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Abstract

In this thesis, we study the possibility of positronium, an atom formed by a
positron and an electron, bound states near the surface of the topological in-
sulator Bi2Te2Se and graphene. The overlap of the bound state’s wavefunction
with the material can be used to calculate properties which are relevant in
positron spectroscopy techniques. The description to determine such bound
states is entirely based on quantities that can be obtained from first-principles.
We calculate these quantities with the linearized augmented plane wave method
approach to density-functional theory. In this first-principles study, we investi-
gate if the edge states that exist near the surface of topological insulators have
an important effect on the positronium bound state. For both materials, we
present the bound state’s energy and wavefunction. At the end of this thesis,
we propose an improved model for the positronium bound state near the surface
of a material.
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Chapter 1

Introduction

In this general introduction to this thesis, we state the problem we deal with and
we motivate why it is relevant. At the end of the chapter, we give an overview
of how the rest of the thesis is built up.

1.1 Positron spectroscopy

After the theoretical prediction of the existence of the positron in 1928 by Dirac
and the first experimental observation of the particle by Anderson in 1933,
positron-electron annihilation processes were extensively studied in the following
two decades. During this period, experimental techniques employing positrons
were beginning to be developed. In the late 1960’s a couple of important papers
appeared that showed the sensitivity of positrons to lattice defects in mate-
rials. The progress in the 1980’s, from the experimental side as well as the
development of the theory of positrons in semiconductors and defects, lead to
a significant increase in the usage of positron spectroscopy in material research
since the early 1990’s.
Compared to other experimental techniques for defect identification, positron-
spectroscopy excels at characterizing vacancy-type defects. This is easy to un-
derstand because the ions will strongly repel the positively charged positron and
the latter will thus experience vacancies as attracting centers. The two most
frequently used techniques are the positron lifetime spectroscopy and Doppler
broadening (of the positron-electron annihilation radiation) spectroscopy. The
first technique measures how long the positron survives before annihilating with
an electron of the material and relies on the fact that the annihilation rate
decreases if the electron density is lower. The information included in these
measurements is mainly the size of the vacancies, which can reveal what atoms
are missing and if clusters of vacancies are present. The second technique mea-
sures the momentum distribution of the annihilating electron-positron pair. If a
positron gets trapped in a vacancy defect, it can annihilate with the electrons of
the surrounding atoms. Due to the distinct core electron structure of each ele-
ment, the Doppler broadening technique reveals information about the chemical
environment of the vacancy defects. Because of its sensitivity to vacancy-type
defects, positron spectroscopy is also often used in the study of polymers and
their surfaces [22]. The application of positron-spectroscopy is, however, not
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CHAPTER 1 : Introduction

limited to the study of vacancies alone and the application of these techniques
is being used to study a variety of systems. As an example, a paper recently ap-
peared that shows that positron spectroscopy is a sensitive technique to probe
the surface properties of quantum dots because positrons get trapped at the
surface of these nanoparticles [15].
It is not our intension here to go into the details of these experimental tech-
niques but rather motivate the rest of this thesis. Therefore we briefly describe
the different scenarios of what can happen with a positron in a sample. Af-
ter a positron has been fired towards a sample, it quickly loses its momentum
and then lives in the order of ∼ 100 ps in thermal equilibrium with its en-
vironment. In the annihilation process, in which momentum and energy are
conserved, two energetic photons of around ∼ 511 keV are sent out in opposite
directions. During its lifetime in the material, the positron can just interact
with the electron density of the bulk but this process usually does not contain
the information experimentalists are interested in. The more interesting case is
where a positron encounters a vacancy defect and gets trapped into a localized
state, which then reveals information about the defect as described before. The
trapping of positrons is not limited to vacancy defects, however, and can also
happen at interfaces between materials and at surfaces. There is also a third
possible scenario and that is when the positron forms a bound state with an
electron, which leads to a significant increase in the lifetime. The annihilation
properties of the positron depend on wether it forms a singlet or a triplet state
with the electron. Because of the strong repulsion between the bulk electrons
and the electron of this positronium (Ps), the interaction between the material
and Ps is mainly repulsive. This makes it possible that Ps gets repelled out
of the bulk and forms a bound state near the surface of the material or that
it gets trapped in a vacancy defect. A recent paper shows that the Ps can be
used a sensitive probe for studying the surface properties of pores in porous
catalysts [27]. More generally, a Ps bound state near the surface of a material
can be used to very selectively probe the surface properties of the material. This
because the positron wavefunction has a small overlap with the material that
quickly decays to zero. Apart from the annihilation of the positron with its
bound electron of the Ps, the overlap with the edge of the material causes the
positron to annihilate only with those electrons of the material that are located
near the surface. The detected annihilation radiation then contains information
about the electronic structure of the surface. One example where measurements
that very selectively only probe the surface electronic structure are interesting
is in the case of topological insulators, which exhibit conducting states located
at the edge of the material while they are insulating in the bulk.
Unlike angle-resolved photoemission spectrscopy (ARPES), which directly re-
veals (the occupied part of) the electronic structure of a material, the inter-
pretation of positron spectroscopy measurements is not straightforward. As
mentioned repeatedly in Tuomisto’s paper [52], theoretical modeling can signif-
icantly help in the interpretation of experimental data.
The topic of this thesis is to investigate if it is possible to have Ps bound states
near the topological insulator Bi2Te2Se. From experiments, this seems to be
the case [4, 45] but a theoretical investigation can model what to expect from
the Ps bound state and can help with the interpretation of experimental data.
A second system we investigate is graphene, also because it is of great interest
as of present. Apart from determining wether or not it is possible to have Ps
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CHAPTER 1 : Introduction

bound states near these materials, we look for the effect of the edge states on
the Ps bound state.

1.2 Topological insulators

A short introduction to topological insulators seems in order here to convince
the reader why they are of interest and to understand some of the properties of
these materials.

In one sentence, a topological insulator is a material that behaves as an
insulator in the bulk while at the surface there exists a conducting state that
is robust in the sense that it is unaffected by (non magnetic) defects it might
encounter. To understand how such a state can emerge, we begin, in analogy
with the review paper of Hasan and Kane [18], by considering the integer quan-
tum hall effect, then explain the spin quantum hall effect after which we can
introduce the three dimensional topological insulators.
The quantum hall effect occurs when a strong magnetic field is applied per-
pendicular to a two dimensional electron gas (2DEG). The cyclic motion of an
electron, with a cyclotron frequency of ωc, is quantized and gives rise to Landau
levels. If we define a unit cell with an area that encloses a quantum of magnetic
flux, then we can label states with a crystal momentum k in the plane of the
2DEG. A bandstructure of this system shows no dispersion as function of k and
the different bands are separated by an energy gap ~ωc. This means that an
electrical field cannot induce a current since there are no states available directly
above the highest occupied electron state. Let us now adopt a classical point of
view for a moment, where electrons perform a cyclic motion around flux lines,
and imagine that the 2DEG lives inside a rectangle. At the edges, electrons
will perform a skipping orbit motion, since they will bump into the edge and
cannot move outside the rectangle. At the opposite edge, electrons will move
in the opposite direction so that in the absence of an electrical field the net
charge displacement is zero. So, in the integer quantum hall effect we have a
bulk (the inner part of the rectangle) that is insulating and an edge that shows
a conducting state. Moreover, from the classical picture we can understand that
an electron propagating in one direction cannot be backscattered, unless it ends
up at the opposite edge in the scattering process, so it will just skip around
any impurities it encounters at the edge. We seem to have all ingredients we
need to fulfill the requirements to classify the integer quantum hall state as a
topological insulator, would it not be that the external magnetic field forms an
essential ingredient.
Before we discuss how we can get rid of the magnetic field but retain the other
properties, let us adopt a band structure description that will prove to be more
useful in the rest of the story. Figure 1.1 shows schematically what the band-
structure of the integer quantum hall state looks like. The two bands that cross
the Fermi energy are the skipping orbit edge states. If one of the bands denotes
a left moving electron at one edge, the other one is the right moving electron
that lives at the opposite edge.
Now, it turns out that bandstructures, in the case where there exists a bandgap,
can be classified with the total Chern number. A Chern number nm tells you
the net amount of times a Bloch state |um(k)〉 picks up a phase of 2π when it
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Figure 1.1: Schematic bandstructure plot of the quantum Hall state, where the
two colored bands denote the edge states.

makes a walk around the edge of the Brillouin zone. It is easy to understand
that it has to be an integer since, when one transports a wavefunction around a
closed loop, its value must remain unchanged. This is only possible if the phase
changes by an integer amount of 2π. Furthermore, since any smooth changes in
the parameters of the Hamiltonian cannot induce a discontinuous change in the
wavefunction, the Chern number is in that sense a topological invariant. The
total Chern number N is defined as the sum over all Chern numbers nm of the
occupied bands in a system. So also this number cannot change, given that the
occupied states do not change, i.e. no bands pass through the bandgap. It has
been shown that the Hall conductivity:

σxy = N
e2

h
(1.1)

is determined by this number [51]. Thus, for an ordinary insulator the total
Chern number has to be zero. To show how the Chern number can be used to
identify conducting edge states, imagine that you have a certain system which
has a nonzero Chern number. Because the vacuum can be regarded as an or-
dinary insulator since it has a bandgap (the pair creation energy), conduction
states (electrons) and valence states (the filled negative energy solutions), it has
N = 0. Now if you consider the Chern number as a function of the position, it
will have changed when you start inside the system and end up in the vacuum.
We argued above that this cannot happen when no bands pass through the
Fermi energy thus, consequently, we must have a conducting state where the
number changes, which is at the edge.
The conducting edge state in the quantum hall phase exists only because we
explicitly broke the time reversal symmetry of the system by applying a mag-
netic field to it. We wonder now if it is possible to have conducting edge states
without breaking this symmetry. Let us first take a look at what time-reversal
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symmetry implies. The time-reversal operator is given by [40]:

T̂ = ei
π
2 σyK̂, (1.2)

where σy is the Pauli matrix and K̂ performs the complex conjugation. If we
write the exponential as a Taylor series for an arbitrary angle α and if we use
that σ2

y = 1, then we can recognize the Taylor series for the sine and cosine.
The result is that:

ei
α
2 σy = cos

(α
2

)
+ iσy sin

(α
2

)
. (1.3)

Under the action of the time reversal operator, an electron state flips its spin.
This can be seen by applying the operator to a spinor, which then shows that the
components of this spinor are swapped after applying the time-reversal operator
to it:

T̂

(
ψ+(x)
ψ−(x)

)
=

(
0 1
−1 0

)(
ψ∗+(x)
ψ∗−(x)

)
=

(
ψ∗−(x)
−ψ∗+(x)

)
. (1.4)

Since we also know that under time reversal symmetry momentum changes
direction, we can conclude that under time-reversal an electron state changes
momentum and spin at the same time. A second important property of time-
reversal for spin-1/2 particles is that T̂ 2 = −1, so that if we have an eigenstate
of a T̂ invariant Hamiltonian, it has to be at least twofold degenerate. Indeed,
should we have a non-degenerate state |φ〉 then we would have:

T̂ |φ〉 = c|φ〉 ⇒ T̂ 2|φ〉 = |c|2|φ〉, (1.5)

which is obviously impossible since |c|2 6= −1. This property is known as
Kramers doubling theorem.
The first property of time-reversal tells us how we can make the quantum hall
state invariant under time-reversal. Indeed, instead of one conduction channel
at each edge, we should have two and these two conduction channels should exist
for electrons with opposite spin and momentum. These states are, just like the
quantum hall states, robust against (elastic) backscattering. This is trivial in
the case where the scattering process does not effect spin. In the case that the
scattering does affect spin, it should rotate the electron state by ±π in order to
get to the other state. These two possible backscattered states are just as likely,
as long as we are dealing with non-magnetic impurities, so that their amplitudes
are equal. Because, however, electrons are fermions, these states have opposite
sign since they are rotated over 2π relative to each other. As a consequence,
we have perfect destructive interference of the backscattered states. The phase
that we just described is known as the quantum spin hall insulator, which is the
two dimensional topological insulator.
We now use Kramers doubling theorem to formulate a band description of topo-
logical insulators. Consider a Bloch Hamiltonian Ĥ(k), which, if it is time-
reversal invariant, has to satisfy:

T̂ Ĥ(k)T̂−1 = Ĥ(−k). (1.6)

We know that this is always the case at the points in the Brillouin zone which
are connected by a reciprocal lattice vector and at k = 0. This means that
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we have a Kramer degenerate pair at these special points in the Brillouin zone
for any material that has a time-reversal invariant Hamiltonian. Away from
these special points, the spin-orbit interaction lifts the degeneracy. The way
the Kramer pairs are connected is what determines if we have an ordinary or
a topological insulator. In figure 1.2 we plotted the two distinct manners that
Kramer pairs can be connected. For a trivial insulator, the degenerate states
connect pairwise, which makes it possible to raise the chemical potential above
these bands and as such end up with an ordinary insulator. In the case of a
topological insulator, this is not possible and there is always an odd number of
bands in the positive half of the Brillouin zone that cross the Fermi surface. We
also note that close to these Kramer degenerate points, the dispersion of the
bands is linear for topological insulators.

E

E
F

Γ
a

Γ
b

Γ
a

Γ
bk k

Figure 1.2: A schematic plot of the bandstructure for a trivial insulator (left)
and a topological insulator (right). Note that only half of the Brillouin zone is
shown since time-reversal invariance require Ĥ(k) = Ĥ(−k). This means there
for every crossing of the EF at k, there is an additional one at −k.

It is now easy to generalize things to a three dimensional topological insula-
tor. We already mentioned that the dispersion between the Kramer degenerate
points is linear for the two dimensional topological insulator. For the three di-
mensional topological insulator, we have Dirac cones near these special points.
If we consider the two dimensional Brillouin zone of the surface of a material, we
need to determine if there is an odd number of bands crossing EF between these
special points. A similar statement is that we need to determine how many of
the Kramer degenerate points are enclosed by the Fermi circle. Either an even
number of these points is enclosed by the Fermi circle and in those cases we have
weak topological insulators, or an odd number of points are enclosed and then
we have strong topological insulators. It is of course also possible that no Dirac
cones are present and then we have an ordinary insulator. The weak topological
insulators exhibit edge states which are not robust against backscattering. In
this case the valence bands with the same spin-polarization of two Dirac cones
can connect as well as the conduction bands. The result is then that we end
up with an ordinary insulator. In the case of a strong topological insulator, the
connection of conduction bands from one Dirac cone to another is also possible
but since there is an odd number of cones, there are always at least two metallic
states. We summarize this discussion in figure 1.3.
To end this short introduction to topological insulators, we make the connection
again with the change of topology across the edge of the material that we em-
ployed to determine the existence of the edge state in the quantum hall effect.
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Figure 1.3: Schematic plot of the Fermi circle in the two dimensional Brillouin
zone. The grey area denotes the occupied states of the band crossing the Fermi-
energy and the white area the unoccupied ones. In the left figure, two Kramer
degenerate points are encircled, which corresponds with a weak topological in-
sulator. In the right figure three Kramer degenerate point are encircled, which
then corresponds with a strong topological insulator. At the sides, we show
schematically the enclosed Dirac cones when no disorder is present (top) or
when disorder is present (bottom). The color of the lines denotes the spin-
polarization.

The topology of the electronic structure inside the bulk is described by four Z2

invariants (numbers that are either 0 or 1) and together they determine wether
a material is an ordinary insulator, a weak topological insulator or a strong
topological insulator. The determination of these numbers is in general quite
involved and requires the knowledge of the details of the occupied Bloch states.
A necessary condition for a topological insulator is, though, that the bandstruc-
ture shows a band inversion. This means that the normal energetic ordering
of atomic orbitals inside the bulk of the material is different than in vacuum.
Let us examine the example of Bi2Se3 [58]. The configurations of the valence
electrons for Bi is given by 6p3 and for Se by 4p4. In figure 1.4, a diagram shows
the effect of the chemical bonding between the atoms, the crystal field splitting
and the spin-orbit coupling on the energy levels of the p-orbitals. The band
inversion occurs in the last step where the spin-orbit coupling is switched on.
Since this ordering is topological distinct from the vacuum case, an analogous
reasoning than in the case of the quantum hall phase shows that a conducting
edge state has to exist.

1.3 Overview of this thesis

We have several goals in this thesis. Firstly, we want to determine if Ps bound
states are possible near the surfaces of the topological insulators Bi2Te2Se and
graphene. Secondly, if bound states are possible, we want to know the effect of
the topological edge states on their binding energy. Finally, we want to improve
upon the recipe from literature. The rest of this work is organized as follows.

In chapter two we discuss some theory that we need in the rest of the work.
Most importantly, this is the recipe that we follow to determine the bound states.
The formulas for the Van der Waals attraction that turn up in this description
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Figure 1.4: A schematic diagram of the evolution of the energy levels of the
p-orbitals from the atomic limit (left) to crystalline Bi2Te3 at the Γ-point in
the Brillouin zone (right). The first stage (I) shows the effect of the chemical
bonding, (II) shows the effect of the crystal potential and (III) the effect of the
spin-orbit coupling. The dashed blue line represents the Fermi-energy. Figure
taken from [58].

are derived in appendix A. Since we need first-principles techniques to deter-
mine the quantities in the recipe accurately, we also discuss density functional
theory (DFT). We do not use a plane wave package but rather a package that
employs the linearized augmented plane wave (LAPW) method. The basics of
this method are discussed in chapter two, where we also motivate our choice for
the method. More detailed information about the method is given in appendix
B.

Chapter three deals with all the DFT calculations of Bi2Te2Se. We give all
necessary details of the parameters in the calculations. The results are checked
against DFT results already available in literature and if possible also against
available experimental data. In this chapter we pinpoint quantities that may be
influenced by the topological edge states.

The calculation of the Ps bound states are carried out in chapter four. This
includes some post processing of the DFT data as well as calculating some quan-
tities that we did not get from chapter three. Once we determined the bound
state, we evaluate the dependence of the Ps binding energy of the different pa-
rameters in the model. This helps pinpointing those quantities which are most
crucial. Armed with that knowledge, we discuss the influence of the topological
edge state on the binding energy.

In chapter five we carry out the calculation for graphene. The first-principles
study will be less extensive than for Bi2Te2Se since we do not have separate bulk
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and surface properties because graphene is a two-dimensional material. Also,
in Bi2Te2Se it is possible to ‘turn off’ the edge states by including or excluding
the spin-orbit coupling but this correction is too small in the case of graphene.
At the end of the chapter, we present the calculation for the possible Ps bound
states.

In chapter six we propose a more accurate model to determine Ps bound
states. We motivate in detail the proposed model as well as our approach to
solve it.

Finally, we close off with a conclusion where we summarize the most impor-
tant findings.
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Chapter 2

Theoretical background

In this chapter, we discuss the theory necessary to calculate the Ps bound states.
In the first section, we discuss the recipe from literature, which describes the Ps
as a neutral particle bound to the surface by the Van der Waals interaction. We
derive the formulas that describe the Van der Waals interaction in appendix A,
since it is quite long and technical. To evaluate the expressions in the bound
state description, we need to determine quantities that are specific for the ma-
terial in question and we will use density functional theory to obtain them. The
second section gives an introduction to density functional theory in general and
goes into more detail about the LAPW method. In the third section, we discuss
the PAW method in a nutshell.

2.1 Bound state description

In 2007, R. Saniz [43] described the effective potential for the physisorped
positronium state as:

V (z) = [VR(z) + VVW (z)] θ(z > z0) + V0 θ(z ≤ z0), (2.1)

where z0 is the background edge, V0 is the Ps work function (both discussed
further on) and VR(z) is a repulsion due to the overlap of the wavefunction
of the electrons of the solid with the electron of the Ps. The Van der Waals
interaction is given by:

VVW (z) = − C

(z − zVW )3
f(kc(z − zVW )), (2.2)

where zVW is the reference plane of the Van der Waals interaction and f is a
damping function that we discuss further on. The Van der Waals constant is
given by:

C =
~

4π

∞∫
0

dξα(iξ)

(
ε(iξ)− 1

ε(iξ) + 1

)
, (2.3)

where α(iξ) is the dipole polarizability of the Ps atom evaluated at imaginary
frequencies and ε(iξ) is the dielectric function of the solid which is also evaluated
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at imaginary frequencies. This constant described the response of the solid to the
instantaneous dipole of the atom. The introduction of the damping function is
necessary because the Van der Waals attraction diverges at z = zVW and it was
pointed out in the work of Zaremba and Kohn [57] that their description breaks
down so close to the surface. The damping function makes sure that the Van
der Waals attraction stays finite. In the letter of Saniz, the damping function
given in the paper of P. Nordlander and J. Harris [34] was used. This result is,
however, approximate and was derived in the case of metals. In the more recent
paper of Patil at all. [36], the authors assume that the interaction between the
surface and the atom can be modeled by a sum of pairwise interactions between
the atom and all the atoms of the surface. For the atom-atom interaction they
use an analytic model, which allowed them to write down an exact result for
the damping function:

f(x) = 1− e−x
(

1 + x+
x2

2
+

2x3

15
+
x4

60

)
. (2.4)

In the argument of the damping function, we wrote a cutoff wave vector kc
and in Saniz’ work, the inverse of the positronium hard-core radius was used
to determine this value. The physical significance of this is that the response
vanishes at short wavelengths. This choice is, however, phenomenological. In the
paper of Patil, however, this wave vector is related to the exponential repulsion
near the surface:

VR(z) = V0 e
−(z−z0)/l. (2.5)

Here 1/l plays the role of the cutoff wave vector in the damping function, so we
chose kc = 1/l in our description. In the repulsive interaction, l is determined
by the electron density decay length at the surface. The next parameter is V0,
for which we take the work function of Ps, i.e. the energy required to remove
Ps from the bulk of the material. Finally, z0 is the background edge position
which basically defines the ‘edge’ of the material. Once we have the potential,
we can solve a one dimensional Schrödinger equation:

− ~2

2m
∇2ψ(z) + V (z)ψ(z) = Eψ(z). (2.6)

The negative eigenvalues of this equation, if present, then give us the binding
energy of the Ps bound states near the surface.

We now have a recipe for calculating the potential, but let us discuss a bit
more in detail how we will proceed to obtain these quantities. The first thing
that we need to know is the dielectric function and we can employ density
function theory (DFT) to obtain it. This involves carrying out a ground state
density calculation for the bulk material and from this result, the dielectric
function can be readily calculated. For the materials we consider, the dielectric
response is not isotropic. Because the instantaneous dipole of the atom can
point in any direction, we shall take an average over these different components
to calculate the Van der Waals constant. The work function V0 can also be
determined from bulk properties. The other quantities we obtain from DFT are
the background edge position z0 and the electron density decay length l. For
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this we calculate the ground state electron density for a slab and then plot the
density, averaged over the (x, y)-plane, as a function of z. In the vacuum above
the material, we expect the electron density to start decaying exponentially. The
value of z for which this decay starts, determines the background edge position
z0. Also, if we make a linear fit to the logarithm of the density in the region
of this exponential decay, the slope of this fit will be the value for l. We will
suppose that the Van der Waals reference plane zVW equals the background edge
position z0. This choice actually makes our bound state description independent
of the exact value of z0, as can be see from formulas (2.2) and (2.5). The only
quantity left to determine is the atomic polarizability for the Ps, for which we
take expressions from literature that are valid for the hydrogen atom. We can
do this because the Ps atom is identical to the hydrogen atom apart from its
mass. By rescaling the expressions for hydrogen, we can easily obtain results
for the Ps atom.

2.2 The LAPW method

Since we perform DFT calculations to obtain the quantities needed to determine
the Ps bound states, we shortly introduce this computational approach. In the
introduction of this section, we take a look at the Kohn-Sham method for finding
the ground state density. The more common approach to solve the Kohn-Sham
equations is the pseudopotential method. In our calculations we use another
approach, the LAPW method and the bulk of this section deals with explaining
it in some detail. The material presented in this section is mainly based on the
book of D. J. Singh and L. Nordstrom [47].

2.2.1 Introduction

In DFT calculations, we search for the ground state electron density of a system
instead of the wavefunction that can be found by solving the many-particle
Schrödinger equation. Since the density is a function of only 3 variables and
the many-particle wave function is function of 3N variables, where N is the
amount of particles, it is obvious that this an enormous simplification. Since it
is the electron density that is the observable and not the wavefunction itself, we
expect that all observable quantities can be found from this density. The second
Hohenberg-Kohn theorem [19] shows that for the ground state of a system,
this is indeed true if we know the exact functional for the total energy. The
theorem, however, gives no clue about how this exact functional looks like. We
can assume, though, we can write it as:

E[ρ] = T [ρ] + Eee[ρ] + Eext[ρ], (2.7)

where T gives the kinetic energy associated with the density, Eee describes the
electron-electron interactions and Eext bundles the electron-ion, ion-ion inter-
action and possible interactions with external fields. With adequate guesses
for these functionals, the problem could be solved within a variational scheme.
Too bad, no guess for the kinetic energy functional up to date has been made
that produces sufficiently accurate results. Kohn and Sham [25] formulated an
approach that circumvents this problem by posing that the kinetic energy of

15



CHAPTER 2 : Theoretical background

the density is given by the non-interacting electron gas with the same density.
Concretely, in this approach we write the energy functional as:

E[ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] + Eext[ρ] (2.8)

where Ts is the kinetic energy of the electrons in the non-interacting system,
EH is the Hartree energy and Exc is the exchange and correlation energy. The
latter is the only one that we do not know exactly and approximate forms have
to be devised. The Kohn-Sham approach works if this exchange and correlation
term is much smaller than the kinetic energy and this is mostly the case. In
strongly correlated systems, the approach may, however, break down and then
other approaches are necessary.
Let us see how we can construct the system of non-interacting particles such
that is has the same density as the real system. The first Hohenberg-Kohn
theorem already tells us that there is a unique external potential with which
we can realize the same density. We will denote this external potential for
the fictitious system by Vf to avoid possible confusion with Eext that we used
previously. Also if we mention external potential from now on, we mean the
external potential that we pass on to the fictitious system. Suppose that we
found the density that minimizes the energy functional. This means that under
variations of the density, with the constraint that the amount of particle N does
not change, we have:

δ

{
E[ρ]− µ

(∫
dr ρ(r)−N

)}
= 0. (2.9)

In the non-interacting system we know that all terms that turn up in the Hamil-
tonian are the kinetic energy operators for each particle and the external po-
tential that we are searching. We thus know the energy functional exactly and
it is given by:

Ef [ρ] = Ts[ρ] +

∫
dr ρ(r)Vf(r) = −1

2

N∑
i=1

〈φi|∇2|φi〉+

∫
dr ρ(r)Vf(r). (2.10)

We come back to how we can find the one electron states |φi〉 later. The kinetic
energy of the real system in the ground state should of course be given by the
lowest kinetic energy we can realize in the fictitious system, given the external
potential. We thus also have:

δ

{
Ef [ρ]− µ

(∫
dr ρ(r)−N

)}
= 0. (2.11)

By equating (2.9) and (2.11) we find that the external potential for the fictitious
system is given by:

Vf (r) = VH(r) + Vext(r) + Vxc(r) with Vxc(r) =
δE[ρ]

δρ(r)
. (2.12)

Here, VH(r) is the Hartree potential due to the presence of the other electrons
and Vext(r) is the potential caused by the presence of the ions and external fields
applied to the real system.
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We now consider the system of non-interacting particles to explain how we can
find the single particle states |φi〉. The Hamiltonian is given by:(

−1

2

N∑
i=1

∇2
i + Vf (r)

)
Ψ = EΨ. (2.13)

We know that the exact solution of this Hamiltonian is given by a Slater de-
terminant built from one-electron wavefunctions. By inserting this solution and
applying the variational principle, we end up with a set of single particle equa-
tions, which form the Kohn-Sham equations:(

−1

2
∇2 + Vf (r)

)
φi(r) = εiφi(r). (2.14)

This set of equation has to be solved self-consistently since the density of the
fictitious system turns up in Vf (r) and the density is determined by putting the
N particles of the system in the N lowest energy states |φi〉:

ρ(r) =

N∑
i=1

|φi(r)|2. (2.15)

After solving the Kohn-Sham equations self-consistently, we know the kinetic
energy of the interacting system and, since we constructed the fictitious system
in that way, also the ground state density of the interacting system. The latter
is of course only true if we did not get stuck in a local minimum during the
self-consistent procedure of solving the Kohn-Sham equations.
When searching for the one-particle states in the Kohn-Sham equations, we must
use some finite basis set. Because the equations are derived from the variational
principle, the results are then the best approximations we can make with the
finite basis and they always have a higher energy than the ‘true’ one-electron
wavefunctions1. This explains why a more complete basis set leads to a lower
total energy of the system and why convergence w.r.t. the basis always has to
be carried out in DFT calculations. We now discuss the basis expansion in more
dept.

Because of the Fermi-exclusion principle, every one-electron wavefunction
must be orthogonal to all other one-electron wavefunctions. The consequence is
that the wavefunctions of valence electrons have a highly oscillatory part near
the nucleus, which means that a lot of plane waves have to be used to approx-
imate them and this is usually prohibitive if one wants to perform a practical
calculation. One possibility to decrease the required amount of plane waves is
to replace the Coulomb potential along with the contribution of the core elec-
trons by a fictitious potential, better known under the name pseudopotential.
The first advantage of this approach is that we do not need the wavefunction of
the core electrons anymore, because their effect on the result is completely con-
tained in the pseudopotential. A consequence hereof is that when we compute
the valence wavefunctions, they are in general not orthogonal to the wavefunc-
tions of the core electrons. Instead we get a smooth version of the wavefunction

1We should keep in mind that this applies to the one-electron wave functions in the fictitious
system. The total energy in the interacting system is not a rigorous upper bound.
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near the nuclei, i.e. the highly oscillatory part needed for the orthogonality with
the core states is gone. This forms the second advantage. Far away from the
nuclei, the valence wavefunctions should still equal the true valence wavefunc-
tions. Most material properties are determined by the valence electrons in that
region. This means that we can expect to find the correct material properties
if we get this part of the electron density right. The recipe thus relies on the
assumption that core electrons only feel a small influence from the other atoms
of the material so that their contribution can be treated as unchanging, which is
called the ‘frozen core’ approximation. So if the pseudopotential reproduces the
same electron density at the relevant distances from the atoms, the introduc-
tion of a pseudopotential should produce the same answers as an all-electron
calculation. From now on we refer to the wavefunctions we find when using
a pseudopotential, as pseudo-wavefunctions. The above condition still leaves
some freedom for the actual form of the pseudopotential, what leads to different
types, like norm conserving and ultrasoft pseudopotentials.
The first one demands that the pseudo-wavefunctions equals the actual valence
wavefunctions and potential outside the core radius rc and also that the norm
of both are the same inside the core radius:

rc∫
0

dr

π∫
0

dθ

2π∫
0

dφ r2 sin(θ)ψ∗PS(r)ψPS(r) =

rc∫
0

dr

π∫
0

dθ

2π∫
0

dφ r2 sin(θ)ψ∗(r)ψ(r).

(2.16)

Here ψPS stands for the valence pseudo-wavefunctions and ψ for the actual va-
lence wavefunctions. A pseudopotential that satisfies these conditions ensures
that it is transferable between different systems. By this we mean that a pseu-
dopotential which produces good results for a specific environment of atoms,
will also give accurate results for other environments of atoms.
An ultrasoft pseudopotential also has the demand that the pseudopotential re-
produces the actual valence wavefunctions and potential outside the core radius
rc but now the pseudo-wavefunctions do not have norm conservation restriction
inside the core radius. Instead one wants that as few plane waves as possible
should be needed to approximate the valence wavefunctions, hence the name.
This approach comes with a couple of complications, one of these being that
pseudo-wavefunctions cannot be used directly to compute the charge density
since the norm is different from the actual wavefunctions. Another consequence
is that ultrasoft pseudopotentials are generally less transferrable to other sys-
tems.
The LAPW method takes another approach to deal with the strongly oscillating
wavefunctions but there is a close connection between this method and the use
of ultrasoft pseudopotentials. Before we explain the LAPW method, we take a
look at the original idea Slater published in 1937, namely the APW method.

2.2.2 The APW method

As mentioned in the previous section, the problem with a plane wave basis set is
that it is not particularly suited to approximate highly oscillatory functions. In
the interstitial regions, that is far away from nuclei, the wavefunctions are how-
ever smooth and plane waves are the basis set of choice, certainly also because
in reciprocal space the Laplace operator becomes diagonal. Near the nuclei we
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can expect that the wavefunctions resemble those of an isolated atom and are
thus spherical. A suitable set of basis functions would of course be the spherical
harmonics. We can exploit the usefulness of both basis sets, which is the essence
of the APW method, by drawing spheres around each nucleus in a way such
that none of the spheres overlap. Inside the spheres we use the spherical har-
monics to approximate wavefunctions and in the interstitial regions the plane
waves basis:

ψ(r) =


Ω−1/2

∑
G

cGe
i(G+k)·r r ∈ I∑

l,m

Almul(r)Y
m
l (r̂) r ∈ S,

(2.17)

where Ω is the volume of the unit cell, G are the reciprocal lattice vectors of
the crystal, Y ml are the spherical harmonics and cG and Alm are the expansion
coefficients that need to determined. The ul(r) are the solutions of the radial
Schrödinger equation:[

− 1

2r2
d

dr

(
r2
d

dr

)
+
l(l + 1)

2r2
+ V (r)

]
ul(r) = Elul(r), (2.18)

where we used atomic units ~ = me = e = 1. The potential V (r) in this equa-
tion is the spherical component of the potential inside the sphere. The energy
parameter El requires some further discussion to appreciate its importance in
this scheme.

To make sure that the kinetic energy is well defined, the APW method
demands that on the boundary of the sphere the wavefunction is continuous by
defining the coefficients Alm in terms of the plane wave coefficients cG. To do
this we start with the spherical harmonics expansion of a plane wave [29]:

eik·r = 4π
∑
l,m

iljl(kr)Y
m
l (r)Y m∗l (k), (2.19)

where the jl(kr) are spherical Bessel functions and the spherical harmonics Y ml
of course only depend on the direction of the argument. If we now demand that
the wavefunction is continuous at the sphere boundary rs, we get:∑
l,m

Almul(rs)Y
m
l (rs) =

4π√
Ω

∑
G

cG
∑
l′m′

il
′
jl′(|k + G|rs)Y m

′

l′ (rs)Y
m′∗
l′ (k + G).

(2.20)

If we multiply both sides by Y m∗l (rs) and then integrate over the unit sphere,
we can use the orthogonality between the spherical harmonics:

π∫
0

dθ

2π∫
0

dφY ml (rs)Y
m′∗
l′ (rs) = δl,l′δm,m′ (2.21)

to extract a single coefficient Alm:

Alm =
4πil

Ω1/2ul(rs)

∑
G

cGjl(|k + G|rs)Y ml
∗(k + G). (2.22)
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The important part here is that these coefficients depend through ul on the en-
ergy parameter El and on the plane wave expansion coefficients. The individual
functions, consisting of a single plane wave outside the sphere and the set of
spherical functions inside the sphere to which this plane waves are matched, are
called augmented plane waves (APW) and are labelled by the reciprocal vectors
G and the wave vectors k.
Let us now examine the case where El would be fixed. The variational param-
eters in our problem would then be the coefficients cG and we would have to
solve a secular equation with a non-trivial overlap matrix because the APW
are not orthogonal. If we would solve this equation for each k-point, we would
find the band energies and the corresponding wavefunctions. But the spherical
functions that we used to construct for the APW are only solutions to the radial
Schrödinger equation at energies El. This means that we would only get the
correct result if the band energies exactly matched the values El. This shows
we must treat the energies El as variational parameters.
Still, if we treat El as a variational parameter, we would have to start with a
guess for El, then determine the band energies by solving the secular equation
after which the value of El can be updated. By repeating this process we could
determine all the roots of the secular equation (one for each band in the sys-
tem) at every k-point as a function of El. This is, however, computationally
too demanding to be a practical method.
Another problem with the APW method is that in general values for the El
are needed for which ul (nearly) disappears at the boundary of the sphere. The
plane waves and spherical functions are then decoupled and with the relation be-
tween the expansion coefficients (2.22), we see that the secular equation becomes
a strongly varying function of El, which in turn leads to numerical difficulties.
A last difficulty with the APW method arises when a non-spherical poten-
tial would be used in the spheres. That is because bands usually have differ-
ent orbital characters inside the spheres, in the sense of the linear combina-
tion of atomic orbitals with which the state can be constructed. For example,
c1d0 + c2d1 which have the angular dependence:

d0 = 3 cos2 θ − 1 d1 = sin θ cos θeiφ. (2.23)

Due to this difference in angular dependence, the orbitals feel a different effective
potential which differs from the spherical average that is used the construct the
ul(r). A consequence of this is that the optimal choice of El is no longer the
band energy and it is hard to determine what value to chose in such cases.

2.2.3 The basics of the LAPW method

In 1975, O. K. Andersen came up with the idea to, instead of only using the
ul inside the spheres, use both the radial functions and their derivative towards
the energy parameter El, denoted u̇l [3]. In other words he makes a Taylor
expansion around the correct energy parameter ε (the band energy) up to first
order. It turns out that this linearization of the APW method solves the prob-
lems mentioned in the previous section.

More concretely, in the LAPW method we add extra flexibility to the func-
tions inside the spheres by adding the derivatives with respect to El of the ul
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to the basis. The wavefunctions are now expanded as:

ψ(r) =


Ω−1/2

∑
G

cGe
i(G+k)·r r ∈ I∑

l,m

[Almul(r) +Blmu̇l(r)]Ylm(r̂) r ∈ S
, (2.24)

where the ul(r) are still solutions to the radial Schrödinger equation:[
− 1

2r2
d

dr

(
r2
d

dr

)
+
l(l + 1)

2r2
+ V (r)

]
ul(r) = Elul(r) (2.25)

and the u̇l(r) are the derivatives of the ul(r) with respect to the energy parame-
ters El. They are determined by taking the derivative of the radial Schrödinger
equation towards El:[

− 1

2r2
d

dr

(
r2
d

dr

)
+
l(l + 1)

2r2
+ V (r)

]
u̇l(r) = ul(r) + Elu̇l(r). (2.26)

The coefficients are now determined by demanding that the wavefunction and
its radial derivative are continuous at the sphere boundary. The coefficients are
thus found by solving the following equations:

Almul +Blmu̇l =
4πil

Ω1/2

∑
G

cGjl(|k + G|rs)Y ml
∗(k + G)

Alm
dul
dr

+Blm
du̇l
dr

=
4πil+1

Ω1/2

∑
G

(k + G)cGjl(|k + G|rs)Y ml
∗(k + G).

(2.27)

An important property of the radial functions is that they are orthogonal to
any function of the same Hamiltonian that vanishes on the sphere boundary.
Indeed, consider the radial Schrödinger equation (2.25) in the following form:[

−1

2

d2

dr2
+
l(l + 1)

r2
+ V (r)− El

]
rul(r) = 0, (2.28)

from which one can easily show the following relation:

(E2 − E1)ru1(r)u2(r) =
u2
2

d2ru1(r)

dr2
− u1

2

d2ru2(r)

dr2
. (2.29)

Now if we multiply both side by r and integrate, we find:

(E2 − E1)

rs∫
0

dr r2u1(r)u2(r) =
1

2

rs∫
0

[
u2(r)

d2ru1(r)

dr2
− u1(r)

d2ru2(r)

dr2

]
dr,

(2.30)

where rs is the radius of the sphere. The integral in the left hand side of this
equation is the overlap between the two function u1(r) and u2(r). After partial
integration, the right hand side of the equation becomes:

1

2

(
r2u1(r)

du2(r)

dr

∣∣∣∣rs
0

− u2(r)
du1(r)

dr

∣∣∣∣rs
0

)
(2.31)

21



CHAPTER 2 : Theoretical background

Now if either u1(r) or u2(r) vanishes on the sphere boundary, i.e. both the value
and the derivative go towards zero, this equals zero. This means that the over-
lap between u1(r) and u2(r) must also equal zero or, in other words, u1(r) and
u2(r) are orthogonal. A similar proof can be given for the u̇l(r). This shows
that core electrons, for which the wavefunction vanishes at the boundary of
the sphere (in good approximation), are automatically orthogonal to all valence
states. This is an important property that the LAPW method exploits since
it allows to make a separation between core and valence electrons. We discuss
this more thoroughly in the next section.
The connection with pseudopotential codes can now also be made. Since the
valence electrons are automatically orthogonal to the core electrons, the con-
tribution of the core electrons can be seen as an external potential that turns
up in the one-electron Hamiltonian for the valence electrons. Now, since the
wavefunctions inside the spheres are determined by the coefficients of the plane
waves outside and the potential inside the spheres, one could think of a clever
way to leave out this contribution entirely (for the potential inside the spheres,
for example one could take a ‘frozen core’ approximation) and to compensate
for it in the calculation of the electron densities, potentials, etc. This would
then deliver us pseudo-wavefunctions analogous to the ones discussed in the in-
troduction of this section. The contribution of the core can be seen as a very
fluffy pseudopotential2, since the core radius rs is in general larger than rc for
pseudopotentials and consequently the plane wave cutoff is lower. The approach
where one would calculate the core contribution once and then use it as a pseu-
dopotential would, however, not work very well because the pseudopotential we
obtain in this way is highly non transferable. Either way, it shows how the two
approaches are related.

Let us now go back to the problems we had with the APW method and see
how the LAPW method solves them. Consider the case where we calculated
the ul with the energy parameter El set to a specific value. If we solve the
secular equation for a certain k-point, we find a band energy with value ε. If
the difference between the band energy ε and the energy parameter El is small,
then we can write the correct result, that is the ul calculated at ε, as a Taylor
expansion around El:

ul(ε, r) = ul(El, r) + (ε− El)u̇l(El, r) +O((ε− El)2). (2.32)

The ul and u̇l in the right hand side are exactly the functions we use inside the
spheres to make linear combinations with. If we keep in mind that we construct
trial wavefunctions with the results of the ul and realize that with the varia-
tional principle an error of ε in the trial wavefunction yields an error of only ε2

in the energies, we find that the actual band energies have a final error of order
(ε − El)4. This shows that if we start with any reasonable guess for the El,
there is no need to iteratively solve the secular equation. In fact, in practical
calculations one can mostly calculate all valence bands in one or two energy
windows (different values for El), which means that equations (2.25) and (2.26)
only need to be solved once or twice (for every value of l in the basis set).
The second problem we had is that it is possible that ul(r) disappears at the
boundary of the spheres around the nuclei. In general the radial derivative of

2Softer than ultrasoft!
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the ul(r) as well as the u̇l(r) do not disappear, which ensures that the plane
waves do not decouple from the spherical basis functions inside the spheres.
The last difficulty we mentioned, namely that it is hard to chose the value of
the parameter El inside the spheres in the case of a non spherical potential, is
no longer present. Although we still do not know the optimum value for El,
errors in the band energies due to this non-optimal choice can be anticipated
to be small because of the linearization. The use of a non-spherical symmetric
potential inside the spheres is, though, still not as straightforward is it may
seem. We give a brief discussion of how this is dealt with in appendix B.

Why do we not try to add the second derivative ül(r) to the basis set inside
the sphere? We could surely expect that the residual error would then be of
the order (ε−El)6, which could be beneficial when we would have to use more
than one value for the El in our current scheme to obtain accurate results. The
answer to this is that adding extra derivatives increases the required amount of
plane waves needed to achieve convergence, while bringing down the required
amount of plane waves needed was our initial goal. Indeed, consider an electron
state with the exact wavefunction ψ(r). Since plane waves form a complete
basis, we can expand this exact wavefunction at the boundary in plane waves:

ψ(r) =
∑
G

cGe
i(k+G)·r =

∑
|G|≤Gmax

cGe
i(k+G)·r +

∑
|G|>Gmax

cGe
i(k+G)·r, (2.33)

where Gmax defines the plane wave cutoff. The derivative of the exact wave-
function is given by:

ψ′(r) =
∑

|G|≤Gmax

i(k + G)cGe
i(k+G)·r +

∑
|G|>Gmax

i(k + G)cGe
i(k+G)·r. (2.34)

If we now realize that a wavefunction inside the spheres is determined by the
plane wave expansion coefficients cG in the interstitial through the matching
conditions, then it is clear that the quality of the wavefunction inside the spheres
is determined by the quality of the expansion at the sphere boundary. In the
APW method, the matching of the value alone can in principle be done exactly
with a finite amount of expansion coefficients. But let us imagine for a moment
that we select some cutoff and that the resulting error at the boundary is ε1 =∑
|G|>Gmax

εG. If we now look at the LAPW method, then the error for the
value of the wavefunction is still the same but the first derivative has an error
ε2 =

∑
|G|>Gmax

(k + G)cGεG, which is clearly larger. As a consequence, the
resulting error in the wavefunction inside the spheres is larger in comparison
with the APW method and a higher plane wave cutoff is needed for the same
level of convergence. It should be clear that the error introduced through the
matching of subsequent derivates grows quickly and thus the required plane
wave cutoff also does. In practice it turns out that methods of higher order
than the linearized augmented plane wave cutoffs do not pay off in terms of
computation time. A more suitable approach is to select different values of El
to minimize the resulting errors or, even better, use the local orbital extension
that we discuss in appendix B.

23



CHAPTER 2 : Theoretical background

2.2.4 Motivation for using the LAPW method

In positron spectroscopy techniques, core electrons play an important role. In
the Doppler broadening technique for example, the largest broadening is caused
by annihilation of positrons with the core electrons since they have the largest
momentum. In plane wave codes, the contribution of the core electrons is mod-
eled as a static potential. This is a good approximation for most purposes
because the core electrons are the least influenced by the environment of the
atom and because most physical properties of interest are determined by the
valence electrons. It is, however, unclear how good this approximation is in the
case when the core electrons play an important role in the quantity of interest,
e.g. when one wants to calculate the Doppler shift of the radiation of a positron
annihilating with core electrons. In the LAPW method, the core electrons are
explicitly taken along (see appendix B) and as such, it may offer more accurate
results. How large these corrections are, is unclear and for as far as we know,
no studies on this topic have been carried out so far.
In this thesis we need properties that are determined by the valence electrons
so it is likely still unclear why we chose to use the method anyways. The reason
is that the LAPW method is more complex than plane wave codes since a lot
more parameters enter in the calculations. Because the properties we want to
calculate depend on the electronic structure of the valence electrons, we know
that we should obtain similar results in comparison with plane wave codes. If
available, we will of course verify our results against experimental data. We
hope to build up sufficient experience with the method in this thesis to be able
to carry comparative studies like the one mentioned above in the future.

2.3 The PAW method

Because we will employ the PAW method to calculate the work function of Ps,
we explain the method in a nutshell. We base our brief discussion on the thesis
of O. Leenaerts [26].

The projector augmented wave (PAW) method can be seen as an improve-
ment on pseudopotential methods. In the latter method, the wavefunctions are
only correct in the interstitial region where the valence bonds are located. In-
side some core radius rc of each atom, we get smooth pseudo-wavefunctions.
In the PAW method, the true wavefunctions |ψi〉 are constructed from these
pseudo-wavefunctions |ψPS,i〉 by applying a linear transformation operator T̂i
to them inside the spheres:

|ψi〉 = T̂i|ψPS,i〉. (2.35)

The linear transformations are obtained by first carrying out an all electron
calculation in which the true wavefunctions are obtained. Afterwards, one per-
forms a pseudopotential calculation that delivers smooth wavefunctions, called
auxiliary wavefunctions in this case, inside the spheres. Outside the spheres,
both results should of course be the same. In the next step, the linear trans-
formations are determined to get from the auxiliary wavefunctions to the true
wavefunctions. The transformation to get from the smooth version to the real
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wavefunction is defined as:

|ψi〉 = T̂i|ψPS,i〉 = (1 + T̂0,i)|ψPS,i〉, (2.36)

where T̂0 only has an effect inside the spheres. From this equation, it is
easy to see that the transformation inside the spheres applied to the pseudo-
wavefunction is the same as taking the difference between the real and the
pseudo-wavefunction:

T̂0,i|ψPS,i〉 = |ψi〉 − |ψPS,i〉. (2.37)

When studying a certain system, one ends up with a set pseudo-wavefunctions
|φPS,i〉 that are different from the auxiliary wavefunctions. The idea is then
to expand the obtained pseudo-wavefunctions in the basis determined by the
auxiliary wavefunctions. Since the latter are not orthogonal (they are nodeless
by construction), projectors are defined that will project the appropriate part
of the pseudo-wavefunctions on each of the auxiliary wavefunctions:

〈pi|ψPS,j〉 = δi,j . (2.38)

The true wavefunction of any system can then, in principle, be written as:

|φ〉 = |φPS〉+
∑
i

(|ψi〉 − |ψPS,i〉) 〈pi|φPS,i〉. (2.39)

The required data, i.e. the true wavefunctions, the auxiliary wavefunctions and
the projectors along with the potential defined by the nucleus and the core elec-
trons, are stored in a PAW dataset. It is clear that for each element a separate
PAW dataset is required.

Compared to pseudopotential methods, the PAW method is more accurate
and the plane wave basis set can be lower. The latter is possible since the core
radius can be chosen larger in the PAW method because it gets the wavefunctions
correct over the whole unit cell and not only in the interstitial region. In practice,
only a finite amount of auxiliary wavefunctions and real wavefunctions can be
taken along in the calculations. But because they are only required inside the
spheres, they are conveniently expanded in spherical harmonics and a small
basis is usually sufficient.
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Chapter 3

Frist-principles calculations
of Bi2Te2Se

3.1 Introduction

The material that we are interested in in this chapter is Bi2Te2Se, which is a
topological insulator in the family of the second generation materials [18]. Ex-
perimentally it has been confirmed to have a topological edge state, while the
bulk resistivity of the material is large compared to other members of the family,
like Bi2Se3 and Bi2Te3. The low bulk resistivity in the latter two topological
insulators is mostly due to defects [32, 42], while the large bulk resistivity of
Bi2Te2Se tells us that it is very likely that defects do not play an important role
in describing its bulk properties. The low bulk conductivity makes Bi2Te2Se a
well-suited material for testing properties of 3-dimensional topological insula-
tors.
In the rest of this introductory section, we give the structural parameters of
Bi2Te2Se as well as the parameters we used in the rest of the DFT calculations.
In the rest of the chapter we present and discuss the results of the calculations.
We first determine the bulk electronic structure and then the bulk dielectric
function of the material. Afterwards we move on to the surface properties, i.e.
the electronic structure, the charge density and dielectric tensor of the surface.
When we look at these surface properties, we try to determine the effect of the
edge states.

Crystal structure: Bi2Te2Se has a layered structure, where each layer con-
sists of five atoms in the order Te-Bi-Se-Bi-Te which form covalent bonds while
the different layers are held together by Van der Waals forces. We will call such
a layer of five atoms a quintuple layer (QL). The space group of the material is
R3̄m and the unit cell can be chosen to be either rhombohedral, which consists
of 5 atoms, or hexagonal, which consists of 15 atoms. Figure 3.1 shows both
unit cells. The experimental cell parameters of the hexagonal are given by [31]:

aH = 4.298 Å = 8.122 bohr

cH = 29.774 Å = 56.265 bohr.
(3.1)
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The paper also provides following fractional positions of the atoms in the rhom-
bohedral unit cell:

Bi = ±(u, u, u) where u = 0.3958

Te = ±(v, v, v) where v = 0.2118

Se = (0, 0, 0).

(3.2)

Since we will use both unit cells, we mention how the transformation between
the two can be carried out. For more detailed information we refer to the
International tables of Crystallography Vol. A [17]. Basically, the hexago-
nal unit cell consists of three rhombohedral units cells with their origins at
(0, 0, 0), (2/3, 1/3, 1/3) and (1/3, 2/3, 2/3) inside the hexagonal unit cell, where
of course periodicity is used to transport sections of the rhombohedral cells that
fall outside the hexagonal cell to the other side of the cell. The atom Se is at
Wyckoff position a : (0, 0, 0) in the rhombohedral cell and thus this translates
in the hexagonal cell to the three positions:

Se : (0, 0, 0),

(
2

3
,

1

3
,

1

3

)
,

(
1

3
,

2

3
,

2

3

)
. (3.3)

The Bi and Te atoms are at Wyckoff position c : ±(x, x, x) in the rhombohedral
cell. The same Wyckoff position in the hexagonal cell is given by ±(0, 0, z) so
that the six positions of the Bi and Te atoms are given by:

Bi = (0, 0,±u),

(
2

3
,

1

3
,

1

3
± u
)
,

(
1

3
,

2

3
,

2

3
± u
)

where u = 0.3958

Se = (0, 0,±v),

(
2

3
,

1

3
,

1

3
± v
)
,

(
1

3
,

2

3
,

2

3
± v
)

where v = 0.2118

(3.4)

In cartesian coordinates the hexagonal cell is described by:

aH1 =
aH
2

(1,−
√

3, 0)

aH2 =
aH
2

(1,
√

3, 0)

aH3 = cH(0, 0, 1),

(3.5)

while the rhombohedral cell axes are given by:

aR1 =
1

3
(0,
√

3aH , cH)

aR2 =
1

6
(3aH ,−

√
3aH , 2cH)

aR3 =
1

6
(−3aH ,−

√
3aH , 2cH).

(3.6)

We use the rhombohedral cell to calculate the bulk properties, that is the band-
structure of bulk Bi2Te2Se and the dielectric function, for the obvious reason
that it contains less atoms and requires less computation time. For the surface
properties we use the hexagonal unit cell to construct cells with one or four
quintuple layers.
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}Quintuple

layer

Figure 3.1: The rhombohedral (left) and hexagonal (right) unit cell of Bi2Te2Se.

Computational parameters: Unless mentioned otherwise, the first-principles
calculations we present are carried out with the DFT code ‘Elk’, which is an
implementation of the LAPW method. Before we started calculating the re-
quired properties we carried out the convergence study w.r.t. the k-grid and the
basis set. In each step we converged a specific parameter by raising it in steps
of 1 (with the exception of rgkmax which was raised in steps of 0.5) until the
total energy was converged to within 1 meV, which is certainly strict enough for
our purpose. For the individual meaning of each parameter, I refer the reader
to appendix B where they are discussed. Below, we give the set of converged
parameters that we used in the input file for Elk. The convergence criteria for
the self-consistent loop and the smearing function along with the temperature
are also mentioned.

kgrid 10 10 10 rgkmax 7.5
gmaxvr 16 lmaxvr 8

lmaxmat 7 lmaxapw 10
nempty 10 lorbcnd true
epsengy 1× 10−5 epspot 1× 10−7

stype Fermi-Dirac swidth 9.5× 10−4

We should mention here that setting the local orbitals on, did not effect the
total energy much but since they mainly have an effect on the accuracy of high
lying conduction bands (for which the energy parameter El = 0.15 Ha is not
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close enough to the band value), that is actually what we expect. It is, however,
not correct to conclude that we can just as well leave them out of the calculation
because we need to determine the high lying conduction bands accurately for
an accurate prediction of the dielectric function. This is also the reason why we
included extra empty bands, while in our convergence study of the total energy,
we could be tempted to do with less.
Other parameters in the calculation that we should mention are that the occu-
pation of electron states was smeared out by the Fermi-Dirac distribution with
a temperature of T = 9.5 × 10−4 Ha = 300 K and that spin-orbit coupling was
taken into account by means of a second variational step. All calculations were
carried out in the generalized gradient approximation (GGA) of Perdew, Burke
and Ernzerhof (PBE) [38].

We attempted to relax the structure but we found erroneous results for the
internal relaxation, that is the position of Bi and Te in the unit cell. After
the optimization the positions of Bi and Te were no longer given by ±(x, x, x),
i.e. the symmetry got broken. This should be impossible by symmetry consid-
erations alone1. Furthermore, with the use of the relaxed internal positions,
the bandstructure of the system shows that Bi2Te2Se is metallic, which is in
contradiction with the experiment (as we will discuss more thoroughly in the
following). The relaxation w.r.t. the unit cell parameters was also carried out
and here we found values that differed ∼ 1% in comparison with the experi-
mental parameters. It is unsure however, how accurate this is since the internal
positions had to be kept fixed. This is why we decided to work with the exper-
imental parameters in all calculations.

3.2 Bulk electronic structure

As a first step in the calculation of the dielectric function, we present the band-
structure as this gives us an important hint as to what we can expect from
the dielectric function and since the bandstructure has been presented in other
papers with which we can compare our results. Also, we carry out the bandstruc-
ture calculation with and without spin-orbit coupling because it is interesting
to see how the spin-orbit coupling causes the band inversion, which is necessary
to make Bi2Te2Se a topological insulator.

We calculated the bandstructure along the lines of the first Brillouin zone,
shown in figure 3.2, that connect the time-reversal invariant symmetry points.
The coordinates of these high symmetry points in the Brillouin zone of a rhom-
bohedral structure are given, w.r.t. the reciprocal basis vectors, by [44]:

Γ: (0,0,0) Z: (1/2, 1/2, 1/2)
F: (1/2, 1/2, 0) L: (1/2, 0, 0)

The bandstructures with and without spin-orbit coupling taken into account are
shown in figure 3.3. For the bandstructure without spin-orbit coupling we find
a direct bandgap at the Γ-point of 38 meV. After spin-orbit coupling is taken
into account, the bandgap is no longer direct and is situated along the Z-F line

1That the symmetry for some systems gets broken is known problem in the Elk code. This
was pointed out for us by Dr. J. K. Dewhurst, the main developer of the code.
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and has a value of 291 meV, which is remarkably close to the values reported in
the experimental studies of Ren [42] and Akrap [2]. We also show the relative
contributions of the p-orbitals of each atom to the states of the bands. When
we do not take spin-orbit coupling into account we find the normal band or-
dering Te(5p) < Bi(6p). If we include spin-orbit coupling we see that we get
the ordering Bi(6p) < Te(5p) near the Γ-point. This shows that the spin-orbit
coupling causes a band inversion in the bulk and we are indeed dealing with
a topological insulator. We explicitly show the Dirac cone in the surface band
structure when we study the surface properties.

b3
b1 b2

Γ

F

Z

L

b1 b2

Γ

M K

Figure 3.2: The first Brillouin zones for bulk (top) and the slab (bottom). The
dashed red lines indicate the path in the reciprocal space used for plotting the
band structures.

We compare our results with three papers which have all performed
first-principles studies of Bi2Te2Se with the PAW method using the DFT pack-
age VASP. In the first paper by Dai [12], the bandstructure without spin-orbit
coupling does not agree very well with our result in the sense that it shows
significant quantitative as well as qualitative differences. The be more precise,
the authors of the paper found a direct bandgap with a magnitude of 260 meV
at the Γ-point and, for example, the second highest valence band in our band-
structure is shifted downwards by 0.5 eV compared to their result. For the case
where spin-orbit coupling is taken into account, the results are in good quali-
tative agreement with our findings although there are quantitative differences
(e.g. near the Γ-point). The bandgap they predict in this case is 0.229 eV. The
second paper, by Chang [8], shows much better agreement with our result, with
bandgaps of 76 meV without spin-orbit coupling and 272 meV with. From the
details they give in their paper, however, no large differences between this pa-
per and the first should be expected. Both papers used the PBE functional and
the only differences in the parameters are the plane wave energy cutoff and the
k-grid. The third paper, from Wang [54], predicts a bandgap of 0.28 eV for the
case with spin-orbit coupling.
It is hard to say what exactly causes the differences for the case without spin-
orbit coupling but they could, quite satisfactory, be explained by supposing that
the scalar relativistic terms were not included in the calculations of Dai. The
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Figure 3.3: Bandstructure of Bi2Te2Se with and without taking spin-orbit cou-
pling into account. The different colors show the relative contribution to the
states of the p-orbitals from each atom. We only show the p-character here
since the other orbital characters of the states is negligible.

scalar relativistic terms are the relativistic mass and the Darwin term and are
always included in the Elk code2. The first causes electrons to become more
concentrated around the nucleus and this leads to a downward shift in the en-
ergy. This downward shift in energy gets partially compensated by the Darwin
term3, that gives the extra localized electron additional kinetic energy through
the Heisenberg uncertainty principle. The resulting shift of the two contribu-
tions is, however, negative [60] and since Bi is a heavier element than Te, the
downward shift is larger for the former. Comparing the contribution to the
states in the bandstructure from the different atoms, the shifts in comparison
with the results of Dai could be explained. We found in some scattered sources,
though, that the VASP code normally also includes the scalar relativistic terms.
The other option is then to assume that the difference is caused by the use of a
different set of PAWs, which could have a significant influence on the results. It
stays, however, a guess due to the lack of documentation in the different papers
on the details of the PAWs used. Either way, mainly the result with spin-orbit
coupling is of interest since it corresponds with the real system and the agree-
ment over the different papers and experiments gives us confidence that it is
reliable. The case without spin-orbit coupling we only use in the calculations
for the slab to see what effect edge states have on the binding energy of Ps.

2Dr. J. K. Dewhurst, the main developer of the Elk code, pointed this out on the forums
of the package.

3That the Darwin term only affects s-states is only valid for the 1/r potential. In a realistic
crystal potential, it is most important for the s-states but other states will also experience an
influence from this term.
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3.3 Bulk dielectric function

Before we discuss our results of the dielectric function, we give the formulas
that are used to calculate the function in order to discuss the parameters used
in the calculation. The formula for the RPA dielectric function is given by
two contributions [33]. The first is the Drude term, which describes intraband
transitions and is only present in the case of metals:

εDrude(ω) = 1−
ω2
p

ω(ω + η)
, (3.7)

where η = i/τ is a phenomenological relaxation constant, which can be inter-
preted as the lifetime of the excitations. Its net effect is a smearing of the peaks
in the spectrum. The plasma frequency is given by [37]:

ωp =
4πNe2

m∗
, (3.8)

where m∗ is the effective mass of the electrons in the solid and N the electron
density. Since we found a finite bandgap, we know that we do not have to include
this contribution for calculating the dielectric function. We just keep in mind
that we need to take this term into account when we are dealing with metals as
it is a parameter that has to be set explicitly in Elk. The second contribution to
the dielectric function is given by the interband transitions. In Elk, the optical
conductivity is calculated rather than this part of the dielectric tensor but the
latter is easily obtained from the former through the transformations:

<[εαβ(ω)] = δαβ − 4π=
[
σαβ(ω)

ω + η

]
(3.9)

and

=[εαβ(ω)] = 4π<
[
σαβ(ω)

ω + η

]
, (3.10)

where α, β = {x, y, z}, σαβ is a specific element of the optical conductivity
tensor, ω is the frequency and η = i/τ is again the inverse of a phenomenological
lifetime times the imaginary number. The optical tensor itself is calculated by
evaluating following formula4 [41]:

σαβ(ω) = i

∫
BZ

d3k
∑
l,n

1

ωln(k)

[
Πα
ln(k)Πβ

nl(k)

ω − ω̃nl(k) + η
+

(Πα
ln(k)Πβ

nl(k))∗

ω + ω̃nl(k) + η

]
× f(En(k))f(El(k)).

(3.11)

Here ω̃nl(k) is the energy difference between the states n and l, f(En(k)) gives
the occupation of the state n and Πln(k) are the matrix elements:

Πln(k) = 〈Ψl(k)|
(
p +

σ ×∇V (r)

4

)
|Ψn(k)〉, (3.12)

4Other schemes are frequently implemented in other codes, see [41] for a more detailed
discussion.
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where p = −i~∇ is the crystal momentum and the second term describes spin-
orbit coupling. The point we want to make is that (3.11) tells us to integrate
over the whole Brillouin zone while in practice, we only have a finite k-mesh. At
each of these grid points we get a delta function-like contribution to the optical
conductivity, which is smeared out depending on the value of η.
We now carry out a calculation in which we try to converge the spectrum of the
dielectric response, which is more strict than obtaining a converged value for the
Van der Waals constant. This is because the dielectric response at imaginary
frequencies depends on an integral over the real frequencies, as we show later,
and the Van der Waals constant in turn is determined by an integral over the
imaginary frequencies. The converged spectrum, however, allows us to compare
with experiment. In our calculations we used the Fermi-Dirac distribution to
determine the occupancy of the states, that is:

f(En(k)) =
1

1 + exp
(
En(k)−EF

kBT

) , (3.13)

in which the temperature T is a parameter we can choose in Elk. We put its
value to room temperature, which corresponds to T = 9.5 × 10−4 Ha for cal-
culating the ground state density. In the Elk code the same T determines the
value of η but we found that with this smearing we could not converge the di-
electric function without having to select a k-grid which is prohibitive in terms
of both computation time and memory usage5. The reason for this is twofold,
the first is that the k-point mesh we used was not dense enough for the smeared
delta peaks to overlap sufficiently and the second is that when we increased the
k-grid, the k-points were not located at the same points in reciprocal space.
Combined, this gave rise to wiggles in the dielectric function that were different
for each k-grid. This is why we decided to increase the smearing in the dielec-
tric function6, although it also smooths out the features the dielectric function
has. By increasing the smearing with small steps, we found that the dielectric
function was sufficiently converged with a 32×32×32 k-grid with a smearing of
η = 0.0025 Ha. The final results for the dielectric function are shown in figure
3.4.
We now compare our result with the experimental study of Akrap [2] who mea-
sured the optical conductivity of Bi2Te2Se in the planes of the quintuple layers,
i.e. σxx = σyy. Therefor we plot the optical conductivity calculated by equa-
tion (3.11) in the units employed in the article. The result is shown in figure
3.5. The experimental result shows five clear peaks in the optical conductiv-
ity. One is a phonon mode at low energies which is missing in our spectrum
because we did not take phonons along in our calculation. The other four we
can find in our plot, the first and second one (starting from the left) are at
4600 cm−1 and 7500 cm−1 respectively. Compared to the experimental find-
ings7 of ∼ 3000 cm−1 and ∼ 6000 cm−1 at 295 K both peaks are shifted towards

5We started with a 8 × 8 × 8 k-grid up to a grid of 36 × 36 × 36 in steps of + 4 × 4 × 4.
6As mentioned already, Elk uses the same parameter for both the smearing width η as the

temperature for the Fermi-Dirac distribution. Because we are not interested in the ground
state at high temperatures, we carried out the ground state calculation with T = 9.5 × 10−4,
which also determined the occupancies of the different states. Afterwards we changed the
parameter to the desired value of η before calculating the dielectric function.

7The values I cite here are only approximate since it is difficult to determine these values
accurately from a logarithmic plot.
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Figure 3.4: Plot of the dielectric function in the (x, y)-plane (blue) and along
the z-direction (red). We calculated the dielectric function up to 1 Ha ≈ 27 eV
but since it is very featureless for high frequencies, we only show the more
interesting part here.

higher frequencies by about 1500 cm−1, which corresponds to 186 meV. Both
of these peaks are somewhat closer to our result if we would compare with the
measurements at lower temperatures in the inset of figure 3.5. The third and
fourth peak appear in the experimental spectrum as one peak at ∼ 13000 cm−1

which is in quite good agreement with our result of 13500 cm−1 that we obtain
by taking the mean of the positions of the two peaks. The last peak of the ex-
perimental spectrum can be identified with the two small bumps or shoulders in
our result. Taking the mean again, we find a ‘peak’ at 19535 cm−1 which agrees
well with the experimental result of ∼ 20000 cm−1. We can conclude the peak
positions are in reasonable agreement with the experiment. Actually, we can
anticipate that small differences will not have a large influence on the possible
existence and binding energy of the positronium, since we will always take an
integral of the dielectric function. This will become clear when we discuss the
analytic continuation. We discuss the sensitivity of the Van der Waals constant
on the dielectric function further on in this work.

3.4 The Ps work function

The work function of the Ps is the net energy required to remove a Ps from
the bulk of the material towards the vacuum. This energy can be calculated
by taking the difference between the Ps binding energy and the electron and
positron work functions combined [5]:

φPS = φ− + φ+ −
1

4
, (3.14)

where we used atomic units. For clarity, we give a schematic overview of the
different energy contributions mentioned in the following discussion in figure 3.6.
The electron work function is determined by (1) the energy required to move an
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Figure 3.5: Plot of the optical conductivity in the planes of the quintuple layers.
The arrows indicate the characteristic peaks in the spectrum. The inset shows
the experimental result taken from [2].

electron from the highest occupied state in the crystal to the ‘crystal zero’, i.e.
minus the chemical potential, and (2) the energy required to physically drag the
electron from the bulk to the vacuum. The positron work function is determined
by (1) the energy required to move the positron from the lowest possible state
in the crystal to the crystal zero and then (2) the energy required to physically
move the particle from the crystal to the vacuum. If we determine the crystal
zero from electrostatic energy alone, the second contribution is the same in
magnitude but opposite in sign for the two particles. We stress, though, that
this does not work if the zero in the calculations is determined from quantities
that are not electrostatic in nature, e.g. if the zero is determined by the average
Kohn-Sham energy in the unit cell. This is because the exchange and correlation
energy is different for the electron than it is for the positron, i.e. the crystal zero
and (2) would be different for both particles. Under the assumption that the
crystal zero is determined from electrostatic energy alone, the Ps work function
is determined by:

φPs = (−µ− + ∆) + (−µ+ −∆)− 1

4
= −µ− − µ+ − 1

4
, (3.15)

where µ−, µ+ are the electron and positron chemical potentials respectively and
∆ is the energy required to physically drag the electron from the bulk to the
vacuum. In our calculation, the Kohn-Sham eigenvalue of the highest occupied
electron state determines the value of the electron chemical potential. For the
positron, we take the Kohn-Sham eigenvalue of the lowest possible state in the
material.
In principle we have to solve the two-component DFT problem self-consistently
to determine the Kohn-Sham eigenvalues values. This means that we first calcu-
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Figure 3.6: Schematic overview of the energy levels and differences discussed
above. The blue lines and arrows denote electron related quantities and the red
lines the positron related quantities. In the box, we have drawn the electrostatic
potential for both particles, which has the opposite sign. At the left side we
have drawn the energy bands for the electron and the positron. Note that the
crystal zero in principle can lie anywhere, i.e. it does not have to lie in between
occupied and unoccupied energy levels.

late the ground state electron density in absence of the positron. In the second
step one adds the positron to the system and calculates its ground state while
keeping the electron density fixed. Then, the ground state electron density is
calculated again but this time in the presence of the positron density. After-
wards the positron density is calculate again, etc. The process is iterated until
convergence for both the electron and positron density is reached. This approach
is usually very demanding in terms of computation time. In our case, however,
it suffices to calculate the positron density once in the ground state electron
density, obtained in absence of the positron. Indeed, in the case where we are
dealing with a perfect crystal and if we assume only one positron is present in
the material at any given time, which is very reasonable, the particle is delo-
calized over a large region. The resulting positron density at any given point is
then very low and it can be expected that the effect on the electron density is
very small. In the case of vacancy defects, the approach is not justifiable but
this is a problem we do not deal with here.
To calculate the positron states in the material, we need to use a different
functional than for electrons. This is because there is no exchange with the
electrons of the material since the positron and electrons are distinguishable
particles. Also the correlation between electrons mutually is different than be-
tween a positron and electrons.

Unfortunately, there are no algorithms implemented in the Elk package to
carry out positron related calculations. Instead, we use the plane wave package
Abinit, in which the crystal zero is determined by setting the average Hartree
and local potential equal to zero8. We used a PAW method with the PAW

8This is explicitly mentioned on the Abinit website where the output of the code is ex-
plained. We quote literally: ‘In the present implementation, the average Hartree potential and
local potential are imposed to be zero, but not the average exchange-correlation potential.’
The local potential is the potential due to the presence of the ions.
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data files we could find on the Abinit website. We carried out the convergence
study w.r.t. to the plane wave cutoff and the cutoff for expanding the density.
We found that 35 Ha and 118 Ha respectively gave results for which the total
energy was converged to within 1 meV. The amount of auxiliary wavefunctions
that were used were left at the standard value defined in the PAW datasets.
The functional that we used is again the PBE for the electron ground state
calculation while for the positron state we used the GGA functional of Barbiellini
reported in [10]. In our calculation, we included the spin-orbit coupling because
we saw from the bandstructure that it has a significant effect on the location
of the Kohn-Sham levels. For each Se and Te atom in the unit cell, we have
six valence electrons and for Bi we have five, which means that 28 states are
occupied at each k-point.
From the bandstructure, we know that the valence band maximum is located
along the Z − F line in the Brillouin zone. The value we found for the valence
band maximum is given by µ− = −0.22977 Ha. The lowest available positron
state is always located at the Γ-point and we found that its value is given
by µ+ = −0.02990 Ha. The result for the Ps work function is thus given by
φPs = 9.67 mHa = 0.263 eV.

3.5 Electronic structure near the surface

We now move from bulk properties towards surface properties of Bi2Te2Se. Pre-
vious DFT studies show that 4 QLs are necessary before the conducting edge
states show up [8,12]. Since we are interested in the effects of the edge states, we
calculate all surface properties with a unit cell that contains 1 QL as well as with
a unit cell that contains 4 QLs. Since Elk uses periodic boundary conditions in
three directions, we included 14 bohr of vacuum to avoid interactions between
the images of the slabs. The spin-orbit interaction is taken into account in the
case of 1 QL and in the case of 4 QLs we carry out the calculations both with
and without. We selected a k-grid of 24 × 24 × 1 while all parameters in the
calculation of the surface properties were kept the same as in the case of the
bulk properties.

We first present the electronic structure of the Bi2Te2Se surface. The path in
the Brillouin zone is shown in figure 3.2 and the coordinates of the time-reversal
invariant points in the reciprocal basis are given by:

Γ: (0,0) M: (1/2, 0) K: (2/3, 1/3)

We calculated the electronic structure for a slab consisting of 1 QL and 4 QLs
with the spin-orbit coupling taken into account and for the case of 4 QLs also
without. The results are shown in figure 3.7. In agreement with Dai’s paper [12],
we find that a finite bandgap is present in the case of 1 QL and that it disappears
in the case of 4 QLs. The reason for this bandgap is that for 1 QL, there is a
significant overlap of the wavefunctions of the edge states at the opposite edges
of the slab. The interaction between these states at the opposite edges opens a
bandgap [8]. If the slab consists of more QLs, the overlap becomes smaller and
the case of 4 QLs the gap at the Dirac cone becomes insignificant. The only
difference with the results of Dai we notice is that the Fermi-energy is shifted
∼ 0.06 eV in the case with spin-orbit coupling. As a consequence the last valence
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band along the Γ−M in our result stays well below the Fermi-energy while in
his result, it passes very slightly above.
The electronic structure at the surface also shows that Bi2Te2Se is indeed a
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Figure 3.7: The electronic structure of a slab consisting of 4 QLs when the
spin-orbit interaction is excluded (left) or included (right). The inset in the
right figure shows that a bandgap opens when the calculation with spin-orbit
coupling is carried out for a slab consisting of 1 QL.

strong topological insulator. As explained in the introduction, the Fermi circle
should enclose an odd number of Kramer degenerate points, which is clearly the
case here.

3.6 The surface electron density

We are now interested in obtaining the background edge position z0, which tells
us at what point the electron density starts decaying exponentially, and the
electron decay length l. To obtain these quantities, we averaged the calculated
ground state electron density over an equidistant 25× 25 grid in the unit cell in
the plane of the surface and then plotted the logarithm of this averaged density
along the z-axis. We found that 14 bohr was not enough to ‘separate’ the surface
electron densities of both sides of the slab. By this we mean that the electron
density started increasing again before it reached the minimal representable
value with the chosen basis set, i.e. the electron density in the vacuum was
nowhere approximately constant in the plot. This is why redid the calculation
with 33 bohr (one and a half times the size of a QL) of vacuum in the cell. The
result is shown in the left plot of figure 3.8 for both the 1 QL as the 4 QLs case
with spin-orbit coupling. We see that the densities are nearly identical with the
exception of the region far away from the surface, where the electron density
stops decaying exponentially and reaches the minimal representable value of the
basis set. Outside this region, the maximal relative difference between the two
densities is 0.27%. This result already shows us that in our description of the
Ps bound state, we can only expect a negligible difference in the repulsive part
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of the potential between the 1 QL and 4 QLs layer case.
Let us discuss in some more detail the differences in the charge densities when
we consider 1 or 4 QLs and include or exclude the spin-orbit interaction. In
figure 3.9, we show the absolute and relative differences in the electron densities
between the different cases. To make these plots, we calculated the charge
density of the 1 QL case over the whole unit cell and then shifted the origin to
the middle of the QL. In the case of the 4 QLs, we calculated the charge density
from the first atom of the last QL up to the first atom at the other side of the
slab. This density was then shifted to correspond with the positions of atoms
in the 1 QL case. The difference shown in the inset of the right plot is of course
calculated over the whole unit cel of the 4 QLs slab. The first thing we like to
point out is that the relative difference in the vacuum part becomes large and
that it should be compared with the absolute difference which in fact becomes
very small in that region. Comparing the cases with and without spin-orbit
coupling, we see that in the case of 4 QLs the differences in the density towards
the middle of the slab are slightly smaller than closer towards the surface. We
also checked this by plotting the difference in charge density over the whole
slab. We expect that this difference is due to the presence of the edge states but
we have to conclude that the effect of these states is small compared to other
differences in the charge density caused by the spin-orbit interaction. To further
motivate that the effect of the edge state on the density is small, we consider the
difference between 1 QL and the last QL of the 4 QLs slab. We already stated
that in the case with the spin-orbit interaction, the edge states are present in
both cases. This means that at the vacuum edge for the 4 QLs (to the right
side of the plot), we expect that the difference is small, which is indeed what
we see on the plot. The difference grows further to the middle of the slab so
that we might think this is due to the second edge state that is present for the
1 QL. We notice, however, that the difference is nearly identical when we leave
out the spin-orbit coupling. The effect of the edge state can then only be the
resulting difference between the green and black curves on the plot. We thus
do not expect to see large differences in the electron density decay length and
furthermore, we cannot claim that these differences are prominently caused by
the edge states.

To determine the value of the electron decay length we used linear regression in a
region where the electron density is clearly decaying exponentially. The electron
decay length is given by the inverse of the slope of the resulting fit. We avoided
the regions too close to the surface, where the electron density shows different
behavior, and the region far away from the surface, where the electron density
decays slower. The latter is caused by the fact that we used a finite plane
wave basis set to expand the electron density. The interval that we deemed
appropriate for the fit is given by [3.25, 5.00] bohr, where we took the position
of the topmost atom in the last QL as origin. The fitting region is indicated
in the plot by arrows. The resulting electron decay length for the 4 QLs layer
case with spin-orbit coupling included is given by l = 0.6781 ± 0.0001 bohr =
0.3588±0.0001 Å. The background edge position z0 is determined by the point,
measured from the position of the topmost atom of the slab, where the electron
density starts decaying exponentially. We determined this by calculating the
relative difference between the electron density and the linear fit. Then we
searched, from the region where we fitted towards the surface, for the first point
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Figure 3.8: The left plot shows the electron averaged electron density at the
surface for 1 QL and 4 QL, where the spin-orbit interaction is taken into account,
as well as the linear fit to the logarithm of the density. The arrows indicate the
left and right boundary of the fitting region. The right figure shows the relative
difference between the electron density and the linear fit. The point where this
differences becomes larger than 1% determines the background edge position.

that has a relative difference larger than 1%. The value we found in this way is
given by z0 = 2.39 bohr.
In the case of 4 QLs where we did not take spin-orbit coupling into account, we
found, using the same fitting region, l = 0.6761±0.0002 bohr = 0.3578±0.0001 Å
and z0 = 2.39 bohr. In the case of 1 QL where spin-orbit coupling was included
we found l = 0.6771± 0.0001 bohr = 0.3583± 0.0001 Å and z0 = 2.39 bohr. The
differences between these three results are very small and of the order of the
changes we get by changing the fitting region, which confirms what we expect
from our discussion of the differences in the charge density between the different
cases.

3.7 Dielectric function near the surface

We just discussed that the edge states have a negligible effect on the electron
decay length l and thus we do not expect that the edge states alters the repulsive
part of our potential in a significant way. The attractive part, however, depends
on the dielectric tensor and we can expect that the metallic edge state has a
larger impact on this quantity. This because for metals we have a larger response
at longer wavelengths in comparison with insulators. The form of the Van der
Waals interaction we discussed in appendix A is valid for long wavelengths and
thus for an atom far away from the surface. We saw that the response of the
solid in our description is the response to an infinite oscillating charge density at
a distance z far away from the surface. To link the surface’s response function
with the dielectric tensor of the bulk, we argued that the induced charged density
at the surface has to be fed by a current coming from deep within the solid.
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Figure 3.9: Comparison of the absolute and relative differences of the averaged
charge densities between the 4 different situations. The inset in the right figure
shows the relative difference in charge density in the 4 QLs case with and without
spin-orbit coupling over the whole slab. The peak in the left plot can be ignored
since it corresponds with the position of a core, where the electron density is
very high. The right plot in fact shows that the relative difference there is in
fact negligible.

Intuitively, we can argue, however, that the solid actually feels an oscillating
spherical charge density from the instantaneous dipole of the atom. The induced
charge then does not necessarily come from the bulk of the material and can
come from surface as well. This is why we calculate the dielectric response of a
slab with both 1 QL and 4 QLs with the spin-orbit coupling taken into account.
We know that the difference in the dielectric response then comes from wether
or not the edge state shows metallic behavior. We do not consider the case
without spin-orbit coupling because the difference in electronic structure is too
large to claim that it only comes from the edge state. We mention that we had
to lower the parameters in our calculation since we ran into memory problems.
The parameters we changed are given by:

rgkmax 7.0 lmaxapw 9
gmaxvr 15 lmaxvr 3

We carried out a convergence study w.r.t. the change in the dielectric function
for 1 QL and found that increasing them does not significantly change the
output. Also for reasons of computation time, we chose a k-grid of 24× 24× 1
for which we selected a smearing of η = 0.01.
We need to be careful, however, since the dielectric response we calculated is in
fact a bulk response function and it does not immediately translate to a surface
response function by adding vacuum. Indeed, the surface dielectric response
in fact depends on the distance to the surface, as pointed out in the paper
of Cheng [9]. This because the translational invariance perpendicular to the
surface is broken and one then carries out a Fourier transform only in directions
parallel to the surface. In the long wavelength limit, Cheng relates the surface
and bulk dielectric function by means of a sum rule. For the bulk dielectric
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function, the f-sum rule is given by:

∞∫
0

dω ω=
[

1

εb(q, ω)

]
= −π

2
ω2
p, (3.16)

where εb(q, ω) is the bulk dielectric function and ωp is the bulk plasma frequency
(3.8). For the surface we have a similar rule:

∞∫
0

dω ω=
[

1

εs(Q,ω)

]
= −π

2
ω2
s(1 + αQ+ . . . ), (3.17)

where εs(Q,ω) is the surface dielectric function, Q is a reciprocal wave vector
parallel to the surface, α is a quantity that depends on the details of the consid-
ered surface and ωs is the surface plasma frequency. The latter is related to the
bulk plasma frequency by ωs = ωp/

√
2 in the Q = 0 limit. If we thus evaluate

the l.h.s. of (3.16) with the bulk dielectric function we calculated previously, we
obtain the bulk plasma frequency. From (3.17), we see that if we carry out the
same integral for the dielectric function we calculated for the slab, we should
obtain half this value. If we do the rescaling like this, we model the case where
the experiment is carried out for a semi-infinite material.
Because experiments can be carried out for thin films of Bi2Te2Se, we also con-
sider the dielectric response of a slab of material. In this case, we also need to
rescale the dielectric function and we explain this in more detail in section 5.1.4,
where we calculate the dielectric function of graphene. In this rescaling, we need
to multiply by the length of of c-axis and afterwards divide by the thickness of
the slab. For the latter we take the distance between the first and the last atom
of the slab plus twice the background edge position z0.
The result for a thin film of Bi2Te2Se is shown in figure 3.10 and the result
rescaled with the sum rule in figure 3.11. The first thing we notice is the
extra peak in the spectrum at low frequencies for the imaginary part of the di-
electric tensor present in the case of 4 QLs. The extra low frequency contribution
is caused by the Drude contribution (3.7) to the dielectric response and has to
be included for the 4 QLs, because in that case we are dealing with a metal.
For 1 QL, we left this contribution out because we found earlier that we then
have a finite bandgap. Because the plasma frequency for the εzz-component we
found is an order of magnitude lower than for the other components, the Drude
contribution shows no significant contribution to component. The rest of the
peaks in the imaginary part of the dielectric tensor in the case of 4 QLs are also
shifted towards lower frequencies compared to the case of 1 QL.
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Figure 3.10: The dielectric response of a slab of Bi2Te2Se with 1 or 4 QLs with
the spin-orbit coupling taken into account. This figure shows the output of
the Elk code after rescaling to account for the vacuum in the unit cell, i.e. to
correspond with the response of a thin film.
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Figure 3.11: The dielectric response of a slab of Bi2Te2Se with 1 or 4 QLs with
the spin-orbit coupling taken into account. We obtained this result by rescaling
the output of the DFT calculation with the sum rules.
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Chapter 4

Positronium bound states
near Bi2Te2Se

So far, we determined the reference plane position z0, the electron density decay
length l and the work function V0 from the DFT data. We also calculated the
dielectric function of the bulk material but in our description of the potential,
we need to evaluate this function at imaginary frequencies. In the following we
explain the analytic continuation that allows us to find these values. Afterwards,
we discuss the atomic polarizability, which is the last ingredient we need. The
rest of this chapter is devoted to study the bound state. The first step is to
determine the bound state and its binding energy. Afterwards we evaluate the
sensitivity of the binding energy w.r.t. all the parameters in the description. At
the end of the chapter we discuss the influence of the edge states on the binding
energy of Ps.

4.1 Dielectric function for imaginary frequen-
cies

From the DFT calculations, we obtained the real and imaginary part of the
dielectric function but only for real valued frequencies. We can get the value of
the dielectric function for imaginary frequencies by analytic continuation. To
do this, we start from the Cauchy theorem:∮

C

χ(ω)

ω − v
dω = 0. (4.1)

The contour we consider is shown in figure 4.1, so the Cauchy theorem is valid
if χ(ω) is analytic in the upper half plane since the pole is not included in the
contour. Now if we also have that χ(ω)/|ω| → 0 if ω →∞, then the contribution
to the contour integral due to the big half circle in the upper plane vanishes and
we can write:

∞∫
−∞

χ(ω′)

ω′ − v
dω′ − 2πi lim

ω→v
χ(ω) = 0 (4.2)
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Figure 4.1: The contour C used in the Cauchy Theorem.

or:

χ(v) =
1

2πi

∞∫
−∞

χ(ω′)

ω′ − v
dω′. (4.3)

The dielectric function minus one satisfies the above conditions, which can be
understood by, for example, looking at relations (3.9) and (3.10). Indeed, the
term σαβ/(ω + η) vanishes at high frequencies. Another argument is that the
dielectric tensor gives us the relation between the external electrical field and
the displacement field D(ω) = ε(ω)E(ω). At high frequencies the response of
the material vanishes and we need to have E(ω) = D(ω). This allows us to
write:

ε(iξ)− 1 =
1

2πi

∞∫
−∞

ε(ω)− 1

ω − iξ
. (4.4)

If we multiply the nominator and denominator by (ω + iξ) we get:

ε(iξ) = 1− 1

2πi

∞∫
−∞

ε1(ω)− 1 + iε2(ω)

ω2 + ξ2
(ω + iξ)dω, (4.5)

where ε1(ω) is the real part of the dielectric function and ε2(ω) is the imaginary
part. Because ε1(ω) is an even function of ω, the integral over ωε1(ω) will
give zero. Similarly, since ε2(ω) is an odd function of ω, the term ξε2(ω) will
drop [55]. So we find:

ε(iξ) = 1 +
1

π

∞∫
0

ξ(ε1(ω)− 1) + ωε2(ω)

ω2 + ξ2
dω (4.6)

We know ε1(ω) and ε2(ω) from the DFT calculations, up to a certain cutoff
value for ω. Now because lim

ω→∞
ε1(ω) = 1, lim

ω→∞
ε2(ω) = 0 and the ω2 in the

denominator, we can get accurate results by numerically integrating the equa-
tion up to the cutoff frequency. To do the numerical integration, we used the
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composite Simpson rule:

b∫
a

f(x)dx = h

1

3
(f(x1) + f(xn)) +

4

3

n/2−1∑
n=1

f(x2n) +
2

3

n/2−1∑
n=1

f(x2n+1)

 ,
(4.7)

where f(x1) = f(a), f(xn) = f(b) and xi − xi−1 = h.

4.2 Polarizability of positronium

Rescaling of units The polarizability of Ps can be obtained easily from the
polarizability of a hydrogen atom. Indeed, by going to the center of mass coor-
dinates of the system, the mathematics is nearly identical. The only difference
is that the positron mass enters the equations instead of the proton mass. This
means that all expressions stay the same but we have to rescale our units. The
centre of mass and relative coordinates become:

R =
mr1 +mr2

2m
=

1

2
(r1 + r2) (4.8)

r = r1 − r2 (4.9)

The inverse mass is given by:

µ =
1

m
+

1

m
=

2

m
(4.10)

The energy levels of the Ps atom are then given by:

En = −EI
n2
, (4.11)

where n is the principal quantum number. The ionization energy is given by:

EI =
µe4

2~2
=

1

2

me4

2~2
=
EHI
2
, (4.12)

where EHI is the ionization energy of the hydrogen atom. So whenever we
encounter parameters with the dimension of energy that were derived for the
hydrogen atom, we have to divide by a factor of two. The classical orbit radii
of the Bohr model are given by:

rn = n2a0, (4.13)

in which the bohr radius for the Ps atom is given by:

a0 =
~2

µe2
= 2

~2

me2
= 2aH0 . (4.14)

This means we have to multiply by two for every parameter that has the di-
mension of length if it was derived for the hydrogen atom.
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Eigenfrequency and oscillator strength formulation. We use the nu-
merical results for the dipole polarizability of hydrogen tabulated in the paper
of A. Dalgarno and G. A. Victor [13]. Since they made a few mistakes with
prefactors and units throughout their paper, we give the correct expressions
here. The polarizability α is defined as:

p = αE, (4.15)

where p is the induced electric dipole moment, which has SI units [ C · m]. The
electric field has SI units [ N· C−1] so that the polarizability should have SI units
[ C2 · m2 · J−1]. In their paper, Dalgarno and Victor express the polarizability
as:

α(ω) =
2

3

∫
n

ω̃n|〈ψ0|d̂|ψn〉|2

ω̃2
n − ω2

, (4.16)

where the integration is assumed over both the discrete states and the contin-
uum. The electric dipole operator is given by d̂ =

∑
i eir̂i, the |ψn〉 and |ψ0〉

are respectively the eigenfunctions and the ground state of the atom and the
eigenfrequencies are defined by the energy difference between the ground state
and excited states1:

ω̃n = En − E0. (4.17)

Next, they introduce the dipole oscillator strength but make a mistake with the
prefactor. The correct expression is given by:

fn =
2me

3~2e2
ω̃n|〈ψ0|d̂|ψn〉|2, (4.18)

which is a dimensionless quantity as it should be. If we also approximate the
sum over discrete states plus the integral over the continuum by a sum over the
first N lowest discrete states, we find:

α(ω) =
~2e2

me

N∑
n=1

fn
ω̃2
n − ω2

, (4.19)

or for imaginary frequencies:

α(iω) =
~2e2

me

N∑
n=1

fn
ω̃2
n + ω2

. (4.20)

Let us now rescale the quantities given in the paper. The eigenfrequencies
have the dimension of energy so we have to divide those by two, the oscillator
strengths are dimensionless so they do not have to be rescaled. Finally the
prefactor has the dimension of [ J · m2 · C2] so we have to multiply the final
result by two to arrive at a quantity in atomic units. The final expression in
atomic units that is valid for the Ps is:

α(iω) = 2

N∑
n=1

fn
(ω̃n/2)2 + ω2

, (4.21)

1Dalgarno and Victor defined the eigenfrequency without the expected ~.
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with:

n fn ω̃n( Ha)
1 0.44560 0.37646
2 0.29185 0.51711
3 0.20838 0.90146
4 0.05417 2.60497

4.3 Bound states

We gathered all the ingredients necessary to calculate the potential described
by equations (2.1) en (2.2). We summarize the parameters and give the values
we found in the case of 4 QLs with spin-orbit coupling. Inside the material,
z < z0 = 2.39 bohr, the potential is given by the value of the work function
of the material V0 = 9.67 mHa. The exponential repulsion for z > z0 is deter-
mined by the work function and the electron decay length l = 0.6781 bohr. The
long range Van der Waals interaction is determined by the damping function
(2.4), which has the electron decay length l as argument, and the Van der Waals
constant (2.3). This constant depends on the atomic polarizability (4.21) and
the dielectric function evaluated at imaginary frequencies. We can obtain the
latter from the dielectric function shown in figure 3.4, by using the formula for
analytic continuation (4.6). If we put everything together, we find that the Van
der Waals constant is given by C = 15.69 eV bohr3. The potential is plotted in
figure 4.2.

We now solve the Schrödinger equation in the effective potential we calcu-
lated. We use two different methods to calculate the possible binding energy of
the Ps to be sure that the result does not depend on the method we used. In
the shooting method, we integrate the Schrödinger equation:

−ψ
′′

4
+ V ψ = Eψ. (4.22)

by rewriting it as a set of coupled linear differential equations:{
ψ′ = f

f ′ = 4(V − E)ψ.
(4.23)

We still need boundary conditions to start integrating this equation. Because
the wavefunction has to vanish at infinity, the solution for z < z0, where V (z <
z0) = V0 is constant, can be written as:

ψ(z < z0) = e2
√
V0−Ez. (4.24)

Here we divided the normalization constant away and we assumed that E < 0
since we are only looking for bound states. Very far away from the surface
z � 0, we have V (z � 0) ≈ 0, so that we can write the solution as:

ψ(z � 0) = Ae−2
√
−Ez. (4.25)
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We can thus start integration the equation at z = z0 with the boundary condi-
tions: {

ψ(z = z0) = e2
√
V0−Ez0

f(z = z0) = 2
√
V0 − E ψ(z = z0)

(4.26)

towards some value z1 for which V (z1) ≈ 0. At this border we have to check
whether or not the boundary conditions of (4.25) are met:{

ψ(z = z1) = Ae−2
√
−Ez1

f(z = z1) = −2A
√
−E ψ(z = z1).

(4.27)

Or, if we divide the second of these equations by the first, we do not have to
know the constant A:

f(z = z1)

ψ(z = z1)
= −2

√
−E. (4.28)

If this boundary condition is not met for a specific choice of E, we know that
there is no bound state possible for that value. In practice, we swept over a
range of energy values and plotted the left hand side of (4.28). Intersections
between this line and the right hand side were then identified as bound states.
The integration of the equation was performed with the Runge-Kutta method as
implemented in the MATLAB function ‘ode45’. We carried out a convergence
study w.r.t. the value of z1 by increasing it in steps of ∆z = 2 bohr and found
that for z1 = 14 bohr the energy of the bound state was converged to within
1 meV. The result we found is there is that one bound state for Ps is possi-
ble with a binding energy of E = −150 meV. We also plotted the probability
density we found in figure 4.2 and the result confirms that a physisorbed Ps
can be used to probe very selectively only the surface of the material. Indeed,
the probability density is mainly located above the last atom of the surface and
becomes negligible further than 5 bohr = 2.65 Å beyond this first atom.

In the second approach, we solve the equation numerically on a equidistant
grid, i.e. we write the Schrödinger equation as:

−ψi+1 + ψi−1 − 2ψi
4h2

+ Viψi = Eψi. (4.29)

Finding the bound states then comes down to finding the negative eigenvalues
of this matrix equation. We carried out a convergence study with respect to
the boundaries2, which we took symmetrically around z = 0. We found that
−25 bohr ≤ z ≤ 25 bohr was necessary to convergence the binding energy to
within 1 meV. A converged value for the distance between the grid points was
found to be h = 0.01 bohr. We conclude from this calculation that at the surface
of Bi2Te2Se a Ps bound state exists with an energy of E = −150 meV, consistent
with the previous result.

2Because beyond the boundaries the wavefunction is zero, a grid method always treats
the problem as if the particle is localized in a box. This gives a spurious confinement energy
contribution that can be eliminated by increasing the size of the box.
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Figure 4.2: A plot of the effective potential for the Ps (blue line) and the
resulting probability density of the Ps bound state in the well (red).

4.4 Influence of the parameters on the binding
energy

Although we found that a Ps bound state exists near a Bi2Te2Se surface, it is
interesting to evaluate the recipe in general. That is, determine the sensitivity
of the energy of the bound state w.r.t. the different parameters. As a first step
we determine the binding energy of the Ps as a function of the Van der Waals
constant. Afterwards, we discuss this constant as a function of the frequency
cutoff of the dielectric function and the dependence on the bandgap as well as
the influence of the atomic dipole polarizability. This gives us an idea of what
the most important quantities in the recipe are and where we can improve our
approach.

4.4.1 Influence of the Van der Waals constant on the bind-
ing energy

The first step in our discussion of the importance of the different parameters,
is to investigate how sensitive the binding energy is w.r.t. the Van der Waals
constant. To do this, we solved the matrix equation (4.29) and looked how the
lowest eigenvalue changed as a function of C. The result is shown in figure 4.3.
We also investigated if it was possible for a second bound state to exist but we
found none for C ∈ [0, 27] eV. In this step, we moved the right boundary to
100 bohr because the wavefunction of the excited state will be more spatially
extended than the lowest bound state. To avoid memory problems we had to
change the step between the grid points to h = 0.05 bohr.
The value we found for the Van der Waals constant is C = 15.69 eV bohr3. A
deviation of C ± 1 eV bohr3 around this value changes the binding energy with
± ∼ 25 meV. From this calculation we can conclude that the existence of a
bound state and possible extra bound states is quite insensitive to the exact
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Figure 4.3: The binding energy of positronium as a function of the Van der
Waals constant.

value of the Van der Waals constant, while the binding energy of the state feels
a significant influence.

4.4.2 Influence of the bandgap

Even though we found that the calculated bandgap for Bi2Te2Se agrees very well
with experimental data, this is certainly not always the case in DFT calculations.
This is usually because the exchange term is not accounted for correctly by the
simplest LDA and GGA functionals. Hybrid functionals, for which a Hartree-
Fock calculation is carried out in addition to the DFT calculation, tend to
get better results but are much more computationally intensive. It is thus
worthwhile to determine wether the bandgap has a significant influence on the
energy of the bound state. We do this by shifting the real and imaginary part
of the dielectric function towards higher frequencies. The result is displayed in
figure 4.4.
We find that, by shifting the spectrum by 100 meV towards higher frequencies,
which roughly corresponds with a bandgap that is 100 meV larger, C changes
from 15.69 eV bohr3 to 15.99 eV bohr3. This translates into a change in the
binding energy of 7 meV. If one is dealing with a material for which LDA or
GGA functionals predict the bandgap accurately in the order of ∼ 10 meV, it
might not be worth the extra computational effort by using a hybrid functional.
In the case where there is a large bandgap that is inaccurately predicted by LDA
or GGA functionals, it might though be necessary to use a hybrid functional.
If however, the bandgap is the only problem and the rest of the bands are
predicted accurately, applying a scissor shift when calculating the dielectric
tensor may be a much more computational efficient way to obtain accurate
results. The scissor shift basically pulls open the bandgap to correspond with
the experimental value. This shift in band energies will also lead to a shift of
dielectric response towards higher frequencies but is more subtle than our crude
approach here. For details, we refer to the article of Hughes [20] where the
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Figure 4.4: The Van der Waals constant as a function of the shift applied to the
dielectric function.

adaptations to the linear response function under the scissor shift are discussed.

4.4.3 Influence of the frequency cutoff

We can expect that high frequencies do not have a significant influence on the
Van der Waals constant, since from (3.9), (3.10) and (3.11), we see that the
dielectric function falls off as ∼ 1/ω2 and the analytic continuation (4.6) falls
off as ∼ ε2(ω)/ω. Despite that, we want some more quantitative results so we
calculate the Van der Waals constant as a function of the frequency cutoff in
the range of ω ∈ [0, 27] eV. The result is given in figure 4.5.
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Figure 4.5: The Van der Waals constant as a function of frequency cutoff up to
which the dielectric function is calculated.

The difference between the Van der Waals constant for a cutoff of 10 eV, which
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includes all significant features of the dielectric function, and a cutoff of 27 eV,
is 0.26 eV bohr3. This results in a difference in binding energy of 6 meV, which
is quite small. That aside, if we want to determine the binding energy within
a precision of 1 meV, we should select a frequency cutoff that lies well above
the significant features of the dielectric function. By this we mean that the real
part of the dielectric function should be approximately 1 and the imaginary part
approximately 0.

4.4.4 Influence of the atomic polarizability

So far, we used the parametrization of A. Dalgarno and G. A. Victor [13] to
determine the polarizability of the positronium. The parameters in this paper
are determined numerically and since it is a quite old calculation, we check
if we cannot determine this quantity more accurately. Exact expressions for
hydrogen like atoms exist today and we use the expression that is given in the
introduction of R. Szmytkowskis paper [50]. In this paper he also derives a
relativistic expression for the polarizability, but since Ps is very light, we expect
that it only gives a negligible correction. The formulas given in the paper are:

αH(ω) = α
(+)
H (ω) + α

(−)
H (ω), (4.30)

where:

α±H(ω) =
a30
Z4

29(ξ±)7

(ξ(±) + 1)12

∞∑
n=0

(
n+ 3
n

)
(n+ 2− 2ξ(±))2

n+ 2− ξ(±)

(
ξ(±) − 1

ξ(±) + 1

)2n−2

(4.31)

with:

ξ(±) =
Z

λ(±)a0
, λ± =

√
−2m(E(0) ± ~ω)

~2
, E(0) = −Z

2e2

2a0
. (4.32)

In these expressions we can put Z = 1 and we can rescale it to obtain an expres-
sion that is valid for positronium. That is we substitute a0 → 2a0 and in λ(±)

we divide by 2 under the root. This is because 2m/~2 has units of
[
1/ J · m2

]
.

We calculated the expression at imaginary frequencies, where we truncated the
sum after the first fifty terms since additional terms gave no corrections within
the numerical precision of our computer. Somewhat surprisingly, the maximal
relative difference in the polarizability obtained from the expression of Dal-
garno’s work and the analytic expression is as small as 0.1%. The difference in
the Van der Waals constant is 1.43× 10−4 eV bohr3, which leads to a difference
in binding energy of 3.60 × 10−3 meV. This value is far below the numerical
precision we achieved with the methods we used to determine the binding en-
ergy. We can thus conclude that the atomic polarizability will certainly not be
a source of error in our results.

4.4.5 Influence of the decay length

The electron decay length enters twice in our description of the effective poten-
tial for the Ps. The first time is to determine the exponential repulsion (2.5) due
to the overlap of the electron with the electrons of the surface. The second is
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to determine the strength of the damping function (2.4) for the Van der Waals
interaction (2.2). We determined this quantity by making a fit to the electron
density in a logarithmic density plot at the surface but the region where we
made the fit could be open for discussion. We studied the effect on the binding
energy as a function of this decay length. The result for a wide range of values
is given in figure 4.6 but it is clear that the value of l should be determined
quite accurately to achieve an accuracy of the binding energy in the meV range.
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Figure 4.6: The binding energy of Ps as a function of the electron density decay
length l.

So, how much does l vary if we change the region where we make the fit to
the density? We checked this by making the interval to which we fitted our
data smaller by moving the borders symmetrically away from the surface and
the region where the numerical smallest representable value was approached.
The value changed as little as ∆l = ±1 × 10−3 bohr which corresponds with a
difference in the binding energy of only 1 meV. The value of l changes more
rapidly when moving out the region where the decay is purely exponential but
this is an issue that can easily be avoided by making the fitting region smaller.
We can conclude that, even though the binding energy is strongly dependent
on the electron density decay length, for a given system it will not be critical
in determining the binding energy of Ps, because the value can be accurately
determined.

4.4.6 Influence of the work function

The last parameter in our model we did not yet check is the Ps work function.
We assume that we are dealing with a perfect crystal such that the positron is
delocalized over the solid. In this case the positron density at any given point
is very low and we could determine the positron energy levels from the ground
state electron density, for which we can assume it is not perturbed by the pres-
ence of the positron density. While this approximation is well justified, we can
expect that if the bandgap of the material in question is inaccurately predicted,
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the chemical potential for the particles and thus the Ps work function also are.
This argument can be understood from our discussion of the Ps work function
in the previous chapter. Indeed, the chemical potential is determined by the
energy difference between the crystal zero, which does not depend on the energy
functional used, and the Kohn-Sham levels, which do depend on the functional
used. In figure 4.7 the dependence of the binding energy of Ps for a large range
of values for the work function is given.
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Figure 4.7: The binding energy of Ps as a function of the work function V0.

We changed the work function by ∆V0 = ±0.01 eV and found that the binding
energy changed with ±3 meV, which shows that the binding energy is relatively
strongly dependent on this quantity. We can conclude that the use of appro-
priate energy functionals is essential for an accurate determination of the Ps
work function. For the electron exchange and correlation energy functional, the
bandgap can serve as a measure of the accuracy while for the positron functional
it is more difficult.

4.5 Influence of the edge states on the Ps bound
state

In the previous chapter, we determined the effect of the edge state on the param-
eters in the Ps description and we now calculate their effect on the Ps binding
energy. The parameters that are influenced by the edge state are the electron
decay length l in the repulsive part of the potential and, as we argued in the
previous chapter, the dielectric function in the attractive part of the potential.
To study the effect of the edge states, we found that excluding the spin-orbit
coupling is in general a poor approach since the effect of the edge state is small
in comparison with other differences. Either way, the effect on the electron den-
sity decay is very small and likewise the difference in binding energy. We show
the results below:
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1 QL with SO l = 0.6771 bohr E = −151 meV
4 QLs with SO l = 0.6781 bohr E = −150 meV
4 QLs without SO l = 0.6761 bohr E = −152 meV

We argued that for the attractive part, we should take the dielectric response
of the surface instead of the dielectric response of the bulk. We calculated the
dielectric response of a slab consisting of 1 QL as well as 4 QLs to see the effect
of the metallic edge state. We now calculate the binding energy of the Ps in
the case where we rescaled the output to correspond with a thin film consisting
of 1 QL or 4 QLs as well as where we rescaled the output to correspond with
surface dielectric tensor of a semi-infinite surface. The effect on the Van der
Waals constant and the binding energy of the Ps by rescaling the output to
correspond with a thin film is given by:

Bulk C = 15.69 eV · bohr3 E = −150 meV
1 QL with SO C = 15.79 eV · bohr3 E = −152 meV
4 QLs with SO C = 15.47 eV · bohr3 E = −144 meV

The results obtained by rescaling the dielectric tensor with the sum rules, i.e.
to correspond with a semi-infinite solid, are given by:

Bulk C = 15.69 eV · bohr3 E = −150 meV
1 QL with SO C = 15.16 eV · bohr3 E = −137 meV
4 QLs with SO C = 17.27 eV · bohr3 E = −188 meV

In the case of the thin film, it is surprising that the Van der Waals constant is
actually smaller than in the case of 1 QL because we intuitively expect a larger
response from the 4 QLs. Although the differences in the binding energy are
larger than in the case of the electron decay length, they can be considered small
since they are still situated in the meV range.
The case where modeled a semi-infinite solid by rescaling the dielectric tensor
with the sum rule discussed in the previous chapter, shows a very different
picture. Here, we clearly see that the increased response at low frequencies due
to the edge state leads to a larger Van der Waals constant, with an improved
binding of the Ps to the surface as a consequence. The relative difference in the
binding energy we find when using the dielectric function for the 4 QLs or the
bulk is 22% while between the 1 QL and 4 QLs cases, this relative difference is
31%.
We would like to point out that, although it gives an idea of the importance of
the edge states, the method of rescaling the dielectric tensor is in fact somewhat
ad hoc. If we want to treat this effect more rigorously, we should use the
description of the Van der Waals interaction in terms of the surface’s density-
density response function derived in Zaremba and Kohn’s paper [57], equations
(A.45), (A.46) and (A.47). The description we used so far is an approximation
of these formulas.
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Graphene

In this chapter we study Ps bound states near graphene. The approach is
very similar as for Bi2Te2Se with the exception that, because graphene is a
two dimensional system, we do not have bulk properties. In 2005, Kane [23]
predicted that the spin-orbit coupling in graphene can open a finite bandgap
and causes an electronic structure that is topologically distinct from an ordinary
insulator. In this quantum spin hall phase, two states with opposite spin and
momentum exist at each of the edges of a finite graphene sheet. The first-
principles study of Yao [56] shows, however, that the bandgap caused by the
spin-orbit coupling is as small as 10−3 meV and that these states can likely not
be observed for temperature above T = 0.02 K. Because of this we will not look
into the effects of these states on the binding energy of Ps.
In the first section of this chapter we present the results from the first-principles
study, which are the electronic structure, the dielectric function, the electron
density and the Ps work function of graphene. In the second section we apply the
recipe from the previous chapter to determine if Ps bound states are possible.

5.1 First-principles study

5.1.1 Introduction

Crystal structure: Graphene exhibits a honeycomb type of lattice, where
the nearest neighbor distance is given by a0 = 1.42 Å = 2.68 bohr [35]. Figure
5.1 shows the crystal structure and the first BZ. In cartesian coordinates, the
unit vectors are given by:

a1 =
a0
2

(3,
√

3)

a2 =
a0
2

(3,−
√

3)
(5.1)

and the fractional positions of the carbon atoms in the unit cell by:

C1 = (1/3, 1/3)

C2 = (2/3, 2/3).
(5.2)
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Figure 5.1: The left figure shows the crystal structure of graphene, where the
two inequivalent carbon atoms of the lattice have been given a different color.
The right figure shows the first BZ and the high symmetry points in it. The
dashed red line shows the path followed for plotting the bandstructure.

Computation parameters for Elk: Unless mentioned otherwise, the first-
principles calculations we present were carried out with the DFT code Elk. Just
as for Bi2Te2Se, we carried out the convergence study w.r.t. the k-grid and
the basis set. We started with a convergence study w.r.t. the k-grid until the
difference in the total energy was less than 1 meV. The parameters that have to
do with the basis set were raised in steps of 1, with the exception of rgkmax, the
plane wave cutoff, which was raised in steps of 0.5. The occupancy of the energy
levels is determined by the Fermi-Dirac distribution at room temperature. We
took 10 empty bands into account and included the local orbitals because these
are required to determine accurately the energy of high lying bands, which is
important for the calculation of the dielectric function. The list of converged
parameters and the other parameters in the calculations are given below. The
meaning of each of these parameters can be found at the end of appendix B.

kgrid 30 30 1 rgkmax 7.5
gmaxvr 14 lmaxvr 7

lmaxmat 8 lmaxapw 8
nempty 10 lorbcnd true
epsengy 1× 10−5 epspot 1× 10−7

stype Fermi-Dirac swidth 9.5× 10−4

In the calculations, we did not take spin-orbit coupling into account because
carbon is such a light element that these corrections are negligible. The exchange
and correlation function that we used is the PBE GGA, the same one as we used
for Bi2Te2Se.
We relaxef the structure and found no difficulties in the case of graphene. We
determined the optimal value for the nearest neighbor distance by calculating
the total energy for aN ∈ {0.98, 0.99, 1.00, 1.01, 1.02} × a0 and then making a
parabolic fit to the total energy as a function of aN . We found the minimum to
lie at aN = 2.67 bohr. Afterwards, the atomic position of C2 was shifted slightly
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away from its experimental equilibrium position (which is fixed by symmetry)
and then we carried out the internal relaxation. The result was that the atom
moved back towards (1/3, 1/3), which is the value we take in the rest of the
DFT study.

5.1.2 Band structure

Before we calculate the dielectric function of graphene, we check if we manage
to reproduce the correct electronic structure. The bandstructure was calcu-
lated along the high symmetry directions in the Brillouin zone, shown in figure
5.1. Figure 5.2 shows the result, which determines graphene as a zero-bandgap
semiconductor with a linear dispersion near the K-point. This forms one of the
well-known properties of graphene [7].
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Figure 5.2: The bandstructure of graphene along the high symmetry directions
in the Brillouin zone.

Our result is in reasonable agreement with the first-principles calculation shown
in the paper of Zhang et al. [59]. The lower part of the spectrum is nearly iden-
tical but at the Γ-point, the second conduction band shows strong dispersion, so
that at the Γ-point it ends up with an energy of ∼ 9 eV w.r.t. the Fermi-energy.
Their calculation was, however, carried out with a LDA functional and with a
full-potential linearized muffin-tin orbital method. This method is similar to
the FLAPW method but in the interstitial region, Hankel functions are used
as the basis instead of plane waves. In their paper, they did not mention that
conduction local orbitals were included in the basis, so that we can argue that
our result should, in principle at least, be more accurate. Another result was
presented by Mohan [30], where the bandstructure was calculated with local
numerical orbital method with a norm conserving pseudopotential and with the
PBE functional. The valence bands shown in this paper are also in close agree-
ment with our result but the conduction bands are strongly shifted towards
higher energies, with exception of the first conduction band near the K-point.
At the Γ-point, the conduction band minimum is located near ∼ 8 eV w.r.t. the
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Fermi-energy. An explanation for the differences in the conduction states can be
found in the thesis of O. Leenaerts [26]. The nearly parabolic bands that we see
in the spectrum are there because we use periodic boundary conditions in three
dimensions and correspond with free electron states. By increasing the size of
the vacuum, these states shift down in energy because they are less confined in
the direction perpendicular to the graphene plane. In the limit of an infinitely
large box in this direction, these states form a continuum, starting from the vac-
uum energy level. A fourth result we cite, is a detailed GW calculation carried
out by Schilfgaarde [53], who started with a ground state density calculation
with a LDA functional. An interesting result shown in their paper, though,
is that there is a significant correction to the dispersion of the bands near the
K-point. The experimental value of the Fermi-velocity of the massless Dirac
particles, which is obtained from the slope of the Dirac cone at the K-points, is
given by 1.1×106 m/s. The LDA result from the paper is 0.82×106 m/s, which
is an underestimation of 25%, while their most accurate prediction from GW is
given by 1.20× 106 m/s, which is an overestimation of 9%. A second correction
is a shift of the valence band maximum at the Γ-point towards ∼ 5 eV w.r.t. the
Fermi-energy.
To summarize, DFT results in literature agree on the location of the valence
bands and the lowest conduction band near the K-point. The dispersion near
the K-point, however, shows a significant correction due to excitonic effects, as
found by GW calculations and in agreement with experiment. In the conduction
spectrum of the bandstructure, we have free electron states and the energy of
these states are determined by the amount of vacuum in the cell.
We are not able to carry out GW calculations since this feature is not imple-
mented in the Elk code. Our results will thus be approximate and the question
raises if we could not better use ‘exact’ results available in literature for the
properties we are interested in. The exact results in literature we refer to are
derived for the low energy excitation around the K-points, which are described
by the massless Dirac (Weyl) equation. We need the dielectric tensor up to high
frequencies in order to carry out the analytic continuation (4.6) to imaginary
frequencies. The high frequencies correspond with energies for which this effec-
tive description is no longer valid and this is why we refrain from using these
results.

5.1.3 Charge density

To determine the electron decay length l and the background edge position
z0, we averaged the charge density again over a 25 × 25 grid in the unit cell.
Afterwards we plotted the logarithm of this averaged density as a function of
z. The region in this plot where we have a linear dependence on z, tells us
where the electron density is decaying exponentially. We made a linear fit in
the region z ∈ [2.5, 4.0] bohr using linear regression and this gave us a value for
the electron decay length of l = 0.5457± 0.0003 bohr = 0.2888± 0.0002 Å. The
value of z0 was determined by the first point, starting from the interval of the
fit and moving towards the material, where the relative difference between the
electron density and the linear fit was more than 1%. The result we found in
this way is given by z0 = 1.64 bohr = 0.87 Å.
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5.1.4 Dielectric function

We calculate the dielectric function in the same manner as for Bi2Te2Se: First,
we obtain the ground state to determine the Kohn-Sham energy levels. The
occupancy of these states is determined by the Fermi-Dirac distribution at room
temperature. Afterwards we calculate the optical conductivity with a smearing
of η = 0.01 Ha, from which the dielectric tensor is obtained.
We should check if the free electron bands give no significant contribution by
increasing the vacuum in the cell. We started with a c-axis of 3.0 Å and increased
it with steps of 0.5 Å up 7.0 Å. By doing this we found that the peak positions for
the εxx and εyy components of the dielectric tensor stayed at the same position
but decreased in amplitude as the size of the vacuum increased. This decrease
in amplitude also happens for the εzz component but some absorption peaks
in the imaginary part of the dielectric function also shift to lower frequencies
when we include more vacuum. From these two observations, we can conclude
that the vacuum levels only have an influence on the absorption in the direction
perpendicular to the plane. The scaling of the amplitude with the size of the
vacuum, we can understand by looking at the formula which is implemented
to calculate the optical conductivity, equation (3.11). Indeed, the integral is
replaced by a sum over the k-points determined by the chosen grid, in which
each k-point has a weight determined by a finite volume element. In the case
of graphene, we are dealing with a two dimensional crystal so we select a k-grid
with only one point in the kz direction. This means that the volume element
is determined by the length of the reciprocal basis vector of the c-axis, i.e. the
optical conductivity scales as 1/c. This is indeed what we found by plotting the
amplitude of a certain point of the spectrum against 1/c. If we multiply with
the length of the c-axis, we remove this scaling but then we obtain a optical
conductivity with the dimension of length. This is something we do not want
and to obtain a dimensionless result, we divide again with the thickness of the
graphene layer for which we can take twice the background edge position z0.
The relations between the optical conductivity and the dielectric tensor (3.9)
and (3.10) tell us that we have to rescale our result as:

ε1 →
c

2z0
(ε1 − 1) + 1 and ε2 →

c

2z0
ε2 (5.3)

We show the result in figure 5.3, where we also included the intraband contri-
bution (3.7) to the dielectric tensor.

5.1.5 Work function

As before, we used Abinit to calculate the work function of graphene. As a first
step we carried out the convergence study with respect to the plane wave cutoff
for the wavefunction and the density, for which we found 30 Ha and 80 Ha to
be necessary to converge the total energy to within 1 meV. The PAW data for
the carbon atoms was taken from the Abinit website. The energy functional we
used for calculating the ground state is the PBE functional. The positron state
in turn was calculated with the GGA of Barbiellini [10].
In the calculations we had four valence electrons per carbon atom so that in
total we have eight occupied states at each k-point. From the bandstructure,
we know that the valence band maximum is located at the K-point. The value
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Figure 5.3: Plot of the real and imaginary parts of the components of the
dielectric function of graphene calculated with 6 Å in the cell. The inset shows
the values for small frequencies.

we find is µ− = −0.02108 Ha while for the positron state at the Γ-point we
find µ+ = −0.17923 Ha. The value for the Ps work function is thus given by
ΦPs = −0.04904 Ha = −1.35 eV.

5.2 Bound states

We solve again the Schrödinger equation for Ps in the effective potential as
described in section 2.1. From the DFT study, we already determined the di-
electric function, the electron decay length l, the background edge position for
which we assume it is the same as the Van der Waals reference plane position
z0 = zVW and the work function V0. We do the analytic continuation of the
dielectric function in the same way as described in section 4.1. We use the exact
formulas given in section 4.4.4 for the atomic polarizability.
Before we calculate if there is a possible bound state, we check the convergence
of the Van der Waals constant value w.r.t. the amount of vacuum in the cell.
Starting from 4.5 Å in the cell, we found this value converges to within 10 meV
and from our discussion in the previous chapter, we know this should give a
binding energy with a precision of 1 meV. In the rest of the calculation, we use
the value we found for the largest unit cell, with 6.0 Å of vacuum, which gives a
result of C = 17.27 eV · bohr3. This is higher than in the case of bulk Bi2Te2Se
and we can attribute this to the Drude contribution to the dielectric tensor at
low frequencies.
We carried out the calculation on an equidistance grid z ∈ [−25, 25] bohr with
a grid spacing of h = 0.0075 bohr in which we first considered an asymmetrical
potential well, i.e. we took V (z) = V0 for z < z0. This is a rough model for
the potential well the Ps would feel if the graphene sheet lies on a substrate.
In principle, following the recipe, we should take the work function of Ps in
the substrate for z < −z0 and we should calculate the dielectric tensor for the
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graphene-substrate composite but we do not address this situation here. We
found a single bound state with a binding energy of E = −253 meV. If we
consider suspended graphene, however, the potential well is symmetric around
z = 0. Actually, for any material with inversion symmetry, we have a symmet-
rical potential well but if the material is sufficiently thick, we expect that this
does not have any influence on the bound state. We carried out the calculation
again but this time with a symmetrical potential well, where we took the same
interval and grid spacing as before. In this case we found two bound states with
an energy of E = −383 meV and E = −133 meV, which shows that there is
a significant difference with the asymmetrical case. We show the bound states
and potential of both cases we considered in figure 5.4.
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Figure 5.4: Plots of the potential and bound states in the case of the asymmet-
rical potential well (left) and the symmetrical potential well (right). In the right
figure, the red curse shows the state with a binding energy of E = −383 meV
and the green curve shows the state with a binding energy of E = −133 meV.

For completeness, we prove that a bound state always exists if we consider
a symmetrical potential well. We divide the solution in three parts, the first is
ψ1(z < −z1), the second ψ2(−z1 < z < z1) and the third ψ3(z > z1), where
z1 � z0 is far away from the surface. Since we are searching for bound states,
we have E < 0 and the solutions in the first and third region, where V (z) = 0,
can be written as:

ψ1(z) = Ae2
√
−Ez and ψ3(z) = De−2

√
−Ez, (5.4)

where we used atomic units and we assumed we are dealing with the Schrödinger
equation for a Ps atom. Because the potential well is symmetrical around z = 0,
ψ2(z) can be expanded as:

ψ2(z) =

∞∑
i=0

Bi sin(kiz) + Ci cos(kiz), (5.5)

where the ki are determined by the details of the potential V (z). From very
general considerations, Feynman argued that for bosons the many-body ground
state wavefunction has to be positive-definite in the coordinate representation.
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The same argument can be applied here. Indeed, imagine that we start from
a wavefunction that is negative somewhere. Since the physics is determined
by the probability density, we can just as well take the absolute value of this
wavefunction because it gives the same probability density and thus the same
energy. This argument also follows from the Honenberg-Kohn theorems that
tell us that the ground state energy can be determined from the density, which
equals the norm of the wavefunction in this case. At the location of the node,
we now have a kink in the wavefunction. The wave function we have now does
certainly not represent the ground state since kinetic energy can be lowered by
smoothing the wave function near this point. We thus have to conclude that
the wave function has to be positive everywhere and thus has to be symmetric
around z = 0. As a consequence, we have A = D and any sines in the expansion
of ψ2(z) can be excluded. If we now write out the matching of the value of
wavefunction and its derivative, we arrive at the two conditions:

Ae−2
√
−Ez1 =

∞∑
i=0

Ci cos(kiz1)

2
√
−EAe−2

√
−Ez1 =

∞∑
i=0

Ciki sin(kiz1),

(5.6)

or, if we divide the second by the first:

2
√
−E =

∑∞
i=0 kiCi sin(kiz1)∑∞
i=0 Ci cos(kiz1)

. (5.7)

Since the left hand side is a positive constant, we can always determine a set of
Ci such that this condition is satisfied. In other words, there is always a bound
state1. This does, however, not mean that this bound state is always relevant
for experiment since it is possible that its binding energy is very low.

1It might seem from the boundary condition that for any value of E, we can find an
appropriate set of Ci such that it is satisfied, which is in fact perfectly true. We should keep
in mind, however, that the boundary condition itself only holds for the ground state energy
E = Eg .
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Chapter 6

Improved Ps bound state
description

In the chapter four, we identified that the work function and the electron decay
length play an important role in determining the energy of the Ps bound state.
Even though we can determine those quantities with high precision, the question
rises how valid the Ps description we used so far is close to the surface. The
short range description of the potential is a simple approximation and instead of
trying to derive a more accurate expression for this potential, we wonder if it is
valid to describe the Ps as a neutral particle when it comes close to the surface.
After all, the positron likely feels an attractive force from the electron density
near the surface while the electron gets repelled. The current description might
fail to capture this accurately and this is why we try to set up a two particle
description in this chapter. Once we have such a description, we can see what
it predicts for the binding energies of the Ps and see if they are consistent with
the previous model.
The first section of this chapter is devoted to setting up the Hamiltonian of the
two particle system we consider. In the subsequent section, we discuss in detail
how we solve the resulting Schrödinger equation.

6.1 Hamiltonian set up and discussion

One way to improve upon the Ps description is to use DFT calculations. We
could for instance take a slab and add an extra electron and positron to the cell
and then calculate their eigenstates and wavefunctions self-consistently. While
it is certainly possible, carrying out a two-component DFT calculation is a com-
putational very demanding task, because we would not have one self-consistent
loop (for the electron density) but three. The first extra loop is required to
calculate the positron state in a fixed electron density and can be carried out
quickly so it does not form the problem. The second loop, however, requires to
recalculate the electron (positron) density after the positron (electron) density
has been found. If we are dealing with large unit cells, this is not exactly a
feasible approach. This is why instead we set up a two-particle description in
which we take the contribution of the solid into account as some fixed input.
Furthermore, such an approach simplifies the setup of an effective potential for
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the neutral Ps atom since in the DFT description, the extra electron would not
be distinguishable from the rest of the electrons in the solid.

In 1985, Cuthbert published a paper in which he studied the physisorption
of a Ps atom to a metal surface [11]. He also used a two-particle description
and considered following Hamiltonian:

Ĥ = −1

2
∇2
e −

1

2
∇2
p −

1

|re − rp|
+ Ĥplasma + Ĥint + Ĥstep, (6.1)

where the first three terms form the Hamiltonian for the isolated electron-
positron system. The fourth term is the Hamiltonian of the metal, which is
modeled by a gas of non-interacting plasmons. The fifth term describes the
interaction energy of the particles with the plasmon gas. The last term was
introduced because the plasmon picture fails to describe the correct energy of
an electron and positron in the bulk of the metal. It is taken such that if an
electron or positron are located inside the material, their energy is given by
their respective work functions. The model is too simple to accurately predict
the Ps binding energy, which is our goal, because it does not accurately describe
the short-range effects. It does give some important insights, however, that we
will take into account when proposing our model. More specifically, Cuthbert
derived expressions such that all attractive effects of the metal are contained in
effective potentials for the electron and positron. This effective potential con-
sists of three terms, the first two are the effective potentials for the electron and
positron separately. The leading order term far away from the surface is given
by the classic image potential. The third term depends on the position of both
the electron and positron and describes the interaction of the electron with the
image charge of the positron and the other way around. The most important
thing is that the combination of these three terms leads to the correct 1/Z3,
where Z is the distance of the Ps to the surface, dependence for large distances,
which we expect for the neutral Ps atom.

If we want to accurately predict Ps binding energies to the surface, we need
a description of the interaction between the two particles and the solid that is
more accurate than the one in Cuthberts paper. Even though we argued that we
will not use DFT to calculate the electron and positron states self-consistently,
we can still use the theory to derive accurate potentials for both particles. If we
keep the ground state electron density of the solid fixed, we can calculate the
Coulomb and Kohn-Sham potential for the electron and the positron using an
appropriate energy functional. This is in fact what we will do and it will deliver
us some effective potential VS that depends on the position of the particle in
question. How exactly we are going to calculate this potential, is discussed later.
We should realize though, that LDA and GGA functionals fail in describing the
long range interactions of the image potentials, which is crucial certainly if we
want to make the connection with the previous description. We correct for this
shortcoming by taking the classical electrostatic energy along, which gives the
correct long-range description. We discuss how we interpolate between the two
later on in this chapter.

Based on our discussion so far, we propose the following two particle Hamil-
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tonian:

Ĥ = − ~2

2me
∇2
e −

~2

2mp
∇2
p + VS(re) + VS(rp) +W (re, rp), (6.2)

where W (re, rp) is the electrostatic energy. The VS(re,p) determines the inter-
action energy of the two particles with the solid. In principle, this potential
should contain completely the effect of the solid but as discussed before, it fails
to describe the long range interaction. We include the classical electrostatic
energy to compensate for this problem [48]:

W (re, rp) =
1

2

∫
dr [eδ(r− re)− eδ(r− rp)]× [V (r, re)− V (r, rp)] . (6.3)

Here V (r, re,p) is the electrostatic potential at position r due to a charge at
position re,p. The potential, that we derive in appendix C, is given by1:

V (r, re,p) =
e√

%2 + (z − ze,p)2
− ei√

%2 + (z + ze,p)2
z > 0, (6.4)

where we adopted cylindrical coordinates (with the strange looking rho to avoid
confusion with the densities), ze,p denotes the distance of the charge to the
‘surface’2, % the polar distance to the charge and [16]:

ei =

(
χe

χe + 2

)
e. (6.5)

Here, e is the charge of the electron. The electric susceptibility of the solid χe
is related to the dielectric constant by:

ε = 4π(1 + χe) ⇒ χe =
ε

4π
− 1, (6.6)

where the dielectric constant is obtained from ε = lim
ω→0

ε(ω). As pointed out for

Bi2Te2Se, the dielectric constant is different depending on wether metallic edge
states are present or not. This allows us to investigate the influence of these
states again. If we work out the electrostatic energy (6.3), we end up with four
terms:

W (re, rp) =
e

2
[V (re, re) + V (rp, rp)− V (re, rp)− V (rp, re)]

=
e

2

[
− ei

2ze
− ei

2zp
− 2e√

%2 + (ze − zp)2
+

2ei√
%2 + (ze + zp)2

]
.

(6.7)

To go from the first step to the second, we dropped the divergent self-interaction
terms of the electron en positron since we know they should not be there. The
first two describe the interaction between the electron and the positron with
their own image charge. The third term is the Coulomb interaction between the

1We changed the sign of the induced charge because then it becomes clearer which terms
give an attractive or repulsive contribution.

2In classical electrostatics, the surface of the material is well-defined but in a microscopic
theory it is not. The discussion is similar to the position of the Van der Waals reference plane.
If we would start from a microscopic description to derive the image potential, we could likely
find an expression that defines the position of the image plane.
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pair and the last term is the interaction of the electron and positron with the
image of the other particle. We give an overview of the interactions in figure
6.1. Note that the interaction is a function of only the distance between the
two particles and the distance between each of them and the solid W (re, rp) =
W (%, ze, zp). From our discussion of Cuthberts paper, we are confident that
the image potentials give us the correct 1/z3 dependence of the Van der Waals
attraction at large distances for the neutral composite.

e

p

Figure 6.1: An overview of the contributions to the electrostatic energy due to
the interaction between the electron and positron.

In the expression for the electrostatic energy, we assumed that the position of
the surface is given by z = 0, which we chose at the position of the last atom
of the surface. In a microscopic theory, the ‘edge’ of a material is, however, ill
defined and it is likely not situated at this position. The discussion is analogous
to the discussion of the position of the Van der Waals reference plane. One can
likely derive an expression for the image potential reference plane position by
starting from a microscopic theory to derive this interaction. We assume that
we can just take zim = z0, for which we determined the value in the previous
chapter. The image charge contribution of electrostatic energy diverges when
ze,p → zim. We discussed, however, that we only need this term to correctly
incorporate the long-range interaction. Therefore we cut off the image charge
contribution with a Heaviside function at some z1 > 0, that for instance can
be chosen at the point far from the surface where the image potential becomes
larger in magnitude than the exchange and correlation potential. The final form
of the electrostatic energy is:

W (re, rp) = Vim,e(ze) + Vim,p(zp) + VC(%, ze, zp) + Vci(%, ze, zp)

= −eei θ(ze > z1)

4(ze − zim)
− eei θ(zp > z1)

4(zp − zim)
− e2√

%2 + (ze − zp)2

+
eei [θ(ze > z1) + θ(zp > z1)]

2
√
%2 + (ze + zp − 2zim)2

,

(6.8)

where we introduced the notations Vim,e, Vim,p, Vci for the electron, positron
and cross-image potentials respectively as well as VC for the Coulomb potential.
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We assume that the ground state density of the solid will not be perturbed
by the presence of the extra electron and the positron. This is of course an
approximation but, as discussed previously, if we would not make it, we would
end up solving the two component DFT problem self-consistently. We can write
the particle-solid interaction energy as:

VS(re,p) = VC,S(re,p) + VXC(re,p) (6.9)

The Coulomb potential for the particles VC,S is a fixed input to the problem
since it only depends on the charge density of the solid. The exchange and
correlation energy is somewhat harder because, in principle, it depends on the
total density so each time we update our wave function, these terms should
have to be recalculated. From the density of the solid and the density of the
electron or positron, we can calculate the exchange and correlation potential
for the respective particles. We model the exchange and correlation energy
between the solid and the electron by the Perdew-Zunger LDA functional [39]
and the exchange and correlation energy between the positron and the solid
by the LDA functional given in [14]. We give the required expressions for the
latter in appendix D since it is not implemented in Elk. As a final step, we will
average the potentials over the unit cell such that it becomes a function of z
only:

VS(re,p)→ VS(ze,p). (6.10)

This approximation makes the problem considerably easier.

6.2 Solution for the Schrödinger equation

First proposition: Transformation to center of mass coordinates. Since
the electrostatic interaction is only a function of the distance between the two
particles and the distance between the particles and the solid, we can adopt
center of mass coordinates in the plane:

X =
mexe +mpxp

M
, Y =

meye +mpyp
M

, x = xe − xp, y = ye − yp,

M = me +mp,
1

µ
=

1

me
+

1

mp

(6.11)

If we carry out the transformation and if we adopt polar coordinates for the
relative coordinates, then we find:

Ĥ = − ~2

2M

(
∂2

∂X2
+

∂2

∂Y 2

)
− ~2

2µ

1

%

∂

∂%

(
%
∂

∂%

)
− ~2

2µ

1

%2
∂2

∂θ2
− ~2

2me

∂2

∂z2e

− ~2

2mp

∂2

∂z2p
+ VS(ze) + VS(zp) +W (%, ze, zp).

(6.12)

In the rest of this chapter we adopt atomic units ~ = me = e = 1, so that
1/µ = 1/2 and M = 2. By examining the form of (6.12), we can easily see that
we can write the wavefunction of our problem as:

Ψ(re, rp) = eikXXeikY Y Ψ(%, θ, ze, zp). (6.13)

69



CHAPTER 6 : Improved Ps bound state description

We are, however, not interested in the kinetic energy due to the center of mass
motion in the plane so we chose kX = kY = 0. The observation that the center
of mass behaves as a free particle can be used to introduce an additional simpli-
fication. Indeed, we can assume that the electron and positron are delocalized
over the surface. This means that the electron density at each point above
the surface is negligible and can be left out when calculating the exchange and
correlation potential for this particle. In other words, we can calculate the ex-
change and correlation potential once from the electron density of the solid and
keep it fixed when solving the two-particle problem. We have periodic boundary
conditions for the angular part Ψ(%, θ = 0, ze, zp) = Ψ(%, θ = 2π, ze, zp) since
there is no dependence on this angle in the potential terms. We can thus write:

Ψ(re, rp) = eilθΨ(%, ze, zp). (6.14)

After filling in this form of the wavefunction, we find that the Schrödinger
equation we have to solve is given by:{

− 1

4%

∂

∂%

(
%
∂

∂%

)
+

l2

4ρ2
− 1

2

∂2

∂z2e
− 1

2

∂2

∂z2p

}
Ψ(%, ze, zp)

+ [VS(ze) + VS(zp) +W (%, ze, zp)] Ψ(%, ze, zp) = EΨ(%, ze, zp)

(6.15)

We can set l = 0 since we expect that that state will correspond with the ground
state. The extra potential terms in comparison with the hydrogen atom make
this problem no further separable.
We could in principle attempt to solve the Schrödinger equation on a three
dimensional grid but if we would select a coarse 100×100×100 grid, we already
end up with a square matrix of size 106. We can, however, reduce the problem
to two two-dimensional problems by using the Hartree approach, which seems
more feasible.

Second proposition: The Hartree approach. We consider again the Hamil-
tonian before introducing the center of mass coordinates and then use the
Hartree approach, i.e. we write the wavefunction as a product of the electron
and positron wavefunction:

Ψ(re, rp) = ψe(re)ψp(rp). (6.16)

We can then apply the variational principle under the condition that the wave-
functions of both particles should remain normalized:

δ
(
〈Ψ|Ĥ|Ψ〉 − εe [〈ψe|ψe〉 − 1]− εp [〈ψp|ψp〉 − 1]

)
= 0. (6.17)

Under variations of the electron wavefunction and the positron wavefunction,
we can derive two one-particle equations:[
−∇

2
e

2
+ Vs(ze) + Vim,e(ze) +

∫
drpρp(rp) [VC(re, rp) + Vci(re, rp)]

]
ψe = εeψe[

−
∇2
p

2
+ Vs(zp) + Vim,p(zp) +

∫
dreρe(re) [VC(re, rp) + Vci(re, rp)]

]
ψp = εpψp.

(6.18)
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It is now more convenient to chose the origin of coordinates arbitrarily in the
plane. The Coulomb and cross-image potential then take on following form:

VC(re, rp) = − e2√
%2e + %2p − 2%e%p cos(θe − θp) + (ze − zp)2

Vci(re, rp) =
eei [θ(ze > z1) + θ(zp > z1)]

2
√
%2e + %2p − 2%e%p cos(θe − θp) + (ze + zp − 2zim)2

.

(6.19)

The electron and positron densities that turn up in the integrals are given by
ρe,p = |ψe,p(re,p)|2. Note that the problem of self-interaction that is normally
present in the Hartree approach does not turn up here because we are dealing
with two distinguishable particles. We present the details of the implementation
of these integrals in appendix D.
We now describe how we can solve the one-particle equations and because both
can be solved with exactly the same approach, we only go into detail for the
electron equation. A first step is to make a guess for the positron wavefunction,
which then delivers some potential for the electron. In practice we chose a wave-
function that is localized around the origin and intuitively, it is clear that such
a choice traps the electron around the same point. In this way we immediately
eliminate the center of mass motion in the plane of the surface. Furthermore,
we know from the foregoing discussion that in the relative coordinates, the two-
particle wavefunction has axial symmetry. We can only realize this symmetry
if we assume that both one-particle wavefunctions also exhibit axial symmetry.
We can thus write:

ψ(re) = eilθeψ(%e, ze). (6.20)

We can substitute this form for the wavefunction in the electron equation and
in our search for the ground state of the system, we can put l = 0. The electron
equation then takes on the form:[

− 1

2%e

∂

∂%e

(
%e

∂

∂%e

)
− 1

2

∂2

∂z2e
+ Vs(ze) + Vim,e(ze)

+

∫
drp ρp(%p, zp) [VC(re, rp) + Vci(re, rp)]

]
ψe(%e, ze) = εeψe(%e, ze).

(6.21)

We can solve this equation with a finite differences scheme, which is presented
in appendix D. By iteratively solving the electron and positron equation, we
expect the solutions to converge. The resulting positron wave function can then
be used to calculate properties which are interesting for positron spectroscopy
techniques.
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Conclusion

In this thesis, we studied Ps bound states near the surfaces of Bi2Te2Se and
graphene from first principles. The study was motivated because the Ps bound
states, if they exist, can be used in positron spectroscopy to very selectively only
probe the surface properties of materials. From the overlap of the Ps wavefunc-
tion with surface, quantities measured by positron spectroscopy techniques can
be calculated theoretically and this can help in the interpretation of the exper-
imental results. Apart from the possibility of a bound state, we were interested
in the effect that the edge states of topological insulators have on the bound
state.
In our approach, we described Ps as a neutral particle bound to the surface
by the Van der Waals interaction. For Bi2Te2Se we found that a bound state
exists with a binding energy of E = −150 meV and we studied the influence of
the edge states on the Ps bound state. The material-specific parameters that
turn up in this description are the electron decay length at the surface, the
work function of Ps in the material and the dielectric function of the material.
The work function does not feel any effect of the edge states since it is purely
a bulk property of the material. We studied the effect of the edge states on
the electron decay length by excluding the spin-orbit interaction. We found
that the small changes in the electron density were dominated by differences we
cannot attribute to the presence of the edge states. These differences, however,
have a negligible effect on the electron density decay length and thus on the Ps
bound state. The effect on the dielectric response of the material was studied
by considering slabs with 1 QL and 4 QLs. In the first case, the edge states lose
their metallic character because of the overlap with the edge state at the oppo-
site surface. We considered both thin films and a semi-infinite solid and in the
first case, we found that the difference in electronic structure causes a difference
in the binding energy of a few meV. For the semi-infinite solid we found that,
by considering the surface instead of the bulk dielectric response, the effect is
much larger and causes a difference in the binding energy of 22%. For suspended
graphene we considered a symmetrical potential well and we found two bound
states with a binding energy of E = −383 meV and E = −133 meV. In a rough
model for graphene on a substrate, we considered the same potential well for
z > 0 but for z < 0, we took the value of the work function. In this case we
found a bound state with a binding energy of E = −253 meV.
In the last chapter, we presented ax new description of the Ps bound state.
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CHAPTER 7 : Conclusion

In this description, we solve the Hartree-Fock equations for the electron and
positron in an effective potential that describes the effect of the solid. The ef-
fective potential for the electron and positron are given by the Coulomb and
exchange-correlation potential due to the electrons of the solid. Because the
LDA and GGA approximations to the exchange-correlation energy functionals
fail to describe the long-range interaction properly, we introduced the classical
image potentials.
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Appendix A

Van der Waals interaction

In this appendix, we derive the Van der Waals interaction between a neutral
atom and a semi-infinite crystalline plane. Before we start with the derivation,
we briefly recall the theory of linear response functions for the reader who is
unfamiliar with the topic.

A.1 Linear response

We base this brief introduction on the book of Phillips [40]. Consider a Hamil-
tonian that we can write as:

Ĥ = Ĥ0 + Ŵ (t), (A.1)

where Ĥ0 is the unperturbed Hamiltonian and Ŵ (t) is time-dependent pertur-
bation. The time dependent expectation value of any observable quantity Ô(t)
can be written as:

〈O(t)〉 = Tr
(
ρ̂(t)Ô

)
, (A.2)

where we assume the normalization Tr (ρ̂(t)) = 1 and where ρ̂(t) denotes the
time-evolution of the density matrix, which can be obtained from the Liouville
equation:

∂ρ̂(t)

∂t
= − i

~

[
Ĥ, ρ̂(t)

]
= − i

~

([
Ĥ0, ρ̂(t)

]
+ [W (t), ρ̂(t)]

)
. (A.3)

This equation can formally be solved in the interaction picture, this means that
operators have the form:

ÂI(t) = eiĤ0t/~Âe−iĤ0t/~. (A.4)

If we evaluate the left hand side of the Liouville equation we find:

i~
∂ρ̂I(t)

∂t
= −Ĥ0ρ̂I(t) + eiĤ0t/~i~

∂ρ(t)

∂t
e−iĤ0t/~ + eiĤ0t/~ρ̂(t)Ĥ0e

−iĤ0t/~.

(A.5)
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If we now use the fact that Ĥ0 commutes with the time evolution operator in
the interaction picture and use the Liouville equation we had before to rewrite
the second term, we arrive at:

i~
∂ρ̂I(t)

∂t
= −

[
Ĥ0, ρ̂I(t)

]
+ eiĤ0t/~

[
Ĥ0 + ŴI(t), ρ̂(t)

]
e−iĤ0t/~

=
[
ŴI(t), ρ̂I(t)

]
,

(A.6)

This equation can be solved as usual by integration both sides and then repeat-
edly substituting the solutions. The general solution is given by the time-ordered
product:

ρ̂I(t) = T

exp

 1

i~

t∫
−∞

dt′
[
ŴI(t

′), ρ̂0

] , (A.7)

where ρ̂0 = lim
t→−∞

ρ̂I(t) denotes the density matrix of the unperturbed system.

The first order approximation becomes:

ρ̂I(t) = ρ̂0 −
i

~

t∫
−∞

dt′
[
ŴI(t

′), ρ̂0

]
, (A.8)

so that we can write for the expectation value of the observable:

〈Ô(t)〉 = Tr
(
ρ̂I(t)ÔI(t)

)
= 〈ÔI(t)〉0 −

i

~

t∫
−∞

dt′ Tr
(
ÔI(t)

[
ŴI(t

′), ρ̂0

])
.

(A.9)

Here 〈. . . 〉0 denotes the expectation value w.r.t. the unperturbed system. The
trace allows us to perform a cyclic permutation of the terms so that we obtain
the result:

〈O(t)〉 = 〈ÔI(t)〉0 −
i

~

t∫
−∞

χOW (t, t′)dt′, (A.10)

in which we defined the linear response function or susceptibility:

χOW (t, t′) =
〈[
ÔI(t), Ŵ (t′)

]〉
0
. (A.11)

If the response of the material only depends on the time difference, then we can
introduce the frequency transform of the response function:

χOW (w) =

∫
dt eiωt

〈[
ÔI(t), Ŵ (0)

]〉
0
. (A.12)
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A.2 Van der Waals interaction between an atom
and a surface

In this subsection we derive an expression for the Van der Waals interaction
between a neutral atom and a semi-infinite surface. We give some more details
in the derivation than in the paper of Zaremba and Kohn [57] and we point out
what approximations we make.

In the Van der Waals interaction, we are interested in the attractive force be-
tween a neutral atom and a surface due to the instantaneous dipole. A schematic
picture of the system is given in figure A.1. The first assumption that we make
in the derivation is that the overlap between the wavefunction of the solid and
the atom is negligible. In this way, the electrons of both subsystems can be
regarded as distinguishable and the total Hamiltonian can be written as:

Ĥ = Ĥa + Ĥs + V̂as, (A.13)

where Ĥa and Ĥs are the Hamiltonians of the isolated atom and solid respec-
tively. The interaction term V̂as is the Hartree interaction between the two
subsystems:

V̂as =

∫
dr

∫
dr′

ρ̂s(r)ρ̂a(r′)

|r− r′|
, (A.14)

with the density operators defined as:

ρ̂(r) = n+(r)− n̂(r). (A.15)

Here, n̂(r) is the electron density operator and since we will adopt the Born-
Oppenheimer approximation, the charge density of the ions n+(r) is just a
function. Note that we do not have to include the exchange interaction since
we supposed that the overlap is zero. We suppose that the interaction between
the two systems is weak so that we can calculate the interaction energy pertur-
batively.

The first order contribution is given by the expression:

E(1) = 〈Ψa
0Ψs

0|V̂as|Ψa
0Ψs

0〉 =

∫
drρa0(r)ϕs0(r) (A.16)

where |Ψa
0Ψs

0〉 is the product state constructed from the ground states of the
isolated atom and surface, ρa0(r) is the corresponding ground state density of the
atom and ϕs0(r) is the electrostatic potential of the surface. The latter exhibits
periodicity in the plane parallel with the surface, which allows us to write it as:

ϕs0(r) =
∑
h

eiQh·%ϕs0(z,Qh), (A.17)

where the reciprocal vectors Qh = (Qhx, Qhy) are confined to lie in the plane of
the surface. Let us consider ϕs0(z,Qh = 0) for a moment:

ϕs0(z, 0) =
1

2π

∫
A

dxdy ϕs0(r), (A.18)

76



CHAPTER A : Van der Waals interaction

Figure A.1: A schematic picture of the atom-surface system with the coordinates
that are used in the derivation.

which is thus the potential averaged over the surface of the solid. The electrical
field can be calculated by taking the gradient of this potential and should thus
also point in the z-direction. This electrical field, we can in turn determine from
Gauss’ law by drawing a rectangular box that encloses an area of the surface
that corresponds with one unit cell. In the z-direction, we can draw our box
such that it encloses all charge of the solid’s surface but none of the atom, since
we assume they are not overlapping. Because the solid is electrically neutral,
there is no net electrical flux in the z-direction and in this case thus also no
electrical field. We have to conclude that the term we considered, can only
cause a constant shift of the energy, which we can always omit. For the Qh 6= 0
terms we can write:

ϕs0(z,Qh) =

∫
d%e−iQh·%

∫
dr′

ρs(r′)

|r− r′|

=

∫
d%

∫
dr′
∫

dq

2πq
ei(q−Qh)·%e−iq·%

′
ρs(r′)e−q|z−z

′|

=

∫
dr′

Qh
ρs(r′)eiQh·%

′
e−q|z−z

′|,

(A.19)

where we used the two-dimensional Fourier transform of the Coulomb potential
(A.32). These terms decay exponentially away from the surface and thus do not
contain the power law dependence we are looking for.

The second order perturbation is given by the usual expression:

∆E(2) =
∑
α,β 6=0

|〈Ψa
0Ψs

0|Vas|Ψa
αΨs

β〉|2

(Ea0 − Eaα) + (Es0 − Esβ)
, (A.20)

where the greek indices denote excited states. Now, since we made the assump-
tion that there is no overlap between the wavefunctions of the atom and the
solid, we can write the wavefunction of the atom-solid system as a product of
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the two. If we want a non-zero contribution, we need some operator that is
squeezed between the bra and the ket for both the solid and the atom. In other
words, the only surviving term of the Coulomb interaction is the product of the
electron density operators. We now try to rewrite this contribution towards a
more useful form. In the first step we use the following identity:

1

ω̃aα + ω̃sβ
=

2

π

∞∫
0

du
ω̃aα

(ω̃aα)2 + u2
ω̃sβ

(ω̃sβ)2 + u2
, (A.21)

which can easily be checked by evaluating the right hand side by means of a
complex contour integral and where we wrote ω̃n = En − E0. After putting
everything discussed so far together, we get:

∆E(2) = − 2

π

∞∫
0

du

∫
dr

∫
dr′
∫
dx

∫
dx′

1

|x− r|
1

|x′ − r′|

×
∑
α,β 6=0

ω̃aα
(ω̃aα)2 + u2

ω̃sβ
(ω̃sβ)2 + u2

〈Ψa
0 |n̂a(x)|Ψa

α〉〈Ψa
α|n̂a(x′)|Ψa

0〉

× 〈Ψs
0|n̂s(r)|Ψs

β〉〈Ψs
β |n̂s(r′)|Ψs

0〉

(A.22)

Let us focus on the sum over α with the relevant terms in the sum for a moment:∑
α 6=0

ω̃aα
(ω̃aα)2 + u2

〈Ψa
0 |n̂a(x)|Ψa

α〉〈Ψa
α|n̂a(x′)|Ψa

0〉

=
1

2
lim
ε→0

∑
α6=0

[
1

iu+ ω̃aα + iε
− 1

iu− ω̃aα + iε

]
〈Ψa

0 |n̂a(x)|Ψa
α〉〈Ψa

α|n̂a(x′)|Ψa
0〉.

(A.23)

We used here that n̂a(r) is a hermitian operator. The terms between brackets
can be seen as the result of the integral:

lim
ε→0

∞∫
−∞

dy

y + iε
[δ(iu+ ω̃aα − y)− δ(iu− ω̃aα − y)] , (A.24)

where the delta functions in turn can also be written in an integral form, so
that the above expression becomes:

lim
ε→0

1

2π

∞∫
−∞

dt

∞∫
−∞

dy

y + iε

[
ei(iu+ω̃

a
α−y)t − ei(iu−ω̃

a
α−y)t

]
. (A.25)

If we now use the integral representation of the Heaviside step function:

− 1

2πi
lim
ε→0

∞∫
−∞

dy
e−iyt

y + iε
= Θ(t) (A.26)

in the previous result then we can rewrite the summation (A.23) as:

− i
2

∑
α6=0

∞∫
0

dt e−ut
[
eiω̃

a
αt − e−iω̃

a
αt
]
〈Ψa

0 |n̂a(x)|Ψa
α〉〈Ψa

α|n̂a(x′)|Ψa
0〉. (A.27)
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Since the term between brackets can be written as 2i sin(ω̃aαt), we can include
the α = 0 term in the summation because it will always give zero. We proceed
by examining the term:∑

α

eiω̃
a
αt〈Ψ0|n̂a(x)|Ψa

α〉〈Ψa
α|n̂a(x′)|Ψa

0〉

=
∑
α

〈Ψ0|n̂a(x)|Ψa
α〉〈Ψa

α|eiĤ0tn̂a(x′)e−iĤ0t|Ψa
0〉

= 〈Ψa
0 |n̂a(x, 0)n̂a(x′, t)|Ψa

0〉.

(A.28)

Here the time dependence of the operators is like in the interaction picture.
Together with the other term, equation (A.27) becomes:

i

2

∞∫
0

dte−ut〈[n̂a(x, t), n̂a(x′, 0)]〉0 =
1

2
χa(x,x′; iu), (A.29)

where 〈. . . 〉0 denotes the ground state expectation value. When we look at the
definition of the linear response function (A.12), then we see that χa(x,x′, iu)
is nothing more than the frequency transform of the density-density response
function evaluated at imaginary frequencies. We can make the exact same
derivation for the sum over the excited states of the solid. The second order
correction to the ground state energy then becomes:

∆E(2) = −
∫
dr

∫
dr′
∫
dx

∫
dx′

1

|x− r|
1

|x′ − r′|

∞∫
0

du

2π
χa(x,x′; iu)χs(r, r

′; iu).

(A.30)

This expression is still not very useful for a practical calculation and to work
further, we need to introduce the two-dimensional Fourier transform of the
Coulomb potential:

1

|r− x|
=

1

8π3

∫
dqρ

∞∫
−∞

dqz
4π

q2ρ + q2z
eiqρ·(ρr−ρx)eiqz(zr−zx), (A.31)

where r = (ρr, zr), x = (ρx, zx) and qρ = (qx, qy, 0). The integral over qz can be
worked out with a contour integral, which makes a half circle in the upper half
of the complex plane for zr− zx > 0 and in the lower half for zr− zx < 0. After
obtaining this result we transition to a discrete Fourier transform by substituting
1

4π2

∫
dqρ → 1

L2

∑
qρ

, where L2 is the surface area of the solid. The result is

given by:

1

|r− x|
=

1

L2

∑
q

(
2π

q

)
eiq·(ρr−ρx)e−q|zr−zx|, (A.32)

Note that we dropped the index ρ on the wave vectors. Before we introduce
this Fourier transform in expression (A.30), we first replace the coordinates for
the electron density of the atom x → R + x, where R denotes the position
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of the nucleus, since this will be useful later on. The product of the Coulomb
potentials can then be written as:

1

|x + R− r|
1

|r′ −R′ − x′|

=
1

L4

∑
q,q′

e−Z(q+q′)eiR·(q−q
′)eiq·(ρx−ρr)eiq

′·(ρr′−ρx′ )e−q(zx−zr)e−q
′(zx′−zr′ )

=
1

L4

∑
q,q′

e−Z(q+q′)eiR·(q−q
′)eiκ·xe−iκ

∗·x′e−iκ·reiκ
∗·r′ ,

(A.33)

where in the last step we defined the complex wave vector κ = q + iqez. Note
that we dropped the absolute value in the exponent |zx+Z−zr| → (zx+Z−zr).
This corresponds with neglecting the Coulomb potential felt by the electron
cloud of the atom in a point zx + Z due to the electron density of the solid at
the position zr > zx + Z. Since we already assumed that there is no overlap,
this is no additional approximation. We assume that the surface is periodic,
thus the Coulomb potential of the surface can be expanded as a Fourier series
over the reciprocal lattice vectors Qh, i.e. we can restrict the sum over q′ to
q′ = q + Qh. As a consequence, we find that :

e−ZQh/
√
2 ≥ e−Z(q+q′). (A.34)

That is, we find that the Qh 6= 0 terms decay exponentially away from the
surface. In our search for a power law dependence, we can thus retain only the
Qh = 0 term for which q = q′. The energy correction becomes:

∆E(2) = −
∞∫
0

du

2π

1

L4

∑
q

4π2

q2
e−2qZ

∫
dx

∫
dx′eiκ·xe−iκ

∗·x′χa(x,x′; iu)

×
∫
dr

∫
dr′e−iκ·reiκ

∗·r′χs(r, r
′; iu)

(A.35)

We see that the contribution to the energy correction falls off exponentially fast
with increasing q, so if we assume that the atom is far away from the surface,
i.e. Z is large, we can make a Taylor expansion around q = 0 in the atomic
contribution. Before we make this expansion we first show:∫

dxχa(x,x′; iu)

= i

∞∫
0

dte−ut
∫
dx〈[n̂a(x, t), n̂a(x′, t)]〉0

= i

∞∫
0

dte−ut
∫
dx(ρa0(x, t)− ρa0(x, t))〈Ψa

0 |n̂a(x′, 0)− n̂a(x′, 0)|Ψa
0〉 = 0,

(A.36)

where the last step follows from the fact that the atom is neutral. This means
that in the expansion, the first terms to survive are those which contain a prod-
uct of xi and x′i. To work this out explicitly, we adopt spherical coordinates and
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choose the z-axis along the vector κ. Now, an atom in its ground state always
exhibits spherical symmetry, which means that we can expand the response
function in its spherical components as:

χa(x,x′; iu) =
∑
l,m

χl(x, x
′; iu)Y ml (x̂)Y m∗l (x̂′), (A.37)

where Y ml are the spherical harmonics. We should keep in mind that the same
reasoning does in general not hold if we consider a molecule instead of an atom.
The exponentials in the integrals can be expanded as:

eiκ·xe−iκ
∗·x′ = eiκx cos(θ)e−iκ

∗x′ cos(θ′)

≈ 1 + iκx cos(θ)− iκ∗x′ cos(θ′) + κκ∗xx′ cos(θ) cos(θ′)
(A.38)

The first three terms drop, as we just showed, because of the charge neutrality
of the atom. If we only retain only the latter term, insert the expansion in
spherical harmonics and write out the spherical harmonics explicitly, we find:∫

dx

∫
dx′eiκ·xe−iκ

∗·x′χa(x,x′; iu)

=
∑
l,m

(−1)2m
(

2l + 1

4π

(l −m)!

(l +m)!

) ∞∫
0

dxx3
∞∫
0

dx′ x′3
2π∫
0

dϕ eimϕ
2π∫
0

dϕ′ eimϕ
′

× κκ∗
π∫

0

dθ sin(θ) cos(θ)Pml (cos(θ))

π∫
0

dθ′ sin(θ′) cos(θ′)Pml (cos(θ′)),

(A.39)

where Pml are the associated Legrendre polynomials. The integral over ϕ yield
zero except if m = 0 and in this case the associated Legendre polynomials reduce
to the Legendre polynomials. We work out the integral over θ, where we make
the substitution y = cos(θ):

π∫
0

dθ sin(θ) cos(θ)Pl(cos(θ)) =

1∫
−1

dy yPl(y) =
2

3
, (A.40)

where the last results follows since the Legendre polynomials form a family of
orthogonal polynomials and P1(y) = y, so we only have to consider the term
l = 1. Everything together we find:∫

dx

∫
dx′eiκ·xe−iκ

∗·x′χa(x,x′; iu) =
4π

3
κκ∗

∞∫
0

dxx3
∞∫
0

dx′ x′3χ1(x, x′; iu)

= 2q2α(iu).

(A.41)

Here, α(iu) is the dynamic atomic dipole polarizability which can be defined
as [6]:

α(iu) =
4π

3

∞∫
0

dxx3
∞∫
0

dx′ x′3χ1(x, x′; iu). (A.42)
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A more general result, that we will not rederive here, can be obtained by carrying
on the expansion in powers of q. The result is given by:∫

dx

∫
dx′eiκ·xe−iκ

∗·x′χa(x,x′; iu) =

∞∑
l=1

2lαl(iu)

l!(2l − 1)!!
q2l (A.43)

where αl is the multipole polarizability:

αl(iu) =
4π

2l + 1

∞∫
0

dxxl+2

∞∫
0

dx′x′l+2χl(x, x
′; iu). (A.44)

It is interesting to notice that only even power of q enter in this result. So that,
since we consider only small q, we should get reasonable results by examining
only the dipole polarizability. We then arrive at the result for the attractive
interaction given in Zaremba’s paper:

E(2) = − 2

π

∞∫
0

duα(iu)F (Z; iu) (A.45)

with:

F (Z; iu) =
2π2

L2

∑
q

e−2qZ
∫
dz

∫
dz′eq(z+z

′)χs(z, z
′,q,q′; iu), (A.46)

and the two dimensional Fourier-transform of the response function:

χs(z, z
′,q,q′; iu) =

1

L2

∫
dρ

∫
dρ′e−iq·ρeiq·ρ

′
χs(r, r

′; iu). (A.47)

If we knew an expression for the atomic dipole polarizability and the solids
density-density response function, we could attempt to evaluate the above ex-
pressions immediately. In most cases, however, we do not have an expression for
the latter so we will work towards a more useful expressions. The first thing we
note is that we only need to determine the long wavelength (small q) behavior
of:

f(q; iu) =

∫
dz

∫
dz′eq(z+z

′)χs(z, z
′,q,q′; iu) (A.48)

because of the exponential exp(−2qZ) in (A.46). Let us get some more insight
in the meaning of the surface response function F (Z; iu). Consider an external
charge distribution located at z = Z:

ρext(r, t) = δ(z − Z)eiq·ρeut. (A.49)

The electrostatic potential in the frequency domain due to this charge, for the
region of interest z < Z, is given by:

φext(r, iu) =

∫
dr′

ρext(r
′, iu)

|r− r′|
=

2π

q
eiq·ρe−qZeqz, (A.50)
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where we used the two dimensional Fourier transform (A.32). The response of
the solid to this external potential is given by:

δnS(r, iu) =

∫
dr′χS(r, r′; iu)φext(r

′; iu)

=

∫
dr′
∑
q,h

ei(Qh+q)e−iq·ρ
′
χS(z, z′,q + Qh,q; iu)

2π

q′
e−q

′Zeq
′z′eiq

′·ρ′

=
2π

q
e−qZeiq·ρ

∑
h

eiQh·ρ
∫
dz′χS(z, z′,q + Qh,q; iu)eqz

=
2π

q
e−qZeiq·ρδñQh

(z,q; iu)

(A.51)

where in the second step we used the inverse Fourier transform of (A.47). In
the last line the first three terms are identical to the component of the external
potential parallel to the surface of the solid. The z-dependence of the induced
charge in described δñQh

(z,q; iu). The average over the surface of this last term
is obtained by setting Qh = 0 and is given by:

δñ0(z,q; iu) =

∫
dz′χS(z, z′,q,q; iu)eqz. (A.52)

In this way, we can write the surface response function as:

F (Z; iu) =
2π2

L2

∑
q

e−2qZ
q

2π

∫
dz eqz δñ0(z, q; iu) =

2π2

L2

∑
q

e−2qZf(q; iu).

(A.53)

Physically this means that if the atom is far away from the surface, the induced
charge fluctuations in the solid due to the instantaneous dipole of the atom
are spread out across the surface. Zaremba and Kohn point out in their paper
that δñ0(z, q; iu) oscillates around a zero mean in the high frequency limit. A
consequence is that an immediate expansion of this quantity in powers of q is
not possible. Instead, they eliminated the periodic part by taking the average:

δn̄(z, q; iu) =
1

a

z+a/2∫
z−a/2

dz′δñ0(z′, q′iu) (A.54)

Furthermore, we note that for the small q behavior of f(q; iu) in (A.53), δñ0(z, q; iu)
and δn̄0(z, q; iu) are interchangeable:

∫
dz eqzδn̄0(z, q; iu) =

1

a

∫
dz

z+a/2∫
z−a/2

dz′ eqzδñ0(z′, q; iu)

=
1

a

∫
dz′ δñ0(z′, q; iu)

z′+a/2∫
z′−a/2

dz eqz =

∫
dz′ eqz

′
δñ0(z′, q; iu) +O(q2).

(A.55)
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If we make this replacement in f(q; iu) and introduce the following expansion:

δn̄(z, q; iu) = δn̄0(z; iu) + qδn̄1(z; iu) +O(q2), (A.56)

then we find:

f(q; iu) =
q

2π

∫
dz
{
δn̄0(z; iu) + q [zδn̄0(z; iu) + δn̄1(z; iu)] +O(q2)

}
=

q

2π

∫
dz δn̄0(z; iu)

[
1 + 2qz̄(iu) +O(q2)

]
,

(A.57)

where:

z̄(iu) =

∫
dz z δn̄0(z; iu)∫
dz δn̄0(z; iu)

+
1

2

∫
dz [δn̄1(z; iu)− z δn̄0(z; iu)]∫

dz δn̄0(z; iu)
. (A.58)

In the above expressions,
∫
dz δn̄0(z; iu) represents the total surface screening

charge induced by the external potential. The first term of z̄(iu) is then the
centroid of this induced charge and we can expect that it is highly localized near
the surface of the solid, The second term has no simple physical interpretation
and Zaremba and Kohn showed that this term disappears in the zero and high
frequency limit but it is not guaranteed to vanish for intermediate frequencies.
If we want to evaluate the formal expression we obtained so far, we need to
determine δn̄0(z; iu) and we do this by considering the continuity equation:

∂

∂t
n(r, t) +∇ · j(r, t) = 0. (A.59)

We know that the induced charge should have the same time-dependence as the
external charge (A.49) and we can also assume the same form for the current
density. Since we want to know δn̄0(z; iu), we average over the surface and
afterwards apply the same averaging as in (A.54). This allows us to rewrite the
continuity equation to:

u δn̄0(z; iu) +
∂

∂z
j̄z(z; iu) = 0 (A.60)

If we formally integrate this equation we get:

j̄z(−∞; iu) = u

∞∫
−∞

dz δn̄0(z; iu) (A.61)

This current density deep inside the solid, we can also obtain by using Ohm’s
law. The electrical field E = −eutE0 ez is determined by the external charge
(A.49) screened by the induced surface charge. By integrating Gauss’ law, we
obtain:

E0 = 2π

1−
∞∫
−∞

dz δn̄0(z; iu)

 (A.62)

The current density is then given by:

j̄z(−∞; iu) = σ(iu)E0. (A.63)
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If we combine the last three results, we get:

∞∫
−∞

dz δn̄0(z; iu) =
2πσ(iu)/u

1 + 2πσ(iu)/u
=
ε(iu)− 1

ε(iu) + 1
, (A.64)

where we used the relation between the conductivity and the dielectric function
ε(iu) = 1 + 4πσ(iu)/u. If we substitute this result in (A.57), we find:

f(q; iu) =
q

2π

[
1 + 2qz̄(iu) +O(q2)

](ε(iu)− 1

ε(iu) + 1

)
(A.65)

This form allows for an evaluation of the surface response function (A.53), where
we transition from the discrete sum to an integral:

F (Z; iu) =
1

2

(
ε(iu)− 1

ε(iu) + 1

) ∞∫
0

dq q2
[
1 + 2qz̄(iu) +O(q2)

]
e−2qZ

=
1

2

(
ε(iu)− 1

ε(iu) + 1

)[
1

4Z3
+

3

4Z4
+O(Z−5)

] (A.66)

So at long last we find the Van der Waals attraction:

E(2) = − C

Z3

[
1 + 3

Z0

Z
+O(Z−2)

]
, (A.67)

where we introduced the Van der Waals constant:

C =
1

4π

∞∫
0

duα(iu)

(
ε(iu)− 1

ε(iu) + 1

)
(A.68)

and the Van der Waals reference plane:

Z0 =
1

4πC

∞∫
0

duα(iu)

(
ε(iu)− 1

ε(iu) + 1

)
z̄(iu). (A.69)

The expression for the Van der Waals attraction (A.67) can be rewritten to a
more convenient form by measuring distances w.r.t. the Van der Waals reference
plane Z → Z − Z0. The result of F (Z − Z0; iu) is then given by:

E(2) = − C

(Z − Z0)3
+O(Z−5). (A.70)
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Appendix B

Further information about
the LAPW method

B.1 Choice of sphere radii

Let us discuss the importance of keeping the plane wave cutoff low. When
setting up the secular equation, its size is determined by the amount of plane
waves, which scales as the cube of the the plane wave cutoff. The time required
to solve the secular equation in turn scales as the cube of its size, so in the end
we find that the required calculation time scales as the ninth power of the plane
wave cutoff. It is thus imperative for any practical calculation to keep it as low
as possible. An important parameter that influences the cutoff is the size of the
spheres around the nuclei. Indeed, they should be chosen in such a way that
they minimize the computation time and not based on their physical ‘size’.

To illustrate this, consider the case of NiAl, where the radii in their chem-
ical sense are given by RAl = 2.8 bohr and RNi = 1.9 bohr. Now since the
plane waves are extended throughout the interstitial region, one should pick the
highest cutoff needed for the different elements in the material. Well converged
plane wave cutoffs are given by RAlGmax = 6 and RNiGmax = 9. With the
choice of radii in the chemical sense we find that the cutoff is determined by Ni
and is equal to Gmax = 4.74. If we would, however, swap the radii and choose
RAl = 1.9 and RNi = 2.8, the maximal cutoff is determined again by Ni but is
this time equal to Gmax = 3.21. The difference in computation time between
these two choices is a factor (4.74/3.21)9 = 33.

B.2 Core electrons and valence electrons

The LAPW method is an all electron approach although this does not mean that
no distinction is made between core electrons and valence electrons. Indeed, for
core electrons it is imperative to solve the Dirac equation since spin-orbit and
other relativistic corrections are very important, certainly for heavier elements,
while for valence electrons this effect can often be treated as a perturbation, if
necessary. On the other hand one can assume that core electrons have spherical
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symmetric wavefunctions and stay confined inside the spheres, such that it is un-
necessary to expand them in the LAPW basis, i.e. a numerical basis of spherical
solutions to the Dirac equation inside the spheres suffices. It is worth pointing
out that the last approximation means that no plane waves are necessary for
the core electrons and that, since the core states are considered to vanish on
the sphere boundary, valence states are automatically orthogonal to them, as
pointed out earlier. Herein lies an important distinction with pseudopotential
codes: The true ground state electron density is sought in a LAPW calculation.
This means that the electron density is in principle correct over the whole crys-
tal instead of only in the interstitial part as with pseudopotential codes.
So, concretely: Core electron states are calculated self-consistently and fully
relativistically in the crystal potential. They are however approximated to be
confined in the spheres, that is, their wavefunction is considered to be zero out-
side the spheres, and to be spherical, which means that the potential in the
Dirac equation is replaced by its spherical part. Valence electron states are cal-
culated self-consistently in the crystal potential with the Schrödinger equation
(unless relativistic corrections are also important for valence electrons, see the
next paragraph).

B.3 Relativistic corrections.

Before we take a look at how relativistic corrections can be taken into account,
we find it instructive to first derive the radial Dirac equation, as it is something
most physicists at the master degree are not familiar with. The material pre-
sented here is based on the book of P. Strange [49].

The time-independent Dirac equation for a spherical potential V (r) = V (r)
is given by:

(cα · p̂ + βmc2 + V (r))ψ = Wψ, (B.1)

where β and the components of α are given by:

β =

(
I2 0
0 I2

)
αx =

(
0 σx
σx 0

)
αy =

(
0 σy
σy 0

)
αz =

(
0 σz
σz 0

)
,

(B.2)

in which the σi are the Pauli matrices. We now rewrite the kinetic term of the
Dirac equation and for this we start with following vector identity:

A× (B×C) = B(A ·C)−C(A ·B), (B.3)

with A = B = r̂, the unit radial vector, and C = ∇ we find that:

∇ = r̂(r̂ · ∇)− r̂× (r̂×∇). (B.4)

Since we are dealing with a spherical potential, the wavefunction should also
be spherical, thus ∂/∂θ and ∂/∂φ disappear. For the second term we use the

angular momentum operator L̂ = x̂ × p̂ = −i~r × ∇. Here x̂ is the position
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operator, and r is the positional vector of the electron. We can then rewrite the
above equation as:

∇ = r̂
∂

∂r
− i

~
r̂

|r|
× L̂, (B.5)

so that the kinetic operator becomes:

α · p̂ = −i~α · ∇ = −i~α · r̂ ∂
∂r
− 1

|r|
α · r̂× L̂. (B.6)

We still wish to rewrite this further and for that we use the following vector
identity:

α ·Aα ·B = A ·B + iσ ·A×B, (B.7)

in which A and B are arbitrary vectors and:

σi =

(
σi 0
0 σi

)
. (B.8)

Now since r and L̂ are perpendicular to each other this gives:

α · r̂α · L̂ = iσ · r̂× L̂. (B.9)

Next we will use the γ5 matrix which is defined as:

γ5 =

(
0 −I2
−I2 0

)
(B.10)

and has the property that:

γ5α = −σ γ5σ = −α, (B.11)

so that (B.9) becomes, after post multiplying with γ5:

iα · r̂σ · L̂ = −α · r̂× L̂. (B.12)

The kinetic operator now becomes:

α · p̂ = −i~α · r̂ ∂
∂r

+
i

|r|
α · r̂σ · L̂. (B.13)

Apart from the usual orbital angular momentum operator L̂, the spin angular
momentum operator Ŝ and the total angular momentum operator Ĵ, in rela-
tivistic quantum mechanics there is another interesting operator K̂, which is
also related to angular momentum. It is defined as:

K̂ = β(σ · L̂ + ~). (B.14)

Notice that because of its form, it is clear that it has to do with spin-orbit
coupling. The operator is related to the total angular momentum as:

K̂2 = Ĵ
2

+
~2

4
(B.15)
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and it has eigenvalues:

K̂ψ = ±
(
j +

1

2

)
~ψ = −κ~ψ, (B.16)

what can easily be verified by using relation (B.15). We use κ ∈ Z0 as a quantum
number to label the solutions to the radial equation further on and refer to it as
the relativistic quantum number. Since we are dealing with spin 1/2 particles,
it can be shown that κ has following relations with the non-relativistic quantum
numbers j and l:

κ = −l − 1 = −(j + 1/2) if j = l + 1/2

κ = l = (j + 1/2) if j = l − 1/2.
(B.17)

It is also interesting to mention that the following commutators hold:

[Ji, Ĥ] = [Ĵ
2
, Ĥ] = [K̂, Ĥ] = [K̂, Ĵ

2
] = [K̂, Ĵz] = 0. (B.18)

This means that Ĵ
2
, Ĵz and K̂ represent quantities that are constants of motion

in relativistic quantum mechanics and that eigenfunctions of the relativistic

Hamiltonian are also eigenfunctions of the operators Ĵ
2
, Ĵz and K̂. Anyways,

using (B.14), we can rewrite the kinetic operator in the final form we want to
have it:

α · p̂ = −i~α · r̂ ∂
∂r

+
i

|r|
α · r̂(βK̂ − ~). (B.19)

To shorten notation a little, we write σr = σ · r̂. If we substitute the kinetic
operator in the Dirac equation we arrive at:[

icγ5σr

(
~
∂

∂r
+

~
r
− βK̂

r

)
+ βmc2 + V (r)

]
ψ(r) = Wψ(r). (B.20)

The solutions to this equation can be written as:

ψmjκ (r) =

(
gκ(r)χ

mj
κ (r̂)

ifκ(r)χ
mj
−κ(r̂)

)
. (B.21)

Usually gκ is referred to as the large component and fκ as the small component.
The χ

mj
κ are the spin-angular functions which are related to the more familiar

spherical harmonics and Pauli spinors by1:

for j = l + 1/2 :

χmjκ (r̂) =

√
l + 1/2 +m

2l + 1
Y
mj−1/2
l χ1/2 +

√
l + 1/2−m

2l + 1
Y
mj+1/2
l χ−1/2

for j = l − 1/2 :

χmjκ (r̂) =

√
l + 1/2−m

2l + 1
Y
mj−1/2
l χ1/2 −

√
l + 1/2 +m

2l + 1
Y
mj+1/2
l χ−1/2.

(B.22)

1I took the expressions given in the book of M. Martin [28] p. 194
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If we substitute the solution in the radial Dirac equation and use the not so
trivial relation2 σrχ

mj
κ (r̂) = −χmj−κ(r̂), we find:

−c~
(
∂

∂r
+

1

r
+
κ

r

)
gκ(r)χ

mj
−κ + (W − V (r) +mc2)fκ(r)χ

mj
−κ = 0

c~
(
∂

∂r
+

1

r
− κ

r

)
fκ(r)χmjκ + (W − V (r)−mc2)gκ(r)χmjκ = 0.

(B.23)

Thus the spin-angular functions can be omitted and we are left with two coupled
equations for fκ(r) and gκ(r):

∂fκ
∂r

=
1

c
(V − E)gκ +

κ− 1

r
fκ

∂gκ
∂r

= −κ+ 1

r
gκ + 2Mcfκ,

(B.24)

where we defined E = W − mc2 (the energy of the electron with the mass
contribution taken out), put ~ = 1 and used the radially varying mass, which is
also called the zrelativistic mass’:

M = m+
1

2c2
(E − V ). (B.25)

A strategy to solving these two coupled equations is to first rewrite the second
equation towards an expression for fκ and then substituting this expression into
the first equation. The result is given by:

− 1

2M

[
g′′κ +

2

r
g′κ −

l(l + 1)

r2
gκ

]
+ V gκ −

V ′g′κ
4M2c2

− κ+ 1

r

V ′gκ
4M2c2

= Egκ,

(B.26)

where primes denote radial derivatives and we used that κ(κ + 1) = l(l + 1).
Apart from the two extra terms in the left hand side and that the radial varying
mass enters the kinetic energy, this equation is identical to the radial Schrödinger
equation. The last term in the left hand side is the spin-orbit term, as it is the
only one that still depends on the spin of the particle through κ.

Instead of directly solving (B.26), another approach, proposed by
D.D. Koelling and B.N. Harmon [24], is usually taken to deal with relativis-
tic effects for the valence electrons and this for computational reasons. Indeed,
if the spin orbit term is taken into account, one has to keep track of the spin,
which doubles the size of the secular equation. However, in this approach, spin-
orbit coupling can be taken into account afterwards in a second variational step,
which is much faster to calculate. Let us first motivate how we can get rid of the
spin-orbit term. Imagine that you want to know the average of the solution for
the spin-up and the spin-down case. This means that you want to average over
j1 = l + 1/2 and j2 = l − 1/2 so that j1 + j2 = 2l, which is spin independent.
Using the relations for the relativistic quantum number (B.17) we find:

κ1 + κ2 = l − (l + 1) = −1, (B.27)

2I will not prove it here, see [49] p. 59 for details.
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so that, when adding the two equations for these different κ values, the last
term in (B.26) drops out in this case and spin-orbit coupling does not play a
role anymore.

We now derive the equations proposed by D.D. Koelling and B.N. Harmon,
which is also interesting because it shows us that we can label the wavefunc-
tions with the non-relativistic quantum numbers. We start with defining a new
function:

φκ =
1

2Mc
g′κ. (B.28)

After substitution of this function and its derivative into (B.26) and after drop-
ping the spin-orbit term we get:

φ′κ = −2

r
φκ +

[
l(l + 1)

2Mcr2
+

1

c
(V − E)

]
gκ. (B.29)

After substitution of the definition of φκ in the second equation of (B.24), we
find a relation for fκ:

fκ = φκ +
κ+ 1

2Mcr
gκ, (B.30)

which can be substituted in the solution to the radial Dirac equations (B.21):

ψmjκ ≈

 gκχ
mj
κ

i

[
φκ +

κ+ 1

2Mcr
gκ

]
χ
mj
−κ

 . (B.31)

The second component can be further rewritten:

i

[
φκ +

κ+ 1

2Mcr
gκ

]
χ
mj
−κ = i

[
g′κ

2MC
+
K̂ + 1

r
gκ

]
σrχ

mj
κ

=
iσr

2Mc

[
−g′κ +

K̂ − 1

r
gκ

]
χmjκ

=
iσr

2Mc

[
−g′κ +

gκ
r
σ · L̂

]
χmjκ .

(B.32)

In the second step we used that K̂ anti-commutes with σr
3 and in the last

step we used the definition (B.14) of the operator K̂. We can now transition
to solutions which are labelled by the non-relativistic quantum number lmlms

by taking a weighted sum of the spin-up and spin-down states with the same
l-value, that is κ = l and κ = −(l + 1):√

l + 1/2 +m

2l + 1
χ
mj
l +

√
l + 1/2−m

2l + 1
χ
mj
−l−1 = Y

mj−1/2
l χ1/2 (B.33)

or: √
l + 1/2−m

2l + 1
χ
mj
l −

√
l + 1/2 +m

2l + 1
χ
mj
−l−1 = Y

mj+1/2
l χ−1/2, (B.34)

3See the book of P. Strange [49] p.59
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as can easily be verified by using the relations in (B.22). The functions g and
g′ are determined by (B.28) and (B.29) but since they do not depend on the
spin of the particle, we can just as well use l instead of κ. We find for the
approximate solutions:

ψlmlms =

(
glY

ml
l χms

iσr
2Mc

[
−g′l +

gl
r
σ · L̂

]
Y mll χms

)
, (B.35)

so we find that the large component is in a pure spin-up or spin-down state
while for the small component this is not the case. The equations that are
usually implemented are obtained by defining Pl = rgl and Ql = rcgl and then
rewriting (B.28) and (B.29) towards:

P ′l = 2MQl +
Pl
r

Q′l = −Ql
r

+

[
l(l + 1)

2Mr2
+ (V − El)

]
Pl.

(B.36)

To construct the wavefunctions inside the spheres we still need the energy deriva-
tives of these equations, which are given by:

Ṗ ′l = 2(ṀQl +MQ̇l)
Ṗl
r

Q̇′l = − Q̇l
r

+

[
l(l + 1)

2Mr2
+ (V − El)

]
Ṗl −

[
l(l + 1)Ṁ

2M2r2
+ 1

]
Pl.

(B.37)

In the LAPW method the wavefunction still needs to be matched at the sphere
boundary and then the question rises how to do this. After all, in the intersti-
tial part the Schrödinger equation is solved and there is nothing like the small
and large part of the wavefunction. The approach that is usually taken is to
neglect the contribution of the small component at the sphere boundary and to
match the plane waves only to the large component of the wavefunction. Since
relativistic corrections are only important near the core, this is usually a good
approximation.

We mentioned before that spin-orbit corrections can be taken into account
by means of a second variational step. This means that we first solve the above
set of equations and find the appropriate eigenfunctions as if there is no spin-
orbit coupling at all. Then, with the functions found in this first variational
step, one builds a new basis which can be used to set up a Hamiltonian that
includes the spin-orbit term. A first thing to realize is that this basis can be
much smaller than in the first step since the amount of bands in the system
is much lower than the amount of basis functions used in the LAPW basis
and only the bands of interest can be included. Secondly, since the spin-orbit
term is mostly only important near the nucleus, it usually does not have to be
included for the interstitial region. Furthermore, inside the sphere a spherical
approximation of the basis functions can be used, again because the spin-orbit
term is important near the nucleus and there spherical approximation is best.
So in the end we actually only have to calculate the effect of the spin-orbit
coupling on the different radial functions ul(r) and u̇l(r). The total correction
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is then given by a linear combination of these, determined by the expansion
coefficients Alm and Blm:

〈φσG|ĤSO|φσ
′

G′〉 =
∑
lm

∑
l′m′

[
A∗lm(G)Al′m′(G

′)〈uσlm|ĤSO|uσ
′

l′m′〉

+B∗lm(G)Al′m′(G
′)〈u̇σlm|ĤSO|uσ

′

l′m′〉

+A∗lm(G)Bl′m′(G
′)〈uσlm|ĤSO|u̇σ

′

l′m′〉

+B∗lm(G)Bl′m′(G
′)〈u̇σlm|ĤSO|u̇σ

′

l′m′〉
]
.

(B.38)

The final band energies are then given by the sum of the band energies from
the first variation step and these corrections, since the function we use here are
orthogonal, i.e. we do not have to calculate the overlap. Finally, because of the
form of the spin-orbit term, only terms for which l = l′ and |m−m′| ≤ 1 have to
be taken into account. This whole recipe is of course approximate but it works
as long as spin-orbit interactions are relatively small.

B.4 Full potential LAPW (FLAPW)

We mentioned in the previous section that using a non-spherical symmetric
potential inside the spheres is a little harder than it may seem at first sight.
The problem arises when the full crystal potential is used to solve the Poisson
equation. Outside the spheres, there is not a big problem since the charge
density is expanded in stars (a combination of plane waves which exhibit the
spacegroup symmetry) and the equation is diagonal in Fourier space. Inside the
spheres, however, we have a rapidly oscillating charge density expanded in lattice
harmonics (a combination of spherical harmonics that exhibit the symmetry of
the site of the particular atom in the unit cell). Solving the Poisson equation in
reciprocal space is prohibitive because of the amount of plane waves that would
be required to expand the density near the nucleus. In fact, since we have a
delta-function like contribution from the nucleus, such an expansion would be
non-convergent. On the other hand, solving the Poisson equation in real space
would require some boundary condition that we do not know.
To solve this problem, one can observe that the Coulomb potential outside
the spheres only depends on the charge outside the spheres and the multipoles
inside. This allows one to replace the true charge density inside the spheres by
some other function as long as the multipoles inside stay the same. Thus the
Coulomb potential is sought as follows: (1) Extend the charge density expanded
in stars to the whole unit cell instead of just in the interstitial part. (2) Calculate
the multipoles of the star expansion inside the spheres as well as multipoles of
the true charge density. (3) Calculate the difference in multipoles between the
true charge density and the star expansion. Then compensate the difference by
adding some arbitrary functions, which are localized inside the spheres and can
be expanded with as few plane waves as possible, to the star expansion. This
is called the pseudo charge density. (4) Solve the Poisson equation in reciprocal
space. (5) Find the charge density in real space on the sphere boundary. (6)
Solve the Poisson equation inside the sphere in real space with the boundary
condition found in the previous step. This can be done with a Green’s function
approach.
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It should now also be clear why there is no problem when considering a spherical
symmetric potential inside the spheres. The solution in the interstitial does
not depend entirely on the charge distribution inside and the star expansion
can immediately be used without the construction of a pseudo charge density.
Since the potential in the spheres is approximated to be spherical, the charge
distribution that enters the Poisson equation should also be spherical symmetric.
This means that we can set l = 0 and the equation to be solved becomes:

1

r2
d

dr

(
r2
dV (r)

dr

)
= 4πρ(r), (B.39)

where ρ(r) is the spherically averaged charge distribution. The above equation
is easy to solve, e.g. by integrating the equation twice. The final solution is
determined by matching the value and the first derivative of the potential to
the solution of the interstitial part on the sphere boundary.

B.5 Local orbitals

Sometimes it is not possible to calculate all electron states accurately with one
choice of El. This can happen in two cases. The first one occurs when conduc-
tion states are to be calculated which have a band energy far above the energy
parameter. The second case if there are so-called semi-core states present in
the system. These are electron states which have an energy that is far below
the valence states but are spatially extended. The latter means that we cannot
treat them as core electrons, since the requirement for those is that their wave-
function vanishes (to good approximation at least) in the interstitial region, and
we have to treat them as valence states.
The most intuitive reaction is maybe to divide the states in more than one win-
dow, each with an appropriate choice for El. There are however two downsides
to this approach. The first is that creating an extra window increases the com-
putation time significantly since two separate LAPW calculations have to be
made (with the only exception that the potential is the same in both cases).
Then afterwards the resulting charge densities from these two calculations have
to be combined. The second and most important downside is that orthogonality
between the states in the separate windows in not guaranteed.
A better approach was proposed by Singh [46], who introduced the local orbital
extension for the LAPW method. The idea is to add extra variational freedom
to the functions inside the spheres. As discussed before, adding the second
derivative ül(r) would reduce the errors in the band energies to (ε − El)6 but
would require matching the second derivative of the wavefunction on the sphere
boundary, which is prohibitive because of the high plane wave cutoff. Instead,
Singh exploited the fact that the LAPW functions are automatically orthogonal
to any core state, which allows one to add an arbitrary function to the basis
which is strictly confined inside the spheres. Now, since the ul(r) and u̇l(r) are
particularly suited to approximate wavefunctions inside the spheres, it makes
sense to use those. Lastly, the quality of an electron state is determined by the
difference between the band energy and the energy parameter El used to calcu-
late ul(r). A clever combination of these properties leads to a representation of
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the wavefunctions in the following basis:

ψ(r) =



Ω−1/2
∑
G

cGe
i(G+k)·r r ∈ I∑

l,m

[Almul(r) +Blmu̇l(r)]Y
m
l (r̂)

+
∑
l,m

clm

[
A′lmul(r) +B′lmu̇l(r) + u

(2)
l (r)

]
Y ml (r̂) r ∈ S

, (B.40)

where the A′lm and B′lm are used to match the extra term and its derivative to
zero at the sphere boundary, so that it is strictly localized inside the sphere.

The u
(2)
l (r) is determined, just like ul(r), by solving the radial Schrödinger

equation but with another choice for the energy parameter El. The variational
coefficients clm can be set to zero for all states but those l that have a semi-core
state associated with them, and, because of the localized nature of the extra
orbitals, only for those atoms that exhibit the semi-core state.

B.6 List of the different parameters used in Elk

This paragraph gives a brief description of the different parameters that we used
in DFT calculations with Elk. The parameters are listed alphabetically.

epsengy : Absolute change in the total energy of the system under which the
energy is considered as convergence. If the RMS change in the Kohn-Sham po-
tential is also smaller than the set value, the self-consistent loop breaks off.

epspot : RMS change for the Kohn-Sham potential under which the potential is
considered to be converged in the self-consistent loop. This condition as well as
the absolute change in the energy has to be met before the self-consistent loop
stops.

gmaxvr : Sets the maximal length of |G| for expanding the electron density and
potential in the interstitial region.

kgrid : Determines the equidistant grid of points in reciprocal space at which
the Kohn-Sham equations are solved.

lmaxapw : Set the angular momentum cutoff lmax for expanding the one-electron
wavefunctions inside the spheres.

lmaxmat : Sets the angular momentum cutoff for the construction of non-spherical
contributions to the Hamiltonian and overlap of the system inside the spheres.
Raising this parameter can significantly increase computation times and thus
is usually set lower than other angular cutoff parameters in the calculation (as
much as the convergence criterium permits at least).

lmaxvr : Sets the angular momentum cutoff lmax for the functions inside the
spheres for expanding the electron density and potential.
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lorbcnd : Either true or false. If set to true, Elk automatically adds local orbitals
to the high lying conduction states. This is required for an accurate determina-
tion of their band energies.

nempty : Determines the number of empty states per atom and per spin. (If
this parameter would be set to zero, there would be as many states calculated
as there are valence electrons in the system.)

rgkmax : Sets the energy cutoff for the plane waves for approximating the wave-
functions by defining the maximum length of the G + k vectors through:

max{|G + k|} =
rgkmax

RS
, (B.41)

where RS is the average of the sphere radii of the different atoms in the system.
The energy cutoff, in Hartree, of the plane waves is then given by:

EPWmax =
(max{|G + k|})2

2
. (B.42)

Care has to be taken when raising this parameter because Heaviside functions
are used in the construction of the Hamiltonian and overlap matrices for the
interstitial part. A consequence of this is that spurious energy contributions
from Gibbs oscillations can show up and cause the self-consistent loop to break
down due to divergence of the electron density.

stype: Used to define what kind of function should be used to determine the
occupancy of the electron states.

swidth: Determines the temperature used for the smearing function as well as
the inverse lifetime of particle excitations when calculating response functions.
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Appendix C

Potential of a charge near a
dielectric

z
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Figure C.1: A schematic picture of the system under consideration in this ap-
pendix. The left figure shows the charge q, which is situated at a distance d
above the infinite surface of a dielectric. In the right hand side of the figure,
the surface that we use with Gauss’ law to determine the electric field due to
the surface charge σi is drawn.

In this chapter we derive the potential for a point charge q at a distance d
from the surface of a dielectric material, as shown in figure C.1. We suppose
that we are dealing with a linear dielectric, i.e. the polarization can be written
as:

P = ε0χeE, (C.1)

where ε0 is the permitivity of the vacuum and χe is the electric susceptibility.
Note that we adopt SI units in this appendix. The quantity we want to know
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is the potential caused by the charge, which is given by the Poisson equation:

∇2V (r) =
ρ(r)

ε0
, (C.2)

where ρ(r) is the charge density of the system. The charge density is not solely
given by the point charge because the point charge will induce a charge in the
dielectric. Our first task is thus to find the induced charge. The induced charge
can be divided in a surface charge and a bulk charge. The latter is zero because
it is proportional to the free charge density embedded in the material:

ρi = −∇ ·P = −∇ ·
(
ε0
χe
ε
D
)

= −
(

χe
1 + χe

)
ρf , (C.3)

where ε = ε0(1 + χe) is the permittivity of the material and D = εE is the
displacement vector. In the last step we used Gauss’ law for polarizable media
∇·D = ρf , where ρf denotes the free charge in the medium. The surface charge
is given by:

σi = P · n̂ = Pz = ε0χeEz (C.4)

Here, Ez is the z-component of the electrical field at z = 0. The electrical field
has a contribution from the free charge above the surface, which is easily found
from Coulomb’s law:

− 1

4πε0

q

ρ2 + d2
cos θ = − 1

4πε0

qd

(ρ2 + d2)3/2
. (C.5)

The second contribution comes from the surface charge, which can be found
from Gauss’ law by drawing a rectangular box around the surface, as indicated
in the figure. ∮

A

E · dA =
1

ε0

∫
ρ dV ⇒ 2AEz = −σi

ε0
(C.6)

We have a minus sign because we are looking just inside the dielectric at z = 0.
Taken together, (C.4),(C.5) and (C.6) yield an equation from which we can
determine the induced surface charge:

σi = ε0χe

(
− 1

4πε0

qd

(ρ2 + d2)3/2
− σi

2ε0

)
⇒ σi = − 1

2π

(
χe

χe + 2

)
qd

(ρ2 + d2)3/2
.

(C.7)

The total induced charge is thus given by:

qi = −
(

χe
χe + 2

)
q. (C.8)

We adopt the method of the image charges to find the potential. The method
relies on a collorary of one of the uniqueness theorems to the solutions of the
Laplace equation. It tells us that, quoting from Griffiths book [16]: ‘The poten-
tial in a volume V is uniquely determined if (a) the charge density throughout
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the region, and (b) the value of V on all boundaries are specified’. This means
that if we can find a solution that satisfies all the boundary conditions and gives
us the correct charge density, it is the only solution to the Poisson equation we
can find. The method of the image charges places some fictitious charges some-
where outside the region where the solution is sought and in such a way that
the boundary conditions are satisfied. How exactly that the image charges have
to be placed, is usually a matter of a making a well reasoned guess. There are,
however, two rules of the thumb: (1) You can never place an image charge inside
the region where you are looking for the potential and (2) the image charges have
to add up to the correct total charge in each region. The boundary conditions
are given by:

E‖vac − E
‖
diellectric =

σ

ε0
and Etvac − Etdiellectric = 0, (C.9)

where E‖ denotes the component of the electric field along the normal of the
plane, Et the component of the electrical field tangent to the plane and σ the
surface charge. The potential also has to disappear far away from the point
charge:

V → 0 if ρ2 + z2 � d2 (C.10)

Following the rules mentioned above, we make the guess that for z > 0, we have
to place an image charge at −d with a charge equal to qi:

V =
1

4πε0

(
q√

ρ2 + (z − d)2
+

qi√
ρ2 + (z + d)2

)
, (C.11)

which corresponds with placing an image charge at z = −d with a charge equal
to the induced charge. For z < 0 we pose:

V =
1

4πε0

(
q + qi√

ρ2 + (z − d)2

)
. (C.12)

The electric field is given by −∇V , so that we find:

−
(
∂V

∂z

∣∣∣∣
z=0+

− ∂V

∂z

∣∣∣∣
z=0−

)
= − 1

2π

(
χe

χe + 2

)
qd

(ρ2 + d2)3/2
, (C.13)

which is exactly the induced surface charge so that the first boundary condition
of (C.9) is satisfied. It is easy to check that the rest of the boundary conditions
are also satisfied. This means that the potential we proposed, is the solution to
the Poisson equation for our problem.
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Details 2 particles approach

D.1 Energy Functional Positron

In the two particle description, the effect of the solid is modeled by the Coulomb
potential and the exchange and correlation potential of the solid. The Coulomb
potential as well as the electron exchange and correlation potential, we can
calculate with the DFT package Elk. For the positron, no routines are imple-
mented in the code to calculate the correlation potential. Instead, we take the
electron density as calculated by Elk and from this we can determine the cor-
relation potential for the positron. We chose to use the recent LDA functional
parametetrized by Drummond [14]. This functional is obtained from a quantum
Monte Carlo study of the homogeneous electron gas with and without a single
immersed positron. This quantity is the relaxation energy and is equal to the
electron-positron correlation energy. The functional is given in terms of the
local electron density by the form:

VXC(rp) = ∆Ω(rs) =
A−1r

−1
s +A0 +A1rs +A2B2r

2
s

1 +B1rs +B2r2s
, (D.1)

where rs = 3/(4πn) is the electron density parameter and n the electron
density. The parameters are given by A−1 = −0.260 361, A0 = −0.261 762,
A1 = 0.003 755 34, A2 = −0.262 005, B1 = 0.113 718 and B2 = 0.027 091 2.
The functional tends to the correct low density limits but not the correct high
density limit. The latter, though, is not relevant for the problem we are dealing
with.

D.2 Hartree and cross-image potential

The potential due to the presence of the other particle in our two particle ap-
proach is determined by the Hartree potential and the cross-image potential. We
show here how we can evaluate these integrals. We only consider the Hartree
potential, since the cross-image potential is easily obtained from this result by
replacing z − z′ by z + z′ − 2z1:

∞∫
0

d%′ %′
∞∫
−∞

dz′
2π∫
0

dθ′
ρ(%′, z′)√

%′2 + %2 − 2%′% cos(θ′ − θ) + (z′ − z)2
(D.2)
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Since we expect no dependence on the angle, we can put θ = 0. The integral
can be rewritten to:
∞∫
0

d%′ %′
∞∫
−∞

dz′
ρ(%′, z′)√

(%′ + %)2 + (z′ − z)2

2π∫
0

dθ′√
1− 2%′% (1 + cos(θ′))

(%′ + %)2 + (z′ − z)2
(D.3)

The integral over the angle can be worked out analytically. If we consecutively
put θ′′ = θ − π, cos(θ′′ + π) = − cos(θ′′), 1− cos(θ′′) = 2 sin(θ′′/2), θ′′′ = θ′′/2,
then the integral becomes:

4

π/2∫
0

dθ′′′√
1− 4%′%

(%′ + %)2 + (z′ − z)2
sin2(θ′′′)

= 4K

(
4%′%

(%′ + %)2 + (z′ − z)2

)
,

(D.4)

where K(m) is the complete elliptic integral of the first kind1. If we would use
the trapezoid rule to evaluate the resulting integral, we would get a logarithmic
divergence near the origin. Instead, we use the polynomial approximation to
the elliptic integral found in [1]:

K(m) =
(
a0 + a1m1 + a2m

2
1 + a3m

3
1 + a4m

4
1

)
+
(
b0 + b1m1 + b2m

2
1 + b3m

3
1 + b4m

4
1

)
ln

(
1

m1

)
= A(m1)−B(m1) ln(m1),

(D.5)

where m1 = 1−m and:

a0 = 1.386 294 361 12, b0 = 0.5,
a1 = 0.096 663 442 59, b1 = 0.124 985 935 97,
a2 = 0.035 900 923 83, b2 = 0.068 802 485 76,
a3 = 0.037 425 637 13, b3 = 0.033 283 553 46,
a4 = 0.014 511 962 12, b4 = 0.004 417 870 12.

The Hartree potential becomes:

4

∞∫
−∞

dz′
∞∫
0

d%′
%′ρ(%′, z′)√

(%′ + %)2 + (z′ − z)2

{
A

(
(%′ − %)2 + (z′ − z)2

(%′ + %)2 + (z′ − z)2

)

−B
(

(%′ − %)2 + (z′ − z)2

(%′ + %)2 + (z′ − z)2

)
ln

(
(%′ − %)2 + (z′ − z)2

(%′ + %)2 + (z′ − z)2

)}
.

(D.6)

We can evaluate the term with A with the trapezoid rule but for the the term
with B and the logarithm we will see the logarithmic divergence near the ori-
gin. Instead, we will use the ‘logarithmically weighted method’ to evaluate the
integral over %′ [21]. We can write this integral as:

N∑
i=1

hi+1−hi∫
0

d%′F (%′ + hi) ln

(
(%′ − (%− hi))2 + (z′ − z)2

(%′ + (%+ hi))2 + (z′ − z)2

)
, (D.7)

1We used the convention where K(m) =
∫ π/2
0 dθ(1−m sin2(θ))−1/2 as in the 1970 version

of Abramowitz. The new NIST Handbook of Mathematical Functions puts k2 = m.
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where hi denotes the radial coordinate of the grid points. We approximate F
by the linear interpolation between the endpoints of each of these integrals:

F (%′ + hi) = Fi +
Fi+1 − Fi
hi+1 − hi

%′ (D.8)

since this allows us to rewrite the integral to:

N∑
i=1

[
FiCi(%, z, z

′) +
Fi+1 − Fi
hi+1 − hi

Di(%, z, z
′)

]
, (D.9)

where N is the amount of gridpoints on which we know F. The Ci and Di can
be evaluated analytically:

Ci(%, z, z
′) =

hi+1−hi∫
0

d%′ ln

(
(%′ − (%− hi))2 + (z′ − z)2

(%′ + (%+ hi))2 + (z′ − z)2

)
. (D.10)

If we write the devision in the logarithm as a difference of logarithms and subse-
quently substitute y1 = %′− (%−hi) and y2 = %′+(%+hi), then we get integrals
of the form: ∫

dy ln(y2 + a2) = y ln(y2 + a2)− 2y + 2a atan
(y
a

)
. (D.11)

To keep notation in check and for convenience of implementation, we introduce
the following notations:

%±i = hi ± %, z± = z′ ± z, P (a, b) = ln(a2 + b2). (D.12)

The result then becomes:

Ci(%, z, z
′) = %−i+1P (%−i+1, z

−)− %−i P (%−i , z
−)− %+i+1P (%+i+1, z

−) + %+i P (%+i , z
−)

+2z−

[
atan

(
%−i+1

z−

)
− atan

(
%−i
z−

)
− atan

(
%+i+1

z−

)
+ atan

(
%+i
z−

)]
.

(D.13)

For Di we can use the same substitutions as before and this gives integrals of
the form of (D.11) as well as:∫

dy y ln(y2 + a2) =
1

2

[
(y2 + a2) ln(y2 + a2)− y2

]
. (D.14)

The result is given by:

Di(%, z, z
′) =

1

2

{[
(%−i+1)2 + (z−)2

]
P (%−i+1, z

−)−
[
(%−i )2 + (z−)2

]
P (%−i , z

−)

−
[
(%+i+1)2 + (z−)2

]
P (%+i+1, z

−) +
[
(%+i )2 + (z−)2

]
P (%+i , z

−)
}
− 2%(hi+1 − hi)

−%−i

{
%−i+1P (%−i+1, z

−)− %−i P (%−i , z
−) + 2z−

[
atan

(
%−i+1

z−

)
− atan

(
%−i
z−

)]}

+%+i

{
%+i+1P (%+i+1, z

−)− %+i P (%+i , z
−) + 2z−

[
atan

(
%+i+1

z−

)
− atan

(
%+i
z−

)]}
.

(D.15)
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Time to recapitulate. We are interested in the Hartree potential which is de-
termined by the integral (D.2). By carrying out the integral over the angle
analytically and by introducing the polynomial approximation to the complete
elliptic integral of the first kind, we obtain (D.6). The term with A can be
evaluated numerically with the trapezoid rule but for the integrals over term
with B and the logarithm this does not give good results. Instead, we carry
out the integral over the radial coordinate with the logarithmically weighted
method (D.9), in which Ci and Di are given by (D.13) and (D.15) respectively.
The resulting integral over z′ can then be carried out with the trapezoid rule.

D.3 Finite differences scheme

We wish to solve the two-dimensional one particle equations on a inhomogeneous
grid since this allows us to keep the amount of grid points necessary reasonable.
Indeed, we expect that the wavefunction will vary strongly near the minimum
of the potential and that it will slowly decay to zero for large % and z. We start
by integrating the Schrödinger equation:

%
i+1

2∫
%
i− 1

2

d% %

z
j+1

2∫
z
j− 1

2

{
− 1

2%

∂

∂%

(
%
∂

∂%

)
− 1

2

∂2

∂z2
+ V (%, z)

}
ψ =

%
i+1

2∫
%
i− 1

2

d% %

z
j+1

2∫
z
j− 1

2

εψ

(D.16)

We can work out these integrals approximately by assuming that the wavefunc-
tion and the potential are constant over these intervals and equal to the value
of the midpoint. The first term in the left hand side gives:

− 1

2
(zj+ 1

2
− zj− 1

2
)

%
i+1

2∫
%
i− 1

2

d%

(
∂ψj

∂%
+ %

∂2ψj

∂%2

)

= −1

2
(zj+ 1

2
− zj− 1

2
)

(
%i+ 1

2

ψji+1 − ψ
j
i

%i+1 − %i
− %i− 1

2

ψji − ψ
j
i−1

%i − %i−1

)
,

(D.17)

where we used partial integration on the second term and used the midpoint
rule to approximate the resulting first derivative. We apply the same two steps
on the second derivative w.r.t. the z-direction to obtain:

−1

4
(%2i+ 1

2
− %2i− 1

2
)

(
ψj+1
i − ψji
zj+1 − zj

− ψji − ψ
j−1
i

zj − zj−1

)
. (D.18)

The potential term gives:

1

2
(%2i+ 1

2
− %2i− 1

2
)(zj+ 1

2
− zj− 1

2
)V ji ψ

j
i . (D.19)

The right hand side is obtained by replacing V ji by ε in this expression. To
obtain a scheme in which the resulting matrix is Hermitian, we define the step
sizes [21]:

hi =

√
%2
i+ 1

2

− %2
i− 1

2

2
, and hj =

√
zj+ 1

2
− zj− 1

2
. (D.20)
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If we divide both sides of the equation by hih
j , we obtain:

− 1

2

(
%i+ 1

2

hi+1h
jψji+1

hi+1hi(%i+1 − %i)
− %i+ 1

2

hih
jψji

(hi)2(%i+1 − %i)
− %i− 1

2

hih
jψji

(hi)2(%i − %i−1)

+%i− 1
2

hi−1h
jψji−1

hihi−1(%i − %i−1)

)
− 1

2

(
hih

j+1ψj+1
i

hj+1hj(zj+1 − zj)
− hih

jψji
(hj)2(zj+1 − zj)

− hih
jψji

(hj)2(zj − zj−1)
+

hih
j−1ψj−1i

hjhj−1(zj − zj−1)

)
+ V ji hih

jψji = εhih
jψji .

(D.21)

We made sure that the h come in combinations with the same indices as the ψ,
such that we can search for the auxiliary function φji = hih

jψji by solving the
resulting matrix equation. To make implementation less confusing, we multiply
the indices by two so we get rid of the half-index notations. We then provide a
potential defined on the even numbered indices and obtain the auxiliary function
on the even indices by solving the matrix equation. On the main diagonal we
have:

1

2

(
%2i+1

φ2j2i
(h2i)2(%2i+2 − %2i)

+ %2i−1
φ2j2i

(h2i)2(%2i − %2i−2)

)

+
1

2

(
φ2j2i

(h2j)2(z2j+2 − z2j)
+

φ2j2i
(h2j)2(z2j − z2j−2)

)
+ V 2j

2i φ
2j
2i

(D.22)

On the off-diagonal for % we have:

−%2i+1

2

φ2j2i+2

h2i+2h2i(%2i+2 − %2i)
and − %2i−1

2

φ2j2i−2
h2ih2i−2(%2i − %2i−2)

(D.23)

and on the off-diagonal for z:

−1

2

φ2j+2
2i

h2j+2h2j(z2j+2 − z2j)
and − 1

2

φ2j−22i

h2jh2j−2(z2j − z2j−2)
. (D.24)

That the resulting matrix equation is hermitian can be checked by putting j = l
in the left expression and j = l+ 1 in the right expression, which obviously give
the same result.
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