, they are not precisely equal.

The minimal band energy in armchair leads is slightly smaller than in the

zigzag leads. The red and orange lines in the last row in Fig. 6.2 show this

small misalignment. This difference introduces additional complexity in the
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Figure 6.3: (a) Dispersion relation of the symmetrically gated 4th lead. (b)

Normalized current density across the lead for incoming modes marked with

red circles in (a). Figure (b) is divided vertically (1–3̃), with each inset

corresponding to one state marked in (a). The considered Fermi energies are

EF = −30, 30, 70, and 110meV (horizontal gray lines in (a)). The blue lines

in (1–3̃) mark the equipotential lines where EF − U0 = ELL=0. Similarly,

green and white lines mark the positions where previous difference is ELL=1,

and ELL=2, respectively. Magnetic field is B = 20T and U0 = 100meV. The

direction of the modes and the considered lead are sketched in the lower right

corner in (a).

system, since a new mode can open in one lead, but electrons can not travel

to the neighbouring lead, since there are no open states there. Further below,

we explain the importance of this misalignment in more detail.

6.3.2 Incoming and outgoing modes

To better understand the motion of charged particles in the system, here we

analyze the incoming and outgoing modes of two representative leads: one

with symmetric (the 4th lead), and one with asymmetric (the 2nd lead) side-

gate potential. We focus on studying the evolution of current profile in each

lead with increasing Fermi energy.

In Fig. 6.3(b), we present the current density profiles (insets from 1 to 3̃ on
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the right side of Fig. 6.3) for the incoming modes (red circles in Fig. 6.3(a)).

As we previously mentioned, because of the potential symmetry, the disper-

sion relation is also symmetric. Therefore the current density profiles for the

outgoing modes can be obtained by inverting the profiles shown in Fig. 6.3

along the middle line of the lead (x = 0). We can differentiate two groups

of incoming states in Figs. 6.3(a) and 6.3(b): (1) the normal edge states

(e.g. states 1, 4, and 9), and (2) the guided states (e.g. states 2̃, and 3̃) which

move along specific equipotential lines. Electron kinetic energy along these

equipotential lines matches the energy of Landau levels EF − U(x, y) = ELL.

For symmetric potential two of these equipotential lines appear on the sys-

tem edges for each new LL, and with increasing Fermi energy these lines

move towards the middle of the lead (x = 0). If the applied potential is

larger than the energy difference between two neighbouring LLs, then a pair

of these equipotential lines appear simultaneously for each LL. For example,

in Fig. 6.3 the energy difference between the 1st LL and the 2nd LL is smaller

than the applied side-gate potential, and equipotential lines for the 1st and

the 2nd LL coexist at higher Fermi energies (green and white lines in insets

8–3̃ in Fig. 6.3(b)). Although it looks like some of the states on the left edge

(states 8, 9, and 1̃ in Fig. 6.3(b)) are guided along the left white line, note

that guided states for the white lines appear only at higher energies (not

considered here). In analogy with the guided states for the zeroth Landau

level (states 2 and 3), and with the first Landau level (states 2̃ and 3̃), guided

states for the second Landau level should appear along the right white line.

Because of the symmetry of the side-gate potential, these equipotential lines

always appear in pairs: the line on the right side corresponds to guided elec-

trons coming out of the lead (incoming states), while the line on the left

corresponds to guided electrons coming into the lead (outgoing states). Each

of these lines can accommodate two states coming from different valleys (in

armchair leads this is not so obvious, because there are no separate valleys,

but in zigzag leads each guided state can be connected with a specific valley).

For the zeroth LL, the guided states are always centered on the equipotential

line (states going along the blue lines in insets 2, and 3 in Fig. 6.3(b)), while

for higher LLs there is significant broadening of the guided states (states go-

ing along the green lines in insets 2̃, and 3̃ in Fig. 6.3(b)). Similar behaviour

was reported in Ref. [103].

The asymmetric potential case is presented in Figs. 6.4, and 6.5. Here,

because of the asymmetry, the outgoing modes are not equivalent to the in-

coming ones, hence it is necessary to study them separately. In contrast to
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Figure 6.4: Same as Fig. 6.3, but now for incoming modes from the 2nd

(asymmetrically gated) lead. Magnetic field is B = 20T and U0 = 100meV.

symmetrically gated leads, here for each LL there is only one equipotential

line satisfying the condition EF − U0 = ELL. For each new LL this line ap-

pears on the right edge and moves towards the left edge as we increase the

Fermi energy (see the blue lines in insets 1–6 in Fig. 6.4(b)). For the zeroth

LL, these blue lines mark the separation point between electron and hole

states (a pn border). For higher Fermi energies (EF = 70, and 110meV),

the hole edge state on the left side disappears, and as we see below, it is

replaced with an electron edge state moving in the opposite direction. Al-

though there are no guided states among the incoming modes in Fig. 6.4,

they appear among the outgoing modes in Fig. 6.5. The electrons are guided

along the equipotential lines of the zeroth and the first LL, similarly as in

the symmetric potential case (for example, compare insets 1, 2, 5, 7, and 8

in Fig. 6.5(b), with insets 2, 3, 7, 2̃, and 3̃ in Fig. 6.3(b)).

Although we only considered current profiles of the armchair leads, the

corresponding incoming and outgoing modes in the (horizontal) zigzag leads

are very similar. The only difference is that in zigzag leads each guided state

can be connected with one of the valleys. The opening and closing of modes

in neighbouring leads do not occur at the same energy because of a small

subband misalignment mentioned above. There are situations where only one
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Figure 6.5: Same as Figs. 6.3, and 6.4, but now for outgoing modes in the

2nd lead. Magnetic field is B = 20T and U0 = 100meV.

of the two guided states passes to the neighbouring lead, while the other are

scattered backwards, because there are no open modes in the neighbouring

lead.

6.3.3 Current guiding

The analysis of incoming and outgoing modes allows us to construct a picture

of electron transport in this system. By extending previous results from

the vertical (armchair) leads to the horizontal (zigzag) leads, in Fig. 6.6 we

present a constructed scheme for electron guiding.

At the lowest energy (EF = −30meV, Fig. 6.6(a)), for each edge state

on the negatively biased edges, there is a pair of guided states moving in

the opposite direction. The guided states move along the pn-interface (the

blue lines). Although there is only one pn-interface line with two identical

guided states on it, here we show two separate blue curves in Fig. 6.6(a) to

emphasize that there are two guided states. The position of these lines in the

scheme do not match the actual position of the pn-interface. As the Fermi

energy increases, the pn-interface shifts towards the central lines of the cross,

and for positive Fermi energies, the pn-interface moves to the upper-left part
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Figure 6.6: Scheme of the guided states (colored lines) and the edge

states (black lines). The corresponding energies are similar to those used

in Figs. 6.3, 6.4, and 6.5: (a) EF = −30meV, (b) EF = 30meV, (c)

EF = 82meV, and (d) EF = 110meV. The magnetic field is B = 20T, and

the side-gate potential height is U0 = 100meV. Blue curves mark the guided

states of the zeroth LL, while green curves mark the guided states of the first

LL. The presented curves do not fully represent the actual current paths

(they are separated from each other for better visualisation).

of the system. This is what we see in Fig. 6.6(b), for EF = 30meV. The two

guided states are close to the hole state on the upper-left edge. For larger

Fermi energies, the hole state on the upper-left edge disappears, and the pair

of guided states turns into a single electron edge state, moving upwards along

the upper-left edge (as in Fig 6.6(c)).

Due to the above mentioned mismatch of the band minimal energies in

neighbouring leads, the case when Fermi energy is EF = 70meV is one of

those situations where new modes open in the vertical (armchair) leads, but

they backscatter due to the lack of open states in the horizontal (zigzag)

leads. Therefore the scheme presented in Fig. 6.6(c) corresponds to larger

energies (e.g EF = 82meV), when guided states open in all four leads. This
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Figure 6.7: Current density for EF = −30meV, B = 20T, and

U0 = 100 meV. Current is injected from the leads which are colored in or-

ange. The blue lines are equipotential lines where U(x, y) = EF .

situation is very similar to that presented in Fig. 6.6(a), except now there is

only one guided state along the pn interface. As the Fermi energy further

rises (EF = 110meV, Fig. 6.6(d)), a new edge state and a new guided state

appear in the system.

The scheme presented in Fig. 6.6 can be generalized to higher LLs, as-

suming that the applied potential U0 is smaller than the energy difference

between the neighbouring LLs. For n-th LL (n > 0) on the negatively bi-

ased edges there will be 2n or 2n + 1 edges states and one or two guided

states, while on the positively biased edges there will be 2n− 1 edge states.

However for every U0, no matter how small it is, there will always be some

minimal m for which all higher LLs (m′ > m) are separated by an energy

smaller than the applied potential. The present scheme is more complicated
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for these higher LLs, because guided states from several LLs can coexist at

the same Fermi energy. We do not consider these cases here.

To confirm the correctness of the scheme presented in Fig. 6.6, in Fig. 6.7

we show the current density profiles for all four leads at the Fermi energy

EF = −30meV, as obtained from our numerical solution using KWANT. By

combining all the currents presented in Fig. 6.7, we get the same picture as

that presented in Fig. 6.6(a).

6.3.4 Bend and Hall resistances

Based on the pictures presented in Fig. 6.6, we are able to calculate the

band resistance RB by applying the Landauer-Büttiker formula. The most

important property of the guided states is that they fully transmit without

any backscattering. In that sense they are equivalent to edge states. As long

as there is no backscattering the transmission coefficients are integers, and

the transmission matrix is easy to write by hand by counting the incoming

and outgoing modes.

To calculate the resistance we select one of the insets in Fig. 6.6—for

example 6.6(d)—and write the current matrix





I1
I3
I4



 = Gc





3 0 −3

0 5 −2

−2 −3 5









V1
V3
V4



 . (6.3)

Here Gc = 2e2/h is the conductance quantum, and we choose V2 = 0 (for de-

tails see Chapter 4 in Ref. [4]). We are only interested in the bend resistance

R12,34 =
V3 − V4
I1

, (6.4)

when current is passed from the first into the second lead (the currents are

(I1 0 0)
T ). From the second row of Eq. (6.3) we obtain V3 = (2/5)V4, and

from the third row we obtain

2V1 = −3V3 + 5V4 =
19

5
V4, (6.5)

and therefore V1 = (19/10)V4. Substituting this back in the first row in

Eq. (6.3), we obtain
1

3

I1
Gc

= V1 − V4 =
9

10
V4, (6.6)
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and therefore V4 = (10/27)I1/Gc, and V3 = (4/27)I1/Gc. Finally we can cal-

culate the resistance as
V4 − V3
I1

=
2

9

1

Gc

. (6.7)

In a similar manner we can calculate the quantized resistances for the

other situation depicted in Fig. 6.6. For Fig. 6.6(a) we obtainRB = (1/4)1/Gc,

and for Fig. 6.6(c) we also obtain RB = (1/4)1/Gc. For Fig. 6.6(b) there is

only one edge state connecting the 3rd and the 4th lead, therefore the potential

on these two leads is equal (RB = 0).

Previous calculations can be generalized for higher LLs. Assuming that

applied potential U0 is smaller than the separation between the neighbouring

LLs, we can differentiate two cases. In the first case there is only one guided

state open in each negatively biased lead (equivalent to Fig. 6.6(c)), while in

the second case there are two such guided states (equivalent to Fig. 6.6(d)).

In the first case the general current-voltage matrix relation





I1
I3
I4



 = Gc





2n 0 −2n

0 2n+ 1 −1

−1 −2n 2n+ 1









V1
V3
V4



 , (6.8)

can be expressed in terms of LL index n. When solved this gives the quantized

resistances

RB =
1

4n2

1

Gc

. (6.9)

For the second case, when both guided states are present in the system, the

general Landauer-Büttiker matrix is





I1
I3
I4



 = Gc





2n+ 1 0 −2n− 1

0 2n+ 3 −2

−2 −2n− 1 2n+ 3









V1
V3
V4



 , (6.10)

which gives

RB =
2

(2n+ 1)2
1

Gc

. (6.11)

Comparison between numerical and analytical results is presented in Fig. 6.8.

Quantized resistances obtained analytically agree well with the ones obtained

numerically, at least for the first three Landau levels in Fig. 6.8(a). For

higher Landau levels the match is not exact (see for example the line for

RB = (2/49)1/Gc in Fig. 6.8(a)). We suspect the reason for this mismatch is

a spatial widening of the guided states for higher LLs which leads to backscat-

tering. A comparison with the band resistance obtained for higher field and
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Figure 6.8: (a) Bend resistance (RB, blue curve) obtained using KWANT,

and the analytical solutions obtained from the current matrix (gray hori-

zontal lines). Gray vertical lines mark the positions LLs for B = 20T. The

side-gate potential is set to U0 = 100meV. (b) Bend resistance for n = 3,

and n = 4 Landau levels at higher fields B = 100T, U0 = 50meV.

weaker gate potential in Fig. 6.8(b) reveals that the calculated resistance still

matches the analytically obtained fractional values. Stronger field aligns the

minimal band energies, since we do not observe RB = (1/4n2)1/Gc set of

resistances, where only one guided state is present in the system. Another

characteristic of RB is that is not symmetric for electrons and holes. Plateaus

appear only for zero and positive LLs. A narrow positive peak near the right

corner of the first plateau, and a negative peak between the 1/4 and 2/9

plateaus originate from a small misalignment of subbands in the horizontal

leads. Although gates G2 and G3 induce equal potential on the lower edge in

the first and the third lead (see Fig. 6.1), this potential is slightly modified

by gates on the upper edges (gates G1 and G2). Subbands are misaligned

because of this small potential difference on the lower edge.

Results for the Hall resistance are presented in Fig. 6.9, for the same

magnetic field and side-gate potential as in Fig. 6.8(a). Under the same

conditions as in the case of the bend resistance, we can calculate quantization

values for the Hall resistance. The conductance matrix is the same as given

by Eqs. (6.8), and (6.10). But now the current is injected in the first lead
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and collected in the third lead (the current column is
(

I1 −I1 0
)T

). The

Hall resistance is calculated analytically as R13,42 = RH = V4/I1 (because

V2 = 0). For two cases we obtain

RH =
−4n2 + 2n+ 1

(2n)3
1

Gc

, (6.12)

and

RH =
−4n2 + 5

(2n+ 1)3
1

Gc

. (6.13)

In Fig. 6.9 we compare the first three analytic results with the numeric ones.

The main feature of the Hall resistance is that side gate potential separate

the two valleys. Instead in steps of h/4e2, the plateaus are separated by

h/2e2 (see horizontal grey lines).

−0.2 −0.1 0.0 0.1 0.2

E (eV)

1

-1/3
-1/5

1/5
1/3

1

R
H

(h
/
2
e2
)

−1/8
1/27

−11/125

Figure 6.9: Hall resistance (RH , blue curves) obtained using KWANT, and

analytical solutions obtained from the current matrix (red horizontal lines).

Magnetic field and side potential are the same as in Fig. 6.8(a).

6.4 Conclusions

In conclusion, in this chapter we investigated the quantum electron transport

in side-gated Hall bars in high magnetic fields. Starting from the lead dis-

persion relations which reveal new states appearing in the Landau spectrum,
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we proceeded to study the current density profiles of these new states in two

representative leads. Spatially, the new states are guided along equipotential

lines where the electron kinetic energy matches the energy of a LL. Due to a

full transmission of these states the transmission matrix contains only inte-

gers, and can be solved analytically. We calculated the quantized resistances

for this asymmetric gate configuration and obtained

RB =
1

4n2

1

Gc

,

and

RB =
2

(2n+ 1)2
1

Gc

,

for the bend resistance in two cases, when there is only one and when there

are two guided states. For the Hall resistance we obtain

RH =
−4n2 + 2n+ 1

(2n)3
1

Gc

,

and

RH =
−4n2 + 5

(2n+ 1)3
1

Gc

.

The calculated quantized resistances match the quantized resistances ob-

tained with the tight-binding method. Note that these results can be easily

extended to symmetrically gated Hall bars, where potential is the same on

all four gates. The derived pictures of electron guiding can be also applied to

other geometries with side gates. In general, for every pair of edge states en-

tering the system there will be a pair of guided states moving in the opposite

direction.
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CHAPTER 7

SGM microscopy of graphene magnetic

focusing devices

7.1 Introduction

As explained in previous chapters, in this chapter∗ we deal with scanning

gate microscopy (SGM) in graphene. Up to now, SGM has been successfully

used to image local electron transport in various mesoscopic systems. In

early applications SGM probed the interference effects produced by micro-

scopic disorder in graphene,104,105 and it was later applied to image electron-

hole puddles originating from extrinsic local doping.19 In the latter experi-

ment,19 the tip was coated with a dielectric and placed directly in contact

with graphene. The advantage of this approach is that AFM topography

scans could be performed simultaneously with SGM scans, and the tip could

be additionally used to clean the sample. Scanning technique was used in

Ref. [106] to study the spatial inhomogeneity of the local neutrality point,

and to measure the efficiency of intentionally embedding (writing) charges

in graphene.107 Tip-dependent resistance maps of a narrow quantum point

contact (QPC), presented in Ref. [108], revealed a significant resistance in-

∗Results presented in this chapter are based on our publication: M. D. Petrović,

S. P. Milovanović, F. M. Peeters, Scanning gate microscopy of magnetic focusing in

graphene devices: quantum versus classical simulation, Nanotechnology 28, 185202 (2017).

123



7.1. Introduction

crease when the tip was placed directly above the sample. The technique

is also suitable for the investigation of localization effects. For example,

concentric conductance halos were observed in SGM maps scanned around

localized states in graphene quantum dots,24,109 narrow constrictions,110,111

and enhanced conductance was reported in narrow nanoribbons.112 Scanning

gate experiments of quantum point contacts were simulated in Ref. [113].

In this chapter, we investigate the scanning gate experiments of mag-

netic focusing devices reported in Refs. [20, 114, 115, 116]. Before, similar

magnetic focusing measurements were performed on a semiconductor two-

dimensional electron gas (2DEG) in parallel with the scanning technique.117

We model our device using both quantum and classical transport theory. Pre-

viously, classical simulation of such a focusing device was done in Ref. [20],

and focusing without SGM tip was studied in Ref. [118]. A recent paper

by Kolasiński et al.119 was the first to reproduce some of the experimental

findings by applying a full quantum approach. In this chapter we implement

the multi-terminal Landauer-Büttiker formalism and calculate the non-local

resistances. We additionally compare the resistance maps of a 4-terminal and

a 6-terminal device for different combinations of voltage probes. Due to a

large size of the device, as compared to the electron wavelength, most of the

simulated effects are already captured by the computationally less demand-

ing classical model. In respect to that, we confirm that the classical billiard

model can be successfully used to describe transport of relativistic carriers

in the presence of inhomogeneous potentials, if the linear graphene spectrum

is properly implemented.

Our analysis of simulated SGM maps confirms and expands on some of

the experimental observations reported in Refs. [20, 114, 115, 116]. We con-

sider both positively and negatively charged tip, as well as a tip acting in

the mixed regime. We show that the main resistance feature (e.g. the spa-

tial area of reduced resistance) can be explained by considering geometric

relations between the device boundaries, the tip position, and the circular

cyclotron orbits. One of the novel results is that the SGM tip is mainly

acting on a set of trajectories that directly connect the injector lead with

the tip position. The repelling tip leaves a shadow behind itself, situated in

areas delimited by two direct cyclotron orbits connecting the tip with the

two corners of the injector lead. The specific shape of the tip shadow, which

depends on the relative position between the tip and the injector lead, de-

termines the shape of the low resistance region. At the first focusing peak

the tip is imaging a specific subset of direct trajectories connecting the two
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focusing leads. This only applies for a repelling tip, or a tip operating in a

mixed regime (repelling and focusing). For a tip acting as a focusing lens, the

produced SGM maps do not show any significant changes in the resistance,

therefore they do not provide much useful information to characterize elec-

tron transport. We additionally compare results between a 4-terminal and a

6-terminal device, and find them to be very similar, although the latter in-

duces spatial asymmetry in the resistance maps. Results are similar because

the resistance is mostly determined by the transmission function between the

two focusing leads. In that sense, we confirm the approach taken in Ref. [20]

which considered only transmission functions and not resistances. An impor-

tant observation is that under proper conditions an SGM tip can induce a pn

junction in the sample. This third (or mixed) regime provides much better

response of the sample (due to the stronger backscattering), and results in

higher contrast and resolution of the SGM resistance maps. However, this

tip operation mode remains to be experimentally realized.

This chapter is organized as follows: in Sec. 7.2 we describe the focusing

system, and indicate how we model the tip potential. Next, in Sec. 7.3 we

scale the graphene tight-binding Hamiltonian and compare relevant quanti-

ties, such as the dispersion relation and the current density in a scaled and

unscaled graphene lattice. The resistance of an unperturbed device (i.e. a de-

vice without the SGM tip) is studied in Sec. 7.4, while the analysis of SGM

scans is done in Sec. 7.5. In Sec. 7.6 we present results for a six-terminal

device, and discuss possible causes of the spatial asymmetry seen in the ex-

periments. A short summary of our findings is given at the end of the chapter

(Sec. 7.7).

7.2 Focusing system and SGM potential

The studied system is shown in Fig. 7.1. It is a four-terminal graphene

device with the same dimensions as those used in Ref. [20]. The only major

difference between our system and that of Ref. [20] is the absence of two

upper leads. We implement these two leads in Sec. 7.6, and discuss the

changes they introduce in the SGM maps.

Magnetic focusing occurs when electron trajectories from the 2nd lead

(red curves in Fig. 7.1) bend into the 3rd lead due to an external magnetic

field. Depending on the ratio between the width of the 3rd lead (lR) and the

distance between the leads (L), the diverted electrons can exit into the 3rd

or the 4th lead. This switching of the exit lead manifests itself as oscillations
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Figure 7.1: Graphene magnetic focusing device: the system width is W =

2µm, while the system length is D = 4µm. Both horizontal (armchair),

and vertical (zigzag) leads are metallic. The vertical leads have the same

width lL = lR = 0.7µm, and their separation is L = 2µm. Magnetic field is

perpendicular to the graphene sheet and points in the negative z direction.

Potential profile of the AFM tip is schematically represented by the white

circles.

in the device resistance. Figure 7.1 shows two focusing orbits, where an

even number of cyclotron radii matches the separation between the leads,

2nRc = [L+ (lR + lL)/2], where n is an integer. Focusing occurs as long as

2Rc > lR.

Although magnetic focusing is a local phenomena, which depends on spe-

cific paths an electron can take in the system, it is usually studied by mea-

suring the resistance of a whole device. A lot of information is lost in such

measurements (e.g. no knowledge about the most probable electron trajec-

tories). This spatial information can be retained by scanning-gate measure-

ments, where a SGM tip perturbs the circular electron trajectories, causing

the device conductance to become tip-dependent. The conductance maps

produced in such measurements reveal how device conductance depends lo-

cally on electron passage through each point.

According to Refs. [114, 20], a charged STM tip placed above a graphene

sheet modifies the local charge density in graphene

∆n(r) =
q̃h

(

d(r)2 + h2
)3/2

. (7.1)

This modification depends on the tip relative charge q̃ = −q/2πe (here q is
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the actual charge accumulated on the tip, and e is the electron charge), the

distance from the tip to the graphene plane h, and the distance from the tip

in-plane projection to the current point d(r) = r− rtip. A local change in

the charge density modifies the local Fermi energy

∆EF (r) = EF (n)− EF (n+∆n(r)), (7.2)

which manifests as an additional (tip-induced) potential Ut(r) = ∆EF (r).

Since Fermi energy in graphene depends on the charge density through

EF (n) = h̄vF
√
πn, the induced potential is

Ut(r) = h̄vF
√
π
(√

n−
√

n+∆n(r)
)

. (7.3)

This potential is a function of the global charge density n and the local

charge modification ∆n(r). The global density n is set by the back-gate

voltage, while the local modification ∆n(r) is determined by the tip height

and the tip charge.

An alternative way to look at the tip perturbation is through the tip-

generated force field. Charge carriers traveling through the system experience

a force F(r) = −∇Ut(r) generated by the tip. This force modifies the carrier

equation of motion20

d2r

dt2
=

F(r)

m∗
=

1

2
v2F

∇ñ(r)

ñ(r)
, (7.4)

where m∗ is the carrier mass in graphene (m∗ = h̄
√
πn/vF ), and ñ(r) =

n + ∆n(r) is the resulting charge density. The derivation of the force field

used in our classical model is presented in Appendix A.

Fig. 7.2 shows tip-induced potentials for different combinations of the

global charge density and the local charge modification. There are six dif-

ferent regimes in which the tip can operate, but only three of these six are

unique. The other three regimes can be obtained by exchanging electrons

with holes. The first regime is presented in Fig. 7.2(a). Here, a positively

charged tip increases the local electron density beneath itself, which mani-

fests in the negative potential profile shown in Fig. 7.2(g). The tip-induced

force field in Fig. 7.2(j) reveals a focusing nature of the tip. The case of neg-

atively charged tip in Fig. 7.2(b) was previously studied experimentally.20 As

shown in Ref. [20] and in Fig. 7.2(h), the tip creates a positive potential which

then repels the incoming electrons. The force field in this regime, shown in

Fig. 7.2(k), is pointing away from the tip. In both Figs. 7.2(a) and 7.2(b) we
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Figure 7.2: (a)–(f) Charge density beneath the tip (xtip = ytip = 0) for

electrons (red), and holes (blue). Solid-black curves show the local charge

modification ∆n(r), while dashed-black lines mark the global density n.

Dotted-black curves show the resulting density ñ(r) = n+∆n(r), and green

curves show the tip-induced potential. (g)–(i) Tip-induced potential for three

regimes in (a), (b), and (c), respectively. (j)–(l) Directions of the force field

acting on the charge carriers.

set |∆n(r)| to 5× 1011 cm−2. This density was used in Ref. [20] to fit the ex-

perimental data, and it corresponds to a tip positioned h = 60 nm above the

graphene sheet. Assuming the tip charge q̃ does not depend on the tip height

h, in the far-left column of Fig. 7.2 we present results for a tip positioned

closer to the sample (h = 43 nm). When changing the tip height, we first

calculate the tip charge q̃ from the modified charge density ∆n(rtip) = q̃/h2,

and then we recalculate ∆n for the new height.

Contrary to a classical 2DEG, where the tip depletes the electron density

beneath it,38 in graphene (due to its gapless nature) the depleted electrons

turn into holes. The induced potential in this third (or mixed) regime is much
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stronger than in both, focusing and repelling regime (compare Fig. 7.2(i) with

Figs. 7.2(g) and 7.2(h)). The force field is also specific (see Fig. 7.2(l)): in

the n region (surrounding the tip) the tip repels incoming electrons, while

in the p region (beneath the tip) the tip focuses tunneling holes. The actual

tip height used in the experiment20 could not go below 50 nm (because of the

50 nm thick BN layer separating the tip and the graphene sample). However,

this does not mean that the third scanning regime is experimentally inacces-

sible. Enhanced tip potentials can be realized by lowering the global electron

density n, or by increasing the tip charge q̃.

As stated above, we model this system from two perspectives, the quan-

tum and the classical one. The classical billiard model is the same as

that used in Ref. [118], while the quantum simulations are performed us-

ing KWANT,27 a software package for quantum transport.† In the classical

approach the edges are considered to be uniform and continuous, and the re-

flection of electrons at the edges is assumed to be specular. The magnetic field

in the quantum model is implemented through Peierls phase, as explained in

Chap. 5, and the resistances are obtained by applying the Landauer-Büttiker

formalism for a four-terminal86 and multi-terminal28 device (as also explained

in Chap. 2).

7.3 Scaling the tight-binding Hamiltonian

In order to simulate devices of similar sizes as those used in the experiment,20

we scale the graphene tight-binding Hamiltonian. As explained in Ref. [120],

a scaling coefficient sf is introduced. This coefficient increases the spacing

between the carbon atoms a = sfa0, and simultaneously decreases the nearest

neighbor hopping energy t = t0/sf . The scaling procedure allows for simula-

tions of systems with dimensions comparable to those used in actual experi-

ments (in order of microns), but with lesser number of tight-binding orbitals.

However, the scaling has its limits. Results for larger sf are less accurate,

particularly for higher energies (away from the linear part of the spectrum).

Close to the Dirac point the scaled system is still a good approximation of

the pristine graphene lattice. A very recent study on graphene magnetic

focusing121 used an alternative way to scale the tight-binding Hamiltonian.

They scaled the Fermi energy instead of the hopping term. Beside the scal-

ing procedure, this reference compares results of tight-binding and classical

†Modeling and calculations using the classical billiard model are performed by my

colleague Slavǐsa P. Milovanović.
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Figure 7.3: Dispersion relations of the 1st (a) and the 2nd (b) lead. The

1st and the 2nd lead connect the first and the second contact with the main

scattering region (contacts are labeled in Fig. 7.1). Leads in KWANT are

modeled as semi-infinite nanoribbons. The magnetic field is B = 0.1T.

Energy bands of pristine graphene are shown in orange, while those of the

scaled graphene (sf = 15.15) are shown by the black dashed curves. System

dimensions are ten times smaller than those used in Fig. 7.1. Since the scaling

procedure modifies the inverse (k) space, we translated the K-point of the

scaled system in (b), to match it with the K-point of the pristine graphene

lattice.

model, and also gives comparison with experimentally measured resistances.

To test the validity of the scaling procedure, we compare in Fig. 7.3 the

dispersion relations obtained using scaled Hamiltonian with those obtained

using the pristine graphene lattice. Since performing tight-binding calcu-

lations on a micrometer scale is computationally very demanding, we test

the scaling procedure on a system ten times smaller than that presented

in Fig. 7.1. The lattice scale of this smaller system (sf = 15.15) is compa-

rable to the lattice scale we use in the rest of the chapter to simulate the

micrometer-sized system shown in Fig. 7.1 (sf = 15.34). As expected, the

scaled dispersions match the pristine graphene lattice dispersions for low

energies (below 100 meV). Although the band minimal energies differ, the

scaled lattice is a good approximation for states away from the subband min-

ima. Note that the scale is chosen such that it preserves the metallic nature

of the armchair leads, as is seen in Fig. 7.3(a).

Since SGM experiments probe the local properties, it is necessary to de-

termine how scaling affects them. With that in mind, in Fig. 7.4 we compare

two current densities: one for scaled, and one for an unscaled lattice. Be-
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Figure 7.4: Normalized current density when current is injected from the

second lead: (a) pristine graphene lattice (sf = 1), and (b) scaled graphene

lattice (sf = 15.15). B = 1T, and EF = 80meV. The presented system is

ten times smaller than that in Fig. 7.1. SGM tip is not present.

side the loss in resolution (caused by a lesser number of carbon atoms), the

general current flow patterns are preserved with scaling, which confirms that

this method can be used to simulate SGM experiments.

7.4 Magnetic focusing

In this subsection we investigate the general transport properties of the focus-

ing device when no SGM tip is present. We are interested in how the focusing

resistance (Rm = R12,43) changes as a function of the magnetic field B, and

the electron density n (or Fermi energy). In general, as explained in previous

chapters, Rij,km refers to the resistance when current is injected from con-

tact i and collected at contact j, while voltage is measured between contacts

k and m (contacts and their corresponding leads are labeled in Fig. 7.1).

Ref. [20] reported several resistance peaks as a function of the applied field,
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Figure 7.5: Experimentally measured changes in the focusing resistance

(∆Rm) as a function of magnetic field and charge density (Fermi energy).

Figure taken from Ref. [20].

and these peaks were related with the current focusing. Figure 7.5 shows

experimentally measured changes in the resistance Rm (the figure is taken

from Ref. [20]). A clearly visible red region corresponds to the first focusing

peak, while the black region located at two times higher fields corresponds to

the second focusing peak. We simulate these measurements, and in Fig. 7.6

we present a comparison of the resistances obtained from both, quantum and

classical simulation. To match our color-maps with those of Ref. [20], in both

cases (quantum and classical) we subtract R0 = 28 Ω from numerically calcu-

lated R12,43. This value (R0) is very close to (Rmax
m +Rmin

m )/2. The resistances

obtained with the two methods agree both qualitatively and quantitatively.

The only difference is that resistances obtained with the quantum method

show a set of parabolic fringe lines at higher fields, coming from Landau

quantization. The classical method does not account for transversal quan-

tization in the leads, and for the existence of transverse modes, hence the

transmissions obtained classically need to be properly scaled before resistance

calculations. We perform this scaling by multiplying the classically obtained

transmissions with the approximate number of modes in the source lead4

Mi = 2
EF Wi

h̄vFπ
. (7.5)

Here index i refers to the leads, Wi is the width of the i-th lead, EF is the

Fermi energy in the i-th lead, vF is the graphene Fermi velocity, while coeffi-
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Figure 7.6: Change of the Rm = R12,43 resistance versus the magnetic field

and the electron density (Fermi energy) obtained from (a) quantum, and (b)

classical simulation. In order to be able to compare both results with those

published in Ref. [20], we calculate ∆Rm by subtracting R0 = 28 Ω from

numerically obtained R12,43. The white dashed lines mark the first three

focusing maxima, and they correspond to cyclotron radii of 1.4 µm, 0.7 µm,

and 0.47 µm. Labels A–F mark the (
√
n,B) points for which we present the

current density in Fig. 7.7.

cient 2 is added to account for contributions coming from the two valleys. The

graphene Fermi velocity vF in the tight-binding model is determined (to first

approximation) from the nearest-neighbour hopping energy as vF = 3|t|a/2h̄,
where a is the distance between neighbouring carbon atoms. For t = 2.7 eV,

and a = 1.42 Å we obtain vF = 873 893 m/s, which is the value that we use

in our classical model.

Since the cyclotron radius in graphene is proportional to the Fermi energy

Rc = EF/(evFB), and Fermi energy is proportional to carrier density EF =

h̄vF
√
πn, then

√
n = γRcB (where γ = e/(h̄

√
π)). In other words, for

equiradial lines,
√
n is a linear function of the applied magnetic field. In

Fig. 7.6 we mark three such lines (white dashed lines) for three cyclotron

radii (1.4 µm, 0.7 µm, and 0.47 µm) in order to match the first three focusing

maxima.

For narrow focusing leads (leads 2 and 3), resistance peaks appear each

time a multiple of a cyclotron diameter 2Rc matches the lead distance L.

However, if the lead widths (lR and lL) are comparable to the distance be-

tween them, it is reasonable to assume that focusing would occur only when

electron injected from the middle of the input lead exits in the middle of the
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Figure 7.7: Normalized total current density at different focusing fields: (A)

35mT, (B) 75mT, (C) 105mT, (D) 150mT, (E) 188mT, and (F) 223mT

(points A–F marked in Fig. 7.6). The current is calculated using the quantum

method. The electron density is n = 8.1× 1011 cm−2. Lead numbers for this

rotated system are shown in figure A. Black-dashed curves show elliptical

trajectories given by Eq. (7.6), and centered on the middle of the 2nd lead

(point O). Black and red full curves show the same trajectories, but now

centered at the corners of the 2nd lead (points O1 and O2). White circles in

E and F show cyclotron orbits for these two figures.

output lead. Two such trajectories are presented in Fig. 7.1. A simplified fo-

cusing formula, which includes the lead widths, would then be 2nRc = (L+l).

For L = 2 µm and l = 0.7 µm, the first three focusing radii are 1.35 µm,

0.675 µm and 0.45 µm, which approximately match the three lines shown in

Fig. 7.6. For cyclotron radii smaller than half of the lead width (0.35 µm)

focusing is no longer possible.

To test whether the three resistance peaks in Fig. 7.6 appear due to the

current focusing, we show in Fig. 7.7 the local current density for electrons

coming from the 2nd lead, for points A-F marked in Fig. 7.6(a). The current is

obtained using the quantum (tight-binding) model. Insets B, D, and F indeed

show high current concentration in the exiting (3rd) lead, which confirms our
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assumption. For stronger fields (insets D, E, and F) the current flows close

to the system lower edge (the left edge in Fig. 7.7) in an area one cyclotron

diameter wide. The reason why current spreads in an area one cyclotron

diameter wide, and not one cyclotron radius wide, is the following: in the

classical picture, electrons which enter the system perpendicularly to the

lower edge (i.e. parallel to the focusing leads) would spread approximately

one cyclotron radius away from the edge, since their trajectories consist of

semicircles (see the two trajectories in Fig. 7.1). On the other hand, electrons

entering the system almost parallel to the lower edge (i.e. normal to the

focusing lead direction) would make almost a full circle before they scatter

on the lower edge (see the two white circles in insets E and F in Fig. 7.7).

The current then spreads in a diameter-wide area due to these electrons. For

weak fields most of these electrons do not even make a full orbit, because

they exit into the 1st lead (see insets A and B in Fig. 7.7, where one part of

the current from the 2nd lead exits into the 1st lead).

Current in the system can be understood in terms of the cyclotron or-

bits. Based on the picture of classical trajectories presented in Ref. [122],

we plot three envelope curves (black-dotted lines) to mark three paths where

(according to the classical picture) the current is supposed to travel. Each

of these three curves is a part of an ellipse

(x− x0)
2 +

(

y − y0
2n

)2

= R2
c , n = 1, 2, 3, . . . (7.6)

centered on the middle of the input lead (x0, y0) = O (see point O in

Fig. 7.7B). It is clear that focusing occurs in insets B, D, and F, since for

these insets the elliptic curves pass through the 3rd lead. The input lead has

a finite width, hence these trajectories spread in space. The spread of current

density is delimited by elliptical curves defined by Eq. (7.6) (black and red

full curves in Fig. 7.7D), but now centered on two corners of the input lead

(see points O1 and O2 in Fig. 7.7B).

7.5 Scanning gate microscopy

In this part we investigate resistance maps obtained when SGM tip is present.

Experimental results presented in Fig. 7.8 show the evolution of the scanned

resistance with magnetic field and electron charge density. As we explain

below, the areas of suppressed resistance (red and orange areas) shown in

these maps correspond to imaged electron trajectories. In this subsection
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Figure 7.8: Experimentally measured SGM maps as a function of electron

density and magnetic field. Figure taken from Ref. [20].

we simulate these experimentally obtained resistance maps. We mentioned

above that there are three regimes in which the tip can operate, therefore we

additionally compare how scanning maps change in these three regimes.

Simulated resistance maps are presented in Fig. 7.9. In general, local

features of the SGM maps obtained with the two models (quantum and

classical) match well, and the two models also manage to capture some of

the experimental features (e.g. low resistance regions). This match between

the quantum and the classical model is expected since the system size is

larger than the electron wavelength, hence some of the interference effects are

suppressed. Figure 7.9 also confirms that on these scales a computationally

less demanding classical model manages to capture all the features obtained

with a more detailed atomistic model.

The first two rows in Fig. 7.9 show SGM maps for a repulsive (negatively

charged) tip, as it was used in the experiment.20 The calculated resistances

are very similar to the measured ones,20 and the main difference is that our

results posses some extra oscillations close to the upper edge (shown on the

right side in the rotated system in Fig. 7.9). As we show below, these features

originate from multiple electron scatterings between the tip and the upper

edge. The defining characteristic of all SGM maps obtained with repelling

tip is a region of suppressed resistance close to the lower edge. This region

evolves as magnetic field is increased and as shown in recent experiments, it
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Figure 7.9: Comparison of the SGM resistance maps obtained from quantum

(left) and classical (right) simulation. The two white stripes in the figures

mark the positions of the 2nd and the 3rd lead. Labels on the left mark the

electron density n, and the maximal change in the charge density introduced

by the tip ∆n. ∆Rm is calculated by subtracting R0 = (Rmax
12,43 + Rmin

12,43)/2

from R12,43 for each scan. Yellow-dashed line in the first row marks the mirror

symmetry axis.

can be connected with the cyclotron radius.115

Resistance maps obtained with the focusing (positively charged) tip (third

row in Fig. 7.9) convey less information than those obtained with a repelling

tip. Although the tip causes some change in the resistance, some other

effects, e.g temperature smearing, would even more degrade the obtained

resistance maps. Therefore a tip in the focusing regime is probably not the

best choice to probe electron transport. The third (mixed) regime seems to

produce the largest change in the resistance: R-maps obtained in this regime

show almost identical features as those obtained with a repelling tip, but the

sample response is much better due to a stronger repelling force.

Previous (classical) simulations of magnetic focusing20 considered only

electron transmissions between the two focusing leads, and not the resis-

tances. Here, we verify that this approach is valid. In Fig. 7.10 we compare
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Figure 7.10: Transmission maps (1st column on the left) and normalized

electron current densities (columns 2–5). In the second column we present

current density with no SGM tip, and in the last three columns we show

current densities for specific tip positions (white circles). The four rows cor-

respond to the same four n, ∆n configurations as used in Fig. 7.9. Magnetic

field is B = 50 mT. In insets 3–5, and 8–10 we mark the direct trajectories

connecting the corners of the 2nd lead with the tip position. The white lines

in the first column delimit the areas relevant for focusing.

the transmission maps between the two focusing leads (T32, left column) with

the current densities (columns 2–4) for some specific tip positions (white and

green circles). Calculated transmissions in the 1st column of Fig. 7.10 re-

semble the corresponding R-maps in Fig. 7.9 (columns for B = 50 mT in

Fig. 7.9). Most of the features of the resistance maps are determined by the

tip position relative to the two corners of the injector lead. In each of the

insets 3–5, and 8–10, we show two cyclotron orbits that directly connect the

tip with the two corners (two white arcs in each of these insets). As shown

in these insets, a trail of suppressed current is seen as a shadow that the tip

leaves behind itself. The shadow is situated mostly in the area enclosed be-
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tween the two cyclotron orbits. These two orbits (originating at two corners

of the 2nd lead) mark the boundary of a set of direct cyclotron trajectories

that connect the tip with the 2nd lead. The current is suppressed in these

areas, because the tip blocks these trajectories. The diverted current forms

an arc around the tip, and it flows away from the blocked area (see the two

red arrows in inset 9, showing the flow direction of the diverted current).

Similar explanation for the diverted current is given in Ref. [116]. Our in-

terpretation (based on the two delimiting orbits) also explains the areas of

strongly suppressed resistance. Insets 8 and 9 show two positions of the tip

lying on the edge of the resistance suppressed region (see inset 6). For any

point lying on a line between these two points, the trail of blocked current

coincides with the 3rd lead. From these simple geometric relations, we see

that the area of suppressed conductance is delimited by two cyclotron orbits

that directly connect inner and outer corners of the focusing leads (white

curves in the 1st column of Fig. 7.10). The maximal resistance suppression

is expected at the crossing point of orbits connecting inner and outer corners

(see the two green curves in inset 11, and also the two cyclotron orbits in

inset 3). Based on the previous analysis, we conclude that the finite width

of the suppressed resistance region is an indirect consequence of the finite

width of the two focusing leads.

The results for a focusing tip reveal effects opposite to those of the re-

pelling tip (compare the tip influence on the current densities in the second

and the third row in Fig. 7.10). The focusing tip leaves a trail of enhanced

current instead of a shadow, as seen in the case of a repelling tip (compare

insets 10 and 15). In the last row, a tip in the mixed regime shows a much

darker shadow behind itself as compared to the repelling tip. The mixed

nature of the tip manifests itself in a current profile, where some of the cur-

rent that manages to tunnel through the potential induced by the tip, exits

focused on the other side.

7.6 Resistance maps of a six-terminal device

Although previous resistance maps capture the main features reported in

the experiment20 (e.g. they show semicircular areas where the resistance is

reduced, and these areas coincide with the focusing trajectories), they posses

some additional features which were not observed experimentally. The major

difference is that the simulated resistance maps are symmetric with respect to

mirror reflection along the middle line of the system (the yellow-dashed line
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in the first row of Fig. 7.9). The cyclotron orbits imaged in the experiment20

(Fig. 7.8) were not perfectly symmetric with respect to this transformation.

This asymmetry could originate from several different sources. For example,

it could come from local impurity charges trapped in the sample. Due to the

electric forces coming from these charges, transmitted electrons could divert

from their ideal circular trajectories. Although this is a possible explanation

for the asymmetry, it is unlikely in samples sandwiched between h-BN, hence

here we will discuss other possible sources.

Our initial assumption was that the asymmetry originates from a dif-

ference in widths of the two focusing leads (the 2nd and the 3rd lead). We

tested this by changing the width of the 3rd lead, and recalculating some of

the resistance maps of Fig. 7.9. Using a wider (l = 1.2 lL), or a narrower

(l = 0.8 lL) 3rd lead did not significantly change the symmetry of the resis-

tance maps, and can not account for what is observed in the experiment.

Our second assumption was that the asymmetry originates from an asym-

metry in the tip-induced potential. An uneven distribution of charges on top

of the tip, or a tip not properly aligned to the vertical (z) axis would cre-

ate an anisotropic image-charge density, and consequently an anisotropic tip

potential. We tested this by modifying the eccentricity of an elliptic charge

density, but the obtained resistance maps were not significantly modified. In

general, we could not reproduce the measured resistance asymmetries in an

impurity-free four-terminal device.

Since the original experiment was performed in a six-terminal device, in

order to check how resistance maps change for different configurations of the

voltage probes, we add two new leads to our system. We label these new

leads as lead 5, and lead 6, and they are placed opposite to the two focusing

leads. Our system is now a symmetric, six-terminal Hall bar often used in

standard quantum Hall measurements.

Resistance maps of this system are shown in Fig. 7.11, for three differ-

ent cases. The first row presents data for the same probe configuration as

in Fig. 7.9, but now with two new leads included. When compared with

Fig. 7.9, the new leads do not destroy the characteristic features in the re-

sistance maps, yet they modify them. The region of suppressed resistance

is still delimited with two cyclotron orbits connecting the outer and inner

corners of the two focusing leads (violet and green curves in the first row of

Fig. 7.11), and maximal resistance suppression is still determined by the or-

bits connecting the middle lines of the two focusing leads (the white curves).

Also, the order of magnitude of calculated resistances does no change.
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Figure 7.11: Resistance maps of a six-terminal device for different mea-

surement configurations: ∆R12,43 (1st row), ∆R12,53 (2nd row), ∆R12,63 (3rd

row), and for different magnetic fields (columns). Global electron density is

n = 8.1× 1011 cm−2, and maximal tip-induced change in the charge density

is ∆n = 5 × 1011 cm−2. All resistances are obtained using the quantum

(tight-binding) approach. Resistance R0 is calculated and subtracted from

every inset, similarly as in Fig. 7.9. Lead numbers are presented in the left

figure in the second row.

Yellow curves in the first row of Fig. 7.11 (for 30mT, and 50mT) show

indirect trajectories that connect the two focusing leads. In the first case

(for 30mT), we present a set of trajectories where electron is scattered three

times at the edges, while in the second case (50mT), a set of trajectories

with a single scattering. In order to draw these trajectories, we assume elas-

tic scattering at the edges, with the normal component of electron velocity

(component normal to an edge) changing its sign. In the same manner as

with the direct trajectories, we show only those trajectories that connect the

two inner and two outer lead corners, however there is another set of indirect

trajectories that connect the inner with outer corners. Areas of suppressed

resistance near the edges coincide with these indirect trajectories, while ar-

eas of enhanced resistance lay in-between these trajectories. It is important
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to notice that these trajectories were not observed in the experiment.20 One

of the explanations is that they occur in very narrow regions, and this re-

quires perfect elastic scattering and focusing of electrons. This focussing was

strongly suppressed in the experiment, because the sample edges were not

perfectly ordered, nor were the electrons perfectly elastically scattered, An-

other factor which is important is the modification of electron charge density

near the edges. Ref. [123] reported (based on the self-consistent solutions of

the Poisson’s equation) significant deviations of density near the edges—as

compared to the bulk density. This difference in charge density, but also

edge roughness, is one of the explanations why finer details (related to indi-

rect trajectories) were not observed in the experiment.20

A recent work on magnetic focusing124 reported anomalous oscillations of

the Hall resistance with magnetic field. These oscillations appear between

the classical (focusing) regime and the quantum Hall regime, and they were

associated with the interferences of plane wave parts of the edge states. An-

other feature reported in Ref. [124] is different behaviour of the current near

zigzag as compared with armchair edges. As our previous results show, we

do not observe such effects, and this is mostly because we consider a system

between the first and the second focusing peak. As for the edge current, we

only studied the case of an armchair edge, and there is no particular current

concentration near the edges similar to that reported in Ref. [124].

The second row in Fig. 7.11 corresponds to probe configuration actually

used in the experiment.20 A slight asymmetry is introduced by keeping the

current probes (leads 1 and 2), and changing the voltage probes (from mea-

suring V43, to measuring V53). Although the suppressed region is still fairly

symmetric, an asymmetry is evident if we compare upper and lower parts of

the R-maps. The third row shows R-maps obtained by measuring the volt-

age across the device (V63). A clear asymmetry is evident for lower fields. In

general, the measured voltage depends mostly on how much of the electron

current is scattered into the voltage leads. For stronger fields, most of the

current is located away from the new leads, on the lower edge, and therefore

the scattering is negligible.

Since we demonstrated that most of the transport in this system is deter-

mined by considering direct electron orbits, the interface between the focusing

leads and the main region might play a significant role. In this chapter we

considered only leads with perfect (90◦ degrees) corners, but due to an im-

perfect etching these corners might be more smooth, thus allowing for some

additional effects (e.g. new set of direct trajectories).
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7.7 Summary

In this chapter we performed simulations of the scanning gate measurements

in graphene magnetic focusing devices. Two methods (quantum and classi-

cal) were used to obtain the system transmissions. These transmissions were

then applied in the (multi-terminal) Landauer-Büttiker formula to calculate

the device resistances. In order to perform the quantum simulations, the

graphene tight-binding Hamiltonian needed to be properly scaled.

In case without the SGM tip, the focusing resistance Rm(E,B) reveals

three focusing peaks, which are related with three cyclotron radii. These

radii were calculated using the distance between the two focusing leads, but

only after including the lead widths.

Depending on the voltage on the back-gate and the charge accumulated

on the tip, we differentiate between six different regimes in which the tip can

operate. Three out of these six regimes are unique. Due to the large system

size, all the features of the resistance maps are captured with the classical

model, and can be explained by tip influencing the direct cyclotron orbits

coming from the 2nd lead. Our results show that the largest change in the

resistance is obtained for a tip operating in the mixed regime (simultaneously

repelling and focusing electrons). It is important to stress that, as compared

to experiments in classical 2DEG,117 in graphene (due to the absence of an

energy gap) the tip can induce a pn junction which leads to an enhanced

response of the sample, due to the stronger backscattering. This third (or

mixed regime) was not realized in recent experiments,20,115 and therefore

presents an interesting regime to be investigated in future experiments. The

spatial asymmetry in experimentally obtained R-maps can be partially ex-

plained by the specific configuration of the voltage probes, but we do not rule

out other sources, such as charged impurities or edge imperfections produced

during the etching process.
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CHAPTER 8

Summary and outlook

In this thesis we theoretically investigated the scanning gate microscopy

technique (SGM), and its application in imaging 2D electron transport in

graphene and semiconducting heterostructures. Beside SGM, we studied

electron transport in nanostructured graphene without SGM tip. In the

course of these investigations two distinct numerical methods were used: the

time dependent propagation of wave packets, and the tight-binding wave

function approach as implemented in the KWANT software package.

Scanning gate microscopy is a relatively new measuring technique, and

based on the two examples presented in this thesis (Chaps. 3 and 7) the poten-

tial for its application in characterization of electron transport becomes evi-

dent. In combination with other scanning techniques (e.g. AFM), SGM can

provide additional information useful in determining the connection between

the structure of a nanodevice and its conductance. As shown in Chaps. 3

and 7, the SGM method can be applied on different materials and in different

transport regimes. The only prerequisite is that the electron gas is situated

close to the surface. The results presented in Chap. 3, SGM can be used

to study quantum phenomena where the SGM tip interacts with electron

waves, and the resulting conductance map shows interference effects. The

second case (investigated in Chap. 7) shows that the technique can be used

to investigate ballistic transport on a micrometer scale to image classical

electron trajectories. The technique can be used in other cases (not con-
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sidered in this thesis) to study localization effects in quantum dots, where

characteristic concentric halos appear around the centers of localization. All

these results point towards the fact that when interpreting the SGM maps,

it is important to take into account not only the characteristics of 2DEG,

but also the regime in which the measurements are conducted. Depending

on the case, the tip-induced potential can be interpreted as a movable obsta-

cle that backscatters the incoming electrons, or as a tool to locally control

the electronic density (as in the case of localization, where the tip acts as a

movable top gate), or as a lens which casts a shadow behind itself (as in the

case of magnetic focusing experiments).

The two cases of SGM application which we investigated in this thesis are

mutually very different. In the first case (AB rings), we focused on a system

whose size was comparable to the size of the tip-induced potential. Because of

this the whole system could be considered as quasi-one-dimensional from the

SGM tip point of view. On the other hand, in the second case (the graphene

magnetic focusing device) the tip-induced potential was several times smaller

than the studied device, and this allowed for imaging of ballistic electron tra-

jectories. Both examples demonstrated that the most important property in

SGM experiments is the tip-induced potential. From the experimental point

of view, further characterization of the tip potential is necessary in order

to provide better control of future SGM experiments. Experiments such as

that performed in Ref. [23] showed that 2DEG nanostructures, beside being

objects of experimental study, could also be used as nano-measuring devices.

Future experiments could implement quantum dots as local potentiometers

placed in the vicinity of other nanostructures with the special task of mea-

suring the SGM tip potential. When it comes to theory of SGM, further

investigation between the measured conductance change and the local prop-

erties such as local current density is necessary in order to provide better

interpretation of the measured conductance maps. Unlike in STM measure-

ments, the induced SGM tip potential is not localized around one atom, or

small group of atoms, instead it spreads in wider areas. The measured con-

ductance change then does not depend on the local current right beneath the

tip, but on the average current in the area of the tip-induced potential. In

other words, a connection between the local current density and the measured

conductance change is not a simple point-to-point function, but a convolu-

tion which depends on the tip-induced potential. Ideally, an ultimate goal

of a theoretical study would be to find an inverse transform, which together

with the measured tip potential and the conductance map would produce
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the local current density. This transform function is still missing. Similar

work was previously done in Ref. [125] where a Hall bar was used to map

inhomogeneous magnetic fields. A transform function was used to connect

the Hall bar response (the Hall resistance) to inhomogeneous magnetic field.

In case of classical ballistic transport (as in Chap. 7), when tip potential is

narrow as compared to the whole device, the interpretation of conductance

maps is straightforward, and as we showed in Chap. 7, the tip is imaging

classical electron trajectories.

Beside scanning gate microscopy, in Chaps. 4, 5, and 6 we focused on

graphene without the SGM tip. Our initial goal was to investigate SGM mea-

surements in AB rings made out of graphene (as it was done in Ref. [126]),

however the initial results were hard to interpret. Therefore, in order to

gain familiarity with graphene, in these three chapters we investigated elec-

tron transport in static electric potentials, with or without magnetic field.

Combined together, these three chapters show the rich physics of graphene,

which in most cases is a consequence of its specific electronic structure. Addi-

tionally, these three chapters provided us with insights necessary to perform

calculations on SGM in graphene (Chap. 7).

In the first of these three chapters (Chap. 4) we examined a side-gated

graphene nanoribbon. This system showed the importance of graphene edges

on electron transport, and it was a good starting point for understanding

transport in other graphene structures, since in all systems leads are mod-

eled as semi-infinite graphene nanoribbons. We showed that, depending on

the ribbon orientation and width, a finite gap can be opened in graphene

spectrum. Furthermore, a potential on the edges can create a constriction

which transmits electrons only at specific (resonant) energies. Ribbons with

zigzag edges are particularly interesting, because they offer the possibility

to completely switch off or on electron current by simply missaligning the

side-gates.

In Chap. 5 we introduced disorder in graphene lattice by randomly remov-

ing carbon atoms. Although the Hall resistance of this system was not sig-

nificantly modified by disorder, new states appeared in-between the Landau

levels, and these states manifested themselves in a nonzero bend resistance.

In the last of these three chapters (Chap. 6), we studied the influence of four

side gates on the quantum Hall effect in graphene. The importance of this

chapter is in its demonstration of the relevance of snake states on electron

transport in magnetic field. Snake states (or guided states, as we sometimes

call them) should appear around equipotential lines where the electron en-
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ergy matches the energy of a graphene Landau level. After combining all

these insights on transport in graphene with no perturbing SGM potential,

we focus in the Chap. 7 on SGM experiments.

Graphene is a very active area of research and previous topics showed

only one small part of open questions regarding transport in graphene. At

the present moment, we see several directions for future research. From the

theory point of view, a determination of the SGM tip potential in graphene

using a self-consistent Poisson solver would provide more reliable parameters

for modeling SGM experiments. One of the open questions also concerns

with the SGM imaging of guided states. To our knowledge this question

has not been addressed neither experimentally nor theoretically. Magnetic

focusing experiments in graphene studied in previous chapter showed that

fine control of electron trajectories in graphene could be achieved with ap-

plication of weak magnetic fields. Considering similarities between electrons

in graphene and light particles, graphene has recently become a suitable

material for applications in electron optics. Electron analogues of optical

devices can be build in graphene, and SGM microscopy is one of the ways to

test for characteristics of these devices. Building electron optical devices in

graphene would require better control of electron motion, and construction

of various optical elements (collimated electron sources, electron detectors,

electron lenses, beam splitters etc). Further analysis of edge effects, disorder,

and electrostatic gating, and how would they will affect different parts of an

electron optical device is needed.
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CHAPTER 9

Samenvatting

In deze thesis onderzochten we de scanning gate microscopie techniek (SGM)

en de toepassingen hiervan voor het bestuderen van twee-dimensionaal (2D)

elektronentransport in grafeen en halfgeleider heterostructuren. Naast SGM,

bestudeerden we ook elektronentransport zonder SGM tip in grafeen nanos-

tructuren. Tijdens deze studies werd gebruik gemaakt van twee verschillende

numerieke methoden: de tijdsafhankelijke voortplanting van golfpakketten

en de dichte-bindings golffunctie benadering zoals deze beschikbaar is in het

KWANT software pakket.

Scanning gate microscopie is een relatief nieuwe meettechniek, gebaseerd

op de twee voorbeelden die we in deze thesis presenteren (Chaps. 3 en 7)

wordt het potentieel voor de toepassing hiervan voor de karakterisatie van

elektronentransport duidelijk. In combinatie met andere scanningstechnieken

(b.v. AFM), kan SGM bijkomende informatie verschaffen die nuttig is voor

het bepalen van de relatie tussen de structuur van een nanocomponent en

zijn geleidbaarheid. Zoals aangetoond in Chaps. 3 en 7, kan de SGM meth-

ode toegepast worden op verschillende materialen en in verschillende trans-

port regimes. De enige vereiste is dat het elektronengas zich dicht tegen

het oppervlak bevindt. De resultaten, voorgesteld in Chap. 3, tonen dat

SGM gebruikt kan worden om kwantumfenomenen te bestuderen waar de

SGM tip met de elektrongolffunctie interageert en de resulterende conduc-

tantiemap interferentie effecten vertoont. Het tweede geval (bestudeerd in
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Chap. 7) toont dat de techniek kan gebruikt worden om ballistisch transport

op micrometerschaal te bestuderen en zo klassieke elektronbanen te visualis-

eren. De techniek kan ook gebruikt worden in andere gevallen (niet in deze

thesis beschouwd) om lokalisatie-effecten in kwantumpunten te bestuderen,

waar karakteristieke, concentrische halo’s onstaan rond de lokalisatiecentra.

Al deze resultaten geven aan dat bij het interpreteren van SGM maps, het

belangerijk is om niet enkel rekening te houden met de eigenschappen van

het 2D elektronengas, maar ook van het regime waarin de metingen uitgevo-

erd werden. Afhankelijk hiervan kan de potentiaal gëınduceerd door de tip,

gëınterpreteerd worden als een obstakel dat inkomende elektronen reflecteert,

of als een hulpmiddel om de lokale toestandsdichtheid te beinvloeden (zoals

bij lokalisatie, waar de tip fungeert als een beweegbare top gate) of als een

lens die een schaduw achter zichzelf werpt (zoals bij magnetische focusering-

sexperimenten).

De twee voorbeelden van toepassingen van SGM die in deze thesis bestu-

deerd werden zijn erg verschillend. In het eerste voorbeeld (Aharonov-Bohm

(AB) ringen), bekeken we een systeem waarvan de grootte vergelijkbaar is

met de grootte van de door de tip gëınduceerde potentiaal. Hierdoor kan het

hele systeem, vanuit het standpunt van de SGM tip, beschouwd worden als

quasi 1-dimensionaal. Bij het tweede voorbeeld was de potentiaal die door

de tip gëınduceerd wordt veel kleiner dan het beschouwde systeem, dit leidde

tot de mogelijkheid om de banen van ballistische elektronen te visualiseren.

Beide voorbeelden tonen aan dat de belangerijkste eigenschap van de SGM

experimenten, de door de tip gëınduceerde potentiaal is. Vanuit een experi-

menteel standpunt, is een verdere karakterisatie van deze potentiaal nodig om

een betere beheersing van toekomstige SGM experimenten te bekomen. Ex-

perimenten zoals deze uitgevoerd in Ref. [23] tonen aan dat nanostructuren

met een 2D elektronengas gebruikt kunnen worden als nano-meettoestellen.

Toekomstige experimenten kunnen kwantumpunten gebruiken als lokale po-

tentiometers om de SGM potentiaal te meten nabij andere nanostructuren.

Wat de theorie achter SGM betreft, is er verder onderzoek nodig naar de re-

latie tussen de waargenomen conductantie en eigenschappen zoals de lokale

stroomdichtheid om tot een betere interpretatie van de gemeten conduc-

tantiemaps te komen. In tegenstelling tot STM metingen, is bij SGM de

tip-gëınduceerde potentiaal niet gelokaliseerd rond één of zelfs enkele atomen,

maar spreidt deze zich verder uit. De waargenomen conductantie is daardoor

niet enkel afhankelijk van de stroom net onder de tip, maar van de gemiddelde

stroom in het gebied waarover de potentiaal zich uitstrekt. Met andere woor-
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den, de relatie tussen lokale stroomdichtheid en de gemeten conductantie is

geen simpele één-op-één afbeelding, maar een convolutie die afhankelijk is van

de tip-gëınduceerde potentiaal. Het ultieme doel van een theoretische studie

zou het vinden van een inverse transformatie zijn, die in combinatie met de

gëınduceerde potentiaal en de conductantiemap, de lokale stroomdichtheid

zou opleveren. Deze transformatie ontbreekt voorlopig nog. Gelijkaardig

onderzoek werd uitgevoerd in Ref. [125] waar een Hall sensor werd gebruikt

om inhomogene magnetische velden te mappen. Een transformatie func-

tie werd geruikt om de Hall weerstand te linken met een magnetisch veld.

In het geval van klassiek, ballistisch transport (zoals in Chap. 7), wanneer

de tip-potentiaal kleiner is dan het gehele systeem, is de interpretatie van

conductantiemaps voor de hand liggend en zoals we toonden in Chap. 7,

visualiseert de SGM tip klassieke elektronbanen.

Naast scanning gate microscopie, bekeken we in Chaps. 4, 5, en 6 grafeen

zonder de SGM tip. Ons oorspronkelijk doel was om SGM metingen te

bestuderen in AB ringen gemaakt van grafeen (zoals in Ref. [126]), echten

de initiële resultaten waren echter moeilijk te interpreteren. Daarom hebben

we, om vetrouwd te geraken met grafeen, in deze drie hoofdstukken elektro-

nentransport in statische elektrische potentialen onderzocht met en zonder

de aanwezigheid van magnetische velden. Tesamen tonen deze drie hoofd-

stukken de rijke fysica van grafeen, die meestal voortvloeit uit de specifieke

elektronische structuur van het materiaal. Bovendien brachten deze hoofd-

stukken ons de nodige inzichten om SGM berekeningen op grafeen uit te

voeren (Chap. 7).

In het eerste van deze drie hoofdstukken (Chap. 4), onderzochten we een

nanolint van grafeen met een zijdelingse gate. Dit systeem toonde het belang

van de grafeenranden voor elektronentransport en het vormde een goed start-

punt voor het begrijpen van transport in andere grafeenstructuren, aangezien

elektrische contacten in alle systemen gemodeleerd worden als half-oneindige

grafeen nanolinten. We toonden aan dat afhankelijk van de oriëntatie en

breedte van het nanolint, er zich een energie kloof kan vormen in het elektro-

nisch spectrum van grafeen. Bovendien kan een potentiaal aan de randen een

constrictie vormen die enkel elektronen met specifieke (resonantie) energieën

doorlaat. Nanolinten met zig-zag randen zijn bijzonder interessant omdat zij

de mogelijkheid bieden om de elektronenstroom volledig aan en af te zetten

door de zijdelingse gates al dan niet te aligneren.

In Chap. 5 introduceerden we wanorde in het rooster van grafeen door

willekeurige atomen te verwijderen. Alhoewel de Hall weerstand van dit sys-
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teem niet significant wijzigde ten gevolge van deze wanorde, verschenen er

nieuwe toestanden tussen de Landau niveaus, en deze toestanden resulteer-

den in een eindige buigingsweerstand. In het laatste van deze drie hoofd-

stukken (Chap. 6), bestudeerden we de invloed van vier zijdelingse gates op

het kwantum Hall effect in grafeen. Het belang van dit hoofdstuk zit in het

aantonen van de relevantie van slangachtige banen op het elektronentrans-

port in aanwezigheid van een magnetisch veld. Slangtoestanden (of geleide

toestanden zoals soms genoemd) verschijnen rond equipotentiaallijnen waar

de energie van de elektronen gelijk is aan de energie van een Landau niveau

in het grafeen. Nadat we alle inzichten over transport in grafeen zonder SGM

potentiaal combineerden, focusten we ons in Chap. 7 op SGM experimenten.

Grafeen is een erg actief onderzoeksdomein en vorige studies bekeken

enkel een klein deel van de nog open vragen betreffende transport in grafeen.

Momenteel zien we verschillende paden voor verder onderzoek. Vanuit een

theoretisch standpunt zou het bepalen van de SGM tip-potentiaal in grafeen,

gebruik makende van een zelf-consistente Poisson oplosser, meer betrouw-

bare parameters opleveren voor het modelleren van SGM experimenten. Nog

een open vraag betreft de beeldvorming van geleide toestanden met behulp

van SGM, voor zover wij weten is deze vraag noch theoretisch, noch exper-

imenteel behandeld. Magnetische focuseringsexperimenten in grafeen toon-

den aan dat een zeer fijne beheersing van de banen van elektronen in grafeen

reeds bekomen kan worden met erg zwakke magnetische velden. Gezien de

overeenkomsten tussen elektronen in grafeen en lichtdeeltjes, is grafeen recent

een geschikt materiaal geworden voor toepassingen in elektronenoptica. Elek-

tron varianten van optische toestellen kunnen gemaakt worden met grafeen

en SGM is één van de manieren om de eigenschappen hiervan te testen.

Het construeren van deze optische toestellen in grafeen, vereist een betere

controle van de beweging van elektronen en de constructie van verschillende

optische elementen (gecollimeerde elektronbronnen, elektron detectors, elek-

tron lenzen, bundelsplitters enz.). Verdere analyse van randeffecten, wanorde

en elektostatische gating en hoe zij verschillende delen van een optisch toestel

bëınvloeden is bovendien nodig.
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APPENDIX A

Force field in classical SGM simulation

The Lorentz force acting on an electron in an electromagnetic field is given

by

F = −e (E+ v×B) ,

which in 2D case (when there is no electric field) can be written as

F = ma = −e

∣

∣

∣

∣

∣

∣

ex ey ez
vx vy 0

0 0 B

∣

∣

∣

∣

∣

∣

= −evyBex + evxBey

In graphene, if we replace the mass term m with a dynamical mass m∗ =

h̄
√
πn/vF , we get

a = F/m∗ =
eB

h̄
√
πn

vF (−vyex + vxey) =
eB

EF

v2F (−vyex + vxey) .

The SGM tip changes the local Fermi energy, and consequently it modifies

the acceleration. However, the second (more important) contribution comes

from the tip induced potential. This potential effectively creates an in-plane

electric field in the graphene sample, and this field E = ∇U(r)/e produces

additional force acting on electrons

F = −∇U(r).
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Since global charge density can be considered constant, previous force can

be rewritten as

F = ∇EF (r).

Repeating the same procedure as in the case when there was no potential,

i.e. expressing the force using the dynamical mass, and expressing the local

Fermi energy using the local charge density EF (x, y) = h̄vF
√

π(n0 +∆n(x, y)),

we obtain

a =
1

2
v2F

∇n(r)

n(r)
.

Here, a general relation

∇

√

f(x, y) =
1

2

1
√

f(x, y)
∇f(x, y)

is used to obtain the previous expression. Again, using the fact that the

global charge density is constant, the acceleration can be written as

a =
1

2
v2F

∇ (∆n(r))

n0 +∆n(r)
.

The only thing left is to obtain the gradient of the tip-induced charge

density

∆n(x, y) =
q̃h

[

(x− xtip)
2 + (y − ytip)

2 + h2
]3/2

.

Along the x direction

∂

∂x
∆n(x, y)ex = −3∆n(x, y)

(x− xtip)ex

(x− xtip)
2 + (y − ytip)

2 + h2
,

and along the y direction

∂

∂y
∆n(x, y)ey = −3∆n(x, y)

(y − ytip)ey

(x− xtip)
2 + (y − ytip)

2 + h2
.

From these two derivatives, we can write the components of the acceleration

vector

ax = −3

2
v2F

∆n(x, y)

n0 +∆n(x, y)

(x− xtip)

(x− xtip)
2 + (y − ytip)

2 + h2
,

and

ay = −3

2
v2F

∆n(x, y)

n0 +∆n(x, y)

(y − ytip)

(x− xtip)
2 + (y − ytip)

2 + h2
.

This acceleration is added to that when there is no tip-induced potential.

An interesting feature of this acceleration is that it becomes infinite in areas

where the local Fermi energy n0 +∆n is zero.
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APPENDIX B

Analytical expression for the modified vector

potential

Starting from scalar functions F (x, y), we want to derive the analytical ex-

pression for the modified vector potential A′ = A + ∇F . The function

F (x, y) is defined as

F (x, y) = F2(x, y) + F4(x, y)

=
1

2
Bxy

[

1 + tanh

(

2
y − yu
d

)]

+

1

2
Bxy

[

1 + tanh

(

2
yd − y

d

)]

, (B.1)

and since
∂

∂x
tanh ξ(x) =

(

1− tanh2 x
) ∂

∂x
ξ(x), (B.2)

we can derive two helpful expressions

∂

∂y
tanh

(

2
y − yu
d

)

=

[

1− tanh2

(

2
y − yu
d

)]

∂

∂y

(

2
y − yu
d

)

=
2

d

[

1− tanh2

(

2
y − yu
d

)]

, (B.3)

157



and
∂

∂y
tanh

(

2
yd − y

d

)

= −2

d

[

1− tanh2

(

2
yd − y

d

)]

, (B.4)

which we will use to calculate the gradient

∇F (x, y) =
∂

∂x
F (x, y)ex +

∂

∂y
F (x, y)ey. (B.5)

Because F (x, y) is a sum of two functions, we can calculate the gradient for

each of theses functions separately

∇F2(x, y) =
1

2
By

[

1 + tanh

(

2
y − yu
d

)]

ex +

1

2
Bx

[

1 + tanh

(

2
y − yu
d

)]

ey +

Bxy
1

d

[

1− tanh2

(

2
y − yu
d

)]

ey, (B.6)

and

∇F4(x, y) =
1

2
By

[

1 + tanh

(

2
yd − y

d

)]

ex +

1

2
Bx

[

1 + tanh

(

2
yd − y

d

)]

ey +

−Bxy1
d

[

1− tanh2

(

2
yd − y

d

)]

ey. (B.7)

Summing these two expressions, we obtain

∇F (x, y) =
1

2
By

[

2 + tanh

(

2
y − yu
d

)

+ tanh

(

2
yd − y

d

)]

ex +

1

2
Bx

[

2 + tanh

(

2
y − yu
d

)

+ tanh

(

2
yd − y

d

)]

ey +

Bxy

d

[

tanh2

(

2
yd − y

d

)

− tanh2

(

2
y − yu
d

)]

ey. (B.8)

When we add this modification to the starting (unmodified) vector potential

AH = −Byex, we obtain
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AH +∇F =
1

2
By

[

tanh

(

2
y − yu
d

)

+ tanh

(

2
yd − y

d

)]

ex +

1

2
Bx

[

2 + tanh

(

2
y − yu
d

)

+ tanh

(

2
yd − y

d

)]

ey +

Bxy

d

[

tanh2

(

2
yd − y

d

)

− tanh2

(

2
y − yu
d

)]

ey, (B.9)

which is the expression used to plot the vector potential in Fig. 5.4 in Chap-

ter 4.
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