

Calculations of spectral quantities in quantum systems using kernel polynomial method

M.Sc. Miša Anđelković

CMT group, Department of Physics, Universiteit Antwerpen

1. Introduction	3
2. Mathematical formalism	4
2.1 Chebyshev polynomials	5
2.2 Modified moments	7
2.3 Kernel polynomials	8
2.4 Requirements of the expansion	11
2.5 Calculating the moments	12
2.6 Absorbing boundary conditions	16
3. Application of kpm	18
3.1 Conductivity calculation	20
4. Examples	22
5. Conclusion	28
Universiteit Antwerpen	

2/30

Outline for section 1

1. Introduction

2. Mathematical formalism	4
2.1 Chebyshev polynomials	5
2.2 Modified moments	7
2.3 Kernel polynomials	
2.4 Requirements of the expansion	11
2.5 Calculating the moments	12
2.6 Absorbing boundary conditions	16
3. Application of kpm	18
3.1 Conductivity calculation	20
4. Examples	22
5. Conclusion	28

Universiteit Antwerpen

3

Behavior of particles depending on eigenvalues of Hamiltonian.

Behavior of particles depending on eigenvalues of Hamiltonian. Dimensions $\sim D$, memory requirement $\sim D^2$, computation time requirement $\sim D^3$.

Behavior of particles depending on eigenvalues of Hamiltonian. Dimensions $\sim D$, memory requirement $\sim D^2$, computation time requirement $\sim D^3$. KPM scales: for sparse matrices: $\sim D$, for dense matrices: $\sim D^2$.

Outline for section 2

1. Introduction

4
5
7
8
11
12
16
18
20
22

Define scalar product:

$$\langle f|g\rangle = \int_{a}^{b} w(x)f(x)g(x)dx,$$
 (1)

Define scalar product:

$$\langle f|g\rangle = \int_{a}^{b} w(x)f(x)g(x)dx,$$
 (1)

Complete set with orthogonality relation:

$$\langle p_n | p_m \rangle = \delta_{n,m} / h_n,$$
 (2)

Define scalar product:

$$\langle f|g\rangle = \int_{a}^{b} w(x)f(x)g(x)dx,$$
 (1)

Complete set with orthogonality relation:

$$\langle p_n | p_m \rangle = \delta_{n,m} / h_n,$$

Function can be expanded:

$$f(x) = \sum_{n=0}^{\infty} lpha_n p_n(x)$$

 $lpha_n = \langle p_n | f
angle h_n$
Jniversiteit Antwerpen

(3)

(2)

Interval of definition for Chebyshev polynomials [-1, 1]

Definition

$$w_{1}(x) = \left(\pi\sqrt{1-x^{2}}\right)^{-1}, \quad w_{2}(x) = \pi\sqrt{1-x^{2}}, \langle T_{n}|T_{m}\rangle_{1} = \frac{1+\delta_{n,0}}{2}\delta_{n,m}, \quad \langle U_{n}|U_{m}\rangle_{2} = \frac{\pi^{2}}{2}\delta_{n,m}.$$
(4)

Chebyshev polynomials can be expressed as:

$$T_n(x) = \cos\left[n \arccos\left(x\right)\right],\tag{5}$$

and

$$U_n(x) = \frac{\sin\left[(n+1)\arccos\left(x\right)\right]}{\sin\left[\arccos(x)\right]}.$$
(6)

Polynomials are obeying recursive relations:

$$P_{m+1}(x) = 2xP_m(x) - P_{m-1}(x), \quad P \equiv T \lor U$$
 (7)

$$f(x) = \sum_{n=0}^{\infty} \frac{\langle f | T_n \rangle_1}{\langle T_n | T_n \rangle_1} T_n(x) = \alpha_0 + 2 \sum_{n=1}^{\infty} \alpha_n T_n(x),$$

$$\alpha_n = \langle f | T_n \rangle_1 = \int_{-1}^1 \frac{f(x) T_n(x)}{\pi \sqrt{1 - x^2}} dx.$$
(8)

we can modify the moments:

$$f(x) = \frac{1}{\pi\sqrt{1-x^2}} \left[\mu_0 + 2\sum_{n=1}^{\infty} \mu_n T_n(x) \right],$$

$$\mu_n = \int_{-1}^{1} f(x) T_n(x) dx.$$
 (9)

Problems may arise after the simple truncation of series:

$$f(x) \approx \frac{1}{\pi\sqrt{1-x^2}} \left(\mu_0 + 2\sum_{n=1}^{N-1} \mu_n T_n(x) \right),$$
 (10)

Problems may arise after the simple truncation of series:

$$f(x) \approx \frac{1}{\pi\sqrt{1-x^2}} \left(\mu_0 + 2\sum_{n=1}^{N-1} \mu_n T_n(x) \right),$$
(10)

$$f(x) \approx \frac{1}{\pi\sqrt{1-x^2}} \left(g_0 \mu_0 + 2 \sum_{n=1}^{N-1} g_n \mu_n T_n(x) \right).$$
(11)

Figure 1 : N=64 expansion moments of $\delta(x)$ (left) and step function (right).[Weiße et al., 2006]

Name	gn
Dirichlet	1
Fejér	$1-\frac{n}{N}$
Jackson	$\left \left (N-n+1)\cos(\frac{\pi n}{N+1}) + \sin(\frac{\pi n}{N+1})\cot(\frac{\pi n}{N+1}) \right / (N+1) \right $
Lorentz	$\left[\lambda(1-rac{n}{N}) ight] / { m sinh}(\lambda), \lambda \in \mathbb{R}^{-1}$
Lanzos	$\left(\sin(\pi rac{n}{N})/(\pi rac{n}{N}) ight)^M, M\in\mathbb{N}$

Table 1 : Kernels.

Chebyshev polynomials are defined on the real interval [-1, 1].

Chebyshev polynomials are defined on the real interval [-1, 1]. Modify our matrix (Hamiltonian):

$$\tilde{H} = \frac{(H - bI)}{a},$$
$$\tilde{E} = \frac{(E - b)}{a}.$$

(12)

Chebyshev polynomials are defined on the real interval [-1, 1]. Modify our matrix (Hamiltonian):

$$\tilde{H} = \frac{(H - bI)}{a},$$
$$\tilde{E} = \frac{(E - b)}{a}.$$

(12)

Where *a* and *b* are:

$$a = \frac{(E_{max} - E_{min})}{2 - \varepsilon},$$

$$b = \frac{(E_{max} + E_{min})}{2}, \quad \varepsilon = 0.01.$$

(13)

Depending on the function two types of moments can arise: Expectation values (case 1):

$$\mu_n = \langle \beta | T_n(H) | \alpha \rangle, \tag{14}$$

 ${\sf and}$

Depending on the function two types of moments can arise: Expectation values (case 1):

 $\mu_n = \langle \beta | T_n(H) | \alpha \rangle,$

and

trace of operator and polynomial (case 2):

$$\mu_n = \operatorname{Tr}\left[AT_n(\tilde{H})\right]. \tag{15}$$

Universiteit Antwerpen

(14)

 $\mu_n = \langle \beta | T_n(\tilde{H}) | \alpha \rangle, \\ |\alpha_n \rangle = T_n(\tilde{H}) | \alpha \rangle.$

 $\mu_n = \langle \beta | T_n(\tilde{H}) | \alpha \rangle, \\ |\alpha_n \rangle = T_n(\tilde{H}) | \alpha \rangle.$

$$|\alpha_{0}\rangle = |\alpha\rangle,$$

 $\mu_n = \langle \beta | T_n(\tilde{H}) | \alpha \rangle, \\ |\alpha_n \rangle = T_n(\tilde{H}) | \alpha \rangle.$

$$\begin{split} |\alpha_{0}\rangle &= |\alpha\rangle, \\ |\alpha_{1}\rangle &= \tilde{H} |\alpha_{0}\rangle, \end{split}$$

$$\mu_n = \langle \beta | T_n(\tilde{H}) | \alpha \rangle, \\ |\alpha_n \rangle = T_n(\tilde{H}) | \alpha \rangle.$$

$$\begin{split} |\alpha_{0}\rangle &= |\alpha\rangle, \\ |\alpha_{1}\rangle &= \tilde{H} |\alpha_{0}\rangle, \end{split}$$

$$|\alpha_{n+1}\rangle = 2\tilde{H}|\alpha_n\rangle - |\alpha_{n-1}\rangle.$$

Universiteit Antwerpen

(16)

Stochastic evaluation of trace.

Comparing with previous example numerical effort should be D^2 (D states of a given basis)

 $\mu_n = \operatorname{Tr}\left[AT_n(\tilde{H})\right],$

Stochastic evaluation of trace.

Comparing with previous example numerical effort should be D^2 (D states of a given basis)

$$\mu_n = \operatorname{Tr}\left[AT_n(\tilde{H})\right],$$

$$\operatorname{Tr}\left[AT_n(\tilde{H})\right] \approx \frac{1}{R} \sum_{r=0}^{R-1} \langle r | T_n(\tilde{H}) | r \rangle, \quad R << D$$

where $r(i) \in \{\operatorname{rand}(\xi_{ri})\}, \quad \xi_{ri} \in \mathbb{C}.$

$$\langle \langle \xi_{ri} \rangle \rangle = 0,$$

$$\begin{split} &\langle \langle \xi_{ri} \rangle \rangle = 0, \\ &\langle \langle \xi_{ri} \xi_{r'j} \rangle \rangle = \delta_{rr'} \delta_{ij}, \end{split}$$

$$\begin{split} &\langle \langle \xi_{ri} \rangle \rangle = 0, \\ &\langle \langle \xi_{ri} \xi_{r'j} \rangle \rangle = \delta_{rr'} \delta_{ij} \end{split}$$

$$|r\rangle = \sum_{i=0}^{D-1} \xi_{ii} |i\rangle.$$

We want edge effects in our calculations to be minimized.

We want edge effects in our calculations to be minimized. Apply boundary conditions:

Periodic boundary conditions. Absorbing boundary conditions.

We want edge effects in our calculations to be minimized. Apply boundary conditions:

Periodic boundary conditions.

Absorbing boundary conditions.

Modify the eq. 16:

$$|\alpha_{n+1}\rangle = \exp^{-\gamma} \left(2\tilde{H} |\alpha_n\rangle - \exp^{-\gamma} |\alpha_{n-1}\rangle \right).$$
(17)

$$|\alpha_{n+1}\rangle = \exp^{-\gamma} \left(2\tilde{H} |\alpha_n\rangle - \exp^{-\gamma} |\alpha_{n-1}\rangle \right).$$

$$|\alpha_{n+1}\rangle = \exp^{-\gamma}\left(2\tilde{H}|\alpha_n\rangle - \exp^{-\gamma}|\alpha_{n-1}\rangle\right).$$

 γ is absorbing potential.

$$|\alpha_{n+1}\rangle = \exp^{-\gamma}\left(2\tilde{H}|\alpha_{n}\rangle - \exp^{-\gamma}|\alpha_{n-1}\rangle\right).$$

 γ is absorbing potential.

$$|\alpha_{n+1}\rangle = \exp^{-\gamma}\left(2\tilde{H}|\alpha_{n}\rangle - \exp^{-\gamma}|\alpha_{n-1}\rangle\right).$$

 γ is absorbing potential.

Bad back reflections! Universiteit Antwerpen

Outline for section 3

1. Introduction

2. Mathematical formalism	4
2.1 Chebyshev polynomials	5
2.2 Modified moments	7
2.3 Kernel polynomials	
2.4 Requirements of the expansion	11
2.5 Calculating the moments	12
2.6 Absorbing boundary conditions	16
3. Application of kpm 3.1 Conductivity calculation	18 20
4. Examples	22
5. Conclusion	28

Matrix *H* of size *D*, with eigenvalues E_k :

Density of states

$$\rho(E) = \frac{1}{D} \sum_{k=0}^{D-1} \delta(E - E_k) \to \tilde{\rho}(\tilde{E}) = \frac{1}{D} \sum_{k=0}^{D-1} \delta(\tilde{E} - \tilde{E}_k)$$
(18)

Matrix *H* of size *D*, with eigenvalues E_k :

Density of states

$$\rho(E) = \frac{1}{D} \sum_{k=0}^{D-1} \delta(E - E_k) \to \tilde{\rho}(\tilde{E}) = \frac{1}{D} \sum_{k=0}^{D-1} \delta(\tilde{E} - \tilde{E}_k)$$
(18)

$$\mu_{n} = \int_{-1}^{1} \tilde{\rho}(\tilde{E}) T_{n}(\tilde{E}) d\tilde{E} = \frac{1}{D} \sum_{k=0}^{D-1} T_{n}(\tilde{E}_{k})$$

$$= \frac{1}{D} \sum_{k=0}^{D-1} \langle k | T_{n}(\tilde{H}) | k \rangle = \frac{1}{D} Tr \left[T_{n}(\tilde{H}) \right]$$
(19)

Similar, we can start from expression for local density of states:

$$\tilde{\rho}_i(\tilde{E}) = \frac{1}{D} \sum_{k=0}^{D-1} |\langle i|k \rangle|^2 \delta(\tilde{E} - \tilde{E}_k).$$
(20)

and get:

Un

$$\mu_{n} = \int_{-1}^{1} \tilde{\rho}_{i}(\tilde{E}) T_{n}(\tilde{E}) d\tilde{E}$$

$$= \frac{1}{D} \sum_{k=0}^{D-1} |\langle i|k \rangle|^{2} T_{n}(\tilde{E}_{k})$$

$$= \frac{1}{D} \sum_{k=0}^{D-1} \langle i|T_{n}(\tilde{H})|k \rangle \langle k|i \rangle = \frac{1}{D} \langle i|T_{n}(\tilde{H})|i \rangle.$$
iversiteit Antwerpen

19/30

Start with $\delta(\tilde{\varepsilon} - \tilde{H})$ and Green's function $G^{\pm}(\tilde{\varepsilon}, \tilde{H})$.

Start with $\delta(\tilde{\varepsilon} - \tilde{H})$ and Green's function $G^{\pm}(\tilde{\varepsilon}, \tilde{H})$.

Expanded Kubo-Bastin formula in the linear response

$$\sigma_{\alpha,\beta}(\mu,T) = \frac{4e^{2}\hbar}{\pi\sigma} \frac{4}{\Delta E^{2}} \int_{-1}^{1} d\tilde{E} \frac{f(\tilde{\varepsilon},\mu,T)}{(1-\varepsilon^{2})^{2}} \sum_{m,n} \Gamma_{nm}(\tilde{\varepsilon}) \mu_{nm}^{\alpha\beta}.$$
 (22)

Expanded Kubo-Bastin formula in the linear response

$$\sigma_{\alpha,\beta}(\mu,T) = \frac{4e^{2}\hbar}{\pi\sigma} \frac{4}{\Delta E^{2}} \int_{-1}^{1} d\tilde{E} \frac{f(\tilde{\varepsilon},\mu,T)}{(1-\varepsilon^{2})^{2}} \sum_{m,n} \Gamma_{nm}(\tilde{\varepsilon})\mu_{nm}^{\alpha\beta}.$$
 (22)
$$\mu_{nm}^{\alpha\beta} \equiv [g_{m}g_{n}/(1+\delta_{n0})(1+\delta_{m0})\operatorname{Tr}\left[\upsilon_{\alpha}T_{m}(\tilde{H})\times\upsilon_{\beta}T_{n}(\tilde{H})\right],$$

$$\Gamma_{nm} \equiv \left[\left(\tilde{\varepsilon}-im\sqrt{1-\tilde{\varepsilon}^{2}}\right)\exp^{im\arccos(\tilde{\varepsilon})}T_{n}(\tilde{\varepsilon})\right.$$

$$\left.+\left(\tilde{\varepsilon}+in\sqrt{1-\tilde{\varepsilon}^{2}}\right)\exp^{in\arccos(\tilde{\varepsilon})}T_{m}(\tilde{\varepsilon})\right],$$

$$\alpha,\beta\in\{x,y\}.$$

[García et al., 2015]

Outline for section 4

4. Examples 22

5. Conclusion

Material: Graphene - monolayer.

Material: Graphene - bilayer Bernal stacking.

Material: Graphene - twisted bilayer.

$$H=-t\sum_{\langle i,j
angle}\exp^{i\phi_{ij}}c_{i}^{\dagger}c_{j}+\sum_{i}\mathscr{Z}_{i}^{0}c_{i}^{\dagger}c_{j}$$

Bilayer graphene, Bernal stacking

Bilayer graphene, Bernal stacking

Twisted bilayer graphene

Start from Bernal stacking and rotate for 4.14°.

$$\mathcal{H} = -\sum_{\langle i,j \rangle} t(\vec{R}_i, \vec{R}_j) \exp^{i\phi_{ij}} c_i^{\dagger} c_j + \sum_i \mathscr{Z}_i^0 c_i^{\dagger} c_j \pm \frac{\mathscr{A}_{AB}}{2} \sum_{i \in A/B} c_i^{\dagger} c_j^{\dagger} c_j^{\dagger}$$

Figure 5 : Hofstadter butterfly in twisted bilayer graphene.

Universiteit Antwerpen

_0

Conductivity of graphene from Kubo-Bastin formula

$$H = -t \sum_{\langle i,j \rangle} \exp^{i\phi_{ij}} c_i^{\dagger} c_j + \sum_i \varepsilon_i c_i^{\dagger} c_j$$

Figure 6 : (a) Conductivity σ_{xx} and σ_{xy} , (b) DOS, (c) Shubnikovde Haas oscillations.[García et al., 2015] Universiteit Antwerpen

Outline for section 5

5 Conclusion 28

Kernel polynomial method and Chebyshev expansion. Pros:

Kernel polynomial method and Chebyshev expansion. Pros: Linearly scalable.

Kernel polynomial method and Chebyshev expansion. Pros:

Linearly scalable. Paralelization (CPU + GPU).

Kernel polynomial method and Chebyshev expansion. Pros:

Linearly scalable. Paralelization (CPU + GPU). Applying of boundary conditions.

Kernel polynomial method and Chebyshev expansion. Pros:

Linearly scalable. Paralelization (CPU + GPU). Applying of boundary conditions.

Cons:

Energy resolution $\sim \frac{1}{N}$.

Kernel polynomial method and Chebyshev expansion. Pros:

Linearly scalable. Paralelization (CPU + GPU). Applying of boundary conditions.

Cons:

Energy resolution $\sim \frac{1}{N}$.

Future work:

Conductivity of twisted bilayer graphene.

Different types of materials, transition metal dichalcogenides.

[García et al., 2015] García, J. H., Covaci, L., and Rappoport, T. G. (2015).

Real-space calculation of the conductivity tensor for disordered topological matter.

Phys. Rev. Lett., 114:116602.

[Weiße et al., 2006] Weiße, A., Wellein, G., Alvermann, A., and Fehske, H. (2006).
The kernel polynomial method. *Rev. Mod. Phys.*, 78:275–306.

Thank you for your attention!