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Resumo

O processo de auto-organização de um sistema bidimensional de barras magnéticas é
estudado. As barras são modeladas como contas dipolares unidas e alinhadas, o chamado
modelo vagem. O sistema é estudado por meio das simulações de Dinâmica Molecular e
Dinâmica de Langevin. Inicialmente, uma introdução sobre os sistemas de matéria mole,
mostrando suas principais características e alguns aspectos teóricos e experimentais é ap-
resentada. A seguir, são apresentados e discutidos os métodos computacionais adotados
nas simulações, bem como o tratamento matemático do sistema. Quanto aos resultados
da tese, uma diversidade de configurações auto-organizadas, tais como: (1) aglomera-
dos, (2) percolados e (3) estruturas ordenadas são obtidas e caracterizadas em relação
ao estado de agregação das partículas e ordenamento. Ao aumentar a razão de aspecto
das barras magnéticas, verifica-se que em duas dimensões a transição de percolação é
suprimida. Este resultado é oposto ao que é observado em sistemas semelhantes em três
dimensões. Mostra-se que esse comportamento é uma conseqüência de efeitos geométricos
que reduzem a mobilidade das barras à medida que a razão de aspecto destas é aumen-
tada. No que diz respeito ao ordenamento das partículas no sistema, uma fase magnética
é encontrada com ordenamento ferromagnético local, e também é observado um compor-
tamento não monotônico incomum da ordem nemática. Com base também em simulações
de Dinâmica de Langevin, as configurações auto-organizadas são estudadas para o caso
especial em que o dipolo das contas que constituem as barras está desalinhado em relação
ao eixo da barra. O desalinhamento é zero quando o dipolo é paralelo ao eixo axial.
Verificou-se que a densidade necessária para a formação da estrutura percolada diminui
com o aumento do desalinhamento do dipolo. Além disso, o sistema exibe diferentes es-
tados de agregação (sólido ou líquido) para diferentes desalinhamentos, mesmo quando a
mesma densidade é considerada. A estabilidade das estruturas auto-organizadas é estu-
dada em relação à temperatura, e geralmente aumenta com o aumento do desalinhamento
dos dipolos.

Palavras-chave: Matéria mole; Auto-organização; Colóides magnéticos; Percolação;
Dinâmica Molecular; Dinâmica de Langevin.



Abstract

The self-assembly process of a two-dimensional ensemble of magnetic rods is studied.
The rods are modelled as aligned single dipolar beads, the so-called peapod model. The
system is studied by means of Molecular Dynamics and Langevin Dynamics simulations.
An introduction on soft matter systems, showing their main features and some theoretical
and experimental aspects is first presented. In the following, the computational methods
adopted in the simulations and the mathematical treatment of the system are presented
and discussed. Concerning the results of the thesis, a diversity of self-assembled configu-
rations such as: (1) clusters, (2) percolated and (3) ordered structures are obtained and
characterized with respect to the state of aggregation of the particles and ordering. By
increasing the aspect ratio of the magnetic rods, it is found that in two dimensions the
percolation transition is suppressed. This is opposite to what is observed in similar three
dimensional systems. It is shown that such a behavior is a consequence of geometrical
effects which reduce the mobility of the rods as the aspect ratio of such rods is increased.
Concerning the ordering of the particles in the system, a magnetic bulk phase is found
with local ferromagnetic order and an unusual non-monotonic behavior of the nematic
order is also observed. Based also on extensive Langevin Dynamics simulations, the self-
assembled configurations are studied for the special case where the dipole of the beads
that constitute the rods are misaligned with respect to the rod axis. The misalignment
is zero when the dipole is parallel to the axial axis. It is found that the density required
for the formation of the percolated structure decreases with increasing misalignment of
the dipole. Also, the system exhibits different aggregation states (solid or liquid) for
different misalignment, even when the same density is considered. The stability of the
self-assembled structures are studied with respect to temperature, and it usually increases
with increasing misalignment of the dipoles.

Keywords: Soft-Matter; Self-assembly; Magnetic colloids; Percolation; Molecular
Dynamics; Langevin Dynamics.



Abstract

Het zelf-assemblageproces van een tweedimensionaal ensemble van magnetische staven
wordt bestudeerd. De staven zijn gemodelleerd als uitgelijnde enkele dipolaire kralen,
het zogenaamde peapod-model. Het systeem wordt bestudeerd met behulp van Molec-
ulaire Dynamica en Langevin Dynamica-simulaties. Een inleiding over zachte-materie-
systemen, waarin hun belangrijkste kenmerken en enkele theoretische en experimentele
aspecten worden besnoken. Vewolgens worden de berekeningsmethoden die in de sim-
ulaties en de wiskundige behandeling van het systeem zijn gebruikt gepresenteerd en
besproken. Met betrekking tot de resultaten van het proefschrift, wordt een diversiteit
aan zelf-geassembleerde configuraties zoals: (1) clusters, (2) gepercoleerde en (3) geor-
dende structuren verkregen en gekarakteriseerd met betrekking tot aggregatietoestand
van de deeltjes en ordening. Door de aspect-verhouding van de magnetische staven te
vergroten, vonden we dat in twee dimensies de percolatietransitie wordt onderdrukt. Dit
is tegengesteld aan wat wordt waargenomen in vergelijkbare driedimensionale systemen.
Er wordt aangetoond dat een dergelijk gedrag een gevolg is van geometrische effecten
die de mobiliteit van de staven verminderen, aangezien de aspect-verhouding van dergeli-
jke staven toeneemt. Wat betreft de ordening van de deeltjes in het systeem, wordt
een magnetische bulkfase gevonden met lokale ferromagnetische orde en een ongewoon
niet-monotoon gedrag van de nematische orde wordt ook waargenomen. Gebaseerd op
uitgebreide Langevin Dynamica-simulaties, worden de zelf-geassembleerde configuraties
bestudeerd voor het speciale geval waarbij de dipool van de korrels die de staven vormen,
ten opzichte van de staafas niet goed uitgelijnd is. De foutieve uitlijning is nul wanneer
de dipool parallel is aan de axiale as. We vonden dat de dichtheid die vereist is voor de
vorming van de gepercoleerde structuur afneemt met toenemende foutieve uitlijning van de
dipool. Ook vertoont het systeem verschillende aggregatietoestanden (vast of vloeibaar)
voor verschillende scheefstanden, zelfs wanneer dezelfde dichtheid wordt beschouwd. De
stabiliteit van de zelf-geassembleerde structuren wordt bestudeerd met betrekking tot
temperatuur, en deze neemt gewoonlijk toe met toenemende scheefstand van de dipolen.

Trefwoorden: Soft-Matter; Zelfassemblage; Magnetische colloïden; Percolatie; Molec-
ulaire dynamica; Langevin-dynamica.
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4.10 (a) The average fraction of monomers in the largest cluster as a function of
temperature for η = 0.4. Some representative equilibrium configurations
for η = 0.4 and: (b) Ψ = 90◦, kBT/ε = 0.1; (c) Ψ = 90◦, kBT/ε = 0.3;
(d) Ψ = 90◦, kBT/ε = 0.5; (e) Ψ = 60◦, kBT/ε = 0.1; (f) Ψ = 60◦,
kBT/ε = 0.3; (g) Ψ = 60◦, kBT/ε = 0.5. . . . . . . . . . . . . . . . . . . . . 93
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Introduction





1
Introduction and Overview

1.1 Soft Matter systems

Probably, condensed matter physics is the most explored field in Physical Sciences.
From the need to study systems with a large group of interacting particles, as liquid
and solids, it provides a framework for describing and determining the macroscopic and
microscopic properties of matter [1]. However, condensed matter physics can be split into

Figure 1.1: Examples of soft matter systems. Top panel: (left) polystyrene (polymers),
and (right) jelly (colloids). Bottom panel: (left) detergents (surfactants), and (right)
LCDs (liquid crystals).

“hard” condensed matter physics, which studies quantum properties of matter, and “soft”
condensed matter physics which studies those properties of matter for which quantum
mechanics plays no role. The latter is related to systems which cannot be defined either
as simple liquids or crystalline solids, they are usually refereed as soft matter. Polymers,
colloids, surfactants and liquid crystals are prominent examples of soft matter (see Fig.
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1.1). Even though they are presented as being different materials, currently it is assumed
that there is a continuum group of molecules and systems that they can be fit into the
distinguished-behavior-gap between those four examples of basic soft materials [2] as
shown in Fig. 1.2. Although they might not seem to be a broad class of molecules,
the first three examples are primary materials of which the biological matter is made,
excepting the bone’s material and water. Because of that, there is a close relationship
between soft matter physics and biophysics.

Figure 1.2: Illustrative triangle showing the continuum of molecules and materials which
fills the space between spherical colloids, flexible polymers, and surfactants. Extracted
from Ref. [2].

Some common features of soft matter systems are, for example, their characteristic
length scales between the atomic sizes and macroscopic scales. This important feature
makes soft matter systems easier to study, from the point of view of experimental set
up. Concerning the theoretical description and computer simulations one can use coarse-
grained models that does not concern about every detail of the atomic scale, as chemical
bonds, hybridization or any quantum effects. Another feature is that soft matter shows
a large and nonlinear response to weak forces, for instance, rubbers (polymers) can be
stretched by a factor of 2, 3 or even more from their initial length and their mechanical
response cannot be described by a linear relation between stress and strain [4, 5]. Also,
because of their length scale, they are subject to Brownian motion [3], which makes that
their common physical properties have energy scales of the order of kBT , confirming that
the quantum effects can be neglected. If the interaction between the constituents are weak
enough, thermal agitations, resultant from Brownian dynamics, will allow the elements to
adjust their positions and orientation to attain the most favourable configuration. Such
a process is called self assembly and it leads soft matter systems to a hierarchically more
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complex and ordered state of aggregation. The characteristic length scale and the weak
interactions are the reasons why soft matter is soft. There are two material parameters
whose softness can be evaluated, namely, the bulk modulus (K) and the shear modulus
(G). The latter comes from the shear stress (σ) definition:

σ = Gγ, (1.1)

where γ is the strain (relative deformation in a material), and G is the elasticity constant
which is defined as the ratio between the force and the area, i.e., the pressure units.
Therefore it can also be expressed as the ratio between the energy involved and the
volume (Eq. 1.2)

G =
F

A
=
E

V
. (1.2)

Typically, for a molecular solids, the energy involved is basically the binding energy (E ≈ 1

eV ) and the length scale is on the order of interatomic distances (V ≈ 1Å3). Therefore,
as the bulk modulus is K ≈ 3G, it is on the order of GPa. If we do the same analysis
for soft matter systems we have, e.g. for colloids, E ≈ kBT and V ≈ 1 nm3, therefore
G ≈ 4 mPa. Consequently, the bulk modulus for typical colloids differ about 13 orders
of magnitude from molecular solids. In general, soft materials are typically somewhere
between 11 and 14 orders of magnitude softer than regular materials [4]. One relevant
class of soft matter system are the colloidal dispersions. Such systems play an important
role in the soft self assembled structures, and are the object of the study of the present
thesis. Firstly, let us discuss about colloidal dispersions in more detail.

1.2 Colloidal Dispersion

Colloidal systems refer to systems consisting of small particles suspended in a fluid
whose typical size is between 1 nm up to 20 µm. They often behave either like regular
liquids or regular solids see (Fig. 1.3). The difference from molecular and atomic systems
is that the primary constituents, the small particles, can be large enough that you can see
under a microscope. Phase transitions (like crystallization, gas-liquid phase separation
and formation of nematics and smectics) and critical phenomena (like critical slowing
down of diffusion and critical opalescence) are amongst the phenomena that colloidal sys-
tems have in common with molecular systems. Because of that, colloids have been also
used as model systems for understanding many properties of molecular or even atomic
materials. Also, their dynamics are slow, in particular we can follow them in real time
watching their dynamics using, for example, video microscopy technique. One way to de-
scribe that is using the diffusion coefficient definition (D) in terms of the thermal energy
(kBT ), viscosity (η) and the particle diameter (a), where, roughly speaking, D ≈ kBT/ηa.
Due to the relative large length scale of a, the diffusion coefficient of soft materials are
typically 4 orders of magnitude smaller than typical coefficient values of hard materials.
Thus, the typical relaxation are somewhere between microseconds and hundred of seconds.
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Therefore the experimental study of colloids is usually much simpler than for molecular
systems. The dispersed particles are large enough to describe the solvent as a continuous

(a) (b) (c)

(d) (e)

Figure 1.3: Examples of colloids. (a) Paints. (b) Viruses. (c) Milk. (d) Ferrofluid. (f)
Colloidal Crystals.

and homogeneous background. However they are small enough to present Brownian mo-
tion which arises from collisions of particles and solvent. As a result, the kinetic energy of
colloids K is closely related to the kinetic energy of particles of the solvent, or the kinetic
energy of colloids conform to Boltzmann distribution

p(K) α exp

(
− K

kBT

)
, (1.3)

where kB = 1.38× 10−23 J/K is the Boltzmann constant and T is the absolute tempera-
ture. If the colloids are subjected to an external potential also conforms to the Boltzmann
distribution according to the Virial theorem, then:

p(V ) α exp

(
− V

kBT

)
or p(r) α exp

(
− V (r)

kBT

)
. (1.4)

1.2.1 Pair interaction between colloids

� van der Walls interaction

It arises from the fact that all colloids attract each other, with a few caveats. The
uncharged colloids weakly interacts via a fluctuating induced dipolar force between the
neighbouring atom or molecule. As a result, it leads to an attractive force. If the van der
Walls is the only interaction which is present, the colloidal suspension is unstable, because
the colloids would attract each other turning into a big mass that fall to the bottom of
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the suspension. This instability can be overcomed by, e.g., charging the colloids in order
that screened Coulomb interaction counteracts the van der Walls attraction. This brings
to a topic of the colloidal stability. The potential Upd between a pair of dipoles which one
dipole is induced by one another, separated by a distance r varies as

Upd ∼
1

r6
. (1.5)

After a double integration over the volume of the (two identical) colloids, we end up into
this expression [6]

Uvw(r) = −AH
[

2R2

r2 − 4R2
+

2R2

r
+ ln

(
1 +

4R2

r2

)]
, (1.6)

where R is the particle radius, r is the center-to-center distance, and AH is the Hamaker
constant, which depends on the dielectric constant of the particles and of the medium.
Typical values of AH is around≈ 10kBT , for typical length scale of colloids, Uvw ≈ 500kBT

[5], therefore, the van der Walls interaction is strong.

� Lennard-Jones potential

Roughly speaking, the microscopic model for any system which exhibits any of the
most common states of matter as solid, liquid and gas is based on spherical particles that
interact with one another. Therefore a pair interaction that provides, at the simplest level,
the two principal features of an interatomic force: close-range repulsion and short-range
attraction is the Lennard-Jones (LJ) potential which is the best known of such potentials,
originally proposed for liquid argon [7]. The LJ potential is a very simple model widely

1 2 3 4

r/σ

-1

0

1

U
/ε

Figure 1.4: Lennard-Jones potential curve.

used to simulate colloids. It counts of a short-range attractive term (van der Walls) and
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a repulsive term which comes from the Pauli repulsion at close ranges due to overlapping
electron orbitals. The most common expression for the LJ potential is [7, 8]

ULJ =

4ε
[(

σ
r

)12 −
(
σ
r

)6
]

r ≤ rc,

0 r > rc,
(1.7)

where σ is the particle diameter and it is related to the length scale, which is usually
normalized to the particle diameter. ε is the depth of the potential well which governs
the strength of the interaction (see Fig. 1.4). The interaction repels at close range, then
attracts till a cut off limiting separation rc.

� Polar colloids interaction

Here we present some of the frequently studied model in the context of the dipolar
colloids. We can point to three models: dipolar hard sphere (DHS), Stockmayer model
(ST) and dipolar soft sphere (DSS) model. A common feature of the aforementioned
three models is the description of long-range anisotropic interaction in terms of a point
dipole-dipole potential. However, they differ in the short range interaction. In addition
with the dipolar term, the DHS model employs hard core repulsion, whereas the ST
potential employs the Lennard-Jones (LJ) potential. The intermediate DSS model adopts
the soft repulsive core of the LJ potential. The fields of applications for these three
model potentials are the same, they are used as simple models for polar molecules. All
three models, DHS, DSS and ST, exhibit a transition from an isotropic liquid to an
orientationally ordered liquid and show quite similar dielectric properties, whereas a gas-
liquid (GL) transition is established for the ST fluid only [9, 10], and it is still a matter
of debate. In this thesis we focus on the DSS to simulate the interaction of the system,
however, further information about the not-covered interactions can be found in the Refs.
[9, 11] for DHS model, and Refs. [12, 13] for ST model.

- Dipolar soft sphere interaction

As mentioned previously, the DSS potential is the dipolar interaction added of the soft
repulsive core of the LJ potential. The DSS is expected to show the same phase behavior
like the DHS model [14]

UDSS =
µi · µj
r3
ij

−
3(µi · rij)(µj · rij)

r5
ij

+ 4ε

(
σ

rij

)12

, (1.8)

where rij = rj − ri, rij = ‖rij‖ and µi is the dipole moment of ith particle. Due to the
presence of the repulsive LJ-term, the dimensionless units are similar to the ones in the
LJ model. The interaction depends on the relative orientation of the particles. The most
favourable arrangement, as shown in Fig. 1.5, is the so-called head-to-tail arrangement
(red dashed-line), presenting a similar behavior to the LJ curve (black solid line).

Particles which can be modelled with dipolar interaction must present a magnetic
monodomain. In general, the size of the particles rules this feature. The typical length
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Figure 1.5: Total DSS pair potential for different configurations as a function of the
interparticle separation. For comparison purposes, LJ curve is also plotted in the black
solid line. A sketch with the relevant parameters in the interaction is also shown.

scale of the dipolar particles is on the order of the nanometers, so they are refereed as
magnetic nanoparticles. In the following sections, we sometimes make reference to the
modelled particles in this term.

1.2.2 Magnetic Nanoparticles

Magnetic nanoparticles (MN) are used in different applications, including magnetic
fluids [15], biomedicine [16], magnetic resonance imaging (MRI) [17], data storage [18],
among others. Basically, MN are particles with a magnetic dipole moment associated,
which are regarded as particles composed of a magnetic monodomain when they have a
typical size from 15 nm to 150 nm [19]. While a number of suitable methods have been
developed for the synthesis of magnetic nanoparticles of different compositions, successful
application of such particles in the aforementioned areas are highly dependent on their
stability under a variety of different conditions. The MN perform better, as regards
the intended applications, when their size is below a critical value, which depends on
the material, but is typically around 10 − 20 nm [20]. Then, each particle becomes
a single magnetic domain and shows a superparamagnetic behavior for a sufficient high
temperature, namely, the blocking temperature 1. An interesting application of MN occurs
in ferrofluids [Fig. 1.3(d)], which are colloidal systems where the solute is composed of

1Heating a ferromagnetic material will make it paramagnetic in a sufficiently high temperature. By
cooling and magnetizing, the ferromagnetic property is recovered, indicating superparamagnetism. The
transition temperature at which this occurs is called the blocking temperature.
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ferromagnetic nanoparticles (FN), normally magnetite (Fe3O4), and usually dissolved
in an organic fluid. FN are particles with permanent magnetic dipole moment whose
structural behavior is mainly ruled by the dipolar interaction, leading to a variety of self-
assembled structures, such as rings, chains, crystal lattices, worm-like, among others. In
Fig. 1.6 is illustrated a ferromagnetic dispersion without an external magnetic field [Fig.
1.6(a)] and under the presence of an uniform magnetic field [Fig. 1.6(b)][21].

Figure 1.6: In situ image by Transmission Electron Microscopy (TEM) of dispersion of
Fe3O4 in C10H18 (a) without magnetic field (b) with homogeneous magnetic field (0.2T ).
The transition occurs for equally spaced column that displays hexagonal symmetry. Figure
extracted from Ref. [21].

Beyond the interest in study systems with such anisotropic interaction, same atten-
tion is also addressed to the particles with anisotropic shapes. Rod-like particles are a
prominent example of such systems. In this thesis we focus our study on magnetic rods,
which is the subject of the following section.

1.2.3 Magnetic Rods

Many efforts are currently being devoted to the synthesis and characterization of mag-
netic particles with anisotropic shape, e.g., rod-like particles. Within this area of research,
rod-like particles play an important role as active microrheology probes, since it is possi-
ble, by the torque provided by an uniform magnetic field, to enhance the visualization of
their viscoelastic properties [22, 23]. Other successful applications of magnetic rods are:
(i) as components in micromechanical units [24, 25, 26], i.e., to generate localized particle
trapping and stirring; (ii) as microscale propellers [27, 28, 29], i.e., magnetic units able
to be remotely driven or guided in a fluid medium, and thus to potentially move and
transport chemical or biological cargos in small channels or pores. Beyond the aforemen-
tioned applications, it has already been reported that particles with anisotropic shape
show distinguished properties when compared to those of ferrofluids consisting of spheri-
cal particles, namely, magnetic birefringence [30] and thermal conductivity [31]. Recently,
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iron oxide nanorods were found to have potential for biomedical applications [32]. Col-
loidal rings and ribbons can be obtained from magnetic manipulation of Janus nanorods
[33] and ferromagnetic ellipsoids [34]. The anisotropic shape allows, by definition, a wide

Figure 1.7: TEM images of dispersion of magnetic rods. (a) β-FeOOH nanoparticles. (b)
Silica-coated β-FeOOH nanoparticles. (c) Iron oxide/silica nanocomposite after calcina-
tion at 500◦ C for 5h. Figure extracted from Ref. [32].(d)-(e)-(f) TEM micrographs of
the nanorods (45 to 450 nm). Figure extracted from Ref. [35].

variety of structures and self-assembled patterns [35] (see Fig. 1.2.3). Compared with
the individual magnetic particles, the collective behavior of rod-like particles is much less
understood. Alvarez and Klapp [36], in a recent paper, analyzed the structure formation
of a special class of rods by computer simulations using the Monte Carlo method. They
quote the possibility of simulate such systems using a special class of magnetic nanorods
(MNR) consisting of dipolar beads which are permanently linked to each other composing
a stiff chain with internal head-to-tail alignment of the dipole moment (see Fig. 1.8). The
first approach shown in Fig. 1.8(a) is based on recent experiments by Birringer et al.
[37]. The authors performed a field assisted deposition technique to produce magnetic
rods made of iron oxide beads aligned as illustrated in Fig. 1.9.

The direction of the magnetic dipole is not necessarily the same to the long axis of
the magnetic rod. Anisotropic particles with a permanent tranverse magnetic dipole were
studied experimentally in a recent studies [38, 34, 39]. In Fig. 1.10, we show a Field-
Emission Scanning Electron Microscope (FESEM) image of peanut-shaped particles with
a transverse dipole.
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Figure 1.8: Two possible approaches to simulate nanorods: (a) MNR approach, where
each particle has a diameter σ and dipole moment m, the lenght of each rod is lσ. (b)
Spheroids with dipole moment me for minor radius b and the major radius a. Figure
extracted from Ref. [36].

Figure 1.9: Schematic representation of the experimental rods synthesis procedure. (a)
The magnetic dipole moment (white arrows) are aligned to an external field H0 during
deposition. (b) Magnetic field assisted self-assembly of individual dipolar rods. The build-
up of field gradients is symbolized by flux-lines. (c) Further growth of individual rods is
accompanied by a change in growth mode resulting in the formation of bundles of rods.
Figure extracted from Ref. [37].

As a matter of fact, the possibility of the manipulation of the direction of the magnetic
dipole can be used as a controlling parameter to functionalize the MN through the inter-
action direction, i.e. by tuning the dipole moment’s direction of a peapod-like rigid rod.
This is experimentally realised through the synthesis of monodisperse magnetoresponsive
rods of desired diameter, length, and magnetic susceptibility submitted to an external
magnetic field [40](see Fig. 1.11).
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Figure 1.10: Peanut-shaped particles with a permanent transverse magnetic dipole. Figure
extracted from Ref. [39].

Figure 1.11: Illustration of a formation of ribbon-like chains by magnetic rods with a
non-axial dipole moment. Figure extracted from Ref. [40].

1.3 Liquid Crystals-Like States

Liquid crystals (LC) are basically anisotropic molecules that display some kind of
order, but not complete order. In crystals, all the particles are arranged in a crystalline
lattice, so they have a perfect translational order. In the other hand, an isotropic liquid
does not have any kind of translational order, it is a disordered material. LC, as the
name implies, are something that are in between the two. There are different kinds
of LC, perhaps the most common is called nematic liquid crystals. These are typically
made from rod-shaped molecules, not necessarily very big. A nematic crystal has no
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positional order, but the molecules are oriented about a particular direction. Because
of the anisotropy in the structure, these have interesting optical properties, i.e., they
polarize light. This is why LC are useful for display technologies. Another type of LC is

Figure 1.12: Examples of Liquid crystals.

smetic. As the nematic phase, they have orientational order, however they also have some
positional order, which is not necessarily in all directions as illustrated in Fig. 1.12(b).
A smetic phase can be ordered in a particular direction but disordered in other. There
is also an interesting variance of LC, which are the so-called cholesteric liquid crystals.
In the cholesteric phase, the molecules are directionally oriented and stacked in a helical
pattern, with each layer rotated at a slight angle with respect to the ones above and below
it. The fundamental thing about LC is that they have orientational order but not always
translational order. An important order parameter used to investigate the orientational
order is the so-called nematic order parameter [41] related to the largest eigenvalue (G2)
of the following matrix:

Qkf =
1

2N

N∑
i

(3ŝikŝ
i
f − δkf ), (1.9)

where i refers to particle i, the indexes k and f denote the cartesian components of the
orientation vector s, N refers to the number of particles, and G2 is 0 for isotropic phase
and 1 for nematic phase.
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2
Numerical Methods

The majority of the laws of nature is expressed by equations that one can hardly
solve them exactly, but in very special conditions. However, it is possible to solve such
equations with a good accuracy by using computers through numerical methods. For
instance, much of the theoretical condensed matter physics, deals with systems consisting
of many atoms and molecules. Such systems are not feasible to be studied analytically.
Therefore, numerical methods applied in physical systems enables us to predict the be-
havior of a system before it is studied experimentally. In this chapter we will discuss the
computational methods that have enabled this work. A brief but not vague description
of Molecular Dynamics Simulation will be presented.

2.1 Molecular Dynamics Simulation

Molecular dynamics (MD) is a computer simulation method, based on the physical
equations of motion of the atoms and molecules in the context of N-body simulation.
The atoms and/or molecules are allowed to interact to each other for a period of time
reproducing the particle motion. The trajectories of atoms and molecules are determined
by solving numerically the Newton’s equations for a system of interacting particles, where
the forces between the particles and the potential energy are defined by the interatomic
potentials or molecular mechanics force fields. Therefore, it is a deterministic method to
simulate the physical system. The MD measurement approach is quite similar to the real
experiment’s. We must first prepare the sample of N particles, then we solve the Newton’s
equations to know their time evolution, when the system reaches the equilibrium, all the
averages of interest are performed. The motion equation can be written in several ways.
Perhaps one of the most fundamental form is the Lagrangian equation of motion

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, (2.1)

where q and q̇ are the generalized coordinates and velocities of all particles, respectively,
the Lagrangian function L(q, q̇) is defined in terms of kinetic (K) and potential (V )
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energies

L = K − V . (2.2)

By Legendre transformation, the Hamiltonian is obtained such as

H(p, q) =
∑
k

q̇kpk − L(q, q̇), (2.3)

where pk is the generalized momentum defined by

pk =
∂L

∂q̇k
. (2.4)

If the Hamiltonian is a purely quadratic function of the velocities and the potential
energy does not depend on the velocities, the Hamiltonian will match the system total
energy

H =
1

2

∑
i

p2
i

mi

+
∑
i<j

V (rij), (2.5)

where rij = |dx x̂+dyŷ| is the interparticle distance, and pi andmi are the momentum and
the mass of the i particle, respectively. In MD, we must take into account all the forces
which all the particles are submitted. Once we know the interaction potential between
the particles, we can obtain the interaction force by:

fij = −∇V . (2.6)

The net force in particle i is calculated in terms of their components

fxi = −dx
rij

(
∂V (rij)

∂r

)
, fyi = −dy

rij

(
∂V (rij)

∂r

)
, fzi = −dz

rij

(
∂V (rij)

∂r

)
. (2.7)

E.g., in the case that V (r) is equal to Eq. (1.8)

fx =

[
3
µi · µj
r5
ij

− 15
(µi · rij)(µj · rij)

r7
ij

+ 48ε

(
σ12

r14
ij

)]
dx+

3

r5
ij

[
µjx(µi · rij) + µix(µj · rij)

]
, (2.8)

fy =

[
3
µi · µj
r5
ij

− 15
(µi · rij)(µi · rij)

r7
ij

+ 48ε

(
σ12

r14
ij

)]
dy +

3

r5
ij

[
µij(µi · rij) + µiy(µj · rij)

]
. (2.9)

Therefore, the equation of motion of each particle is given by

mi

(
d2ri
dt2

)
= Fi =

N∑
j 6=i

fij, (2.10)

where fij is the force exerted on j by particle i.
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For linear rigid bodies, e.g. rods, in addition to the forces, we must also take into
account the torques. Considering that there are only two rotational degrees, the torque
on a linear molecule can be written as a sum over a interaction sites

N =
∑
i

ri × fi = s×
∑
i

difi = s×G, (2.11)

where the orientation is defined by s, the unit vector along the molecular axis, and where
di is the distance of each interaction site from the center of mass (CM), see Fig. 2.1. In

i

j

k
dCM i

s

Figure 2.1: Illustration of important parameters of a linear rigid body model.

the linear case, the angular momentum is simply L = Iω, (I is the rod moment of inertia
and ω is the angular velocity), so that the equations of motion to the angular case, using
Eq. (2.11), are

I
dω

dt
= s×G, (2.12)

ds

dt
= u = ω × s. (2.13)

The quantity u is the tangential velocity, and it gives the information of how the orien-
tation of the linear body, given by s, is changing over time. Thus, we can obtain the
tangential acceleration (α) by doing the derivative of Eq. (2.13) with respect to the time

du

dt
= α =

dω

dt
× s + ω × u. (2.14)

From Eq. (2.12) we have

α =
1

I
(s×G× s) + ω × ω × s. (2.15)

Using the identity of Eq. (A38), we have that

α = −I−1s(G · s) + I−1G (s · s)︸ ︷︷ ︸
1

+ω (ω · s)︸ ︷︷ ︸
0

−s (ω · ω)︸ ︷︷ ︸
ω2

, (2.16)

= I−1 (−s(G · s) + G)− sω2, (2.17)
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as ω is perpendicular to s so, ω · s = 0. Doing the dot product of s and (−s(G · s) + G),
we can see that they are perpendicular to each other. So we can say that : G⊥ =

(−s(G · s) + G). For linear rods in a plane, ω = ωẑ and s = sxx̂ + syŷ, then

u · u = (ω × s) · (ω × s),

= [ωẑ × (sxx̂+ syŷ)] · [ωẑ × (sxx̂+ syŷ)] ,

= ω2s2
x + ω2s2

y = ω2(s2
x + s2

y︸ ︷︷ ︸
1

) = ω2. (2.18)

Thus, using Eq. (2.17), the tangential acceleration for a linear rod in two-dimensions

α = I−1G⊥ − s(u · u). (2.19)

2.1.1 Integration of The Equations of Motion

To integrate the equations of motion numerically, we will use the so-called Verlet-
Scheme [8, 43], which we will focus on the Leapfrog method and the velocity Verlet
method. Despite its low order, the Leapfrog method has excellent energy conservation
properties and it is widely used. It is equivalent to Verlet Method [44]. The derivation of
the Leapfrog method follows immediately from the Taylor expansion [45] of the coordinate
variable - r(t)

r(t+ δt) = r(t) + v(t)δt+ (δt2/2)
f(t)

m
+O(δt3), (2.20)

where f(t) is the force and m is the mass of the particle. We can rewrite Eq. (2.20) by

r(t+ δt) = r(t) + δt

[
v(t) + (δt/2)

f(t)

m

]
+O(δt3). (2.21)

The term multiplying δt is just the Taylor expansion of v(t + δt/2), and the truncation
error is on the order of O(δt3). Similarly, if we subtract the Taylor expansion of v(t−δt/2)

from the corresponding expression for v(t+δt/2) we have the complete integration leapfrog
scheme

v(t+ δt/2) = v(t− δt/2) +
f(t)

m
δt, (2.22)

r(t+ δt) = r(t) + v(t+ δt/2)δt. (2.23)

The velocities and coordinates are evaluated at different times, but it does not denote a
problem. In order to evaluate the instantaneous kinetic energy, we need the instantaneous
velocity v(t), for this purpose we perform as the following equation

v(t) =
1

2
(v(t+ δt/2) + v(t− δt/2)) . (2.24)

For the angular motion, we have similar equations from Eqs. (2.22) and (2.23), thus

u(t+ δt/2) = u(t− δt/2) +α(t)δt, (2.25)

s(t+ δt) = s(t) + u(t+ δt/2)δt. (2.26)
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From Eq. (2.25) we obtain

u(t− δt/2) = u(t)− δt

2
α(t). (2.27)

We can obtain the relation u(t) · u(t) needed from Eq. (2.19) by doing the dot product of
s(t) in both sides of Eq. (2.27) we have

s(t) · u(t− δt/2) = s(t) · u(t)− s(t) ·
{
I−1G⊥(t)− s(t) [u(t) · u(t)]

} δt
2
,

= − (u(t) · u(t))
δt

2
,

u(t) · u(t) = − 2

δt
s(t) · u(t− δt/2), (2.28)

where we used s(t) · s(t) = 1, s(t) · u(t) = 0 and s(t) ·G⊥(t) = 0.
However, it is possible to cast an integration scheme which evaluates the positions and

the velocities at the same instant of time. The so-called velocity Verlet algorithm also
can be derived from a Taylor expansion

r(t+ δt) = r(t) + v(t)δt+
f(t)

2m
δt2, (2.29)

s(t+ δt) = s(t) + u(t)δt+α(t)δt2. (2.30)

The update of the velocities is given by

v(t+ δt) = v(t) +
f(t) + f(t+ δt)

2m
δt, (2.31)

u(t+ δt) = u(t) +
α(t+ δt) +α(t)

2
δt. (2.32)

Eliminating the velocities in these equations will trace back to the original Verlet algorithm
[43], so the original and the velocity version are completely equivalent. To calculate the
trajectories and the orientations, the Eqs. (2.29) - (2.32) are processed gradually by the
simulation program. Compared to other integrators with only one force evaluation like the
Euler method with error on the order δt2, the numerical stability of the Verlet algorithm
is much higher and the errors are of order δt2. From a physical point of view the time
reversibility is very important.

2.1.2 Periodic Boundary Conditions

Despite the rise of computing power since adoption of the MD simulation method, the
simulations are still usually performed for a small number of particles. Most simulations
for this work were done on systems with a little bit more of 2500 particles. Simulations
with more particles were only done as a check for finite size effects. The reason for the
small number of particles is not the lack of memory of computers, it is rather the compu-
tational power spent on evaluating the forces between the particles which is proportional
to N2, which it can be decreased by special techniques not discussed in this thesis, further
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information in Refs. [46, 47]. Because we are interested in bulk phases properties, it is not
satisfactory to simulate the system as a closed box. In such a simulation box of a system
of 1000 particles, arranged on a simple squared lattice, a not-neglected amount of particles
are in contact with the surface of the box. These particles will experience quite different
forces as particles inside the bulk. This problem can be overcome by implementing peri-
odic boundary conditions (PBC). The small system of particles is expanded to infinity by
surrounding the central simulation box with identical copies till an infinite space-filling
array is obtained. It works as if the sample is simulated as a small piece within a larger
portion of the same material. So if the particles leave the central simulation box, an image
of their own will re-enter it directly through the opposite face. That is, if a particle in the
integration step, leaves the simulation box through its right end by a distance δx, e.g.,
it will be replaced at a distance δx to the right from the left end of the box, while the
positions of the other particles are held. The same goes for the interactions, as a direct
consequence of periodic boundary conditions is the minimum image convention first used
by Metropolis et al. in Monte Carlo (MC) simulations [48]. If all interactions between a
central particle and the other particles in the box should be calculated in periodic systems,
we have to take into account that some copies of particles are closer to the central one,
than the particle itself. Once the particles are in the rightmost edge, e.g., they interact
with the others as they are in the left extreme of the box as though they are in a box
which is immediately to the left of the first one. This idea is extended to 3D systems.

A two-dimensional system subjected to PBC is illustrated in Fig. 2.2. There are
several boxes with length L, identical to the central one, periodically distributed around
that. If a particle is located at ri relative to the center of the main box, then the system
will also recognize a set of ghost particles with locations given by ri + nL, where n ∈ Z,
so the potential energy is given by

U(ri, ..., rN) =
∑
i<j

u(rij) +
∑
n

∑
i<j

u(| rij + nL |). (2.33)

The expression above presents a problem for systems with long-range interactions1, e.g.,
Coulomb interactions, because, in this case, Eq. (2.33) diverges. In terms of simulation
for this type of system, we must use a technique to truncate the system energy. Among
several methods, Ewald Sum [42] is the one of the most used. For systems with short-
range interaction, we just need to worry about limiting the interactions of the particles
that are within a region whose radius is called the cutoff radius. In general, the cutoff
radius would be the distance which the interaction energy is very small, so that we can
neglect the interactions of particles whose distance is greater than this cutoff range. In
order the cutoff radius concept to work properly, one defines the size of the box as the
double cutoff radius. Thus, the distance between a particle and its image will not be less
than half of the size of the box. We are not going to go into the details of long-range

1It is said long-range interaction when the potential has the asymptotic behavior of the type r−ν

where ν is less than or equal to the dimension of the system [41].
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Figure 2.2: Illustration of a 2D system subject to PBC. The yellow-shaded box represents
the central (real) simulation box.

technique because in the 2D case, the dipolar pair interaction falls off fast ( r−3) and
therefore it is sufficient to take the simulation box sufficiently large such that no special
long-range summation techniques is necessary.

2.1.3 Statistical Mechanics and Molecular Dynamics

MD simulations provide knowledge of the classical microscopic states of the system.
Every microstate is represented by a particular point in phase space corresponding to a full
set of generalized coordinates qj and conjugate momenta pj, Γ = (q1, ..., q6N , p1, ..., p6N)

composing a multidimensional space (see Fig. 2.3). A set of points Γ in the phase
space is the ensemble. When we perform a computer simulation, we often want some
system information at macroscopic level such as: pressure, internal energy, specific heat,
etc. Therefore we need to draw on the Statistical Physics to convert the microscopic
level information obtained by the simulation such as molecular or atomic positions and
velocities. In statistical mechanics, one is mainly interested in systems where the number
of degrees of freedom is large, a macroscopic quantity A, depending on the microstate Γ,
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Figure 2.3: Some examples of classic phase spaces - (a) Phase space of a free particle for
0 < x < L and p, p+ δp - (b) Phase space for harmonic oscillator with energy E,E + δE

is given by the ensemble average [49, 50]

〈A〉 =

∫
A(Γ)ρ(Γ)dΓ∫
ρ(Γ)dΓ

, (2.34)

where ρ(Γ) is the phase density. From a single system configuration/snapshot produced
by molecular dynamics simulation we can determine the instantaneous value A(Γ). With
running simulation the system evolves in time, so that a trajectory in phase space Γ(t) is
produced and A(Γ(t)) will change. To measure the observable macroscopic property Aobs
from simulation, we determine the time average over a definite time period tobs

Aobs =< A(Γ(t)) >= lim
tobs→∞

1

tobs

∫ tobs

0

A(Γ(t))dt. (2.35)

In general, time averaging should be done over infinite times to get macroscopic quantities,
but in practice this might be satisfied with long enough finite times tobs. Since MD
simulation does not provide continuous time development of the system, we have to sum
the instantaneous values of A at integer multiples of the time step δt. For instance, in the
canonical ensemble (NVT), where the number of particles, volume and temperature are
conserved, the ensemble average (in equilibrium) of A can be expressed in terms of phase
space integrals taking into account the total potential energy of the system, U = U(rN),
as

〈A〉 =

∫
A(rN) exp−βU(rN ) drN∫

exp−βU(rN ) drN
, (2.36)

where rN is the set of coordinates, Z =
∫

exp−βU(rN ) drN is the partition function. This
average corresponds to a series of measurements over an ensemble of independent systems.
The ensemble average consists in analyzing the state of all microsystems constituents (all



2.1. MOLECULAR DYNAMICS SIMULATION 46

points Γ), in the same instant of time, and make an average of all these states. So, it is
important to know the distribution of the points Γ in phase space. The Liouville theorem
[41] ensures that the distribution function of the phase space is constant over time. As
a result, if there is a trajectory in the phase space that goes through all the points of
it, so that ρens 6= 0, then, each system will eventually visit all states. Such a system is
called ergodic. This ensures the possibility of replacing the time average to an ensemble
average. Therefore, the MD method is based on the assumption that the ergodic principle
holds, and then the time that a particle spends in a given region of the phase space is
proportional to the volume of this region. In other words, the ergodic principle states that
all the accessible microstates are equally likely for the limit t → ∞. Consequently, the
temporal average obtained in a MD run should be, in principle, the same as the ensemble
average, i.e.

Aobs =
1

M

M∑
i=1

Ai(r
N) = 〈A〉, (2.37)

where M is the total number of measurements for independent runs.
In general the ergodicity of a system has always to be proved for a definite set of

parameters, but this is hard to do. In MD ergodicity is often destroyed by metastable
states trapping the system for extended periods of time. This problem can be avoided
by comparing averages of observables from different simulations with the same simulation
parameters, but different initial configurations. Even in this case one cannot be sure,
however, to reach every region in phase space.

2.1.4 Molecular Dynamics Scheme

A typical MD simulation run consists of the following basic steps:

1. Initialization of the system, i.e., assign initial coordinates and initial velocities for
all the particles in the system;

2. Calculation of the interaction force between pairs of particles. This is the most
time-consuming part of any MD simulation;

3. Numerical integration of the equation of motion by using a suitable scheme i.e.,
velocitity Verlet, leapfrog algorithm;

4. Apply the periodic boundary conditions, if necessary.

These are all done in one single time-step. If m is the total number of time-steps
in the simulation, then ttot = mδt is the total time of the simulation run, and δt is the
discrete time interval between time-steps. After a given number of simulation steps, the
system should, in principle, attain an equilibrium state. In order to check that the system
has indeed reached an equilibrium situation, one could, for instance, calculate the total
energy of the system (total potential energy per particle plus the total kinetic energy per
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particle) over time and check if it has reached a stationary value, i.e., constant over time.
The number of time-steps in order the system to reach this equilibrium situation depends
on each problem specifically, therefore a careful analysis should be done for each particular
case. The time interval between the beginning of the simulation and the equilibrium state
is usually called the thermalization procedure. Only after the thermalization procedure
one should calculate physical properties of interest, either structural properties (e.g., radial
distribution function (RDF)) or dynamical properties (e.g., mean square displacement
(MSD) and velocity autocorrelation function (VACF)).

2.1.5 Control of Temperature

One of the concerns when one performs MD simulation is to bring the system to
the desired temperature as the system is in contact to a thermal reservoir. One of the
most known controlling method is based on the rescaling of the velocities (v and u).
The advantage of integration methods aforementioned is the possibility of adjusting the
velocities of the particles straightforwardly according to the nominal temperature T0 of
the thermal reservoir

v(t+ δt/2) =

√
T0

T (t)
v(t− δt/2) +

f(t)

m
δt, (2.38)

where T (t) is the temperature at time (or step) t, this property is calculated based on
the energy equipartition theorem, where each degree of freedom of the system contributes
with kBT/2 for the total energy. So, the instantaneous temperature is given by

T (t) =
N∑
i=1

miv
2
α,i(t)

NkB
, (2.39)

where vα,i is the α component of the velocity of i-th particle of a system with N particles.
In order to allow fluctuations of the kinetic energy, we can make the system to be

weakly coupled to the heat bath. For this, a further refinement of the velocity rescaling
approach has been proposed by Berendsen [51], at each time step, velocities are scaled by
a factor

χ =

(
1 +

δt

τ

(
T (t)

T0

− 1

))−1/2

, (2.40)

where δt is the time step, and τ is a constant called the “rise time” of the thermostat.
It describes the strength of the coupling of the system to a hypothetical heat bath. The
larger τ , the weaker the coupling. This method does not generate states in the canonical
ensemble, but it seems to be very useful for purposes of changing state and equilibrating
a system at the new temperature. A several methods was proposed to reproduce a NVT
ensemble, prominent examples are: Andersen thermostat [52], Nosé-Hoover thermostat
[53] and Langevin thermostat [54, 55]. The latter we will discuss in more details in the
following sections.
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2.1.6 Important Measured Quantities

� Pair correlation function

A measurement for the structure of matter is the radial pair distribution function g(r),
dependent only on the pair separation r for a translational invariant system of identical
particles. It gives the probability of finding a pair of particles a distance r apart, relative
to the probability expected for a completely random distribution for the same density.
We get the radial pair distribution function by the definition [8]

g(r) =
V

N2

〈∑
i

∑
j 6=i

δ(r − rij)

〉
, (2.41)

where V is volume, N is the number of particles, rij is the i and j particles separation,
and 〈...〉 stands for an average over the realizations. From the point of view of statistical
mechanics, where usually the number of degrees of freedom is large, the function represents
an important physical measure to characterize structural properties of molecular systems,
e.g., liquids, glasses and super-cooled liquids, etc. As rij = rji, which makes the Eq.
(2.41) to be reduced to

g(r) =
2V

N2

〈∑
i

∑
j<i

δ(r − rij)

〉
. (2.42)

Figure 2.4: Illustration of evaluation of the pair correlation function. (a) In the center
there is a reference particle (pink circle). The spheres around represent other particles
in the system. A centered ring is drawn as reference and it has radius r, relative to
the reference particle, and width ∆r. (b) As an example, we show the typical radial
distribution function for a LJ system in the liquid phase. Modified from Refs. [56, 57].
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As ρ = N/V (N/A), for 3D (2D), and considering it constant, we get to, after a both
sides integration

ρ

∫
g(r)dr =

2

N

∫ 〈∑
i

∑
j<i

δ(r − rij)

〉
= N − 1, (2.43)

which is the result of counting the number of remaining particles around a chosen particle
at the origin.

In terms of simulation, Eq. (2.42) is evaluated as a histogram in order to count the
number of particles in a given shell of radius ∆r, which is at a distance r from the reference
(origin) particle (see Fig. 2.4). For a 2D system, consider hn the number of pairs of atoms
(i, j) with the condition (n − 1)∆r ≤ rij < n∆r. By counting the pair of atoms in the
shell ∆r, one would get [8]

g(rn) =
hn

πrnρ∆r
, (2.44)

where rn = (n− 1/2)∆r and n is the index of the each bin of the histogram.

� Clustering properties

Cluster formation is a very important subject of self-assembled systems, because is
a real physical process and some models exhibit special properties to clusters. In MD
simulations, it is important to be able to identify conditions which particles belong to a
same cluster. Often it is used an energy criteria which considers two particles bonded
when there is a attraction interaction between two particles. Another alternative method
requires less computation effort based on the interparticle distance. The latter condition
considers two particles bonded, let us say i and j, if their separation rij < δc, where δc
is the critical separation for two particles to be considered bonded. The value of δc is
typically based on energy conditions.

There are basically some quantities that help us to analyze the clustering properties.
The so-called polymerization [58] evaluates the tendency of the system to form clusters
and it is defined by

Φ =

〈
Nc

N

〉
, (2.45)

where Nc is the number of clustered particles and N is the total number of particles. When
Φ = 1 every particle belongs to a cluster, not necessarily the same. For Φ = 0, in another
hand, it stands for a monomer phase. Another important quantity is the cluster size
distribution n(s) (see Fig. 2.5). It is an important tool to identify percolated structures
since right at the percolation threshold, the cluster size distribution of an infinite system
shows a power-law decay n(s) ∼ s−τ , where τ is the so-called Fisher exponent that assumes
specific values for characteristic systems close to percolation transition, i.e, τ ∝ −187/91

[59] for random percolated 2D structures.
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(a) (b)

Figure 2.5: (a) Cluster size distribution for packing fraction η = 0.01 (ratio of the occupied
area over the available area) at several temperatures; (b) Cluster size distribution close
to percolation (T = 0.078 and density ρ = 0.1). To minimize size effects, 40000 particles
have been simulated. The different straight lines show the theoretical predictions for
mean-field and 2d-percolation, as well as the best fitting slope of the numerical cluster
distribution. The cluster size predicted by the Flory–Stockmayer (FS) theory [60] is also
reported, but its range of validity is limited to only small clusters. ρ(s) stands for the
frequency of appearance of s-sized cluster. Extracted from Ref. [61].

� Percolation properties

Percolation is another important connectivity property defined as a geometrical transi-
tion, in which interacting units such as the particle in a fluid, the spins on a lattice, or the
nodes of a network spontaneously form system-spanning clusters termed the “percolated
phase” [62]. In contrast, the units are distributed homogeneously or form isolated clus-
ters of finite size in the non-percolated phase. More recent(experimental and theoretical)
research on continuous percolation often involves colloidal suspensions. One important
topic in this area concerns the percolation of rod-like colloids (see Fig. 2.6), From an
applicational point of view the underlying idea is that the percolated network leads to
lightweight materials with strongly enhanced mechanical stability and electrical (and/or
thermal) conductivity. Another main topic, which concerns particularly complex colloidal
mixtures [64, 65] and colloids with directional interactions [66, 67, 68], is the intimate re-
lation between percolation and the formation of a physical gel, which is a state in which
particles are connected via bonds of limited lifetime. It is now well established that such
colloidal gels, which are characterized through a very specific dynamic behavior, can form
at extremely low packing fractions. Note, however, that gelation is a phenomenon which
normally occurs for very strong coupling conditions, i.e., at temperatures far below those
related to the vapor-liquid critical point (if the latter exists at all).
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(b)(a)

Figure 2.6: (a) Percolation probability as a function of the volume fraction for different
aspect ratio (l) and dipole moment (m). (b) Example of a 3D-percolated cluster system
of nanorods. Extracted from Ref. [36].

Percolation on continuous systems was originally discussed as a phenomenon in the
context of flow through a porous media, however the statistical theory of percolation has
been used to understand the critical behavior of fluids. Percolation is defined according to
the conventional method when at least 50% of the sampled configurations in the simulation
trajectory contain a system-spanning cluster, i.e., the percolation probability is evaluated
by counting the number of appearances of a cluster which spans over the system in a such
way it is possible to make a continuum path through any sequence of bonds and any two
opposite edges that limit the system. Under these circumstances, the cluster is effectively
infinite when applying periodic boundary conditions. Typical percolating fluids exhibit a
single peak in the cluster distribution comparable to the system size and these states are
denoted as random percolated (see Fig. 2.7).

The spanning cluster probability depends on many factors such as the kind of perco-
lation (site or bond), type of lattice, boundary conditions, etc. In MD simulation, one
always deals with a finite lattice. Because of that, one way to check the infinite cluster
appearance is to check the largest clusters size. However, for the largest cluster size distri-
bution, the calculations will include all the configurations whether the lattice spans or not.
The largest cluster, in fact, enjoys a double role in sense that it may or may not happen
to be the spanning cluster. The probability of smaller clusters being the spanning one is
relatively much smaller. Even when the lattice is spanned, the largest cluster may or may
not be the spanning one. For finite and interacting systems, when transient bonds are
present, a very useful order parameter is the fraction of monomers in the largest cluster
[69, 70].
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Figure 2.7: Cluster size distribution for a short range attraction and long range repul-
sion system showing four possibles states. The dispersed fluid is mainly represented by
monomers. However, for systems when there are clusters with small or medium size we
have the clustered fluid. And for the percolated phases, in the percolation threshold the
N(s) will exhibit a power-law decay with a specific critical exponent related to the random
percolation prediction, but the cluster percolated phase is a distinctly different structural
state due to a different concentration and a preferred cluster size. Extracted from Ref.
[63].

2.2 Langevin Dynamics

The basic idea of Langevin Dynamics (LD) is to reproduce the dynamics of a particle
in suspension in a solvent, as a consequence, this particle will be subject to the Brownian
motion. When the solute particle moves towards any direction, it is expected that it
encounters more collisions pushing it back to the opposite direction of its flow. The
simplest treatment of Brownian motion is just to apply the Newton’s second law

mi
dvi
dt

= −ζvi + f i(t), (2.46)

where v is the velocity of the particle, ζ is the drag coefficient, that for spheres of radius R
suspended in a liquid of viscosity η assumes ζ = 6πRη. The last term is a stochastic force
that comes from the collisions of the solvent particles and the solute, and also depends
on the absolute temperature T acting as the heat bath coupling. One thing to keep in
mind is the characteristic time scale for the f(t) forces. The stochastic force is related
to the frequency of the collisions between the solvent and solute particles. So, f(t), in
general, fluctuates around a time scale on the order of 10−12 s [4], and this has to do
with how often such collisions occur. As a consequence, if we measure the autocorrelation
〈f(t) · f(t+ δt)〉 it will decay around on time scale of picoseconds. However, in another
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hand, taking a look at the non-stochastic terms, we can notice that there is a natural time
scale τ = m/ζ. For typical colloids suspended, e.g., in water τ is on the order of 10−7.
Therefore, what typically is done is that f(t) is approximated by a delta function [71].
In order to satisfy those dissipation-fluctuation assumptions, it is often assumed that the
stochastic force is Gaussian distributed and has the statistical properties:

〈f i(t)〉 = 0, (2.47)

〈f i(t)f j(t′)〉 = Gtδijδ(t− t′), (2.48)

where Gt is the translational fluctuation strength.
In the previous section we mentioned that the Berendsen thermostat does not repro-

duce the canonical ensemble, however, the most frequently used ensemble in statistical
mechanics is the canonical (NV T ) ensemble where the temperature of the system, rather
than its energy, is constant. A variety of methods for conducting MD simulations in
the canonical ensemble have been proposed over the years. An advantage of using LD
simulations is that this method itself reproduces the (NV T ) ensemble.

2.2.1 Langevin Equations for Rod-like particles

The drag coefficient is well-defined for spherical particles, as aforementioned ζ = 6πRη.
The point here is how we can define the drag coefficient present in the Langevin equations
for rod-like particles.

� The creeping flow equations

The expression for drag force comes from the assumptions of the Stokes flow, therefore
we must look into those assumptions for the rod-like case. The equation which rules such
a behavior is the Navier-Stokes’s

ρ
∂u(r, t)

∂t
+ ρu(r, t) · ∇u(r, t) = η0∇2u(r, t)−∇ρ(r, t) + f ext, (2.49)

where ρ is the density of the fluid, u is the flow velocity, η0 is the viscosity of the fluid
and f ext is the external forces acting on the fluid. We are considering here incompressible
fluids, such that ∇ · u(r, t) = 0. A typical fluid flow velocity is the velocity v of the
colloidal objects. The fluid flow velocity decreases from a value v, close to a Brownian
particle, to a much smaller value, over a distance of the order of a typical linear dimension
a of the particles (for rotating rods a is the length of the rod). Because of this, it is worth
to introduce the rescaled variables

u′ = u/v, r′ = r/a, t′ = t/(M/ζ), p′ =
a

η0v
p, f ′ext =

a2

η0v
f ext, (2.50)

with M the mass of the colloidal particle. Those variables transform Eq. (2.49) to

ρ
a2ζ

Mη0

∂u′

∂t′
+Reu′ · ∇′u′ = ∇′2u′ −∇′p′ + f ′ext. (2.51)
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The dimensionless number Re is the so-called Reynolds number. For a diffusive regime
the time scale is � M/ζ, then we can neglect the time derivative contribution due to
relaxation of the Brownian particle velocity as a result of friction with the solvent during
the time intervalM/ζ. In addition, for a typical situation in flows when the fluid velocities
are very slow compared to large values of the viscosities, we have Re� 1. So, Eq. (2.50)
is simplified to

∇p(r, t)− η0∇2u(r, t) = f ext(r). (2.52)

Together with the incompressibility condition (∇ · u(r, t) = 0) Eq. (2.52) is the creeping
flow equations [72]. They are also refereed to Stokes flow equations and it is related to the
fact that Reynolds number is small, which is the case when the typical fluid flow velocity
v is small. The velocity of the Brownian particle can be estimated from the equipartition
theorem 1

2
M 〈v2〉 = 3

2
kBT . For typical scales of colloidal particles already discussed in

the previous chapter, we find the Reynolds number on the order of 10−2 [73], justifying
the using of the creeping flow equations for colloidal particles, of which the inertial forces
are thus small in comparison to pressure and friction forces.

� The Oseen Tensor

As the force acts only at a single point r′ of the fluid, f ext can be described as

f ext(r) = f 0δ(r − r′), (2.53)

where f 0 =
∫
dr′f ext(r′) is the total force acting on the fluid. As the creeping flow

equations are linear, the velocity and pressure are proportional to f 0 and they are also
proportional to a tensor that connects a point r to r′

u(r) = T (r − r′) · f 0, (2.54)

p(r) = g(r − r′) · f 0. (2.55)

Thus

u(r) =

∫
dr′T (r − r′) · f ext(r′), (2.56)

p(r) =

∫
dr′g(r − r′) · f ext(r′). (2.57)

Replacing Eqs. (2.56) and (2.57) into the creeping flow equations, this leads to Green’s
functions equations

∇ · T (r) = 0, (2.58)

∇g(r)− η0∇2T (r) = Îδ(r), (2.59)

where Î is the (3× 3)-dimensional unit tensor. Solving the differential equations we end
up to

T (r) =
1

8πη0

1

r

[
Î +

rr

r2

]
, (2.60)

g(r) =
1

4π

r

r3
. (2.61)



2.2. LANGEVIN DYNAMICS 55

The Oseen tensors are the Green’s functions for the creeping flow equations and these will
help us to derive the drag coefficients for rod-like particles.

� Hydrodynamic Friction of a Single Peapod-Like Rod

As already mentioned, we use in this thesis a rod consisting of beads. In the present
section, the friction coefficient for long and thin rods will be derived. This approach makes
such a derivation more easily, by considering a rod to be made up of spherical beads with
a diameter D as illustrated in Fig. 2.8. The number of beads is given by nL/D − 1(with

L

D/2

Figure 2.8: The peapod-like rod representation and the definition of the vector R on the
surface of a bead. Modified from Ref. [73].

L the length of the rod). With n ranging from −n/2 to +n/2. The flow velocity around
a moving rod is given, using Eq. (2.56)

u(r) =

∮
∂V

dS′ T (r − r′) · f ext(r′), (2.62)

where the force f ext(r′) is the applying force per unit area that a surface element at r′ on
the fluid. As the relative velocities of the solvent particles with respect to the Brownian
particle is almost zero for creeping conditions, the velocity of the flow is equal to the
colloidal particle velocity at its very close vicinity. Therefore, we can make use of stick
boundaries conditions [74]

u(r) = vc + Ω× (r − rc), r ∈ ∂V , (2.63)

where vc and rc is the translational velocity and the position of the center of the rod,
respectively, and Ω is the angular velocity of the rod with respect to its center. The center
of the position of jth bead is denoted as rj = rc + jDû, û is the unit vector along the
long axis of the rod. Eq. (2.63) can be rewritten as

u(R+ rj) =

n
2∑

i=−n
2

∮
∂V0

dS′ T (R−R′ + rji) · f i(R′), (2.64)
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where R = r − rj, R′ = r′ − ri and R = D/2. By the stick boundary conditions, Eq.
(2.63) becomes

u(R+ rj) = vc + Ω× (R− jDû). (2.65)

The derivation of the friction coefficients are based on the assumption that the trans-
lational and rotational motion is a linear superposition of the results.

� Translational Friction

In this section, we are considering just the translational motion without shear flow,
Eq. (2.65) reduces to u(R+ rj) = vc. Such that

vc =

n
2∑

i=−n
2

∮
∂V0

dS′ T (R−R′ + rji) · f i(R′). (2.66)

We must do the integration (
∑n

2

j=−n
2

∮
∂V dS

) in both sides of Eq. (2.66) which yelds

vc =
1

πLD

n
2∑

j=−n
2

n
2∑

i=−n
2

∮
∂V0

dS

∮
∂V0

dS′ T (R−R′ + rji) · f i(R′). (2.67)

By Eq. (2.60) we have∮
∂V0

dS′ T (r −R′) =
D

4η0

{[
D

2r
+

1

3

(
D

2r

)3
]

Î +

[
D

2r
−
(
D

2r

)3
]

rr

r2

}
. (2.68)

We must analyze two cases, the first one, for i = j, the surface integrals in Eq. (2.67) are
reduced to ∮

∂V0

dS′ T (R−R′ + rji) =
D

3η0

Î. (2.69)

The second case is for i 6= j, then we must do a Taylor-expansion in the Oseen tensor

T(R−R + rji) = T(rij) + (R−R′) ·∇T(rij). (2.70)

Using Eqs. (2.67) and (2.69) and the leading order in L/D from Eq. (2.70), yields

vc ≈ −
1

3πη0L

n
2∑

i=−n
2

Fh
i −

D

L

 n
2∑

j=−n
2

n
2∑

i=−n
2
,i 6=j

T(rij)

 · Fh
i , (2.71)

where
∮
∂V 0 dS

′f i(R
′) = −Fh

i is the total force on bead i. For long rods, all forces Fh
i can

be take as equal since end-effects may be neglected, since the most of beads experiences
approximately the same force, therefore, the total force on the rod is Fh = L

D
Fh
i . After

some math calculations Eq. (2.71) is reduced to (see the detailed derivation in Ref. [73])

vc ≈ −
1

4πη0L
ln

(
L

D

)
[Î + ûû] · Fh. (2.72)
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We now can finally obtain the drag coefficient by inverting Eq. (2.72)

F h = −Γ · vc, with Γ =
4πη0L

ln(L/D)

[
Î − 1

2
ûû

]
. (2.73)

Notice that Γ is the drag coefficient and it is now a tensor. Also, the drag coefficient
for rods is no longer collinear with its velocity, i.e., it depends on the orientation of the
motion of the rod. When this is parallel to its orientation, the friction force on the rod
can be obtained by multiplying the force expression in Eq. (2.73) by ûû

F h
‖ = −ζ‖v‖, with ζ‖ =

2πη0L

ln(L/D)
. (2.74)

For the motion perpendicular to the rod axis, we multiply Eq. (2.73) by Î− ûû instead

F h
⊥ = −ζ⊥v⊥, with ζ⊥ =

4πη0L

ln(L/D)
, (2.75)

where ζ‖ and ζ⊥ are the parallel and perperdincular components of the drag coefficients.
In addition, F h = F h

‖ ûû + F h
⊥[Î − ûû], vc = v‖ûû + v⊥[Î − ûû] and Γ = ζ‖ûû +

ζ⊥[Î − ûû]. In terms of simulation, it is easier to represent the velocities and the forces
with respect to the parallel and perpendicular axis of the rods, in order to simulate the
effect of the drag force on such an anisotropic-shape particles.

� Rotational Friction

Once we have obtained the total force on each bead belonging to a rod, the derivation
of the rotational friction is straightforward. For the orientational case, the translation is
zero (vc = 0). Consider the torque on a rod

N =

n
2∑

i=−n
2

ri × F h
i , with ri = iDû and F h

i =
D

L
F h, (2.76)

thus

N = −D
3

L
ζ⊥[û× (Ω× û)]

n
2∑

i=−n
2

i2. (2.77)

Then, using
∑n/2

i=−n/2 ≈
n3

12
, for large n

N = −L
2

12
ζ⊥Ω, (2.78)

and therefore
N = −ζrΩ, with ζr =

πη0L
3

3 ln(L/D)
, (2.79)

where ζr is the drag coefficient for a rotating rod. That finishes the derivation of the drag
coefficients.
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Correction for small L/D

The derivation of the drag coefficients in the last subsections made use of the assump-
tion that the rods are very long. But it is possible to use such expressions for small
rods upon making corrections for each expression of ζ. The correction factors was first
obtained in Refs. [75, 76]

ζ‖ =
2πη0L

ln(L/D) + δ⊥
, ζ⊥ =

4πη0L

ln(L/D) + δ⊥
, ζr =

πη0L
3

3 ln(L/D) + δr
, (2.80)

where

δ‖ = −0.207 +
0.987

L/D
− 0.133

(L/D)2
,

δ⊥ = 0.839 +
0.185

L/D
+

0.233

(L/D)2
,

δr = −0.622 +
0.917

L/D
− 0.050

(L/D)2
. (2.81)

In Fig. 2.9, we illustrate the perpendicular component of the drag coefficient before and
after applying the correction factors as a function of small values of aspect ratio.

Figure 2.9: Non-corrected and corrected perpendicular component of the drag coefficient
as a function of the aspect ratio.
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2.2.2 Fluctuation Strengths

The Langevin equations for linear rod-like particles, as presented in the last sections,
are

m
dv

dt
= −Γ · v + f(t), (2.82)

I
d2Ω

dt
= −ζrΩ + T(t). (2.83)

As mentioned in the previous sections, f(t) is the fluctuating force. Similarly, T (t) is the
fluctuating torque. As the fluctuating force [see Eqs. (2.47), and (2.48)], the fluctuating
torque has similar statistical properties as

〈T(t)〉 = 0, (2.84)

〈T(t)T(t′)〉 = Grδ(t− t′). (2.85)

Similarly, as Gt is the translational fluctuation strength in Eq. (2.48), Gr is the rotational
fluctuation strength. We can derive Gt easily by splitting f(t) into the parallel and
perpendicular components. Therefore the statistical properties of each components are

〈f ‖(t)〉 = 0, (2.86)

〈f⊥(t)〉 = 0, (2.87)

〈f ‖(t) · f ‖(t′)〉 = G‖δ(t− t′), (2.88)

〈f⊥(t) · f⊥(t′)〉 = G⊥δ(t− t′), (2.89)

where f ‖(t) = f‖(t)ûû and f⊥(t) = f⊥(t)(Î− ûû).
The general solutions for Eq. (2.82), for both components of v are

v‖(t) = v‖(0)e−
ζ‖
m
t +

1

m

∫ t

0

e−
ζ‖
m

(t−t′f‖(t
′)dt′, (2.90)

v⊥(t) = v⊥(0) + e−
ζ⊥
m
t +

1

m

∫ t

0

e−
ζ⊥
m

(t−t′f⊥(t′)dt′. (2.91)

Squaring, Eqs. (2.90) and (2.91) we have

v‖(t)
2 = v‖(0)2e−

2ζ‖
m
t +

2v(0)

m
e−

2ζ‖
m
t

∫ t

0

e−
ζ‖
m

(t−t′)f‖(t
′)dt′ +

+
1

m2

∫ t

0

e−
ζ‖
m

(t−t′)f‖(t
′)dt′

∫ t

0

e−
ζ‖
m

(t−t′′)T (t′′)dt′′, (2.92)

v⊥(t)2 = v⊥(0)2e−
2ζ⊥
m

t +
2v(0)

m
e−

2ζ⊥
m

t

∫ t

0

e−
ζ⊥
m

(t−t′)f⊥(t′)dt′ +

+
1

m2

∫ t

0

e−
ζ⊥
m

(t−t′)f⊥(t′)dt′
∫ t

0

e−
ζ⊥
m

(t−t′′)f⊥(t′′)dt′′. (2.93)
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Taking the average limt→∞ 〈. . .〉, and using Eqs. (2.88) and (2.87)

lim
t→∞

〈
v(0)2e−2 ζ

m
t
〉

= 0, (2.94)

lim
t→∞

〈
2e−2 ζ

m
tv(0)

∫ t

0

e−
ζ⊥
m

(t−t′)f(t′)dt′
〉

= 0, since 〈f(t)〉 = 0. (2.95)

Referring v, ζ and f as general velocities, drag coefficient and fluctuating force, respec-
tively in Eqs. (2.92) and (2.93)

〈
v2
〉

= lim
t→∞

1

m2

∫ t

0

∫ t

0

e−
ζ
m

(t−t′)e−
ζ
m

(t−t′) 〈f(t′)f(t′′)〉 dt′dt′′, (2.96)

〈
v2
〉

= lim
t→∞

1

m2

∫ t

0

∫ t

0

e−
ζ
m

(t−t′)e−
ζ
m

(t−t′)Gδ(t′ − t′′)dt′dt′′. (2.97)

Using Eqs. (2.86) and (2.87), we have

〈
v2
〉

= lim
t→∞

1

m2

∫ t

0

e
−2ζ
m

(t−t′)Gdt′, (2.98)〈
v2
〉

=
G

2mζ
. (2.99)

By the equipartition theory, for a two-dimensional rods system, we have that〈
v2
‖
〉

=
kBT

m
, (2.100)〈

v2
⊥
〉

=
kBT

m
. (2.101)

and finally

G‖ = 2kBTζ‖, (2.102)

G⊥ = 2kBTζ⊥. (2.103)

The derivation of the rotational fluctuation strength is similar to it was presented for
the translational case. Using the fact that 〈Ω2〉 = kBT/I, we get

Gr = 2kBTζr. (2.104)

Once the fluctuation strengths is obtained, we can rewrite the Langevin equations,
replacing f ‖(t) =

√
2kBTζ‖/δtξ̂‖(t) and f⊥(t) =

√
2kBTζ⊥/δtξ̂⊥(t) [77, 78], where ξ̂‖(t)

and ξ̂⊥(t) are a dimensionless stationary Gaussian process with zero mean and unit vari-
ance [79].





Part III

Results





3
Self-assembly of rigid magnetic rods consisting of

single dipolar beads in two dimensions

MD simulations are used to investigate the structural properties of a two-dimensional
ensemble of magnetic rods, which are modelled as aligned single dipolar beads. A diversity
of self-assembled configurations that we characterized as: (1) clusters, (2) percolated
and (3) ordered structures, are identified and the structural properties of those different
phases are investigated in detail. By increasing the aspect ratio of the magnetic rods,
we show that the percolation transition is suppressed due to the decreased mobility in
two dimensions. Such a behavior is opposite to the one observed previously in three
dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual
non-monotonic behavior of the nematic order is shown.

3.1 Motivation

Recent years has witnessed a growing interest in the self assembly of magnetic nanopar-
ticles (MN) due to its wide range of applications, including magnetic fluids [15], biomedicine
[16], magnetic resonance imaging (MRI) [17], data storage [18], magnetic filaments [80,
81, 82], among others. Basically, MN are particles with a magnetic dipole moment, which
are regarded as particles composed of a magnetic mono-domain having a typical size
from 15 to 150 nm [19]. Many efforts are currently being devoted to the synthesis and
characterization of magnetic particles with anisotropic shape [83, 84]. Magnetic rod-like
particles are often used as microrheology probes to enhance the visualization of their vis-
coelastic properties [22, 23]. Also, magnetic rods can be applied: (i) as components in
micromechanical units [24, 25, 26]; (ii) as microscale propellers [27, 28, 29]. In addition to
aforementioned applications, particles with anisotropic shape show distinguished proper-
ties when compared to their spherical counterparts, namely, magnetic birefringence [30]
and thermal conductivity [31].

In this work we present a numerical study of the self-assembly of a two- dimensional
system of stiff magnetic rods, composed of single dipolar beads linked one by one through
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internal head-to-tail alignment. A similar system was used earlier in experiment [37] and
simulations [36]. Our motivation to explore in more detail the two-dimensional (2D)

situation is driven by the fact that many experiments involving assemblies of colloids are
actually done at surfaces and/or thin films [85, 86, 87, 88, 89].

Our model is characterized by permanently linked dipolar beads so that the net in-
teraction is given by the superposition of dipolar fields of single dipole beads. This opens
the possibility of new kinds of assembled clusters distinct from rod-like particles with a
single longitudinal (or transversal) dipole moment, which was intensively studied both by
theory and simulations [90, 91].

We also study the connectivity properties of the present system. The percolation
behavior is of great relevance in highly connected materials due to the possibility of
enhancing the electrical and thermal conductivity [94, 37]. In general, percolation in
polymers plays a fundamental role in properties related to conductivity, because in many
cases percolation can be made responsible for electrical switching properties. A goal in
studying the connectivity properties is to explore the conditions under which the perco-
lation transition is enhanced. By using elongated particles, it was already shown that
an increase of the aspect ratio decreases the percolation threshold [95, 36]. The latter
has also been realized by depletion effects [96] and by the application of an external-field
[97, 36]. In the present work, we discuss the connectivity properties of magnetic rods in a
2D system, and show that the percolation transition with respect to the density behaves
opposite as compared to the 3D case.

The last aim of this study is to analyze the appearance of orientational ordering. It is
already known that elongated particles present nematic and smetic transitions driven by
entropic effects so that they are isotropic for low densities and nematic for high densities
[98]. In a recent study of a 3D system of magnetic nanorods (MNR), similar to the ones
studied in this work, an improvement of the stability of the nematic phase was found for
sufficiently long MNRs as a consequence of the interaction resulting from the arrangement
of the dipoles along each MNR [36]. In our 2D system we find a different scenario, where
a non-monotonic behavior of the nematic order parameter is observed for sufficiently long
MNRs, as a consequence of the appearance of magnetic bulk domains.

This chapter is organized as follows: our model system is presented in Sec. 3.2. The
results for the different cluster configurations are presented in Sec. 3.3. The connectivity
properties are discussed in Sec. 3.4 and the ordered configurations in Sec. 3.5. Our
conclusions are given in Sec. 3.6.

3.2 Model

MD simulations were used to investigate two-dimensional systems consisting of 2520

up to 2820 identical soft beads of diameter σ with a point-like magnetic dipole at their
center. A stiff rod is formed by those soft beads, with their positions fixed with respect
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to the center of mass of the rod. The orientation of the dipoles is always aligned along
the rod, as illustrated in Fig. 3.1. The length of the rod is defined as lσ, where l is the
number of beads, which is also its aspect ratio. To model the dipolar particles we use a
dipolar soft sphere (DSS) potential [9], consisting of the repulsive part of the Lennard-
Jones potential urep and a point-like dipole-dipole interaction part uD. It was found that
this potential does not induce a vapor-liquid phase transition as, e.g., the Stockmayer
potential does [9, 10]. The interaction energy between two rods a and b is the sum of the
pair interactions between their respective dipolar spheres (DS)

Ua,b(Ra,b, θa, θb) =
∑
j 6=m

uj,m, (3.1)

uj,m = urep(ra,bjm) + uD(ra,bjm,µ
a
j ,µ

b
m), (3.2)

where

urep = 4ε

(
σ

rjm

)12

, (3.3)

uD =
µj · µm
r3
jm

−
3(µj · rjm)(µm · rjm)

r5
jm

, (3.4)

with Ra,b the vector joining the center of rods a and b with orientations θa and θb. The
vector ra,bjm connects the center of bead m of rod a with respect to the center of bead j of
rod b (Fig. 3.1). The force between two beads is given by

fjm = −∇ujm. (3.5)

The torque on bead m, (see the Appendix A) is

Nm = µm ×
∑
m 6=j

Bjm + dm ×
∑
m 6=j

fjm, (3.6)

where dm is the vector joining the center of the rod with the center of beadm, as illustrated
in Fig. 3.1 andBjm is the magnetic field generated by the dipole moment µj at the position
of the dipole µm, which is given by

Bjm =
3(µm · rjm)rjm

r5
jm

− µm
r3
jm

. (3.7)

The summations in Eq. (3.6) are considered only for dipoles belonging to distinct rods.
The orientation of the rods is given by a unitary vector s given by s = dm/|dm|. We solve
the translational and rotational equations of motion using a leapfrog algorithm:

rα(t+ δt) = rα(t) + vα(t+ δt/2)δt, (3.8)

sα(t+ δt) = sα(t) + uα(t+ δt/2)δt. (3.9)

The sub-index α refers to the α-component of the vectors r, v, s, and u, with u = ω× s,
where ω is the angular velocity. We introduce the reduced units t∗ = t/

√
ε−1mσ2 for time,
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Figure 3.1: Schematic illustration of the interaction between two magnetic rods with
indication of the important parameters of the pair interaction potential.

where m is the mass of the rod, U∗ = U/kBT is for energy, where kB is the Boltzmann
constant, µ∗ = µ/

√
kBTσ3 is for dipole moment, and, finally, r∗ = r/σ is for position. The

ratio of thermal energy to soft-sphere repulsion constant is chosen as kBT/ε = 0.1, which
is also our reduced unit of temperature T ∗ = TkB/ε. In order to fix the temperature,
we employ the Berendsen thermostat [51, 99] with a time constant τ = 2δt, where the
time step was taken as δt = 0.005− 0.01. Periodic boundary conditions are taken in both
spatial directions. In the 2D case, the dipolar pair interaction falls off fast (r−3) and
therefore it is sufficient to take the simulation box sufficiently large such that no special
long-range summation techniques [41] has to be used as in the case for e.g. Coulomb 1/r

interactions. We define the packing fraction as η = ρ∗lπ/4, where ρ∗ is the dimensionless
density ρ∗ = ρσ2.

To check the equilibration in our simulations we follow the total energy as a function of
time. In equilibrium, the total energy fluctuates around an average value. For very dilute
systems (η < 0.2) the equilibrium is reached after 1× 106 time steps (1× 104

√
ε−1mσ2),

while for η ≥ 0.2 we need about 5 × 105 − 1 × 106 time steps (2.5 × 103
√
ε−1mσ2 − 5 ×

103
√
ε−1mσ2). Time averages over energies and other quantities are taken over 1×106 time

steps after equilibrium is reached. Unless stated, we consider σ∗ = 1 and µ∗2 = 10, which
means that each bead has the same magnitude of dipole moment. Such a value is justified
by the fact that we aim to investigate the weak coupling regime, in order to emphasize
the geometrical effects due to the increase of the aspect ratio of the particles. Common
experimental values of µ∗2 at room temperature ranges in the interval 1 ≤ µ∗2 ≤ 100.
For example, in experiments using iron nanoparticles [37], it is found that the saturation
magnetization Ms(Fe) = 1700 kA/m and the radius of the particles is r ≈ 5 nm. In this
case, we estimate µ∗ ≈ 4.4 at room temperature (T ≈ 293 K). Also, in experiments [101]
carried out using aqueous dispersions of superparamagnetic microspheres of ferrite grains
(Estapor (R) from Merck - reference M1- 030/40) for r ≈ 205 nm and Ms ≈ 6 × 104

A/m, the magnetization (M) of the particles is completely reversible and adjustable by
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an external magnetic field. If we consider T = 293 K and M ≈ 22, 6% of Ms on that
system, we obtain µ∗ ≈ 3.16 (∼

√
10).

The minimum energy configuration was chosen among the ones obtained by running
simulations several times (10− 30), each with distinct initial conditions (coordinates and
momenta).

3.3 Cluster Formation

We start by presenting the dependence of the DSS pair interaction potential on the
angle and separation between the rods. The study of the pair interaction potential is
interesting to understand the nature of the resulting many-body interaction and to help
us to set the values of the parameters useful to analyze the results. The dependence of the
DSS pair interaction potential as a function of the angle φ between rods (with aspect ratio
l = 4) is presented in Fig. 3.2(a) for different separation δ. The separation δ is defined
as the shortest distance between two rods for a given angle [see inset in Fig. 3.2(a)]. We
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Figure 3.2: The pair interaction energy (a) as a function of the angle φ for different inter-
rod separation δ; (b) as a function of the interparticle distance for φ = π, and (c) for
φ = 0. In (b) and (c) the different colors represent different values of the aspect ratio,
indicated in (b).

choose δ = 0.4σ as the separation distance at which we consider two rods as being bonded.
In Fig. 3.2(a) the curve for δ = 0.4σ exhibits a local minimum for φ = 0 and a global
minimum at φ = π, justifying our choice for the critical value of δ. The results shown in
Fig. 3.2 are for l = 4, but the same critical distance was taken for all values of l considered
in this study, since such a behavior of the interaction potential remains for different l
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Figure 3.3: The polymerization as a function of the packing fraction η for different aspect
ratios.

values. The dependence of the pair interaction potential with respect to the separation
between two rods for different aspect ratio is shown in Fig. 3.2(b) for φ = π (parallel
head-to-tail alignment) and in Fig. 3.2(c) for φ = 0 (side-by-side dipoles with opposite
orientation). In both cases, the attraction for low separation increases with increasing
aspect ratio. Note that the parallel head-to-tail assembly (φ = π) is energetically more
favorable for the formation of chains, for every l, as found in ferrofluids in the absence of
external magnetic fields, both in simulations [102, 103, 104] and in experiment [105].

The attraction between magnetic rods becomes stronger for larger l, suggesting that,
in the many-body case, the formation of clusters is facilitated as l increases. To show if
this is indeed the case, we analyze the degree of polymerization [58], defined as:

Φ =

〈
Nc

N

〉
, (3.10)

where Nc is the number of clustered rods and N is the total number of rods.
In Fig. 3.3 the polymerization Φ as a function of η is presented for different aspect

ratio. In general 0.92 < Φ < 1, which is consistent with a previous molecular dynamics
study of dipole-like colloids [106] for T ∗ = 0.1, where Φ increases with increasing η.
For l = 1, the behavior stands out from the other l values, which is a consequence of
the increase of the interparticle attraction with increasing l for low packing fraction as
shown in Figs. 3.2(b) and 3.2(c). For η ≥ 0.4, the degree of polymerization presents the
opposite dependence with respect to l, i.e., Φ decreases with increasing l. Since in highly
dense systems, the larger aspect ratio of the rods introduces strong depletion interaction
restricting the head-to-tail arrangements of the rods. We discuss such a behavior in more
detail in the next section.
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Figure 3.4: Some representative equilibrium configurations for T ∗ = 0.1. Each color
represents a different size of cluster. (d) and (e) Percolated systems. (a) η = 0.2, l = 1;
(b) η = 0.2, l = 3; (c) η = 0.2, l = 5; (d) η = 0.4, l = 1; (e) η = 0.4, l = 3; (f) η = 0.4,
l = 5.

Some representative equilibrium configurations are presented in Fig. 3.4. The head-
to-tail tendency is present in all configurations. For low packing fraction the chains can
form rings, which are not observed for l = 5 due to geometrical reasons. In the large
packing fraction regime (η ≥ 0.4) the side-by-side arrangement comes into play.

We analyze the structure of the system by computing the pair correlation function [8]:

g(r) =

〈∑
a

∑N
b 6=a δ(r −Rab)

〉
2Nπrρ∗

, (3.11)

where Rab is the separation between the center of the rods a and b (see Fig. 3.1). As
shown in Fig. 3.5(a), for low packing fraction, the position of the multiple peaks are
related to the length of the rod for all l. This is the result of the head-to-tail alignment of
neighboring rods. For a higher packing fraction (η = 0.4) intermediate peaks are observed
[Fig. 3.5(b)]. For example, for l = 3, besides peaks at multiples of 3σ, there is a peak at
r ≈ 1.8σ. For l = 5, there are peaks at r ≈ 1.8σ and r ≈ 3.8σ. These intermediate peaks
are due to the side-by-side configuration of neighboring rods, either parallel, antiparallel,
or both.
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Figure 3.5: The pair correlation function for different aspect ratio and for (a) η = 0.1 and
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In order to better understand the microstructure of the clusters, we calculate the angle
correlation f(θ) among the first neighboring rods, defined as:

f(θ) =
1

A

〈∑
a

N∑
b 6=a

δ(θ − θab)

〉
for rij ≤ δc, (3.12)

where θab = θa − θb (see Fig. 3.1), rij = |ri − rj| is the separation between dipole i and
dipole j, and A is the normalization constant, defined as A =

∫ π
0
f(θ)dθ.

The function f(θ), Eq. (3.12), calculated for rods with distinct lengths and for different
packing fractions is presented in Fig. 3.6. The rods are mostly connected to each other
along the same direction, i.e., f(θ) is more pronounced around θ/π = 0 and θ/π = 1. The
former trend reflects the head-to-tail or the parallel alignment, while the latter trend is
related to the antiparallel arrangement. The larger the packing fraction the larger f(θ) is
around θ/π = 1. The angle correlation for θ = π as a function of the packing fraction η
is shown in the inset of Fig. 3.6. As expected, the frequency of antiparalell arrangement
increases with increasing η. The η dependence of f(θ) is qualitatively the same for distinct
aspect ratios. The case θ = 0 was not considered in the insets because it represents two
kinds of arrangements, the parallel side-by-side and the parallel head-to-tail. In the next
section, the side-by-side arrangement is discussed in more detail.
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Figure 3.6: The angle correlation between the nearest neighboring particles for: (a) l = 5,
(b) l = 3, (c) l = 1; and different values of η. Subsequent curves are shifted by 0.01 along
the y axis in order to accentuate the small differences. The angle correlation for θ = π as
a function of the packing fraction η is presented in the inset of each figure.

3.4 Connectivity properties

In this section we examine the connectivity properties of the self-assembled structures
by studying the percolation transition, which is marked by the formation of an infinite
cluster spanning over the system. Configurations are percolated when, accounting for
periodic boundary conditions, one of the cluster forms a percolating path [62], i.e., the
cluster is connected through the opposite borders of the simulation box. For systems with
transient bonds the percolation transition is defined in the thermodynamic limit, where
the average cluster size diverges [107]. For systems with a finite size of computational
unit cell, the fraction of monomers in the largest cluster Smax can be taken as the order
parameter [69, 70], namely:

Smax =

〈
Nlarg

N

〉
, (3.13)

where Nlarg is the number of rods belonging to the largest cluster. For finite size systems,
the percolation transition is well characterized when Smax = 0.5 [70]. Here, we evaluate
Smax as a function of the packing fraction. Such an order parameter was considered in the
study of the gelation transition [108, 69], which is related to the connectivity properties of
the system. It has already been reported that 3D systems with elongated particles exhibit
a percolation transition for lower density when their aspect ratio increases [95, 36].

In Fig. 3.7 we show the average size of the largest cluster (Smax) as a function of the
packing fraction for l = 1, l = 3 and l = 5. Smax can be interpreted as the probability
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Figure 3.7: The average fraction of monomers in the largest cluster that is present in
the ground state configuration as a function of packing fraction for different aspect ratio.
The horizontal dashed line at 0.5 represents the percolation threshold. The results of the
simulation for twice the number of particles in the computational unit cell is represented
by symbols.

that one monomer belongs to the largest cluster. Notice that, the percolation transition
is shifted to larger packing fraction with increasing l, which is opposite to what is found
in 3D systems of elongated magnetic rods [36].

In order to better understand these results, we show in Fig. 3.8 the angle correla-
tion [see Eq. (12)] excluding the parallel head-to-tail alignment, so that θ = 0 (θ = π)
means parallel (antiparallel) arrangement of the bonded side-by-side rods. For low packing
fraction (η = 0.1), a large diversity of possible alignments beyond the side-by-side arrange-
ments are found [e.g., see also Fig. 3.4(b)]. However, a higher probability for side-by-side
arrangement is found for larger η and larger l. For l = 5, the possible non-head-to-tail ar-
rangements are mainly side-by-side arrangements, either parallel or antiparallel (see inset
of Fig. 3.8). Note from Figs. 3.2(b)-(c) that the attractive well is wider and shallower
in the antiparallel case (see Fig. 3.2(c)), which allows thermal fluctuations to break the
clusters more easily, and make the largest cluster more unstable. In addition, the larger
the aspect ratio, the harder it is for the rods to form large clusters in a head-to-tail ar-
rangement. Since the percolated cluster is essentially characterized by head-to-tail bonds,
such a condition is more difficult to realize for large l. As a consequence, the percolation
transition is shifted to larger η when l increases. Although not shown, we find that the
head-to-tail arrangement is also more stable than a parallel side-by-side arrangement.

Clusters that extend across the computational unit cell appear in Figs. 3.4(d) and
3.4(e). Note that the largest cluster almost extends over the whole system. In the head-
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to-tail alignment, the rods form chains, which are, in some cases, curved or circular paths.
Now we study the dependence of the cluster size distribution n(s) on the aspect ratio

of the magnetic rods. In Fig. 3.9 we present the average cluster size distribution for
η = 0.4. In general, n(s) decreases with increasing cluster size. Close to percolation
n(s) develops a power-law dependence with exponent τ ' −2.05, which is related to the
random percolation prediction made for a 2D system (τ = −187/91 = −2.055) [59] in the
thermodynamic limit. Due to the finite size of the system considered in the simulations,
percolated fluids exhibit a single peak for large s, comparable to the system size, and
these states are denoted as random percolated [109, 63]. The n(s) curves also confirm
that the percolation transition for the system with larger aspect ratio takes place for larger
η. The increase of the aspect ratio of the rods results in a stronger interaction between
rods due to the addition of soft beads. Note that the case with l = 5 and µ∗2 = 10 is not
percolated, while for l = 1 and µ∗2 = 10 it is percolated (Fig. 3.9). Each bead contributes
with µ∗ =

√
10, to the net dipole moment of the rod, in order that, for l = 5 the net dipole

moment is µ∗net = 5
√

10, or µ∗2net = 250. With these numbers (l = 1, µ∗ = 10 - percolated,
and l = 5, µ∗ = 250− not percolated) it is not clear whether the stronger interaction or
the larger aspect ratio of the rods (or both effects) is relevant to prevent the formation of
the percolated configuration. To check the importance of the interaction between rods in
driving the percolation transition, we study the case in which the rods have aspect ratio
l = 1 and µ∗2 = 250, for packing fraction η = 0.4, which is shown as inset in Fig. 3.9. Our
findings indicate that, although the dipolar nature of the interaction is fundamental to
the results found in the present study, since the percolation threshold for non-interacting
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Figure 3.11: (a) The polarization and (b) the nematic order parameter for different aspect
ratios as a function of the packing fraction. The orientations of some representative
configurations are depicted in the right figures for T ∗ = 0.1 and for l = 1 with (c) η = 0.1,
(d) η = 0.4, (e) η = 0.45 and for l = 2 with (f) η = 0.4, (h) η = 0.45 and for l = 5 with
(i) η = 0.1, (j) η = 0.4; (l) η = 0.45. (g) The colors indicate the orientation of the dipoles
in plane.

rigid rods in a two dimensional system decreases with increasing aspect ratio [110, 111],
the geometric effect (aspect ratio and 2D confinement) is the determining factor that rules
the connectivity behavior of the system. Another useful quantity to obtain information
about percolation is the pair connectedness function gconn(r), which is defined as the
conditional probability of finding a particle at a distance r from a particle located at the
origin, connected via a sequence of bonds, i.e., within the same cluster [112]. In the limit
when the whole system forms a single cluster, the pair connectedness function matches
the pair correlation function [Eq. (3.11)].

In Fig. 3.10 we show gconn(r) for different aspect ratios and for packing fraction
η = 0.4. For an infinite-size cluster, gconn(r) becomes different from zero in the limit
r →∞. From what is presented in Figs. 3.7 and 3.9, percolation is suppressed when we
increase the aspect ratio of the rods, so that for packing fraction η = 0.4 the l = 1 and
l = 3 cases are percolated, while on the other hand, the l = 5 case is not. We see that
such a behavior is also clearly reflected in gconn(r). The results presented in this section
indicates that the dependence of the percolation transition on the packing fraction is
mainly ruled by geometric effects.
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3.5 Orientational Ordering

In this section we investigate the appearance of orientational order. 3D suspensions of
passive rodlike particles in thermal equilibrium were found to be isotropic for low densities
and nematic for high densities [98]. Here we investigate the occurrence of liquid-crystalline
ordering in 2D by analyzing the ferromagnetic order parameter G1, i.e., the polarization:

G1 =

〈
1

N

∣∣∣∣∣
N∑
i

µ̂ · d̂

∣∣∣∣∣
〉
, (3.14)

where N is the number of rods, µ̂ = µ/|µ|, and d̂ is the unit eigenvector related to the
largest eigenvalue (G2) of the following matrix:

Qkf =
1

2N

N∑
i

(3µ̂ikµ̂
i
f − δkf ), (3.15)

where i refers to particle i and the indexes k and f denote the cartesian components of
the orientation vector. G2 is also referred to as the orientational order parameter, i.e.,
the nematic order parameter [41]. As shown in Fig. 3.11(a), the polarization is negligible
for any l, indicating that no ferromagnetic ordering is present. On the other hand, Fig.
3.11(b) indicates that an orientational order of the rod axes is present. As expected, an
increase of the aspect ratio shifts the increase of G2 towards lower packing fraction. In
the case of a single dipole (l = 1) we observe a rather distinct isotropic-nematic transition
as compared to the l 6= 1 cases. These results are consistent with the findings of Alvarez
et al.[36], in the sense that a larger aspect ratio increases the stability of the nematic
phase. However, we also find a non-monotonic behavior of the orientational ordering for
high packing fraction due to the presence of magnetic bulk domains, which present local
ferromagnetic order. Monte Carlo simulations of a corresponding 2D systems revealed
frustrated structures characterized by large domains of local ferroelectric order, but no
long-range order [113], which are consistent with the present study. In a 2D system
at finite temperature, the nematic and smetic transition is not observed for long-range
interaction [114, 115, 116, 117]. On the other hand, the magnetic dipolar interaction
in 2D is short-range, in order that it is possible to observe such an isotropic-nematic
transition [118, 119]. In Figs. 3.11(c-k) it is possible to observe the orientation of the
rods for different configurations. In Fig. 3.11(e) a local hexagonal-order can be seen as a
consequence of the fact that for low temperature and sufficiently high density the dipole-
like colloids form crystalline structures (positional ordering). Such a local-hexagonal order
of the corresponding 2D system at T ∗ = 0.1 was recently reported by Schmidle et al. [106].
An interesting lane-like configuration is shown in Fig. 3.11(d). Previously, a similar lane-
formation for a binary mixture of particles driven against each other by an external field
was predicted [120, 121]. The lane formation is an instability where, for strong enough
driving forces, alike particles are driven to move behind each other in order to avoid
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collisions with oppositely driven particles. Similar structure was also reported for self-
propelled particles [122, 118, 123]. In the present study, the lane-formation appears in
a mono dispersive system as a nematic and an intermediate isotropic-hexagonal ordering
transition of circular (l = 1) particles provided by the magnetic interaction, which makes
particles in the different lanes distinct due to the opposite orientation of their dipoles.

3.6 Conclusions

In summary, we investigated a 2D system consisting of magnetic rods using MD sim-
ulations. Each rod was composed of soft beads having a central point-like dipole which
interact via a DSS potential. This model was motivated by recent experimental [37] and
theoretical [36] studies. Structural properties were investigated with particular attention
to the dependence on the aspect ratio and the packing fraction. We considered aspect
ratios ranging from l = 1 to l = 5.

The head-to-tail assembly was identified as the most energetically favorable for any
aspect ratio. Such a configuration favors the formation of chain segments. However, the
increase of the packing fraction was fundamental to observe other kinds of alignment as e.g.
parallel and antiparallel arrangements of the dipoles. Given the preference of head-to-tail
configurations and thus chain formation, we paid special attention to the appearance of
a cluster extending over the whole system for sufficient large packing fraction (percolated
cluster). Nevertheless, the side-by-side arrangement and the two-dimensional confinement
suppresses the percolation transition for higher aspect ratio. Such a behavior is opposite
to what was observed in 3D [95, 36]. This result should also be contrasted to an earlier
study of a non-magnetic filament network system of rods and crosslinkers in which the
percolation transition was independent of the filament length [70].

The transition to the isotropic-nematic phase was facilitated by the increase of the
aspect ratio of the rods. However, the nematic behavior did not exhibit any monotonic
behavior with respect to the packing fraction due to the presence of magnetic bulk domains
at large η-values, characterized by local ferromagnetic order. Specifically, for l = 1, the
nematic behavior in the bulk domain was followed by hexagonal-order which is expected
in the limit of high density and low temperature.

The results shown in this work were obtained for low temperature (T ∗ = 0.1). For tem-
peratures one order of magnitude smaller (higher) than the one considered here, T ∗ = 0.1,
the percolation transition occurs at lower (higher) values of the packing fraction, as ob-
served in Ref. [106]. For sufficiently high temperatures the clusters are destroyed, sup-
pressing the percolation transition. A more detailed systematic study of the temperature
dependence of the structural properties of the present study is left to future work.



4
Clustering and percolation properties of magnetic

peapod-like rods with tunable directional interaction

Based on extensive Langevin Dynamics simulations we investigate the structural prop-
erties of a two-dimensional ensemble of magnetic rods with a peapod-like morphology, i.e,
rods consisting of aligned single dipolar beads. Self-assembled configurations are studied
for different directions of the dipole with respect to the rod axis. We found that with
increasing misalignment of the dipole from the rod axis, the smaller the packing fraction
at which the percolation transition is found. For the same density, the system exhibits
different aggregation states for different misalignment. We also study the stability of the
percolated structures with respect to temperature, which is found to be affected by the
microstructure of the assembly of rods.

4.1 Introduction

Many efforts are currently devoted to the search of new functionalized particles in order
to satisfy the constant need for materials with different properties. Recent advances in
particle synthesis has resulted in a rapid growth of this field of material science. Colloids
with directional interactions are promising candidates [124, 125, 126]. By tuning the
direction, the self-assembling process can be controlled leading to the emergence of specific
structures. A paradigm example are dipolar colloids whose interactions are governed by
permanent or field-induced, magnetic or electric dipole moments, as well as particles with
more complex multipolar interactions.

Nanoparticles (NP) with a magnetic mono-domain (MN), are a typical example with
a wide range of applications, including magnetic fluids [15], biomedicine [16], Magnetic
Resonance Imaging (MRI) [17], data storage [18], among others. Currently growing at-
tention is being paid to magnetic particles with anisotropic shape, due to their more
complex properties when compared to those with spherical shape, as for example mag-
netic birefringence [127] and thermal conductivity [31]. Beyond anisotropy in the shape
of the particles, the same attention was also addressed to cases where the anisotropy is
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in the location of the dipole with respect to the center of symmetry of the particle. In re-
cent theoretical works the structure of fluids containing spherical particles with embedded
off-centered magnetic dipoles [128, 129] was investigated.

Beyond the nature of the interaction itself, the morphology of the NP can be used
as a controlling parameter to functionalize the MN through the interaction direction, i.e.
by tuning the dipole moment’s direction of a peapod-like rigid rod. This is experimen-
tally realised through the synthesis of monodisperse magnetoresponsive rods of desired
diameter, length, and magnetic susceptibility [40].

Driven by the interest in the phase behavior of polar liquid crystals, earlier models
of rod-like particles with a single longitudinal (or transversal) dipole moment have been
intensively studied both by theory and numerical simulations [90, 91, 92, 93]. We present
here a numerical study of the self-assembly of a two dimensional system of stiff peapod-like
straight filaments, composed of single magnetic dipolar beads that are rigidly linked one
by one. A similar system was studied earlier by experiment [37] and simulations [36, 130].
The interaction is given by the superposition of the dipolar fields of each dipole bead.
Differently of our previous work [130], in this study the direction of the dipole moment is
altered with respect to the rod axis, opening the possibility of a plethora of new kinds of
assembled clusters. Many experiments involving assemblies of colloids are actually done
at surfaces and/or thin films [131, 132, 133, 134, 88, 89], which motivates us to explore
two dimensional (2D) systems.

We also study the connectivity properties of the present system by focusing on the
percolation transition as a function of the direction of the dipole moment. The percolation
transition is related to gelation in attractive-driven colloidal systems. Percolation behavior
is also of great relevance in highly connected materials due to the possibility of enhancing
the electrical and thermal conductivity [94, 37]. In addition, there is a relation with the
change of the viscosity in systems with sufficient strong bond strength [135, 136].

The interaction strength may either increase or decrease the volume fraction required
for percolation according to the definition of the separation at which two particles are con-
sidered to be connected, the dimensionality, and the proximity to the critical temperature
[137]. As observed by Miller and Frenkel [138] for a system with adhesive hard spheres
(AHS), the localization of the percolation threshold, the critical value of a given parame-
ter where the percolation statistically happens, also depends on the interaction strength
between particles, which is directly related with the temperature of the system. Therefore
it is worth to explore possible routes under which the percolation transition is enhanced.
Concerning the dimensionality, and, by using elongated particles, it was shown, in the
3D case, that an increase of the aspect ratio decreases the percolation threshold [95, 36],
while the opposite behavior is observed in the 2D case [130]. In the present work we study
the equilibrium configurations and the percolation transition as a function of the angular
misalignment of the dipole moment with respect to the rod axis, and we show that larger
values of this misalignment yields an enhancement of the percolation transition, i.e., an



4.2. MODEL AND SIMULATION METHODS 81

infinite extended cluster is formed for lower density.
The paper is organized as follows: our model system and simulation details are given

in Sect. 2. The obtained different cluster configurations are presented in Sect. 3. The
connectivity properties are discussed in Sect. 4. Our conclusions are given in Sect. 5.

4.2 Model and Simulation Methods

Extensive Langevin Dynamics simulations were performed to study a two-dimensional
(2D) system consisting of typically, unless stated otherwise, N = 840 identical stiff rods of
aspect ratio l = 3. The phase behavior of a mono-dispersed system with the same aspect
ratio was recently studied [139] and is considered an established reference system [140].
For suspensions studied experimentally, the aspect ratio l = 3 is in the lowest accessible
limit [141]. The magnetic nature of the rod is simulated by attaching a point dipole of
permanent magnetic moment µ at the center of each bead (see Fig. 4.1). The orientation

Figure 4.1: Schematic illustration of the interaction between two magnetic rods with:
a) indication of the important parameters of the pair interaction potential; b) ribbon-like
arrangement; c) head-to-tail arrangement.

of the dipoles with respect to the axial direction of the rod is given by the angle Ψ, as
illustrated in Fig. 4.1. To model the dipolar particles we use a dipolar soft sphere (DSS)
potential [130], consisting of the repulsive part of the Lennard-Jones (LJ) potential urep

and a point-like dipole-dipole interaction part uD. The total interaction energy between
rods a and b is the sum of the pair interaction terms between their respective dipolar
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spheres (DS)

Ua,b(Ra,b, θa, θb) =
∑
j 6=m

uj,m, (4.1)

uj,m = urep(ra,bjm) + uD(ra,bjm,µ
a
j ,µ

b
m), (4.2)

where

urep = 4ε

(
σ

rjm

)12

, (4.3)

uD =
µj · µm
r3
jm

−
3(µj · rjm)(µm · rjm)

r5
jm

, (4.4)

with σ the diameter of each bead, and ε is the LJ soft-repulsion constant, Ra,b = Rb−Ra

is the vector which connects the center of rod b with the center of rod a. The orientation
of rods a and b are given by θa and θb, respectively. The vector ra,bjm connects the center
of bead m of rod b with the center of bead j of rod a (see Fig. 4.1). The force on bead
m due to bead j is given by

fjm = −∇ujm. (4.5)

The torque on bead m is [130]

τm = µm ×
∑
m6=j

Bjm + dm ×
∑
m6=j

fjm, (4.6)

where dm is the vector connecting the center of bead m (rod b) with the center of rod b
as illustrated in Fig. 4.1, and Bjm is the magnetic field generated by the dipole moment
µj at the position of the dipole µm, which is given by

Bjm =
3(µm · rjm)rjm

r5
jm

− µm
r3
jm

. (4.7)

The summations in Eq. (4.6) are considered only for dipoles belonging to distinct rods.
The orientation of the rods is given by the unitary vector s given by s = dm/ | dm |. As
the dipole moment is misaligned by Ψ, the total torque in a rod b is

Nb =
l∑
m

τm =
l∑
m

µ̂m ×
∑
m 6=j

µmBjm︸ ︷︷ ︸
G′

+ŝm ×
∑
m6=j

dmf jm︸ ︷︷ ︸
G′′

 (4.8)

where µ̂ = µ/|µ| and revisiting Eq. (2.12)

Iω̇ = µ̂×G′ + s×G′′, (4.9)

u = ω × s, (4.10)

where orientation is defined by s, the unit vector along the major rod axis, u = ds/dt.
Doing the derivative of Eq. (4.10) with respect to the time

α = ω̇ × s + ω × u. (4.11)
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From Eq. (4.9) we have

α = I−1(µ̂×G′ + s×G′′)× s + ω × ω × s. (4.12)

Using the identity of Eq. (A38), we find

α = I−1[(G′′ − s(G′′ · s)) + G′ (µ̂ · s)︸ ︷︷ ︸
cos Ψ

−µ̂(s ·G′)] + ω (ω · s)︸ ︷︷ ︸
0

−s (ω · ω)︸ ︷︷ ︸
ω2

, (4.13)

= I−1[(G′′ − s(G′′ · s)) + G′ (µ̂ · s)︸ ︷︷ ︸
cos Ψ

−µ̂(s ·G′)]− sω2. (4.14)

As ω = ωẑ and s = sxx̂+ syŷ [see Eq. (2.18)]

u · u = (ω × s) · (ω × s),

= [ωẑ × (sxx̂+ syŷ)] · [ωẑ × (sxx̂+ syŷ)] ,

= ω2s2
x + ω2s2

y = ω2(s2
x + s2

y︸ ︷︷ ︸
1

) = ω2. (4.15)

Thus
α = I−1[(G′′ − s(G′′ · s)) + G′ (µ̂ · s)︸ ︷︷ ︸

cos Ψ

−µ̂(s ·G′)]− s(u · u). (4.16)

The translational and rotational Langevin equations of motion of rod b with massMb and
moment of inertia Ib, are given by

Mb
dvb
dt

= Fb − ΓTvb + ξTb (t), (4.17)

Ib
dωb
dt

= Nb − ΓRωb + ξRb (t), (4.18)

where vb = dRb/dt, ωb is the angular velocity, Fb and Nb are the total force and torque
acting on rod b, respectively, while ΓT and ΓR are the translational and rotational friction
constants. ξTb and ξRb are the Gaussian random force and torque, respectively, which obey
the following white noise conditions:〈ξαb (t)〉 = 0, 〈ξαb (t) · ξαb′(t′)〉 = 2ΓαkBTδbb′δ(t − t′),
α = T,R. For rod-like particles, the translational friction constant is a combination of
the parallel and perpendicular components with respect to the rod axis, so that the total
translational diffusion coefficient is DT = 1

3
(D‖+2D⊥) for D⊥ = 1

2
D‖ [73]. However, since

the dynamical properties are not studied in the present work, for equilibrium simulations
the values of ΓT as well as ΓR are irrelevant. We introduce the ratio ΓT/ ΓR = 4/3 because
such a ratio is already known to produce fast relaxation to equilibrium in similar systems
[73]. As a consequence, by applying Velocity Verlet integration method, the equations of
motion for the rod’s CM are

Rb(t+ δt) = Rb(t) +

(
1− ΓT

δt

2

)
vb(t)δt+

(
Fb(t) +

√
2kBTΓT

δt
ξ̂T (t)

)
δt2

2Mb

,

vb(t+ δt) =
1

1 + ΓT δt
2

[
vb

(
t+

δt

2

)(
Fb(t+ δt) +

√
2kBTΓT

δt
ξ̂T (t+ δt)

)
δt

2Mb

]
,

(4.19)
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and for rotational motion, we have

s(t+ δt) = s(t) +

(
1− ΓR

δt

2

)
u(t)δt+

(
α(t) +

√
2kBTΓT
Ibδt

ξ̂R(t)× s(t)

)
δt2

2
,

u(t+ δt) =
1

1 + ΓRδt
2

[
u

(
t+

δt

2

)
+

(
α(t+ δt) +

√
2kBTΓR
Ibδt

ξ̂R(t+ δt)× s(t+ δt)

)
δt

2Ib

]
,

(4.20)

where ξ̂T and ξ̂R are a dimensionless stationary Gaussian unitary vectors (see Sec. 2.2.2)
for translation and for rotation, respectively, evaluated by the Box-Muller procedure [142].
We define the reduced unit of time as t∗ = t/

√
ε−1Mσ2, where M is the mass of the rod.

The energy is given in reduced units as U∗ = U/ε, the dipole moment in dimensionless
units as µ∗ = µ/

√
εσ3, and the dimensionless distances as of r∗ = r/σ. Unless stated

otherwise, the ratio of the thermal energy to the soft-sphere repulsion constant is chosen
to be kBT/ε = 0.1, where ε/kB is the temperature unit and kB is the Boltzmann constant.
Periodic boundary conditions are taken in both spatial directions. Since the dipolar pair
interaction falls off as (r−3), we take the simulation box sufficiently large such that no
special long-range summation techniques [41] are needed. We define the packing fraction
as η = Nbeadsπ(σ/2)2/L2, where Nbeads = 2520 is the total number of dipolar beads of the
system and L2 is the simulation box area. Since Nbeads = lN , we can rewrite the packing
fraction as η = ρ∗lπ/4, where ρ∗ is the dimensionless density ρ∗ = ρσ2, and ρ = N/L2.
The reduced time step is typically in the range δt∗ = 10−4 − 10−3.

All simulations are performed at a very slow cooling rate. Initially, we set the tem-
perature at kBT/ε = 2 and slowly reduced it in steps ∆kBT/ε = 0.05, each 5× 105 time
steps, till the final temperature is reached. The quantities of interest are then averaged
over more than 106 time steps. All the beads from all rods have the same dipole moment
whose magnitude we set as µ∗ = 1. Common experimental values of µ∗2 at room temper-
ature ranges in the interval 0.1 ≤ µ∗2 ≤ 10. For example, in experiments [101] carried out
using aqueous dispersions of superparamagnetic microspheres of ferrite grains (Estapor
(R) from Merck - reference M1- 030/40) for r ≈ 205 nm and Ms ≈ 6 × 104 A/m, the
magnetization (M) of the particles is completely reversible and adjustable by an external
magnetic field. If we consider T = 293 K and M ≈ 22, 6% of Ms, we obtain µ∗ ≈ 1.

4.3 Results and Discussion

4.3.1 Cluster Formation

We first present the dependence of the DSS pair interaction potential on the separation
between rods. The study of the pair interaction potential is needed in order to understand
the nature of the resulting many-body interaction and to help us to set the values of the
useful parameters that help to understand the self-assembled structures. The dependence
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Figure 4.2: The pair interaction energy as a function of interrod separation (r′) minimized
with respect to α and θ.

of the DSS pair interaction potential as a function of the separation between rods and
minimized with respect to some characteristic angles is presented in Fig. 4.2. Rather
different potential profiles are obtained with changing values of Ψ. For low values of
Ψ (≤ 30◦) the minima are located at r′/σ ≈ 3, which corresponds to the aspect ratio
of the rods. The values of α and θ which minimize the pair-interaction energy indicate
that rods are favourably in the head-to-tail bond. As Ψ is increased the position of
the global minimum is displaced to smaller values of r′/σ, suggesting that the head-to-
tail bond disappears, giving rise to the ribbon-like bond configuration (see Fig. 4.1).
Ribbon-like configurations are defined here as a side-by-side assembly as a consequence
of the head-to-tail tendency of alignment between dipoles of beads in different rods and
which are sufficiently displaced from the axial direction (Ψ > 45◦). Similar ribbon-like
configurations were very recently observed for microscopic magnetic ellipsoids [38, 34],
and in peanut-shaped colloids [39]. For Ψ = 45◦ we have a mixing of head-to-tail and
ribbon-like arrangements with intermediate bonding energy and separation.

In order to find the separation (δc) used as a definition when two rods are bonded,
we analyze the interrod separation related to the minimal energy value. From Fig. 4.2,
we observe that the largest interrod separation related to the global minimum is located
around ≈ 3.4σ for Ψ = 15◦ and 1.4σ for Ψ = 90◦. In the former the rods are in the
head-to-tail arrangement, while in the latter they are in the ribbon-like configuration. In
both cases, the shortest separation between beads of different rods is ≈ 1.4σ (bead-to-
bead center distance). Therefore, we define here that two rods are bonded if the shortest
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separation between them is ≤ 1.4σ.
Since the attraction between magnetic rods becomes stronger for larger Ψ (Fig. 4.2),

we expect that the ribbon-like configurations will become more stable, implying that the
formation of clusters is facilitated in the many-body case. To show that this is indeed the
case, we analyze the degree of polymerization [58], defined as

Φ =

〈
Nc

N

〉
, (4.21)

where Nc is the number of clustered rods and N is the total number of rods.
The polymerization as a function of the packing fraction η for different Ψ is presented

in Fig. 4.3. There is a clear distinction of η-dependence of the polymerization for distinct
values of Ψ. For Ψ ≤ 30◦ the polymerization increases with increasing η, while for
Ψ > 30◦, the value of Ψ does not change as η is increased. In principle we would expect
that the tendency for aggregation should be stronger as η is increased. However, such
a behavior is found only when Ψ ≤ 30◦, where the head-to-tail arrangement is mostly
observed. For Ψ = 45◦, the configurations are a mixture of head-to-tail and ribbon-like
arrangements (minimum energy at r/σ ≈ 2, Fig. 4.2) and the polymerization does not
change significantly as η is changed. On the other hand, the larger Ψ, the larger is Φ,
since, based on the minimized pair interaction function (Fig. 4.2), there is an increase of
interrod attraction specially when the rods form a ribbon-like arrangement. For Ψ ≥ 60◦,
the value of Φ does not change as Ψ is increased, and all the rods are connected to each
other mostly arranged in the ribbon-like arrangement as the minimum energy is found for
r/σ ≈ 1.4.
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Figure 4.3: The polymerization as a function of the packing fraction η for different Ψ.
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Some representative equilibrium configurations are presented in Fig. 4.4 for pack-
ing fraction η = 0.1 and η = 0.3, and distinct Ψ. We observe that the head-to-tail
arrangements are found for Ψ = 15◦ and Ψ = 30◦, while the ribbon-like configurations
are observed for Ψ = 60◦ and Ψ = 90◦. Such arrangements of the rods can be better
characterised by computing the pair correlation function [8]

g(r) =

〈∑
a

∑N
b 6=a δ(r −Rab)

〉
2Nπrρ∗

, (4.22)

where Rab is the separation between the center of the rods a and b (see Fig. 4.1).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Some representative equilibrium configurations for kBT/ε = 0.1 and packing
fraction η = 0.1 with (a) Ψ = 15◦; (b) Ψ = 30◦; (c) Ψ = 60◦; (d) Ψ = 90◦; and for η = 0.3

with (e) Ψ = 15◦; (f) Ψ = 30◦; (g) Ψ = 60◦; (h) Ψ = 90◦. The insets are enlargments of
part of the structures.

We present in Fig. 4.5 the pair correlation function for η = 0.1 and for different values
of Ψ. As shown, the position of the peaks changes towards smaller r for larger Ψ. For
Ψ = 15◦ and Ψ = 30◦ the first largest peak is at r/σ ≈ 3, which coincides with the value
of the aspect ratio of the rods and is associated with the head-to-tail alignment. When
Ψ increases, multiple peaks proportional to r/σ ≤ 3 are found, and this is a consequence
of the tendency to form side-by-side arrangements, e.g., for Ψ ≥ 60◦ the first largest peak
is at r/σ ≈ 1.4. For intermediate values of the first largest peak position, i.e. r/σ ≈ 2

for Ψ = 45◦, is a consequence of the mixed structures of head-to-tail and ribbon-like
alignments, as expected by the pair interaction in Fig. 4.2. For Ψ ≤ 45◦ the g(r) does not
maintain a constant structure and it loses the long-range correlation, which is a typical
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behavior of liquid-like structures. On the other hand, for Ψ ≥ 60◦ the g(r) has regular
peaks and long-range correlation, which is a typical behavior of solids. These results
indicate, qualitatively, that the system goes from a liquid-like configuration (Ψ ≤ 45◦)
to a solid-like ribbon-like configuration ( Ψ ≥ 60◦), as a consequence of the fact that
the attraction between rods in the ribbon-like configuration is much stronger than that
observed in the linear head-to-tail arrangement, see Fig. 4.2. In addition, such ribbon-like
arrangements are expected to be more stable against thermal fluctuations.
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Figure 4.5: The pair correlation function for different values of Ψ with η = 0.1.

4.3.2 Connectivity Properties

Now we discuss the connectivity properties of the self-assembled structures. We focus
our analysis on the study of the formation of percolated aggregates, which are defined as
infinite connected clusters spanned over the system. The percolation transition is defined
in the thermodynamic limit, where the average cluster size diverges [107]. We say that a
configuration is percolated when, accounting for periodic boundary conditions, there is a
percolating path [62], i.e., a cluster connected through opposite borders of the simulation
box. A common feature of systems consisting of interacting particles subject to thermal
fluctuations is that their bonds are transient. For low temperature, the lifetime of the
bonds is sufficiently long, and the clusters are well defined over time. In our simulations,
the temperature is one order of magnitude smaller than the average pair-interaction energy
between rods, and the clusters are rather stable. In order to characterize the formation
of the percolated clusters, we calculate an order parameter [69, 70] defined as the fraction
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of monomers in the largest clusters, Smax, i.e.

Smax =

〈
Nlarg

N

〉
, (4.23)

where Nlarg is the number of rods belonging to the largest cluster. Previous studies showed
that for finite size systems, the percolation transition is well characterized when the size
of the largest cluster is at least 50% of the total number of particles, i.e., Smax = 0.5

[69, 70]. Such an order parameter is useful to study the connectivity properties of the
system, specially gelation [108, 69]. Here, we evaluate Smax as a function of the packing
fraction and the orientation of the dipole moments with respect to the axial direction
of the rod. Smax as a function of the packing fraction is presented in Fig. 4.6(a) for
different Ψ. The percolation transition is shifted towards smaller packing fraction with
increasing Ψ, due to the stronger attraction between rods observed in these cases. As a
consequence, the emergence of ribbon-like structures is facilitated. This is shown more
clearly in Fig. 4.6(b), where Smax is presented as a function of Ψ for different packing
fractions. In all cases Smax increases with increasing Ψ, indicating that the rods interact
more attractively, facilitating the formation of larger clusters. For small enough η (. 0.1)
there is no formation of an infinite cluster independent of Ψ. Also, we observe that Smax
saturates for Ψ & 75◦. The small η (. 0.1) and the tendency to form ribbons, which make
the chains of the rods shorter in length, are the reasons for the absence of the extended
clusters.
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Figure 4.6: The average fraction of monomers in the largest cluster: (a) as a function
of the packing fraction for different Ψ and (b) as a function of Ψ for different packing
fractions. The horizontal dashed line at 0.5 refers to the percolation threshold.



4.3. RESULTS AND DISCUSSION 90

The connectivity properties can also be studied by the analysis of the cluster size
distribution n(s), where s is the size of the cluster, i.e. the number of rods belonging to
the cluster. In Fig. 4.7 we present the average cluster size distribution for different Ψ with
η = 0.2 [Fig. 4.7(a)] and η = 0.4 [Fig. 4.7(b)]. In general, n(s) decreases with increasing
cluster size. The percolated configuration exhibits a single peak for large s, comparable
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Figure 4.7: The cluster size distribution for different Ψ with (a) η = 0.2 and (b) η = 0.4.
The solid line represents the function n(s) ∝ s−2.05. Axes are in log scale. Equilibrium
configuration at η = 0.4 and for: (c) Ψ = 15◦; (d) Ψ = 30◦; (e) Ψ = 45◦; (f) Ψ = 60◦; (g)
Ψ = 90◦.

to the system size, due to the finite size of the system considered in the simulations,
and these states are denoted as random percolated [109, 63]. For η = 0.2, the system is
percolated for 45◦ < Ψ ≤ 60◦ (see Fig. 4.6(b)). Close to percolation (Ψ ' 45◦) the n(s)

curve presents a power law dependence, n(s) ∝ sτ , with exponent τ ' −2.05, which is
related to the well-known 2D random percolation prediction[59](τ = −187/91 ' −2.05)
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valid in the thermodynamic limit. Similar random percolated structures were found in
Langevin Dynamics of functionalized colloids [143]. For η = 0.4, a similar s-dependence
for n(s), also with τ ' −2.05, is found for Ψ ' 30◦, where the rods aggregate together
through head-to-tail bonds, similar as shown in Fig. 4.1(c). In both, η = 0.2 and η = 0.4,
a similar power law dependence n(s) ∝ sτ is observed, but with different mechanism.
For η = 0.2, the rods aggregate to each other through head-to-tail bonds and the chains
of rods start to merge into one another in a random way. For η = 0.4, the rods are
connected to each other as ribbon-like arrangements forming long chains, which, in turn,
are randomly bonded to each other. The n(s) curves also confirm that the percolation
transition for the system with larger Ψ takes place for smaller η.

Another way to characterize the percolated structures is through the pair connected-
ness function gconn(r), defined as the conditional probability of finding a pair of particles
separated by a distance r, both connected via a sequence of bonds, i.e., within the same
cluster [112]. When an infinite cluster is present gconn(r) remains finite on every length
scale. On the other hand, when a non-percolated structure is formed, we have gconn(r)→ 0

for finite distances. A theory of the pair connectedness function has been previously de-
veloped for fluids as well as for lattice systems when the presence of physical clusters of
particles in the system is explicitly taken into account [144]. In the limit when the whole
system forms a single cluster, the pair connectedness function matches the pair correlation
function [Eq. (4.3.1)].

In Figs. 4.8(a) and 4.8(b) we show the pair connectedness function gconn(r) for packing
fraction η = 0.2 and η = 0.4, respectively, and different values of Ψ. An infinite-size
percolated cluster is observed when gconn assumes non-zero values in the limit r → ∞,
otherwise the cluster is not percolated. As can be observed the results are in agreement
with those obtained through other distinct quantities, n(s) and Smax.

In Fig. 4.9 we briefly illustrate the effect of the increase of the aspect ratio on the
percolation transition. For Ψ = 15◦, larger values of l are associated with larger values
of Smax at η = 0.4. Specifically, the system for l = 3 at η = 0.4 is clearly percolated,
whereas for l = 5 it is in the transition region, and for l = 7 the system is not percolated.
This shows that the percolation transition is suppressed for larger values of aspect ratio.
Such a result agrees with our previous study [130]. For Ψ > 15◦, the behavior is the
opposite, i.e., the percolation transition is enhanced for larger values of l. This suggests
that when the head-to-tail arrangements are dominant, the attraction between the rods
is weaker, as already discussed, and the geometrical effects resultant from the increase of
the rods aspect ratio (in a 2D system) make it harder to form large clusters [130]. This
changes when the ribbon-like arrangement comes into play, because this arrangement has
a stronger attraction and the geometrical effects resultant from the larger η and larger l
no longer hamper the formation of large clusters, since the side-by-side arrangements is
expected to be more present in the higher packing fraction regime.
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Figure 4.8: The pair connectedness function for different Ψ values and for packing fraction
(a) η = 0.2 and (b) η = 0.4. The y-axes are in log scale.
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Figure 4.9: The average fraction of monomers in the largest cluster as a function of the
packing fraction for different Ψ and different aspect ratios. Solid line with circle symbols:
l = 3. Dashed line with square symbols: l = 5. Dotted lines with triangle symbols: l = 7.
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4.3.3 Effect of temperature

In this section we study the effect of temperature on the connectivity properties. The
increase of temperature has a similar effect as to decrease the effective interparticle inter-
action. Although, from the perspective of reducing finite-size effects, it is advantageous to
consider the percolation transition as a function of the density rather than as a function of
temperature. However, it is worth to study the effect of temperature on the connectivity
properties and to examine the stability of the clusters. It is expected that the percolation
transition is hampered when temperature of an interacting system increases [112, 106],
since stronger thermal fluctuations may break the transient bonds.

In general, the ribbon-like arrangement is more stable against thermal fluctuations
when compared to the head-to-tail structure. A specific example of the effect of tempera-
ture on the self-assembled configurations and on the percolation transition is presented in
Fig. 4.10(a), where the average size of the largest cluster (Smax) is shown for η = 0.4 and
for three values of Ψ. As pointed out previously, the system is percolated (Smax ≥ 0.5)
for all the three considered values of Ψ for sufficiently small temperature (kBT/ε = 0.1).
In general, Smax decreases with increasing kBT/ε, but how fast this happens depends on
Ψ. The lower the value of Ψ, the lower the value of Smax for a given temperature. As
a consequence, we may conclude that the percolated configurations of rods with larger
Ψ are more stable against thermal fluctuations as compared to those with lower Ψ, and
this is due to the formation of ribbon-like arrangements (see Fig. 4.10). When com-
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Figure 4.10: (a) The average fraction of monomers in the largest cluster as a function of
temperature for η = 0.4. Some representative equilibrium configurations for η = 0.4 and:
(b) Ψ = 90◦, kBT/ε = 0.1; (c) Ψ = 90◦, kBT/ε = 0.3; (d) Ψ = 90◦, kBT/ε = 0.5; (e)
Ψ = 60◦, kBT/ε = 0.1; (f) Ψ = 60◦, kBT/ε = 0.3; (g) Ψ = 60◦, kBT/ε = 0.5.

pared to the head-to-tail bond between two rods, the ribbon-like one is stronger, since all
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dipoles of one rod are more strongly attracted to the dipoles of the other rod for Ψ > 45◦,
forming local head-to-tail bonds. We present in Figs. 4.10(b)-(g) snapshots of the ribbon-
like structures, with (Ψ = 90◦ and Ψ = 60◦). For temperatures kBT/ε = 0.1, 0.3, and
0.5, highlighting how the clusters melt when submitted to higher temperatures. From
these results, we may conclude that the percolation transition is enhanced for a system
of peapod-like rods with larger values of Ψ even when it is analyzed as a function of
temperature.

4.4 Conclusion

In summary, we investigated a two-dimensional system consisting of magnetic rods
using Langevin Dynamics simulations. Each rod is composed of 3 soft beads having a
central point-like dipole which interact via a DSS potential. This model is motivated
by recent experimental [37] and theoretical [36, 130] studies. A novelty of our system is
the misalignment of the dipole moment of the individual beads with respect to the axial
axis, opening the possibility of forming complex structures using nonspherical particles
[40, 39, 38, 34]. Structural properties were investigated with particular attention to the
dependence on the dipole’s direction Ψ and the packing fraction. We considered Ψ ranging
from Ψ = 15◦ to Ψ = 90◦.

Due to the dipole-dipole head-to-tail assembly tendency, the increase of Ψ produces a
range of different configurations. As a consequence, we found that for Ψ ≥ 45◦ we observe
ribbon-like structures which are energetically the most favorable. Given the preference of
ribbon-like chain configurations we paid special attention to the appearance of a cluster
extending over the whole system for a sufficient large packing fraction, i.e., the percolation
configuration. We observed that the larger Ψ, the stronger the attraction between rods,
facilitating the clustering process and favoring the formation of the infinite cluster. As
a consequence, the larger Ψ, the smaller the packing fraction for the occurrence of the
percolation transition. We found that by increasing the aspect ratio of the rods the
packing fraction increases, and different geometrical effects are observed depending on
the dominant kind of rod arrangement. For head-to-tail arrangements, the percolation
transition is hampered with increasing l. The opposite behavior was observed when the
ribbon-like arrangement becomes dominant.

We also investigated the temperature dependence of the percolated configuration by
analysing how the average size of the cluster depends on kBT/ε. We observed that perco-
lated configurations with large Ψ are thermodynamically more stable as a consequence of
the formation of ribbon-like bonds, which is characterized by local head-to-tail arrange-
ments.





5
Concluding Remarks

In this thesis we studied the self-assembly of magnetic rods in two dimensions by using
numerical simulation techniques, specifically Molecular dynamics and Langevin dynamics
simulation. In Chapter 1 an overview of soft condensed matter systems was given that are
relevant for the present thesis. In Chapter 2 we presented the numerical methods used to
study the systems investigated in the subsequent chapters. The results of the thesis were
presented in Chapters 3 and 4.

In Chapter 3, the self-assembly of a two-dimensional system consisting of magnetic
rods was investigated using Molecular Dynamics simulations. We analyzed the structural
properties with particular attention to the dependence on the aspect ratio of the rods and
the packing fraction of the system. We identified that the head-to-tail bond was the most
energetically favorable for any aspect ratio leading to the chain formation. Other kinds
of bonds, in which the rods are placed side by side with, e.g. parallel and antiparallel
alignment, were observed with increasing packing fraction. Given such different kinds of
arrangements we investigated the appearance of a percolated cluster for sufficient large
packing fraction. We observed that the side-by-side arrangement and the two-dimensional
confinement suppressed the percolation transition to higher aspect ratio. Such a behav-
ior is opposite to what was previously observed for the 3D case. The transition to the
isotropic-nematic phase was also investigated. We found that such a transition was fa-
cilitated by the increase of the aspect ratio of the rods, as expected. However, we also
observed that the presence of magnetic bulk domains at large η-values, characterized by
local ferromagnetic order, was responsible for the non-monotonic behavior of the nematic
order with respect to the packing fraction. As a perspective, one may study the effect of
the dimensionality of the system on the percolation transition, since the system exhibits
different behavior for 2D and 3D, by considering a quasi-3D system.

In Chapter 4, the structural properties of magnetic rods with a misaligned dipole
moment were investigated. We gave particular attention to the dependence on the mis-
alignment on the self-assembled structures. We observed that the misalignment of the
dipole moment (Ψ) of the individual beads with respect to the axial axis, opened the
possibility of forming complex structures as a consequence of dipole-dipole head-to-tail
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assembly tendency. We observed that for Ψ ≥ 45◦ we found ribbon-like structures which
are energetically the most favorable. We studied the appearance of a percolated cluster as
a function of Ψ with increasing packing fraction. The larger Ψ, the stronger the attraction
between rods, facilitating the clustering process and favoring the formation of an infinite
cluster. As a consequence, the percolation transition occurred at smaller packing fractions
for larger Ψ. Different geometrical effects are observed depending on the dominant kind of
rod arrangement upon increasing of the aspect ratio. For head-to-tail arrangements, the
percolation transition is hampered when increasing l. The opposite behavior was observed
when the ribbon-like arrangement becomes dominant. We also investigated the tempera-
ture dependence of the percolated configuration by analysing how the average size of the
cluster depends on kBT/ε. We observed that percolated configurations with large Ψ are
thermodynamically more stable as a consequence of the formation of ribbon-like bonds,
which is characterized by local head-to-tail arrangements. An interesting perspective is
to study the dynamical properties of the different aggregation state as affected by the
different misalignment of the dipole moment.





Appendix A

Derivation of the torque on a magnetic rod

composed by dipolar beads

To prove Eq. (3.6), we must go back to the definition of the torque on a current
distribution J(r). The infinitesimal torque on dV with a current distribution J(r) by a
non-uniform magnetic field is

dN o′ = (ri − ro′)× J ×BdV , (A1)

where ri is the coordinate which localizes dV (where B acts). The torque is calculated
with respect to ro′ , so ri − ro′ is the displacement vector.
The point is how to evaluate the contribution of the torque by each dipole moment when
ro′ and the “center”1 of the dipole (bead) are not the same. However, the torque of a
magnetic dipole measured with respect to its center, (center of the current distribution),
namely ro, it is already known. By adding and subtracting ro in Eq. (A1)

dN o′ = (ri + ro − ro − ro′)× J ×BdV . (A2)

After integration of Eq. (A3) over the volume, we have

N o′ =

∫
V

(ri − ro)× J ×BdV +

∫
V

(ro − ro′)× J ×BdV . (A3)

As the magnetic field is non-uniform, we may perform a Taylor’s expansion in B(r)

around a vector which localizes the coordinate of dipole moment rd, as long as B(r) does
not vary significantly over position

B(r) = B(rd) + [(r − rd) ·∇d]B(rd) + ... (A4)
1The quotation marks are because the magnetic dipole actually has no center, since magnetism is not

due to magnetic monopoles which we can separate them each other. The representation of the magnetic
dipole is only a mathematical tool to depict the Ampère model (current loop at the center of the dipole).
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In order to compute the net torque with respect to “o”, the vector (ri − ro) must span
over the whole volume V . On the other side, (ro − ro′) is a fixed vector.
When we evaluate the torque in a current loop by an external magnetic field B, we usually
assume that its center is the origin of the coordinate system, which also corresponds to the
center of its related magnetic dipole. Such an expression is well-known as: N = µ×B.
Therefore, let “o” be in the center of current distribution, so B and J must be regarded
with respect to the same origin “o”

J(r)→ J(ri − ro) B(r)→ B(ri − ro). (A5)

For the sake of simplification, let us call (ri − ro) just r, thus

N o′ =

∫
V

r × J(r)×B(r)dV + (ro − ro′)×
∫
V

J(r)×B(r)dV . (A6)

However, we know that the net force (F ) on a current distribution is

F =

∫
V

J(r)×B(r)dV , (A7)

using Eq. (A4) and Eq. (A7)

F =

∫
V

J(r)× {B(rd) + [(r − rd) ·∇d]B(rd) + ...} dV . (A8)

As the integral acts on r, we have

F =

(∫
V

J(r)dV

)
×B(rd)+

∫
V

J(r)×[(r·∇d)B(rd)]dV−
(∫

V

J(r)dV

)
×[(rd·∇d)B(rd)]+...

(A9)
Making use of the following identity [145]∫

V

(FJ ·∇G+GJ ·∇F )dV = 0, (A10)

as long as F (r) and G(r) are well-behaved, ∇ · J = 0 and J 6= ∞ for any r. Let us
define, F (r) = 1 and G(r) = xi∫

v

[1 · J · ∇xi︸︷︷︸
êi

+xi · J · ∇1︸︷︷︸
0

]dV = 0, (A11)

∫
v

J · êidV = 0, (A12)∫
v

J idV = 0. (A13)

Therefore, the volume integral of any J component is zero, thus∫
V

JdV = 0. (A14)
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This term is the magnetic equivalent to the interaction caused by the electric charge to
the electric field (Gauss’s Law). As there are no magnetic monopoles, it should indeed be
null. Thus, from Eq. (A9)

F =

∫
V

J(r)× [(r ·∇d)B(rd)]dV + ... (A15)

Using the following identity:

∇(A ·B) = (A ·∇)B +A× (∇×B) + (B ·∇)A+B × (∇×A), (A16)

for A = r, B = B(rd) and ∇ =∇d, we have

∇d(r ·B(rd)) = (r ·∇d)B(rd) + r× (∇d×B(rd)) + (B(rd) ·∇d)r+B(rd)× (∇d× r).
(A17)

As ∇d acts in rd and ∇d ×B(rd) = 0 (J(r) is not the source of B(rd))

∇d(r ·B(rd)) = (r ·∇d)B(rd), (A18)

thus
F =

∫
V

J(r)×∇d[r ·B(rd)]dV..., (A19)

however

∇d × {[r ·B(rd)]J(r)} =∇d[r ·B(rd)]× J(r) + [r ·B(rd)] [∇d × J(r)]︸ ︷︷ ︸
0

, (A20)

thus
J(r)×∇d[r ·B(rd)] = −∇d × {[r ·B(rd)]J(r)} . (A21)

Using Eq. (A19) and Eq. (A21), we have

F = −
∫
V

∇d × {[r ·B(rd)]J(r)} dV..., (A22)

F = −∇d ×
(
B(rd) ·

∫
V

rJ(r)dV

)
... (A23)

From the Ref. [145], we have

B ·
∫
V

rJidV = −1

2

∑
j,k

εijkBj

∫
V

(r × J)kdV , (A24)

remembering that

(a× b)k =
∑
ij

εijkaibj, εijk = εjki, (A25)

thus
B ·

∫
V

rJidV = −1

2

[
B ×

∫
V

(r × J)dV

]
i

. (5.1)



102

Finally

B ·
∫
V

rJ(r)dV = −1

2

[
B ×

∫
V

(r × J)dV

]
. (A26)

By the definition of magnetic dipole related to a current distribution

µ =
1

2

∫
V

r × JdV , (A27)

thus
B ·

∫
V

rJ(r)dV = µ×B(r). (A28)

Using Eq. (A28) on Eq. (A22)

F = −∇d × {µ×B(rd)}+ ... (A29)

Taking the relevant terms of Eq. (A31) and using the following identity

∇d×(B(rd)×µ) = (∇d·µ)B(rd)−(∇d·B(rd))µd+(µ·∇d)B(rd)−(B(rd)·∇d)µ, (A30)

therefore

F = −∇d × {(∇d · µ)B(rd)− (∇d ·B(rd))µd + (µ ·∇d)B(rd)− (B(rd) ·∇d)µ} .
(A31)

As µ does not depend on rd and ∇d ·B(rd) = 0, we have

∇d × (B(rd)× µ) = (µ ·∇d)B(rd), (A32)

but

∇d [µ ·B(rd)] = (µ·∇d)B(rd)+µ×[∇d ×B(rd)]︸ ︷︷ ︸
0

+ (B(rd) ·∇d)µ︸ ︷︷ ︸
0

+B(rd)×(∇d × µ)︸ ︷︷ ︸
0

,

(A33)
Consequently

∇d [µ ·B(rd)] = (µ ·∇d)B(rd), (A34)

As UD = −µ ·B is the interaction between µ and the net magnetic field B

∇(µ ·B) = −∇UD, (A35)

finally
F = −∇dU

D. (A36)

Therefore, for now, the Eq. (A3) will be

N o′ =

∫
V

r × J(r)×B(r)dV + (ro − ro′)×
{
−∇UD

}
. (A37)

We must solve the first integral of Eq. (A37), in this regard, we use the following identity

A× (B ×C) = B(A ·C)−C(A ·B), (A38)
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Thus∫
V

r × [J(r)×B(r)] dV =

∫
V

[r ·B(r)]J(r)dV −
∫
V

[r · J(r)]B(r)dV . (A39)

We are interested in magnetic field at dipole moment’s position, so, let us do the approx-
imation: B(r) ≈ B(rd),∫

V

r × [J(r)×B(rd)] dV =

∫
V

[r ·B(rd)]J(r)dV −
∫
V

[r · J(r)]B(rd)dV . (A40)

As the integral acts in r, we find∫
V

r × [J(r)×B(rd)] dV = B(r)d ·
∫
V

rJ(r)dV −B(rd)

∫
V

[r · J(r)] dV . (A41)

The first integral of Eq. (A41) is known from Eq. (A28). In the second integral, we will
use Eq. (A10) for F = G = xi ∫

V

(xiJ ·∇xi + xiJ ·∇xi) dV = 0,∫
V

(xiJ · êixi + xiJ · êixi) dV = 0,∫
V

(xiJixi + xiJixi) dV = 0,∫
V

r · JdV = 0 for r =
∑

xiêi, J =
∑

Jiêi.

Therefore, the Eq. (A41) will be∫
V

r × [J(r)×B(rd)] dV = m×B(rd). (A42)

Finally, the Eq. (A37) will be

N o′ = µ×B(rd) + (ro − ro′)×
{
−∇UD

}
. (A43)

Where, B(rd) is the magnetic field generated by another source [Bij from Eq. (3.6)], e.g.
by other dipole moments, at µ’s position. The vector ro − ro′ is the displacement vector
between the center of µ and the point which the torque is computed, e.g. the center of
rod [dm from Eq. (3.6)].

In the Eq. (3.6), we also have the force which comes from LJ interaction
U rep =

∑
urep. As we consider the center of dipole equals to the center of soft bead, the

displacement vector dm is the same. The net magnetic field (B(rd)) is the sum of all Bjm

generated by all dipole moments

N o′ = µ×B(rd) + (ro − ro′)×
{
−∇UD + U rep

}
,

N o′ = µ×B(rd) + dm × F . (A44)

where, F is the net force on µ. By these means, the derivation of Eq. (3.6) is completed.





Appendix B

Publications related to this thesis

1) Jorge L. C. Domingos, F. M. Peeters and W. P. Ferreira, Self-assembly of rigid
magnetic rods consisting of single dipolar beads in two dimensions, Phys. Rev. E 96,
012603 (2017).

2) Jorge L. C. Domingos, F. M. Peeters and W. P. Ferreira, Self-assembly and clus-
tering of magnetic peapod-like rods with tunable directional interaction, PloS One 13(4),
e0195552 (2018).
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