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1 Voorwoord

Deze thesis vormt de afsluiter van mijn masteropleiding in de Fysica aan de Universiteit Antwerpen.
Tijdens de voorbije maanden heb ik de kans gekregen om mijzelf te verdiepen in het bestuderen van
banen voor relativistisch en niet-relativistisch deeltjes in verschillende Coulomb-type potentialen.
Graag wil ik van deze gelegenheid gebruik maken om een aantal mensen te bedanken die het schrijven
van deze masterthesis mogelijk hebben gemaakt. In de eerste plaats gaat mijn dank uit naar mijn
promotor professor François Peeters en co-promotor Ben Van Duppen, die mij de mogenlijkheid
gegeven hebben om mezelf te verdiepen in dit interessant onderwerp. Ik dank hen hierbij voor
de tijd die ze beschikbaar gesteld hebben om mijn vragen te beantwoorden, maar ook voor hun
steun en geduld. Een speciaal woordje dank gaat naar mijn familie en vrienden waarvan ik wijze
raad heb mogen ontvangen. Tot slot bedank ik nog mijn vriendin Sara en mijn neef Franco die
hun best hebben gedaan om mijn thesis na te lezen en mij moreel hebben ondersteund tijdens het
schrijfproces.
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2 Abstract (Nederlands)

In deze masterthesis worden de verschillende mogelijke banen voor een relativistisch en niet-
relativistisch deeltje in Kepler/Coulomb-type potentialen bestudeerd. Er worden bewegingsvergeli-
jkingen opgesteld en opgelost voor zulke deeltjes in verschillende potentialen. De bewegingsvergeli-
jkingen worden zowel analytische als numeriek opgelost. Er wordt een stabiliteitsanalyse gemaakt
om de voorwaarde voor stabiele gebonden toestanden te vinden en hierbij worden de mogeli-
jke banen voor beide deeltjes gecatalogeerd. Als eindresultaat voor ieder probleem wordt er een
fasediagram gegeven dat een overzicht geeft voor de verschillende mogelijke banen voor beide deeltjes.

Bij het introduceren van de relativistische natuur van het deeltje in een Kepler/Coulomb po-
tentiaal, worden er onstabiele banen gevonden waarbij het deeltje spiraalt en invalt in de oorspong
van de Kepler/Coulomb potentiaal, terwijl zijn energie en angulaire momentum worden behouden.
Dit fenomeen wordt ”atomic collapse” genoemd en wordt meestal doormiddel van kwantum-
relativistische mechanica behandeld. In de inleiding worden er sommige verbanden gelegd tussen
kwantum-relativistisch en klassiek ”atomic collapse” en er wordt uitgelegd hoe ”atomic collapse”
experimenteel kan geobserveerd worden. Verder wordt er gekeken hoe de banen van beide deeltjes
worden bëınvloed door de Kepler/Coulomb potentiaal aan te passen V ∼ 1/rn. Door de macht n = 2
te nemen, wordt de potentiaal veel sterker en meer singulier dan de Kepler/Coulomb potentiaal.
Hierbij wordt er geconcludeerd dat een niet-relativistisch deeltje bij een kritiek angulair momentum
onstabiele banen vertoont zoals atomic collapse, terwijl voor angulair moment boven deze kritische
waarde we stabiele banen zoals parabool/hyperbool baan vinden. Vanuit de stabiliteitsanalyse
wordt er gevonden dat hier geen stabiele gebonden toestanden mogelijk zijn en het kritieke angulaire
momentum fungeert als limiet waarbij onder deze waarde het deeltje ”atomic collapse” ondervindt
en erboven verstrooingstoestanden. De situatie voor een relativistisch deeltje is anders. Vanuit
de stabiliteitsanalyse worden er stabiele gebonden toestanden gevonden die zich manifesteren als
stabiele circulaire banen. Hierbij wordt geobserveerd dat het deeltje afhankelijk van zijn begin
positie zich bevindt in stabiele banen zoals circulaire banen, paraboolachtige banen waarbij in de
omgeving van de oorsprong van de potentiaal een lusvormige gedrag vertoont en vervolgens ontsnapt.
Als onstabiele banen worden er ”atomic collapse” geobserveerd, waarbij het deeltje ofwel plotseling
op de kern valt ofwel eerst een aantal lussen uitvoert rond de kern en uiteindelijk op de kern valt.
Nog een belangrijk resultaat is dat voor n = 2 het deeltje zich gedraagt als een niet-relativistisch
deeltje in een Coulomb potentiaal. In die zin dat er een minimaal angulair momentum nodig is om
stabiele circulaire banen te bekomen. Nu is spiraliseren in het centrum van de potentiaal fysisch
niet mogelijk omdat het deeltje oneindig energie zou moeten hebben en er wordt gevonden dat
spiraliseren op de kern in dit geval gepaard gaat met een verhoging van de snelheid tot de licht
snelheid v → c terwijl in het niet-relativistische geval v →∞.

Nog een onderdeel van mijn thesis is het bekijken hoe de banen van deze deeltjes worden bëınvloed
als de singulariteit in de potentialen weg gewerkt is. Hierbij wordt er in het algemeen dezelfde
conclusie getrokken en dat is dat het deeltje kinetische energie wint wanneer de singulariteit van de
potentiaal geregulariseerd wordt. Dit wilt zeggen dat de potentiaalterm in de energievergelijking
kleiner wordt en dit leidt tot een verhoging in kinetische energie dewelke ervoor zorgt dat het
deeltje verstrooingsbanen zal volgen. Als laatste onderdeel van mijn thesis worden er de banen
van relativistiche en niet-relativistische deeltjes bekeken in geval van de aanwezigheid van twee
potentialen. Dit systeem is equivalent met een molecule. Hierbij worden er steeds dezelfde patronen
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teruggevonden. Als het deeltje geplaatst wordt tussen de twee potentialen, zal het deeltje voor eeuwig
bewegen rondom beide potentialen en blijft dus gebonden met deze. In geval van verstrooingsbanen,
worden deze vervormd door de aanwezigheid van de twee potentialen en vervolgens ontsnapt het
deeltje.
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3 Abstract (English)

In this master thesis we investigate the orbits of a relativistic and non-relativistic particle in different
Kepler/Coulomb-type potentials. If we consider a non-relativistic particle in a Kepler or Coulomb
potential, we know that the orbits can be circular, elliptic, parabolic and hyperbolic Kepler orbits.
When introducing the relativistic nature of the particle we also get unstable orbits like, a collapse
into the origin of the central force while energy and angular momentum are conserved quantities.
This is possible because of the γ-factor which expresses how the mass increases with velocity.

By making a stability analysis we conclude that a non-relativistic particle doesn’t perform stable
bounded orbits in potential V ∼ 1/r2 but a relativistic particle does. By studying a relativistic
particle in V ∼ 1/r2 we conclude that this behaves as a non-relativistic particle in V ∼ 1/r potential.
This means that this cannot perform a spiraling motion into the origin of the potential while its
energy is conserved.

By removing the singularity in r = 0 in each case V ∼ 1/r and V ∼ 1/r2 for both particles,
we find that both particles gains some kinetic energy which results in scattering states.

In the presence of the two-charge potential we find for each case the same patterns. When
we place the particle between the two potentials the particle performs an infinite circular motion
around the two potentials. When we have scattering states the trajectory deforms and the particle
escapes from the potentials.

For a non-relativistic particle in case of the two-charge potential we find orbit with a precess-
ing elliptic motion with one of the two charges as alternately focal point. Also are found for a
non-relativistic particle scattering states where the orbit is being deformed because of the two-charge
potential.

These last two behaviors are also found for a relativistic particle in V ∼ 1/r potential. The
only difference in observed trajectories is that in the relativistic case the unstable orbits (those who
causes atomic collapse) become bounded orbits in the presence of the two-charge potential.
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4 Introduction

In this master thesis we investigate the orbits of a relativistic and non-relativistic particle in different
Kepler/Coulomb-type potentials. Because of the relativistic nature of a particle, we know from
relativity that the mass depends on the velocity of the particle. This is mathematically expressed as
the γ-factor which expresses how the mass increases with velocity. If we consider a non-relativistic
particle in a Kepler or Coulomb potential, we know that the orbits can be circular, elliptic, parabolic
and hyperbolic Kepler orbits. We know that for a spherically symmetric system the total energy is a
conserved quantity and is expressed as kinetic plus potential energy. So, depending on the position
of the particle on the orbit, there is a teamwork between kinetic and potential energy in such a
way that the total energy is conserved. When introducing the relativistic nature of the particle we
also get unstable orbits like, a collapse into the origin of the central force while energy and angular
momentum are conserved quantities. This is possible because the γ-factor in case of a decrease in
radius (increase in negative sense of potential energy) will provide for an increase in kinetic energy
such that both energy components compensate each other keeping the total energy constant. In
order to describe the system we made a few important assumptions: [5]

1. The particles are treated in a classical manner, i.e. we don’t take into account quantum
mechanical effects

2. We study the behavior of these particles under the influence of spherically symmetric central
forces (central potential F (r) = −∇V (r)) which lead to a system where energy and angular
momentum are conserved quantities

3. Because we make use of central potentials we have to mention that the particles are not
charged, this means that in time the particles cannot radiate or absorb energy. In this way we
get a conserved system with conserved total energy

4.1 Classical and Bohr hydrogen atom

We can compare the above described particles with a charged electron which experiences a Coulomb
potential orbiting around the nucleus of a hydrogen atom. From a classical point of view a charged
electron follows a bounded trajectory around the nucleus. Because the electron is continuously
attracted by the attractive force from a classical point of view we would expect that in time the
electron will gradually lose some energy because of radiation until its kinetic energy is not large
enough to compensate the attractive force, at this point we would expect that the atom collapses
into the origin of the nucleus. But this never happens because the quantum mechanical nature of
electrons, atoms . . . tells us that the energy is quantified and depending on the energy the electron is
trapped in an orbit around the nucleus. This means that the possible orbits for an orbiting electron
are not continuous but discrete. This is Bohr’s quantum theory where the atomic stability is a
consequence of quantum zero-motion (motion of an electron in lowest possible energy level) of an
electron which prevents it to fall in the nucleus. Because the kinetic energy in this case scales with
p2 and we know that the linear momentum scales with one over the length scale of the electron wave
function we have the total energy of the electron as Ee = h̄2

2mer2
− Ze2

r2
. Thus for small radius the

kinetic energy dominates in the energy equation but for large radius the Coulomb term plays the
important role. For a bound orbit at some minimum radius both energy components will balance
each other. This minimum radius corresponds to the lowest energy which is given (if Z = 1) by
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the Bohr radius rB = h̄2

Ze2me
, with h̄ = 1.0545718 · 10−34m2kg/s Planck’s constant, me the electron

mass, e the electron charge and Z nuclear charge. As conclusion we find: [3][9]

1. Classically, a charged particle cannot perform a stable bound orbit around the origin of a
central force because it will fall into it while losing energy due to radiation of electro-magnetic
energy.

2. Quantum mechanically, because the energy of the charged particle is quantized, each energy
level corresponds to a bounded orbit around the origin of the central force. Here the particle
can emit or absorb only quantified energy which will provide for a jump of the particle into
another orbit. Because the energy is quantized there is a lowest possible energy level which
corresponds with the closest orbit to the nucleus with radius rB.

4.2 Quantum-relativistic hydrogen atom

By introducing relativity the situation becomes a bit different from section 4.1. Because the kinetic
energy in this case scales with cp with c the speed of light and because the linear momentum scales
with the inverse of the length scale of the electron wave function we have that p ∼ 1/r which leads
to cp ∼ ch̄/r. Consequently the total energy of the relativistic electron becomes

Eerel =
√

(cp)2 + (mc2)2 − Ze2

r
=

√(ch̄
r

)2
+ (mc2)2 − Ze2

r
. (1)

If we minimize the energy of the relativistic electron with respect to the radius r = r0 we find:

∂Eerel
∂r

∣∣∣∣
r=r0

= 0, (2)

∂Eerel
∂r

∣∣∣∣
r=r0

= 0 = − (ch̄)2

r3
0

√(
ch̄
r0

)2
+ (mc2)2

+
Ze2

r2
0

, (3)

⇒

√
1 +

(
mc

h̄

)2

r2
0 =

ch̄

Ze2
. (4)

Because the term (mc/h̄)2r2
0 contains real quantities we have that the left hand side of Eq. (4) is

larger than 1 consequently we get stable solutions only in the case Z < h̄c/e2 ≈ α−1 = 137. In other
words the nuclear charge should be less than a certain critical value in order to find stable solutions.
The nucleus with a charge larger than the critical charge is called, ”super-heavy atomic nucleus” and
the unstable solution is called ”atomic collapse”. These unstable solutions physically mean that the
electron orbiting a super-heavy atomic nucleus will no longer perform a stable bounded orbit around
it, like explained in previous section in Bohr’s quantum theory, but the electron will spiral into it
while losing its energy, schematically shown in Fig. 1. This unstable character was also found in the
quantum mechanical problem with the same condition, i.e. Zc = 1/α, and was predicted in the year
1952 but was never observed. The only possible way to observe atomic collapse is by creating a
charged super-heavy atomic nucleus such that by surpassing a certain charge threshold the resulting
strong Coulomb field causes an atomic collapse where the electron wave function component shows
the behavior to fall into it. In the next section is explained how atomic collapse was observed in
graphene in 2013. [9][7][8]
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Figure 1: When an electron orbits around a super-heavy atomic nucleus the electron wave function
collapses into an unstable state where the electron falls into the nucleus creating electron-positron
pairs.[16]

4.3 Atomic collapse in graphene

Graphene is a very special nanomaterial which consists of a single atomic layer of carbon atoms
arranged in a hexagonal lattice and bound together by strong sp2 bonds. The layers are held
together by van der Waals interaction leading to graphite. Graphene has unique properties such as
high electron mobility which tells us how quickly an electron can move through it. If we look at
the dispersion relation (relations between energy and linear momentum/ wave vector) of undoped
graphene in Fig. 2 we notice that the valence and conduction bands join together at points in the
Brillouin zone. These special points are also known as K and K’ and also called Dirac points. [9]

Figure 2: The band structure of undoped graphene.[10]
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By looking at Fig. 2 we see that near the Dirac points the conduction band has a linear dispersion
resulting in Dirac cones. A good model to describe the carriers (in this case electrons or holes)
around this region is the Dirac equation, which joins the principles of quantum mechanics and
special relativity. This means that electrons in graphene behaves as massless relativistic fermions
which move with the Fermi velocity. The dispersion relation around the Brillouin zone is thus:

E = ±vF |p| = h̄vF |k| (5)

with vF = 106m/s the Fermi velocity. Because the electrons in graphene behaves as massless
relativistic fermions near the Brillouin zone we can use graphene to simulate several quantum-
relativistic phenomena such as Klein tunneling and atomic collapse. [9][7][8]

4.3.1 Experimental observation of atomic collapse

Atomic collapse has been observed recently in graphene in 2013 by the group of Michael Crommie at
Berkeley. In graphene the critical charge Zc = 1/α = h̄c/e2 = 137 has to be replaced by Z∗ = ε h̄vF

e2

with vF the Fermi velocity and ε a combination of the dielectric constant of graphene and of
its surrounding. This makes Z∗ of order unity. The super-heavy atomic nucleus was simulated
by putting positively charged molecules on top of graphene (see Fig. 3). A scanning tunneling
microscope (STM) made it possible to push 5 charged calcium dimers close together such that they
together act as a nucleus with charge +5e. In Fig. 3 the atomic collapse electron cloud is shown
and is seen in the surrounding of the 5 charged calcium dimers by the enhanced density of states
that was measured by the STM probe. [9][7][8]

Figure 3: Atomic collapse in graphene.

Alternatively, the group of Prof. E. Andrei at Rutgers University was able to controllably charge
a carbon vacancy in graphene and using STM to observe different atomic collapse states. [11] The
same group was able to induce the atomic collapse state in pristine graphene by coating the STM tip
with a particular metal. [12] The theoretical analysis of these experimental results was performed in
the Phd thesis of D. Moldovan. [13]
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4.4 Purpose and structure of the thesis

The purpose of this thesis is to present a classical description of atomic collapse and to investigate
how it depends on the potential. It will be shown that atomic collapse is possible in different
Kepler/Coulomb-type potentials by making a stability analysis in order to have stable bounded
orbits and by figuring out the possible orbits of a relativistic and non-relativistic particle in these
different potentials.

From quantum-relativistic physics we know that when the nucleus charge Z > 1/α the stable
quantized bound orbits become unstable which leads to atomic collapse. This means that in order
to describe atomic collapse with classical description we need to derive some conditions to have
stable/unstable bounded orbits. A good example of a bounded orbit is a circular orbit which
is only possible when the centripetal force is capable to compensate the attractive force of the
Kepler/Coulomb potential. Therefore, we will investigate circular orbits in order to derive the
conditions for stable and unstable orbits.

In the first part of the thesis we will look at a relativistic and non-relativistic particle in V ∼ 1/rn

potential with n=1,2. In each case we obtain the possible bound circular orbits and a classification
of the possible trajectories is made. Afterwards we derive the equation of motions in the presence of
these Kepler/Coulomb-type potentials and we figure out the possible orbits.

In the second part of the thesis I remove the singularity in r = 0 of the Kepler/Coulomb-type
potentials and the impact on the orbits is investigated.

In the last part of the thesis I investigate what happens to the orbits of a relativistic and non-
relativistic particle in the presence of two separate charges like in a molecular system.
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5 Trajectories for relativistic and non-relativistic particle in a Ke-
pler/Coulomb potential

The first part of this thesis is studying and rederive results from the paper [5], where the behavior
of a classical relativistic particle in V (r) = −α1/r potential was studied. Further, in this chapter we
will extend these calculations and report some novel results which were not presented in the paper.

5.1 The mechanical problem

In this section we will compare the behavior of a non-relativistic and a relativistic particle in the
Kepler/Coulomb potential V (r) = −α1/r. It is important to know that these particles are treated
in a classical manner and we don’t take into account any quantum mechanical effects. In such a
potential a particle experiences a force F = −∇V (r) = −erα1/r

2. We can find the equation of
motion of a non-relativistic particle (momentum is mv) by using the following Lagrangian: [1]

L(r, ṙ) =
1

2
mṙ2 − α1

r
. (6)

The factor T = 1
2mṙ2 describes the kinetic energy of the non-relativistic particle. The Euler-Lagrange

(E-L) equation of motion tells us: [1]

d

dt

(
∂L
∂ṙ

)
=
∂L
∂r
⇒ d(mv)

dt
= −α1

r2
r. (7)

Obviously we have the velocity ṙ = v. The previous result is nothing else than Newton’s second law:

F = m · a =
d(mv)

dt
= −α1

r2
r. (8)

If the Lagrangian is explicitly time independent, it is easy to proof that the total energy of the
system is conserved. [1]

dL(r,v)

dt
=
∂L
∂r

v +
∂L
∂v

d

dt
v. (9)

Using E-L equation of motion, we replace ∂L
∂r by d

dt(
∂L
∂v ). We get:

dL(r,v)

dt
=

d

dt

(
∂L
∂v

)
v +

∂L
∂v

d

dt
v =

d

dt

(
∂L
∂v

v

)
⇒ d

dt

(
∂L
∂v

v− L
)

= 0. (10)

Making use of the Lagrangian in (6) we compute ∂L
∂v = mv. In this way we find that the energy of

the system is conserved:

d

dt

(
mv2 − L

)
=

d

dt
(2T − (T − V )) =

d

dt
(T + V ) =

d

dt
(Enr) = 0. (11)

We find here the definition of the non-relativistic energy: Enr = T + V = 1
2mv2 − α1

r . [1] Note
that this part was novel and was not reported in [5]. For a relativistic particle the situation is a
bit different. We know from relativity that by introducing a small increase in velocity near the
speed of light c, the mass of the relativistic particle is going to be affected and will increase. The
increase of the mass is given by the gamma factor γ = 1/

√
1− v2/c2 and consequently we replace
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the mass of the particle m by m/
√

1− v2/c2. In this way the relativistic particle has a momentum
mv/(

√
1− v2/c2). Further we know from relativity that the frame of reference is very important

and consequently the rest energy of the particle also. This means that the energy of the relativistic
particle will be different from the energy of a non-relativistic particle but at the same time if we take
the non-relativistic limit c→∞ the energy should be the same as the non-relativistic energy.(see
Appendix A) The relativistic energy is given by:

E = ε+mc2 =
mc2√
1− v2

c2

− α1

r
. (12)

Since the potential V (r) = −α1/r leads to a spherical symmetric central force (the force is directed
along the line which joins the object to the origin, F = −erα1/r

2), we have a conserved system
which means that we have conserved quantities like energy and angular momentum [1][2]. This way
we can show that the angular momentum (L = r× p) in this case is conserved:

d

dt
L =

d

dt
r× p + r× d

dt
p = 0. (13)

Since p ∼ v and d
dtr = v the first cross product vanishes as the two vectors are parallel (sin(0) =

sin(π) = 0). The second term vanishes because of equation (8) which gives d
dtp ∼ r. So in the

non-relativistic case we have a conserved angular momentum Lnr = r×(mv), while in the relativistic
case we have L = r× mv√

1− v2
c2

.

5.2 Angular momentum for circular orbits

For the special case of a circular orbit we know that the radius of the followed orbit is perpendicular
to the velocity v of the particle. Consequently the angular momentum is perpendicular to the
plane of the orbit. In this way, the angular momentum for a non-relativistic particle is given by
Lnr = rmv while for a relativistic particle L = rmv√

1− v2
c2

.

5.2.1 Non-relativistic case

In order to have a stable circular orbit we know that the attractive force should be equal to the
centripetal force, mv2

r = α1
r2

. By combining this equation of motion with the found expression for
the angular momentum, we find an expression for the radius and velocity of the particle in function
of the angular momentum.

m
v2

r
=
α1

r2
⇒ v2 =

α1

mr
.

On the other hand:

Lnr = rmv ⇒ Lnr
v

= rm.

By combining these expressions we find:

v =
α1

Lnr
; r =

L2
nr

mα1
. (14)

Notice that the angular momentum can take any values from zero to infinity. This means that in
the non-relativistic case the particle can always follow a circular orbit unless the angular momentum
becomes zero. [5]
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5.2.2 Relativistic case

In the relativistic case the equation of motion becomes m√
1−v2/c2

v2

r = α1
r2

. Combined with L = rmv√
1− v2

c2

we find:

m√
1− v2

c2

v2

r
=
α1

r2
⇒ v2 =

α1

√
1− v2

c2

mr
⇒ v =

α1

L
. (15)

And combining the calculated velocity with the angular momentum, we find:

L =
rmα1

L
√

1− (α1
cL )2

⇒ r =
L2

α1m

√
1−

(
α1

cL

)2

. (16)

Now we can investigate the relation between angular momentum and radius which was not reported
in [5]. From Fig. 4 we can clearly see that a relativistic particle follows stable circular orbits when
the angular momentum is larger than the critical angular momentum Lc = α1/c. When the critical
angular momentum is reached the radius becomes zero which physically means that the particle
falls into the origin of the central force causing atomic collapse.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

Nonrelativistic
Relativistic

Figure 4: In non-relativistic case the radius becomes zero when the angular momentum is zero but
in the relativistic case the radius becomes zero when the angular momentum becomes α1/c with c
the speed of light. This means that in order to have stable circular orbits in relativistic case the
angular momentum should be larger than α1/c. The plot is made by using dimensionless parameters

R̃ = r/(α1/mc
2) = L̃2

√
1− 1

L̃2
and L̃ = Lc/α1. (see Appendix B Table 8)
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5.2.3 Role of power n for a general potential V = krn

In previous section we calculated the relations between angular momentum, radius and velocity in
order to have stable circular orbits by using V (r) = −α1/r potential. Now we consider the condition
for stable circular orbits for a general potential of the form V (r) = krn, with k and n constant.
This section was not reported in [5] and is novel. Again, in order to have stable circular orbits the
centripetal force should be equal to attractive force:

m√
1− v2

c2

v2

r
= nkrn−1 ⇒ v =

nkrn+1

mvr

√
1− v2

c2
=
nkrn+1

L
. (17)

Where in the last equality in Eq. (17) we made use of the relativistic angular momentum L =
rmv/

√
1− v2/c2. Combining Eq. (17) with expression for relativistic angular momentum we find:

L =
rmv√
1− v2

c2

⇒ L2

m
=

nkrn+2√
1− n2k2r2n+2

L2c2

⇒ L4

m2
=

n2k2r2n+4

1− n2k2r2n+2

L2c2

. (18)

And:
L4

m2
− L4

m2

n2k2r2n+2

L2c2
= n2k2r2n+4 ⇒ L4

m2
= n2k2r2n+2

(
r2 +

L2

c2m2

)
. (19)

In this way we get the following equation which describes the relation between radius and angular
momentum:

L4

m2
= n2k2r2n+2

(
r2 +

L2

c2m2

)
. (20)

Of course by inserting n = −1 and k = −α1 we have the same result as in Eq.(16) for a relativistic
particle in the presence of a Coulomb potential. By taking the non-relativistic limit (c → ∞) of
equation (20) and by inserting n = −1 and k = −α1, we get again the found relation between angular
momentum and radius in Eq. (14) for a non-relativistic particle. Now we can investigate which
power n of the attractive potential (or attractive force because the relation F = −∇V (r) is allowed
in order to have stable circular orbits. So, in order to have stable circular orbits about the origin of
the coordinates frame, the particle experiences a general attractive central force F = −α1/r

n. The
parameter r is the radius which measures the distance of the particle from the origin of the central
force. We know that central forces which are spherical symmetric leads to a conserved system,
consequently the total energy and angular momentum are conserved. Making use of this argument
we find the definition of the potential field:

U(r) =

∫ r

∞
F (r)dr = −

∫ r

∞

α1

rn
dr = − 1

n− 1

α1

rn−1
.

Since the angular momentum is conserved we make use of the angular momentum (see 5.2) to
construct an effective potential, and consequently an effective force experienced by the particle on
the circular orbit. [14][15] (see Table 1)
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Relativistic Non-relativistic

(A) Ueff (r) = − 1
n−1

α1
rn−1 + L2

2mγr2
. Ueff (r) = − 1

n−1
α1
rn−1 + L2

2mr2
.

(B) Feff (r) = −α1
rn + L2

mγr3
. Feff (r) = −α1

rn + L2

mr3
.

Table 1: The effective potential and force. Notice in row (B) in both cases the second term on the
right side of the equations is just the centrifugal force.

For some radius r = ρ the particle will follow a circular orbit and consequently the effective
force disappears (Feff (ρ) = 0).

Relativistic Non-relativistic

(A) α1
ρn = L2

mγρ3
. α1

ρn = L2

mρ3
.

(B) α1mγρ3

L2 = ρn. α1mρ3

L2 = ρn.

Table 2: The top row (A) represents the equation of motion in the case of circular orbits where the
effective force vanishes. The bottom row (B) is needed for further derivations.

The first row (A) of table 2 gives the same result found in 5.2.1 and 5.2.2. In order to have
stable circular orbits the second derivative of the effective potential should be positive, which means
that the zero point of the effective force (ρ) is a minimum. By calculating the second derivative of
the effective potential in r = ρ and combining this result with respect to row (B) of Table 2, we find
the results presented in Table 3 :

Relativistic Non-relativistic

(A) 3-n>0 3-n>0

Table 3: By combining the second derivative of the effective potential with row (B) of Table 2 we
find that the power n of the effective force should be less than 3.

The result in Table 3 tell’s us that in order to have stable circular orbits the power n in the
effective force should be smaller than 3.[14][15] Because we considered in the attractive potential
that n is negative we find alternatively that n>-3. The fact that the power of the radius in the
central force should be bigger than -3 means that the power of the potential should be at least
n = −1 in order to have stable circular orbits because the relation F = −∇V (r). Interesting result
is found when we put n = −2 in equation Eq. (20). In relativistic case we find some stable orbits,
where we express the relation between angular momentum and radius in dimensionless units:

R̃ =
r√
α2
mc2

=

√
2L̃√

L̃4 − 1
. (21)

By taking the non-relativistic limit (c→∞) the second term on the right side of Eq.(20) vanishes,
this leads to:

lim
c→∞

L4

m2
= lim

c→∞
n2k2r2n+2

(
r2 +

L2

c2m2

)
= n2k2r2n+4. (22)
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When we put n = −2 and k = −α2 in Eq. (22) we clearly see that the r dependency vanishes,
which physically means that we never find stable orbits in the case of n = −2 for a non-relativistic
particle. This is what we expected because of the results found in Table 3. There we found that the
power n in the central force should be bigger than -3. Eq. (20) is derived by using the potential
V (r) = krn. When the power of the potential becomes n = −2 the particle experiences a central
force proportional to r−3 because the relation F = −∇V (r) which generate non stable circular
orbits.

5.2.4 Hydrogen atom

We can compare the described relativistic particle in a Kepler or Coulomb potential with respect to
(charge is e) electron which performs a circular orbit around an hydrogen atom (atomic number is
Z=1). In this case the potential becomes V (r) = −α1/r = −Ze2/r = −e2/r, and the limiting angular
momentum becomes L = α1/c = e2/c. We can rewrite this expression by multiplying nominator and
denominator by h̄ (Planck’s constant= 1.0545718 · 10−34m2kg/s), we get L = (e2/h̄c)h̄ ≈ (1/137)h̄.
From [3] we know that the energy and angular momentum of the hydrogen atom problem is
quantified. This means that the system has a minimum energy which leads to a minimum angular
momentum. From [3] we know that the angular momentum can be expressed in terms of the orbital
quantum number l and this leads to L = lh̄ (semiclassical point of view as considered by Bohr).
In the lowest energy level we have the lowest angular momentum Llow = h̄. This is one of the
reasons why the electron cannot fall on the hydrogen atom. The limiting angular momentum is
much smaller than the lowest possible angular momentum Llimit < Llow ⇒ (1/137)h̄ < h̄.[5]
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5.3 Relation between energy and velocity in the case of circular orbits for rel-
ativistic and non-relativistic cases

In Appendix B we find a relation between energy and velocity of the particles in dimensionless units
for the special case of circular orbits. This section was not reported in [5] and is novel. We can
compare both behaviors in a graph:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Non-relativistic
Relativistic

Figure 5: Comparing the dimensionless energy of a relativistic and non-relativistic particle as function
of the dimensionless velocity, with Ẽrel = Erel/mc

2 =
√

1− ṽ2, Ẽnrel = Enrel/mc
2 = 1− 1

2 ṽ
2 and

ṽ = v/c. Notice that we put both particles on the same scale in order to compare them. Of course
in non-relativistic case there is no limit on the speed of the particle.

In Appendix B Table 7 we find the relations between dimensionless radius and velocity which
are expressed as R̃rel = 1

ṽ2

√
1− ṽ2 and R̃nrel = 1

ṽ2
for the special case of circular orbits. From Fig.

5 we can clearly see that the relativistic and non-relativistic energy takes two different behaviors. In
relativistic case we see that for high velocities, near the speed of light, the energy becomes zero and
at the same time the radius becomes zero. Physically this means that for high velocities near the
speed of light the relativistic particle will spiral into the center of the central force. This behavior is
not found for non-relativistic particles. On the other hand we see that both particles for low speed
(ṽ → 0) the radius becomes infinitely large which leads to zero potential energy. In this case we get
a free particle. The most important reason why the two particles takes different behavior in the
limit ṽ → 1, is found in the relation between kinetic and potential energy for both particles. In
non-relativistic case we find T = −U/2. This relation means that depending on the place of the
particle on the orbit, part of the kinetic energy can be converted in potential energy and of course
part of potential energy can be converted in kinetic energy. So, in this case for stable circular orbits
the total amount of energy is constant and there is always a kinetic and potential energy term in the
energy equation. On the other hand for a relativistic particle we have T = −U . This means that
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the kinetic/potential energy can be completely converted to potential/kinetic energy. Physically
this fact means that the particle can fall into the center of the central force if the kinetic energy
is completely converted into potential energy, and in the case that potential energy is completely
converted into kinetic energy the particle becomes a free particle because it doesn’t feel the potential
of the central force at long distance from the origin of the attraction field. It is easy to proof that
the relation T = −U in relativistic case will convert up to T = −U

2 in non-relativistic case. In order
to have circular orbits the centripetal force should be equal to attractive force:

m√
1− v2/c2

v2

r
=
α1

r2
. (23)

By making use of a Taylor expansion taking the non-relativistic limit (1/c→ 0) of Eq. (23) we have:

lim
1
c
→0

m√
1− v2/c2

v2

r
=
α1

r2
⇒ lim

1
c
→0

mv2

(
1 +

1

2!

v2

c2
+ . . .

)
=
α1

r2
. (24)

This leads to the non-relativistic relation between kinetic and potential energy.

mv2 =
α1

r2
⇒ T = −U/2. (25)
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5.4 Classification of trajectories

The motion of the relativistic particle is situated in a plane. It is easier to work in polar coordinates,
so we can express the velocity and the angular momentum of the relativistic particle in polar
coordinates. [5] The velocity is given by: (see Appendix C)

v =
dr

dt
= ṙr̂ + rθ̇θ̂. (26)

Consequently the angular momentum is given by: (see Appendix C)

L = r× mv√
1− v2

c2

⇒ L =
mr2θ̇√

1− (ṙ2+r2θ̇2)
c2

. (27)

By solving (27) to θ̇ we find: (see Appendix D)

θ̇ =

√
L2c2 − L2ṙ2

L2r2 +m2r4c2
. (28)

The energy of the relativistic particle in polar coordinates is given by:

E = ε+mc2 =
mc2√

1− ṙ2+r2θ̇2

c2

− α1

r
.

By filling the found expression for θ̇ in (28) in the expression of energy we find: (see Appendix E)

E =
mc2√

1− (ṙ/c)2 − L2(1− (ṙ/c)2)/(L2 +m2r2c2)
− α1

r
. (29)

By solving equation (29) to ṙ2 we find:

⇒ ṙ2 = c2

[
1−

(
1 +

L2

m2r2c2

)(
mc2

E + (α1/r)

)2]
. (30)

Further, in order to classify which orbit is allowed, we need some constraints on the energy of the
particle. As the angular momentum and the energy are conserved quantities and we have restrictions
on the angular momentum, we can express the energy in terms of angular momentum such that we
find restrictions on the energy of the particle. The energy in expression (12) can be reduced in the
form of a limiting angular momentum with speed of the relativistic particle equal to the speed of
light. [5]

E =
mc2√
1− v2

c2

− α1

r
⇒ Llimit =

rmc√
1− v2

c2

=
r

c
(E +

α1

r
). (31)

Since the velocity of the particle should be less than the speed of light c, the angular momentum
found in expression (27) is less than the limit angular momentum found in Eq. (31): [5]

L < Llimit ⇒ L =
mr2θ̇√

1− (ṙ2+r2θ̇2)
c2

<
rmc√
1− v2

c2

=
r

c
(E +

α1

r
). (32)
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From Eq. (32) we deduce the fact that L < r
c (E + α1

r ) or equivalently L − α1
c < r

cE. Because
from 5.2.2 we know that we have stable circular orbits when L ≥ α1 and all quantities L, α1, r, c,
E are real, we find that in order to have stable circular orbits the total relativistic energy of the
particle should be positive E = ε+mc2 > 0. [5] This fact doesn’t exclude bounded orbits. We will
clarify in section 5.10 how to get bounded states. Finally it is clear that the right hand side of
Eq. (30) should be at least zero or positive. This means that the radial velocity is limited between
0 ≤ ṙ2 < c2. By using the definition of ṙ in Eq. (30) in the inequality 0 ≤ ṙ2 < c2 we find the
following inequality −L2c2 < 0 ≤ (E2 −m2c4)r2 + 2Eα1r + (α2

1 − L2c2) = Y (r). The fact that all
quantities are real satisfies automatically the left hand side of the inequality. Now we can take a
look at the r dependent function Y(r). This function tells us which relativistic orbit is allowed.
Physically, the fact that the radial velocity is restricted, means that on the followed orbit we have
some special points where ṙ = 0. That the radial velocity vanishes in these points means that the
particle cannot move further from the origin of the central force, otherwise the restriction is not
satisfied. This means that the particle in these points is forced to change its trajectory. When
we have two turning points r1 and r2 we have a bounded trajectory like ellipses. Sometimes we
have special cases. In a conserved energy system, when kinetic and potential energy are constant
and do not change in time we have a circular orbit. In this case the two turning points are at the
same radial distance which means that r1 = r2. The allowed orbits are situated in the region where
Y (r) ≥ 0 imposed of course by the condition 0 ≤ ṙ2 < c2. At first we can find the turning-points for
the motion of the particle by solving Y (r) = 0. This is done by calculating first the discriminant
which is given in this case by D = (2α1E)2 − 4 · (E2 −m2c4) · (α2

1 − L2c2) and finally we find the
turning-points:

rturning−point =
α1E ±

√
E2α2

1 + (m2c4 − E2)(α2
1 − L2c2)

m2c4 − E2
. (33)

Now, because we want to describe relativistic circular orbits we should have the two turning-points
at the same radius. The only way to put both turning points on the same radius is to find the
energy which provides for

√
E2α2

1 + (m2c4 − E2)(α2
1 − L2c2) = 0.

⇒ E2α2
1 +m2c4α2

1 −m2c4L2c2 − E2α2
1 + E2L2c2 = 0⇒ E = mc2

√
1−

(
α1

Lc

)2

. (34)

This expression is the energy in the case of circular orbits for a relativistic particle. Clear is that if
we take non-relativistic limit c→∞ this energy should converge to the non-relativistic energy in
the case of circular orbits. The relativistic energy is expressed as E = ε+mc2 and consequently the
energy difference from the rest mass energy of the particle is ε = E −mc2. If we take from this
expression the non-relativistic limit we get:

lim
1
c
→0

εnrel = lim
1
c
→0

(E −mc2) = lim
1
c
→0

mc2

√
1−

(
α1

Lc

)2

−mc2 ≈ lim
1
c
→0

mc2

(
1− 1

2!

α2
1

L2c2
+ . . .

)
−mc2.

(35)

⇒ lim
1
c
→0

εnrel ≈ −
1

2

(
mα2

1

L2
nrel

)
. (36)

Of course we made use of a Taylor expansion and the higher orders in (1/c) vanishes because of the
limit. Now, by inserting the found non-relativistic angular momentum as function of velocity in
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5.2.1, we get indeed the non-relativistic energy for circular orbits as function of the velocity (see
also Appendix B):

εnrel = −1

2
mv2. (37)

Now that we found the energy which puts the turning points on the same radius we can analyze the
function Y(r) as function of the radius. Depending on the values of the angular momentum and the
energy we get different situations. From the definition of Y(r) we see that by using the energy from
Eq. (34) and for L > Lc = α1/c we have a sign change because the energy becomes less than the
rest mass energy and consequently we get a negative parabolic plot. Also is the parabola shifted
down in the Y (r) < 0 region because the shift term (α2

1 − L2c2) is negative. When the angular
momentum becomes equal to the critical angular momentum L = Lc = α1/c we see that the energy
becomes zero and the shift term (α2

1 − L2c2) in the definition of Y(r) becomes zero. Here we get no
solutions. When the angular momentum becomes less than the critical angular momentum, the
shift term becomes positive and consequently the parabola is shifted in the Y (r) > 0 region. In
this case the energy becomes imaginary and this leads of course to unstable orbits like explained in
section 5.2.2. In order to make it easier we introduce dimensionless parameters (look at Appendix

B) such as Ẽ = E/mc2 =
√

1− 1
L̃2

, L̃ = Lc/α1 and r̃ = r/(α1/mc
2). Using these parameters we

rewrite the definition of Y(r) and turning points:

r̃turning−point =
Ẽ ±

√
Ẽ2 + (1− Ẽ2)(1− L̃2)

1− Ẽ2
. (38)

And we get Y (r̃):
Y (r̃) = (Ẽ2 − 1)r̃2 + 2Ẽr̃ + (1− L̃2). (39)

Below are given some classified trajectories.
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Figure 6: This graph shows the relation between Y (r̃) and dimensionless radius. We used the
following parameters: L̃ = 1.2, Ẽ =≈ 0.55277
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From the above discussions and restrictions we know that the possible allowed orbits are in the
region where the function Y (r̃) is positive. Most of the time in Fig. 6 the function Y (r̃) is negative

because this plot is made by using the dimensionless energy Ẽ =
√

1− 1
L̃2

in the case of circular

orbits. This leads to a sign change in the quadratic term in the definition of Y (r̃). In this case
we only have 1 possible orbit, which is a circular orbit with radius r̃turning−point ≈ 0.79599. The
turning points are given by the point where the red dashed lines cross each other. Further we can

investigate what happens by adding some energy to the system Ẽ =
√

1− 1
L̃2

+ Ẽ0. In this case

the dimensionless energy will no longer provide to put both turning points on the same radius and
consequently we cannot get circular orbits.
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Figure 7: In this case we made use of L̃ = 1.2 and Ẽ0 = 0.2, which leads to the energy Ẽ =√
1− 1

L̃2
+ 0.2 ≈ 0.75277. Here we get the following turning points: r̃turning−point1 ≈ 3.15219 and

r̃turning−point2 ≈ 0.32212. Clear to see is that we get two turning points which are not at the same
radius. This physically means that the only allowed orbit in this case is an ellipse.

Further by adding some more energy, physically means that the particle gains more kinetic
energy. This leads to an unbounded orbit where we only get one turning point. We visualize this
orbit as a parabolic or hyperbolic Kepler orbit see Fig. 8. (see section 5.10)

23



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.5

0

0.5

1

1.5

2

Allowed region

Not allowed region

Figure 8: In this case we made use of L̃ = 1.2 and Ẽ0 = 2, which leads to the energy Ẽ =√
1− 1

L̃2
+ 2 ≈ 2.55277. Here we get the following turning points: r̃turning−point1 ≈ 0.07937 and

r̃turning−point2 ≈ −1.00485. Clear to see is that we get two turning points which are not at the same
radius. Of course the negative turning point leads to a non physical solution. This means physically
that the only allowed orbit in this case is an hyperbolic/parabolic orbit.
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5.5 Turning points analysis for a non-relativistic particle

In this section the turning points of a non-relativistic particle in V (r) = −α1/r potential are
investigated. Of course by taking the non-relativistic limit (1/c → 0) of the function Y (r) =
(E2−m2c4)r2+2Eα1r+(α2

1−L2c2) we find a non-relativistic version of it y(r) = Enrr
2+α1r−Lnr/2m

[5]. Important to notice is that the analysis in the case of both particles is the same and we present
this analysis in order to be complete. Here the turning points are expressed as:

rturning−point =
−α1 ±

√
1 + 2EnrL2

nr

mα2
1

2E2
nr

. (40)

By making use of dimensionless parameters Ẽnr = Enr/mc
2 = −(1/2L̃2

nr), r̃ = r/α1/mc
2 and

L̃nr = Lnrc/α1 we rewrite the found expressions. The function y(r) becomes:

ỹ(r̃) = Ẽnrr̃
2 + r̃ − L̃nr/2. (41)

With ỹ = y(mc2/α2
1). The turning points becomes:

r̃turning−point =
−1±

√
1 + 2ẼnrL̃2

nr

2Ẽ2
nr

. (42)

Now we can visualize the function ỹ as function of the dimensionless radius r̃.
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Figure 9: In this case we made use of L̃ = 1 and Ẽ = −(1/2L̃2) = −0.5. Because we used the energy
which leads to both turning points at the same radius, we get a circular orbit. The turning points
are on the same radius r̃turning−point = 1 and in the plot is given by the point where the black and
red dashed lines crosses.
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Further we can investigate what happens by adding some energy to the system Ẽ = − 1
2L̃2

+ Ẽ0.
In this case the dimensionless energy will no longer result to have both turning points at the same
radius and consequently we do not obtain circular orbits. As a result we will get elliptic orbits with
two different turning points.
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Figure 10: In this case we made use of L̃ = 1 and Ẽ0 = 0.25, which leads to the energy Ẽ =
− 1

2L̃2
+ 0.25 = −0.25. Here we get the following turning points: r̃turning−point1 ≈ 0.58579 and

r̃turning−point2 ≈ 3.41421.
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Figure 11: In this case we made use of L̃ = 1 and Ẽ0 = 0.75, which leads to the energy Ẽ =
− 1

2L̃2
+ 0.75 = 0.25. Here we get the following turning points: r̃turning−point1 ≈ 0.44949 and

r̃turning−point2 ≈ −4.44949. Clear to see is that we get two turning points which are not at the same
radius. Of course the negative turning point leads to a non physical solution. This physically means
that the only allowed orbit in this case is when we have one turning point like in the case of an
hyperbolic/parabolic orbit.
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5.6 Orbit equations

We can find the orbit equations r(θ) by expressing the momentum in polar coordinates:[5]

p = r̂pr + θ̂pθ =
m(ṙr̂ + θ̂rθ̇)√

1− v2

c2

=
mṙr̂√
1− v2

c2

+
mθ̂rθ̇√
1− v2

c2

=
mṙr̂√
1− v2

c2

+ θ̂
L

r
. (43)

The last equality is found by making use of Eq.(27). Because we will need later the following
expression, we calculate pr/pθ.[5]

pr
pθ

=

mṙ√
1− v2

c2

mrθ̇√
1− v2

c2

=
1

r

ṙ

θ̇
=

1

r

dr

dθ
. (44)

By using pθ = L/r found in expression (43) we finally get: [5]

pr =
L

r2

dr

dθ
. (45)

By using expression (43) we can rewrite the relativistic energy expressed in (12) up to E =√
p2c2 +m2c4 − α1/r. (see Appendix F) Now we can rewrite the expression E =

√
p2c2 +m2c4 −

α1/r up to: [5] (
E +

α1

r

)2

= p2c2 +m2c4 =
m2ṙ2

1− v2

c2︸ ︷︷ ︸
=(pr)2

c2 +
L2c2

r2
+m2c4. (46)

Combining (46) with (45) gives the following differential equation: [5](
E +

α1

r

)2

=

(
L

r2

dr

dθ

)2

c2 +
L2c2

r2
+m2c4. (47)

By introducing the r-inverse variable u = 1/r ⇒ du/dθ = −(1/r2)dr/dθ we can rewrite the
differential equation in (47) up to: [5](

E + α1u

)2

=

(
du

dθ

)2

L2c2 + u2L2c2 +m2c4. (48)

If we differentiate (48) with respect to θ we find:[5]

α1E
du

dθ
+ α2

1

du

dθ
u = L2c2u

du

dθ
+ L2c2d

3u

d3θ
. (49)

By dividing (49) by du/dθ and rewriting the equation, we find a second order linear differential
equation which has as solution the orbits of the relativistic particle. [5]

d2u

d2θ
+

[
1−

(
α1

Lc

)2]
u− Eα1

(Lc)2
= 0. (50)

28



It is clear that we get different solutions depending on the value of the angular momentum L. If
L = α1/c we need to solve the following differential equation: [5]

d2u

d2θ
− E

α1
= 0. (51)

The solution of (51) is easily found in this way:[5]

u(θ) =

∫ θ

θ0

∫ θ

θ0

E

α1
d2θ =

E

2α1
(θ − θ0)2 + c′. (52)

The constant c’ is calculated by introducing the solution u(θ) in (48) (for L = α1/c) this leads to
c′ = (m2c4 − E2)/(2Eα1). [5] This means that the complete solution of Eq.(51) is given by:

u(θ) =
E

2α1
(θ − θ0)2 +

m2c4 − E2

2Eα1
. (53)

In the case of L > α1/c we can solve (50) by finding the characteristic equation for the homogeneous
solution, and for the particular solution we can use the Wronskian. We get the following general
solution:

u(θ) = c1 · ei
√

1−(
α1
Lc

)2(θ−θ0) + c2 · e−i
√

1−(
α1
Lc

)2(θ−θ0) +
Eα1

L2c2 − α2
1

. (54)

By taking the real part of the homogeneous solution, (54) is simplified up to:

u(θ) = (c1 + c2) · cos
(√

1− (
α1

Lc
)2(θ − θ0)

)
+

Eα1

L2c2 − α2
1

. (55)

By introducing (55) in (48) we compute c1 + c2. It appears to be c1 + c2 =

√
E2L2c2−m2c4(L2c2−α2

1)

(L2c2−α2
1)2

(see Appendix G), in this way we find the orbit equation in the case of L > α1/c:

u(θ) =

√
E2L2c2 −m2c4(L2c2 − α2

1)

(L2c2 − α2
1)2

· cos
(√

1− (
α1

Lc
)2(θ − θ0)

)
+

Eα1

L2c2 − α2
1

. (56)

Finally we find the solution for the orbit equation in the case of L < α1/c. In this case (50) becomes

d2u

d2θ
−
[(

α1

Lc

)2

− 1

]
u− Eα1

(Lc)2
= 0. (57)

Which leads to the solution:

u(θ) =

√
E2L2c2 +m2c4(α2

1 − L2c2)

(α2
1 − L2c2)2

· cosh
(√

(
α1

Lc
)2 − 1(θ − θ0)

)
− Eα1

α2
1 − L2c2

. (58)

Because it is easier to work with dimensionless expressions we make use of Appendix B to rewrite
the found u(θ) solutions in dimensionless form. Note that this part is novel and is not reported in [5]

u(θ) =
mc2

α1

√
Ẽ2L̃2 − (L̃2 − 1)

(L̃2 − 1)2
· cos

(√
1− 1

L̃2
(θ − θ0)

)
+

Ẽ

L̃2 − 1

mc2

α1
. (59)
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With Ẽ = E/mc2, L̃ = Lc/α1. We see here that the scale of the solution of the orbit equations u(θ)
is determined by mc2/α1 which by consulting Appendix B we see that the units of the radius is
given in this case by meters. In order to find the begin conditions of the particles we rewrite the
relation between angular momentum and radius from Eq.(16) in dimensionless form such that the

radius is expressed as r = L̃2
√

1− 1
L̃2

α1
mc2

.

5.7 Non-relativistic limit: c→∞

Of course by taking the non-relativistic limit we have to obtain the well known Kepler orbits. Eq.(59)
provides us the stable relativistic orbits and if we take the limit 1/c → 0 we find the following
solution:[5] (see Appendix I)

u(θ) =
mα1

L2
nr

√
1 +

2L2
nrEnr
mα2

1

cos(θ − θ0) +
mα1

L2
nr

. (60)

We have to notice that by using the found energy (in the case of circular orbits) in Eq.(36) we
find that the square root becomes zero which leads to the vanishing of θ dependency, which indeed
means that here we get circular orbits. When the energy becomes less than −mα2

1/(2L
2
nr) part of

the solution becomes imaginary which leads to some deviations in trajectories and to non physical
solutions. When the energy becomes bigger than −mα2

1/(2L
2
nr) the radius changes in time which

leads to ellipses in the case of bound states, and of course to parabolic or hyperbolic orbits in the
case of scattering states. Here we define also some quantities such that it makes it easier to visualize
our results. We define L̃nr = Lnrc

α1
and Ẽnr = Enr

mc2
. In this way the solution in Eq.(60) is rewritten

as:

u(θ) =
1

L̃2
nr

mc2

α1

√
1 + 2L̃2

nrẼnrcos(θ − θ0) +
1

L̃2
nr

mc2

α1
. (61)

Further, we express some found relations in function of these new quantities. The relation between
radius and angular momentum found in Eq.(14) becomes:

r = L̃2
nr

α1

mc2
. (62)

In this way we find the begin position of the particle when θ = 0◦. Here we get u0 = 1/r0 and from
this relation we find the begin polar angle (θ0) between the x-axis (horizontal axis) and the position
vector which joins the particle in the begin position to the origin of the central force. Finally, the
energy which puts the turning points at the same radius or in other words the energy which provides
to have circular orbits, found in Eq.(36) becomes:

Ẽnr = −1

2

(
1

L̃2
nr

)
. (63)

Note that we put both solutions, relativistic and non-relativistic on the same scale such that we can
compare the results. Note that this last part where we made use of dimensionless parameters is
novel and was not reported in [5]
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5.8 Solution of orbit equation in non-relativistic case

In this subsection we visualize some solutions of the orbit equations. When we make use of the
energy in Eq.(63) we get a circular orbit because the square root in the solution Eq.(61) vanishes.
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Figure 12: On the left we have a circular orbit made by making use of parameters: L̃2
nr = 1,Ẽ =

−1/(2L̃2
nr) = −0.5. On the right we made use of the parameters: L̃2

nr = 1,Ẽ = −0.25. In the left
case we chose to start in the begin position such that θ0 = 0◦ and the polar angle θ is varied in
both cases in [0,2π]. In the right case we calculate the begin polar angle by solving the equation
u0 = 1/r0 for θ = 0◦. In this case r0 = L̃2 = 1α1/mc

2. From here we find that θ0 = ±1.5708. The
Cartesian coordinates x and y are calculated in meters (m) and also the begin position r0 is given
in meters.
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Figure 13: In this case we have a parabolic orbit made by using the following parameters: L̃2
nr =

1,Ẽ = −1/(2L̃2
nr) + 0.75 = 0.25. Like explained before we find the begin position by solving

u0 = 1/r0 in θ = 0◦, this leads to θ0 = ±1.5708◦ and the polar angle is varied in [0,2π]. The
Cartesian coordinates and r0 are given in meters.
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5.9 Phase diagram for a non-relativistic particle in V (r) = −α1/r potential

In this section we present a dimensionless phase diagram. This is a good review for the derived
solutions for a non-relativistic particle in V (r) = −α1/r potential. Depending on the values of
angular momentum and energy we get different trajectories. In the figure the numbers refer to some
characteristic orbits that are very similar to the orbits shown in the previous section.

Circular Orbit

Bound state

Scattering state

(1)

(2)

(3)

1 2 3 4 5
L
˜
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-1

0

1

2
E
˜

1

2 L
˜2

Figure 14: Phase diagram for a non-relativistic particle in V (r) = −α1/r potential. With L̃nr = Lnrc
α1

and Ẽnr = Enr
mc2

. The blue curve is the found relation between dimensionless energy as function of
dimensionless angular momentum in the special case of circular orbits found in Eq. (63).

Clear to see from Fig.14 is that there is no critical angular momentum for a non-relativistic
particle in V (r) = −α1/r potential. This means that the velocity in non-relativistic case can take
any value from zero to infinity. When we use the energy of circular orbits we get of course a circular
orbit because the square root in solution Eq. (61) disappears and consequently we get a constant
radius which does not change in time causing a circular orbit. A characteristic orbit for (1) in Fig.14
is given by the left solution in Fig.12. When the energy becomes bigger than −1

2
1
L̃2
nr

the particle

gains some kinetic energy and the orbit of the particle is going to be affected. Here we get ellipses
with of course two different turning points in comparison with the case in (1). A characteristic
orbit for (2) is given by the right orbit in Fig.12. Finally, if we add more energy to the system
the particle gets more kinetic energy which will provide for an escaping from the attractive force.
These are the scattering states, which means that the particle gets trapped by the central force and
afterwards changes its trajectory and escapes from the potential. A characteristic orbit for (3) is
given by Fig.13. Note that this section was novel and was not reported in [5].
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5.10 Solutions of orbit equations in relativistic case

From the above results we can deduce that the relativistic particle will have different behaviors for
different values of the angular momentum. By solving the orbit equations in polar coordinates (r,θ)
and afterwards transforming these solutions in Cartesian coordinates (x,y), we find five different
trajectories (bound and unbound orbits) for a relativistic particle. Further by making a dimension
analysis we find that the radius is given in meters and consequently the solutions given in Cartesian
coordinates x and y are given in meters. (see Appendix H)

5.10.1 L� α1/c and E>mc2

The fact that the angular momentum is much larger than the critical angular momentum means
that the speed of the particle is near the speed of light. Because the energy is rewritten such that
E = ε + mc2 , with ε the energy difference from the particle rest energy (mc2), we deduce that
E > mc2 means that the kinetic energy term from ε is in this case bigger than the potential energy
term. This fact leads to a scattering state of the particle. In the figure below we see that the particle
comes from infinity and gets trapped by the central force situated in the origin. The particle will
turn around the origin and afterwards is scattered back to infinity. This trajectory is similar to the
parabolic Kepler orbit, see Fig. 15.
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Figure 15: Solution of orbit equation for parameters: L̃ = 2,Ẽ =
√

1− 1
L̃2

+ 1 ≈ 1.36603. The polar

angle is varied in ∈ [0π, 1.5π]. The begin radius r0 is given in meters and the Cartesian coordinates
are calculated in meters. The left orbit begins in polar angle θ0 ≈ 2.08967◦ and the right orbit in
θ0 ≈ −2.08967◦.

The begin conditions of the particle are easily found in the following manner. At the beginning
by inserting angular momentum L̃ = 2 we find the begin position of the particle which is found

by using the relation between angular momentum and radius r = L̃2
√

1− 1
L̃2

α1
mc2

. Here we get

r0 = 3.4641α1/mc
2. Further, because the angular momentum in this case is larger than the critical
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angular momentum we make use of the solution given in Eq. (59) in order to find the begin polar
angle θ0. By inserting the begin polar angle θ = 0, we find:

u0 =
1

r0
=
mc2

α1

√
Ẽ2L̃2 − (L̃2 − 1)

(L̃2 − 1)2
· cos

(√
1− 1

L̃2
(−θ0)

)
+

Ẽ

L̃2 − 1

mc2

α1
. (64)

By inserting all parameters this equation leads to θ0 = ±2.08967◦. Because we get two begin polar
angles for the given position r0, this means that we get two solutions and in other words we get two
different orbits. By plotting both solutions we see from Fig. 15 that the only difference from each
other is that the particle travels from another begin point on the orbit.

5.10.2 L≥ α1/c and E>mc2

In the case that L→ α1/c, from infinity, the particle makes loops around the origin of the central
force and is scattered back to infinity. The more the angular momentum approaches to the critical
value the more the particle makes loops around the origin. From Fig. 4 we deduce that for L→ α1/c
the radius becomes small (the particle is situated around the origin) and from Fig. 5 we deduce
v → c. In this case the energy is still larger than the rest energy, this means that the kinetic energy
(positive) still dominates. But for some time the particle is trapped by the central force which means
that the potential energy for a moment dominates. Afterwards the kinetic energy gets the control
and leads to the escaping of the particle from the central force to infinity. Of course this kind of
orbit is not allowed for a non-relativistic particle, where only parabolic/hyperbolic orbits are found.
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Figure 16: Solution of orbit equation for parameters: L̃ = 1.05,Ẽ =
√

1− 1
L̃2

+ 1 ≈ 1.30491. The

polar angle is varied in ∈ [0.5π, 7π]. The begin radius r0 is given in meters and the Cartesian
coordinates are calculated in meters. The begin polar angle is θ0 ≈ −7.97772◦.
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5.10.3 L≥ α1/c and E<mc2

In this case the total energy is smaller than the rest energy. This means that the potential energy
dominates in the term ε which leads to a bounded orbit, in contrast to the unbounded orbits
discussed above. In this case the relativistic particle will loop around the origin in a precessing
motion which leads to precessing ellipses around the origin of the central force. This motion is similar
to the motion of the planet Mercury where it precesses at the periapsis which leads to an orbit
similar as a rosette. Here we need to notice an important fact. When we have stable bounded orbits
(those that do not plug into the origin) the potential energy in ε takes the control and consequently
the total relativistic energy becomes less than the rest mass energy E = ε+mc2 < mc2. In order to
have stable circular orbits the total relativistic energy should be positive (see chapter 5.4), we have
the fact that ε = T + V should be bigger than −mc2.
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Figure 17: Solution of orbit equation for parameters: L̃ = 2,Ẽ =
√

1− 1
L̃2

+ 0.09999 ≈ 0.96603 and

θ0 ≈ 1.94899◦. The begin radius r0 is given in meters and the Cartesian coordinates are calculated
in meters. The polar angle is varied in ∈ [0π, 10π].

The begin conditions of the particle are easily found in the following manner. At the beginning
by inserting angular momentum L̃ = 2 we find the begin position of the particle which is found

by using the relation between angular momentum and radius r = L̃2
√

1− 1
L̃2

α1
mc2

. Here we get

r0 = 3.4641α1/mc
2. Further, because the angular momentum in this case is larger than the critical

angular momentum we make use of the solution given in Eq.(59) in order to find the begin polar
angle θ0. By inserting the polar angle θ = 0, we find:

u0 =
1

r0
=
mc2

α1

√
Ẽ2L̃2 − (L̃2 − 1)

(L̃2 − 1)2
· cos

(√
1− 1

L̃2
(−θ0)

)
+

Ẽ

L̃2 − 1

mc2

α1
. (65)
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By inserting all parameters this equation leads to:

θ0 ≈ ±1.94899◦. (66)

From Eq. (66) we deduce that we get two solutions which means that we get two different orbits.
One of them is of course given in Fig. (17). Below we have the solution for θ0 = −1.94899◦.
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Figure 18: Solution of orbit equation for parameters: L̃ = 2,Ẽ =
√

1− 1
L̃2

+ 0.09999 ≈ 0.96603 and

θ0 ≈ −1.94899◦. The polar angle is varied in ∈ [0π, 10π].

5.10.4 L< α1/c and E>mc2

From Fig.4 we know that the critical angular momentum is equal to α1/c. But we get interesting
results for L< α1/c. In the figure below the total energy is bigger than the rest energy which means
that the kinetic energy takes the control of the motion of the particle and consequently the motion
of the particle becomes unbound. The interesting fact is that the particle comes from infinity and
approaching to the origin of the central force, this will spiral around the origin and finally when
the kinetic energy is totally converted in potential energy the particle will fall into the center of
the force. Remember that the total sum of the energy is constant, and like explained before this
behavior is possible because of the relation between kinetic and potential energy T = −U . Further,
by analyzing the energy expression it is easy to understand how the total energy is kept constant in

this case. The energy is expressed as such Erel = mc2/
√

1− v2

c2
− α1

r . When the particle approaches

the origin the radius becomes very small which leads to an increase in negative sense of the potential
energy. At the same time when the radius approaches to zero the particle moves faster with v→c
(see Fig. 5 and see appendix B Table 7). This fact leads to an increase in positive sens of the kinetic
energy which is compensated by the potential energy, in this way keeping the total energy constant.
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Figure 19: Solution of orbit equation for parameters: L̃ = 0.9, Ẽ = 1 and θ0 ≈ 0.127259◦. The polar
angle is varied in ∈ [0π, 10π]. The right figure is an enlargement of the left orbit. By looking closer
to the surroundings of the origin of the central force we notice that the particle spirals around it
in a few loops. Of course by taking a larger range for the polar angle we will see that the particle
will fall into the center. The begin radius r0 is given in meters and the Cartesian coordinates are
calculated in meters.
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Figure 20: This figure is an enlargement of Fig.19. By looking closer to the surroundings of the
origin of the central force we notice that the particle spirals around it in a few loops. Of course by
taking a larger range for the polar angle we will see that the particle will fall into the center.
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In this case we need to be careful. When the angular momentum is less than the critical angular
momentum we cannot use the found relation between angular momentum and radius in order to

find the begin position of the particle, because r = L̃2
√

1− 1
L̃2

α1
mc2

leads to a non physical position.

So, what I do in this case, I choose a certain begin position r0, and from this I find the begin polar
angle of the particle. In Fig. 19 I choose to set the begin position of the particle in r0 = 100α1/mc

2.
From this, we make use of the same strategy as in the case of section 5.10.3 and we calculate the
begin polar angle:

u0 =
1

r0
=
mc2

α1

√
Ẽ2L̃2 − (L̃2 − 1)

(L̃2 − 1)2
· cos

(√
1− 1

L̃2
(−θ0)

)
+

Ẽ

L̃2 − 1

mc2

α1
. (67)

Which leads to θ0 = ±0.127259◦. Because the relativistic nature of the particle leads to this
interesting results we show graphically that the total relativistic energy is a conserved quantity.
Firstly, we find an expression for the velocity of the relativistic particle. Here we assumed that the
total relativistic energy is a conserved quantity, so we find from definition of relativistic energy in
dimensionless units the velocity: (see Appendix B)

Ẽ =
1√

1− ṽ2
− 1

R̃
. (68)

⇒ ṽ =

√
1− 1

(Ẽ + 1
r̃ )2

. (69)

With r̃ = r/r0. Now by plotting the energy as function of the polar angle θ, we find that the total
relativistic energy is conserved.
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Figure 21: Conserved energy in the case of situation in Fig.19.
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Further, we can investigate in this case what happens if we place the particle very close to the
origin of the force. In this cases we can use a backward strategy where we first chose a begin polar
angle and afterwards we find the begin position of the particle in Cartesian coordinates. We choose
to put the begin angle θ0 = 10◦ which leads to r0 = 0.00639319α1/mc

2.
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Figure 22: Solution of orbit equation for parameters: L̃ = 0.9, Ẽ = 0.2 and θ0 ≈ 10◦. The polar
angle is varied in ∈ [0π, 10π]. The right figure is an enlargement of the left orbit. By looking closer
to the surroundings of the origin of the central force we notice that the particle spirals around it
in a few loops. Of course by taking a larger range of the polar angle we will see that the particle
will fall into the center. The begin radius r0 is given in meters and the Cartesian coordinates are
calculated in meters.

Here I draw some arrows just to visualize better the behavior of the particle. The start point of
the particle is to see in the right figure of Fig. 22 and is given by the black dot. From the start
position of the particle we see from Fig. 22 that the particle spirals out of the origin and afterwards
makes a big loop around it and finally spirals into the center. Of course this behavior together with
the behavior found in Fig. 19 are not possible in non-relativistic cases, because this is a pure effect
of the relativistic nature of the particle.
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5.10.5 Solution of orbit equations and turning points

As last orbit for a relativistic particle in V (r) = −α1/r potential we have circular orbits. Here
we make use of the energy for circular orbits (energy which puts both turning points at the same
radius) to make Fig. 23.
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Figure 23: Solution of orbit equation for parameters: L̃ = 1.1, Ẽ =
√

1− 1
L̃2

= 0.416598 and

θ0 ≈ 0◦. The polar angle is varied in ∈ [0, 2π].
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5.11 Phase diagram for a relativistic particle in V (r) = −α1/r potential

In this section a dimensionless phase diagram is presented. This is a good review for the derived
solutions for a relativistic particle in a V (r) = −α1/r potential. Depending on the values of the
angular momentum and energy we get different trajectories which most of the time are very different
from these of a non-relativistic particle. In the figure the numbers between brackets refer to some
characteristic orbits that are very similar to the orbits shown in the previous chapter.
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Figure 24: Phase diagram for a relativistic particle in V (r) = −α1/r potential. With L̃rel = Lrelc
α1

and Ẽrel = Erel
mc2

. The blue curve is the found relation between dimensionless energy as function of
dimensionless angular momentum in the special case of circular orbits found in Eq. (34).

In Fig. 24 we see that for angular momentum less than the critical angular momentum L̃ < 1
we get atomic collapse which means that the particle falls into the origin of the central force. This
is a pure consequence of the relativistic nature of the particle. A characteristic orbit for an atomic
collapse given by number (6) in Fig. 24 is shown in Fig. 19 where depending on the begin position
of the particle we get different solutions such as Fig. 22. Every possible orbit with energy lower
than the rest energy is a bounded orbit. On the blue curve we get circular orbits, here an example
of a characteristic orbit of (5) in Fig. 24 is found in Fig. 23. If we are in the bound state region
and we add some energy to the particle we are in the region of (4) in Fig. 24. In this case we
get precessing ellipses around the origin. A characteristic orbit for (4) is given in Fig. 17. When
the energy is larger than the rest mass energy we have scattering states. We have seen from the
previous results that by approaching the limiting angular momentum the particle performs more
and more loops around the origin before escaping the attractive field. A characteristic orbit for (1)
is the hyperbolic/parabolic Kepler orbit such as seen in Fig. 15. Finally for (2) and (3) we have a
characteristic orbit like Fig. 16.
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6 Relativistic particle in V (r) = −α2/r
2 potential

In this chapter we consider a relativistic particle in V (r) = −α2/r
2 potential which is an extension

of [5] and contains novel results. We will solve again the equation of motion in the case of circular
orbits (in this case mv2/(

√
1− (v/c)2r) = 2α2/r

3) and from this calculation we get the relation
between angular momentum and radius. Because it is easier we make this relation dimensionless.
Afterwards we will make again a classification of trajectories like we did in 5.4 for a relativistic
particle in V (r) = −α1/r potential such that we find the conditions to have stable bounded/ circular
orbits. Finally we will write down the equation of motion for a relativistic particle in V (r) = −α2/r

2

potential and we will study the orbits of the particle for different cases.

6.1 Radius vs angular momentum

In equation (20) in chapter 5.2.3 we obtained a general relation between angular momentum and
radius for a general potential V (r) = krn. In this case by inserting k = −α2 and n = −2 we get
the relation between angular momentum and radius for a relativistic particle in V (r) = −α2/r

2

potential:

R̃ =
r√
α2
mc2

=

√
2L̃√

L̃4 − 1
(70)

With L̃ = L/
√

2mα2. The angular momentum depends now on the mass of the particle. This result
is not surprising and is explained in chapter 9. Now we can investigate the relation between angular
momentum and radius in Fig. 25:
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Figure 25: Dimensionless relation between angular momentum and radius.

It is clear from Fig. 25 that the radius diverges when the angular momentum becomes L =
Lc =

√
2mα2. From Fig. 25 we can distinct two different critical angular momenta. The critical

angular momentum L
(1)
c =

√
2mα2 will provide for a divergence of the radius while the angular
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momentum L → ∞ leads to an atomic collapse. For angular momentum less than the critical
angular momentum we don’t find stable circular orbits while for L > Lc we find stable circular
orbits.

6.2 Classification of trajectories

In order to classify which orbit is allowed, we can make the same calculation as in 5.4, based on the
fact that the radial velocity should be less than the speed of light 0 ≤ ṙ2 < c2 with:

ṙ2 = c2

[
1−

(
1 +

L2

m2r2c2

)(
mc2

E + (α2/r2)

)2]
.

From the above restriction we find:

−L2c2r2 < 0 ≤ (E2 −m2c4)r4 + r2(2α2E − L2c2) + α2 = Y (r).

By calculating the zero point of the function Y(r), we find the turning-points where the radial
velocity of the particle becomes zero. The fact that the radial velocity of the particle becomes zero
implies that the particle is forced to change trajectory in the turning-points:

rturning,± =

√
−(2α2E − L2c2)±

√
(2α2E − L2c2)2 − 4α2

2(E2 −m2c4)

2(E2 −m2c4)
. (71)

Of course we get closed (circular) orbits if the two turning points are at the same radius. The only
way to put the two turning-point at the same radius is to find a relation between energy and angular
momentum such that:

√
(2α2E − L2c2)2 − 4α2

2(E2 −m2c4) = 0. By working out this expression
we get: E = L2c2/(4α2) + m2c2α2/L

2. From 6.1 we find that the critical angular momentum is

equal to L
(1)
c =

√
2mα2. Combining the critical angular momentum with the found expression of

the energy as function of L we get: E = mc2. This result combining with expression (71) clarify
again why the radius diverges at the critical angular momentum. But when the angular momentum

becomes very large and approaches the second critical angular momentum L
(2)
c →∞ we predict that

the particle follows stable circular orbits very close to the origin. However, physically the particle
cannot fall into the origin with the assumption/conditions to have circular orbits, because otherwise
the energy of the particle should be infinite and this is clearly not physically possible. One could
make a graphical turning points analysis. Because it is easier to work with dimensionless parameters
we make use of Ẽ = E/mc2 and L̃ = L/

√
2mα2 to rewrite the found energy which provides for

circular orbits, turning points and the function Y (r). The turning points in dimensionless units are
expressed as:

r̃turning,± =
rturning,±√
α2/mc2

=

√√√√−2(Ẽ − L̃2)±
√

4(Ẽ − L̃2)2 − 4(Ẽ2 − 1)

2(Ẽ2 − 1)
. (72)

The dimensionless energy in the case of circular orbits is expressed as:

Ẽ =
E

mc2
=

1

mc2

(
L2c2

4α2
+
m2c2α2

L2

)
=

L2

4mα2
+

2mα2

2L2
=
L̃2

2
+

1

2L̃2
=
L̃4 + 1

2L̃2
. (73)

The function Y (r) becomes:

Ỹ (r̃) = (Ẽ2 − 1)r̃4 + 2r̃2(Ẽ2 − L̃2) + 1. (74)
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Further we can make the same calculation as made in 5.4 and investigate which relativistic
energy is allowed to this system. In 5.4 we get L− α1

c < r
cE this means that in order to have stable

circular orbits the total relativistic energy should be positive because from Fig. 4 we deduce that for
L > α1/c we get stable circular orbits. But if the total energy, in this case, becomes negative we get
α1
c − L >

r
c |E|. Because all quantities are real and positive we deduce that for stable circular orbits

(L > α1/c ) the inequality is not satisfied. This means that in order to have stable orbits, the total
energy for a relativistic particle in V (r) = −α1/r potential cannot be negative. The situation for a
relativistic particle in V (r) = −α2/r

2 is a bit different. Here the total relativistic energy is expressed
as E = mc2/

√
1− (v/c)2 −α2/r

2 and consequently (r/c) · (E +α2/r
2) = Llim = mcr/

√
1− (v/c)2.

Because the limit angular momentum (angular momentum for particles which travels with speed of
light) should be bigger than the angular momentum of the particle, we get:

L < Llim = L <
r

c
(E + α2/r

2). (75)

⇒ L− α2

rc
<
r

c
E. (76)

Because from Fig. 25 we deduce that for L > L
(1)
c we have stable circular orbits and at the same

time for high angular momentum the radius becomes small, the terms L − α2
rc in left hand side

of the inequality (76) compensate with each other or becomes negative because for high angular
momentum the radius becomes extremely small, see Fig. 25. When the total relativistic energy
becomes negative we get an inequality which is satisfied because the same reason as explained in
the previous case from inequality (76) in the case of E > 0. We get:

⇒ α2

rc
− L > r

c
|E|. (77)
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6.3 Energy of a relativistic particle in V (r) = −α2/r
2 potential

In this section we visualize the behavior of the energy of the relativistic particle in V (r) = −α2/r
2

potential. The energy is expressed as:

E = ε+mc2 =
mc2√
1− v2

c2

− α2

r2
. (78)

We make it dimensionless:

Ẽ =
E

mc2
=

1√
1− ṽ2

− 1

R̃2
. (79)

With: ṽ = v/c and R̃ = r/
√

(α2/mc2). Notice that in this case for a relativistic particle in
V (r) = −α2/r

2 potential we are using other units in comparison to the previous cases. Here in order
to make radius dimensionless we have R̃2 = r2/(α2/mc

2) which by making a dimension analysis we
have:

r2

α2
mc2
∼
[
m2

α2

kg·m2

s2

]
. (80)

From (80) we notice that in order to make R̃ dimensionless we should use kgm4/s2 units for α2. From
the equation of motion for circular orbits in this case expressed as mv2/(

√
1− (v/c)2r) = 2α2/r

3

we find a relation between velocity and radius:

mrv√
1− v2/c2

= L =
2α2

rv
⇒ v =

2α2

rL
. (81)

With L the relativistic angular momentum expressed as L = mrvγ. We rewrite the expression (81)
by inserting the relativistic angular momentum and by making these expressions dimensionless with,
ṽ = v/c and R̃ = r/

√
(α2/mc2) such that a relation between dimensionless velocity and radius is

found:

ṽ2 =
2

R̃2γ
=

2
√

1− ṽ2

R̃2
⇒ ṽ2

2
√

1− ṽ2
=

1

R̃2
. (82)

From this relation we have to investigate two limits. When ṽ → 0 the left hand side of Eq. (82)
becomes zero which means that the radius becomes infinity. In the case ṽ → 1 the left hand side
becomes infinity which means that the radius becomes zero. Now, combining previous results we
find dimensionless energy in function of the velocity.

Ẽ =
1√

1− ṽ2
− ṽ2

2
√

1− ṽ2
=

(2− ṽ2)
√

1− ṽ2

2(1− ṽ2)
. (83)

Eq. (83) express the dimensionless energy as function of dimensionless velocity for a relativistic
particle in V (r) = −α2/r

2 potential in the special case of circular orbits which is graphically shown
in Fig. 26.
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Figure 26: Dimensionless energy as function of dimensionless velocity. The dimensionless velocity is
of course constrained in [0,1] because ṽ = v/c the speed of light is the upper limit for the velocity.

From Fig. 26 we see that for small ṽ the energy is constant and as in previous chapter the energy
becomes the rest energy of the particle mc2. For ṽ → 1 we see that the energy diverges. Physically
this means that when the particle’s velocity is small, kinetic and potential energy compensate
each other (note here we are in non-relativistic regime) but at a certain moment when the gamma
factor decides to make the difference, this relation breaks and at a certain moment the particle
begins to move faster and faster while the radius becomes smaller and smaller. Note that near
the region where ṽ → 1 the energy approaches infinity. This fact implies that here we don’t get a
spiraling motion around the origin while energy is a conserved quantity because in order to have
such trajectory the energy should be infinity which is clearly not physically possible. This behavior
is very different from the case of a relativistic particle in V (r) = −α1/r. There the γ factor ensures
for a compensations between kinetic and potential energy but here we don’t get such compensation
because the potential energy is more singular and dominates in the energy equation. Note that
the relation between kinetic and potential energy is in this case T = −2U . Interesting result to
mention is that the relativistic particle in V (r) = −α2/r

2 behaves like a non-relativistic particle in
V (r) = −α1/r potential, in the sense that in order to find a spiraling motion where the particle
falls into the origin the energy should be infinity. Of course in the case of a non-relativistic particle
this only happens when the velocity becomes infinity but it happens here when the velocity is near
the speed of light c. Because I scaled each problem, where relativistic and non-relativistic particle
are present in different potentials, I plot the energy as function of the velocity for all these problems
in a graph, look at Fig. 27. Further, like we did in section 5.3 where we studied the behavior
of the energy in the special case of circular orbits of a relativistic and non-relativistic particle in
V (r) = −α1/r potential, we can investigate the relation between kinetic and potential energy in
the presence of the potential V (r) = −α2/r

2. In the presence of the potential V (r) = −α2/r
2 the
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particle experiences a central attractive force equal to F = −(2α2/r
3)er. In order to have stable

circular orbits the centripetal force should be equal to the attractive force:

m√
1− v2/c2

v2

r
=

2α2

r3
. (84)

From Eq. (84) we get the relation between kinetic and potential energy of a relativistic particle in
the presence of V (r) = −α2/r

2 potential T = −2U . By making use of a Taylor expansion taking
the non-relativistic limit (1/c→ 0) of Eq. (84) we have:

lim
1
c
→0

m√
1− v2/c2

v2

r
=

2α2

r3
⇒ lim

1
c
→0

mv2

(
1 +

1

2!

v2

c2
+ . . .

)
=

2α2

r2
. (85)

This leads to the non-relativistic relation between kinetic and potential energy in presence of
V (r) = −α2/r

2 potential:

mv2 =
2α2

r2
⇒ T = −U. (86)

In chapter 7 we will look at a non-relativistic particle in the presence of V (r) = −α2/r
2 potential.

As last part of this section we can look at the dimensionless energy as function of dimensionless
velocity of the particles in the different case like we did in Fig. (5).
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Figure 27: Dimensionless energy as function of dimensionless velocity. The dimensionless velocity is
of course constrained in [0,1] because ṽ = v/c the speed of light is the upper limit for the velocity.
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6.4 Orbit equation

Now we derive an equation of motion for a relativistic particle in V (r) = −α2/r
2 potential by

making use of the same calculation and procedure like we did in 5.6. We make use of equation (48)
but the potential is replaced by V (r) = V (1/u) = −α2u

2:(
E + α2u

2

)2

=

(
du

dθ

)2

L2c2 + u2L2c2 +m2c4. (87)

With u = 1/r → du/dθ = −1/r2 · dr/dθ. If we differentiate the previous expression and afterwards
dividing the expression by du/dθ we find:

2Eα2u

L2c2
+

2α2
2u

3

L2c2
=
d2u

dθ2
+ u.

Finally we get the equation of motion of a relativistic particle in V (r) = −α2/r
2 potential:

d2u

dθ2
+ u

(
1− 2Eα2

L2c2

)
− 2α2

2u
3

L2c2
= 0. (88)

Because it is easier to work with dimensionless units we introduce dimensionless parameters and
rewrite Eq. (87) and Eq. (88) in dimensionless units. So we make use of Ẽ = E/mc2, L̃ = L/

√
2mα2,

r̃ = r/
√

α2
mc2

to rewrite Eq. (87) as:(
Ẽ +

1

r̃2

)2

= 2

(√
α2

mc2

1

r2

dr

dθ

)2

L̃2 +
2

r̃2
L̃2 + 1. (89)

Here we make use of the substitution ũ = 1/r̃ which leads to:

dũ

dθ
=

d

dθ

1

r̃
=

d

dθ

(
1
r√
α2
mc2

)
= −

√
α2

mc2

1

r2

dr

dθ
. (90)

By substituting Eq.(90) in Eq.(89) we get a dimensionless equation:(
Ẽ + ũ2

)2

= 2L̃2

(
dũ

dθ

)2

+ 2L̃2ũ2 + 1. (91)

In order to find the orbit equation we make use of the same procedure as before, that is, we
differentiate this expression and we divide it by dũ/dθ which leads to the following orbit equation:

d2ũ

dθ2
+ ũ

(
1− Ẽ

L̃2

)
− ũ3

L̃2
= 0. (92)

We will solve this equation of motion numerically. We insert the begin conditions by setting the
particle in begin position r0 at a begin polar angle θ0 which means that ũ0(θ0) = 1/r̃0(θ0). As
second condition we use the derived equation based on the fact that energy and angular momentum
are conserved quantities (Ẽ + ũ2)2 = 2L̃2(dũ/dθ)2 + 2L̃2ũ2 + 1.
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We get an interesting result when the energy becomes negative E � −mc2. In this case we get
repulsive orbits. The particle, approaching the origin of the potential begins to repulse and changes
in trajectory. The reason why the particle repulses when the energy becomes E � −mc2 can be
found in the original equation of motion. If the energy becomes negative we get (see Appendix F
for the definition of relativistic energy):

−|E| =
√
p2c2 +m2c4 − α2/r

2. (93)

⇒ −(|E| − α2/r
2) =

√
p2c2 +m2c4. (94)

⇒ (|E| − α2/r
2)2 = p2c2 +m2c4. (95)

Finally by filling the impulse in polar coordinates (here we make use of the same procedure from
5.6) we find the following equation of motion:

d2u

dθ2
+ u

[
1 +

2|E|α2

L2c2

]
− 2α2

2u
3

L2c2
= 0.

Because of the minus sign in the equation of energy (|E| −α2/r
2)2 the original potential is repulsive

(positive potential term because α2 > 0).
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6.5 Numerical solutions of a relativistic particle in V (r) = −α2/r
2 potential

By making use of the derived energy for circular orbits as function of dimensionless angular
momentum Ẽ = (L̃4 + 1)/2L̃2 and by inserting the dimensionless angular momentum we find the

begin position of the particle making use of the found relation R̃ =
√

2L̃/
√
L̃4 − 1 and we decide to

place the particle at a begin polar angle equal to θ0 = 0◦. Note that we make use of the dimensionless
equation of motion from Eq. (92) such that we find a dimensionless radius and consequently we
have dimensionless Cartesian coordinates x̃ and ỹ.
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Figure 28: Stable circular orbit of a relativistic particle in V (r) = −α2/r
2 potential with parameters

L̃ = 2 and Ẽ = 2.125. The polar angle θ is taken in ∈ [0, 2π] range. By making use of the found
relation between dimensionless radius and dimensionless angular momentum we find that the begin
dimensionless radius is given by R̃0 = 0.730297.

Like explained in section 6.3 we expect that by taking a larger and larger angular momentum
the particle will follow stable circular orbits around the origin of the potential if the particle is set in
the right conditions. This can be graphically shown, see Fig. 29. Here we calculate different circular
orbits by inserting a begin angular momentum and by using the right conditions to have a circular
orbit, this means the energy which provides for circular orbits and the right begin position of the
particle from the origin of the central force. This is very important because the potential in this
case is very strong and consequently the singularity is large, this means that when the conditions
for circular orbits are not satisfied because the particle for the given energy and angular momentum
is not present in the right position, the particle will no longer follow a stable circular orbit but it
will follow an unstable orbit such like falling into the origin.
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Figure 29: Stable circular orbits for different dimensionless angular momentum which are given
by the values in the figure. For these orbits the polar angle is taken in [0, 2π] range. From the
lowest angular momentum to the highest, we give the dimensionless energy and begin position of
the particle: Ẽ = 1.34722 and R̃0 = 1.05247, Ẽ = 2.125 and R̃0 = 0.730297, Ẽ = 2.52331 and
R̃0 = 0.657, Ẽ = 4.55556 and R̃0 = 0.474342, Ẽ = 6.16582 and R̃0 = 0.405414, Ẽ = 8.03125 and
R̃0 = 0.354246.

Further we can investigate what happens when we exceed the conditions which ensures us to
have stable circular orbits. By taking the same parameters as in Fig. 28, L̃ = 2 and R̃0 = 0.730297
and the energy Ẽ = −12.875, we get stable repulsive orbits which can be physically interpreted as
repulsive positrons:
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Figure 30: When the energy becomes large in negative sense we get repulsive particles. The polar
angle is taken in [0, 5π] range. The orbits shown in this figure are orbits where particles comes from
infinity and repulses such that the trajectory changes. Because we take a large θ range the particle
comes back and we get again a repulsion this means that the figure shows non interacting particles.
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Until now we found a circular orbit when the conditions are satisfied and repulsive orbits when
the energy becomes large in negative sense. But when we exceed the conditions for circular orbits its
possible to get scattering states. This only depends on the begin position of the particle. When we
set the particle far away from the origin of the attractive force, the particle, while flowing towards
the origin gains some velocity which means that the particle begins to accelerate. The acceleration
stops when the particle reaches a quasi balanced bound state which means that the particle is
trapped in an almost circular orbit around the origin. The particle stays for some time in this state
but because this is a temporary state the particle will escape from the system. Of course when we
place the particle somewhere in space not too far from the origin and when there is not enough
time to accelerate until the velocity of the particle is large enough to compensate the attractive
force, the particle will fall into the origin. These are the unstable scattering orbits.
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Figure 31: In this figure we get a stable scattering state on the left for the parameters Ẽ = 2.125
and L̃ = 2 . The begin position of the particle is set in R̃0 = 10.7303 at a begin polar angle θ0 = 2◦

and the polar angle is varied in the range in [0, 5π]. On the right we get an unstable scattering state
for the parameters Ẽ = 2.125 and L̃ = 2 . The begin position of the particle is set in R̃0 = 0.930297
and the polar angle is varied in the range [0, 9.5π].
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6.6 Phase diagram for a relativistic particle in V (r) = −α2/r
2 potential

In this section a dimensionless phase diagram is presented. Depending on the values of angular
momentum and energy we get different trajectories. In figure Fig. 32 the numbers refer to
characteristic orbits that are very similar to the orbits shown in the previous chapter.

Circular Orbit

Stable/Unstable scattering states 

based on the position 
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Figure 32: Phase diagram for a relativistic particle in V (r) = −α2/r
2 potential. With L̃ = L/

√
2mα2

and Ẽ = E
mc2

. The blue curve is the found relation between dimensionless energy as function of
dimensionless angular momentum in the special case of circular orbits found in Eq. (73).

Clear to see from Fig. 32 is that we get a stable region where the angular momentum is larger
than the critical angular momentum L̃ > Lc =

√
2mα2. On the blue curve we have stable circular

orbits. Above the blue curve we get the scattering states which were discussed above and which
are determined by the begin position of the particle. Below the blue curve we don’t get physical
solutions, the particle follows an unstable bounded orbit. Here the particle falls into the origin and
afterwards escapes and at a certain time falls again into the origin. This is a characteristic of the
potential because the potential is very strong in this case it doesn’t allow elliptical orbits because the
kinetic energy is not large enough to compensate the attractive force. The only way to have stable
bounded orbits in this case are circular orbits where by making use of the right position, energy
and angular momentum ensure that the centripetal force compensates the attractive force. When
the energy becomes large in negative sense we always get stable repulsive orbits. In the non stable
region where the angular momentum is less than the critical angular momentum L̃ < Lc =

√
2mα2

we don’t find stable solutions, where the particle falls into the origin as an unstable scattering state.
Here the particle falls into the origin without performing circular motion. This typical orbit appears
in the region where (4) is situated in Fig. 32. At the same time when the energy becomes negative
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we get stable repulsive orbits. This means that when the energy becomes negative we always get
repulsive orbits. A typical orbit for (5) and (3) is given by Fig. 30. A typical orbit for (1) is a
circular orbit as shown in Fig. 29. A typical orbit for (2) is shown in Fig. 31 where two orbits are
possible based on the begin position of the particle.
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7 Non-relativistic particle in V (r) = −α2/r
2 potential

For a non-relativistic particle we can derive the equation of motion by using the lagrangian formalism.
In this case we have:

L(r, ṙ) =
1

2
mṙ2 − α2

r2
.

Consequently we get the following equation of motion: v̇ = 2α2
m

1
r3

, with v = ṙ. Because we are
interested in circular orbits we express the velocity of the particle in polar coordinates (r,θ) and at
the same time we find the acceleration in polar coordinates, which is expressed as:[2][14]

a =

[
d2r

dt2
− r
(
dθ

dt

)2]
er +

1

r

[
d

dt

(
r2dθ

dt

)]
eθ︸ ︷︷ ︸

=aθ

.

By multiplying the acceleration with the mass of the particle we get the equation of motion
of the non-relativistic particle. In order to have circular orbits the central force (in this case
F(r) = −2α2/r

3er should be equal to the centripetal force (2α2/r
3 = mv2/r). From this expression

we derive the relationship between kinetic and potential energy T = −U . This problem looks like
a relativistic particle in a Kepler/Coulomb potential problem which is discussed earlier. Because
central forces leads to conserved systems we have a conserved angular momentum which is expressed
as dL/dt = r × F = 0. Because central forces are proportional with the radial unit vector er we
have Fθ = maθ = 0 which leads to d

dt(mr
2 dθ
dt ) = dL

dt = 0. Using this result we can derive a general
equation of motion in the case of a general central force f(r): [2][14]

f(r) = m

[
d2r

dt2
− r
(
dθ

dt

)2]
.

From the previous results we know that θ̇ = L/mr2. Combining with previous expression we get:
[14]

f(r) = m

[
d2r

dt2
− L2

m2r3

]
. (96)

Because we are interested in circular orbits we have to find a relation between radius and polar
angle. We have:

ṙ =
dr

dt
=
dr

dθ

(
dθ

dt

)
=
dr

dθ

(
L

mr2

)
= − L

m

du

dθ
. (97)

Where in the last equality we made use of u = 1/r and du = (−1/r2)dr. And finally we find the
radial acceleration:

r̈ =
dṙ

dt
= − d

dt

(
L

m

du

dθ

)
= − L

m

d2u

dθ2

dθ

dt
= − L

2

m2

d2u

dθ2
u2. (98)

Where in the last equality we made use of θ̇ = Lu2/m. Finally we find the equation of motion of
a non-relativistic particle under influence of a general central force f(r) = f(1/u) by combining
Eq.(96) and r̈.[14]

f(1/u) = m

[
− L2

m2

d2u

dθ2
u2 − L2u3

m2

]
⇒ d2u

dθ2
+ u+

m

L2

f(1/u)

u2
= 0. (99)

55



Because we want to describe the non-relativistic particle in V (r) = −α2/r
2 or V (1/u) = −α2u

2

potential we have F (1/u) = −∇V (1/u) = −2α2u
3 and the equation of motion becomes:

d2u

dθ2
+

(
1− 2α2m

L2

)
u = 0. (100)

By using Mathematica we find the solutions of Eq. (100). We need conditions in order to find the
general solution. Like we did before we insert as begin condition u0(θ0) = 1/r0 and as second begin
condition we use again the fact that energy and angular momentum are conserved quantities and
we derive again the energy expression in polar coordinates in the case of potential V (r) = −α2/r

2.
The analysis is the same as in Appendix I where the equation of motion of a non-relativistic particle
was derived. In this case we get as second condition:

E + α2u
2 =

1

2m

(
du

dθ

)2

L2 +
1

2m
u2L2. (101)

By inserting these conditions we get the general solution of a non-relativistic particle in V (r) =
−α2/r

2 potential.

u(θ) =
e−
√

2mα2−L2

L
(2θ0+θ)

2r0(L2 − 2mα2)

(
± r0e

2θ0

√
2α2m−L2

L

√√√√(L2 − 2mα2)e
2θ0

√
2mα2−L2

L (−2Emr2
0 + L2 − 2mα2)

r2
0

∓r0e
2θ
√

2mα2−L2

L

√√√√(L2 − 2mα2)e
2θ0

√
2α2m−L2

L (−2Emr2
0 + L2 − 2α2m)

r2
0

+

L2e
3θ0

√
2α2m−L2

L − 2α2me
3θ0

√
2α2m−L2

L + L2e
θ0

√
2α2m−L2

L
+

2θ
√

2α2m−L2

L − 2α2me
θ0

√
2α2m−L2

L
+

2θ
√

2α2m−L2

L

)
.

(102)
With:

1. L the given angular momentum

2. E the given energy of the particle

3. r0 the initial position of the particle

4. θ0 the initial polar angle between the x-axis and the position vector which binds the particle
with the origin of the central force

Like explained in section 5.2.3 in the case of potential V (r) = −α2/r
2 we don’t find stable circular

orbits. So we don’t find any relation between angular momentum and radius. What I do in this
case, I find the initial conditions by using the found relation L0 = mr0v0 for circular orbits. Because
the angular momentum is a fixed quantity, we have to place the particle somewhere in space and in
this way we got the begin velocity of the particle. Of course we should have the same differential
equation by taking the non-relativistic limit (c → ∞) in the equation of motion Eq. (88) of a
relativistic particle. We show that by taking this limit we get the same differential equation as in
Eq. (100). From Eq. (88) we have:

d2u

dθ2
+ u

(
1− 2Eα2

L2c2

)
− 2α2

2u
3

L2c2
= 0. (103)
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By taking the limit c→∞ we have that the term in
2α2

2u
3

L2c2
vanishes and goes to zero, with L the

relativistic angular momentum. Important to notice is that by taking the non-relativistic limit, that
the relativistic angular momentum approaches the non-relativistic angular momentum L → Lnr
(look at definition of relativistic angular momentum in chapter 5.2.2). On the other hand we have

that the energy becomes non-relativistic and we have Erel → Enrel ⇒ Erel → Enrel = −mv2

2 +mc2.
This fact leads to:

lim
1
c
→0

2Erelα2

(Lc)2
= lim

1
c
→0

2α2

(Lc)2
(−mv

2

2
+mc2) =

2mα2

L2
nrel

.

By looking at this results we indeed see that Eq. (100) is the non-relativistic version of the equation
of motion of a relativistic particle in V (r) = −α2/r

2 potential. Finally, we express the equation of
motion in Eq. (100) in dimensionless units:

d2ũ

dθ2
+

(
1− 1

L̃2

)
ũ = 0. (104)

with ũ = 1/r̃ = 1/(r/
√
α/mc2) and L̃ = L/

√
2mα. The energy equation becomes (with Ẽ =

E/mc2):

Ẽ + ũ2 =

(
dũ

dθ

)2

L̃2 + ũ2L̃2. (105)

7.1 Energy of a non-relativistic particle in V (r) = −α2/r
2 potential

The energy of a non-relativistic particle in V (r) = −α2/r
2 potential is expressed as:

E =
1

2
mv2 − α2

r2
+mc2. (106)

We can make this expression dimensionless:

Ẽ =
E

mc2
=

1

2
ṽ2 − 1

r̃2
+ 1. (107)

With ṽ = v/c, r̃ = r/
√
α2/mc2. We introduce the rest mass energy because we want to compare

this results with the results of a relativistic particle. By solving the equation of motion for a circular
orbit we found L = mrv ⇒ r̃2 = 2L̃2/ṽ2 with L̃ = L/

√
2mα2. By eliminating the radius dependency

in expression (107) we get:

Ẽ =
1

2
ṽ2

(
1− 1

L̃2

)
+ 1. (108)

It is easy to see that if the angular momentum L approaches the critical angular momentum
L =

√
2mα2 that the energy is constant because the kinetic and potential energy will compensate

each other. If the angular momentum is larger than the critical angular momentum, the kinetic
energy term will dominate and consequently we get scattering states. If the angular momentum
is less than the critical angular momentum then the potential energy term will dominate and
consequently we get bound states. Here we need to be careful. Because in this case we don’t have
stable orbits when we should have bounded orbits we get unstable orbits where the particle falls
into the origin. In the following graphs I show the dimensionless energy as function of dimensionless
velocity.
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Figure 33: Dimensionless energy as function of velocity for L� Lc =
√

2mα2. This figure is made
for L̃ = L/

√
2mα2 = 5.
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Figure 34: Dimensionless energy as function of velocity for L < Lc =
√

2mα2. This figure is made
for L̃ = L/

√
2mα2 = 0.9.
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Figure 35: Dimensionless energy as function of velocity for L� Lc =
√

2mα2. This figure is made
for L̃ = L/

√
2mα2 = 0.2.
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Further, from the equation of motion for circular orbits we get:

mv2

r
=

2α2

r3
⇒ mv2 =

2α2

r2
. (109)

We make this relation dimensionless by dividing both sides by the rest energy of the particle mc2:

ṽ2 =
2

r̃2
. (110)

With: ṽ = v/c and r̃ = r/
√
α2/mc2. By inserting this relation in Eq.(107) we get:

Ẽ =
1

2
ṽ2 − 1

2
ṽ2 + 1. (111)

Clear to see is that the energy is constant, because an increase in kinetic energy is compensated by
a decrease in potential energy and the other way around. This behavior is almost the same as the
behavior studied in chapter 5 where we studied a relativistic particle in V (r) = −α1/r potential. In
this case an increase/decrease in velocity corresponds with a decrease/increase in radius which leads
to a full conversion between kinetic and potential energy T = −U . This case is bit different from
the case in chapter 5 because:

1. In chapter 5 the energy is kept constant (angular momentum also see chapter 5) because of
the presence of the γ-factor. This leads to the fact that the particle falls into the origin and
at the same time the energy and angular momentum are conserved quantities.

2. In the case of a non-relativistic particle in V (r) = −α2/r
2 potential here we don’t have a

γ-factor but the potential and kinetic energy compensate each other because the relation
found in Eq. (110) leads to unstable orbits which were predicted in section 5.2.3.
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7.2 Orbits of a non-relativistic particle in V (r) = −α2/r
2 potential

I used the Manipulate function of Mathematica in order to make the following figures. What I
basically do is, I put the particle somewhere in space r̃0 with a certain begin angle θ0, afterwards I
adapt the energy and angular momentum. Note that here I made use of the dimensionless equation
of motion Eq. (104)
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Figure 36: Solution of orbit equation Eq. (104). This plot is made by using the following parameters:
L̃ = 0.9, Ẽ = −1, θ0 = 0.001◦ and r̃0 = 0.2. The polar angle is varied in the range ∈ [0, 10π]. The
right figure is an enlargement of the left figure which shows that the particle spirals into the origin
of the force.

Clear to see from Fig. 36 is that by setting the particle around the origin (red dot), the particle
gets trapped by the central force and spirals out from the origin and afterward at a certain moment
it begins to spiral into it. This behavior is found when we investigated the behavior of a relativistic
particle in V (r) = −α1/r potential. In both cases when the angular momentum is less than the
critical angular momentum, L = α1/c for a relativistic particle in V (r) = −α1/r potential and
Lc =

√
2mα2 for a non-relativistic particle in V (r) = −α2/r

2 potential, the particle spirals into
the origin of the central force which indeed leads to an unstable orbit. The fact that both cases
exhibits the same behavior is not surprising. The biggest reason why they have the same behavior
is found in the relation between kinetic and potential energy, T = −U . Notice that both relativistic
and non-relativistic particles in these potentials show the same behavior but with a big difference.
In the case of a relativistic particle in V (r) = −α1/r potential there we got stable circular and
elliptical (precessing ellipses) orbits while here is not the case anymore because we derived in 5.2.3
that for the potential V (r) = −α2/r

2 there cannot exist any stable bounded orbit. Further, by
increasing the angular momentum and when it becomes larger than the critical angular momentum
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Lc =
√

2α2m, it is clear from the figures below that the particle will make loops around the origin
of the central force but doesn’t fall into the origin. It is clear a scattering state.
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Figure 37: The particle starts in r̃ = 1 (red dot) and escapes from the central force. Afterwards the
particles comes back and performs a loop around the origin and escapes from the potential force.
This plot is made by using the following parameters: L̃ = 1.05, Ẽ = 0.05, θ0 = 0◦ and r̃0 = 1.5. The
polar angle is varied in ∈ [0π, 4.5π].
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Figure 38: This plot is made by using the following parameters: L̃ = 1.2, Ẽ = 6, θ0 = 0◦ and r̃0 = 1.
The polar angle is varied in ∈ [0.19π, 1.99π].
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From the figures above we recognize for L̃� 1 Kepler hyperbolic/parabolic orbits which are also
found for a relativistic particle in V (r) = −α1/r potential. When the angular momentum is less or
equal to the critical angular momentum it is easy to see from the figure below that the particle will
spiral into the origin of the potential.
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Figure 39: Solution of orbit equation Eq. (104). This plot is made by using the following parameters:
L̃ = 0.994, Ẽ = 0.05, θ0 = 0◦ and r̃0 = 1.5. The polar angle is varied in ∈ [0, 8π]. This graph is
made for L̃ ≤ 1.

From Fig. 39 we see that the particle starts in r̃ = r/r0 = 1 (red dot) and escapes from the
potential. Afterwards the particle comes back and gets captured by the potential force and will
spiral into the origin of the potential. This behavior is found also for a relativistic particle in
V (r) = −α1/r potential. The reason for likeness in behavior between the two particles is explained
later in chapter 9.
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7.2.1 Radius as function of polar angle θ

In this section we will solve the equation of motion Eq.(104) numerically and stable/unstable orbits
are studied as function of the polar angle θ. We know that an orbit becomes unstable if the angular
momentum becomes less than the critical angular momentum (L̃ < 1) and stable orbits are found
when the angular momentum is larger than the critical value (L̃ > 1).
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Figure 40: Solution of orbit equation Eq.(104) for parameters: Ẽ = 1, θ0 = 0◦ and r̃0 = 20. The
polar angle is varied in ∈ [0, 10π]. In the left figure the angular momentum is less than the critical
angular momentum L̃ = 0.999 while in the right graph the angular momentum is slightly larger
than the critical angular momentum L̃ = 1.001.

From Fig. (40) we see that both figures are very similar but the evolution for a larger range of
the polar angle is different. In Fig. (41) we see the radius as function of θ of the respective graphs.
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Figure 41: Dimensionless radius r̃ as function of the polar angle θ. The figures are to read from left
to the right. The particle starts in r̃0 = 20 and at a begin polar angle θ0 = 0◦.

Clear to see from Fig. (41) is the fact that the particle in the case of L̃ < 1 (left case in Fig.
(40)) in a larger θ range, will fall into the origin of the central force. When L̃ > 1 (right case in Fig.
(40)) the radius will converge to a minimum radius r̃min and for a certain moment the particle will
follow a ’quasi’ bound circular orbit with radius r̃min. Afterward the radius begins to increase and
at a certain moment will diverge which means that the particle at some time will win some kinetic
energy which provides for an escape from the attractive field. In Fig. (42) we see the evolution of
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the orbits in a larger polar angle interval.
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Figure 42: Solution of orbit equation Eq.(104) for parameters: Ẽ = 1, θ0 = 0◦ and r̃0 = 20. The
polar angle is varied in ∈ [0, 22.5π]. In the left figure the angular momentum is less than the critical
angular momentum L̃ = 0.999 while in the right graph the angular momentum is slightly larger
than the critical angular momentum L̃ = 1.001.

Further, in Fig. 43 an enlargement of the right figure of Fig. 41 is shown while Fig. 44 shows an
enlargement of the left figure of Fig. 41.
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Figure 43: Enlargement of the right figure of Fig. 41. In the left figure we clearly see that the particle
approaches the origin of the potential reaching a minimum distance from the center. Afterward we
see from the right figure that the particle escapes from the potential.
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Figure 44: Enlargement of the left figure of Fig. 41. Here we clearly see that the particle approaches
closer and closer to the origin of the potential and at a certain time the particle falls into it.

7.3 Phase diagram for a non-relativistic particle in V (r) = −α2/r
2 potential

In Fig. 45 a phase diagram for a non-relativistic particle in V (r) = −α2/r
2 potential is presented.

Because in section 7.1 we didn’t find a relation between dimensionless energy and angular momentum
we cannot draw a curve in the phase diagram. From the previous figures and calculations we know
that below the critical angular momentum L̃ < 1 we get unstable orbits which provides for atomic
collapse. These are situated in the red region of Fig. 45. Above the critical angular momentum
L̃ > 1 the particle performs stable scattering states which in the phase diagram are to be found in
the orange region. Note that bounded stable orbits are not possible in both cases.
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Figure 45: Phase diagram for a non-relativistic particle in V (r) = −α2/r
2 potential.
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8 Influence on the orbits by removing singularity in r = 0

Now that we have the orbits for a relativistic and non-relativistic particle in V (r) = −α1/r and
V (r) = −α2/r

2 potentials we can investigate the consequence on the orbits by removing the
singularity in r = 0. In the next figure we can visualize how the Kepler/Coulomb potential is
affected by cutting off the potential as function of the radius.
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Figure 46: These curve’s represents the Kepler/Coulomb potentials for different cases. Blue: V (r) =
−α1/r,Green: V (r) = −α2/r

2, Orange: V (r) = −α1/
√
r2 + a2, Red: V (r) = −α2/(r

2 + a2). This
plot is made for α1 = 1kgm3/s2 for V (r) = −α1/r and V (r) = −α1/

√
r2 + a2 and α2 = 1kgm4/s2

for V (r) = −α2/(r
2 + a2) and V (r) = −α2/r

2. In all of this cases we take a = 1m. Note that the
radius is given in meters and the potentials in joule (J).

By introducing the parameter a the potential converges to a constant value for r → 0. Now we
can distinguish two cases when r → 0, one when a becomes very small near to zero and the other
when a becomes very big. When a is near zero it is easy to visualize that the potential becomes very
big in the negative sense. Of course when a is zero the potential becomes −∞. This is a special case
that is discussed in 9. Again because the system is under influence of a central force we have that
energy (E = T + V ) and angular momentum are conserved quantities. When potential becomes
−∞ it means that we have a full conversion from kinetic to potential energy and consequently the
particle fall’s into the center of the central force. So, this cannot be the case when a > 0, here we
expect that the particle cannot fall into the center of the central force. Finally when a becomes big
then the potential becomes very small near zero, and of course when a becomes ∞ potential energy
becomes zero which leads to a free particle. Because of these reasoning we can deduce some facts:

1. For parameter a small, the potential energy will dominate in the energy expression which
leads to negative energy and consequently we get bound states.

2. For parameter a large, the potential energy is very weak and consequently the kinetic energy
takes control in the expression of energy and in this case we get scattering states.

Note that the unit of parameter a in all cases is meters.
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8.1 Non-relativistic particle in a V (r) = −α1/
√
r2 + a2 potential

By using the energy equation with V (r) = −α1/
√
r2 + a2 ⇒ V (1/u) = −α1u/

√
1 + a2u2 potential

we derive the equation of motion of a non-relativistic particle in a V (r) = −α1/
√
r2 + a2 potential.

The procedure is the same as we made in Appendix I. Look at Appendix I Eq. (141).

E +
u√

1 + a2u2
=

1

2m

(
du

dθ

)2

L2 +
1

2m
u2L2. (112)

By taking the derivative of Eq. (112) with respect to θ and afterward dividing by du/dθ we find the
equation of motion:

d2u

dθ2
+ u− α1m

L2

1√
(1 + a2u2)

+
α1m

L2

a2√
(1 + a2u2)3

= 0. (113)

With u = 1/r. In order to compare our results we resize the parameters such that u(θ) scales as
mc2/α1 like we did in chapter 5.7 and 5.8 by introducing L̃ = Lc/α1 and Ẽ = E/mc2. Of course
by inserting a = 0α1/mc

2 we get again the equation of motion of a non-relativistic particle in
V (r) = −α1/r potential given in Eq. (145) (Look at Appendix I). Now we can solve this equation
of motion numerically and investigate the influence on the orbits by regulating the singularity of
the potential V(r) as function of parameter a.
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Figure 47: This plot is made for a = 0α1/mc
2, L̃ = 1, Ẽ = −(1/2L̃2)=-0.5 and the polar angle is

varied in the range θ ∈ [0, 2π]. The begin position of the particle is r0 = 1α1/mc
2 in θ0 = 0◦.
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By keeping the same parameters as in Fig.(47) and increasing parameter a we find that the
particle feels less potential which leads to a free particle, look at Fig.48.
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Figure 48: This plot is made for different a while all parameters L̃ = 1,Ẽ = −(1/2L̃2)=-0.5,
r0 = 1α1/mc

2,θ0 = 0◦ are kept. The polar angle is varied in θ ∈ [0, 2π] for each case.

From Fig. 48 it is easy to note that by the increasing parameter a the particle gains some
kinetic energy because the potential becomes weaker and this leads, for weak a, to precessing ellipses
around the origin of the central force. This behavior was never found for a non-relativistic particle,
where only circular and elliptical orbits were allowed in the case of a bounded orbit. This means
that by removing the singularity in the potential we get precessing motion in the case of a bounded
orbit. Of course by taking a very big the solution becomes a straight line which is the solution of a
free particle.
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8.2 Non-relativistic particle in a V (r) = −α2/(r
2 + a2) potential

The equation of motion of a non-relativistic particle in V (r) = −α2/(r
2 + a2) potential can be found

in two different manners. The first by using the general equation of motion found in Eq. (99) the
equation of motion of a non-relativistic particle in V (r) = −α2/(r

2 + a2) potential can be found by
using the relation between force and potential energy F = −∇V (r). The second by deriving it from
the energy equation. Note that we make use of the r-inverse variable u = 1/. This means that the
potential becomes:

V (r) =
−α

r2 + a2
⇒ Ṽ (1/ũ) =

−ũ
1 + ã2ũ2

. (114)

With Ṽ (r̃) the dimensionless form of the adapted potential, r̃ = r/
√
α2/mc2, ã = a/

√
α2/mc2 and

ũ = 1/r̃. Now we replace the potential Ṽ (1/ũ) in the energy equation (105):

Ẽ +
ũ

1 + ã2ũ2
=

(
dũ

dθ

)2

L̃2 + ũ2L̃2. (115)

By taking the derivative with respect to θ and by dividing by dũ/dθ we get the equation of motion
of a non-relativistic particle in Ṽ (1/ũ) potential:

d2ũ

dθ2
+ ũ− ũ

L̃2

1

(1 + ã2ũ2)
+
ũ2ã2

L̃2

1

(1 + ã2ũ2)2
= 0. (116)

Note that the same equation of motion could be derived by using the general equation of motion in
Eq. (99). Of course by inserting ã = 0 we get again the equation of motion of a non-relativistic
particle in V (r) = −α2/r

2 potential given in Eq. (104). Now we can solve this equation of motion
numerically and investigate the influence on the orbits by regulating the potential Ṽ (1/ũ) as function
of the parameter ã.
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Figure 49: Solution of orbit equation Eq. (116) for parameters: Ẽ = 1, θ0 = 0◦, r̃0 = 20,L = 0.999
and ã. The polar angle is varied in ∈ [0, 10π] for the left figure, while ∈ [0, 4π] for the figure on the
right. The left and right figure shows the same orbit but I took a smaller polar angle range in order
to compare the influence on the orbit by increasing parameter ã. It is easy to notice that by taking
parameter ã = 0 we get again the same orbit as shown in Fig. 40.
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Figure 50: Solution of orbit equation Eq. (116) for parameters: Ẽ = 1, θ0 = 0◦, r̃0 = 20,L = 0.999
and ã. The polar angle is varied in ∈ [0, 4π]. The numbers refers to the magnitude of ã.

It is easy to notice that by increasing parameter ã the particle feels less attractive potential
which means that the particle at a certain moment acts as a free particle like shown by the orange
straight line in Fig.50.
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8.3 Relativistic particle in a V (r) = −α1/
√
r2 + a2 potential

By using potential V (r) = −α1/
√
r2 + a2 and making use of the same calculation as in chapter

5.6, we get the equation of motion of a relativistic particle in V (r) = −α1/
√
r2 + a2 potential. (see

Appendix J)

d2u

dθ2
+u−Eα1

L2c2

1√
1 + (au)2

+
Eα1

L2c2

u2a2√
(1 + (au)2)3

− α2
1

L2c2

u

(1 + (au)2)
+

α2
1

L2c2

u3a2

(1 + (au)2)2
= 0. (117)

With u = 1/r. Again, in order to compare our results we resize the parameters such that u(θ) scales
as mc2/α1 like we did in chapter 5.7 and 5.8 by introducing L̃ = Lc/α1 and Ẽ = E/mc2. It is easy
to visualize that by inserting a = 0α1/mc

2 we get again the equation of motion of a relativistic
particle in V (r) = −α1/r potential, given in Eq.(50):

d2u

d2θ
+

[
1−

(
α1

Lc

)2]
u− Eα1

(Lc)2
= 0. (118)

Now we can solve the equation of motion Eq.(117) numerically and investigate the influence on the
orbits by changing the potential V(r) as function of the parameter a. By making use of the same
parameters used to make Fig. 17 and by inserting a = 0α1/mc

2 we obtain of course the same orbit
found in Fig. 17:
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Figure 51: Solution of orbit equation Eq. (117) for parameters: L̃ = 2,Ẽ =
√

1− (1/L̃)2 +0.09999 =

0.96603, θ0 ≈ −1.948995◦, a = 0α1/mc
2 and r0 = 3.4641α1/mc

2. The polar angle is varied in
∈ [−2π, 8π].

Note that in Fig. 17 the polar angle was taken in ∈ [0, 10π] and in Fig. 51 ∈ [−2π, 8π]. If I
start in θ = 0 in the numerical solution the particle starts to move on the orbit later which intuitive
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looks like that the orbits are not the same. But I looked better to the orbits and I shifted my begin
conditions by 2π such that in order to have the same orbit as analytic we need to solve the begin
conditions in 2π − θ0 and no longer 0− θ0 like we did for the analytic solution. Now, we take one
loop of the orbit shown in Fig. 51 and we investigate what happens with the orbit by increasing
parameter a.
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Figure 52: Solutions of orbit equation Eq. (117) for parameters: L̃ = 2,Ẽ =
√

1− (1/L̃)2+0.09999 =

0.96603, θ0 ≈ −1.948995◦. The polar angle is varied in ∈ [−2π, 0π].

It is easy to notice that by increasing parameter a the particle feels less attractive potential
which means that the particle at a certain moment acts as a free particle like shown by the black
straight line in Fig. 52. Further, we can investigate what happens with the unstable orbits where
the particle falls into the origin of the central force by removing the singularity in r = 0. The fact
that before when a = 0 we had T = −U tells us that the particle can fall into the origin while
angular momentum and energy are conserved quantities. Now if we remove the singularity this
cannot happen anymore because this relation is broken, and will not provide for a collapse anymore.
Look at Fig. 53.
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(b) a = 0.01α1/mc
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(c) a = 0.09α1/mc
2.
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(d) a = 5α1/mc
2.

Figure 53: Numerical solution of orbit equation Eq.(117) with parameters: L̃ = 0.9,Ẽ = 0.1,
θ0 ≈ −2◦. The polar angle is taken for all figures in ∈ [−2π, 5π]. In figure (a) we see again a typical
unstable orbit where the particle set in position r0 = 0.382165α1/mc

2, will spiral out from the
origin of the central force and afterwards spirals into the origin. Clear to see is that by removing
the singularity the particle will no longer fall into the origin and leads to precessing motion around
the origin. At a certain time the potential becomes so small such that the particle becomes almost
a free particle.
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8.4 Relativistic particle in a V (r) = −α2/(r
2 + a2) potential

From the dimensionless energy equation in Eq. (91) we derive the dimensionless equation of motion
for a relativistic particle in V (r) = −α2/r

2. The dimensionless energy equation is expressed as:(
Ẽ + ũ2

)2

= 2L̃2

(
dũ

dθ

)2

+ 2L̃2ũ2 + 1. (119)

Now we remove the singularity in r = 0 such that the potential becomes:

V (r) = − α2

r2 + a2
⇒ Ṽ (r) = − 1

r̃2 + ã2
. (120)

With Ṽ (r̃) the dimensionless form of the adapted potential, r̃ = r/
√
α2/mc2 and ã = a/

√
α2/mc2.

With this potential we find the new equation of motion where the singularity in r = 0 is removed.(
Ẽ +

1

r̃2 + ã2

)2

= 2

(
1

r̃2

dr̃

dθ

)2

L̃2 +
2

r̃2
L̃2 + 1. (121)

Using the substitution ũ = 1/r̃ we find:(
Ẽ +

ũ

1 + ã2r̃

)2

= 2

(
dũ

dθ

)2

L̃2 + 2ũ2L̃2 + 1. (122)

By taking the derivative of Eq. (122) with respect to θ and by dividing the expression by dũ/dθ we
find the equation of motion of a relativistic particle in Ṽ (r) potential:

d2ũ

dθ2

1

ũ
+ 1− 1

L̃2

(
Ẽ +

ũ2

1 + ã2ũ2

)(
1

1 + ã2ũ2
− ũ2ã2

(1 + ã2ũ2)2

)
= 0. (123)

Alternatively we make the same calculation and we find the respective equation of motion of Eq.
(88) for the adapted potential:

d2u

dθ2

1

u
+ 1− 2Eα2

L2c2

1

(1 + (au)2)
+

2u2α2(α2 − Ea2)

L2c2(1 + (au)2)2
− 2α2

2u
4a2

(1 + a2u2)3L2c2
= 0. (124)

With u = 1/r. Of course when we take a = 0
√
α2/mc2 in Eq. (124) we get the same equation of

motion as Eq. (88) which is expressed as:

d2u

dθ2
+ u

(
1− 2Eα2

L2c2

)
− 2α2

2u
3

L2c2
= 0. (125)

This is also valid for Eq. (123) where by taking ã = 0 we get again the equation of motion found in
Eq. (92) which is expressed as:

d2ũ

dθ2
+ ũ

(
1− Ẽ

L̃2

)
− ũ3

L̃2
= 0. (126)

Now we can solve the equation of motion Eq. (123) numerically and investigate the influence on the
orbits by changing the potential Ṽ (r̃) as function of the parameter ã. By making use of the same
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parameters used to make Fig. 28 and by inserting ã = 0 we obtain of course the same orbit found
in Fig. 28:
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Figure 54: Solution of orbit equation Eq. (123) with parameters L̃ = 2, θ0 = 0◦, R̃0 = 0.730297,
ã = 0 and Ẽ = 2.125. The polar angle θ is varied in range ∈ [0, 20π].

Now we take the same parameters as in Fig. (54) and we regulate the singularity of the potential.

-4 -2 2 4

x
˜

R0
˜

-4

-2

2

4

y
˜

R0
˜

-4 -2 2 4

x
˜

R0
˜

-4

-2

2

4

y
˜

R0
˜

Figure 55: In both cases the singularity is removed by ã = 0.001. In the left figure the polar angle is
varied in the range ∈ [0, 4.5π]. In the right figure the polar angle is varied in the range ∈ [4.5π, 12π].

In the left figure of Fig. 55 we observe that the particle starts at R̃ = 1 with begin polar angle
θ0 = 0◦. From this point on the particle performs a few circles around the origin and afterwards
escapes from the attractive potential. In the right figure of Fig. 55 we varies the polar angle in a
larger range. From here we see that the particle comes back and performs a few loops around the
origin before falling into it. This means by regulating a bit the singularity of the potential, a circular
orbit becomes an unstable scattering state where the particle falls into the origin of the potential.
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But when we regulate the singularity by taking a large ã we find that the particle performs a stable
scattering state as shown in Fig. 56. Note that we make use of the same parameters as used in the
previous figures.
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(d) ã = 5.

Figure 56: In all cases the polar angle is varied in the range ∈ [0, 12π].

From Fig. 56 we see that an increase in ã leads to stable scattering states. From Fig. 56 (d)
we see that the particle becomes a free particle, this almost doesn’t feel the attraction from the
potential. Further, by increasing ã we get stable scattering states where before only unstable orbits
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were found (L̃ < 1) as shown in Fig. 57.
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Figure 57: In all figures we made use of the parameters: L̃ = 0.5, θ0 = 0, Ẽ = 2.125 and R̃ = 10. In
all cases the polar angle is varied in the range ∈ [0, 3π].

From figure Fig. 57 we clearly see that an increase in ã leads to stable scattering states and at a
certain moment the particle doesn’t feel the attractive potential anymore which means that the
particle becomes free.

77



9 Relation between kinetic and potential energy for a particle in
V (r) = −αn/rn potential with n = 1, 2

In Table 4 we give the relation between kinetic and potential energy for the different cases.

Particle T V1(r) V2(r) T ∼ V1(r) T ∼ V2(r)

Relativistic T ∼ p ∼ 1
r ∼ 1

r ∼ 1
r2

1
r ∼

1
r

1
r ∼

1
r2

Non-relativistic T ∼ p2 ∼ 1
r2

∼ 1
r ∼ 1

r2
1
r2
∼ 1

r
1
r2
∼ 1

r2

Table 4: This table gives a summary of the found relations between kinetic (T) and potential (Vn)
energy for the different cases.

Because the kinetic energy of the system is proportional with the linear momentum and at the
same time the linear momentum is inversely proportional with the length scale of the system we
can clarify some likeness in behavior between the two cases.

A non-relativistic particle in V2(r) potential shows the same behavior as a relativistic particle
in V1(r) potential. This is because the relation between kinetic and potential energy in both cases
is equal to T = −U . This means that kinetic/potential energy can be completely converted into
potential/kinetic energy and there is no dominant term in the energy equation which forces the
system to some characteristic behavior. In this case we have that the potential and kinetic energy
term scales in the same way as the length scale of the system.

A relativistic particle in V2(r) potential shows the same behavior as a non-relativistic particle
in V1(r) potential. In both cases the particle cannot spiral into the origin while energy is conserved
and in both cases the particle can follow a circular orbit. The reason why both particles have the
same behavior is found in the relation between kinetic and potential energy, here we find T = −2U
for a relativistic particle in V2(r) potential and 2T = −U for a non-relativistic particle in V1(r)
potential. In both cases kinetic and potential energy scales in a different manner with respect to
the length scale of the system which provides for a dominating term in the energy equation which
forces the system to some characteristic behavior.
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10 Frustrated state

Until now we investigated the case where a potential is situated in the origin of the coordinate
system. Here we split this potential into two potentials and investigate how the orbits of a relativistic
and non-relativistic particle are affected. The split potential, has two origins of attractive force.
Note that here the system is no longer spherical symmetric and as explained in the previous chapters
the angular momentum is a conserved quantity only if the system is spherically symmetric, this
means that in such a system the angular momentum is no longer a conserved quantity because
the circular symmetry is broken. This fact is a consequence of the presence of the two potentials
which results in different forces on the particle an external torque which is mathematically expressed
as #»τ = dL/dt = r × F. In the case of spherically symmetric system #»τ = dL/dt = 0 as shown in
previous chapters. We will see that the angular momentum as function of θ shows oscillations in the
presence of the two-charge potential. Further it is easy to show that the energy is still conserved in
this case:

E =
1

2
mṙ2 + Φ(r)⇒ Ė = mṙ · r̈ +

dΦ(r)

dr

dr

dt
. (127)

Because the relation between force and potential energy F = −∇V and F = mr̈ we have that:

Ė = ṙ · F− F · ṙ = 0. (128)

Which shows that the total energy is conserved.
Now we can visualize the original and the two-charge potential by making a contour plot. The
original potential V1(r) = −α1/r leads to an attractive central force situated in the origin of the
coordinate system as shown in Fig. 58.
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Figure 58: Contour plot of V ∗1 (r̃) = −1/r̃ = −1/
√
x̃2 + ỹ2 potential.

Note that we made use of dimensionless expressions in Fig. 58 and we call V ∗1 (r̃) the dimensionless
potential. From Fig. 58 we see the two charges which are placed on top of each other in the origin
(x̃ = 0, ỹ = 0) and the potential is spherically symmetric. The red circles give the equipotential
surfaces which are spherically symmetric in this case.
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Now, we can derive the two-charge potential in polar coordinates. We choose to put the origin of
the two potentials along the x-axis around the origin.

Ṽ1(r) = −α1

r
= − α1/2√

(x− x0)2 + y2
− α1/2√

(x+ x0)2 + y2
. (129)

Because in polar coordinates we have x = r cos(θ0) and y = r sin(θ0) we rewrite Eq.(129) up to:

Ṽ1(r) = −α1

r
= − α1/2√

(rcos(θ0)− x0)2 + y2
− α1/2√

(rcos(θ0) + x0)2 + (rsin(θ0))2
. (130)

⇔ Ṽ1(r) = −α1

r
= − α1/2

r

√
1− 2x0cos(θ0)

r +
x20
r2

− α1/2

r

√
1 + 2x0cos(θ0)

r +
x20
r2

. (131)

In Fig. (59) we show the dimensionless two-charge potential Ṽ ∗1 with two origins of central forces
placed in x̃0 = ±0.5.
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Figure 59: Contour plot of Ṽ ∗1 (r̃) = −1/(2
√

(x̃− x̃0)2 + ỹ2)− 1/(2
√

(x̃+ x̃0)2 + ỹ2) potential with
x̃0 = 0.5.

Clear to see from Fig. 59 that the equipotential surfaces are no longer spherically symmetric
because the equipotential surfaces from both charges interfere with each other. In the next sections
we will see what happens with the orbits of a particle in such system. Of course we can make the
same calculation for potential V2(r̃) = −α2/r

2. In this case the two-charge potential becomes:

Ṽ2(r) = −α2

r2
= − α2/2(

r

√
1− 2x0cos(θ0)

r +
x20
r2

)2 −
α2/2(

r

√
1 + 2x0cos(θ0)

r +
x20
r2

)2 . (132)
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Figure 60: Contour plot of V ∗2 (r̃) = −1/r̃2 = −1/(x̃2 + ỹ2) potential.
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Figure 61: Contour plot of Ṽ ∗2 (r̃) = −1/(2((x̃− x̃0)2 + ỹ2))− 1/(2((x̃+ x̃0)2 + ỹ2)) potential with
x̃0 = 0.5.

In Fig. 60 and Fig. 61 we show the potential Ṽ ∗2 and the two-charge potential Ṽ ∗2 where the two
charge are placed along the x axis. Again, the system becomes spherically asymmetric. Note that
in this case the potential is stronger and more singular than in the previous cases.
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10.1 Non-relativistic particle

10.1.1 Non-relativistic particle in Ṽ1(r) potential

We can verify that we get the same results as before if we put both potentials in the same place
x0 = 0α1/mc

2 in the origin of the coordinate system. In order to find the same orbits as before, we
reproduce Fig. 12 by taking the same parameters.
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Figure 62: By putting the potentials on each other and by making use of the same parameters as in
Fig. 12, L̃2

nr = 1, Ẽ = −1/(2L̃2
nr) = −0.5 and θ0 = 0◦ we see that we get again the same orbit as

before. The polar angle is varied in the range [0, 2π].

Now by making use of the two-charge potential given in Eq. (131) we can investigate the
influence on the orbits of a non-relativistic particle by putting two potentials near each other. We
will make use of dimensionless units.
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Figure 63: Solution of orbit equation for L̃nr = 2, Ẽ = −0.135412, θ0 = 0.005π and the particle
starts at r0 = L̃2

nrα1/mc
2 = 4α1/mc

2 (red dot). The origin of the potentials is situated in
x0 = ±0.8α1/mc

2. The polar angle is varied in the range [0, 8π].
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From Fig. 63 we see how the orbit is affected in the presence of two potentials. The initial
position of the particle is indicated by the red dot in the left figure of Fig. 63. The particle performs
precessing ellipses around the potentials with the origin of these as alternately focus. Note that
in the non-relativistic case we never observed precessing ellipses. From the right figure of Fig. 63
we see indeed that the particle performs an elliptical orbit and oscillates around 1 where we use
dimensionless units with r̃ = r/r0. Now we can take a look at the scattering states.
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Figure 64: Solution of orbit equation for L̃nr = 2, Ẽ = 0.025, θ0 = 0.005π and the particle starts at
r̃0 = L̃2

nrα1/mc
2 + 6α1/mc

2 = 10α1/mc
2. The origin of the potentials are situated along the x-axis

at x0 = 0α1/mc
2. The polar angle is varied in [0, 2π].

From the left figure of Fig. 64 we see a scattering state which is described by a parabolic orbit
with the origin of the central force as focus. Because we plot the orbit in dimensionless units, the
particle begins the orbit in r0 = 10α1/mc

2 at a begin polar angle θ0 = 0.005π. From the right figure
of Fig. 64 we see the radius as function of the polar angle. Clear to see is that the particle is placed
in r̃ = r/r0 = 1 and afterwards reaches a minimal radius which means that the particle is very
close to the origin of the potential. Afterwards the particle escapes and goes to infinity. Next we
investigate what happens in the presence of two potentials. We take the same parameters as in Fig.
64 but we decide to put the potentials in x0 = ±0.8α1/mc

2 and to change the begin position of the
particle in r0 = 10. In the left figure of Fig. 65 we see the orbits in the case of two-charge potential.
In this figure two orbits are shown. The particle’s motion begins in r̃ = 1 and the begin position is
indicated by the red dot. The first orbit is followed by the red arrows, when the particle escapes
from the system it comes back and the second orbit is indicated by the black arrows. The particle
moves between the two potentials and at a certain moment reaches a minimum radius which is the
closest point of the orbit to the origin of the coordinate system. On the right figure of Fig. 65 the
radius as function of the polar angle is shown.
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Figure 65: Solution of orbit equation for L̃nr = 2, Ẽ = 0.025, θ0 = 0.005π and the particle starts at
r0 = L̃2

nrα1/mc
2 + 6α1/mc

2 = 10α1/mc
2 (red dot). The origin of the potentials are situated along

the x-axis at x0 = 0.8 (black dots). The polar angle is varied over the range [0, 6π].

We have seen in Fig. 63 that the two-charge potential leads to precessing ellipses around the two
origins of the forces. We show another example where such pattern is found again. In Fig. 66 we
investigate the influence on an elliptical orbit. We decide to start at a begin position r0 = 4α1/mc

2

at a begin polar angle θ0 = 0◦. In Fig. 66 (a) we show the elliptical orbit in the case when the two
potentials are on top of each other in the origin of the coordinate system. But when we increase a
bit the distance between the two potentials as shown in Fig. 66 (b) we note that the particle begins
to follow precessing ellipses which are very weak pressing motions. When the distance increases we
note in Fig. 66 (c) and (d) that the particle begins to make more clearly precessing ellipses which
in (d) if we varies the polar angle in a larger range, the orbit takes a rosette structure.
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(b) x0 = 0.1α1/mc
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(c) x0 = 0.5α1/mc
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(d) x0 = 0.8α1/mc
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Figure 66: Solution of orbit equation for L̃nr = 2, Ẽ = −0.075, θ0 = 0◦ and the particle starts with
r0 = L̃2

nrα1/mc
2 = 4α1/mc

2. The polar angle is varied in [0, 6π].
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In the last part of this section we investigate what happens when we place the particle between
the two potentials as begin condition.
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Figure 67: Solution of orbit equation for L̃ = 1 kgm2/s, θ0 = 0.01π and Ẽ = −0.86612. The origin
of the central forces are situated along the x-axis in x0 = ±0.5α1/mc

2 and are given by the black
dots. The begin radius is given by r0 = 0.45α1/mc

2. The polar angle is varied in [0π, 6π].

We clearly see in the left figure of Fig. 67 that the particle is strongly bound by the two
potentials and circle infinite around them. The right figure of Fig. 67 shows the radius as function
of the polar angle θ. We see that the radius indeed oscillates and will never diverge which means
that the particle will stay bounded to the potentials.
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10.1.2 Non-relativistic particle in Ṽ2
∗
(r̃) potential

In this section we will visualize what happens with the orbits of a non-relativistic particle in the
presence of the two-charge potential. We will show some solutions in the case where both potentials
are on top of each other and afterwards we will split the potentials along the x axis and we will
investigate what happens with the orbits. The equation of motion in this case becomes:

∂2ũ

∂θ2
+ ũ+

1

L̃2

(
ũ2
(
2x̃0

2ũ+ 2x̃0 cos(θ0)
)

2
(
x̃0

2ũ2 + 2x0 cos(θ0)ũ+ 1
)2 +

ũ2
(
2x̃0

2ũ− 2x̃0 cos(θ0)
)

2
(
x̃0

2ũ2 − 2x̃0 cos(θ0)ũ+ 1
)2−

ũ

x̃0
2ũ2 + 2x̃0 cos(θ0)ũ+ 1

− ũ

x̃0
2ũ2 − 2x̃0 cos(θ0)ũ+ 1

)
= 0.

(133)

And the energy equation becomes:

L̃2ũ′2 + L̃2ũ2 = Ẽ +
ũ2

2
(
x̃2

0ũ
2 + 2x̃0 cos(θ0)ũ+ 1

) +
ũ2

2
(
x̃2

0ũ
2 − 2x̃0 cos(θ0)ũ+ 1

) . (134)

Of course the only way to solve Eq. (133) is numerically.
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Figure 68: Solution of orbit equation Eq. (133), L̃ = 0.8, Ẽ = 0.1, θ0 = 0.00001π and r̃0 = 20. In
the left figure the origins of the central forces are situated along the x-axis and they are on top of
each other in x̃0 = ±0 (black dot). On the right we show for the same parameters the orbit, but
here the potentials are split x̃0 = ±0 (black dots). The polar angle is varied in the range [0π, 5π] for
both cases.

Clear to see from the left figure of Fig. 68 that the particle is trapped by the potential and will
spiral into the origin. The fact that the particle spirals into the origin can be graphically shown by
plotting the radius as function of θ, see Fig. 69. Further, from the right figure of Fig. 68 is too
see that the particle approaching to the two-charge potential gets trapped and will infinitely circle
around the two charges, this means that by splitting the potentials the orbit becomes bound. In
Fig. 70 we illustrate the radius as function of θ in the presence of the two-charge potential.
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Figure 69: Radius as function of polar angle where both potentials are on top of each other.
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Figure 70: Radius as function of polar angle in presence of the two-charge potential.

It is clear from Fig. 70 that the particle gets trapped and performs a bounded orbit because of
the oscillations of the radius.
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10.2 Relativistic particle in Ṽ1(r) potential

We can verify that we get the same results as before if we put both potentials on top of each other,
i.e. x0 = 0α1/mc

2 in the origin of the coordinate system. In order to find the same orbits as before,
we reproduce Fig. 51 by taking the same parameters.
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Figure 71: Solution of orbit equation in the case of two-charge potential from Eq.(131) for parameters:

L̃ = 2,E =
√

1− (1/L̃)2 + 0.09999 = 0.966025, θ0 ≈ −1.94899◦ and x0 = 0α1/mc
2. The polar angle

is varied in ∈ [−2π, 8π].

By using the same parameters as in Fig. 71 we can investigate and observe what happens if we
split the two potentials along the x axis.
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Figure 72: Solution of orbit equation in the case of two-charge potential from Eq.(131) for parameters:

L̃ = 2,E =
√

1− (1/L̃)2 + 0.09999 = 0.966025, θ0 ≈ −1.94899◦ and x0 = 2α1/mc
2. The polar angle

is varied in ∈ [−2π, 8π].
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Clear to see from Fig. 72 is that the particle is more bounded in comparison with Fig. 71, this
is because the particle feels the two-charge potential and physically is attracted in more directions
which provides for more changes in the trajectory. We can graphically see that the particle follows
a more bounded orbit by showing the radius as function of the polar angle θ.
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Figure 73: Radius as function of the polar angle θ.

The left figure of Fig. 73 shows the radius as function of the polar angle for the orbit in Fig. 71
while on the right is for Fig. 72. Clear to see as a consequence of the two-charge potential is that
the radius becomes smaller which means that the radius is more bounded by the potentials. Finally
we show graphically in Fig. 74 that the angular momentum in the case of a two-charge potential is
no longer a conserved quantity and exhibits oscillations.
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Figure 74: Angular momentum as function of the polar angle θ for different distances between the
two potentials.

Further we can visualize what happens with the unstable orbits where the particle spirals into
the origin. We clearly see from Fig. 75, Fig. 76 and Fig. 77 that the particle gets trapped by the
two-charge potential and will circle around the charges. This behavior is also found in the previous
case for a non-relativistic particle.
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Figure 75: Solution of orbit equation for parameters: L̃ = 0.9,Ẽ = 0.1, θ0 ≈ 1◦. In the left figure
the potentials are on top of each other in x0 = 0α1/mc

2. In the right figure the potentials are in
x0 = ±0.2α1/mc

2. In both cases the polar angle is varied in ∈ [0, 5π]. The red dot indicates the
begin position of the particle.
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Figure 76: Solution of orbit equation in presence of two-charge potential in Eq. (131) for parameters:
L̃ = 0.9,Ẽ = 1, θ0 ≈ −0.0127259◦ and x0 = ±0.02α1/mc

2. The polar angle is varied in the range
∈ [0, 15π].
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Figure 77: Solution of orbit equation in presence of two-charge potential in Eq. (131) for parameters:
L̃ = 0.9, Ẽ = 0.1, θ0 ≈ 2◦. The polar angle is varied in both cases in the range ∈ [−2π, 8π]. On the
left the potentials are on top of each other with x0 = 0α1/mc

2 and the start position is given by
the black dot. The arrows indicate the direction of the orbit. In this case the particle spirals into
the origin. On the right we take the same parameters but we split the potential along the x axis in
x0 = ±0.5α1/mc

2.

In the left figure of Fig. 77 we see the unstable orbit where an atomic collapse is observed. In
the right figure of Fig. 77 we split the potential along the x axis in x0 = 0.5α1/mc

2. We clearly see
that the particle is trapped in the two-charge potential system and circles around both potentials.
This is because both potentials have the same strength and there is no reason why the particle
should be more attracted by one of the two charges. Here we clearly see that the particle is trapped
by the system of the two potentials and will move infinitely between them.
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11 Conclusions and outlook

In this master thesis I investigated the possible orbits of a relativistic and non-relativistic particle
in Kepler/Coulomb-type potentials and studied the phenomena of atom collapse using classical
physics.

We found that in a Kepler or Coulomb potential a relativistic and non-relativistic particle ex-
hibits different behavior. In the non-relativistic case we have shown that the particle can have
circular, elliptical, parabolic/ hyperbolic Kepler orbits. In the case of bound states the particle
follows the same circular/elliptical orbit and shows no precessing motion. Here we always have stable
orbits unless the magnitude of the angular momentum becomes zero. By introducing the relativistic
nature of the particle we have shown that the angular momentum of the particle plays an important
role and depending on its magnitude we find stable and unstable orbits. The stable orbits are found
when the magnitude of the angular momentum is larger than the critical angular momentum which
depending on the magnitude of the energy we find scattering and bound states. As scattering states
we find for angular momentum much larger than the critical angular momentum a Kepler orbit
while approaching the critical angular momentum we find that the particle circles around the origin
and escapes. As bound states we find circular and elliptical orbits. The latter shows precessing
motion. As unstable orbit we find that the particle spirals into the center of the potential causing
an atomic collapse. From the graph which shows the relation between dimensionless energy and
dimensionless velocity we show that the energy is conserved while the relativistic particle spirals
into the origin. This cannot be the case for a non-relativistic particle which needs infinite energy to
provide for atomic collapse.

We have shown that by increasing the power of the potential up to n = 2 a non-relativistic
particle cannot perform a stable bound orbit. In this case we found that kinetic and potential
energy compensate each other and there is no way to find relations between energy and velocity
such that these can be graphically shown. We observed that the distinction between stable and
unstable orbits is fully determined by the angular momentum and the critical angular momentum
in this case is different from the previous cases and is equal to Lc =

√
2mα2. Below this critical

value we observe unstable orbits causing atomic collapse and above this threshold we get stable
orbits as parabolic/ hyperbolic orbits. By introducing the relativistic nature of the particle we have
shown that circular orbits are possible. Here we found two critical angular momenta one is given

by L
(1)
c =

√
2mα2 and provide for a divergence in radius which leads to a free particle, the other

L
(2)
c which provides for atomic collapse (R̃ = 0) when the magnitude of the angular momentum

becomes infinite. In this case the kinetic and potential energy doesn’t compensate each other and
consequently we are capable to find a relation between energy and velocity. We studied the two
limits, one when ṽ � c (non-relativistic region) kinetic and potential energy compensate each
other and the other limit where ṽ → c. From this last limit we found interesting results where
we concluded that a relativistic particle in V (r) = −α2/r

2 potential behaves as a non-relativistic
particle in V (r) = −α1/r potential in the sense that spiraling into the center of the potential is not
physically possible because infinite energy is needed. As possible orbits we found stable repulsive
orbits when the energy is large in negative sense, a circular orbit when the conditions are satisfied, a
stable scattering state where the particle approaching the origin performs circles around the origin of
the potential and afterwards escapes. Unstable orbits reminiscent of atomic collapse are found where
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the particle suddenly falls on the origin of the potential or depending on the begin position of the
particle, this one gets trapped by the potential and performs a few circles before falling into the origin.

By removing the singularity in r = 0 in each case we have that the particle gains some kinetic
energy which results in scattering states.

In the presence of the two-charge potential we found for each case the same patterns. When
we place the particle between the two potentials the particle performs an infinite circular motion
around the two potentials. When we have scattering states the trajectory deforms and the particle
escapes from the potentials.

For a non-relativistic particle in case of the two-charge potential we found bound orbit with
a precessing elliptic motion with one of the two charges as alternately focal point. Also are found
for a non-relativistic particle scattering states where the orbit is being deformed because of the
two-charge potential.

These last two behaviors are also found for a relativistic particle in V ∼ 1/r potential. The
only difference in observed trajectories is that in the relativistic case the unstable orbits become
bounded orbits in the presence of two-charge potential.

One could investigate how atomic collapse depends on the distance between the core of the
two potentials. In my thesis the only way to find atomic collapse in the presence of two potentials is
to make one of them much stronger. But one could make an accurate analysis in order to find a
critical angular momentum where the particle falls into the core of one potential and afterwards
making a phase diagram in order to classify the different trajectories.
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Appendices

A Relativistic energy

The relativistic kinetic energy is given by:

T = mc2γ −mc2.

By expanding the γ factor for non-relativistic limit case, we find γ ≈ 1 + 1
2
v2

c2
+ . . . This way the

relativistic kinetic energy becomes the kinetic energy of a non-relativistic particle T ≈ mc2(1 +
1
2
v2

c2
)−mc2 ≈ 1

2mv
2. The total energy is rewritten in this way:

E = ε+mc2 =
mc2√
1− v2

c2

− α1

r
.

Such that ε is the energy difference from the particle rest energy.

B Dimension analysis

In the following table we find a review of the found quantities:

Particle Energy Angular momentum velocity radius

Relativistic mc2√
1− v2

c2

− α1
r Lrel = rmv√

1− v2
c2

v = α1
Lrel

r = L2

α1m

√
1− (α1

cL )2

Non-relativistic 1
2mv

2 − α1
r +mc2 Lnr = rmv v = α1

Lnr
r = L2

nr
mα1

Table 5: In this table there is a summary of quantities for a relativistic and non-relativistic particle
in a V (r) = −α1/r potential.

Looking at the expressions in this table we find:

Parameter Unit

c [m/s]
v [m/s]
L [kgm2/s]
α1 [kgm3/s2]
E [mc2]
r [m]
m [kg]

Table 6: Dimension analysis for a relativistic particle in V (r) = −α1/r potential.

By introducing dimensionless parameters Ẽ = E/mc2,R̃ = r/(α1/mc
2),ṽ = v/c and L̃ = Lc/α1

we can rewrite the expressions such:

96



Particle Energy r vs v R̃ vs ṽ Ẽ vs ṽ

Relativistic Ẽ = 1√
1−ṽ2 −

1
R̃

rrel = L2

mα1
·
√

1− v2

c2
R̃rel = 1

ṽ2

√
1− ṽ2 Ẽ =

√
1− ṽ2

Non-relativistic Ẽ = 1
2 ṽ

2 − 1
R̃

+ 1 rnr = Lnr/mv R̃nr = 1/ṽ2 Ẽ = 1− 1
2 ṽ

2

Table 7: In this table there is a summary of dimensionless quantities for a relativistic and non-
relativistic particle in a V (r) = −α1/r potential.

Particle dimensionless radius

Relativistic R̃ = L̃2
√

1− 1
L̃2

Non-relativistic R̃ = L̃2

Table 8: In this table we find the relation between radius and angular momentum in dimensionless
units for a relativistic and non-relativistic particle in a V (r) = −α1/r potential.

C Velocity and angular momentum in polar coordinates

Take r = rr̂, with r̂ the unit polar vector.

dr

dt
=
dr

dt
r̂ + r

dr̂

dt
= ṙr̂ + r

dr̂

dt
.

From [2]:

r̂ = x̂ cos(θ) + ŷ sin(θ); θ̂ = −x̂ sin(θ) + ŷ cos(θ).

We have:
dr̂

dt
= −x̂ sin(θ)θ̇ + ŷ cos(θ)θ̇ = θ̇(−x̂ sin(θ) + ŷ cos(θ)) = θ̇θ̂.

The unit vectors of the Cartesian frame doesn’t change in time, this means that the derivatives of
the vectors x̂,ŷ with respect to time are zero. Finally we can compute:

v =
dr

dt
= ṙr̂ + rθ̇θ̂.

Now we can compute the angular momentum for a relativistic particle in polar coordinates. We
combine the definition L = r × mv√

1− v2
c2

with r = rr̂ and the found velocity. Since the radial unit

vector r̂ and the angular unit vector θ̂ are perpendicular we can simplify the expression of angular
momentum by dropping out the term ṙr̂ in the velocity, this is because r × ṙr̂ = 0. So we find
r× v = rr̂ × rθ̇θ̂ = r2θ̇|r̂||θ̂| sin(π/2) = r2θ̇. Now we have to calculate v2:

v2 = (v)2 = (ṙr̂ + rθ̇θ̂)2 = (ṙr̂)2 + (rθ̇θ̂)2 + 2ṙrθ̇r̂ · θ̂ = ṙ2 + r2θ̇2.
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Here we made use of the fact that the magnitude of the unit vectors are one and the dot product
of the unit vectors is equal to zero because r̂ · θ̂ = |r̂||θ̂| cos(π2 ) = 0. Finally we find the angular
momentum of a relativistic particle in polar coordinates.

L = r× mv√
1− v2

c2

⇒ L =
mr2θ̇√

1− (ṙ2+r2θ̇2)
c2

.

D Angular velocity

L2 =
m2r4θ̇2

1− (ṙ2+r2θ̇2)
c2

⇔ L2

(
1− (ṙ2 + r2θ̇2)

c2

)
= m2r4θ̇2 ⇔ L2c2 − L2ṙ2 − L2r2θ̇2 = m2r4θ̇2c2.

⇔ L2c2 − L2ṙ2 − L2r2θ̇2 = m2r4θ̇2c2.

⇒ θ̇ =

√
L2c2 − L2ṙ2

L2r2 +m2r4c2
.

E Energy in polar coordinates

E =
mc2√√√√

1−
ṙ2+r2

(
L2c2−L2ṙ2

L2r2+m2r4c2

)
c2

− α1

r
.

By working out the square root we have:√√√√√
1−

ṙ2 + r2

(
L2c2−L2ṙ2

L2r2+m2r4c2

)
c2

=

√√√√√
1− ṙ2

c2
−
r2

(
L2c2−L2ṙ2

L2r2+m2r4c2

)
c2

=

√
1− ṙ2

c2
−
(

L2c2 − L2ṙ2

c2(L2 +m2r2c2)

)
.

⇔

√
1− ṙ2

c2
− L2

(
1− ( ṙc )

2

L2 +m2r2c2

)
.

Consequently we find:

E =
mc2√

1− (ṙ/c)2 − L2(1− (ṙ/c)2)/(L2 +m2r2c2)
− α1

r
.

F Energy of a relativistic particle

(p)2 =

(
mṙr̂√
1− v2

c2

+ θ̂
L

r

)2

=
m2ṙ2

1− v2

c2

+
L2

r2
. (135)
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Here we made use of the fact that the magnitude of the unit vectors is equal to 1 (|θ̂|2 = 1,|r̂|2 = 1)
and that both unit vectors are perpendicular with each other (r̂ · θ̂ ∼ cos(π/2) = 0). By looking at

E = mc2√
1− v2

c2

− α1
r and E =

√
p2c2 +m2c4 − α1/r it is easy to see that we need to proof :

√
p2c2 +m2c4 =

mc2√
1− v2

c2

.

We work out the left hand side:

√
p2c2 +m2c4 =

√
m2ṙ2c2

1− v2

c2

+
L2c2

r2
+m2c4 =

√√√√m2ṙ2c2

1− v2

c2

+
m2r4θ̇2c2

r2(1− v2

c2
)

+m2c4.

⇔
√
m2v2c2

1− v2

c2

+m2c4 =

√√√√m2v2c2

1− v2

c2

+
m2c4(1− v2

c2
)

1− v2

c2

=

√
m2v2c2 +m2c4 −m2c2v2

1− v2

c2

.

⇔ mc2√
1− v2

c2

.

Where in the third equality we made use of the relativistic angular momentum in Eq.(27) and in
the fourth equality we made use of the velocity in polar coordinates squared. (see 5.4)

G Coefficient differential equation for a relativistic particle in
V (r) = −α1/r potential

General solutions

L > α1/c u(θ) = (c1 + c2) · cos
(√

1− (α1
Lc )

2(θ − θ0)

)
+ Eα1

L2c2−α2
1

L < α1/c u(θ) = (c1 + c2) · cosh
(√

(α1
Lc )

2 − 1(θ − θ0)

)
+ Eα1

L2c2−α2
1

We will derive the coefficient in the case of L > α1/c, for the case L < α1/c the calculation is the same
but we need to take into account the relations cosh2(x)− sinh2(x) = 1 and (cosh(x))′ = sinh(x).
By putting the general solution for L > α1/c into(

E + α1u

)2

=

(
du

dθ

)2

L2c2 + u2L2c2 +m2c4

We get:(
E + α1u

)2

= E2 + 2Eα1

(
(c1 + c2)cos

(√
1− (

α1

Lc
)2(θ − θ0)

)
+

Eα1

L2c2 − α2
1

)
+(

(c1 + c2)cos

(√
1− (

α1

Lc
)2(θ − θ0)

))
+

Eα1

L2c2 − α2
1

)2

.
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By working out the second power we get:(
E + α1u

)2

= E2 + 2Eα1(c1 + c2)cos

(√
1− (

α1

Lc
)2(θ − θ0)

)
+ 2

E2α2
1

L2c2 − α2
1

+

(c1 + c2)2cos2

(√
1− (

α1

Lc
)2(θ− θ0)

)
+

E2α2
1α

2
1

(L2c2 − α2
1)2

+

2(c1 + c2)cos

(√
1− (α1

Lc )
2(θ − θ0)

)
Eα1α

2
1

L2c2 − α2
1

.

On the other hand:(
du

dθ

)2

L2c2 + u2L2c2 +m2c4 =

(√
1− (

α1

Lc
)2(c1 + c2)sin

(√
1− (

α1

Lc
)2(θ − θ0)

))2

L2c2+(
(c1 + c2)cos

(√
1− (

α1

Lc
)2(θ − θ0)

)2

+
Eα1

L2c2 − α2
1

)2

L2c2 +m2c4.

By working out the second power and by taking into account the relation cos2(x) + sin2(x) = 1,
the right hand side of the equation becomes:(

du

dθ

)2

L2c2 + u2L2c2 +m2c4 = (c1 + c2)2

(
L2c2 − α2

1sin
2

(√
1− (

α1

Lc
)2(θ − θ0)

))
+

E2α2
1L

2c2

(L2c2 − α2
1)2

+

2(c1 + c2)cos

(√
1− (α1

Lc )
2(θ − θ0)

)
Eα1L

2c2

L2c2 − α2
1

+m2c4.

By combining right and left hand side we get:

E2L2c2 −m2c4(L2c2 − α2
1) = (c1 + c)2[(L2c2 − α2

1)2].

⇒ (c1 + c2) =

√
E2L2c2 −m2c4(L2c2 − α2

1)

(L2c2 − α2
1)2

.

H Dimension analysis for solutions of a relativistic particle in
V (r) = −α1/r

From Appendix B we make use of Table 2. In expression (57) and (58) we have almost the same
prefactor which differs just by a minus sign, so the unit analysis is the same.√

E2L2c2 −m2c4(L2c2 − α2
1)

(L2c2 − α2
1)2

∼
[√

kg4m10/s8 − kg4m10/s8

(kg2m6/s4 − kg2m6/s4)2

]
∼
[√

1

m2

]
∼
[

1

m

]
.

The particular solution(s) is/are given by Eα1/(L
2c2 − α2

1) (for (58) differs by a minus sign). By
using Tabel 2 we find:

Eα1

L2c2 − α2
1

∼
[
kg2m5/s4

kg2m6/s4

]
∼
[

1

m

]
.
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Because the solutions are u(θ) = 1/r we have that the radius is given in meters. The same analysis
can be done in the case of L = Lc = α1/c which the solution is given by (53). There the particular
solution is given by (m2c4 − E2)/(2Eα1).

m2c4 − E2

2Eα1
∼
[
kg2m4/s4 − kg2m4/s4

kg2m5/s4

]
∼
[

1

m

]
.

I non-relativistic particle in V (r) = −α1/r potential

We can find the orbit equations r(θ) by expressing the non-relativistic momentum (c→∞) in polar
coordinates:

p = r̂pr + θ̂pθ = m(ṙr̂ + θ̂rθ̇) = mṙr̂ +mθ̂rθ̇ = mṙr̂ + θ̂
L

r
. (136)

The last equality is find by making use of L = mr2θ̇ (see chapter 7). Because we will need later the
following expression, we work out pr/pθ.

pr
pθ

=
mṙ

mrθ̇
=

1

r

ṙ

θ̇
=

1

r

dr

dθ
. (137)

By using pθ = L/r found in expression (136) we finally find:

pr =
L

r2

dr

dθ
. (138)

Now we can rewrite the non-relativistic energy expression E = p2

2m − α1/r up to:

E +
α1

r
=

p2

2m
=

1

2m
m2ṙ2︸ ︷︷ ︸
=(pr)2

+
L2

2mr2
. (139)

Combining (138) with (139) gives the following differential equation:

E +
α1

r
=

1

2m

(
L

r2

dr

dθ

)2

+
1

2m

L2

r2
. (140)

By introducing the r-inverse variable u = 1/r ⇒ du/dθ = −(1/r2)dr/dθ we can rewrite the
differential equation in (140) up to:

E + α1u =
1

2m

(
du

dθ

)2

L2 +
1

2m
u2L2. (141)

If we differentiate (141) with respect to θ we find:

α1
du

dθ
=

1

m
L2u

du

dθ
+

1

m
L2d

3u

d3θ
. (142)

By dividing (142) by du/dθ and rewriting the equation, we find a second order linear differential
equation which describes the orbits of a non-relativistic particle in V (r) = −α1/r potential.

d2u

d2θ
+ u− mα1

L2
= 0. (143)
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By using methematica we find the general solution of (144):

u(θ) = c1cos(θ − θ0) +
mα1

L2
. (144)

With c1 an integration constant which we easly find by inserting the solution u(θ) in (141).

We find that the integration constant is given by c1 = mα1
L2
nr

√
1 + 2L2

nrEnr
mα2

1
(same calculation as

Appendix G). In order to compare our results we can find the solutions of a non-relativistic
particle in V (r) = −α1/r potential. Of course we know the solutions in this case they are Kepler
(parabolic,hyperbolic,elliptic,circular) orbits. In this case the energy is expressed as:

E =
1

2
mv2 − α1

r
+mc2 ⇒ Ẽ =

E

mc2
=

1

2
ṽ2 − 1

r̃
+ 1.

With ṽ = v/c, r̃ = r/(α1/mc
2). By using the equation of motion in order to have a circular orbit

we get the relation between kinetic and potential energy, in this case we get 2T = −U . By using
the derived general equation of motion in Eq.(99) we derive the equation of motion in the case of
V (r) = −α1/r = −α1u⇒ F (1/u) = −∇V (1/u) = −α1u

2:

d2u

dθ2
+ u− mα1

L2
= 0. (145)

Of course we should have the same differential equation by taking non-relativistic limit (c→∞) in
the equation of motion Eq.(50) of a relativistic particle in V (r) = −α1/r potential. We can show
that by taking this limit we get the same differential equation as in Eq.(145). From Eq.(50) we have:

d2u

d2θ
+

[
1−

(
α1

Lc

)2]
u− Eα1

(Lc)2
= 0. (146)

By taking the limit c→∞ we have that the term in square brackets α1
Lc vanishes and goes to zero, with

L the relativistic angular momentum. Important to notice is that by taking the non-relativistic limit,
that the relativistic angular momentum approaches the non-relativistic angular momentum L→ Lnr
(look at definition of relativistic angular momentum in chapter 5.2.2). On the other hand we have

that the energy becomes non-relativistic and we have Erel → Enrel ⇒ Erel → Enrel = −mv2

2 +mc2.
This fact leads to:

lim
1
c
→0

Erelα1

(Lc)2
= lim

1
c
→0

α1

(Lc)2
(−mv

2

2
+mc2) =

mα1

L2
nrel

.

By looking at this results we indeed have that Eq.(145) the non-relativistic version is of the equation
of motion of a relativistic particle in V (r) = −α1/r potential. The solution of Eq.(145) is already
studied in chapter 5.7 and 5.8.

J Relativistic particle in V (r) = −α1/
√
r2 + a2 potential

To begin we rewrite the potential as function of u = 1/r, we get V (1/u) = −α1u/
√

1 + a2u2. We
make use of the same calculation as in chapter 5.6 but we replaced the potential by the found
expression in function of u.(

E +
α1u√

1 + a2u2

)2

=

(
du

dθ

)2

L2c2 + u2L2c2 +m2c4. (147)
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If we differentiate this expression with respect to θ we get:

2α1E√
1 + a2u2

du

dθ
− 2α1Ea

2u2√
(1 + a2u2)3

du

dθ
+

2α2
1u

(1 + a2u2)

du

dθ
− 2α2

1a
2u3

(1 + a2u2)2

du

dθ
= 2L2c2u

du

dθ
+2L2c2d

3u

d3θ
. (148)

By dividing the previous expression by (1/2L2c2)du/dθ and by rearranging the expressions we get
the equation of motion:

d2u

dθ2
+u−Eα1

L2c2

1√
1 + (au)2

+
Eα1

L2c2

u2a2√
(1 + (au)2)3

− α2
1

L2c2

u

(1 + (au)2)
+

α2
1

L2c2

u3a2

(1 + (au)2)2
= 0. (149)
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