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Abstract - English

The chalcopyrite material Cu(In,Ga)Se2 is a direct band gap semiconductor with associ-

ated high optical absorption. As a result, Cu(In,Ga)Se2 absorber layers are used in thin

film photovoltaic cells. Cells based on polycrystalline Cu(In,Ga)Se2 hold to date the

record efficiency in this category. In this thesis, Cu(In,Ga)Se2 is studied in the frame-

work of density functional theory. The Perdew-Burke-Ernzerhof exchange-correlation

functional, widely used in density functional theory, turns out to be insufficient, due to

the band gap problem in density functional theory. We find that the Heyd-Scuseria-

Ernzerhof functional, which includes an amount of exchange from the Hartree-Fock

method, yields much better agreement with the experimental band gaps. First, the

main characteristics of the crystal structure and electronic structure of Cu(In,Ga)Se2

compounds are discussed. In this discussion, the varying Ga-to-In ratio of the com-

pounds plays a prominent role. For instance, the band gap of Cu(In,Ga)Se2, ranging

between 1.0 and 1.7 eV, is determined by this ratio. Regarding alloying properties of

the compound, we do not find a tendency for phase segregation at room temperature.

We also study the mutual band alignment of Cu(In,Ga)Se2 materials, comparing two

essentially different methods. On one hand, the alignment is performed based on the

calculation of the branch-point energy, for which only the bulk band structure is needed.

It is compared to the alignment with respect to the vacuum level, obtained from a calcu-

lation on a slab. We demonstrate that the band alignments that follow from these two

methods are consistent. We furthermore review electrical conductivity of Cu(In,Ga)Se2

materials due to lattice defects, important for the application in photovoltaic cells. For

this purpose, the formation energy of a selection of point defects is calculated, both

intrinsic defects and Na and C impurities. Spurious interaction between point defects is

minimized by selecting sufficiently large supercells. We can identify intrinsic Cu vacancy

defects as plausibly the main contribution to p-type conductivity in Cu(In,Ga)Se2 com-

pounds. We also show that the formation of NaInSe2 does not result in an effective hole

barrier at the grain boundaries, contrary to what has previously been assumed. Finally,

we have found that C defects do not easily form in Cu(In,Ga)Se2. As a result, we expect

that C is expelled from the absorber, thus not affecting the electrical conductivity. This

is relevant in view of novel nonvacuum growth methods.
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Abstract - Nederlands

Het chalcopyriet-materiaal Cu(In,Ga)Se2 is een halfgeleider met een directe bandkloof,

gekenmerkt door sterke optische absorptie. Hierom wordt Cu(In,Ga)Se2 als absorptiema-

teriaal in dunne-film fotovoltäısche cellen gebruikt. Het blijkt dat cellen die polykristal-

lijn Cu(In,Ga)Se2 bevatten, de hoogste efficiëntie hebben binnen de categorie van dunne-

film cellen. In deze thesis wordt Cu(In,Ga)Se2 bestudeerd gebruik makend van dichtheids-

functionaaltheorie. De courante Perdew-Burke-Ernzerhof exchange-correlatiefunctionaal

is ontoereikend, omwille van het bandkloofprobleem. De Heyd-Scuseria-Ernzerhof func-

tionaal, die een hoeveelheid Hartree-Fock exchange-interactie bevat, leidt tot een veel

betere overeenkomst met de experimentele bandkloven. Om te beginnen worden de

belangrijkste eigenschappen van de kristalstructuur en de elektronische structuur van

Cu(In,Ga)Se2 besproken. Hierin speelt de variabele Ga-In verhouding een belangrijke

rol. De bandkloof van Cu(In,Ga)Se2, die varieert tussen 1.0 en 1.7 eV, hangt bijvoor-

beeld van deze verhouding af. Wat de eigenschappen van de legering betreft, treedt er

volgens onze berekeningen geen fasesegregatie op bij kamertemperatuur. We bestuderen

ook de alignering van de banden van Cu(In,Ga)Se2 materialen, waarbij we twee essen-

tieel verschillende methoden vergelijken. Enerzijds wordt er een alignering uitgevoerd

die gebaseerd is op de ‘branch-point’ energie. Deze kan berekend worden uit louter

de bandenstructuur in bulk. We vergelijken met een alignering ten opzichte van het

vacuüumniveau, verkregen uit een berekening met een ‘slab’ (plaat). Het blijkt dat de

aligneringen via de twee verschillende methoden consistent zijn. Verder bekijken we

de elektrische geleiding in Cu(In,Ga)Se2 ten gevolge van roosterdefecten, die erg van

belang is voor toepassingen in fotovoltäısche cellen. Hiertoe wordt de vormingsenergie

van een reeks van puntdefecten, zowel intrinsieke defecten als Na- en C-onzuiverheden,

berekend. Ongewenste interactie tussen deze puntdefecten wordt geminimaliseerd door

het gebruik van voldoende grote supercellen. Zo kunnen we intrinsieke Cu-vacatures

identificeren als waarschijnlijk de hoofdoorzaak van p-type geleiding in Cu(In,Ga)Se2

materialen. We tonen ook aan dat de vorming van NaInSe2 aan de korrelgrenzen niet

leidt tot een effectieve barrière voor gaten, in tegenstelling tot wat in sommige publicaties

wordt gesteld. Ten slotte hebben we ontdekt dat C-defecten niet eenvoudig tot stand

komen in Cu(In,Ga)Se2. Daarom verwachten we dat C uit de absorptielaag gestoten

wordt en dus de elektrische geleiding niet bëınvloedt. Dit is relevant met het oog op

nieuwe groeitechnieken voor Cu(In,Ga)Se2 die geen vacuümcondities behoeven.
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Preface

This Master thesis bundles the research I have carried out as part of the Master in Physics

program at the University of Antwerp, mainly in the academic year 2012-2013. The re-

search is situated in the field of theoretical and computational solid state physics. It is

focused on a first-principles study of the photovoltaic absorber material Cu(In,Ga)Se2,

generally abbreviated as ‘CIGS’. In particular, the electronic structure of CIGS is dis-

cussed, both in pure form and containing point defects.

In Chapter 1, the space symmetry of CIGS, the chalcopyrite structure, is intro-

duced; this is followed by an overview of the application of CIGS in photovoltaic cells

and of growth methods for CIGS layers. At the end of Chapter 1, the goal of this thesis

is formulated in more detail. Chapter 2 treats the method used for the electronic struc-

ture calculations in this thesis, namely density functional theory (DFT). The discussion

starts from the general quantum mechanical many-body problem and leads all the way

to the practical implementation of DFT and the software package VASP. Chapter 2 also

incorporates post-DFT methods, notably the hybrid method that mixes Hartree-Fock

exchange interaction into DFT to correct for the band gap problem. The hybrid method

is widely used in this thesis. Then, in Chapter 3, the methods for electronic structure

calculations are applied to CIGS. This leads to a wide discussion of the structural and

electronic properties of pure CIGS, stressing the effect of the varying Ga-to-In ratio. At

the end of Chapter 3, optical properties of CIGS are also discussed, based on the dielec-

tric function. The study of the band structures of pure CIGS is deepened in Chapter 4,

where the band alignment of CIGS compounds is reviewed. Subsequently, in Chapter 5

the effect of lattice defects is studied. This comprises both intrinsic defects (Cu vacan-

cies) and doping (with Na and C). At the end of the thesis, a conclusion and outlook in

both English and Dutch is offered, followed by the bibliography.

Throughout the thesis mostly the electronvolt (eV) is used as the unit of en-

ergy and the Ångström (Å) is used as the unit of distance. The reason is that these

comply well with the atomic and electronic scale. In Chapter 2 however, atomic units

are selected to simplify the appearance of the equations. Furthermore, for vectors the

convention is adopted that they are printed in bold, while operators are indicated by a

hat.

I hope the reader will find this thesis interesting and enjoyable.

Jonas Bekaert

August 2013, Wilrijk.
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Chapter 1

Introduction to CIGS and CIGS

photovoltaic cells

1.1 CIGS: a chalcopyrite semiconductor material

Cu(In,Ga)Se2 or equivalently CuIn1−xGaxSe2 (CIGS) is a I-III-VI2 semiconductor com-

pound, where 0 ≤ x ≤ 1 denotes the relative amount of Ga. It can thus be considered

a solid solution of CuInSe2 (CIS, x=0) and CuGaSe2 (CGS, x=1). They adopt the

chalcopyrite structure ABX2 with body-centered tetragonal (BCT) space group I4̄2d

(No. 122) [1]. This space group is non-symmorphic (since a d-glide plane is present in

the symbol) and non-centrosymmetric. In the chemical formula ABX2 of the chalcopy-

rite structure, A (copper: Cu) and B (indium: In and gallium: Ga) are the cations and

X (selenium: Se) the anions. The conventional unit cell of the chalcopyrite structure is

shown in Figure 1.1. It is body-centered tetragonal and contains 16 atoms. All atoms in

the chalcopyrite structure have tetrahedral coordination. Other chalcopyrite materials

include CuIn1−xGaxS2.

The chalcopyrite structure derives from the diamond cubic structure, following the

Grimm-Sommerfeld rule. This rule states that the average number of valence electrons

per atom must be 4 to achieve tetrahedral bonding [2]. The diamond cubic structure

of e.g. Si is a combination of 2 face-centered cubic lattices. If these lattices are filled

with a different type of atom, the zincblende structure is obtained. An example of the

zincblende structure is the II-VI binary compound ZnS, where Zn is the cation and S the

1
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Figure 1.1: The conventional unit cell of the chalcopyrite structure, specifically
CuInSe2, which contains 4 Cu atoms (blue), 4 In atoms (pink) and 8 Se atoms

(green). The Cu-Se and In-Se bonds are shown schematically.

anion. Replacing half of the cations in the zincblende structure by cation A (e.g. Cu) and

the others by B (e.g. In) in the fashion shown in Figure 1.1, yields the chalcopyrite struc-

ture. The cubic symmetry of the zincblende structure is lost in CIGS due to tetragonal

distortion. This is expressed by the tetragonal distortion parameter η = c
2a 6= 1, where a

and c are the lattice parameters. The tetragonal distortion parameter denotes to which

extent the tetragonal structure is deformed w.r.t. the related zincblende structure. A

set of primitive lattice vectors can be constructed as follows:
a1 = a · (1, 0, 0)

a2 = a · (0, 1, 0)

a3 = a ·
(

1
2 ,

1
2 , η
)
.

(1.1)

The volume of the primitive unit cell is a2c
2 and it contains 8 atoms, while the con-

ventional unit cell contains 16 atoms. The Cartesian coordinates of the atoms in the

general ABX2 chalcopyrite structure are summed up in Table 1.1 [3] 1. The anions are

characterized by a degree of freedom, called the anion displacement u.

1The article by J. E. Jaffe and A. Zunger we refer to contains an error, namely in the Cartesian
coordinates presented in this article u should be replaced by u− 1

4
.



Chapter 1. Introduction to CIGS and CIGS photovoltaic cells 3

Atom Cartesian coordinate

A1 0, 0, 0

A2 0, a2 ,
c
4

B1
a
2 ,

a
2 , 0

B2
a
2 , 0,

c
4

X1 ua, a4 ,
c
8

X2 (1− u)a, 3a
4 ,

c
8

X3
a
4 , (

1
2 + u)a, 3c

8

X4
3a
4 , (

1
2 − u)a, 3c

8

Table 1.1: The Cartesian coordinates of the atoms in the chalcopyrite primitive
unit cell.

In CIGS, the cation ‘A’ is Cu and cation ‘B’ is either In or Ga, while the anion ‘X’

is Se. Formally, in the chemical bonds in CIGS, Cu carries oxidation +1, In and Ga

oxidation +3 and Se -2. In Chapter 3, Section 3.3.3, we present an extensive analysis of

the character of the chemical bonds in CuIn1−xGaxSe2.

From the Cartesian coordinates, applying elementary geometry, the nearest neighbor

distances RAX and RBX can be calculated to be:

RAX = a ·
[
u2 + (1 + η2)/16

] 1
2 (1.2)

and

RBX = a ·

[(
u− 1

2

)2

+ (1 + η2)/16

] 1
2

. (1.3)

The so-called bond mismatch is:

R2
AX −R2

BX = a2 ·
(
u− 1

4

)
. (1.4)

The mismatch vanishes for u = 1
4 ; if in addition η = 1 and atoms A and B are the same

element, the zincblende structure is retrieved.
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1.2 CIGS photovoltaic cells

The principal application of CIGS materials is situated in the field of photovoltaic (PV)

devices, where it is used as an absorber material. We will start this section by review-

ing the fundamentals of PV devices. Subsequently, we focus on CIGS PV cells, more

specifically the cell composition and functioning and common deposition methods for

the CIGS layer. The relevance of these subjects for our theoretical study is natural. The

topics that are investigated in this thesis are often inspired by the photovoltaic practice

and a comparison to experimental data is made whenever possible.

1.2.1 Fundamentals of photovoltaic devices

Excellent references we have consulted for this section and advise for further reading

are [4, 5]. On a fundamental level, every PV device functions based on the following

subsequent steps:

I. A light absorption process in the absorber material causes a transition to an excited

state.

II. The excited state is converted to a free pair of opposite charge carriers (in practice

electrons and holes).

III. A discriminating transport mechanism forces the opposite charge carriers to move

in different directions, namely the negative charge carrier to the cathode and the

positive charge carrier to the anode.

IV. After work has been done at the load, the charge carrier pair returns to the ground

state by recombining.

The first step is (usually) achieved in a semiconductor material. In a metal immediate

recombination due to thermal relaxation occurs, while in an insulator the excitation

requires an excessive amount of energy. The distinction between steps I and II is to

be made in case initially an exciton (a bound charge carrier pair) is generated. The

conversion of the exciton to a free pair is in practice produced by the mechanism behind

step III, that ‘pulls apart’ the exciton. This discriminating transport mechanism can be
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Figure 1.2: Energy band scheme at a junction of a p-type and n-type semicon-
ductor. The band bending is a result of the electric field built in the junction by
diffusion of charge carriers along their concentration gradient. Also, the main
loss mechanisms are indicated. They are (1) thermal relaxation of charge carri-
ers, (2) energy loss traversing the junction, (3) energy loss at the contacts and

(4) recombination of electrons and holes. [5]

Figure 1.3: The I-V characteristic of the dark (dashed curve) and illuminated
(full curve) PV cell. Relevant quantities, like the open circuit voltage, short

circuit current and maximum power point are indicated. [5]

realized in a p-n homojunction or heterojunction - respectively interfaces between two

similar and two dissimilar semiconductors. A p-type (n-type) semiconductor possesses

an acceptor (donor) level originating from a lattice defect that gives rise to conductivity

via holes (electrons). As the concentration of free electrons is higher in the n-type

semiconductor, these electrons diffuse towards the p-type region and vice versa for the
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free holes in the p-type semiconductor. The result is a build-up of negative charge in

the p-type region and positive charge in the n-type region. This creates an electric field

according to Poisson’s equation in electrostatics. The charges in the region around the

junction are not free, since they are bound to the lattice defects. In other words, the free

charge carriers are depleted, leading to the name depletion region. The equilibrium that

is attained (ideally) prevents any further diffusion of charge carriers across the depletion

region. The electric field leads to band bending in the depletion region, shown in Figure

1.2. Let us now suppose a p-type absorber material, e.g. CIGS (the case of an n-type

absorber material is completely analogous). Photogenerated electrons - minority charge

carriers in the p-type material - arrive at the depletion region after random motion in

the absorber layer 2. Due to the band bending they can drift towards the n-type layer,

yet the holes cannot. The result is a net electric current. An alternative mechanism for

step III consists of a Schottky barrier, i.e. a barrier due to band bending at a metal-

semiconductor interface.

The current-voltage plot, the so-called I-V characteristic, of a PV cell is shown in Figure

1.3. Naturally, it matches the diode characteristic, since a PV cell is in fact a junction

diode. In case the PV cell is not illuminated, the curve is located in the first and third

quadrant and thus the power P = I · V is always positive. Following the common sign

convention in electric circuits, this means that power is consumed by the cell. No current

flows unless an external potential is applied. Upon illumination, the characteristic is

shifted to the fourth quadrant and as a result the cell supplies power. The characteristic

of the PV is mainly described by a few special points. The open circuit voltage, Voc,

is the voltage across the cell in case the circuit is open and no current flows between

cathode and anode. The short circuit current, Isc, is the current that flows through the

circuit in the limit of negligible resistance, so no voltage is produced. The maximum

power point is the point (Vmp, Imp) for which the output power, PmaxOUT = Imp · Vmp, is

maximal. This leads to the definition of the efficiency, η, of the device:

η =
PmaxOUT

PIN
, (1.5)

the ratio of the maximal attainable output energy PmaxOUT and the total energy of the

photon spectrum impinging on the cell, PIN . This spectrum has to be specified to

2This is the case for thick absorber layers; in thin layers the electric field in the depletion layer may
extend into most of the absorber layer.
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report meaningful efficiencies. Naturally, the solar spectrum is often selected as the

reference spectrum. In this case, the air mass (AM) coefficient is used to further specify

the spectrum. It marks the optical path length the photons have traveled through the

atmosphere. This is relevant because of absorption and scattering processes. In the

AM0 spectrum, the photons have not entered the atmosphere, so it is selected for solar

panels of e.g. communication satellites. The AM1 spectrum is defined by a path length

of once the thickness of the atmosphere. This is obtained at a zenith angle of 0◦, i.e. if

the sun is directly overhead at the equator. The most common reference is the AM1.5

spectrum with a path length amounting to 1.5 times the thickness of the atmosphere

corresponding to the sun positioned at a zenith angle of 48.19◦ [6]. Finally, the fill factor,

FF , measures the deviation of the I-V characteristic from the ideal rectangular form:

FF =
PmaxOUT

Isc · Voc
=
Imp · Vmp
Isc · Voc

≤ 1 . (1.6)

The efficiency of the photovoltaic device is limited by a series of loss mechanisms that

account for the difference between PIN and PmaxOUT . The five principal mechanisms of

energy loss in PV cells based on a p-n junction are:

0. The energy absorption threshold of the device, equal to the optical band gap of

the semiconductor absorber material.

1. Thermal relaxation of the photogenerated charge carriers; the electrons relax to

the conduction band minimum (CBM) and the holes to the valence band maximum

(VBM).

2. Energy loss from traversing the junction, caused by the band bending in the de-

pletion region.

3. Energy loss at the electric contacts.

4. Premature recombination of charge carrier pairs.

These mechanisms are shown schematically in Figure 1.2. A practical measure for the

tendency to recombine is the diffusion length, the average distance a carrier can travel

until recombination. Impurities and, in polycrystalline absorber materials, grain bound-

aries often act as recombination centers. It has been demonstrated by W. Shockley and
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H. J. Queisser that loss mechanism 4, recombination of charge carriers, is a result of a

detailed balance [7]. This detailed balance connects the photogeneration of free charge

carrier pairs to the reverse process, recombination. Therefore, recombination is inher-

ent to the PV device. The radiation that results from this recombination is partially

emitted by the cell, the rest can be re-absorbed. Their study of the detailed balance

between photogeneration and recombination of free charge carriers, has led Schockley

and Queisser to calculate a theoretical limit for the efficiency of a single-junction PV cell,

the Shockley-Queisser limit. Along with recombination, other loss mechanisms should

be taken into account. A compromise has to be sought between the absorption threshold

(0) and thermal relaxation (1). Reducing the band gap leads to a decrease of the loss

due to the absorption threshold. Yet, it effects an increase of the loss due to thermal

relaxation, since the photogenerated charge carriers relax maximally, to the CBM and

VBM. Taking into account mechanisms 0, 1 and 4, the efficiency as a function of the

band gap for 2 spectra - AM0 and AM1.5 - is displayed in Figure 1.4 3. The maximum

attainable voltage in case of the AM0 spectrum is ∼ 30.5 % at a band gap of ∼ 1.25 eV.

Using the AM1.5 spectrum, relevant for terrestrial devices, the maximum efficiency that

follows from the Shockley-Queisser limit is ∼ 33.5 % for band gaps of either ∼ 1.10 eV

and ∼ 1.35 eV. The first value corresponds more or less to the band gap of Si (yet Si

has the disadvantage of having an indirect gap). It should be noted that although the

efficiency is lower at AM0 in comparison with AM1.5, the total power output, POUT ,

is of course higher since the intensity of the solar radiation is higher outside of the at-

mosphere. Losses at the junction (2) and the contacts (3) are not included, since they

are highly material-dependent. They limit the maximum attainable efficiency further.

The limit on the efficiency of single-junction PV cells can be overcome by multi-junction

PV cells (among other techniques). These contain several p-n junctions, all tuned to

different photon wavelengths.

3The figure originates from the website http://pveducation.org. The website is highly recom-
mended, since it offers a thorough discussion of the basic working principles of PV devices. It is hosted
by C. Honsberg and S. Bowden, researchers at the Arizona State University.

http://pveducation.org
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Figure 1.4: The efficiency of single-junction PV cells as a function of the band
gap of the absorber material, demonstrating the Shockley-Queisser limit. The
absorption threshold, thermal relaxation and recombination (detailed balance)
are taken into account for both the AM0 and AM1.5 spectrum. The maximum
attainable efficiency of ∼ 33.5 % using the AM1.5 spectrum as a reference can

be achieved at band gaps measuring either ∼ 1.10 eV and ∼ 1.35 eV.

1.2.2 Composition and operation of CIGS photovoltaic cells

Our discussion is primarily based on a recent and very extensive review article by

U. P. Singh and S. P. Patra addressing progress in polycrystalline, thin film CIGS

photovoltaic cells [8]. Indeed, we focus on polycrystalline CIGS cells since to date they

yield the highest cell efficiencies.

The principal advantage of CIGS absorber materials is their high absorption coefficient

in the relevant range of photon energies (> 1 eV). The absorption coefficients of a wide

range of absorber materials are displayed in Figure 1.5. The absorption coefficient of

CIS is ∼ 105 cm−1 for 1.5 eV photons, compared with ∼ 103 cm−1 of crystalline Si. The

high absorption coefficient is related to the fact that CIGS compounds have direct band

gaps, contrary to Si, currently the most widely used absorber material. Absorption

in a material with a direct band gap relies solely on the probability of the electronic

transitions, that follows from Fermi’s golden rule. On the other hand, in a material

with an indirect gap, the electronic transitions have to be assisted by phonons, placing

an extra constraint on the absorption. Therefore, Si absorber layers have to be quite

thick, in the order of several hundreds of µm. On the other hand, in CIGS PV cells, the
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absorber layer is only ∼ 1-2.5 µm. PV cells of this type are called thin film PV cells.

Other materials with a high absorption coefficient include Ge, a-Si (amorphous Si) and

CdTe; all three are direct band gap semiconductors [9]. Ge has a small band gap (∼ 0.67

eV) and is thus not suited as an absorber material, according to the Shockley-Queisser

plot in Figure 1.4. CdTe and a-Si are also used as absorber materials in thin film PV

cells. Other types of thin film PV cells are based on polymers and fairly recently on the

kesterite material Cu2ZnSnS4 (CZTS).

As a result of the elevated absorption rate, CIGS is one of the most performant absorber

materials available. The very first report of a CIS PV cell, containing single-crystal CIS,

was published in 1974 [10]. At present, the most efficient CIGS PV cells are grown on

flexible polymer films, rather than on the traditional glas substrates [11]. A top lab

efficiency of 20.4 % has been reached. It is also the record efficiency among all thin film

PV cell technologies.

The composition of a generic CIGS PV cell is shown in Figure 1.6. Layer thickness

estimates are given; it is found that the device (not including the substrate) is only a few

Figure 1.5: The absorption coefficient of several absorber materials as a func-
tion of the energy of the impinging photons. Note that the vertical scale is loga-
rithmic. The absorption coefficient of CIS is the highest of all values displayed

for photon energies > 1 eV . [12]
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(a) (b)

Figure 1.6: (left) A typical layer structure for a CIGS PV cell, with layer
thickness estimates. (right) The corresponding band structure. [11]

µm thick. The substrate may either be made of glass, a metal or a polymer. The band

structure of the device is also displayed. At the p-n junction between ZnO and CIGS,

buffered by CdS, the charge carriers are separated, as is indicated. The electrons move

to AZO, short for ZnO:Al, i.e. ZnO doped with Al, an n-type semiconductor material.

The holes are forced in the opposite direction. As we have seen, this is the typical band

alignment for a single p-n junction cell. We will discuss the main components and their

role in the cell one by one.

Front contact. A combination of a layer of ∼ 0.3-0.4 µm AZO and a thin layer of ∼ 0.1

µm i-ZnO, intrinsic (undoped) ZnO, forms the front contact, in this case the cathode, of

the cell. AZO is an n-type material that forms a heterojunction with the p-type material

CIGS. ZnO is a transparent conducting oxide; it has a large band gap of ∼ 3.3 eV and

is thus mostly transparent, but it is also conducting. This makes it the ideal material of

choice for the front contact. The inclusion of the i-ZnO layer yields consistently higher

device efficiencies, although the mechanism behind this effect is not fully understood.

The i-ZnO layer can be considered to contribute to the buffer between ZnO and CIGS.

The front contact is usually grown by sputtering 4.

Buffer layer. The top efficiency devices contain a very thin layer, measuring ∼ 0.05 µm,

of weakly n-type 5 CdS, the so-called buffer layer. It acts as a buffer both mechanically

4This is a high vacuum technique, for which Ar ions are accelerated towards a target. Due to the
collisions, the target material is sputtered onto a substrate.

5The n-type conductivity of CdS is generally attributed to S vacancy defects.
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Figure 1.7: SEM image of a cross section of a CIGS thin film cell, showing the
polycrystalline CIGS absorber layer and the front and back contact and buffer.

[9]

and electrically. Its mechanical function is to protect the junction during ZnO deposition,

in particular if this is achieved by sputtering. Electrically, it has a good band alignment

with ZnO and CIGS. The band gap is large, ∼ 2.4 eV, and so is the barrier for holes

from CIGS to ZnO. The moderate potential ascent between CIGS and CdS is found to

be beneficial, since it enlarges the energy difference between the VBM of the absorber

and the CBM of the buffer. This reduces the chance of recombination of charge carriers

at the interface between absorber and buffer. Moreover, the CdS buffer layer builds

a sufficiently wide depletion layer that minimizes tunneling of holes in the direction

towards ZnO. The CdS layer is commonly synthesized by chemical bath deposition.

Absorber layer. For the CIGS absorber generally a relative Ga amount of ∼ 0.3 is

chosen. This leads to a band gap of ∼ 1.2 eV, close to the band gap needed to obtain

the Shockley-Queisser maximum efficiency. The absorber layer is grown in Cu-deficient

conditions, usually by ∼ 10 % [13] 6. Synthesis methods for CIGS layers will be dis-

cussed in the next section. The resulting vacancies effect p-type conductivity; we will

demonstrate this by explicit defect calculations in Chapter 5. The absorber layer of the

CIGS cells with top efficiency is polycrystalline. A scanning electron microscopy image

that shows this polycrystal can be found in Figure 1.7. The grains of the polycrystal

should be sufficiently large, because grain boundaries (GBs) typically act as recombi-

nation centers. It has been proposed theoretically by C. Persson and A. Zunger that

there is an effect at the GBs of CIGS that counteracts this recombination [14]. This

6A Cu-deficiency of 10 % means that 1 out of 10 Cu lattice sites is not occupied by a Cu atom.
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effect is a hole barrier from the grain interior (GI) to the grain boundary. The hole

barrier is a decrease of the valence band (just as an increase of the conduction band

acts as an electron barrier). This would mean the GB is electron-rich. Persson and

Zunger state that the hole barrier can be achieved either by (i) reconstruction of the GB

leading to substantial Cu-deficiency at the GB or (ii) extrinsic doping by e.g. Na that

replaces Cu (NaCu). Experimentally, both positively and negatively charged GBs have

been observed, even within the same sample [15]. The hole barrier model is only one of

the theories composed to explain moderate incorporation of Na (typically ∼ 0.1 at.%)

boosting the efficiency of the PV cell [16]. It leads to an increase of both the Voc and

the FF. Persson and Zunger also propose that owing to Na at the GB, phase segregation

of NaInSe2 (NIS) occurs. It has a larger band gap than CIS, which could explain the

increase in Voc. Other possible mechanisms take place in the GI, for instance Na on an

In site (NaIn) acting as an acceptor and thus increasing the hole concentration. We will

revisit Na doping in Chapter 5, focussing on Na on Cu sites and the formation of NIS.

In practice, Na is supplied by diffusion from a sodium lime glas substrate or, in case of

a flexible substrate, added explicitly.

Back contact. For the back contact, the anode, most commonly a layer of ∼ 0.5-1

µm of the metal molybdenum (Mo) is used. It is deposited by sputtering or electron

gun evaporation 7. There are several reasons why Mo is chosen for this purpose. First,

CIGS is grown on top of the back contact and Mo is stable at the temperature of CIGS

growth. Secondly, it does not form alloys with Cu, In or Ga. Finally, it has a low contact

resistance to CIGS, thus reducing energy losses at the interface between the absorber

layer and the back contact. Mo does tend to form a compound with Se, namely MoSe2.

The effect of MoSe2 on the band structure of the PV cell is shown in Figure 1.6. Holes

can pass through the MoSe2 layer towards the Mo back contact. Electrons, on the other

hand, experience a barrier due to the rise of the conduction band. This is called a

back surface field. As a result, there is a better collection of the electrons, the minority

carriers, at the cathode.

7This is a form of physical vapor deposition in which a target is bombarded with electrons. This
causes the target material to transit to the gas phase, so it can deposit on a substrate.
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1.2.3 Synthesis methods for CIGS layers

The most common synthesis methods that are used to form CIGS layers can be divided

into two categories: coevaporation and sequential methods. To date, methods on the

base of coevaporation lead to the most efficient PV cells. On the other hand, sequential

methods are sought in order to produce on a larger scale. For both categories we will

present several possible approaches. In case of the sequential methods, one can essen-

tially distinguish between vacuum-based and nonvacuum-based processes. This section

is also mainly based on the review article by U. P. Singh and S. P. Patra [8]. In addition,

for the nonvacuum sequential deposition methods, a review article by A. N. Tiwari et

al. has been consulted [17].

The formation of CIS and competing compounds can in general be represented in a

phase diagram as function of the relative amount of Cu and the temperature during

growth. The phase diagram is depicted in Figure 1.8. It shows a broad Cu amount

and temperature range at which CIS in the chalcopyrite structure, the phase denoted

‘α’, can be formed. In the GIs of the grains in the PV absorber layer, only one phase,

the α-phase, should be present. It is obtained even in conditions of 14 % Cu-deficiency

(21.5 at.% Cu) around 600 ◦C. Although the chalcopyrite structure is formed over a

wide range of Cu temperatures, the compound is likely to contain defect, such as Cu

vacancies.

1.2.3.1 Coevaporation

The experimental set-up for coevaporation is shown in Figure 1.9. The elements Cu,

In, Ga, Se are evaporated simultaneously from Knudsen effusion cells onto a heated

substrate. The deposition chamber is pumped to high vacuum to avoid contaminations.

The sticking coefficients of Cu, In and Ga are very high, so the growth rate is determined

directly by the flux from the effusion cells. There are several possible processes, that

mutually differ by the number of stages that are included.

The stationary process. This is the most simple possible approach to coevaporation.

All fluxes are constant, as is the substrate temperature.

The bilayer process. This process consists of two stages. The first stage is Cu-rich

and improves the mobility of In and Ga. In the second stage, the substrate temperature
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Figure 1.8: The phase diagram of CIS and competing compounds as function
of the relative amount of Cu, expressed in units of at.% and temperature during
growth, in units of ◦C. The phase denoted ‘α’ is CIGS, ‘β’ is an ordered defect
compound (ODC) and ‘δ’ is a sphalerite phase. The limit of the ODC in Cu-
poor conditions is the compound In2Se3. In Cu-rich conditions, the Cu2Se phase

coexists with CIGS. [18]

is elevated and the fluxes of In and Ga are increased. This method has been found to

effect larger grain sizes than the stationary method.

The three-stage process. The stages of this process are schematically shown in Figure

1.10. During the first stage In, Ga and Se are deposited at a substrate temperature of

∼ 350 ◦C. For the second stage, the temperature is elevated to ∼ 550 ◦C and Cu and Se

are evaporated. The third stage is more or less a repetition of the first stage, in which

In, Ga and Se are deposited. The substrate is not kept at a constant temperature,

but is left to cool down. Using the three-stage process, the number of defects at the

junction is reduced. Also, it enables a more uniform deposition of the buffer layers than

is attainable in the stationary or bilayer process. Therefore, the overall advantage is a

smoother film morphology. This is why the three-stage coevaporation method, to date,

leads to the most efficient PV cells.
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Figure 1.9: The experimental set-up for CIGS synthesis using a coevaporation
method. [12]

Figure 1.10: Scheme of the stages in a three-stage coevaporation process, in-
dicating the growth time and the temperature of the substrate, Tsub. [12]

1.2.3.2 Sequential methods

In a sequential method, first, a precursor material is prepared. The precursor material

then is deposited on a substrate and annealed either in a reactive or an inert environ-

ment, inducing the chalcogenization reaction. The main purpose of the development of

sequential methods is to scale-up the production of CIGS absorber layers. Large-area

films can be grown with a good control of the composition and thickness. Sequential

processes are either vacuum-based or nonvacuum-based.

Vacuum-based methods. A basic scheme of this method is displayed in Figure 1.11.

A precursor conataining Cu, In and Ga is prepared at temperatures of ∼ 150-200 ◦C,

either by sputtering or thermal evaporation. This precursor is subsequently exposed to

Se, while at the same time it is annealed at ∼ 400-500 ◦C. This stage is called selenization.

Se can be supplied in elemental gas form or included in H2Se.
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Figure 1.11: Scheme of the sequential process for CIGS growth in vacuum
conditions. [12]

Nonvacuum-based methods. Vacuum-based methods are afflicted with several prob-

lems. First of all, material losses of 20 to 50 % are common [12]. The main cause is

unintentional deposition of material on the vacuum chamber walls. Also, creating and

maintaining a vacuum demands a high energy input. On top of this, vacuum-based

methods tend to be relatively slow. To overcome these limitations, nonvacuum-based

methods are gaining interest. They reduce the material losses to almost zero [17]. Overall

they are also known as wet methods, as they often rely on the inclusion of the precursor

material in a solution. Nonvacuum-based sequential methods can basically be divided

in three categories, mutually different by the precursor material and deposition method.

These categories are:

1. Electrochemical reactions in a solution, leading to coating of the substrate.

2. Processes coating a molecular precursor solution on the substrate by mechanical

means, e.g. spraying.

3. Particulate-based processes in which solid nanoparticles are dispersed in an organic

solvent, dubbed an ‘ink’, that is to be coated onto the substrate. The ink can be

coated on the substrate by printing, spraying or spin coating 8.

We restrict ourselves to a discussion of the particulate-based processes, in connection

to Chapter 5 of this thesis. There, we will study C defects that may be included in

8Spin-coating is spreading out a liquid on a spinning substrate as a result of the centrifugal force.
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CIGS layers, due to the presence of organic solvents in the precursor ink. The precur-

sor nanoparticles can be CIGS particulates, that are already equipped with the right

stoichiometry. However, using this precursor, a problem arises: annealing is difficult

because of the high melting point of CIGS. This causes cracks and voids in the absorber

layer, thus severely affecting the PV cell efficiency. A better alternative is formed by

particulates containing multiple phases of either oxides or selenides. The oxide phases

have to be reduced to an Cu-In-Ga alloy using a H2/N2 gas mixture and subsequently

selenized by H2Se. Particulate containing (Cu,Se), (In,Se) and (Ga,Se) phases undergo

a chalcogenization reaction upon annealing. Currently, the top efficiency achieved using

particulate-based processes is 17.1 % (in comparison to 20.4 % in vacuum processes)

[19].

1.3 Goal and outline of this thesis

As we have seen, owing to its high absorption coefficient (that exceeds the one of Si by

approximately 100 times), CIGS can readily be used as an absorber material in thin film

PV cells. Those cells based on CIGS have record efficiency in the category of thin film

cells. There are other aspects of CIGS that attract attention. First, the band gap of

the compound can be varied by altering the Ga-to-In ratio. As such, the band gap can

be adapted to minimize losses (as given by the Shockley-Queisser limit) and to optimize

the band alignment of the device. Also, contrary to what is found for most materials,

CIGS polycrystalline absorber layers outperform their single-crystal counterparts. We

focus our theoretical study on the CIGS absorber layer itself, rather than the complete

device. Still, the topics we cover are inspired by the application of the absorber in a real

device. In doing so, we do not restrict ourselves to the prevalent heterojunction device

containing polycrystalline CIGS and grown by means of coevaporation. Other (often

novel) types of cells - based on single-crystal CIGS, a CIGS homojunction or grown by

an alternative nonvacuum method - are equally considered. Whenever possible, we try

to compare results with experimental data.

The composition, growth conditions etc. of CIGS PV devices have for the most part been

developed experimentally. An understanding of the device physics at an atomic level is

the first major goal of this thesis. It can result in improvements and possibly innovations.

For this purpose, first-principles calculations that rely solely on the fundamental laws
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of quantum mechanical many-body theory, are well suited. Notably, calculations based

on density functional theory (DFT) have been applied to CIGS compounds before; J. E.

Jaffe and A. Zunger have published one of the early landmark articles presenting a study

of CIGS employing DFT [3]. In standard DFT, however, a consistent underestimation

of the band gap of semiconductors and insulators is inherent. This is called the band

gap problem. We have selected a method that mixes a certain amount of Hartree-Fock

interaction into DFT, a so-called hybrid method, to overcome this band gap problem.

Numerical calculations within the hybrid method are computationally very expensive.

Only recently, owing to increasing computational power, hybrid calculations have become

feasible. Additionally, it is important to include semicore electrons in the calculation,

i.a. in view of the importance of the hybridization between Cu-3d and Se-4p orbitals.

An overview of standard DFT, hybrid methods and practical calculations is presented

in Chapter 2.

We start our investigation of CIGS absorber layers by studying bulk CIGS, with a

variable Ga-to-In ratio. This alloying is implemented in a suitable cell, a supercell of the

primitive unit cell of the chalcopyrite structure. A practical DFT calculation requires,

through the use of periodicity, an infinite repetition of this cell. As such, this treatment

covers single-crystal layers and larger grains. We study the structural and electronic

properties of the alloys in Chapter 3. Alloy properties are emphasised, viz. the influence

of the Ga-to-In ratio on the crystal structure and the band gap are investigated, as well

as the tendency for phase segregation. Furthermore, a lot of properties derived from

the electronic structure are discussed, including the band mass, the character of the

chemical bonds and optical properties via the dielectric function. All of these properties

are important in a PV absorber layer. Results within a standard DFT method and a

hybrid method are consistently compared in Chapter 3. This raises the other major goal

of this thesis, namely to review and test present methods in the field of computational

solid state physics using a particular material, CIGS, as a reference. A comparison

between methods is also useful to assess the accuracy of the results.

In Chapter 4 the study of the electronic structure of the CIGS alloys is extended. The

electronic structures obtained in our first-principles are not automatically set on a com-

mon energy scale, in other words not aligned. The mutual alignment of CIGS compounds

(with varying Ga-to-In ratio) is important for the design of a suitable band structure

for a PV device. Again, we compare essentially different methods, viz. (i) based on the
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branch-point energy (BPE) and (ii) based on a slab calculation. The BPE is a notion

originating from surface physics, yet it can be calculated from merely the bulk band

structure. We calculate it in two ways, first as the zero of a Green’s function and sec-

ondly as a Brillouin zone average of the band structure [20, 21]. A slab calculation, on

the other hand, requires a supercell that contains the slab extending in two directions

and an adequate amount of vacuum. Its main advantage is its absolute reference (the

potential in vacuum), whereas the BPE method can only be used for a relative align-

ment. At the end of Chapter 4, the implications of the BPE on the electronic properties

of the grain boundaries are briefly discussed.

As we have described in this introductory chapter, CIGS PV cells rely on a p-n junction

between p-type CIGS and an n-type material (commonly the ZnO:Al). Therefore, in

Chapter 5, we investigate a selection of point defects that may contribute to this con-

ductivity. A point defect is an irregularity in the lattice of the order of magnitude of an

atom. This can be a vacant site (vacancy defect), a substitution by an atom of another

element (substitutional defect) or an additional atom in the interstitial space (intersti-

tial defect). We study single point defects implemented in sufficiently large supercells to

reduce the spurious interaction between defects. The electrical conductivity of the de-

fect is studied by calculating the formation energy of the defect in several charge states.

Based on this, we are able to identify whether the defect is likely to be formed, whether

the defect is electrically active and which type of conductivity (p-type or n-type) it

results in. Our selection of defects is made on the base of experimental evidence and

current technological interest. In view of the Cu defiency during the growth of CIGS,

Cu vacancies are first considered. Subsequently, the effect of Na doping - known to be

beneficial for the performance of the device - is reviewed. Both Cu vacancies and Na

doping in CIGS have been studied before, principally by Zunger and co-workers [22–24].

We attempt to improve on their results by (i) using a hybrid method to correct for

the band gap problem in DFT and by (ii) selecting larger supercells to approach the

single defect limit. Finally, we compute the formation energy of a series of C defects,

both substitutional and interstitial defects. To our knowledge, no publications exist at

present, reporting on the effect of C defects on the electronic properties of CIGS. C is

present in particulate-based nonvacuum growth methods, which are being developed to

produce CIGS layers more efficiently [17]. We aim to find out whether C defects are

likely to form and what effect they have on the electrical conductivity.



Chapter 2

Density Functional Theory

2.1 Introduction

In this chapter, we explain the foundations of Density Functional Theory (DFT), a quan-

tum mechanical method for the solution of many-body problems. The charge density is

the central variable in DFT, since the energy is expressed as a functional (function with

a function as variable) of the density. DFT is a so-called first-principles or ab-initio

method, as it is based only on fundamental laws and constants and not on empirical

input. To start with, the general many-body problem is introduced. Approximations to

the many-problem, as the Born-Oppenheimer and Hartree-Fock approximations are also

studied. Subsequently, the theoretical backbone of DFT, the Hohenberg-Kohn theorems

and the Kohn-Sham equations are reviewed. Several functionals will be considered, most

prominently the hybrid functional. Using the hybrid functional helps to overcome the

intrinsic problem of more basic functionals: a significant underestimation of the band

gap of insulators and semiconductors. In a further section practical methods for DFT

are summed up. This includes the Bloch theorem, the basis set, k-point grid and pseu-

dopotentials and PAWs. Ultimatelly, we discuss the Vienna Ab-initio Software Package

(VASP), a package in which i.a. DFT is implemented and which has been used to obtain

the results presented in Chapters 3-5. References that have regularly been consulted are

[25–29], alternative references are listed explicitly.

21
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2.2 The many-body problem in a solid

The quantum mechanical many-body problem in a solid is described by the time-

independent Schrödinger equation:

ĤΨ (r1, σ1, r2, σ2, ...,R1,R2, ...) = EΨ (r1, σ1, r2, σ2, ...,R1,R2, ...) , (2.1)

where Ψ is the many-body wavefunction, dependent on the positions and spin of the

electrons, ri, σi and the positions of the nuclei, Ri. In principle the wavefunction also

depends on the spins of the nuclei, but this will be neglected. The reason is that

we can treat the nuclei in a solid as classical particles within the Born-Oppenheimer

approximation (discussed in the next section). The Hamiltonian Ĥ of the system of

electrons and nuclei is:

Ĥ = −
∑
i

~2

2me
∇2
i −

∑
I

~2

2MI
∇2
I −

1

4πε0

∑
i,I

ZIe
2

|ri −RI |

+
1

2

1

4πε0

∑
i 6=j

e2

|ri − rj |
+

1

2

1

4πε0

∑
I 6=J

ZIZJe
2

|Ri −Rj |
,

(2.2)

where me and MI are the masses of electrons and nuclei, ZI are the atomic numbers of

the nuclei and ε0 is the vacuum permittivity. The five terms of the Hamiltonian can be

denoted as:

Ĥ = T̂e + T̂n + V̂ext + V̂int + V̂n . (2.3)

In this Hamiltonian, T̂e and T̂n are the kinetic energy operators of the electrons and

nuclei respectively. V̂ext, V̂int and V̂n represent the electron-nucleus, electron-electron

and nucleus-nucleus Coulomb interactions. To simplify the notation, we proceed by

using atomic units, i.e. ~ = e = me = 4πε0 = 1.

2.2.1 Born-Oppenheimer approximation

The many-body problem cannot be solved analytically for any system more complicated

than the dihydrogen cation (H+
2 ) and thus approximations have to be made. A first

one is the Born-Oppenheimer approximation (BO), considering the electrons to move in

the field of fixed nuclei. The justification of the BO approximation is the fact that the

nuclei are much heavier than the electrons, the ratio of their masses being ∼1800 for the



Chapter 2. Density Functional Theory 23

lighest element, H. In the BO approximation, the operators T̂n and V̂n are reduced to

classical energies Tn and Vn. The direct consequence of BO is the decomposition of the

many-body wavefunction into an electronic wavefunction ψ and a nuclear wavefunction

χ:

Ψ (r1, σ1, r2, σ2, ...,R1,R2, ...) = ψ (r1, σ1, r2, σ2, ...; R1,R2, ...) · χ (R1,R2, ...) . (2.4)

The electronic wavefunction depends on the nuclear positions as parameters and not as

variables, since the electrons rearrange immediately as the nuclear positions are altered.

In relation to the Pauli exclusion principle for fermions, the electronic wavefunction is

antisymmetric under the interchange of two electrons. Filling in wavefunction 2.4 into

the Schrödinger equation (2.3), the following electronic eigenvalue equation is obtained:

ĤBOψ (r1, σ1, r2, σ2, ...; R1,R2, ...) = Ee (R1,R2, ...)ψ (r1, σ1, r2, σ2, ...; R1,R2, ...) .

(2.5)

The BO Hamiltonian contains only those terms of the general Hamiltonian 2.3 involving

electrons:

ĤBO = T̂e + V̂ext + V̂int (2.6)

and the associated energy Ee(R1,R2, ...) only depends on the nuclear coordinates and

not on the electronic coordinates. The total energy of the many-body system in the BO

approximation is:

Etot = Ee + Tn + En , (2.7)

where the last two terms represent the classical kinetic energy and the classical electro-

static energy. The BO approximation is implied in the rest of the chapter.

2.2.2 Hartree-Fock approximation

A second approximation that can be applied, is the Hartree-Fock approximation (HF). In

the HF approximation the electronic wavefunction ψ, introduced in the BO approxima-

tion, is rewritten as an antisymmetric product of one-particle wavefunctions φi(ri, σi):

ψ(r1, σ2, r2, σ2, ...) =
1√
N !

N !∑
p

(−1)pP̂ [φ1(r1, σ1) · φ2(r2, σ2) · ... · φN (rN , σN )] , (2.8)
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where N is the number of electrons and P̂ is the permutation operator yielding N !

permutations. Each of these is characterized by a number of elementary permutations

of two electrons, p. As such, the wavefunction can be rewritten as a determinant, the

so-called Slater determinant :

ψ(r1, σ2, r2, σ2, ...) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1, σ1) φ2(r1, σ1) . . . φN (r1, σ1)

φ1(r2, σ2) φ2(r2, σ2) . . . φN (r2, σ2)

. . .

. . .

. . .

φ1(rN , σN ) φ2(rN , σN ) . . . φN (rN , σN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ 1√

N !
|φ1, φ2, ..., φN | .

(2.9)

An equation for the one-particle orbitals φi can be derived by making use of the varia-

tional principle of quantum mechanics. It states that the energy corresponding with a

variational wavefunction ψ̃ always exceeds the ground state energy E0:

E0 ≤
〈ψ̃|Ĥ|ψ̃〉
〈ψ̃|ψ̃〉

. (2.10)

Orthonormalization of the one-electron orbitals, 〈φi|φj〉 = δij , is imposed by using La-

grange multipliers. Since the derivation of the HF equation is lengthy, it will not be

presented here 1.

The result of the HF approximation is the HF equation for the one-electron orbitals

φi(r1). The Hamiltonian consists of a one-electron operator, ĥ1 and two two-electron

operators, Ĵ and K̂: [
ĥ1 + Ĵ − K̂

]
φi(r1) = εiφi(r1) . (2.11)

The one-electron operator is:

ĥ1 = −1

2
∇2

1 −
∑
I

ZI
r1I

, (2.12)

where r1I = |r1 −RI |. The first term represents the kinetic energy of the electrons and

the second term is the operator of the Coulomb interaction between electrons and nuclei.

1It can be found in i.a. Ref. [25].
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The first two-electron operator, Ĵ , is the direct operator. It is given by:

Ĵ =
∑
j

∫
φ∗j (r2)

1

r12
φj(r2)dr2 , (2.13)

with r12 = |r1 − r2|. The second two-electron operator, K̂, is the exchange operator:

K̂ =
∑
j‖i

∫
φ∗i (r1)φ∗j (r2)(1/r12)φj(r1)φi(r2)

φ∗i (r1)φi(r1)
dr2 . (2.14)

The summation over j ‖ i runs over all electrons with spin parallel to the spin of particle

i.

Some important conclusions can be drawn about the HF approximation. First, an ex-

change density is substracted and accordingly electrons with spin parallel to that of

electron i are located outside a region around i. This region is called the Fermi ex-

change hole. Also, due to the presence of the exchange operator, the self-interaction of

the electrons cancels in the HF approximation. In the historical predecessor of the HF

approximation, the Hartree approximation, the antisymmetrization of the wavefunction

is not carried out. As a result, there is no exchange term within the Hartree approx-

imation. Therefore, the Hartree approximation does suffer from self-interaction. We

have mentioned that the HF equation is derived using the variational principle. This is

why the energy obtained from the HF approximation EHF is always an upper bound of

the true ground state energy E0. The energy difference is called the correlation energy :

EC = EHF − E0. The second consequence is that one can systematically improve the

accuracy of the approximation in post-HF methods. One of the post-HF methods is

the configuration interaction method using a linear combination of Slater determinants.

The HF equation can be solved in practice by expanding the orbitals in a basis set,

e.g. a plane wave basis. The plane wave basis is a complete basis set, yet for practical

calculations, a finite number of basis functions, M , is selected. The computational cost

of the integral evaluation scales as M4 in the HF method.

2.3 The fundamentals of Density Functional Theory

In Density Functional Theory (DFT) the electron density n(r) is the principal quantity.

The aim of DFT is to reformulate the quantum mechanical theory in terms of the
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density instead of the wavefunction. As such, the historical predecessor of DFT is the

Thomas-Fermi approach (1927-1928). The electron density n(r) can be calculated from

the electron wavefunction as follows:

n(r) =
N∑
i=1

∫
...

∫
ψ∗(r1, ..., rN )δ(r− ri)ψ(r1, ..., rN )dr1...drN , (2.15)

where N is the number of electrons.

A functional is a function with another function as a variable, denoted F [f ]. For in-

stance, in DFT, the energy is written as a functional of the density, E [n]. The functional

derivative is defined as:

δ

δf(x)
F [f ] = lim

ε→0

F [f(x) + εδ(x− x′)]− F [f(x)]

ε
. (2.16)

Important properties of functional derivation include (without proof):

δ

δf(x)

(∫
F [f ] dx

)
=
∂F [f ]

∂f(x)
, (2.17)

δ

δf(x)

(∫
F [f ] f(x) dx

)
=
∂F [f ]

∂f(x)
f(x) + F [f(x)] , (2.18)

δ

δf(x)

(
1

2

∫∫
g(x, x′) f(x) f(x′) dx dx′

)
=

∫
g(x, x′) f(x′) dx′ . (2.19)

2.3.1 The Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems (HK), have been formulated in 1964 by P. Hohenberg

and W. Kohn [30]. The HK theorems form the foundation of DFT. The first HK theorem

states that:

For any system of interacting particles in an external potential Vext(r), this po-

tential is determined uniquely - except for a constant - by the ground state density

n0(r).
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The first HK theorem can be proven by reductio ad absurdum. Suppose there exist two

Hamiltonians: 
Ĥ1 = −1

2

N∑
i=1

∇2
i + V̂int + V̂

(1)
ext

Ĥ2 = −1
2

N∑
i=1

∇2
i + V̂int + V̂

(2)
ext

(2.20)

with V̂
(1)
ext and V̂

(2)
ext differing by more than a constant. This is combined with the following

set of Schrödinger equations:


Ĥ1Ψ1 = E1Ψ1

Ĥ2Ψ2 = E1Ψ2 .

(2.21)

In this expression Ψ1 6= Ψ2. To prove this lemma, suppose that Ψ1 = Ψ2 = Ψ, then

substracting the equations in 2.21 produces:

(
V̂

(1)
ext − V̂

(2)
ext

)
Ψ = (E1 − E2)Ψ . (2.22)

The energy difference E1−E2 is a constant shift and so V̂
(1)
ext and V̂

(2)
ext also differ by merely

a constant. This contradicts our previous assumption and thus Ψ1 6= Ψ2. However, both

wave functions lead to the same electron density. Returning to the main proof, one uses

the variational principle to obtain:

E1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ1 − Ĥ2 + Ĥ2|Ψ2〉 . (2.23)

Using Equations 2.20 and 2.21 results in:

〈Ψ2|Ĥ1 − Ĥ2 + Ĥ2|Ψ2〉 = 〈Ψ2|V̂ (1)
ext − V̂

(2)
ext |Ψ2〉+ E2

=

∫
n0(r)

(
V

(1)
ext (r)− V (2)

ext (r)
)
dr + E2

(2.24)

and combining Equations 2.23 and 2.24 gives:

E1 − E2 <

∫
n0(r)

(
V

(1)
ext (r)− V (2)

ext (r)
)
dr . (2.25)

An analogous derivation starting from:

E2 < 〈Ψ1|Ĥ2|Ψ1〉 (2.26)
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produces:

E1 − E2 >

∫
n0(r)

(
V

(1)
ext (r)− V (2)

ext (r)
)
dr . (2.27)

Since the inequalities are strict, Equations 2.25 and 2.27 cannot both be true and there-

fore the assumption that the external potentials differ by more than a constant does not

hold. This proves the first HK theorem.

The second HK theorem states:

A universal functional for the energy E [n] in terms of the density n(r) can be

defined, valid for any external potential Vext(r). The exact ground state energy of

the system is the global minimum of this functional and the density that minimizes

the functional is the exact ground state density n0(r).

The first part of this theorem follows immediately from the first HK theorem, upon

fixing the possible constant shift in the potential. The functional E [n] takes the form:

E [n] = T [n] + Eint [n] + Eext [n] , (2.28)

determined uniquely by the density. The second part of the theorem provides a method

for the determination of the ground state density.

The proof follows directly from the variational principle. The ground state energy is:

E0 = 〈Ψ0|Ĥ|Ψ0〉 , (2.29)

Ψ0 being the true ground state wave function. The variational principle then reads:

E = min
Ψ
〈Ψ|Ĥ|Ψ〉 . (2.30)

This minimization over Ψ produces the correct ground state density n0, since n 6= n0

corresponds to a wavefunction different from Ψ0. Therefore, the ground state density

minimizes the energy functional, leading to the ground state energy:

E0 = E [n0] = min
Ψ→n0

〈Ψ|Ĥ|Ψ〉 . (2.31)

This proves the second HK theorem.
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In the proofs of the HK theorems we have used that two different wavefunctions can-

not both minimize the expectation value of the Hamiltonian. This means that non-

degenerate states are implied. The HK theorems can be extended to include degenerate

states, in the Levy-Lieb formulation. Moreover, we have only considered the ground

state energy of the many-body system in the HK theorems. Thus, it is implied that the

system is described at zero temperature. In standard DFT, this is always the case.

2.3.2 The Kohn-Sham equations

The HK theorems provide a formal framework to find the ground state density and the

ground state energy of a many-body system. Yet, so far, we do not have a method

to simplify the many-body problem within DFT. The most widely method for this

purpose has been established by W. Kohn and L. J. Sham [31]. The essence of the

Kohn-Sham approach (KS) is rewriting the many-body problem as an auxiliary system

of non-interacting electrons moving in an effective potential. The constraint is that this

auxiliary system should lead to the same electron density as the real system (i.e. n must

be ‘V-representable’). The functional of the real system is:

E [n] = T [n] + Eint [n] + Eext [n] . (2.32)

We can rewrite Eint [n] as:

Eint [n] =
1

2

∫∫
n(r) n(r′)

|r− r′|
dr dr′ + E′XC

= EH + E′XC ,

(2.33)

where the first term is the Hartree energy, the classical Coulomb interaction energy in

the electron gas, while E′XC is the correction due to quantum mechanical exchange and

correlation (XC). Functional derivation to n, using Equations 2.17 and 2.19 yields:

δE [n]

δn
=
δT

δn
+ VH(r) +

δE′XC
δn

+ Vext(r) = µ . (2.34)

In this expression

VH(r) =

∫
n(r′)

|r− r′|
dr′ (2.35)
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is the the Hartree potential and µ is the chemical potential. The functional of the auxil-

iary system of non-interacting electrons contains an effective potential VKS(r) replacing

the interaction. The functional reads:

E [n] = T0 [n] +

∫
VKS(r) n(r) dr . (2.36)

Functional derivation using Equation 2.17 leads to:

δE [n]

δn
=
δT0

δn
+ VKS(r) = µ . (2.37)

From the equality the chemical potential in Equations 2.34 and 2.37, the effective KS

potential can be specified:

VKS(r) =
δT

δn
− δT0

δn
+
δE′XC
δn

+ VH(r) + Vext(r) . (2.38)

Here the first three terms can be combined to:

δT

δn
− δT0

δn
+
δE′XC
δn

=
δEXC
δn

= VXC , (2.39)

an XC-type potential. As such, the KS potential is:

VKS(r) = VXC + VH(r) + Vext(r) . (2.40)

The corresponding Hamiltonian of the non-interacting system is:

Ĥ =

N∑
i=1

(
−1

2
∇2
i + VKS(ri)

)
=

N∑
i=1

ĥKS(i) . (2.41)

The solution of the Schrödinger equation:

ĤΨ = EΨ (2.42)

is - since there are no interactions - a Slater determinant:

Ψ = |φ1, φ2, ..., φN | , (2.43)

leading to the KS equations:
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ĥKS(i)φi(r) = εiφi(r) , (2.44)

where φi(r) are the KS orbitals and εi are the KS eigenvalues. The ground state density

follows from the KS orbitals through:

n0(r) =
∑
i

|φi(r)|2 . (2.45)

The challenge in the KS approach is to find suitable approximations for the XC func-

tional:

EXC [n] = T [n]− T0 [n] + Eint [n]− EH [n] . (2.46)

This will be the subject of the next section, in which several functionals will be discussed.

In the Hartree energy EH [n], the electron in the KS orbital under study is included in

n(r). Consequently, as the XC energy is approximated, the self-interaction does not

fully cancel in the KS approach. The generalization of the KS approach to allow for

spin-polarization is straightforward. KS equations for both spin components can be

established.

We will now derive an expression for the total electronic energy in the KS method. The

total energy functional reads, using Equation 2.46:

E [n] = T [n] + Eint [n] + Eext [n]

= T0 [n] + EH [n] + EXC [n] + Eext [n] .
(2.47)

We can rewrite T0 [n], making use of the KS equations:

T0 [n] =

N∑
i=1

εi −
∫
VKS(r) n(r) dr (2.48)

and fill in VKS(r) as given in Equation 2.40 to obtain:

T0 [n] =

N∑
i=1

εi −
∫
VKS(r) n(r) dr

=
N∑
i=1

εi −
∫

(VXC + VH(r) + Vext(r)) n(r) dr

=
N∑
i=1

εi −
∫
VXC n(r) dr− 2EH [n]− Vext [n] .

(2.49)
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Combining this with Equation 2.47 produces:

E [n] =

N∑
i=1

εi − EH [n] + EXC [n]−
∫
VXC n(r) dr . (2.50)

It is thus found that the total electronic energy is not simply a summation of the KS

eigenvalues εi. The functional EXC [n] can be written as:

EXC [n] =

∫
εXC(n(r)) n(r) dr . (2.51)

From Equation 2.19 for functional derivation it follows that:

VXC [n] =
δEXC [n]

δn(r)
= εXC(n(r)) +

∂εXC [n]

∂n(r)
n(r) . (2.52)

Therefore, the total energy reads:

E [n] =
N∑
i=1

εi − EH [n]−
∫
∂εXC [n]

∂n(r)
n(r) dr . (2.53)

Contrary to the HF method, the total energy in the KS approach is not necessarily an

upper bound of the true total energy. The reason is that the KS equations have not

been derived from the variational principle.

The KS equations can be solved self-consistently. This is shown schematically in Figure

2.1. The iteration starts with an initial (trial) value for the electron density n(r). Given

an XC functional, the KS potential VKS(r) follows from the initial density. Now the KS

equations can be solved, yielding the KS orbitals φi(r). They lead to a new electron

density n(r) and a total energy. The density is fed as input to the iteration and this is

repeated until self-consistency is reached. In practice, this self-consistency is assessed

in terms of the convergence of the total energy. If subsequent values of the total energy

differ less than the convergence criterion that has been selected, the total energy, forces,

stresses etc. can be output.

2.4 Exchange-correlation functionals

We will review several widely used exchange-correlation (XC) approximations: LDA,

GGA and hybrid functionals.
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Figure 2.1: Scheme of the self-consistent solution of the Kohn-Sham equations.

2.4.1 Local density approximation

The local density approximation (LDA) is the most simple XC functional, defined as:

ELDAXC [n] =

∫
εUEGXC (n(r)) n(r) dr , (2.54)

where εUEGXC (n(r)) is the XC energy of an electron in a uniform electron gas (UEG) of

density n(r). It depends solely on the local density at point r. The XC energy per

electron can be split into the X and the C contribution:

εUEGXC [n] = εUEGX [n] + εUEGC [n] . (2.55)

The X energy of an electron in a uniform electron gas has the following analytic form:

εUEGX [n] = − 3

4π

(
3π2n(r)

)1/3
, (2.56)

which in the LDA functional is to be evaluated pointwise. There are, on the other hand,

no exact analytic expressions available for εUEGC [n] (except in the high- and low-density

limit). Approximations can be obtained from quantum Monte-Carlo simulations, as

introduced by D. M. Ceperley and B. J. Alder [32].



Chapter 2. Density Functional Theory 34

2.4.2 Generalized gradient approximation

The LDA approximation can be improved on, taking into account the spatial change

in the local density by including (powers of) the gradient in the XC functional. This

approach is called the generalized gradient approximation (GGA). It is important to

note that the GGA is still a local approximation, since only the gradient at the same

coordinate is taken into account. The XC functional thus takes the form:

EGGAXC [n] =

∫
εXC

(
n(r), |∇n(r)| ,∇2n(r), ...

)
n(r) dr , (2.57)

A commonly used GGA functional is the Perdew-Burke-Ernzerhof (PBE) functional

[33].

2.4.3 The band gap problem in local approximations

LDA and GGA functionals are meritful in predicting lattice parameters and atomic

positions within 1-5 % of the experimental values. Also, the electronic structure of metals

is reasonably well described. It is however important to realize that the KS eigenvalues

do not necessarily agree with the real energy spectrum. In the derivation of the KS

equations, we have only required that the density of the KS system coincides with the

real density. Accordingly, the excitation energies are not accurately described by DFT in

local approximations like LDA and DFT. As a consequence, the band gaps of insulators

and semiconductors are systematically underestimated. This can be understood by

carefully studying the KS spectrum. The KS band gap is determined in terms of the

N-electron eigenvalues:

EKSg = εN+1(N)− εN (N) , (2.58)

while the real band gap is given by:

Eg = εN+1(N + 1)− εN (N) . (2.59)

The deviation between both band gaps corresponds to a difference of XC potentials [34]:

Eg − EKSg ≡ ∆XC = εN+1(N + 1)− εN+1(N)

= lim
η→0

[(
δEXC [n]

δn(r)

)
N+η

−
(
δEXC [n]

δn(r)

)
N−η

]
,

(2.60)
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where η is a fractional number of electrons. ∆XC describes the discontinuity of the

functional derivative of EXC [n] around N . This discontinuity is not captured by the

local functionals and consequently, in LDA and GGA, ∆XC = 0. The resulting band gap

is the pure KS band gap, leading to a consistent underestimation of the band gap. This

is illustrated in Figure 2.2 for a wide range of semiconductor and insulator materials

[35]. The LDA band gaps are compared to the band gaps in the GW approximation

(GWA) and the experimental gaps.

Figure 2.2: Comparison of LDA, GWA and experimental band gaps of insu-
lator and semiconductor materials. It is apparent that LDA consistently leads

to an underestimation of the band gap. [35]

2.4.4 Hybrid functionals

Solving the band gap problem in DFT can be attempted by so-called post-DFT meth-

ods. A method first proposed by J. C. Slater is the Xα method [36]. It can be regarded

as a local-density approximation to the Hartree-Fock equations. A similar approach to
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tackle the band-gap problem in DFT is the so-called LDA+U method. The parameter U

characterizes the direct HF-like interaction between electrons of different bands belong-

ing to a single atom (on site interaction). The result is that in the short-range there is

HF-like interaction, that cancels self-interaction arising in DFT [25]. Both the Xα and

LDA+U methods can be considered historical predecessors of hybrid functionals. The

latter have been first introduced in 1992 by A. D. Becke [37]. Several forms of hybrid

functionals have afterwards been developed, e.g. B3LYP and HSE. HSE functionals were

introduced by J. Heyd, G. E. Scuseria and M. Ernzerhof in 2003 [38]. Hybrid functionals

present a more natural approach to HF mixing with DFT than previous methods.

The Heyd-Scuseria-Ernzerhof (HSE) hybrid functional is of the form:

EHSEXC = αEHF,srX (µ) + (1− α)EPBE,srX (µ) + EPBE,lrX (µ) + EPBEC , (2.61)

where lr and sr stand for ‘long-range’ and ‘short-range’. The range of the interaction

for the exchange contribution is determined by the parameter µ. The range separation

parameter µ is of the order of 0.2 to 0.3 Å
−1

. The hybrid exchange therefore includes

highly unscreened interaction, i.e. molecular-like, at short distance due to mixing with

HF. At longer distances the screening is described by the PBE functional, in other words

metal-like. Exchange in the HF method has been elaborated in our previous discussion

of the HF approximation, cfr. Equation 2.14 for the exchange operator. It is formulated

in terms of the single-electron orbitals (KS orbitals in DFT), instead of the density and

is therefore considered an implicit density functional. A common choice for the amount

of HF mixing is α = 0.25, corresponding with the so-called HSE06 functional. Both

the range-separation parameter µ and the HF mixing parameter can be tuned to agree

more closely with experimentally observed electronic properties, e.g. the band gap of

a semiconductor material. Therefore, calculations with hybrid functionals cannot be

considered purely first-principles calculations.

The Coulomb kernel, needed to calculate the exchange energy, is decomposed into a

short-range and long-range part by means of error-functions:

1

r
=

(
1

r

)sr
+

(
1

r

)lr
=

1

r
(erfc(µr) + erf(µr)) .

(2.62)



Chapter 2. Density Functional Theory 37

As such, at the characteristic distance of 2/µ the short-range interaction becomes negli-

gible. This range-separation is shown in Figure 2.3 for µ = 0.2 Å
−1

. The corresponding

characteristic distance is r = 2/µ = 10 Å. One notices that at this distance erfc(µr) ≈ 0

and erf(µr) ≈ 1, so the short-range interaction indeed has become negligible.

Figure 2.3: Range separation in the hybrid functional by means of erfc(µr)
(short-range) and erf(µr) (long-range).

2.5 Geometry optimization using the Hellmann-Feynman

theorem

The forces acting on the nuclei are obtained as the derivative of the total energy w.r.t. the

atomic positions. In equilibrium, all forces are zero:

FI = − ∂E

∂RI
= 0 . (2.63)

The derivative can be evaluated using the Hellmann-Feynman theorem. It is valid for

an eigenvalue E(λ) of the Hamiltonian Ĥ, λ being a parameter, the derivative w.r.t. λ

is found as:
∂E

∂λ
= 〈ψ|∂Ĥ

∂λ
|ψ〉 , (2.64)

where |ψ〉 is an eigenstate of the Hamiltonian. The proof of the Hellmann-Feynman

theorem requires a simple application of the product rule of derivation. In our case, the

Hamiltonian is given by:

Ĥ = T̂ + V̂int + V̂ext + Ĥn . (2.65)
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Following the Born-Oppenheimer approximation the nuclear Hamiltonian Ĥn can be

evaluated classically. Application of the Hellmann-Feynman theorem yields:

FI = −〈ψ0|
∂Ĥ

∂RI
|ψ0〉

= −

〈
∂T̂

∂RI

〉
︸ ︷︷ ︸

=0

−

〈
∂V̂int
∂RI

〉
︸ ︷︷ ︸

=0

−

〈
∂V̂ext
∂RI

〉
− ∂En
∂RI

.
(2.66)

The first two terms vanish, since T̂ and V̂int do not depend explicitly on {RI}. We

obtain that the forces can be calculated from:

FI = −
∫
∂Vext(r)

∂RI
n0(r) dr− ∂En

∂RI
. (2.67)

Practical schemes for the variation of the atomic positions to approximate the equilib-

rium structure, will be discussed in a further section.

2.6 Practical calculations

Previously, we have laid the foundation for DFT (the Hohenberg-Kohn theorems) and

we have derived a set of equations that simplifies the many-body problem (the Kohn-

Sham equations), studying also the crucial exchange-correlation energy. Now, we will

investigate how DFT can be implemented practically, for numerical computation.

2.6.1 The Bloch theorem

The first requirement for a practical approach to DFT, is the use of the spatial periodicity

of the crystal lattice. Accordingly, the KS potential is periodic for all lattice parameters

R of the lattice:

VKS(R) = VKS(r + R) . (2.68)

A periodic structure is defined by a unit cell, which is repeated in all spatial directions.

This may be a supercell of the simple lattice of a material, to implement more complex

structures, such as a slab, point defects etc.

For the periodic lattice that has been introduced, the Bloch theorem holds:
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The wavefunction of a particle in a periodic potential can be written as a product

of a plane wave and a periodic function with the same periodicity as the lattice.

This wavefunction can be written as:

φnk = eikr unk(r) (2.69)

with

unk(r) = unk(r + R) . (2.70)

It follows easily that the energy spectrum is periodic w.r.t. the reciprocal lattice:

En(k) = En(k + G) , (2.71)

for all reciprocal lattice vectors G. Therefore, the energy spectrum is fully represented

within the first Brillouin zone (BZ), the primitive cell of the reciprocal lattice. This

representation is called the band structure. It will continuously be used within this

thesis to display the electronic structure.

2.6.2 Planewave basis set

It is convenient to expand a periodic function such as unk(r) using a planewave basis

set:

unk(r) =
∑
G

cnk(G) eiGr , (2.72)

where the summation runs over all reciprocal lattice vectors. The planewaves form a

complete basis set and thus the expansion is a Fourier series. Herein lies one of the

main advantages of a planewave basis, namely, a fast Fourier transform (FFT) can be

performed to switch between real and reciprocal space. Using the Bloch theorem, it

follows that the electronic wavefunctions are:

φnk =
∑
G

cnk(G) ei(k+G)r . (2.73)

The kinetic energy related to planewaves in this expansion is (k+G)2/2. The summation

over G is infinite and thus for practical reasons an upper boundary should be set, the
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cutoff energy Ecut, so:
(k + G)2

2
< Ecut (2.74)

or, equivalently:

|G| < Gmax . (2.75)

The cutoff can be understood in terms of a ‘resolution’: details in the wavefunction

smaller than 2π/Gmax are neglected. It results in the second important advantage of the

planewave basis set, namely the accuracy can be improved systematically by increasing

Ecut.

2.6.3 Integration over the first Brillouin zone: the k-point grid

In DFT, all quantities, e.g. the energy spectrum, are derived from the electron density.

The electron density reads:

n(r) =

∫
BZ

dk

Nk∑
n=1

fnk |unk(r)|2 , (2.76)

where the sum runs over all occupied bands and fnk is the occupancy of the band, either

1 - below the Fermi level - or 0 2. In order to facilitate the convergence of the integration

w.r.t. the number of k-points, it is advantegeous to replace the step function by a smooth

function. This is a so-called finite-temperature approach, also known as smearing, since

it mimics the effect of temperature [39]. A function frequently used for smearing is the

Gaussian function.

For an infinitely extended real space lattice, k is a continuous variable, restricted to the

first BZ owing to periodicity. In a numerical calculation, integration over a continuous

variable is not attainable. Therefore, a k-point grid is constructed to ‘sample’ the first

BZ. Commonly, a Monkhorst-Pack grid, an equidistant grid, is selected [40]. Addition-

ally, sampling of the irreducible Brillouin zone (IBZ), the reduction of the first BZ by

the lattice symmetries, is sufficient for the calculation of the density. The normalized

weight wk has to be included, to take into account the multiplicity of each k-point.

2The occupancy is in principle either 1 or 0, but can be 2, 1 or 0 in case spin-orbit coupling is omitted.
In the absence of spin-orbit coupling a fully occupied band contains 2 electrons.
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Consequently, the electron density becomes:

n(r) ∼=
∑

k∈IBZ
wk

Nk∑
n=1

fnk |unk(r)|2 . (2.77)

As an example, the IBZ of a simple square reciprocal lattice in 2D is shown in Figure

2.4.

Figure 2.4: The IBZ of a simple square reciprocal lattice in 2D. The IBZ
contains the wavevectors k1 =

(
3
8 ,

3
8

)
with weight wk1 = 1

4 , k2 =
(

1
8 ,

1
8

)
with

weight wk2 = 1
4 and k3 =

(
3
8 ,

1
8

)
with weight wk3 = 1

2 .

2.6.4 Pseudopotentials

The electronic wavefunctions (orbitals) of the elements contained in the unit cell are

fed as input to a practical DFT routine. The true orbitals may contain many nodes,

leading to a huge basis set (a high Ecut). Moreover, for bonding, the core electrons are

usually not relevant. To illustrate this, the radial parts of the 4d, 5s and 5p orbitals

of Mo and Nb are displayed in Figure 2.5. The oscillations of the true (all-electron)

valence electron orbitals near the core are due to the core electrons. The nodes - and

thus the oscillations - arise from the orthogonality of the orbitals to the core orbitals.

In a pseudopotential (PP) method, the effect of the core electrons is removed from the

true orbitals yielding a smoothed function. Let us consider an orbital ψ, resulting from

a one-electron Schrödinger equation, e.g. the Kohn-Sham equation:

ĥψ = εψ . (2.78)
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Following the principle of the PP method, ψ can be written as:

ψ = φ+
∑
c

bcψc , (2.79)

where φ is a smooth function, corresponding to the true wavefunction ψ outside of a

cutoff radius rc, in the region of chemical bonds. In Figure 2.5 the full curves are

examples of smooth wavefunctions coinciding with the true wavefunction outside radius

rc. The summation over c runs over all core orbitals and bc are the coefficient of the

linear combination. As such, we have split the true wavefunction into a smooth and an

oscillating contribution. The constants bc can be determined from the orthogonality of

ψ to the core orbitals. We select any of the core orbitals ψc0 to obtain:

〈ψc0|ψ〉 = 〈ψc0|φ〉+ bc0 . (2.80)

Therefore:

bc0 = −〈ψc0|φ〉 , (2.81)

and inserting this in Equation 2.82 results in:

ψ = φ−
∑
c

〈ψc|φ〉ψc . (2.82)

This formula is related to the Gramm-Schmidt orthogonalization procedure. Then, the

one-electron eigenvalue equation 2.78 becomes:

ĥψ(r) = ĥφ(r) +
∑
c

bcĥψc(r)

= ĥφ(r)−
∑
c

∫
ψ∗c (r

′)φ(r′)dr′εcψc(r) ,

(2.83)

where we have used that ĥψc = εcψc. Alternatively we can write:

ĥψ(r) = εψ(r)

= ĥφ(r)−
∑
c

∫
ψ∗c (r

′)φ(r′)dr′εψc(r) .
(2.84)
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Combining Equations 2.83 and 2.84 gives a single-electron equation for the smooth

wavefunction φ:

ĥφ(r) +
∑
c

(ε− εc)
∫
ψ∗c (r

′)φ(r′)dr′ψc(r) = εφ(r) . (2.85)

The left hand side consists of the one-particle Hamiltonian ĥ and a non-local operator,

both acting on φ(r). Equation 2.85 can be rewritten by introducing the PP V̂ps:(
−1

2
∇2 + V̂ps

)
φ(r) = εφ(r) . (2.86)

Figure 2.5: The real (dashed curve) and smoothed (full curve) radial parts of
the 4d, 5s and 5p orbitals of Mo (left) and Nb (right). The radial distance is
expressed in atomic units, i.e. in terms of the Bohr radius aB = 0.529 Å. [25]

2.6.5 Projector augmented waves

Another method used to reduce the computational cost of electron-ion interaction in

DFT, is the projector augmented wave (PAW) method, developed by P. E. Blöchl [41].
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It is closely related to the PP method, since the aim is still to distinguish between the

oscillating part of the orbitals close to the core and the smooth part of the orbitals further

away. In contrast to the PP approach, the all-electron character of the wavefunction is

conserved. This is done as follows.

First, the true orbitals ψi of the isolated atom are obtained from an all-electron cal-

culation. Then, as was the case for PP, the true wavefunctions are transformed into

smoother wavefunctions φi, the so-called partial waves. Hereby the constraint is that

the true and partial wavefunctions should coincide outside the core region (beyond the

cutoff distance rc). The inverse transformation is achieved by a linear transformation

operator T̂ :

ψi = T̂ φi . (2.87)

The third step consists of expanding the smooth valence wavefunctions of the electrons,

the atom being placed in the vicinity of other atoms. This reads:

Φi =
∑
i

ciφi . (2.88)

The true wavefunction is obtained by the transformation with T̂ :

Ψi = T̂

(∑
i

ciφi

)
=
∑
i

ciψi . (2.89)

The PAW method can furthermore be formulated using projectors pi that operate only

in the core region, within the radius rc. The definition of the projectors is:

〈pi|φj〉 = δij . (2.90)

They can be utilized to rewrite the operator T̂ as:

T̂ = 1 +
∑
j

(|ψj〉 − |φj〉) 〈pj | . (2.91)

Indeed, inserting this expression in Equation 2.87 and employing Equation 2.90, gives:

|ψi〉 = T̂ |φi〉 = |φi〉+
∑
j

(|ψj〉 − |φj〉) δij , (2.92)
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which is consistent. Consequently, the true electron wavefunction in a system can be

written:

|Ψi〉 = T̂ |Φi〉 = |Φi〉+
∑
j

(|ψj〉 − |φj〉) 〈pj |Φ〉 . (2.93)

According to this expression, the all-electron wavefunction is reconstructed from the

smooth pseudowavefunction by correcting for the differences between the true orbitals

and the partial waves of the atoms. This is how the PAW method retains the all-electron

character of the wavefunctions. As a result, the PAW method is generally more accurate

than the PP method.

In practice, the partial waves are again expanded in a basis of planewaves. This basis is

truncated at an appropriate cutoff energy Ecut. A lower cutoff energy can be selected in

the PAW method compared with the PP method [27]. Because of the clear advantages of

the PAW method over the PP method, PAW potentials are used throughout this thesis.

2.7 Software packages

We have seen that DFT can be used to reduce the many-body problem. Still, the

KS equations are to be solved self-consistently and a sufficiently large basis set has to

be selected, as well as an appropriate supercell to implement more complex systems.

So, DFT is implemented numerically in a wide variety of software packages, such as

ABINIT, Gaussian, Quantum ESPRESSO, SIESTA, VASP, WIEN2k etc. These differ

in several aspects, i.a. the choice of basis functions, PPs or PAWs and algorithms used

for diagonalization of the KS Hamiltonian. All results presented in this thesis have been

obtained using VASP. This is why we will limit our discussion to VASP. We refer to

the VASP manual and an article by G. Kresse and J. Furthmüller (collaborators in the

VASP project), the main sources for this section, for further reading [39, 42].

2.7.1 VASP

2.7.1.1 Overview of VASP

The Vienna Ab-initio Simulation Package (VASP) is a commercial software package

developed at the University of Vienna. The code is written in the Fortran language.
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In VASP, several approaches to solve many-body problems are implemented, the main

methods being DFT, the HF approximation, and the GW approximation (a method

originating from many-body perturbation theory). DFT in VASP is aimed at finding

solutions of the KS equations in a self-consistent (SC) iteration. Several approximations

of the XC functional are available, such as LDA and GGA (e.g. the PBE functional).

Additionally, hybrid functionals can be selected, more specifically the HSE functional,

that mixes HF exchange into the XC functional in the short range. Calculations involving

the HF approximation are implemented via the HF-Roothaan equations. If required,

spin-orbit coupling can be included. Practically, the wavefunctions and potentials are

expanded in a planewave basis set. Electron-ion interactions can either be treated using

PPs (specifically ultrasoft Vanderbilt PPs) or PAWs. We have opted for the latter

method, because it is generally more accurate and requires a smaller basis set, as we

have mentioned in Section 2.6.5. In VASP, PAWs for all elements of the periodic system

are included. PAWs for DFT calculations are generated within a certain approximation

to the XC functional. For hybrid calculations by means of the HSE functional, PAWs

with PBE-character are to be selected. Moreover, the VASP user has the choice - for

most elements - of which electrons are treated as valence electrons. The recommeded

choices for accurate calculations can be found in the VASP manual.

In the self-consistent solution of the KS equations, several methods for the diagonaliza-

tion of the KS Hamiltonian can be employed. The three main methods in VASP are (i)

the blocked Davidson algorithm, (ii) the conjugate gradient algorithm (CGA) and (iii)

the residual minimization method by direct inversion in the iterative subspace (RMM-

DIIS). The efficiency of the self-consistency cycle can be improved by charge density

mixing, i.e. taking a combination of previous output charge densities to create the input

charge density for a new iteration step. Geometry optimization of the ionic stucture is

also executed in an iterative way. The geometry is considered optimized or relaxed if

the forces on all ions are below the selected convergence criterion. Within each step of

the relaxation, the electronic structure has to be calculated in a self-consistency cycle.

Subsequently, the forces can be calculated using the Hellmann-Feynman theorem, as we

have explained in Section 2.5. The most reliable method for relaxation in VASP is based

on a conjugate gradient algorithm. In the first step, the ionic positions are altered in the

direction of the forces acting on them. This is a so-called line minimization. Similarly,
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the cell shape is changed in the direction of the calculated stress. The forces, stress ten-

sor and total energy are recalculated, which concludes the trial step. For the corrector

step, a third-order interpolation is performed to further approximate the minimum in

total energy. Again, the forces on the ions are calculated. In case any force on an ion

in the system exceeds the convergence criterion, the procedure is repeated. The new

search direction are conjugated to the previous search directions.

To meet the computational demands, VASP allows for parallelization, i.e. subtasks are

divided over multiple CPUs. Parallelization in VASP can be achieved both w.r.t. en-

ergy bands and k-points. Communication between the CPUs that partake is based

on the Message Passing Interface (MPI). Additionally, we have found that the hybrid

functional raises the computational cost of the calculation considerably, compared with

other functionals, e.g. the PBE functional. Several reasons can be identified. First, the

HF exchange included in the hybrid functional requires the evaluation of two-electron

integrals. Moreover, it is to be calculated using the orbitals instead of the density. The

wavefunctions are - according to the Bloch theorem - products of functions with the

same periodicity as the lattice and planewaves. That is why, contrary to the density, the

wavefunctions do not possess the full periodicity of the lattice. Accordingly, in reciprocal

space, the full first BZ instead of the IBZ is to be sampled. This increase in computa-

tional cost can be partially overcome by carrying out a uniform reduction of the k-point

mesh used for the evaluation of the HF kernel. As the VASP manual points out, this

option should be used with vigilance, especially for doped systems. Finally, scaling of

the calculation with the system size also contributes to the difference in computational

cost between pure DFT and the hybrid method. It has been reported that the scaling

performance of hybrid calculations is poor in comparison with the scaling of pure DFT

[43].

2.7.1.2 Input and output

The four main input files of VASP that are to be modified by the user are (i) the

INCAR file, (ii) the POSCAR file, (iii) the KPOINTS file and (iv) the POTCAR file.

We will discuss them one by one. The INCAR file contains parameters that determine

which calculation is executed and how it is executed. This includes the choice of the

XC functional, the amount of HF mixing in the HSE functional, the cutoff energy of
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the planewave basis set etc. Furthermore, convergence criteria, such as those used in

the electronic SC iteration and structural relaxation are specified in the INCAR file.

In addition, the desired output can be adapted. The default output consists of the

optimized ionic positions and the related forces and stress, the KS eigenvalues for all

k-points of the mesh, the KS orbitals and the charge density. The latter two can be

used in a new calculation on the same system to reach convergence in the electronic SC

cycle more easily. Extra quantities that can be output are i.a. the density of states, the

electrostatic and total potential and the dielectric function.

In the POSCAR file, the ionic positions are listed, either in terms of the lattice param-

eters or in Cartesian coordinates. Similarly, the KPOINTS file contains the k-points

used for the integration over the BZ. Either these k-points are listed explicitly in the

KPOINTS file or the dimensions of the mesh needed to generate a Monkhorst-Pack grid

are specified. The former method is required for the calculation of a band structure

along specific lines in the BZ. Finally, the POTCAR file comprises the PPs or PAWs of

the elements present in the INCAR file.



Chapter 3

Structural, electronic and optical

properties of CIGS

3.1 Introduction

Due to technological interest in thin-film photovoltaic cells, CuIn1−xGaxSe2 (CIGS)

has been the subject of both experimental and theoretical research. One of the early

landmark, theoretical articles was written by J. E. Jaffe and A. Zunger [3]. In this

article the electronic structure of several ternary chalcopyrite semiconductors, including

CuInSe2 (CIS) and CuGaSe2 (CGS), is calculated by using the LDA functional contain-

ing Ceperley-Alder correlation. This particular correlation functional is non-analytic

and is obtained as a result of Monte-Carlo simulations. Naturally, the band gaps ob-

tained for CIS and CGS are heavily underestimated w.r.t. experimental results. In this

chapter, we will show how (CIGS) materials can be studied using a hybrid functional.

The main reason to apply a hybrid functional is to overcome the band gap problem in

DFT. The amount of HF mixing (or the range-separation parameter) can be tuned to

achieve the best possible agreement with experimental results. The result can in turn be

used for calculations that rely critically on the band gap, e.g. band alignment and defect

calculations. We will distinguish between structural, electronic and optical properties

of CIGS and systematically compare results obtained with PBE and HSE functionals.

Spin-orbit coupling is not taken into account. This kind of calculation requires solving

49
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of the Kohn-Sham equations for the double number of bands as compared to the non-

spin-orbit coupled case. We will demonstrate that non-spin-orbit coupled calculations

prove satisfactory for the main topics of this thesis, namely band alignment and defect

properties of CIGS compounds.

3.2 Crystal structure

The structural properties of the chalcopyrite structure have been established in Chapter

1, Section 1.1. The atomic configurations of the constituent atoms of CIGS are tabulated

in Table 3.1. The underlined orbitals in Table 3.1 are treated as valence electrons in

projector augmented wave (PAW) potentials used throughout the thesis. For integration

over the Brillouin zone, a Γ-centered 6 × 6 × 6 Monkhorst-Pack grid is found to yield

convergence on the total energy of less than 1 meV for a primitive unit cell containing 8

atoms. The Monkhorst-Pack grid is an equidistant grid [40]. The energy cutoff for the

plane-wave basis is chosen to be 500 eV for convergence within ∼ 1 meV. Finally, in the

self-consistent iteration, convergence of the total energy to 0.1 meV is imposed.

In order to simulate CIGS compounds with varying Ga content, x, we make use of the

1× 1× 2 supercell containing 16 atoms. In this way, five possible Ga contents 0 (CIS),

0.25, 0.5, 0.75 and 1 (CGS) are considered. This choice enables to study varying Ga-

to-In ratio without resorting to an exceedingly large supercell. It results in six CIGS

compounds, since for x = 0.5 there are two inequivalent possible structures: one with

the sequence In-Ga-In-Ga (denoted as ‘x = 0.5 (a)’) and the other with In-In-Ga-Ga

(denoted as ‘x = 0.5 (b)’) in subsequent planes. They are shown in Figures 3.1 (a) and

(b). For the 1 × 1 × 2 supercell containing 16 atoms a 4 × 4 × 4 k-point mesh is used

to give convergence of the total energy of ∼ 2 meV (i.e. ∼ 1 meV per 8 atoms). The

atomic positions of all these compounds are relaxed using a conjugate-gradient algorithm

(CGA), discussed in Section 2.7.1 of Chapter 2. The maximum allowed force for the

Atom Atomic configuration Atomic number Block Group

Cu [Ar] 3d104s1 29 d I

Ga [Ar] 3d104s24p1 31 p III

In [Kr] 4d105s25p1 49 p III

Se [Ar] 3d104s24p4 34 p VI

Table 3.1: The atomic configurations of the constituent atoms of CIGS.
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relaxation of the structures that are studied in this chapter is 30 meV/Å. All possible

degrees of freedom are optimized; this comprises the cell shape and volume and the ionic

positions. We compare the results of relaxation through the PBE and HSE06 functional.

The space symmetry and lattice parameters obtained using the PBE and HSE06 func-

tional are summed up in Tables 3.2 and 3.3. Only the compounds CIS (x=0) and CGS

(x = 1) have kept the chalcopyrite space symmetry I4̄2d. Compounds with x = 0.25 and

x = 0.75 are found to adopt the simple tetragonal symmetry P4̄ (No. 81). For x = 0.5

there are two possible configurations, which yield different space symmetries. The con-

figuration In-Ga-In-Ga (a) leads to body-centered tetragonal space symmetry I4̄, while

In-In-Ga-Ga (b) results in an orthorhombic structure P2221 (No. 17). The changes in

symmetry can be intuitively understood by the difference in atomic radii of In (1.67 Å)

and Ga (1.53 Å) [44]. For instance, the loss of body-centering in case x = 0.25 and

x = 0.75 is schematically shown in Figure 3.2. For the compounds that have the chal-

copyrite space symmetry, one can also calculate the anion displacement (u) of the Se

(a) In-Ga-In-Ga (b) In-In-Ga-Ga

Figure 3.1: Two possible configurations for Ga content of x = 0.5. The color
code is: Cu (blue), In (pink), Ga (dark green) and Se (bright green).
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ions, which has been introduced in Section 1.1 of Chapter 1. The lattice parameters for

CIS and CGS are given in Table 3.4 and compared with experimental results. One can

observe that relative deviations from the experimental values are small. The theoretical

values for a and c are consistently larger than experimental results. They are more

accurately described by the HSE06 functional in comparison with the PBE functional.

Experimental values may also be slightly reduced due to strain present in experiment,

related to the growth conditions.

It should be noted that the deviation of the space structures from I4̄2d is rather small

compared to the lattice parameters. For instance, the atomic displacement that leads

to the loss of body-centering for compounds with x = 0.25 and x = 0.75 is in the

order of 0.062 to 0.066 Å, cfr. Figure 3.2. The lowering in symmetry that is found

theoretically has not been reported in e.g. X-ray diffraction experiments [45]. We will

try to explain our understanding of what causes this discrepancy. In DFT, there is an

inevitable need of periodicity that is not compatible with the randomization of an alloy.

The implementation of alloying in a 1×1×2 supercell can impose additional conditions

on the system that lead to the slight change in symmetry. In order to implement more

disorder, one would have to resort to large systems that are currently hardly attainable

with hybrid functionals. Also, our DFT calculations predict the crystal structure at zero

temperature. In conclusion, it can be expected that in a disordered alloy at nonzero

temperature the extra conditions ‘wash out’.
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Ga content ‘x’ Space symmetry (Hermann-Mauguin notation) a (Å) c (Å)

0 I4̄2d (No. 122, BCT) 5.881 11.801

0.25 P4̄ (No. 81, TET) 5.825 11.703

0.5 (a) I4̄ (No. 82, BCT) 5.776 11.552

0.5 (b) P2221 (No. 17, ORT) a=5.761, 11.576
b=5.788

0.75 P4̄ (No. 81, TET) 5.726 11.420

1 I4̄2d (No. 122, BCT) 5.680 11.260

Table 3.2: Structural properties of CIGS compounds calculated with the PBE
functional.

Ga content ‘x’ Space symmetry (Hermann-Mauguin notation) a (Å) c (Å)

0 I4̄2d (No. 122, BCT) 5.832 11.735

0.25 P4̄ (No. 81, TET) 5.787 11.587

0.5 (a) I4̄ (No. 82, BCT) 5.742 11.436

0.5 (b) P2221 (No. 17, ORT) a=5.735, 11.461
b=5.750

0.75 P4̄ (No. 81, TET) 5.696 11.283

1 I4̄2d (No. 122, BCT) 5.652 11.119

Table 3.3: Structural properties of CIGS compounds calculated with the HSE06
functional.

Parameter CIS CGS

aexp (Å) 5.784 5.614

aPBEcalc (Å) 5.881 (+1.7 %) 5.680 (+1.2 %)

aHSEcalc (Å) 5.832 (+0.8 %) 5.652 (+0.7 %)

cexp (Å) 11.616 11.030

cPBEcalc (Å) 11.801 (+1.6 %) 11.260 (+2.1 %)

cHSEcalc (Å) 11.735 (+1.0 %) 11.119 (+0.8 %)

uexp 0.224 0.250

uPBEcalc 0.223 (-0.4 %) 0.247 (-1.2 %)

uHSEcalc 0.229 (+2.2%) 0.253 (+1.2 %)

Table 3.4: Comparison of lattice parameters calculated with HSE06 and PBE
and experimental results [46]. For the calculated values the relative deviation

from the experimental results is given.
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Figure 3.2: The ion displacement for x = 0.75 due to different size of In and
Ga is depicted with red arrows. As a result body-centering is lost. The effect
is exaggerated for clarity. The displacement indicated by the arrows is in fact

0.062 Å using the PBE functional and 0.066 Å for the HSE06 functional.

3.2.1 Vegard’s law for structural parameters

An approximate model that describes lattice parameters of a solid solution is given by

Vegard’s law. This law states that the lattice parameters of a solid solution are linear

combinations of the lattice parameters of the compounds limiting the homogeneity range.

The coefficients of the linear combination depend on the concentration of the elements.

In CIGS the limiting compounds are CIS (x = 0) and CGS (x = 1). Vegard’s law yields

the following set of equations for both lattice parameters a and c:


a(x) = a(0) · (1− x) + a(1) · x

c(x) = c(0) · (1− x) + c(1) · x .
(3.1)
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In case the structure does not follow Vegard’s law an extra term can be included con-

taining bowing parameter B. This adaptation of Vegard’s law looks as follows:


a(x) = a(0) · (1− x) + a(1) · x−B · x(1− x)

c(x) = c(0) · (1− x) + c(1) · x−B′ · x(1− x) .

(3.2)

The lattice parameters a and c are plotted in Figure 3.3 as a function of Ga content,

x, calculated with PBE and HSE06. For results obtained with PBE, there is more

deviation from Vegard’s law as given by Formula 3.1 than for those calculated with

HSE06. Thus, it is useful to introduce bowing, respectively 0.0170 Å and -0.0844 Å for

lattice parameters a and c. On the other hand, for HSE06 results, bowing is negligibly

small, so Vegard’s law is valid. Compliance with Vegard’s law for lattice parameters

in CIGS is confirmed by experimental work by Li et al. using transmission electron

microscopy [47].
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(a) Lattice parameter a

(b) Lattice parameter c

Figure 3.3: Lattice parameters of CIGS as a function of Ga content (x),
calculated with PBE (blue) and HSE06 (red). A fit is performed with Vegard’s
law (dashed, green) and Vegard’s law with bowing, B, included (dashed, purple).
The fits do not include the orthorhombic (ORT) structure obtained for x = 0.5

in the In-In-Ga-Ga configuration (triangles).
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3.2.2 Mixing enthalpy

Another major question for an alloy is whether the compounds will mix or segregate

into separate phases. It is important for CIGS photovoltaic cell devices that the alloying

is homogeneous. Theoretical work by C. D. R. Ludwig et al., a combination of a cluster

expansion method 1 and Monte Carlo simulations for randomization, suggests that there

is tendency for phase segregation in CIGS at low temperatures [48]. It is an experimental

fact that there is no phase segregation in actual CIGS absorber layers [12]. Ludwig et

al. explain this by the high temperature (typically ∼ 500 to 600 ◦C) at which CIGS layers

are produced. They argue that the mixing that is established at higher temperature

freezes upon cooling.

Using DFT, we can also assess the tendency for phase segregation of CIGS. For this

purpose we can study the mixing enthalpy ∆H of mixed systems. This is defined as:

∆H = E (CuIn1−x GaxSe2)− (1− x) E (CuInSe2)− x E (CuGaSe2) , (3.3)

where E denotes the total energy. The mixing enthalpies obtained from calculations

with functionals PBE and HSE06 are tabulated in Table 3.5. We find that the mixing

enthalpy is positive, meaning that energy is needed to mix CIS and CGS. Yet, the mixing

enthalpy per mixing atom is in the order of 10 meV to 14 meV. Mixing atoms are those

atoms that have to mix to obtain a homogeneous alloy, in the case of CIGS these are

In and Ga. Since 1 meV corresponds to ∼ 11.6 K, we conclude that there is no phase

segregation at temperatures of ∼ 170 K and above.

Functional x = 0.25 x = 0.5 x = 0.75

PBE 13.6 13.2 14.4

HSE06 11.2 10.0 12.4

Table 3.5: Mixing enthalpy ∆H in units of meV per mixing atom obtained
with PBE and HSE06 functionals.

1This method consists of an expansion of the formation energy of an atomic configuration into different
contributions. These energy contributions are respectively due to single atoms, pairs of atoms a.s.o. The
coefficients of the expansion are calculated using a first-principles method, usually DFT.
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3.3 Electronic structure

We proceed by studying the electronic structure of CuIn1−xGaxSe2 compounds. The

computational details of the calculations in this section are very similar to those in

the previous section. Integration over the Brillouin zone is performed on a 6 × 6 ×

6 Monkhorst-Pack grid and the energy cutoff for the plane wave basis is set to 500

eV. The integration includes occupancies fnk, that are distributed according to the

Fermi-Distribution and are thus discontinuous at the Fermi level. To facilitate the

convergence of the integration w.r.t. the number of k-points, the step function can be

replaced by a smooth function, a method called smearing. We use Gaussian smearing

with a width of 0.05 eV, since this method is particularly suited for semiconductors

[42]. The symmetric primitive lattice vectors and corresponding reciprocal vectors of

the body-centered tetragonal crystal system are [49]:


a′1 =

(
−a
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a
2 ,

c
2

)
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)
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)
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1
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)
.

(3.4)

Then one can define the following special k-points:
Z : (0.5, 0.5,−0.5)

Γ: (0, 0, 0)

P : (0.25, 0.25, 0.25) ,

(3.5)

in the convention formulated by W. Setyawan and S. Curtarolo [49]. The Brillouin zone

of the primitive unit cell with lattice parameters 3.4 is shown in Figure 3.4.

Following J. E. Jaffe and A. Zunger [3], for the 1 × 1 × 2 supercell we transform the

lattice parameters and corresponding reciprocal vectors to:
a1 = (a, 0, 0) , b1 = 2π

(
1
a , 0,−

1
c

)
a2 = (0, a, 0) , b2 = 2π

(
0, 1

a ,−
1
c

)
a3 = (a, a, c) , b3 = 2π

(
0, 0, 1

c

) (3.6)
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Figure 3.4: The first Brillouin zone of the body-centered tetragonal crystal
system in case c > a. [49]

The equivalent special k-points of Formula 3.5 for the 1 × 1 × 2 supercell and in terms

of the reciprocal vectors in Formula 3.6 are:
Z : (0, 0, 0.5)

Γ: (0, 0, 0)

P : (0.5, 0.5, 0) .

(3.7)

Band structure calculations are performed along the line Z-Γ-P. The density of states

(DOS) is calculated using a denser Γ-centered Monkhorst-Pack grid, namely 8× 8× 8.

3.3.1 Band gap

CIGS compounds are semiconductors with a direct band gap. The direct nature of the

band gap will be demonstrated by means of the dielectric function in a further section.

The direct band gap results in high optical absorption, applicable for photovoltaics.

We need to stress that the band gaps calculated in this section are not necessarily

equal to the optical band gaps, that excited electrons feel. The reason is that excitonic

interaction, i.e. interaction between electrons and holes, is not taken into account. Under

the influence of a Coulomb-like attraction the optical band gap is smaller than the

calculated electronic band gap.
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(a) CIS (x = 0) (b) CGS (x = 1)

Figure 3.5: Band structures calculated with the Perdew-Burke-Ernzerhof func-
tional. The valence band maxima (VBM) are set to zero, meaning that the band
structures are not yet aligned w.r.t. eachother. Valence bands are colored in blue

and conduction bands in red.

As was mentioned in the introduction, pure DFT functionals, like LDA or GGA, lead to

a significant underestimation of the band gap. This holds true in CIGS compounds. In

Figure 3.5 the band structures of CIS (x = 0) and CGS (x = 1), as calculated with PBE

(a type of GGA), are shown. The band gaps are respectively 0.02 eV and 0.04 eV. The

band gaps of all studied CIGS compounds are to be found in Table 3.6. Experimental

values are 1.0 eV for CIS and 1.7 eV for CGS [50]. The correspondence with the ex-

perimental band gaps can be greatly improved by replacing the PBE functional with a

hybrid functional, more specifically the HSE06 functional. The band structures of CIS,

CIGS with x = 0.5 and CGS obtained with this functional are displayed in Figure 3.6.

The resulting band gap of CIS is 0.85 eV and that of CGS is 1.37 eV, cfr. Table 3.6. The

relative deviations from the experimental values thus amount to 15 % and 19 %. Thus,

much better agreement with experiment is found than for band gaps calculated with

the PBE functional. For a realistic study of topics discussed further on in this thesis -

band alignment of CIGS compounds and impurity studies - it is appropriate to establish

a more accurate fit with experimental band gaps. This can be achieved by modifying



Chapter 3. Structural, electronic and optical properties of CIGS 61

(a) CIS: band structure (b) CIS (x = 0): DOS

(c) CIGS with x = 0.5: band structure (d) CIGS with x = 0.5: DOS
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(e) CGS (x = 1): band structure (f) CGS (x = 1): DOS

Figure 3.6: Band structures and corresponding density of states (DOS) calcu-
lated with the Heyd-Scuseria-Ernzerhof functional. The valence band maxima
(VBM) are set to zero, meaning that the band structures are not yet aligned

w.r.t. eachother.

the HSE06 functional by ‘tuning’ the Hartree-Fock mixing coefficient α (introduced in

Equation 2.61) w.r.t. experimental band gaps 2. Parameter α has been determined via

linear interpolation starting from band gap energies of CIS and CGS calculated with

α = 0.25 and α = 0.4. The values for α for the intermediate alloys are also obtained

from those for CIS and CGS by linear interpolation. The result is summed up in Table

3.7. The tuned HSE06 functional will be denoted HSE06(t).

Additionally, in Table 3.6 the effect of spin-orbit coupling (SOC) on the HSE06(t) func-

tional is demonstrated. Given the HSE06(t) functional, it is apparent that spin-orbit

coupling reduces the band gap by ∼ 0.1 eV. For the purpose of band alignment and

impurity calculations we therefore can legitimately omit spin-orbit coupling, since our

conclusions are not significantly affected. Including SOC doubles the number of equa-

tions to be solved numerically by VASP, so it is computationally restrictive.

2Alternatively parameter µ, that determines the range of the interaction could be modified. We
found, however, that the band gap is more sensitive to α than to µ.
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Functional x = 0 x = 0.25 x = 0.5 x = 0.75 x = 1

PBE 0.02 0.02 0.03 0.05 0.04

HSE06 0.85 0.98 1.12 1.24 1.37

HSE06(t) 1.00 1.16 1.36 1.52 1.72

HSE06(t)+SOC 0.91 1.08 1.27 1.43 1.62

Table 3.6: Band gaps in units of eV calculated with the following functionals:
PBE, HSE06 and HSE06(t). In addition, the effect of spin-orbit coupling (SOC)

on the band gap is given.

Ga content, x α (d.u.)

0 0.2780

0.25 0.2860

0.5 0.2939

0.75 0.3019

1 0.3098

Table 3.7: Hartree-Fock mixing parameter α in the HSE06(t) functional.

Another important question related to the band gap is if there is bowing as a function

of the alloying. This is very similar to Equation 3.8 in the context of the structural

parameters. For the band gap energy, Eg, it reads:

Eg(x) = Eg(0) · (1− x) + Eg(1) · x−B · x(1− x) , (3.8)

where B is the bowing parameter. The results are depicted in Figure 3.7. We find

that in the electronic structures obtained with hybrid functionals, only a small amount

of bowing of the band gap is present. For HSE06, bowing is B = −0.03 eV and for

HSE06(t), B = 0.06 eV. Experimental data are not conclusive regarding bowing of the

band gap energy. A variery of values can be found, ranging from -0.07 eV to 0.24 eV

[51].
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Figure 3.7: The band gap energies calculated with the HSE06 (red curve) and
HSE06(t) (blue curve) as a function of Ga content, x. A fit including bowing is

plotted, for HSE06 it is B = −0.03 eV and for HSE06(t) B = 0.06 eV.

3.3.2 Band mass

A property directly related to the band structure is the Band mass (or effective mass).

The band mass mb of charge carriers is defined in a quadratic approximation to the

actual dispersion:

E(k) = E0 ±
~2k2

2mb
, (3.9)

for the dispersion around Γ. E0 is the energy of the band at Γ. The + sign is to be

selected in case of a conduction band and the - sign for a valence band. The band mass

is directly related to the mobility µ of the charge carriers as:

µ =
eτ

mb
, (3.10)

where e is the elementary charge and τ is the collision time [52]. The mobility of the

charge carriers plays an important role in photovoltaic devices.

CIGS is an anisotropic material and consequently we distinguish between band masses

in the (100), equivalent with (010) for the tetragonal crystal system, and (001) directions

(in the Cartesian coordinate system). The band masses in the (100) direction will be

denoted m
‖
b and those in the (001) direction as m⊥b . We study the three upper valence

bands, referred to as v1 to v3 for hole band masses and the lowest conduction band c1
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for electrons. The analysis is carried out for CIS, CIGS with x = 0.5 and CGS. Their

dispersion around Γ is to be found in Figure 3.8.

We have found that the second order coefficient, from which the band mass is obtained,

is converged in the sixth order fit. Therefore, the dispersion is fitted with a sixth order

polynomial of the wavevector. The fit is carried out using the ‘polyfit’ function in

the mathematical programming language MATLAB. As is shown in Figure 3.8 (b), the

dispersion in either dimension is mirrored around Γ to allow for a more accurate fit. The

reason is that the constraint on the first derivative at 0 is included. The figure shows

the instance of the lower conduction band, c1 of CIS. The interval of choice for the fit is

0.1 Å
−1

around Γ (except when explicitly stated otherwise). The irreducible Brillouin

zone (IBZ) extends to 0.54 Å
−1

for CIS and 0.56 Å
−1

for CGS in the (100) direction.

In the (001) it measures 0.27 Å
−1

in case of CIS to 0.28 Å
−1

in case of CGS.

The band masses of the bands that have been studied, are listed in Table 3.8. All band

masses are below 1, which is beneficial for the mobility of the charge carriers. The most

relevant band masses for the mobility in CIGS photovoltaic devices are those related to

the top valence band v3 (for holes) and the bottom conduction band c1 (for electrons).

With the exception of v1 and v3 for x = 0.5 and 1, the anisotropy between the ‖

and ⊥ directions is limited. C. Persson has compared band structures calculated with

and without inclusion of spin-orbit coupling (SOC) [53]. His calculations use a GGA

functional mixed with Coulomb interaction through the GGA+USIC method, where SIC

stands for self-interaction correction. He demonstrates that the dispersion of the top

valence band in CIGS compounds is significantly influenced by spin-orbit coupling. For

instance, neglecting SOC, he finds the hole band mass of the top valence band in the

(100) direction in CIS to be 0.79, compared to 0.14 when including SOC. Our result is

m
‖
v3(CIS) = 0.683.
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(a) CIS (x = 0) (b) CIS (x = 0): fit of c1

(c) CIGS with x = 0.5 (d) CGS (x = 1)

Figure 3.8: The bands of CIS (a), CIGS with x = 0.5 (c) and CGS (d) for
which the band masses are calculated. In (b) the fitting procedure is demonstrated

for c1 of CIS.
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Band mass x = 0 x = 0.5 x = 1

m
‖
v1 0.103 0.126 0.142

m⊥v1 0.113 0.494 0.712

m
‖
v2 0.570 0.477 0.533

m⊥v2 0.607 0.553 0.562

m
‖
v3 0.683 0.733 0.603

m⊥v3 0.511 0.129 0.146

m
‖
c1 0.092 0.111 0.125

m⊥c1 0.097 0.109 0.123

Table 3.8: Electron and hole band masses in units of m0, the bare electron
mass. The interval for fitting of m⊥v1 and m⊥v3 for x = 0.5 is chosen 0.035 Å−1

around Γ because there is strong deviation from quadratic dispersion beyond this
value. Similarly, for m⊥v3 in case x = 1, the interval is 0.070 Å−1.

3.3.3 Chemical bond

We proceed to discuss properties of the bonds in CIGS compounds. First, we study

the projected density of states (PDOS) to identify the character of the different energy

bands. Secondly, the partial charges due to bonding are studied using Bader charge

analysis.

3.3.3.1 Projected density of states

The projected density of states (PDOS) is the decomposition of the density of states to

the azimuthal quantum numbers, l, of the electron states of the constituent atoms. From

the PDOS the character of the states present in the band structure can be specified. For

instance, it can be found which states make up the top of the valence band and which

the bottom of the conduction band.

The PDOS calculated with the hybrid functional HSE06 is shown in Figure 3.9 for CIS

and CGS in the interval of -7 to 7 eV. In both compounds the hybridization of the

Cu-3d with the Se-4p states is apparent. Since the d-bands are much less dispersive

than the p-bands, hybridization is inevitable. The strength of the hybridized interaction

is inversely proportional to the energy separation of the p- and d-bands. This leads to

so-called p-d repulsion [3]. This p-d repulsion generally causes an upwards shift of the

valence bands. The result of the full study of the PDOS can be found in Figure 3.10.

The deepest valence bands are the In-4d (∼ -16.4 to -16.5 eV w.r.t. the Fermi level of

CIS) and Ga-3d (∼ -16.7 to -16.8 eV w.r.t. the Fermi level of CGS) bands, followed



Chapter 3. Structural, electronic and optical properties of CIGS 68

by the Se-4s bands (∼ -13.5 to -15 eV for CIS and ∼ -13.8 to -15.5 eV for CGS). The

hybridized In-5s and Se-4p bands of CIS (∼ -5.9 to -6.8 eV) form a considerably narrower

band than the corresponding Ga-4s and Se-4p of CGS (∼ -6.4 to -8.0 eV). The top of the

valence band is formed by the hybridized Cu-3d and Se-4p bands ( 0 to ∼ -5.2 eV for CIS

and to ∼ -5.4 eV for CGS). The bottom of the conduction band is formed by hybridized

In-5s/Ga-4s and Se-4p bands. The Cu-4s orbital is extremely hybridized throughout the

spectrum and thus cannot be associated with any specific group of bands.

The binding energy of the electrons can be experimentally determined using x-ray pho-

toelectron spectroscopy (XPS). Rife et al. report the result for CIS, measured with syn-

chrotron radiation [54]. It is displayed in Figure 3.11. The energy of the In-4d electrons

w.r.t. the top valence band is measured to be ∼ -17.6 eV, about 1 eV below the energy

we have obtained theoretically. The Se-4s electron energy is ∼ -13 eV in experiment,

compared to ∼ -13.5 to -15 eV in theory. We may conclude that there is a clear corre-

spondence between theoretical and experimental electronic binding energies.

3.3.3.2 Bader charge analysis

Bader charge analysis is a method for the calculation of partial charges of atoms, de-

veloped by R. Bader [55]. The method consists of constructing the ‘zero-flux surface’

of each atom in order to distinguish the atoms. The zero-flux surface is the surface on

which the charge density is minimal in the direction normal to the surface. The charge

density as calculated in VASP can be used for this purpose 3. Once the compound is

divided into the constituent atoms, the charge per atom follows easily. The result of

the charge analysis is shown in Table 3.9. The Bader charge analysis reveals that the

partial charges of the atoms are well below their ionic values +1 (Cu), +3 (In and Ga)

and -2 (Se). Therefore, the bonds in CIGS are covalent rather than ionic. It is also

found that CIS is slightly more ionic than CGS. This is likely to be a consequence of

the slightly higher electronegativity of Ga (1.81) compared to In (1.78), on the Pauling

scale for electronegativity [56].

3The Bader charge analysis has been carried out with code downloaded from
http://theory.cm.utexas.edu/bader, made available by the University of Texas.

http://theory.cm.utexas.edu/bader
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(a) CIS (x = 0)

(b) CGS (x = 1)

Figure 3.9: Projected density of states (PDOS) in the interval of −7 to 7 eV
with the Fermi level at 0.

Atom CIS CGS

Cu +0.401 +0.398

In/Ga +1.153 +1.121

Se -0.773 , -0.751 ,
-0.781 -0.768

Table 3.9: The result of Bader charge analysis of CIS and CGS, expressed
as partial charge per atom. Se atoms come with two possible partial charges,

dependent on their position.
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(a) CIS (x = 0) (b) CGS (x = 1)

Figure 3.10: Band character obtained from the calculation of the PDOS.

Figure 3.11: The energy spectrum (electron binding energies) of CIS obtained
with XPS. [54]
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3.4 Optical properties

3.4.1 Dielectric function

Another quantity that derives from the electronic structure is the dielectric function. We

focus on the properties of the dielectric response to an electromagnetic wave (AC field)

with frequency ω, ignoring magnetic interaction and we employ the cgs unit system.

The dielectric function presents an elegant way to deal with the electric displacement

field D(k, ω) and the electric current density j(k, ω) of the dielectric medium. They are

defined as: 
D(k, ω) = ε0(ω) E(k, ω)

j(k, ω) = σ(ω) E(k, ω) ,

(3.11)

where ε0(ω) is the dielectric constant (dimensionless in cgs units) and σ(ω) is the con-

ductivity (units of frequency in the cgs system). They can be combined to form the

complex dielectric function [57]:

ε(ω) = ε0(ω) +
4πi

ω
σ(ω) . (3.12)

Only in the case of a DC field and an AC field with low frequency, ε0(ω) and σ(ω)

represent distinguishable properties. Then, ε0(ω) describes the response of the core

electrons, the bound charges, to the electric field. The conductivity σ(ω) is related to

the response of the conduction electrons, the free charges. More generally, the complex

dielectric function is written as the sum of a real part, ε1(ω), and an imaginary part,

ε2(ω):

ε(ω) = ε1(ω) + i ε2(ω). (3.13)

ε2 can be calculated from the electronic states by application of Fermi’s golden rule that

expresses the probability of interband transitions. For this purpose, the periodic factors

of the Bloch states, um,k (m being the band index) are used. The corresponding orbital

energy is denoted εm,k. The Bloch states are normalized w.r.t. the unit cell by means

of the unit cell volume Ω. One also has to consider that the dielectric function is in

general a tensor, εαβ2 (ω), with α, β for instance the Cartesian directions x, y, z. Thus
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the formula for the dielectric function’s tensor reads [42]:

εαβ2 (ω) =
4πe2

Ω
lim
q→0

1

q2

∫
dk

(2π)3

∑
c,v

2wk δ (εc,k − εv,k − ω) 〈uc,k+eαq|uv,k〉

× 〈uc,k+eβq|uv,k〉
∗ ,

(3.14)

where c and v refer to conduction and valence band, wk is the weight of wavevector k

and eα, eβ are the unit vectors in the α, β directions. Formula 3.14 gives the dielectric

function in the dipole approximation [58]. The factor 2 originates from the double occu-

pation of the orbitals. The real part of the dielectric function, ε1(ω), follows immediately

from ε2(ω) through the Kramers-Kronig relation:

εαβ1 (ω) = 1 +
2

π
P
∫ ∞

0

εαβ2 (ω′) ω′

ω′2 − ω2 + iε
dω′ . (3.15)

In this expression P is the principal value and ε is an infinitesimal number.

We study the dielectric functions of CIS, CIGS with x = 0 and CGS. The treatment

of the dielectric function we have discussed, is implemented in VASP as the function

LOPTICS [42]. The dielectric function is calculated by Equations 3.14 and 3.15 from

the states calculated self-consistently on a 6 × 6 × 6 k-point mesh using the tuned

hybrid functional. The results are displayed in Figure 3.12. The onset energy and

positions of the main peaks are found to be well converged w.r.t. the choice of the k-

point mesh. Some minor oscillations may be suppressed with the choice of a denser

mesh. The number of bands in the calculation is 208 of which 72 are valence bands,

since a considerable number of unoccupied bands has to be taken into account for an

accurate calculation of the dielectric function. Since CIGS are anisotropic, the dielectric

tensor has ‖ and ⊥ components. ‖ denotes the Cartesian (100) direction, equivalent with

the (010) direction for the chalcopyrite symmetry, while ⊥ refers to the (001) direction.

An important feature of ε2 is its relation to the optical selection rules through Fermi’s

golden rule. In this way ε2 shows whether the transition from VBM to CBM at Γ is

allowed by means of symmetry. Indeed, it is found that the onset of ε2 occurs at Eg of

the respective compounds and thus the band gap in CIGS compounds is direct. This is

also an experimental fact [12]. Additionally, it is apparent that ε2, related to the optical

absorption, decreases with increasing Ga content at the lower energy range. This may

contribute to the phenomenon of diminishing efficiency of CIGS photovoltaic devices as
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more than ∼ 30 % Ga is incorporated [59].

The dielectric function can be measured by ellipsometry. For this purpose one rewrites

the dielectric function as
√
ε = n+iκ, where n is the refractive index and κ the extinction

coefficient. Consequently the reflection coefficient, ratio of the reflected and incident

electric field, reads [57]:

r =
|Er|
|Ei|

=

∣∣∣∣1−√ε1 +
√
ε

∣∣∣∣
=

(1− n)2 + κ2

(1 + n)2 + κ2
.

(3.16)

In order to extract n and κ from measured r, one can employ the Kramers-Kronig re-

lation between them. Through ellipsometry with two polarization compounds, the ‖

and ⊥ components of the dielectric tensor can be measured. M. I. Alonso et al. have

performed ellipsometric measurements on single-crystal CIS and CGS at room temper-

ature [60]. The experimental dielectric functions are depicted in Figure 3.13 4. A good

agreement with the calculated results presented in Figure 3.12 is found. For instance,

the experimental peaks in ε2 at 2.8 eV (‖ and ⊥) and 4.7 eV (⊥) in the case of CIS

and corresponding peaks at 3.2 eV and 5.0 eV for CGS are met in the hybrid optical

calculations. In the experimental result, details in the dielectric function are suppressed,

due to experimental noise and the effect of nonzero temperature.

4In the figure, we have adapted the notation of the different components of the dielectric tensor to
agree with our convention.
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(a) CIS (x = 0)

(b) CIGS with x = 0.5

(c) CGS (x = 1)

Figure 3.12: Dielectric functions of CIS (a), CIGS with x = 0.5 (b) and CGS
(c) in units of the vacuum permittivity (which is 1 in the cgs unit system) as a
function of the energy of the incident electromagnetic wave. The real part, ε1,
is plotted in blue and the imaginary part, ε2, in red. ‖ components are dashed

curves, whereas ⊥ components are full.
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(a) CIS (x = 0) (b) CGS (x = 1)

Figure 3.13: Experimental results for dielectric function of single-crystal CIS
and CGS, obtained with ellipsometry at room temperature. [60]



Chapter 4

Band alignment of CIGS

4.1 Introduction

In the study of the electronic structure of CuIn1−xGaxSe2 (CIGS) materials in the pre-

vious chapter, we did not yet discuss the band alignment (or band line-up) of the com-

pounds with varying Ga amount (x). Whenever band structures have been presented,

they were not aligned on a common energy scale. The reason is that calculations based

on density functional theory do not contain an absolute energy level. For instance, in

VASP, the average electrostatic potential (i.e. the potential including interaction with

ions and a mean field interaction between electrons) is set to zero [42]. The consequence

is a different zero of energy for different materials. Therefore, band alignment is not an

easy task. At the same time, the band alignment of components of a photovoltaic device

determines many of the properties of the device. The band line-up of the device alters

with varying x in CIGS; there may even be a gradient of x across the absorber layer.

This is a major reason why a full chapter is dedicated to band alignment of CIGS.

Within the field of study of computational electronic structure calculations several meth-

ods have been proposed for band alignment. Herein lies the other main goal of this

chapter. Namely, to review and test these different methods and to compare the results

they produce for a single group of materials, the CIGS compounds. We will focus on (i)

the method consisting of calculating the branch-point energy (BPE) and (ii) the method

based on the potential in a slab of material. The branch-point method has the advantage

that it solely relies on the bulk band structure. The limitation is that a band alignment

76
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by branch-points is a relative alignment on a common energy scale, yet without an ab-

solute reference. Contrary to this, in the supercell used for slab calculations, vacuum is

included. This allows for an absolute level of energy, namely the vacuum level. Thus,

also the electron affinity of the semiconductor immediately follows. The slab calcula-

tion requires a larger supercell, since both a slab of sufficient thickness and an adequate

amount of vacuum have to be included. Therefore, in principle, slab calculations are

much harder to perform computationally. We will show that slab calculations for the

purpose of alignment that rely solely on the PBE functional present a very reliable ap-

proximation. This chapter is arranged as follows: first, we explain in more detail the

methods for band alignment, then we proceed to a comparison of the results.

4.2 Methods

4.2.1 Branch-point energy

The branch-point energy is a notion originating from surface physics. At the interface

of two materials, the bulk electronic states - Bloch functions in case of a periodic ar-

rangment - are modified. Surface states are exponentially decaying states, related to a

complex wave vector near the Brillouin zone edge [61]. For a translationally invariant

interface, Im(k) is normal to the interface. These states are also known as Virtual Gap

States (ViGS), in case of an interface between two semiconductors. Their eigenvalues

usually lie within the band gap of the bulk material. ViGS can be considered a combina-

tion of bulk valence and conduction bands [21]. Then, the branch-point energy (BPE) is

defined as the energy for which the character of the ViGS changes from VB-like (donor-

like) to CB-like (acceptor-like) 1. The branch-point energy can alternatively be defined

as energy of the ViGS state with the shortest decay length [62]. As the ViGS extend in

both materials, a charge transfer may be produced that depends on the Fermi levels and

BPEs and leads to an interface quantum dipole. J. Tersoff has argued that the energy

bands of the adjacent materials line up so the interface dipole vanishes [63]. This is the

accomplished by an alignment of the BPE of both materials. Tersoff has expressed this

in the form of a Green’s function, building on general work by R. E. Allen on Green’s

functions for surface physics [64]. The following real-space Green’s function expresses

1The term charge neutrality level is used for interfaces of a metal and a semiconductor.
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the propagation with energy E near an interface:

G(R, E) =

∫
dr
∑
n,k

ψ∗nk(r) ψnk(r + R)

E − Enk

=
∑
n,k

eik·R

E − Enk
,

(4.1)

where Enk is the complex band structure (i.e. the band structure as a function of complex

k). Recall that ViGS are defined for wave vectors close to the Brillouin zone edge. So,

indeed one has to consider correlations between states that are a multiple of the lattice

vector apart: ψnk(r) and ψnk(r+R). In the second step of Equation 4.1 we use the fact

that these states are Bloch functions. Within the Green’s function approach the BPE is

defined as the energy for which the Green’s function changes sign, i.e. G(R, EBP ) = 0.

The vector R, multiple of a lattice vector of the material, is preferably chosen parallel

to Im(k) and thus normal to the interface (in case it is translationally invariant). The

Green’s function has to be converged for sufficiently large |R| for all possible interface

orientations. This strongly complicates a practical use of the Green’s function method

as given by Tersoff [65]. On the other hand, a clear advantage is that the method only

depends on surface orientation and not on structural details of the surface.

In order to overcome the problem of convergence of the Green’s function for all possi-

ble surface orientations, interface-averaged approximations have been developed. In an

article on transparent conducting oxide (TCO) materials (SnO2, CuAlO2 and CuInO2)

[20], J. Robertson and B. Falabretti have proposed the following Green’s function 2:

G(E) =
∑
n,k

1

E − Enk

=

∫
N(E′)

E − E′
dE′ ,

(4.2)

where N(E′) is the density of states at energy E′. Again, the BPE is found as G(EBP ) =

0. We have used the Green’s function as given by Robertson and Falabretti for calcula-

tion of the BPE in CIGS compounds.

2In the article, the definition of the Green’s function in terms of the DOS contains an additional
integration over the BZ. The argument of this integration, however, is not dependent on the wavevector.
The integration introduces thus only a different normalization that is not relevant in the calculation of
the BPE.
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Another approach for interface-averaged BPE calculation that can be followed, has also

been introduced by Tersoff. He found semi-empirically that the BPE for the diamond

and zincblende structure can be calculated as the average of the valence band maximum

(VBM) at Γ and the conduction band minimum (CBM) at X [21]:

EBP =
1

2
(εV BM (Γ) + εCBM (X)) . (4.3)

The result is that the centers of the band gaps of adjacent materials of this kind coincide

within the approximation. A. Schleife et al. have proposed a generalization of this

procedure for other structures [21]. The idea originates from an extensive theoretical

discussion of interface states by F. Flores and C. Tejedor [66]. The BPE is calculated

by the following average over the BZ:

EBP =
1

2Nk

∑
k

 1

NV B

NV B∑
i

εV Bi(k) +
1

NCB

NCB∑
j

εCBj (k)

 . (4.4)

In this expression Nk is the number of k-points in the mesh, NV B and NCB are the num-

ber of valence and conduction bands. Regarding the number of valence and conduction

bands to include in this calculation, there is some uncertainty. One has to investigate

the influence of the choice of NV B and NCB on the alignment. Schleife et al. have ap-

plied Formula 4.4 to nitrides (e.g. GaN and InN) and oxides (e.g. CdO and ZnO) using

a HSE03 hybrid functional. They have chosen to retain the cubic unit cell, e.g. CdO

as the reference for NV B and NCB. It contains 8 valence electrons (not counting the

d-electrons). For the cubic unit cell, two valence bands and one conduction band are

selected to use in Formula 4.4. For other structures NV B and NCB are scaled according

to the number of valence electrons (without d-electrons). The approach proposed by

Schleife et al. for the calculation of the BPE has been attempted for the photocatalyzer

TiO2 by Deák et al. [67]. Regarding the uncertainty connected to NV B and NCB, they

conclude that there is little influence on the BPE.

For CIGS, we investigate the dependence of the BPE and band alignment on NV B and

NCB. To test this, we calculate the BPE of CuInSe2 (CIS), CuIn0.5Ga0.5Se2 (CIGS with

x = 0.5) and CuGaSe2 (CGS) making use of Equation 4.4. We select an equal number of

valence and conduction bands, NV B = NCB, and vary this number as 1, 5, 10, 15 and 20.

Computational details largely coincide with those discussed in Section 3.2 of Chapter 3.
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The 1×1×2 supercell containing 16 atoms is used for the implementation of the alloys.

A 4 × 4 × 4 Monkhorst-Pack k-point mesh is selected that yields convergence of the

total energy within ∼ 2 meV. The tuned hybrid functional introduced in Section 3.3.1 of

Chapter 3 is used for the calculation of the eigenvalues. The resulting differences in BPE,

∆EBP , are displayed in Figure 4.1. The BPE of CGS calculated with NV B = NCB = 1

is set to zero. One observes that the curves of the BPE as function of NV B = NCB

belonging to different compounds are almost equidistant. Thus the difference in BPE of

either two compounds is approximately constant, especially for NV B = NCB > 1. We

observe that the BPE itself is significantly influenced by the choice of NV B and NCB.

Consequently, caution has to be exercised regarding the interpretation of the BPE. On

the other hand the relative alignment is mostly unaffected. We find it to be accurate

within a margin of 0.02 eV for a wide range of NV B and NCB (if more than two bands are

selected). We proceed by using the counting procedure for NV B and NCB in Formula

4.4 that Schleife and coworkers have established. CIGS contain Cu: [Ar] 3d104s1, In:

[Kr] 4d105s25p1, Ga: [Ar] 3d104s24p1 and Se: [Ar] 3d104s24p4. The electrons occupying

the underlined orbitals are computationally treated as valence electrons. This means that

the 1 × 1 × 2 supercell contains 64 electrons, not counting the d-electrons. Following

Schleife et al., the BPE should be calculated with 16 VBs and 8 CBs. The relative

alignment that follows from the BPE method can be thoroughly tested by comparison

with the more direct method of alignment via slab calculations.

Figure 4.1: The branch-point energies of CIS (x = 0), CIGS with x = 0.5 and
CGS (x = 1) calculated employing Equation 4.4 as function of NV B = NCB.
The BPEs are relative to the BPE of CGS calculated with one VB and one CB,

which is set to 0.
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4.2.2 Slab calculation

The method for alignment based on slab calculations has, for example, been described

by C. G. Van de Walle et al. [68]. They have applied it for studying semiconductor

nitrides (e.g. GaN and InN) employing the HSE06 functional. Alignment by slabs allow

for the determination of an absolute reference for band alignment, namely the potential

in vacuum, Vvac. In principle two calculations have to be performed: (i) a calculation of

the bulk band structure w.r.t. the average potential and (ii) a slab calculation to relate

the average potential in bulk to the potential in vacuum. We portray the principle

for alignment within this method schematically in Figure 4.2. In the left part of the

figure the bulk calculation is represented. The zero of energy is the reference chosen

by VASP, which varies for different materials. It is on the same energy scale as the

average potential 〈V 〉 in bulk. We will calculate 〈V 〉 as a planar average, this means as

potential averaged over planes along a certain direction, in our case lattice vector a3.

In the part right of the figure the result of the slab calculation is shown. The potential

is the so-called macroscopic average potential, which comes down to the average of the

planar average potential over a distance of one unit cell along a3 (the same direction

as used for the planar average) [68]. The purpose of the macroscopic average potential

is to distinguish between the average potential 〈V 〉 in bulk and vacuum on the same

energy scale. Then 〈V 〉 in bulk in both calculations naturally have to coincide, as is

shown in the figure. In this way the bulk band structure is set on a common energy

scale with the potential in vacuum, Vvac, an absolute reference. The slab selected for

this calculation in our work can be found in Figure 4.3, for CIS. The slab extends in

the a1 and a2 directions, while vacuum space is implemented in the a3 direction. The

supercell for the slab calculation is indicated. The bulk material thus is interrupted in

the a3 direction, forming a slab. The thickness of the slab corresponds to 2 primitive

unit cells, that consist of 9 atomic layers of alternate Cu and In planes and Se planes.

This is sufficiently thick for convergence of the potential within the slab to the potential

in bulk. The thickness of the slab accordingly is 13.2 Å for calculations with the PBE

functional and 13.1 Å in case of HSE06. This corresponds with a distance of 14.4 Å

in the a3 direction for PBE and 14.3 Å for HSE06. The atomic positions in the slab

are not relaxed because we wish to investigate the alignment of bulk band structures.
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Figure 4.2: A schematic representation of alignment within the slab method.
On the left one finds the bulk band structure with its zero of energy and average
potential 〈V 〉, obtained from the bulk calculation. On the right 〈V 〉 in bulk, as
obtained from a slab calculation is aligned. This implies an alignment of the

bulk band structure with the potential in vacuum, Vvac.

As such, we do not allow for reconstruction at the surface 3. A convergence study is

carried out assessing the effect of the included amount of vacuum on the total energy

of the material contained within the slab supercell. For an amount of vacuum of twice

the thickness of the slab, convergence up to less than 3 meV for the whole supercell is

reached. A 6× 6× 1 Monkhorst-Pack k-point grid is chosen for Brillouin zone sampling,

since the supercell is largely extended in the a3 direction.

As mentioned in the introduction to this chapter, multiple approaches for the slab cal-

culations can be thought of. The reason is that different potentials can be studied in

VASP. The total potential in the Kohn-Sham equation is:

VTOT = Vext + VH + VXC , (4.5)

where the first term is the external potential due to interaction with the nuclei, the

3Nonetheless, it has to be noted that the alignment via the slab method is in fact also approximate.
The electronic structure is in general slightly altered at the surface. This possibly results in a surface
dipole, that affects the potential inside the slab. The surface dipole can be described by advanced charge
analysis methods, e.g. Hirshfeld charge analysis. The effect on the alignment is an open question and is
beyond the scope of this thesis.
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Figure 4.3: Periodic pattern of slabs of CIS by the implementation of vacuum
along the a3 direction. The material extends in the a1 and a2 directions, forming

a slab. The amount of vacuum relates to the thickness of the slab as 2:1.

second term is the mean-field electronic (Hartree) potential and the last term is the

exchange-correlation potential. Another potential that can be given as output in VASP

is the electrostatic potential:

VHAR = Vext + VH . (4.6)

The advantage of the electrostatic potential is that in VASP the zero of energy is defined

as the average electrostatic potential, i.e. 〈VHAR〉 ≡ 0 [42]. The various methods that can

be followed for slab calculations are listed in Table 4.1. Method 1 consists of a bulk and

a slab calculation with the hybrid functional outputting the total potential. From the

bulk calculation, the bulk band structure and the average potential in bulk are obtained.

Methods 2 and 3 differ from Method 1 because the electrostatic potential is used. The

bulk calculation still yields the band structure, yet it is not necessary to calculate the

average of the potential, it is zero by definition. In principle, since the electrostatic

potential does not contain exchange and correlation, calculations using PBE and HSE06

are equivalent. A small difference may exist due to the slightly different atomic positions

for both functionals. We have tested the effect of the choice of the method in slab

calculations for CIS and CGS. The result is listed in Table 4.2. The tolerance on the

vacuum level is found to range from 0.02 eV to 0.06 eV. The alignment of CIS and CGS

itself varies at most 0.01 eV. Thus, if necessary for computational reasons, Method 3
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may be employed for band alignment based on slabs. Since the slab calculation itself is

carried out with the PBE functional, the computation is drastically simplified.

Method Potential Functional

Method 1 VTOT HSE06

Method 2 VHAR HSE06

Method 3 VHAR PBE

Table 4.1: Possible methods for a slab calculation.

Method VBM of CIS VBM of CGS Offset

Method 1 -4.86 -4.92 0.06

Method 2 -4.90 -4.95 0.05

Method 3 -4.84 -4.89 0.05

Table 4.2: Valence band minima (VBM) w.r.t. the vacuum level, in eV, ob-
tained from different methods listed in Table 4.1. Also the offsets between the

VBM of CIS and CGS are given (in eV).

4.3 Results

We now bring together the results for the alignment obtained from three different ap-

proaches. On one side, we show two approaches that rely on the calculation of the

branch-point energy, namely (i) via the Green’s function as described by Robertson and

Falabretti (following Equation 4.2) and (ii) via the summation proposed by Schleife et

al. (given in Equation 4.4). Also, the alignment by means of a slab calculation is pre-

sented. It provides an absolute reference for the alignment, namely the potential in

vacuum, Vvac. The three approaches are compared via the alignment of CIS and CGS.

Further on, we will present an alignment of a larger variety of CIGS compounds.

To start with, let us take a look at the potentials that occur in the slab approach. We

treat CIS as an example. In Figure 4.3 (a) and (b), the total potential is given respec-

tively in bulk and in a slab, both calculated by means of a HSE06 functional. The planar

averages are taken along a3. These plots are used for an alignment following Method 1

as described in Table 4.1. In Figure 4.3 (c) and (d), the same systems are studied by

means of the electrostatic potential and the PBE functional. This leads to an alignment

via Method 3, introduced in Table 4.1. Method 2 follows an analogous approach, yet

using the HSE06 functional. The alignment following from the slab method is shown in

Figure 4.4 (a). As we have already discussed, the vacuum level is altered by at most
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0.06 eV by the choice of the potential and functional. The relative alignment is only

influenced by 0.01 eV. For the alignment in Figure 4.4 (a), Method 2 has been applied.

The alignment that is found, is a so-called straddling (type-I) alignment of two semicon-

ductor materials. This means that the VBM of material 1 (CIS) lies above the VBM

of material 2 (CGS) and the other way around for the CBM. We remind that the band

gaps of CIS and CGS as calculated with the hybrid HSE06(t) functional are respectively

1.00 eV and 1.72 eV, as has been elaborated in Chapter 3, Section 3.3.1. The VBM of

CIS is located at -4.90 eV and the VBM of CGS at -4.95 eV. The VBM offset between

CIS and CGS is found to be 0.05 eV and the CBM offset is 0.67 eV.

In Figure 4.4 (b) and (c), one can find the relative band line-ups of CIS and CGS that are

achieved by aligning the BPE of both materials, which is then set to 0. More specifically,

in (b) the BPE is obtained by evaluation of a Green’s function, as given in Equation 4.2.

For (c), the BPE is found as the BZ average of the band structure, according to Equation

4.4. Both formulas have been evaluated using the same valence and conduction bands,

i.e. the top 16 VBs and the bottom 8 CBs. The two methods for BPE determination

respectively yield VBM offsets of 0.21 eV and 0.13 eV and CBM offsets of 0.51 eV and

0.59 eV. Since the BPE method for band line-up is an approximate method, it has to be

compared to the result from the more exact slab treatment. The VBM offset from the

latter method is 0.05 eV, so there is much better agreement with the alignment in (b)

than in (c). The reason may be that the BPE of CIS in the Green’s function method lies

above the CBM. Usually, the Green’s function method is not applicable if the BPE is

not located in the band gap, due to the divergences if EBP = Enk. In the case of CIGS

it is nonetheless possible to find G(EBP ) = 0 with the BPE in the lower part of the

conduction band, because the DOS is low in the bottom part of the conduction band.

From the previous considerations, one can conclude that the BPE method for alignment

based on the BZ average of the band structure, is in rather good agreement with an

alignment by use of a slab. The difference in VBM offset is found to be 0.08 eV. The

clear advantage of the BPE method is it being completely accessible by bulk calculations

instead of the computationally restrictive calculations on slab supercells. In this way we

can align a full range of CIGS compounds with varying Ga content, x. As in Chapter

3, alloys are simulated by x=0, 0.25, 0.5, 0.75 and 1. The alignment of these CIGS

compounds is displayed in Figure 4.5. The band line-up is straddling (type-I). The

VBM alters much less from CIS to CGS than the CBM. This can be easily understood
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(a) The total potential (planar average) in bulk (red). The planes containing Cu and In and those containing Se
are well resolved. The average of the planar average at −7.66 eV is plotted (black). The potential is calculated
within a treatment with the HSE06 functional.

(b) The total potential (planar average) in a slab (red). The macroscopic average is also plotted (black) and the
vacuum level is indicated. This result is obtained employing a HSE06 functional.

(c) The electrostatic potential (planar average) in bulk (red). The average of the planar average electrostatic
potential is zero. The calculation is performed using the PBE functional.
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(d) The electrostatic potential (planar average) in a slab (red). The macroscopic average is also plotted (black)
and the vacuum level is indicated. The PBE functional is used.

Figure 4.3: Potentials appearing in the band alignment using the slab method,
for CIS as an example.

from the PDOS of CIGS, that is discussed in Chapter 3, Section 3.3.3. The PDOS

indicates that the top of the CIGS valence band is formed by orbitals with hybridized

Cu-3d and Se-4p character. The bottom of the conduction band is made from Ga-4s

and/or In-5s orbitals hybridized with Se-4p. Thus, by interchanging In with Ga, the

CBM is naturally most affected.

In the scientific literature, there is not much work available on the mutual alignment

of CIGS, neither theoretical nor experimental. W. Mönch has performed an alignment

of CIS and CGS by calculation of the BPE [69]. The electronic structure is calculated

from a semi-empirical tight-binding model. Mönch finds that the BPE lies 0.75 eV

above the VBM of CIS and 0.93 eV above the VBM of CGS. Thus the VBM offset

between CIS and CGS is 0.18 eV. This is within 0.05 eV from the band offset we find

by calculating the BPE as the BZ average of the band structure. Our hybrid electronic

structure calculation is in principle more advanced than a tight binding model. A band

line-up can be experimentally determined by Photoelectron Spectroscopy (PES), where

the electron affinities are measured [67]. The electron affinity of a semiconductor is the

energy difference between the CBM and the vacuum energy level. This immediately

produces a band alignment, since the vacuum level provides an absolute reference. To

our knowledge, no systematic experimental study of the mutual band line-up of CIGS

is available.
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Finally, it is interesting to point out that in compounds containing more In than Ga,

the calculated BPE is located close to the CBM, as one observes in Figure 4.5. It even

lies within the conduction band in the case of CIS. We wish to remind that caution is

needed regarding the calculated value of the BPE. For CIGS, we found it to be strongly

dependent on the number of valence and conduction bands included in the calculation,

at the same time conserving the relative alignment (see Section 4.2.1 of this chapter).

Nevertheless, the BPE may play an important role in the interface properties of poly-

crystalline CIGS absorber layers. It leads to donor-like surface states nearby the CBM,

that introduce electrons in the conduction band at an interface. This causes an accu-

mulation of electrons at this interface. Indeed, it has been experimentally demonstrated

that the free surface and heterojunction of CIS are electron-rich [14]. The absorber layer

itself is hole-rich (mainly due to Cu-vacancy defects). This phenomenon is named ‘type-

inversion’. C. Persson and A. Zunger have proposed a model for this type-inversion: the

existence of a hole barrier [14]. The notion of the hole barrier starts from a Cu deficient

compound, which results in a lowering of the valence band w.r.t. the stoichiometric ma-

terial. Persson and Zunger also attribute reduced recombination of electrons and holes

at the grain boundaries (a kind of interfaces) of polycrystalline CIGS to this hole bar-

rier. Our results for defect calculations in CIGS, that will be presented in Chapter 5,

disagree with the existence of an effective hole barrier at the GBs due to extrinsic (Na)

doping. We suggest instead that the donor-like surface states near the CBM, related to

the BPE, may contribute to type-inversion of interfaces (including GBs) of In-rich CIGS

compounds.
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(a) Alignment of CIS and CGS via a slab calculation. The potential in vacuum is set at 0 eV.

(b) Alignment of CIS and CGS by calculating the BPE using a Green’s function.

(c) Alignment of CIS and CGS by calculating the BPE using the BZ average of the band structure.

Figure 4.4: Alignment of CIS and CGS by three different methods: via a slab
calculation and by calculating the branch-point energy by (i) a Green’s function
(see Equation 4.2) and (ii) a BZ average of the band structure (see Equation
4.4). The VBM are drawn as blue lines and the CBM as red lines. In (b) and

(c) the BPE is set to 0 and plotted in green.
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Figure 4.5: Alignment of CIGS compounds with varying Ga content, x. Alloys
with x = 0, 0.25, 0.5, 0.75 and 1 are included. The alignment is determined by
calculation of the branch-point energy via a BZ average of the band structure
(see Equation 4.4). The VBM are drawn as blue lines and the CBM as red lines.

The BPE is set to 0 and plotted in green.



Chapter 5

Defect calculations on CIGS

5.1 Introduction

In Chapters 3 and 4 we have studied the properties of pristine CIGS compounds. In

this chapter we will explore the effect of point defects in CIGS. These point defects

may either be vacancies, substitutionals or interstitials. The latter two are examples of

impurities or dopants. A substitutional dopant replaces an atom of the pure material,

while an interstitial dopant is located on a position that is not a regular lattice site. A

vacancy defect is a free lattice site that would be occupied in the stoichiometric material.

Our choice of the defects we will discuss, is inspired by their use in photovoltaic (PV)

applications. We will start by considering copper (Cu) vacancies, denoted as VCu, that

can result from typically 10 % Cu-deficiency in the synthesis of the CIGS absorber

layer [13]. Subsequently, sodium (Na) impurities, more specifically the Na on Cu site

substitutional, NaCu are studied. It is an experimental fact that the incorporation of

Na (in the range of ∼ 0.1 at.%) in CIGS enhances the efficiency of the PV cell [16].

The mechanism behind this fact is not well understood. We will review some of the

propositions based on our results. Finally, we will present a whole range of carbon

(C) impurities, both substitutionals and interstitials. This is a subject that is rarely

mentioned in the scientific literature. The interest of C defects has been brought to

our attention by contacts at Umicore (a materials technology company headquartered

in Brussels, Belgium) and IMEC (Interuniversity Microelectronics Centre in Leuven,

Belgium). The C impurities may appear in nonvacuum synthesis methods, e.g. printing

of an ink containing precursor nanoparticles (a wet method) [12]. In this ink, C atoms

91
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are part of the organic solvents. The main advantage of the nonvacuum processes is a

reduced loss of material, compared to losses of 20 to 50 % in vacuum processes. The

current maximal conversion efficiency of cells produced using the printing method is

17.1 % (in comparison to 20.4 % in vacuum processes) [19]. More information about

(nonvacuum) synthesis methods can be found in Section 1.2.3.2 of Chapter 1.

Defect physics in CIGS has been studied using first-principles methods by A. Zunger

and co-workers. S. B. Zhang, S.-H. Wei and A. Zunger have discussed both single

defects (e.g. VCu) and combinations of defects (e.g. 2V−Cu+In2+
Cu) in CuInSe2 (CIS) [22].

Related to the defect combinations, they have introduced the notion of the ordered defect

compound (ODC) occuring at the grain boundaries (GBs). This ODC would then lead to

a hole barrier. The significance of the neutral barriers has been disputed experimentally.

Absorbers with positively charged GBs, observed using scanning capacitance microscopy,

have been shown to yield the highest efficiency [15]. Computationally, Zunger et al. have

used the local density approximation (LDA) functional, correcting for the band gap error

by a constant shift of the conduction levels. For all calculations, including those treating

combinations of three defects, a supercell of 32 atoms has been chosen. Y.-J. Zhao,

C. Persson, S. Lany and A. Zunger have reported on their research on n-type doping of

CIGS [23, 70]. They explain the interest in n-type doping pointing out its application

in a p-n homojunction. They find that it is harder to n-type dope compounds as their

Ga content increases. The reason is the Fermi level being pinned (related to Cu vacancy

defects) closer to the CBM in CIS than in CGS. We will demonstrate in this chapter that

our own results on Cu vacancies support this conclusion. In the articles discussing n-

type conductivity, Zunger and co-workers have employed the LDA functional, corrected

for the band gap error by the LDA+U method, and a 64-atom supercell.

Regarding the effect of Na doping in CIS, S.-H. Wei, S. B. Zhang and A. Zunger have

distinguished three effects [24]. First, according to Zunger et al., phase segregation of

NaInSe2 (NIS) with a larger band gap leads to a higher open-circuit voltage. They also

discuss substitutional defects, namely NaIn and NaCu. They find that the former acts

as an acceptor, therefore increasing the hole concentration, whereas the latter does not

create active electric levels. Finally, Zunger et al. propose that Na residing at the grain

boundaries could catalyze the dissociation of O2 to form OSe. This would prevent the

formation of Se vacancies (VSe), that are shallow donors reducing the hole concentra-

tion. The results in this article are obtained using the LDA functional, correcting for



Chapter 5. Defect calculations on CIGS 93

the band gap problem by the Xα method. The type of supercell employed for the defect

calculations is not mentioned. C. Persson and A. Zunger have found another possible

effect of Na doping in CIS: the existence of a hole barrier [14], which we have already

mentioned in Chapters 1 and 4. This idea is inspired by the experimental observation of

type inversion between the interior (p-type) and surface (n-type) of the CIGS absorber

layer. Persson and Zunger state that both the neutral defect Na0
Cu and the phase seg-

regated NaInSe2 at the grain boundary produce a hole barrier. The origin of the hole

barrier is a lowering of the valence band maximum (VBM) as Cu is replaced by Na,

since this removes the p-d repulsion present in CIGS compounds. This p-d repulsion is

caused by hybridization of Se-4p and Cu-3d levels, which has been discussed in Chapter

3. It leads to a rise of the VBM in CIGS. We will, based on our own data, investigate

the possibility of the hole barrier.

Other authors that report on defect properties of CuInSe2 (CIS) and CuGaSe2 (CGS),

include T. Maeda and T. Wada [71]. They employ a generalized gradient approximation

(GGA) functional, not mentioning any method for treating the band gap error. They

make use of a 64-atom supercell, even for calculations on a combination of three defects

(2V−Cu+In2+
Cu). This raises two major concerns about the results of defect calculations on

CIGS found in the scientific literature. First, the calculations are often performed using

a LDA or GGA functional, resulting in the well-known band gap problem. Methods

for correction include a constant shift of the VB levels, the Xα method, etc. In our

calculations we use the tuned hybrid functional that directly yields good values for band

gaps. Secondly, the sizes of supercells in which the defect are implemented in the articles

we have discussed, tend to be restricted. For example, combinations of three defects are

located in 32-atom ([22]) or 64-atom ([71]) supercells. A sufficiently large supercell is

needed to (i) approach the single-defect limit and (ii) to reduce the shift of defect levels

that lie within the bands, related to the Burstein-Moss shift. We will revisit this question

in the next section. Related to this, we have tested 2× 2× 2 (64 atoms) and 3× 3× 3

(216 atoms) supercells of the 8-atom primitive unit cell of CIGS, for the implementation

of single defects. Our approach to defect calculations will be elaborated in Section 5.2 of

this chapter. Results for Cu vacancies and Na and C impurities are presented in Section

5.3.

Finally, it is interesting to remark that a link can be made between the band line-up

of materials and defect calculations (cfr. Chapter 5). This idea has been elaborated
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in the landmark article by C. G. Van de Walle and J. Neugebauer on the alignment

of semiconductor and insulator materials based on the defect level due to interstitial

hydrogen (H) [72]. This so-called H level is determined as the transition level from the

+1 to -1 charge state (denoted ε (+1/− 1)). Van de Walle and Neugebauer have studied

the H level of a wide range of materials, including the elemental semiconductors Si and

Ge, semiconductor compounds like GaAs and ZnO and the insulators SiO2 and H2O.

They found that the H level is universally located at ∼ -4.5 eV below the vacuum level.

The deviation from this value is smaller than 0.5 eV for any material discussed in the

article. This can be considered quite accurate, as materials with band gaps of up to ∼

9 eV (SiO2) are taken into account. Consequently, from the positions of the VBM and

CBM, the type of doping due to interstitial H can be (approximately) derived without

carrying out an explicit defect calculation. A shallow donor (acceptor) is obtained when

the H-level, ∼ -4.5 eV, lies close to the CBM (VBM) or within the conduction (valence)

band. Extrinsic doping with H falls beyond the scope of this thesis, so we will not review

the H level in CIGS.

5.2 Method

5.2.1 Formation energy

The method for the determination of the defect levels relies on the computation of the

formation energy of defects D in charge state q and will thus be denoted Ef (Dq).

Early reference for this approach to defect calculations are articles by S. B. Zhang et

al. [22, 73]. Recent publications utilizing the concept of the formation energy of defects

include work by M. N. Amini et al. and H. Dixit et al. (both on transparent conducting

oxides) [74, 75].

The formation energy of a defect D in charge state q, abbreviated Dq, is defined as:

Ef (Dq) = Etot (Dq)− Etot (bulk) +
∑
α

nαµα + q (EF + EV + ∆V ) . (5.1)

In this expression Etot (Dq) is the total energy of the supercell containing the defect and

Etot (bulk) is the total energy of the bulk supercell (i.e. without defect). To obtain the

formation energy, the chemical potentials of atoms and electrons that are either added
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or removed, are to be taken into account. The chemical potentials µα of the defect

atoms are multiplied by nα. The absolute value |nα| is the number of added or removed

atoms of element α. If atom α is added nα < 0, if it is removed nα > 0. For electrons,

the chemical potential is (EF + EV ) , where EF is the Fermi level w.r.t. EV , the top of

the valence band of the primitive unit cell. The charge q < 0 if electrons are added and

q > 0 if they are removed. So, for instance, if one electron is removed, the formation

energy increases with (EF + EV ) . This is the energy of the electron at the Fermi level.

Finally, ∆V is the difference in reference potential of the supercell without defect and

with defect.

In conditions of thermodynamic equilibrium, the defect formation energy determines the

concentration c(Dq) of defect Dq according to the Boltzmann distribution:

c(Dq) = N e
− Ef

kBT , (5.2)

where N is the multiplicity of lattice points per supercell where the defect can be formed.

The crucial parameter of this method is EF . In principle, EF can be calculated by taking

into account every possible point defect with its formation energy. The concentration

of defects is restricted by charge neutrality in the total system, yielding a value for EF .

Since the number of possible defects is high, this approach is hardly feasible. Instead,

we will compute the formation energy of a set of defects in different charge states and

plot them as a function of EF . The graphs of the formation energies are lines with

slope q. Naturally, the charge state with the lowest formation energy at given EF is the

ground state. Therefore, the Fermi levels of the intersections of the formation energy,

the transition levels, are of great importance. They determine the possible occurrence

of electrically active defect levels, as we will elaborate in Section 5.2.3. The choice of

which charge states q = ..,−2,−1, 0,+1,+2, .. are to be considered, can often be limited

by the chemical properties of the defect.

5.2.2 Chemical potentials

The chemical potential of an atomic species is the free energy per atom of the species in

the reservoir that is in contact with the crystal. As such, it depends on the experimental

growth conditions. It is convenient to rewrite the chemical potential as µα = µelemα +

∆µα. Here µelemα is the chemical potential of the elemental phase of α. The accessible
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chemical potential range for the formation of CIGS compounds is restricted by four

constraints [23]. An important notion for the formulation of these restrictions is the heat

of formation. It is defined as the difference between the total energy of a compound and

the energies of the constituent atoms in their elemental standard lattices. It should not

be confused with the cohesive energy. This is the difference between the total energy

of a compound and the energies of the constituent atoms in isolated form (‘atom in a

box’).

The constraints marking the accessible chemical potential range are:

1. In order to avoid precipitation of the elemental phase, all chemical potentials µα

should be lower than µelemα :

∆µCu ≤ 0 , ∆µIn/Ga ≤ 0 , ∆µSe ≤ 0. (5.3)

If ∆µα = 0, then maximum α-rich conditions are implied.

2. To form and maintain a stable compound, the sum of the relative chemical poten-

tials ∆µα should equal the heat of formation ∆Hf of the compound. In case of

CIGS:

∆Hf (CIGS) = ∆µCu + ∆µIn/Ga + 2∆µSe. (5.4)

3. The formation of undesired competing phases also lays a restriction on the acces-

sible chemical potentials for CIGS compounds. For CIS, competing phases are

e.g. Cu2Se, In2Se3 etc., while for CGS examples include Cu2Se, Ga2Se3 [23].

4. Additionally, in case of doping, one can require that no compounds should form

between dopant and host atoms. We will study the example of NaInSe2 when

discussing Na doping.

We will only consider constraints 1 and 2. In order to determine µelemα , calculations of the

total energy of Cu, In, Ga and Se in elemental metal form have to performed. Moreover,

the same type of calculation is done for Na and C, as they will be studied as dopants. The

space symmetries of the elemental metals is obtained from Ref. [76]. For C, graphite is

selected as the elemental solid. The atomic structures of the elemental solids are relaxed

using a conjugate-gradient algorithm until all force components are smaller than 0.01
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Metal Space symmetry (Hermann-Mauguin notation) lattice parameters (Å)

Cu Fm3̄m (No. 225, FCC) a = b = c = 3.642

In I4/mmm (No. 139, TET) a = b = 3.268 , c = 5.017

Ga Cmca (No. 64, ORT) a = 4.507 , b = 7.661 , c = 4.553

Se P3121 (No. 152, TRI) a = b = 4.822 , c = 4.886

Na Im3̄m (No. 229, BCC) a = b = c = 4.230

C P63/mmc (No. 194, HEX) a = b = 2.452 , c = 7.361

Table 5.1: Structural properties of elemental solids calculated with the HSE06
functional for the determination of the chemical potentials.

eV/Å. The total energy calculations are performed using the HSE06 functional. It is

necessary the same type of functional is used in the impurity calculations, so the energy

reference is identical. For the calculation of the electronic structure of metals, typically

very dense k-point meshes are required. As an example, for Cu a 16×16×16 Γ-centered

Monkhorst-Packgrid has been selected. The space symmetries and calculated lattice

parameters of the elemental solids are listed in Table 5.1.

In order to judge whether the computed chemical potentials are reasonable, a comparison

can be made of the theoretical and experimental heat of formation. The theoretical heat

of formation is calculated from the chemical potentials using constraint No. 2. For CIS:

∆Hf (CIS) = Etot(CIS)− Eelemtot (Cu)

atom
− Eelemtot (In)

atom
− 2

Eelemtot (Se)

atom

= ∆µCu + ∆µIn + 2∆µSe

(5.5)

and analogously for CGS. In this way we find theoretically that the heat of formation

of the unit formula of CIS is -3.07 eV and that of CGS is -4.00 eV. Experimental values

are given in Ref. [77]. The experimental heat of formation of CIS is -267 kJ/mol (-2.77

eV), that of CGS is -317 kJ/mol (-3.29 eV). This means that the relative deviation of

the theoretical values from the experimental ones is respectively 11 % and 22 % for CIS

and CGS. We may conclude that there is good agreement between computed values of

the chemical potentials of the constituent atoms of CIGS and the experimental heat of

formation.

The ranges of accessible chemical potential of CIS and CGS can now be represented by

two stability triangles. The triangle is drawn as a function of ∆µCu and ∆µIn/Ga, leaving

∆µSe as a dependent variable, due to constraint No. 2. The stability triangles are shown
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in Figure 5.1. A stability triangle including competing phases can for instance be found

in Ref. [23].

(a) CIS (b) CGS

Figure 5.1: The stability triangles of CIS and CGS as a function of ∆µCu
and ∆µIn/Ga. The vertex (0, 0) corresponds to Cu-rich and In/Ga-rich condi-
tions. The vertices (−3.07, 0) and (−4.00, 0) are Cu-poor and In/Ga-rich, while
the vertices (0,−3.07) and (0,−4.00) are Cu-rich and In/Ga-poor. The lines
connecting (−3.07, 0)/(−4.00, 0) and (0,−3.07)/(0,−4.00) give maximal Se-rich

conditions.

5.2.3 Transition levels

The transition level between different charge states of a defect is defined as the value

of EF at the intersection of the corresponding formation energy graphs. We denote a

transition between charge states q and q′ as ε(D, q/q′). The transition level ε(D, q/q′)

occurs when the defect states with charges q and q′ have equal formation energy, i.e.

Ef (Dq) = Ef (Dq ′). Using Equation 5.1 of the formation energy, this leads to:

ε(D, q/q′) =
Etot(D

q)− Etot(Dq′) + q∆V q − q′∆V q′

q′ − q
− EV , (5.6)

where ∆V q (∆V q′) is the correction for the reference potential for charge state q (q′).

The transition levels are important in the analysis of the defects. Their position relative

to the valence and conduction band determines the possible electrical activity of the

defect state. Different cases for the position of the defect levels relative to the valence
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and conduction band are depicted in Figure 5.2. The defect levels are represented by

non-dispersive states, since they can considered to be highly localized. If a transition

to a ground state with negative charge occurs near the VBM, the defect level is an

acceptor level. The resulting p-type conductivity is a consequence of the holes that are

left as the electron has moved to the defect level. A donor level is analogously defined

as a transition to a positive charge state near the CBM. The corresponding n-type

conductivity is related to the (semi-)free electrons in the conduction band, originating

from the donor level.

In Figure 5.2 it is also shown that defect levels can appear within the valence or con-

duction band. Given the limited extent of the band gap, this scenario is often more

likely than a level in the gap. A level in the valence (conduction) band with a negatively

(positively) charged ground state is an acceptor (donor) level. The holes (electrons)

occupying the defect level in the valence (conduction) band naturally relax to the VBM

(CBM), as can be seen in the figure.

An important distinction to be made, is between shallow and deep levels. A shallow

defect level is likely to be thermally ionized at relevant temperatures. This is typically

chosen to be room temperature, 293 K, corresponding to an energy of ∼ 25 meV. There-

fore, an acceptor (donor) level within 25 meV of the VBM (CBM) will be called a shallow

level 1. Of course, an acceptor (donor) level within the valence (conduction) band is a

shallow level as well. On the other hand, an acceptor (donor) level within the band gap,

separated by more than 25 meV from the valence (conduction) band, is a deep level.

We wish to remark that we are not able to fully describe the system of ionized defects

and semi-free charge carriers. It is a so-called effective mass state, an extended state

that does not fit in a regular supercell. Hence, it cannot be treated easily using DFT.

The extension of the effective mass state is smaller in a nanoparticle. So, by implement-

ing a nanoparticle with a radius corresponding to the Bohr-radius of the hydrogen-like

interaction, the effective mass state can be treated in DFT after all. This approach is

outside of the scope of this thesis.

1There is no absolute consensus on this terminology in the scientific literature. The choice will depend
on the temperature of the application and in second place on the interpretation of ‘likely’. The criterion
for a shallow level usually ranges between 25 and 100 meV in the literature. In selecting the former, we
imply that at room temperature at least exp(−1) ≈ 37 % of the defects should be ionized according to
the Boltzmann distribution.
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Figure 5.2: A schematic representation of defect levels occuring in a band
structure. Instances of donor and acceptor levels and shallow and deep levels

are given.

Electrically active defect levels can be experimentally probed using deep-level transient

spectroscopy (DLTS) [75]. In one possible set-up, defects in a p-n junction under re-

verse bias are subject to a series of periodic voltage pulses [12]. These force the charge

carriers from the bulk material to occupy the ionized defect levels. As the pulse ceases,

the trapped charge carriers are re-emitted thermally. Subsequently, a transient in the

capacitance of the junction appears. From the characteristics of this transient both the

defect level and defect concentration can be obtained.

5.2.4 Computational details

Defect calculations in this thesis are performed using a tuned HSE06 functional, since in

defect studies correct values of the band gaps are crucial. We remind that the resulting

band gap of CIS, CIGS with x = 0.5 and CGS are respectively 1.00 eV, 1.36 eV and 1.72

eV (See Section 3.3.1 of Chapter 3). As is the case throughout the thesis, electron-ion

interactions are treated using projector augmented wave (PAW) potentials. Integration

over the Brillouin zone is achieved on a 2× 2× 2 Γ-centered Monkhorst-Pack grid. The

energy cutoff of the plane wave basis is 500 eV. The integration is facilitated by Gaussian
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smearing with a width of σ = 0.2 eV. To filter out the effect of the smearing, the total

energy is extrapolated for σ → 0 (as implemented in VASP) [39]. The charge of the state

is simply accomplished by adding q = ..,−2,−1, 0,+1,+2, .. electrons to the supercell.

The supercells containing defects are relaxed using the conjugate-gradient algorithm

(CGA) until all force components are smaller than 0.05 eV/Å. In this relaxation the

volume of the supercell is kept constant, optimizing only the atomic positions. Every

charge state has to be relaxed separately. In large supercells relaxation is not a trivial

task. Therefore we apply a reduction in the evaluation of the Hartree-Fock kernel by

a factor 2 during relaxation. This is supplied in VASP by the function ‘NKRED’ [42].

However, this reduction should be omitted in the final self-consistent calculation yielding

the electronic structure of doped systems. This is illustrated for Cu vacancies in Table

5.2. The transition level ε(VCu, 0/−1) alters from -0.155 eV to -0.212 eV as the reduction

on the Hartree-Fock kernel is omitted. Consequently, we calculate the total energies for

the defect formation energies by evaluating the Hartree-Fock kernel on the full k-point

grid.

NKRED Supercell ε(VCu, 0/− 1) (eV)

yes 2× 2× 2 -0.155

no 2× 2× 2 -0.212

no 3× 3× 3 -0.095

Table 5.2: Values for the transition level from the 0 to −1 charge state of the
Cu vacancy defect for different computational approaches w.r.t. the VBM (at 0

eV).

5.2.4.1 Supercell size

The size of the supercell in which the defect is implemented is important for two reasons.

First, the supercell should be chosen large enough in order to approximate the single-

defect limit. Most calculations within this thesis are carried out using a 2 × 2 × 2

supercell of the 8-atom primitive unit cell. This means that this supercell contains 64

atoms. To assess the influence of the size of the supercell, we have performed calculations

on a 3 × 3 × 3 supercell, containing 216 atoms for the VCu defect in CIS. The defect

concentration using the 2×2×2 is 7.04 ·1020 cm−3 for defects in CIS and 6.26 ·1020 cm−3

in CGS. This concentration decreases to 1.86 ·1020 cm−3 in CIS as the 3×3×3 supercell

is selected. This still exceeds the dilute limit for doping, which is below 1018 cm−3 [23].
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This limit is hardly computationally accessible at present, especially in combination with

a hybrid functional. We can study the influence of the supercell size by comparing the

results obtained with 2× 2× 2 and 3× 3× 3 supercells.

A second phenomenon related to the size of the supercell, is schematically depicted in

Figure 5.3. The example of a donor level within the conduction band is given. As

the supercell size increases, the Brillouin zone is folded. Owing to the preservation

of the filling, there is a downwards shift of the Fermi energy in the conduction band.

Analogously, the Fermi energy in the valence band (related to an acceptor level) is

shifted upwards as the size of the supercell is increased. The modified filling of the

bands compared to the bulk band structure leads to an apparent increase of the band

gap in optical experiments, the so-called Burstein-Moss shift [78].

The transition level ε(VCu, 0/−1) using the 2×2×2 and 3×3×3 supercell are tabulated

in Table 5.2. It shifts from -0.212 eV to -0.095 eV, mainly an effect of the filling upon

BZ folding. It should be noted that the exact energy of the transition level within the

valence band is not greatly relevant, since in practice the hole relaxes to the VBM. It is,

however, a good measure for the influence of the supercell size. The formation energy

plots of V−Cu in CIS in 2 × 2 × 2 and 3 × 3 × 3 supercells are shown in Figure 5.5 (a)

and (b). We see that the conclusion of Cu vacancies being shallow acceptor levels in

CIS is not altered. Therefore, we can conclude that the 2× 2× 2 supercell is sufficiently

large for single-defect calculations. All remaining defect calculations are thus executed

employing 2× 2× 2 supercells.
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Figure 5.3: Schematic representation of the downwards shift of the Fermi
energy within the conduction band as the supercell size increases (folding of the

BZ).

5.2.4.2 Reference potential

As mentioned when Equation 5.1 for the formation energy was introduced, a correction

term has to be included for the reference potential. Due to the finite size of the supercell,

the undoped and doped supercells have a different reference potential. In order to

accurately calculate the formation energy, this has to be taken into account. There are

several possible methods to achieve this. Usually, one aligns the electrostatic potential

far away from the defect with the potential in the same point(s) in the undoped supercell.

We have, however, selected another procedure which is independent of the position of

the defect and can thus be carried out very efficiently. One starts by calculating the

difference between the electrostatic potential in the supercell without defect and with

defect, Vu(r)−Vd(r), on a grid of points in the supercell. Since the distortion due to the

defect is supposed to be limited in space, then ∆V , the difference in reference potential,

is the most likely value of Vu − Vd. Subsequently a histogram of Vu − Vd is made using

the linear tetrahedron method [74]. This method yields the volume in space belonging
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to each value of Vu−Vd. These volumes are used as ‘counts’ to construct the histogram.

Since ∆V is the most likely value it corresponds to the value of Vu − Vd at the peak of

the histogram. An example of a histogram achieved by this approach is shown in Figure

5.4.

Figure 5.4: Histogram for the determination of ∆V . This particular example
originates from the computation of the V−Cu defect in the 3 × 3 × 3 supercell.

The result is ∆V = −0.065± 0.005 eV.
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5.3 Results

5.3.1 Copper vacancies

We start our investigation of the defect properties of CIGS compounds with one Cu

vacancy, VCu in a 2× 2× 2 supercell. In case of CIS we have also tested the 3× 3× 3

supercell. As mentioned in the introduction, they are prevalent due to Cu-deficiency

conditions during growth of the common CIGS PV absorber layers. We study CuInSe2

(CIS), CuIn0.5Ga0.5Se2 (CIGS with x = 0.5) and CuGaSe2 (CGS) 2.

The relaxed structure of the environment of a VCu defect is shown in Figure 5.5. The

lattice is distorted in a way that the Se atoms that miss a bond due to the vacancy

relax by a small amount towards the center of the vacancy. This amount is consistently

smaller than 0.1 Å for all compounds. All values are listed in Table 5.3. There is

also a slight effect on the interatomic distance between the Se atom and the two In

atoms it is bound to. We treat the example of the vacancy in CIS. The unperturbed

distance is duIn−Se = 2.609 Å for both In atoms. Owing to the defect this alters to

ddIn−Se = 2.567, 2.571 Å (in case of the ground state q = −1). Se is thus bound a bit

more tightly to In due the Cu vacancy. Since formally the oxidation state of Cu in CIGS

is +1, it is sensible to take into account the formation energy q = −1, 0,+1 states. The

formation energies of CIS, CIGS with x = 0.5 and CGS are displayed in Figure 5.5. The

q = −1 state is the ground state for every possible EF in the band gap. This is not

surprising, because the removed Cu atom was an electron donor. To compensate for the

lack of this Cu atom, the VCu is an electron acceptor. The consequence is that VCu is a

shallow acceptor level in all compounds. This conclusion does not alter upon switching

from a 2 × 2 × 2 supercell to a 3 × 3 × 3 supercell. We have tested this for CIS (see

(b)). The transition level increases ε(0/ − 1) when a larger supercell is selected, due

to the shift related to the filling, which was explained in Section 5.2.4.1. The relevant

transition levels, between two ground states, are listed in Table 5.4.

The formation energy of VCu is generally rather low, even under Cu-rich conditions.

Since Cu is removed and ∆µCu ≤ 0 for a stable compound, the formation energy of all

charge states goes down uniformly, if more Cu-poor conditions are present. To give an

2As we have explained in Chapter 3, the compound with x = 0.5 can come in two varieties, depending
on the sequence of the In and Ga atoms. Both In-Ga-In-Ga and In-In-Ga-Ga are possible. Within the
chapter on defect calculations we have selected the former.
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example, in thermal equilibrium at 550◦C, the concentration of VCu is 1018 cm−3 in case

∆µCu = −0.76 eV for CIS and ∆µCu = −0.94 eV for CGS. These chemical potentials

are well attainable, according to the stability triangles of CIS and CGS (cfr. Figure 5.1).

Consequently, Cu vacancies are likely to be formed in Cu-poor conditions. They result in

the p-type conductivity of the bulk of the CIGS absorber layers. The formation energy

of VCu near the CBM is lower in CGS than in CIS, due to the former’s larger band

gap. Since it has a negative formation energy in CGS, V−Cu forms spontaneously if EF

is close to the CBM. In this case, it kills the electrical activity of possible donor states.

Therefore, it is harder to n-type dope CGS than CIS. This has also been reported by

Zunger et al. [23, 70]. A p-n homojunction of CIGS can as a consequence be realized

more easily given the compound contains more In than Ga.

Compound duCu−Se(Å) ddVCu−Se(Å)

CIS 2.456 2.393

CIGS with x = 0.5 2.460 2.400

CGS 2.440 2.346

Table 5.3: Interatomic distances in the unperturbed (bulk) lattice, duCu−Se, and

in the lattice with a VCu defect, ddVCu−Se, for q = −1 (the ground state). The
latter distance is the distance between the center of the vacancy and the adjacent

Se atoms.

Compound Supercell Transition Energy (eV)

CIS 2× 2× 2 0/-1 -0.212

CIS 3× 3× 3 0/-1 -0.095

CIGS with x = 0.5 2× 2× 2 0/-1 -0.233

CGS 2× 2× 2 0/-1 -0.216

Table 5.4: Relevant transition levels for a VCu defect w.r.t. the VBM.

Figure 5.5: Relaxed environment of a VCu defect in CIS. Cu atoms are colored
blue, In pink and Se green.
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(a) CIS with 2× 2× 2 supercell

(b) CIS with 3× 3× 3 supercell

(c) CIGS with x = 0.5
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(d) CGS

Figure 5.5: Formation energies Ef (eV) of the VCu defect in different com-
pounds as a function of the Fermi level EF (eV) between the VBM and the

CBM.

5.3.2 Sodium impurities

5.3.2.1 Substitutional sodium on copper site

As mentioned before, the benign effect of Na doping (∼ 0.1 at.%) on the performance

of CIGS PV devices is an experimental fact [16]. Numerous experimental and theo-

retical studies have attempted to find the origin of this effect [14, 24]. Still, no real

consensus has been reached. We contribute to this discussion by investigating the NaCu

substitutional. This choice is again inspired by the general Cu-deficiency in CIGS. The

electronic configuration of Na is [Ne] 3s1, where the underlined electron is treated as a

valence electron in the PAW potential.

The Na substitutional and its relaxed environment are depicted in Figure 5.6. A clear

measure of the relaxation of the lattice around the defect are the interatomic distances

of the surrounding atoms. In this case, how the Cu-Se distance is modified by replacing

Cu by Na (for the ground state with q = 0). In Table 5.5 one finds that this distance

increases by 0.25 Å or less.

The formation energies for CIS, CIGS with x = 0.5 and CGS are displayed in Figure 5.7.

They are obtained in Cu-rich and Na-rich conditions. In all cases the ground state in

the gap is neutral, q = 0. The transition levels between the ground states in the bands
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are shown in Table 5.6 for completeness. The +1/0 transition occurs within the valence

bands and the 0/-1 transition within the conduction bands. They do not give rise to

any electrical activity.

The formation energy of the Na0
Cu defect is negative, so the defect forms spontaneously.

Then, one can consider that in typical production methods of CIGS, Na diffuses from

the sodium lime glas substrate [16]. Therefore, the reservoir resembles isolated Na more

closely than elemental solid Na (Na-rich conditions). We have computed the chemical

potential of isolated Na by enclosing it in a box with edge 30 Å, that otherwise contains

only vacuum. A spin-polarized calculation of the total energy is selected, as Na has an

unpaired valence electron. For this type of computation only one k-point, the Γ point, is

required. It is found that using these conditions, the formation energy lowers uniformly

for all charge states by 1.06 eV. The Na0
Cu defect is consequently readily formed, yet

does not contribute to the electrical conductivity of the layer.

Compound duCu−Se(Å) ddNa−Se(Å)

CIS 2.456 2.694

CIGS with x = 0.5 2.460 2.706

CGS 2.440 2.666

Table 5.5: Interatomic distances in unperturbed (bulk) lattice, duCu−Se, and in

the lattice with NaCu defect, ddNa−Se, for q = 0 (the ground state).

Compound Transition Energy (eV)

CIS
+1/0 -0.017
0/-1 1.883

CIGS with x = 0.5
+1/0 -0.014
0/-1 2.163

CGS
+1/0 -0.418
0/-1 2.062

Table 5.6: Relevant transition levels for a NaCu defect w.r.t. the VBM.
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Figure 5.6: Relaxed environment of the NaCu defect in CIS. The different
atoms are: Cu (blue), In (pink), Se (green) and Na (yellow).

5.3.2.2 The existence of a hole barrier

A model for the benign effect of Na on the grain boundaries of polycrystalline CIGS has

been suggested by Persson and Zunger [14]. They propose a hole barrier by Na0
Cu defect

at the grain boundary (GB) and by phase segragation of a compound formed between

host and dopant, namely NaInSe2 (NIS). The idea behind the hole barrier is a lowering

of the VBM as Cu is replaced by Na due to the reduction in p-d repulsion. We did

not find evidence from our results that supports the formation of a hole barrier owing

to Na0
Cu. The reason is that in studying single point defects it is implied that the bulk

band structure is negligibly perturbed. Persson and Zunger argue that Na doping in

small quantities leads to reconstruction at the GB. This stacking fault would, according

to them, lead to a neutral barrier at the GB. There is no clear experimental evidence to

support this hypothesis, as is established in Ref. [15].

In the presence of larger quantities of Na, Persson and Zunger predict the formation

of NaInSe2 (NIS) at the GBs. This is in a way supported by experimental work by

D. Rudmann, comparing different methods for incorporation of Na in CIGS [79]. He

could conclude that the solubility of Na in CIGS is low, causing Na to reside at the GBs.

However, segregation of NIS is not explicitly mentioned, as no direct imaging of the GB

structure was performed. We present a study of NIS using the HSE06 functional, based

on which we can align NIS and CIS, directly showing whether this leads to an effective

hole barrier.

The space group of NIS in Hermann-Mauguin notation is R3̄m (No. 166, TRI) [76, 80].

The positions of the atoms in this structure are listed in Table 5.7 and the conventional
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(a) CIS

(b) CIGS with x = 0.5

(c) CGS

Figure 5.7: Formation energies Ef (eV) of the NaCu defect in different CIGS
compounds as a function of the Fermi level EF (eV) between the VBM and

CBM.



Chapter 5. Defect calculations on CIGS 112

unit cell of NIS is shown in Figure 5.8. We theoretically obtain lattice parameters

a = b = 3.981 Å, c = 20.894 Å and parameter z = 0.260. These agree well with

experimental values a = b = 3.972 Å, c = 20.890 Å and parameter z = 0.260 [76].

The heat of formation of NIS obtained from the hybrid treatment is:

∆Hf (NIS) = Etot(NIS)− Eisoltot (Na)− Eelemtot (In)

atom
− 2

Eelemtot (Se)

atom

= −5.36 eV .

(5.7)

In this calculation Eisoltot (Na) is the total energy of an isolated Na atom. The purpose is

to mimic the incorporation of Na in the common growth methods. We can estimate the

tendency for phase segregation of NIS by calculating the mixing enthalpy:

∆H = Etot (NaCu15In16Se32)− 1

16
Etot (Na16In16Se32)− 15

16
Etot (Cu16In16Se32) ,

(5.8)

where Etot (NaCu15In16Se32) is the total energy of the structure with the Na0
Cu defect

in the 2× 2× 2 supercell and Etot (Na16In16Se32) and Etot (Cu16In16Se32) are the total

energies of NIS and CIS scaled to the 2× 2× 2 supercell. The result is that the mixing

enthalpy is 15.2 meV per mixing atom (Na and Cu). It is positive, so mixing does not

occur spontaneously. This can be the reason why one finds that the solubility of Na in

CIGS is low.

The hypothesis that formation of NIS at the GB results in a hole barrier can be tested

by aligning the band structures of NIS (GB) and CIS (GI). We find that NIS has a

considerably larger band gap of 2.26 eV, compared to CIS with a gap of 1.00 eV. We

align NIS and CIS by calculating the branch-point energy (BPE) by a weighed average

over the BZ of the bulk band structure. We have explained this method extensively

in Chapter 4. The number of bands used in the average is chosen following Schleife et

al. [21]. Consequently, we use 12 valence bands and 6 conduction bands for the BPE of

NIS and 16 valence bands and 8 conduction bands for CIS. The alignment is shown in

Figure 5.9. It is straddling (type-I) with an offset of 0.51 eV between the valence bands

and 0.75 eV between the conduction bands.

It is unsure whether Persson and Zunger have taken into account that NIS has a con-

siderably larger band gap than CIS. The removal of the p-d repulsion due to Cu indeed

leads to a lowering of the VBM as Cu in the formation of NIS. Yet, due to the larger
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band gap of NIS, the alignment is not staggered (type-II) but straddling (type-I). A

staggered alignment indeed separates electrons and holes in opposite directions. The

straddling alignment, however, does not lead to an effective hole barrier. Both electrons

and holes are confined to the grain interior. There is no reduced recombination of elec-

trons and holes resulting from this scenario and moreover electrical conductivity across

the grain boundaries is strongly suppressed. This leads to the conclusion that phase

segregation of NIS at the grain boundary, as suggested by Persson and Zunger, is very

unlikely to be beneficial for the performance of the device. Larger concentrations of Na

(beyond 0.1 at%) are indeed observed to have a negative effect on the efficiency of CIGS

absorber layers [12]. Our calculations show one possible advantage of NIS, provided it

is not present in excess at the grain boundaries. Namely, due to its large band gap, it

may lead to an increase of the open circuit voltage of the PV device.

Element Wyckoff position Coordinate

In 3a (0,0,0)

Na 3b
(
0, 0, 1

2

)
Se 6c (0,0,z), (0,0,-z)

Table 5.7: Wyckoff positions and coordinates of the atoms in NaInSe2 (NIS)
in the R3̄m (No. 166, TRI) space structure [76, 80]. The coordinates are given

in terms of the rhombohedral primitive lattice vector [49].

Figure 5.8: Conventional unit cell of NIS in the R3̄m (No. 166, TRI) space
structure. The conventional unit cell contains 3 Na atoms (yellow), 3 In atoms

(pink) and 6 Se atoms (pink).
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Figure 5.9: Alignment of NIS (at the grain boundary) and CIS (in the grain
interior) using a branch-point energy (BPE) method. The BPE is set at 0 eV.

The alignment is straddling (type-I).
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5.3.3 Carbon impurities

As mentioned in the introduction, the interest for C impurities is inspired by nonvacuum

synthesis techniques for CIGS, such as printing of an ink containing precursor nanopar-

ticles. The nonvacuum methods have the clear advantage of a reduced loss of material,

compared to losses of 20 to 50 % for vacuum processes. Additionaly, the required energy

input is much smaller in nonvacuum methods. In these methods, C is present as part of

organic solvents for the nanoparticles. The electronic configuration of C is [He] 2s22p2,

where the electrons in the underlined orbitals are treated as a valence electrons in the

PAW potential. We will study three types of C impurities: (i) CCu (C substitutional on

a Cu site), (ii) CIn/Ga (C substitutional on an In/Ga site) and (iii) Ci (C interstitial).

5.3.3.1 Substitutional carbon on copper site

The C substitutional on a Cu site, CCu, is a potential impurity, especially in growth

conditions with Cu-deficiency. The CCu defect in CIS is shown in Figure 5.10. As

for VCu and NaCu defects, the distortion of the lattice surrounding the defect can be

measured as the change in interatomic distance as Cu is replaced by C. In the discussion

of C impurities we will each time include the limiting compounds, CIS and CGS. In

Table 5.8, the interatomic distances can be found. We list the results for all calculated

charge states. A wide range of q = −2,−1, 0,+1,+2,+3 is chosen, as C can formally

carry oxidation varying from -4 to +4. It turns out that the C-Se distance is smaller

than the unperturbed Cu-Se distance for all charge states. The maximal C-Se distance

is found for q = 0 in both the CIS and CGS host. The C-Se distance decreases for both

positive and negative charge states.

The formation energies in CIS and CGS, shown in Figure 5.11, indicate that the CCu

defect prefers to donate electrons. For small Fermi levels, the q = +3 state is favored.

This is not surprising, since C has 3 valence electrons in excess compared Cu. There is a

direct transition from the q = +3 to the q = +1 state within the band gap, at 0.805 eV

and 0.922 eV for respectively CIS and CGS, as can be found in Table 5.9. A transition

+1/0 occurs far within the conduction bands. This means that, given the Fermi level

is positioned sufficiently high, the CCu can in principle act as a shallow donor in both

CIS and CGS. This may be of technological interest to n-type doping for CIGS p-n
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homojunctions. However, two problems arise: first, as we have found in Section 5.3.1,

the ubiquitous VCu defects pin the Fermi level far from the CBM. The reason is, as we

have seen, the spontaneous creation of these defects, especially in compounds with a

significant amount of Ga. The second problem is that the formation energy of the donor

defect is high. At the CBM, it is 6.57 eV in CIS and 7.11 eV in CGS (under Cu-rich and

C-rich conditions). This also means that CCu defects are no real threat to the p-type

conductivity in a printed CIGS absorber layer. So, are there effective n-type dopants

for CIGS? Zunger et al. have found theoretically that CdCu is a shallow donor in CIS

and MgCu is a shallow donor in CGS [23]. Yet, the formation energy is not sufficiently

low to overcome the compensation by VCu defects. As such, Zunger et al. put forward

the idea of focussing on doping under nonequilibrium conditions.

Compound q ddC−Se(Å)

CIS

+3 2.043
+2 2.177
+1 2.307
0 2.314
-1 2.300
-2 2.273

CGS

+3 2.058
+2 2.177
+1 2.316
0 2.349
-1 2.340
-2 2.270

Table 5.8: Interatomic distances ddC−Se in the lattice with CCu defect for
several charge states, q. The unperturbed interatomic distances are duCu−Se =

2.456, 2.440 Å for respectively CIS and CGS.

Compound Transition Energy (eV)

CIS
+3/+1 0.805
+1/0 1.696

CGS
+3/+1 0.922
+1/0 2.058

Table 5.9: Relevant transition levels for a CCu defect w.r.t. the VBM.
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Figure 5.10: The C substitutional (brown) on a Cu site and its relaxed envi-
ronment in CIS, consisting of Cu (blue), In (pink) and Se (green).

(a) CIS

(b) CGS

Figure 5.11: Formation energies Ef (eV) of the CCu defect in CIS and CGS
as a function of the Fermi level EF (eV) between the VBM and CBM.
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5.3.3.2 Substitutional carbon on indium or gallium site

Another potential defect is substitutional C on an In site (in CIS) or a Ga site (in

CGS), as shown in Figure 5.12. These fall in the same category, because In and Ga

occupy equivalent lattice sites in the chalcopyrite structure. Since the difference in

valence electrons between C and In/Ga is only one, we have selected charge states

q = −2,−1, 0,+1,+2. In Table 5.10 all C-Se interatomic distances, between C and

the adjacent Se atoms are tabulated. They are to be compared to the In-Se and Ga-

Se distances in the unperturbed CIGS lattice. Thus we observe that the interatomic

distance decreases by an amount ranging from 0.305 (0.156) Å for q = −2 to 0.558

(0.385) Å for q = +2 in CIS (CGS).

The formation energy plots of the CIn defect in CIS and CGa in CGS are presented in

Figure 5.13. The formation energy is calculated using In/Ga-rich and C-rich conditions.

The ground state for the lower Fermi levels in the gap is q = +1. The interpretation is

again clear: by donating one electron, C carries the same number of valence electrons

as In and Ga. There is a transition to a different charge state within the gap for both

host materials. At 0.743 eV (0.257 eV from the CBM) there is a +1/0 transition in CIS.

Similarly, at 1.376 eV (0.344 eV from the CBM) a +1/-1 transition appears in CGS.

This means that CIn and CGa give rise to really deep donor levels 3. Hence, there is no

direct contribution to the conductivity in CIGS from CIn and CGa defects. In general, a

formation energy plot, with a donor ground state near the VBM or an acceptor ground

state near the CBM can be considered a ‘deep-level trap’. It does not contribute directly

to the electrical conductivity, but if the formation energy is low, it may trap the free

charge carriers originating from other, electrically active defects. Yet, as the formation

energies are high, exceeding 5.50 eV (4.80 eV) in CIS (CGS), CIn/Ga cannot be expected

to significantly influence the electrical conductivity.

3Formally, CGa in CGS can be considered an extremely deep acceptor level as well, with a +1/-1
transition at 1.376 eV from the VBM.
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Compound q ddC−Se(Å)

CIS

+2 2.051
+1 2.062
0 2.147
-1 2.301
-2 2.304

CGS

+2 2.044
+1 2.045
0 2.142
-1 2.272
-2 2.273

Table 5.10: Interatomic distances ddC−Se in the lattice with CIn and CGa de-
fects for several charge states, q. The unperturbed interatomic distances are

duIn−Se = 2.609 Å in CIS and duGa−Se = 2.429 Å in CGS.

Compound Transition Energy (eV)

CIS
+2/+1 -0.213
+1/0 0.743
0/-1 1.031

CGS
+2/+1 0.014
+1/-1 1.376
-1/-2 2.294

Table 5.11: Relevant transition levels for the CIn and CGa defects w.r.t. the
VBM.

Figure 5.12: The C substitutional (brown) on an In site and its relaxed envi-
ronment in CIS, consisting of Cu (blue), In (pink) and Se (green).
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(a) CIS

(b) CGS

Figure 5.13: Formation energies Ef (eV) of the CIn and CGa defects in CIS
and CGS as a function of the Fermi level EF (eV) between the VBM and CBM.
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5.3.3.3 Interstitial carbon

The final C impurity we discuss is a C interstitial defect, Ci. The possibility of a C

interstitial defect can be understood in terms of the atomic radii. Of course, the notion

of an atomic radius is highly approximate, given the quantum mechanical nature of

atoms. The atomic radius of C, 0.77 Å, is small compared to the atomic radii of the

other atoms: Cu (1.28 Å), Ga (1.41 Å), In (1.66 Å) 4 [23]. The initial position of the

interstitial is chosen, so the distance to all other atoms in the lattice is maximal. The

relaxed lattice, with all force components below 0.05 eV/Å, is shown in case of CIS

(with q = 0) in Figure 5.14. The distortion of the lattice can conveniently be measured

in terms of the two nearest neighbor distances of the C interstitial, cfr. Figure 5.12. It

turns out the nearest neighbors are usually Se and Cu in both CIS and CGS. For the

charge acceptor states in CGS the second nearest neighbor is Ga instead.

The formation energies of the C interstitials in CIS and CGS using C-rich conditions

are displayed in Figure 5.15. In CIS, there is a transition between the q = +2 and q = 0

states at 0.657 eV above the VBM (0.343 eV below the CBM). This means that the Ci

acts as a very deep donor. In CGS, the ground state of Ci is donor-like for the lower

range of EF . There is a transition from q = +2 to q = +1 at 0.184 eV. Subsequently,

at 0.458 eV the neutral state becomes the ground state. For the higher range of EF

in the gap the defect favors acceptor behavior. Transition levels are ε(0/ − 1) = 1.015

eV and ε(−1/ − 2) = 1.666 eV. Therefore, the C interstitial is both an extremely deep

donor and acceptor. The C interstitial is a possible deep-level trap for acceptor levels

in CIS and for both donor and acceptor levels in CGS. In the chalcopyrite materials,

this is however not a significant problem, since the formation energy is high. For Ci, its

minimal value within the band gap is 3.69 eV (3.97 eV) in CIS (CGS).

4The atomic radii of the metallic elements are defined as the radius of the ions in 12-coodinated
metals, the atomic radius of C is defined as the radius of the atom in a tetrahedral covalent bond.
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Compound q NN1 NN2 ddC−NN1
(Å) ddC−NN2

(Å)

CIS

+2 Se Cu 1.733 1.968
+1 Se Cu 1.769 1.964
0 Se Cu 1.811 1.859
-1 Se Cu 1.874 2.273
-2 Se Cu 1.905 2.200

CGS

+2 Se Cu 1.923 1.993
+1 Se Cu 1.763 1.984
0 Se Cu 1.807 1.858
-1 Se Ga 1.839 1.907
-2 Se Ga 1.876 1.869

Table 5.12: Interatomic distances between C and its two nearest neighbors,
NN1 and NN2, in the lattice with Ci defect for several charge states, q.

Compound Transition Energy (eV)

CIS
+2/0 0.657
0/-2 1.513

CGS

+2/+1 0.184
+1/0 0.458
0/-1 1.015
-1/-2 1.666

Table 5.13: Relevant transition levels of the Ci defect w.r.t. the VBM.

Figure 5.14: The lattice distortion in CIS due to a Ci defect. The 2 × 2 × 2
supercell is indicated. The position of the interstitial in terms of a1 = (2a, 0, 0),
a2 = (0, 2a, 0) and a3 = (a, a, c), the primitive lattice vectors that span the

2× 2× 2 supercell, is ∼(0.97, 0.23, 0.30).
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(a) CIS

(b) CGS

Figure 5.15: Formation energies Ef (eV) of the Ci defect in CIS and CGS as
a function of the Fermi level EF (eV) between the VBM and CBM.
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5.3.3.4 Chemical potential of carbon

Central in our discussion of C doping is the chemical potential of C. We have adopted C-

rich conditions, using the chemical potential of the elemental solid, in this case graphite.

The resulting chemical potential of C is µC = −11.31 eV. So, owing to the stability of

graphite, transferring C atoms from the reservoir to the system is quite hard. Since C

atoms are added to the system, a term of +11.31 eV is included in the formation energy

following Equation 5.1. This is the main reason the formation energy of all C impurity

defects turns out to be rather high.

One may wonder whether it is correct to suppose a reservoir of graphite. In reality, the

C atoms are part of organic molecules. Methanol is probably the most simple organic

solvent used in the printing method [12]. It can readily be studied using the hybrid

functional, enclosing it in a ‘box’, a supercell with an edge of 30 Å that is otherwise

empty. In order to calculate the formation energy of methanol, CH3OH, the total energy

of graphite is to be taken into account. The total energies of the O2 and H2 molecules

have to be included as well. For this computation, O2 and H2 are enclosed in boxes with

edges measuring 30 Å. The total energy of O2 is obtained in a spin-polarized calculation,

since the triplet state with two unpaired electrons is the ground state. The theoretical

result for the formation energy of methanol is thus:

∆Hf (CH3OH) = Etot(CH3OH)− Etot(graphite)

atom
− 1

2
Etot(O2)− 2Etot(H2)

= −2.71 eV .

(5.9)

An experimentally obtained value of the heat of formation is -238.4 kJ/mol [81]. This

is equivalent to -2.47 eV per CH3OH molecule, yielding a good agreement with the

theoretical value. The growth conditions are not specified for the experimental value.

Stability of the methanol molecule requires that ∆µC ≤ 0. Consequently, the chemical

potential µC ranges from µgraphiteC in C-rich conditions to µgraphiteC − 2.71 eV in C-poor

conditions. We find that the formation energies can shift upwards with +2.71 eV at

most (in C-poor conditions, which are not plausible). We can conclude that a reservoir

containing organic molecules (an analogous reasoning can be applied to other solvents)

leads to an additional increase of the C impurity formation energy.
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Presenting the results for the formation energies, we have assumed Cu-rich conditions for

CCu and In/Ga-rich conditions in case of CIn/Ga. A correction for ∼ 10 % Cu-deficiency

leads to a slight downwards shift of the defect formation energies. We stress that this

shift is uniform, meaning it is equal for all charge states of the same defect. Therefore,

the transition levels and thus the conclusion regarding the type of conductivity are not

altered. The likelihood of the formation of the defect is determined by the chemical

potentials of the atoms that are exchanged with the reservoir. The formation of all C

defects that we have studied, CCu, CIn/Ga and Ci have high formation energies amounting

to respectively >∼ 3.5 eV, >∼ 5.0 eV and >∼ 3.5 eV near the VBM and >∼ 6.5 eV,

>∼ 6.0 eV and >∼ 4.0 eV near the CBM. This leads to the overall conclusion that the

formation of C defects is unlikely. Hence, it can be expected that C is expelled outside

of CIGS, to the grain boundaries or outside of the absorber layer. This conclusion

has been supported in private communication with S. Siebentritt, professor in physics

at the University of Luxembourg and specialised in solar cells based on chalcopyrites.

Prof. Siebentritt has confirmed that in nonvacuum synthesis methods for CIGS, a layer

of C is formed outside of the absorber layer.



Conclusion and outlook

Cu(In,Ga)Se2 (CIGS) is an alloy of the chalcopyrite materials CuInSe2 (CIS) and CuGaSe2

(CGS) with body-centered tetragonal space group I4̄2d (No. 122). It is a direct band

gap semiconductor with an absorption coefficient that exceeds that of crystalline Si by

approximately 100 times. This is why CIGS is used as the absorber material in thin film

photovoltaic cells, possibly on a flexible substrate. To date, polycrystalline CIGS -based

cells hold the record efficiency in the category of thin film cells.

We have performed a first-principles study of CIGS, using density functional

theory (DFT), in which we try to improve on previous results by means of a hybrid

functional, more specifically the Heyd-Scuseria-Ernzerhof (HSE) functional. This type

of functional, containing an amount of Hartree-Fock exchange interaction, helps to over-

come the band gap problem in DFT. Indeed, band gaps of CIGS obtained using a

standard DFT functional are close to zero, whereas the HSE functional yields values

that are in good agreement with experiment. The equilibrium structure of compounds

with an intermediate Ga-to-In ratio, viz. 25, 50 and 75 % as implemented in a 16-atom

supercell (i.e. twice the primitive cell), are found to deviate slightly from the chalcopyrite

structure. This results in a lowering of the symmetry. Nevertheless, the lattice parame-

ters generally comply with Vegard’s law and there is no tendency for phase segregation

of CIS and CGS at room temperature.

Regarding the chemical bonds in CIGS, the projected DOS shows hybridization

between Cu-3d and Se-4p states in the upper valence bands, leading to p-d repulsion.

Furthermore, Bader charge analysis reveals that the chemical bonds bond are covalent

rather than ionic. We have also calculated additional properties from the band struc-

ture. First, the band masses of charge carriers in the upper valence and lower conduction

bands are well below the free electron mass and have limited anisotropy. Secondly, the

onset of the imaginary part of the dielectric function confirms that the band gap in
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CIGS is direct.

Next, we have studied the mutual band alignment of CIGS compounds with vary-

ing Ga-to-In ratio. Two main methods are compared, viz. (i) based on the branch-point

energy (BPE) and (ii) based on a slab calculation. The main advantage of the former is

that the BPE can be calculated from the bulk band structure. On the other hand, the

slab calculation gives an absolute reference for the alignment, the vacuum level. The

resulting alignment is of the straddling type, in which the offset of the conduction bands

is considerably larger than that of the valence bands. This is natural, since the lower

conduction bands predominantly consist of Ga-4s and In-5s states and they are thus

directly affected by a change of the Ga-to-In ratio. The valence bands offsets of CIS and

CGS, obtained from the BPE (calculated as a BZ average of the band structure) and

from a slab calculation, differ by less than 0.1 eV. It demonstrates that the BPE is a

useful concept for the alignment of band structures.

We have subsequently calculated the formation energy of a series of point defects

in CIGS, implemented in a 64-atom supercell. We have demonstrated, by a comparison

with results obtained in a 216-atom supercell, that the 64-atom supercell is sufficient

for accurate calculations. To begin with, our computations show that Cu vacancies act

as shallow acceptors, thus accounting for the p-type conductivity of CIGS absorbers.

We have found that they are likely to be formed, especially under Cu-deficient growth

conditions. Moreover, if the Fermi level is located near the CBM, Cu vacancies are

deep-level traps that - due to their prevalence - prevent n-type conductivity, in partic-

ular in compounds with a high Ga-to-In ratio. Next, we have contributed to the open

question of why Na doping is beneficial to the cell performance. A Na substitutional

on a Cu site turns out to form spontaneously, yet it is not electrically active. This is

why we have considered the formation of NaInSe2 (NIS) at the grain boundaries. NIS

has long been assumed to produce a hole barrier, resulting in type-inversion of the grain

boundaries and reduced recombination. We find, however, that the alignment of NIS

(at the grain boundary) and CIS (in the grain interior) is straddling. Consequently, it is

not an effective hole barrier, but a barrier for all charge carriers. Based on the BPE, we

have instead proposed that type inversion in CIGS may occur due to donor-like surface

states. Provided NIS is not present in excess at the grain boundaries, the open circuit

voltage of the cell may benefit from its large band gap.

Ultimately, we have studied C impurities, a quite novel topic, related to new

nonvacuum growth methods based on nanoparticle inks. We have considered several
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substitutionals and also an interstitial defect. We found that a C substitutional on a Cu

site is a shallow donor, while C substitutionals on In/Ga sites lead to very deep donor

levels. Interstitial C turns out to be both a really deep donor and acceptor. Moreover,

all C impurities act as deep-level traps: the substitutionals for acceptor levels and the

interstitial defect for levels of both types. They can thus in principle harm the p-type

conductivity in CIGS. Yet, we observe that the formation energy of C defects is very

high, even in C-rich conditions. Therefore, C defects are not likely to be formed in

CIGS. We expect that C is expelled from the absorber in nonvacuum growth methods.

In this thesis, we have strived to present a thorough description of the CIGS absorber

on an atomic level, in the framework of DFT. Of course, modelling a real (photovoltaic)

device is complex and improvements can always be made. We wish to point out a few

examples as an outlook. First, since DFT is formulated as a ground state theory, it

cannot be used to describe excitonic interaction. Including this interaction of a bound

electron-hole pair leads to a more accurate account of the optical properties. It can be

realized in terms of the Bethe-Salpeter equation (e.g. within the GW approximation).

Secondly, we have discussed the grain boundaries in polycrystalline CIGS on occasion,

mainly in relation to the notion of a hole barrier. However, we have not modelled

the grain boundaries directly. This is not an easy task, since there are many possible

orientations and compositions that should be considered and since a large supercell is

required. Thirdly, our defect calculations can be extended to combinations of defects

(e.g. 2V−Cu+In2+
Cu), for which at least a 216-atom supercell is needed. Finally, the kesterite

materials Cu2ZnSn(S,Se)4 (CZTS, CZTSe) are recently gaining technological interest.

Currently, devices with kesterite absorber layers have not quite reached the efficiency

of CIGS-based cells. First-principles calculations can play a role in the development of

these devices.



Conclusie en vooruitzicht

Cu(In,Ga)Se2 (CIGS) is een legering van CuInSe2 (CIS) en CuGaSe2 (CGS), chalcopyriet-

materialen met ruimtegecentreerde tetragonale ruimtegroep I4̄2d (Nr. 122). CIGS is een

halfgeleider met een directe bandkloof en als gevolg een absorptiecoëfficient, die ongeveer

100 keer groter is dan die van kristallijn Si. Dit verklaart waarom CIGS gebruikt wordt

als absorptiemateriaal in dunne-film fotovoltäısche cellen, eventueel op een flexibel sub-

straat. Cellen met een absorptielaag van polykristallijn CIGS hebben hebben de hoogste

efficiëntie binnen de categorie van dunne-film cellen.

We hebben een ab-initio studie van CIGS uitgevoerd, gebruik makend van dicht-

heidsfunctionaaltheorie (DFT). Hierbij hebben we getracht om met behulp van een hy-

bride functionaal, meer bepaald de Heyd-Scuseria-Ernzerhof (HSE) functionaal, vooruit-

gang te boeken t.o.v. resultaten in de wetenschappelijke literatuur. Dit type van functio-

naal, dat een hoeveelheid Hartree-Fock exchange-interactie in rekening brengt, biedt

een oplossing voor het bandkloofprobleem in DFT. De bandkloven van CIGS materialen

beschreven m.b.v. een standaard-functionaal zijn ongeveer nul, maar m.b.v. van een hy-

bride functionaal komen de bandkloven beter overeen met experimentele waarden. De

evenwichtstructuur van CIGS met een intermediaire Ga-In verhouding, namelijk 25, 50

and 75 %, gëımplementeerd in een supercel van 16 atomen (d.i. tweemaal de primitieve

cel), blijkt licht af te wijken van de chalcopyriet-structuur. Het gevolg is een verlaging

van de symmetrie. Toch voldoen de roosterparameters in het algemeen aan de regel van

Vegard en treedt er geen fasesegregatie op bij kamertemperatuur.

Op het vlak van de chemische binding, volgt uit de geprojecteerde DOS dat de

Cu-3d en Se-4p toestanden in de bovenste valentiebanden gehybridiseerd zijn, wat leidt

tot p-d repulsie. Verder leert een Bader-ladingsanalyse ons dat de bindingen meer een

covalent dan een ionisch karakter hebben. We hebben ook enkele afgeleide grootheden
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van de bandenstructuur berekend. Ten eerste, blijken de bandmassa’s van de ladings-

dragers in de bovenste valentie- en onderste conductiebanden systematisch kleiner te zijn

dan de massa van het vrije elektron. Ze vertonen ook slechts een beperkte anisotropie.

Ten tweede, wordt door de drempelwaarde van het imaginaire deel van de diëlektrische

functie bevestigd dat de bandkloof van CIGS direct is.

Vervolgens hebben we de alignering onderzocht van de bandenstructuren van

CIGS met een variabele Ga-In verhouding. In hoofdzaak worden twee methoden voor

alignering vergeleken, namelijk (i) m.b.v. de ‘branch-point’ energie (BPE) en (ii) m.b.v. de

potentiaal in een ‘slab’ (plaat). Het feit dat de BPE berekend kan worden uit louter

de bandenstructuur in bulk, is het belangrijkste voordeel van de eerste methode. Langs

de andere kant bevat een alignering m.b.v. een slab een absolute referentie, te weten

het vacuüumniveau. Zo vinden we dat de alignering van CIGS van het ‘straddling’

(gespreide) type is. De stapgrootte tussen de conductieniveaus is veel groter dan die

tussen de valentieniveaus. Dit kan als volgt begrepen worden. De onderste conductie-

banden bestaan hoofdzakelijk uit Ga-4s en In-5s toestanden en worden dus rechtstreeks

bëınvloed door de Ga-In verhouding. De stapgroottes tussen de valentieniveaus van

CIS en CGS, bekomen met enerzijds de BPE-methode (berekend als gemiddelde van de

bandenstructuur in de 1e BZ) en anderzijds met de slab-methode, verschillen minder

dan 0,1 eV. Dit toont in het geval van CIGS aan dat de BPE-methode bruikbaar is om

bandenstructuren te aligneren.

We hebben ook een studie gemaakt van de vormingsenergie van een reeks van punt-

defecten in CIGS, gëımplementeerd in een supercel van 64 atomen. We hebben gezien

dat dit formaat van supercel volstaat, door te vergelijken met berekeningen die gebruik

maken van een supercel van 216 atomen. Om te beginnen, tonen onze berekeningen dat

Cu-vacatures functioneren als ondiepe acceptoren. Dit verklaart de p-type geleiding van

CIGS absorptiematerialen. We vinden ook dat Cu-vacatures gevormd kunnen worden, in

het bijzonder bij Cu-arme groeicondities. Bovendien kunnen de Cu-vacatures elektronen

gedoneerd door andere defecten invangen, als het Fermi-niveau nabij het CBM ligt. Op

die manier werken ze n-type geleiding tegen, vooral in CIGS die meer Ga dan In bevatten.

Verder hebben we Na-onzuiverheden in CIGS beschouwd. Men weet uit experimenten

dat deze een gunstig effect hebben op de efficiëntie van de fotovoltäısche cellen, maar

het mechanisme hierachter is niet duidelijk gekend. Uit onze berekeningen volgt dat een

Cu→Na substitutioneel defect spontaan vormt, maar niet elektrisch actief is. Daarom

hebben ook we vorming van NaInSe2 (NIS) aan de korrelgrenzen bestudeerd. Het werd
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verondersteld dat dit resulteert in een barrière voor gaten, die zorgt voor type-inversie

van de korrelgrenzen en verminderde recombinatie. Wij hebben echter aangetoond dat

de alignering van NIS (aan de korrelgrenzen) en CIS (in de korrels) van het ‘straddling’

type is. Daaruit blijkt dat NIS geen effectieve barrière voor gaten vormt, maar een

barrière voor alle ladingsdragers. Op basis van de BPE stellen we voor dat type-inversie

in CIGS eerder een gevolg is van donor-achtige oppervlaktetoestanden. NIS zou - indien

het niet in hoge mate aanwezig is aan de korrelgrenzen - door zijn grote bandkloof wel

een gunstig effect kunnen hebben op de open-kring spanning van de cel.

Ten slotte hebben we C-onzuiverheden in CIGS bestudeerd. Dit onderwerp is vrij-

wel onbesproken in de wetenschappelijke literatuur, maar wel van belang voor nieuwe

groeitechnieken die gebruik maken van een inkt van nanodeeltjes en geen vacuüm be-

hoeven. We hebben verscheidene substitutionele defecten en ook een interstitieel defect

onderzocht. We vonden dat het Cu→C substitutioneel defect een ondiepe donor is, ter-

wijl het In/Ga→C defect leidt tot erg diepe donor niveaus. Interstitieel C blijkt een heel

erg diepe donor en acceptor te zijn. Daarenboven kunnen C-defecten ladingen afkomstig

van andere defecten invangen. Substitutionele C-defecten kunnen gaten invangen en in-

terstitiële C-defecten beide ladingsdragers. Zo kunnen ze in principe de p-type geleiding

in CIGS tenietdoen. We merken echter dat de vormingsenergie van alle C-defecten heel

hoog is, zelfs bij C-rijke groeicondities. Daardoor komen C-defecten niet eenvoudig tot

stand en kunnen we veronderstellen dat C uit de absorptielaag gestoten wordt in de

nieuwe groeitechnieken.

We hebben ons in deze thesis tot doel gesteld een grondige beschrijving van CIGS ab-

sorptiematerialen te geven. Meer bepaald situeert deze beschrijving zich op een ato-

mair niveau en wordt gebruik gemaakt van DFT. Natuurlijk is de modellering van een

realistische fotovoltäısche cel complex en kunnen er dus steeds verbeteringen worden

aangebracht. We wensen enkele voorbeelden aan te stippen bij wijze van vooruitzicht.

Ten eerste kunnen we in DFT geen exciton-interactie behandelen, aangezien DFT gefor-

muleerd is voor grondtoestanden. Indien deze interactie in rekening wordt gebracht,

kunnen de optische eigenschappen nauwkeuriger beschreven worden. Dit kan men ver-

wezenlijken via de Bethe-Salpeter vergelijking (eventueel in de GW-benadering). Ten

tweede hebben we de korrelgrenzen van polykristallijn CIGS nu en dan besproken, vooral

in verband met de barrière voor gaten. We hebbben de korrelgrenzen echter niet recht-

streeks gemodelleerd. Dit is een complexe taak, aangezien er vele mogelijke oriëntaties
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en samenstellingen bestaan en een grote supercel vereist is. Ten derde kunnen we onze

defectberekeningen uitbreiden naar combinaties van defecten (bv. 2V−Cu+In2+
Cu), waar-

voor een supercel van ten minste 216 atomen nodig is. Tot slot zijn kesteriet-materialen

Cu2ZnSn(S,Se)4 (CZTS, CZTSe) recent technologische belangstelling aan het winnen.

Heden hebben fotovoltäısche cellen die kesterieten als absorbtiemateriaal bevatten hele-

maal nog niet de efficiëntie van CIGS-cellen kunnen evenaren. Ab-initio berekeningen

kunnen een rol spelen in de verdere ontwikkeling van deze materialen.
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