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Chapter 1

2D Dirac Materials

1.1 Overview of Graphene

Graphene is a monolayer material, which is composed of carbon atoms. As a results of
its (1522522p?) electronic configuration, the carbon atom can form a number of different
hybrid orbitals, sp, spz, and sp3, leading to many different kinds of carbon materials
with different chemical bond characteristics. Among those, graphene is the most famous
materials in the past ten years. As shown in Fig. 1.1 [1], graphene is a 2D materials
composed of sp? hybrid carbon atoms. Due to the sp? hybridization, the chemical bonds
(o) form a very strong framework, and as a result, graphene exhibits excellent mechanical
strength. The p, atomic orbitals are directed perpendicular to the graphene plane giving
rise to a linear relationships between energy and momentum, which results in the Dirac

cone band structure. This makes graphene to have excellent electrical conductivity.

(a)

(b) y (c)

Unit cell

Fig. 1.1 (a) Graphene honeycomb lattice composed of A and B hexagonal Bravais
sublattices. (b) Band structure of graphene where CBM and VBM touch each other only
at the K and K’ points. (c) Approximately linear dispersion around the K and K’ points.
Image source: Ref. [1]
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The successful isolation of a single layer of graphene from graphite was achieved in
2004 by A. K. Geim and K. S. Novoselov at Manchester University using a mechanical
exfoliation method [2]. Graphene can become visible in an optical microscope when it is
placed on top of a Si wafer with a carefully chosen thickness of SiO, [3]. The synthesis
of graphene was a great achievement. The excellent properties graphene exhibited excited
researchers.

To study its properties, we can start with analyzing its structure. Graphene is a
one-atom-thick single crystal, which is composed of carbon atoms. Each carbon atom has
the same environment, three nearest neighbors and the two carbon atoms are chemically
bonded. The type of chemical bond belongs to covalent bond and graphene has a uniform
bond length of 1.42 A. Due to perfect sp?-hybrid carbon atoms, bond angles of 120°
are also uniform. All carbon atoms are limited in a hexagonal honeycomb lattice, see
Fig. 1.1(a). The gray area is the unit cell of graphene containing two carbon atoms. Be-
cause of the special structure, Graphene shows excellent mechanical properties. Graphene
has a Young modulus of 1 terapascals and an intrinsic strength of 130 gigapascals [4]. The
P, atomic orbitals in this hexagonal honeycomb lattice makes graphene a semimetal with
conduction band minimum (CBM) and valence band maximum (VBM) that touch each
other at the K and K’ points forming a Dirac point as shown in Fig. 1.1(b) and (c). The
energy-momentum dispersion is approximately linear around the K and K’ points. The
charge carriers can be characterized by massless Dirac fermions that travel at a constant
speed of 10 m/s (Fermi velocity) and they are governed by the relativistic equation [5].
Due to the high Fermi velocity, graphene has the potential to be applied in high speed
electronic nanodevices. Besides, graphene can exhibit many novel physical effects in the
presence of external electric field [3] and magnetic field [6].

In addition, graphene exhibits extraordinary thermal conductivity properties and
transport properties. Based on the measurements that monolayer graphene on Si/SiO;
substrate, graphene shows an extraordinary high room temperature thermal conductivity
of up to 5.30(0.48) x 10> W/mK [7]. High carrier mobility is another exciting feature
of graphene, which is important for applications of device. The ultraclean suspended
graphene has been reported to have a carrier mobility 120,000 cm?/Vs at 240 K, which
is higher than that of any known semiconductor [8]. The above properties of graphene

make it very promising to be applied in many fields.
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1.2 2D Carbon-Based Materials

1.2.1 2D Carbon Allotropes

In nature, there are two major existing carbon allotropes, diamond and graphite. Di-
amond is composed of sp3-hybridized carbon atoms while graphite is composed of
sp>-hybridized carbon atoms [9]. The discovery of zero-dimensional (OD) fullerenes
[10], one-dimensional (1D) nanotubes [11], and 2D graphene [2] greatly expanded the
family of carbon materials, as shown in Fig. 1.2 [12]. Those new carbon materials are
composed of sp*-hybridized carbon atoms. In theory, thousands of carbon structures
can be constructed by using different sp3-, sp>-, and sp-hybridized carbon atoms due
to the versatile flexibility of carbon atoms [13—15]. Take sp>-hybridized carbon atoms
as an example, they can form a number of rings. Graphyne, which is composed of sp-
and sp?-hybridized carbon atoms, has been given its own name according to specific
rules related to its structure [16]. This planar and monolayer material contains triple
bonds of carbon and sp?-hybridized carbon atoms. Li et al. realized graphdiyne films
[17], which contains two connected triple bonds between repeating patterns of carbon
hexagons, as shown in Fig. 1.2. The networks of graphdiyne and graphyne are contain
sp- and sp>-hybridized carbon atoms. Graphdiyne is composed of two connected triple
bonds of carbon while y-graphyne is composed of one triple bond. The special carbon
networks lead to the graphyne family with uniformly distributed pores, which can be
applied for gas separation and energy storage. Some have been realized experimentally.

Among the graphyne family, there are four typical structures, see Fig. 1.3 [18]. Only
Y-graphyne exhibits semiconductor characteristic while o-graphyne/f-graphyne/6,6,12-
graphyne shows a Dirac band structure [19]. Although different structures lead to different
single bond lengths of carbon, their triple bond lengths of carbon are almost the same,
see Table 1.1 [18]. In recent years, there are many theoretical researches on y-graphyne.
With respect to band structure, the electronic structure of y-graphyne was calculated by
density functional theory (DFT), and the band gap of 0.47/2.23 eV depending on different
calculation methods, as given in Ref. [20]. The adsorption of gas molecules on y-graphyne
was studied and y-graphyne was predicted to transform from a semiconductor into a
semimetal or metal when particular gas molecules are absorbed [21]. Ruiz-Puigdollers
et al. showed the tunable band structure of y-graphyne by using N- and B-doping [22].
Besides its band structure, the chemical properties and energy for applications were

studied.
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Fig. 1.2 Naturally existing and man-made carbon allotropes. Image source: Ref. [12]
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Fig. 1.3 Atomic structure and band structure of ot(a)/(b)/y(c)/6,6,12(d)-graphyne. Image
source: Ref. [18]
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Table 1.1 Carbon triple bond lengths of the a/f/7/6,6,12-graphyne. Date source: Ref.
[18]

Graphyne Bond Length
a-graphyne lL,=1230A
B-graphyne L=1232A
Y-graphyne L=1232A

6,6,12-graphyne I3 = 1.224 A [s =1.227 A

Although the theoretical and computational research of y-graphyne is inspiring, the
synthesis of y-graphyne was only recently achieved. It was synthesized by a chemical
method, as outlined in Fig. 1.4 [23]. The experimental results including composition,
lattice constant, and band gap (2.58 eV) of the as-prepared sample are in good agreement

with calculated results [20].

o

Br

e 0

Br Br o 0 5*3"
2, 3n CaBr
-+ 3n CaCy Jning °N 2 +

0O
Br Br

B_r

O

Fig. 1.4 Proposed reaction pathway for the preparation of y-graphyne by mechanochemi-
cal route. Image source: Ref. [23]

1.2.2 2D Carbon-Nitrogen Structures

The history of carbon nitride (C3N4) polymers and their precursors could be traced back
to 1834 [24, 25]. The application of graphitic carbon nitride (g-C3Ny4) in heterogeneous
catalysis started around 2006 [26]. In 2009, Wang et al. first found that g-C3Ny is a
metal-free conjugated semiconductor photocatalyst for Hy evolution [27, 28]. There are
two basic tectonic units to establish allotropes of g-C3Ny4, which are triazine (C3N3) and
tri-s-triazine/heptazine (CgN7) rings (Fig. 1.5 [29]) [30, 31]. From the view point of the
porous structure, there are two aspects that can affect the energetic stability: the size of the
pores and the chemical environment of the N atom. Among all phases, tri-s-triazinebased

g-C3Ny4 was energetically favored and was the most stable phase of C3Ny [32], which
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was in good agreement with DFT calculations [33]. In experiment, many newer 2D
carbon-nitrogen materials were proposed, such as 2D crystal "C,N holey 2D crystal"
(CoN-h2D crystal) [34] and 2D polyaniline (C3N) [35]. Since the structure C3N is the

basis of our research, we will introduce the experiment on 2D C3N.

(a) j\ (b) j\N j‘\

Fig. 1.5 (a) Triazine and (b) tri-s-triazine (heptazine) structures of g-C3N4. Image source:
Ref. [29]

The synthesis process of 2D C3N is shown in Fig. 1.6 [35]. The transformation
of HAB crystals into a 2D layered polyaniline structure should involve the release of
ammonium chloride (NH4Cl) and ammonia (NH3) via a concerted mechanism. Actually,
2D C3N is a graphene-like structure when viewed form the top and a monolayer structure
as seen from side. In some special lattice points, the carbon atoms are replaced by

nitrogen atoms.

e Cl 2 3

Fig. 1.6 Schematic representation of 2D polyaniline (PANI) formation. (A) Single-crystal
packing structure of HAB (structure 1); structure of 2D polyaniline unit with edge groups
(C3NH, structure 2), and the spontaneous transformation of HAB crystal unit into the 2D
polyaniline structure (structure 3). Image source: Ref. [35]
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To analyze the experimental results, the authors [35] performed first-principles calcu-
lations. We focus on its geometrical structure and its band structure. The calculated lattice
constant is 4.75 A (Fig. 1.7(D) [35]), which is in good agreement with experimental result
(Fig. 1.7(A)). The band structure along the symmetry points in the first BZ is shown
in Fig. 1.7(E), and an indirect band gap at the Fermi level is seen. From the projected
density of states (PDOS) (Fig. 1.7(F)), the VBM and CBM both come from the carbon

and nitrogen p, orbitals. Obviously, there is a Dirac point below the Fermi level, which is

16eV
8 |

the motivation of our research.
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Fig. 1.7 STM and theoretical studies of the 2D polyaniline structure. (A) STM image of
a 2D polyaniline framework. Inset structure represents C3N repeating unit with carbon
atom (gray ball) and nitrogen atom (blue ball). (B) Topographic height profile along the
cyan dot line marked in (A). (C) Differential conductance (d1/dV) spectrum of a 2D
polyaniline framework. (D) Simulated STM image with superimposed structure of C3N
repeating unit. (E) Electronic band structure. (F) Projected density of electronic states
(PDOS) of the carbon (dark red) and nitrogen (dark blue) atoms. Image source: Ref. [35]
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1.3 2D Topological Insulators

The Hall effect is the result of a voltage difference (the Hall voltage) across an electrical
conductor, transverse to an electric current in the conductor and to an applied magnetic
field perpendicular to the current. It was discovered by Edwin Hall in 1879 [36]. The
effect can be measured by the Hall resistance. About a century later, the Hall resistance
showed a ladder-like dependence on the magnetic field in two-dimensional electron
systems (Fig. 1.8 [37]), which is called the quantum Hall (QH) effect [37]. The QH
was realized in strong magnetic fields and low temperatures. The QH effect was first
discovered by K. von Klitzing who received the Nobel prize in physics for it in 1985. In
this effect, the electrons in the conductor preform periodic circular motion and therefore
do not contribute to electric conduction. The edge electrons will be influenced by the
edge where electrons perform semicircular motion onward. In this process, there are no
collisions with energy loss. Here, the Hall conductance depends only on the fundamental
physical constants e and A4, and is entirely independent on the materials’ properties, and

the geometry of the example, such as, length and width.

9y (KA

] |
o‘?m.
200}
e i —

& L]
MAGNETIC FIELD (T)

Fig. 1.8 Experimental curves for the Hall resistance Ry = p,, and the resistivity py, ~
R, of a heterostructure as a function of the magnetic field at a fixed carrier density
corresponding to a gate voltage V, = 0 V. The temperature is about 8 mK. Image source:
Ref. [37]
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Due to the explicitly breaking of the time-reversal (TR) symmetry, the QH states
belong to a topological class. In contrast to breaking TR symmetry, there is a new
topological class which is invariant under TR. In recent years, this new topological class
of materials has been not only predicted in theory, but also observed in experiment
[38—41]. At the beginning of this class, some important concepts of these new quantum
states were proposed [42—46]. In 2D materials, 2D topological insulator/quantum spin
Hall (QSH) state was successfully proposed by Kane et al. [47]/Bernevig et al. [48].
After these theoretical concepts were successfully developed in 2D topological insulators,
researchers applied them to 3D topological insulators [49-53]. By a Z, topological
order parameter, all insulators in nature can be divided into two categories. The Z;
= 1 corresponds to a topological nontrivial state while the Z, = 0 corresponds to the
topological trivial state. With respect to band structure, the topologically nontrivial state
includes two important aspects, a full insulating gap in the bulk (2D/3D) and gapless
edge or surface states consisting of an odd number of Dirac fermions (1D/2D). Although
the topic of our thesis is 2D materials, some theoretical and experimental methods of 3D
topological insulators can also be applied into 2D topological insulators. Next, we will
introduce the history of the two kinds of topological materials.

The 2D topological insulator material was first theoretically predicted in 2006 [54]
and experimentally observed [55, 56] in HgTe/CdTe quantum wells (QWs). Whether the
topologically nontrivial state can be realized depends on the thickness of the QWs. In the
topologically nontrivial states, the opposite spins propagate in opposite directions and
form a pair of edge states, see Fig. 1.9 [57]. The 2D topological insulator is synonymously
called the QSH insulator. However, the operating temperature of QWs is quite low due
to the small bulk gap arising from weak SOC. To solve this question, hundreds of
QSH insulators with a large nontrivial gap have been found from DFT calculations, and
many of them were predicted to result in the QSH effect at room temperature. In 2018,
QSH effect was realized experimentally in a monolayer 1T°-WTe; at the temperature
of 100 K [58], which is a breakthrough for QSH effect at room temperature. Before the
experimental work, some theoretical works have shown that the monolayer 1T°-WTe; is
a 2D topological insulator by DFT calculations [59].

For the 3D topological insulator, the heavy elements contributions are very important.
In theory, the semiconducting alloys Bi;_,Sb, were predicted as 3D topological insulators
by calculating Z, invariants [49]. Besides Bi and Sb elements, Te and Se elements also

play an important role for 3D topological insulators. In theory, Bi; Tes, SboTes, and BiySe;
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[60, 61] compounds were predicted with a large bulk gap and a gapless metal surface state
with a single Dirac cone. In experiment, Angle-resolved photoemission spectroscopy
(ARPES) measurement is a powerful tool to see the edge states clearly. By ARPES
measurements, the above surface states were fully confirmed in experiments [62, 63, 60].
These theoretical and experimental works greatly excited the interest of researchers in
the field of topological insulators [38, 64, 65, 39—41]. Beyond the above topological
materials mentioned, more new materials have been predicted to be topological insulators
[66—69], and some of them have been experimentally observed recently [70, 71].
Without a doubt, the discovery of topological insulators has a great impact on con-
densed matter physics [72] and many important prizes have given the researchers in this
field. The first discovery of the QSH effect in QWs was ranked as one of the top ten
breakthroughs by Science Magazine in year 2007. Three scientists, David J. Thouless,
F. Duncan M. Haldane and J. Michael Kosterlitz, received the Nobel prize in physics in

2016 due to their contributions to topological theory.

Insulating !
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Fig. 1.9 Electronic states have different topologies. In insulators, the outer electrons are
pinned by their atoms. A gap is present at all values of momentum. In the quantum Hall
regime, a magnetic field pins the outer electrons and opens a gap. The gap is crossed by
edge states, which carry current. In the quantum spin Hall regime, a bulk gap is always
present. The edge states that cross the gap carry counter propagating currents of spin-up
and spin-down electrons. The three states are topologically distinct. No perturbation can
transform one state into another unless it’s strong enough to collapse and reopen the bulk
energy gap. Image source: Ref. [57]



1.4 2D Chern Insulators 11

1.4 2D Chern Insulators

In the presence of TR symmetry, insulators can be classified into Z, topological insulators
and topologically trivial insulators, as described above. Next, we will discuss the case of
insulators with broken TR symmetry. Now their topological nontrivial states are usually
characterized by the first Chern number C [73, 74]. It is a topologically trivial insulator
for C = 0, while it is a topologically nontrivial insulator [75] for a nonzero integer C [42],
which can realize the quantum anomalous Hall (QAH) effect [75, 42]. The Chern number
corresponds to the number of gapless chiral edge states inside the bulk band gap [76].
Before the year 2004, there was only little progress on the theory of QAH effect in
materials [77]. The successful synthesis of graphene stated the research of 2D materials.
However, two independent theoretical works in 2010 changed the situation, and interest
was revived by the successful realization of the QAH effect based on magnetic 3D
topological insulator thin films [78] and graphene adsorbing magnetic atoms [79]. Here,
we can take 3D TI thin films, (Bi, Sb),;Ses, as an example [78, 40, 77, 80, 81]. For a 2D
topological insulator, its gapless edge states can exist in 1D nanoribbon. Similar to a 2D
topological insulator, gapless edge states of a 3D topological insulator can exist on the
surface of 3D topological insulator, 2D thin films, where the spins are locked with the
momenta preserving the TR invariance [40, 77]. When the film thickness is decreased, the
interaction between top and bottom surface states gives rise to in a band gap at the Dirac
cone of the surface states, forming a 2D trivial insulator [78], as shown in Fig. 1.10 [78],
corresponding to a four-band system which is originally in the topologically trivial phase
without band inversion. By magnetic doping, an exchange field, such as a spontaneous
ferromagnetic order, can be formed [78]. The exchange field removes the spin-degeneracy,
leading to spin splitting. When the exchange field is strong enough, the band inversion
between the blue solid line and the red dashed line point will appear at the I" point.
This process is shown in Fig. 1.10 (A). The strong SOC reopens a band gap to induce
a topological phase with a Chern number of C = 1 [78]. The same situation can be
applied in a four-band system which is originally in the topologically nontrivial phase
with band inversion, as shown in Fig. 1.10 (B) [78]. In this case, band inversion occurs.
The exchange field can increase the band inversion between the blue solid line and the
red dashed line at the I" point, while the exchange field can release the band inversion
between the blue dashed line and the red solid line at the I" point, as shown in Fig. 1.10
(B). The strong SOC opens a band gap to induce a topological phase. Such a mechanism
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is general for the 3D topological insulator thin-films with ferromagnetic order. This

theoretical prediction was later experimentally confirmed [82-88].

§ |+l

Without With = : :
Exchange Exchange With Exchange
Field Field Field and SOC

Fig. 1.10 Evolution of the subband structure upon increasing the exchange field. The
solid lines denote the subbands that have even parity at I" point, and dashed lines denote
subbands with odd parity at G point. The blue color denotes the spin down electrons;
red, spin up electrons. (A) The initial subbands are not inverted. When the exchange
field is strong enough, a pair of inverted subbands appears (red dashed line and blue solid
line). (B) The initial subbands are already inverted. The exchange field releases the band
inversion in one pair of subbands (red solid line and blue dashed line) and increase the
band inversion in the other pair (red dashed line and blue solid line). Image source: Ref.
[78]

1.5 Outline of the Thesis

The thesis is organized as follows.

As discussed above, there are three kinds of 2D materials which are related to the
research presented in this thesis. In Chapter 1, we present an introduction of these 2D
materials, including their theoretical and experimental basis. In Chapter 2, we introduce

the theory of DFT and the calculations methodoglogy used in the thesis.
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In Chapter 3 and Chapter 4, we show our results of C-based Dirac Materials. In
these new C-based materials, SOC effect can be neglected, and we stress their high Fermi
velocity.

In Chapter 5 and Chapter 6, we show our results of Bi-based Dirac Materials. In
these new Bi-based materials, SOC effect plays an important role, and a large nontrivial
band gap can be opened at the Dirac point.

In Chapter 7, we show our results of Y-based Dirac materials. In this Y-based
materials, not only a large nontrivial band gap can be opened at the Dirac point, but also
ferromagnetic systems can be realized ferromagnetic systems.

The content of Chapter 3, 4, 5, 6, and 7 are based on my research works during my

PhD. In Chapter 8, I present a summary of the thesis and an outlook for future research.






Chapter 2
Computational Methods

In this chapter, I will introduce relevant theoretical models, approximations and their
implementations in commonly used software packages. Density functional theory (DFT)
is one of the most widely used quantum mechanical methods to calculate the properties
of materials. This method allows total 10? simulated atoms with present computer power.
Another important calculation method is the tight-binding (TB) method, whose order of
magnitude can reach 10* or higher. Our following researches are based on those two

methods.

2.1 Density Functional Theory

DFT is based on the Hohenberg-Kohn theorems [89] and Kohn-Sham equations [90]. In

the following, We will briefly discuss their derivation processes.

2.1.1 Hohenberg-Kohn Theorems

Materials are made from atoms, while atoms contain electrons and nuclei. In quantum

mechanics, the nuclei can be treated as classical particles. The electron behaviour is
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described by Schrodinger equation. It can be written as follows:!

A

Hyy(ro1,...,FNON)

- —7ZV2+ZD )+ = ZZ Vo (r101,...,7N0N)

2= 1,;@\% 7l 2.1)
- (f+Vext+Vee) Wa(ﬁcla‘--)mGN)

=EaVYu(ri01,...,FyON).

In the above equation, A is the total Hamiltonian, which is equal to three parts: 7' (kinetic
energy), Vot (interaction between electrons and nuclei), and Vee (interaction between
electrons). We used the Born—Oppenheimer approximation [91]. Corresponding to the
above three parts, the first two terms sum overall N electrons, and the last one sums
over all pairs of N electrons. 7 is the electron position, and ¢ is the z-component of the
electron spin. y is the N-electron wave function, and « is the complete set of N-electron
quantum numbers. E is the total energy. Next, we focus on E.
By the constrained search algorithm [92], the ground-state energy E can be expressed
as:
E = min(y|H|y). (2.2)

Next we take two steps of minimization. For the first step, We can construct the universal

functional F[n(7)]:

min (Y| T + Ve |w) = (W T 4V, |y™™) = Fln(7)]. (2.3)

Y—n

For the second step, we can obtain

E= mm{ /dr (¥ } 2.4)

where v(7) is kept fixed during the minimization. The resulting density is the ground-
state density that gives the ground state energy. This is known as the density variational

principle, which is also the main idea of the Hohenberg-Kohn theorems, which are:

Theorem 1 The external potential, V. (), of any system of interacting particles is

uniquely determined (up to a constant) by the particle density, no(7), of the ground state.

Equations in this chapter are written using atomic units: fundamental constants 7, e and m, are set to
unity.
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Theorem 2 The ground state energy of a system with an external potential V() is
given by the minimum value of the energy functional Eyk[n] and the density for which

this minimum is reached corresponds with the ground state density no(F).

2.1.2 Kohn-Sham Equation

Now, the main problem is to find an approximate expression for F'[n(7)]. The Kohn-Sham
equation is a powerful method to solve this question. It considers a non-interacting
system, where the kinetic energy can be calculated exactly, and a local external potential

Vks(¥) is added. The functional F[n] can be divided into three parts:
F[n] = Ti[n] + En[n] + Excln], (2.5)

where T[n] is the non-interacting kinetic energy functional and Ex[n] is the exchange-

correlation (XC) energy. Ey[n] is the Hartree energy functional, which is

-

Eylo] =5 [ | 3" 2.6)

7=

Apart from the last term, Exc[n], everything else can be calculated exactly. By [ n(7)d7 =

N, we can obtain

OF[n] .
Sn() —v(7). 2.7)
The effective local potential Vkg(7) becomes
o 5 (SEH[H] 5Exc[l’l]
Vks(F) = v(F) + 517 () (2.8)
and the Kohn-Sham equation is
l 2 o 6EH [n] 5Exc[l’l] 5 o =
ZV,- +o(F)+ Sn () + Sn () Vo (7o) = gq o (70), (2.9)

with ground-state electron density given by
occ.

n(@) =YY Iya(Fo). (2.10)

These set of equations can be solved self-consistently. An initial guess of the density

n(7) determines the effective potential Vggs(7), then the wave functions Y, (7o) can be
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calculated from equation (2.9), a new density is calculated through equation (2.10). This

procedure is repeated until self-consistency is reached.

2.1.3 Exchange-Correlation Functional

Although the Kohn-Sham method provides an exact expression for the total energy,
unfortunately it is still not possible to solve the equation. The XC energy functional is not
known exactly and therefore needs to be approximated. The simplest approximation for
the exchange-correlation energy is the local density approximation (LDA). However, the
generalized gradient approximation (GGA) has become popular in solid state calculations,
which is a further upgrade of the LDA. Different constructions for GGA usually named
after the corresponding authors, such as GGA-PW91 (Perdew and Wang’s construction)
[93, 94] and GGA-PBE (Perdew et al.’s construction) [95]. They are the most popular
GGA approximations for solid state systems. Generally speaking, GGA-PBE is the
most popular GGA approximations for solid state systems. However, the problem is that

GGA-PBE always estimates the band gap of semiconductor.

The Hybrid Functional: HSE06

To solve the gap problem, the hybrid functionals which incorporate a part of the exact
exchange from Hartree-Fock (HF) theory were proposed in calculations, such as PBEO.
The PBEO functional [96] is

1 3
EPBEO ZE}?F + ZE)}()BE + EFBE, (2.11)

The HSEOQ6 [97, 98] takes into account the screened Coulomb potential for the exact part:
Y = BEY (0)+ (1= B)E"" ™ (@) + By (@) + EC, (2.12)

where [ is the mixing parameter and ® is the parameter to control the screening range
which defines the short-range (SR) and long-range (LR) parts. The values 8 = 0.25 and
@ = 0.2 are typically used in the HSE06 functional which turns out to give accurate band
gaps and lattice constants, see the mean absolute error (MAE) of different functionals in
Fig. 2.1 [99].

IThe SC40 test set is a collection of 40 elementary and binary solid compounds of various structures
having a wide range of band gaps.
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Fig. 2.1 MAE of the equilibrium lattice constants and band gaps of different functionals
on SC40 solid test set!. Data source: [99]

2.1.4 Software Packages

There are many different software packages capable of performing DFT calculations.
The Vienna ab initio simulation package (VASP) code [100, 101], where the ion-electron
interactions were described using projector-augmented-wave (PAW) potentials [102], is
one of the most accurate codes that was used in the present thesis. The reason is not
only its well-optimized performance on supercomputers gives good results in less time as
compared with the others, but also it has a good interface with other softwares. Therefore,

this code will be used as the main tool for all the calculations done in this thesis.

2.2 Tight-Binding Theory

With the applications of DFT in all kinds of numerical software packages, researchers
who use DFT as a tool study practical materials without accurate knowledge of DFT.
Hereby is called "black box". In order to give a more physical explanation of the results
of density functional theory, we consider the tight-binding (TB) model. The physical
picture of TB model is that there is not much difference between the electronic states in a

solid and free atomic states. TB method was first proposed by F. Bloch in 1929 [103].
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Its central idea is to use atomic orbitals as basis functions and to solve the Schrodinger
equation by expressing the solution as a linear combination of atomic orbitals (LCAO)

For the u-th atomic orbital of i-th atom located at R+7:
O = Om(F—R) = 9 (F—R—7T), 2.13)

where R is the lattice vector, and 7, is the atom location in unit cell. m is iu (the pu-th

atomic orbital of i-th atom). Bloch basis functions can be expressed as LCAO:

L(F) = Ze’%'(mﬁ)q)m(?—ﬁ). (2.14)
R
Bloch eigenstates are
V=Y Coom(F—R). (2.15)
m

The Schrodinger equation of a single electron is

Using Dirac symbols, it can be rewritten as

’ll/ﬂ%(?)> - chk ‘(Pmk> (217)

Then

where the matrix element of Hamiltonian is

Hyprm = <¢m’}‘H|¢mk Z R+T} Tl /m(l_é) (219)
R

Hyym(R) = (9,,7/H9, ) is the TB parameter, which is called the hopping term. Atomic

orbital overlap integral can be expressed as

Smim = <¢m/75’¢mk>a (2.20)
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and the Hamiltonian can be simplified as
Y Co (Hurm — E,Suim) =0. @21)
m
which is equal to solving the intrinsic equation
det (Hym — E,7zSwm) = 0. (2.22)

It should be noted that atomic orbitals satisfy the orthogonality, < ¢z, [0z, >= Oz Sns
the S,,, = 0.

In 1954, J. C. Slater and G. F. Koster proposed a valuable method that uses a series
of parameters replacing the hopping matrix elements, which is called Slater-Koster TB
method [104]. This method can be applied in combination with results of DFT and
experiment.

Here, we only consider the interaction between two atoms including 4 atomic orbitals

(s, px» py-and p;) with a position vector 7. 7 can be expressed as
?: (rxaryarz) = |?‘ (laman)a (223)

where 1/m/n is the direction cosine of the 7. The hopping matrix element, H,,,, (I_é) can be

expressed by corresponding Slater-Koster parameter, as shown in In Table 2.1.

Table 2.1 Slater-Koster parameters: Vs, Vips, Vppo, and Vpr

‘PS ¢Px ¢Py (PPZ
Os Viso lepG mVspG nVspG
Op.  —WVps  PVopo+(1=1)Wypr Im(Vypo —Vypr) In(Vypo = Vopr)
Op,  —mVips Im(Vpps — Vppr) mzvpm + (1 - mz)Vppﬂ mn(Vyps —Vppr)
Op.  —1Vspo In(Vpps — Vppr) mn(Vpps — Vppr) n*Vypo + (1 =n*)Vppz

2.3 Spin-Orbit Coupling

The spin angular momentum of an electron is S, = /1/2, and its relationship to magnetic
moment is

fi=-—"§=—"122 (2.24)
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The origin of spin-orbit coupling (SOC) is the spin angular momentum and magnetic
moment. The magnetic field strength for an electron is
Voo

Hp=—-xE. (2.25)
C

The strength of SOC after relativistic effect correction is

1, = 1 =
Hgpe = —5H -Hp = W(W X p)-S. (2.26)

For the electron in an atom, it can be written as
HS, = E(FL-S, (227)

where L is the orbital angular momentum. The orbital angular momentum and spin

angular momentum can be coupled by SOC, which is
J=L+S5. (2.28)

Due to

J-J=L-L+S-S+(L-S+5-L), (2.29)
the relationship of quantum number j/I/s becomes

-,

JUH) =11 +1)+s(s+1)+2(L-S)/n* (2.30)
We can conclude that (L - S) is the expected value of L - S, and it is

T
<L-S>:?[j(j+1)—l(l+1)—s(s+1)]. (2.31)
We can see that (L -S) can have two different values due to j = 3/2 or 1/2 for p
atomic orbital (I = 1, s = 1/2), which is the energy level splitting origins from SOC. It is
generally accepted that the strength of SOC is related with the atomic number Z.
In the analysis of the low energy effective model, the new Hamiltonian can be written

as

H = Hy +Hsoca (232)
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where Hy can be obtained by Slater-Koster parameters, and Hsoc can be obtained by a
SOC parameter A and a matrix. As we discussed above, we only consider s, py, py, and

P, atomic orbitals, and then the matrix elements of SOC can be express in Table 2.2.

Table 2.2 TB parameters of SOC

s Px Dy Pz
s 0 0 0 0
pr 0 O —is,  isy
py 0 s, 0 —iSy
p: 0 —isy sy 0

In real materials, SOC is very complex. It is a relativistic effect. Generally speaking,
the larger atomic number, the more obvious SOC, but it is not absolute. Take the graphene
as an example, its SOC effect is too small that no experiment can detect it. Many previous
studies focused on this question [105-109]. Using first-principles calculation and TB
model, Yao et al. show a gap of 0.8 x 103 meV, which is due to the C3 symmetry of
graphene. The Dirac point of graphene comes from p, atomic orbitals of carbon atoms.
The atomic number of carbon element is the same to that of nitrogen element. However,
for the Dirac point coming from p,, atomic orbitals of carbon/nitrogen, its SOC effect
can be obvious, which can reach 5 meV [110]. By above analysis, the SOC effect in real

materials is relationship to element, atomic orbitals, and structure symmetry.

2.4 Wilson Loop Method and Topological Invariant (Z,)/Chern
Number (C)

Many ways are proposed for calculating topological invariants [111]. One of the simplest
way is the Fu-Kane parity criterion [49], which only involves the parity eigenvalues of the
energy bands at the time-reversal invariant momentas in the inversion symmetry systems.
However, not all the real systems are inversion symmetry systems, and we need much
efforts to search the inversion symmetry system that is topological equivalent to inversion
symmetry breaking system. Other proposals for calculating topological invariants involve
very complicated numerical calculations [112]. Therefore, the most efficient and common
way to calculate topological invariants is called as Wilson loop or Wannier charge centers
methods [113, 114].
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For a 2D system, we can choose a two parameter space such as (ky,k,) space in BZ
in Fig. 2.2. If we let k, be fixed, then a 1D subsystem could be defined in the k, direction.
For the 1D subsystem with discretized points k,;(i = 1---N,), we need to calculate the

discretized non-Abelian Berry connection
i (ky) = (m ki kylns ki, ky) - (2.33)

Here, |n, k., k, > is the cell periodic part of Bloch eigenstate. U (2N) Wilson loop could
be constructed by the discretized non-Abelian Berry connection F/?}, (k,),

D(ky) =Fy1Fi2- Fy—2n—~1Fn—10- (2.34)

Then, we can diagonalize the matrix D(k,) to obtain the eigenvalues A, (k,). The phase

angles for the Wilson loop method could be obtained by
0, (ky) =Im[logA, (ky)]. (2.35)

We can also notice that 6, is related with the Hybrid Wannier charge centers

a

- 21/a _ _ 0,
Xp = — < unk|13kunk > dk = a—, (2.36)
271 Jo

2n

where a is the lattice constant. So Wilson loop method is also called as Wannier charge
centers methods.

The physical picture of Wilson loop method is that the evolution of phase angles 6,
in ky, parameter space, which indicates the winding of phase angles along the torus of
BZ. For a Chern insulator (C), we need to observe the evolution of 6, along k, € [—, 7],
as shown in Fig. 2.3. For the trivial case, we can see that O winds the torus zero times,
thus gives Chern number C = 0. For the nontrivial case, 8 winds the torus one times,
thus gives Chern number C = 1. For Z; insulator with time reversal symmetry, we need
only consider k, € [—,0], and there are two phase angles due to TR symmetry. We can
conclude that the trivial case of Z, = 0 and nontrivial case Z, = 1, both are similar to the

Chern insulator, as shown in Fig. 2.4.
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Fig. 2.2 Schematic representations of 2D BZ. (a) Periodic extension along the direction
of k/ky. (b) Torus surface. Image source: Ref. [115]
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Fig. 2.3 Schematic representations of phase angle 6, (k,) evolution. (a) C = 0. (b) C = 1.
Image source: Ref. [115]
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Fig. 2.4 Two different topological systems of band phase evolution under TR symmetry.
(a) Z, = 0. (b) Z; = 1. Image source: Ref. [115]



Chapter 3
C-Based Material: H, 4 4+-Graphyne

'Two-dimensional (2D) carbon materials play an important role in nanomaterials. We
propose a new carbon monolayer, named hexagonal-4,4,4-graphyne (Hy 4 4-graphyne),
which is a nanoporous structure composed of rectangular carbon rings and triple bonds
of carbon. Using first-principles calculations, we systematically studied the structure,
stability, and band structure of this new material. We found that its total energy is lower
than that of experimentally synthesized 3-graphdiyne and it is stable at least up to 1500
K. In contrast to the single Dirac point band structure of other 2D carbon monolayers, the
band structure of Hy 4 4-graphyne exhibits double Dirac points along the high-symmetry
points and the corresponding Fermi velocities (1.04 ~ 1.27 x 10% m/s) are asymmetric
and higher than that of graphene. The origin of these double Dirac points is traced back
to the nodal line states, which can be well explained by a tight-binding model. The
Hy 4 4-graphyne forms a moiré superstructure when placed on top of a hexagonal boron
nitride substrate. These properties make Hy 4 4-graphyne a promising semimetal material

for applications in high-speed electronic devices.

3.1 Introduction

Monolayer graphene was first realized in 2004 [2] and since then two-dimensional (2D)
carbon material research has played a crucial role in nanomaterials. Many kinds of 2D
carbon allotropes have been proposed due to the huge flexibility of the carbon bond-

ing. Graphdiyne [17], a special structure of graphyne, has been realized experimentally.

I'The results of this chapter were published as: L. Li, X. Kong, and F. M. Peeters, Carbon 141, 712
(2019).
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Topological defects [116—118], which include non-hexagonal carbon rings, have been
observed in graphene. Many newer 2D carbon allotropes have been predicted theoret-
ically with novel crystal structures that can be classified into two general classes. The
first are carbon monolayers that include some non-hexagonal carbon rings [119-121],
such as Haeckelite Hs g 7 [122]/phagraphene [123]/¥-graphene [124] (5-6-7 rings), T
graphene [125] (4-8 rings), and penta-graphene [126] (5 rings). These structures exhibit
sp?/sp® hybridization of the carbon atom. The second one are the carbon monolayers that
have the triple bonds of carbon (-C=C-) due to the sp hybridization of the carbon atom,
such as a/B/y/816,6,12-graphyne [127-129], in which the carbon atoms (sp? hybridiza-
tion)/hexagonal carbon rings are connected by -C=C-. These 2D carbon allotropes show
different fundamental physical and chemical properties. Not only their band structure
changes from metal/semimetal to semiconductor, but also they can be used in many
energetic and environmental applications, such as for gas separation [130], and for wa-
ter desalination [131]. The abundant new 2D carbon structures also provide efficient
inspiration for structural predictions of other elements [132], leading to many more new
lattice structures with excellent properties. Although many 2D carbon allotropes have
been predicted, combining structural properties of the above two classes have been scarce
up to now [133-135].

The topologically nontrivial materials, such as topological semimetals, have attracted
broad interest. There are three distinct kinds of topological semimetals: Dirac, Weyl,
and nodal line semimetals [136]. For the nodal line semimetals, the band crossing points
form a continuous Dirac loop with a relatively higher density of states at the Fermi
level [137], which is an advantage for high-speed electronic devices. Many kinds of
three-dimensional (3D) nodal line bulk materials, such as PtSny [138], PbTaSe; [139],
and ZrSiS [140, 141], have been realized experimentally. Theoretically, TlITaSe, [142],
3D-honeycomb graphene networks [143], CaszP; [144, 145], LnX (Ln = La, Gd; X =
Cl, Br) [146], CuzPdN [147], and body-centered orthorhombic C;¢ [148], have been
predicted to show nodal line states [149]. In contrast to the extended literature on 3D
nodal line semimetals, the study of semimetal nodal line states in 2D materials is still in
its infancy. This has only been confirmed experimentally in a Cu,Si monolayer [150]
and theoretical predictions of a nodal line band structure have been made for several 2D
materials, such as Be;C/BeH; [151], MX (M = Pd, Pt; X =S, Se, Te) [137], and A3B,
compound (A is a group-IIB cation and B is a group-VA anion, such as HgzAs,) [152].
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Therefore, there is a need for more predictions of new 2D nodal line semimetals that are
stable and can be realized experimentally.

In this work, we constructed a new graphyne monolayer with a hexagonal lattice
using rectangular carbon rings and triple bonds of carbon. According to the naming rule
of graphyne and its lattice feature, Hy 4 4-graphyne is obtained. Using first-principles
calculations, we systematically investigated the structure, energy, stability, and electronic
band structure of the Hy 4 4-graphyne monolayer. This monolayer shows a nanoporous
structure and its total energy is almost equal to that of S-graphyne. The phonon spectrum
provides convincing evidence for the dynamical stability of Hy 4 4-graphyne and our
molecular dynamics (MD) calculations show that the monolayer is stable up to a high
temperature. Different to the band structure with a single Dirac point as found in most
other carbon monolayers, Hs 4 4-graphyne owns a band structure consisting of double
Dirac points along the high-symmetry points with high Fermi velocities, which we
confirm using different calculation methods. From an analysis of the orbital-projected
band structure, we found that the p, atomic orbitals of the carbon atoms are responsible
for the double Dirac points in the Hy 4 4-graphyne monolayer. Using the p, atomic orbitals,
a tight-binding (TB) model is constructed, which not only reproduces the double Dirac
points, but also shows that the physical origin of the double Dirac points can be traced
back to the nodal line states. Finally, we show that the Hy 4 4-graphyne/hexagonal boron
nitride (h-BN) moiré superstructure is a possible way of realizing the Hy 4 4-graphyne

monolayer experimentally.

3.2 Calculation Method

Our first-principles calculations were performed using the Vienna ab initio simulation
package (VASP) code [100, 101], implementing density functional theory (DFT). The ion-
electron interactions were described using projector-augmented-wave potentials (PAW)
[102]. The electron exchange-correlation functional was treated by using the generalized
gradient approximation (GGA) in the form proposed by Perdew, Burke, and Ernzerhof
(PBE) [153]. The atomic positions and lattice vectors were fully optimized using the
conjugate gradient (CG) scheme until the maximum force on each atom was less than
0.01 eV/A. The energy cutoff of the plane-wave basis was set to 520 eV with an energy
precision of 107> eV. The Brillouin zone (BZ) was sampled by using a 9 x 9 x 1 I'-

centered Monkhorst-Pack grid. The vacuum space was set to at least 15 A in all the
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calculations to minimize artificial interactions between neighboring slabs. The phonon
spectrum was calculated using a supercell (4 x 4) approach within the PHONOPY code
[154].

3.3 Results and Discussions

3.3.1 Structure

The investigated graphyne monolayer is shown in Fig. 3.1(a). Its hexagonal framework
structure is composed of rectangular carbon rings, connected by the triple bonds of carbon.
The carbon atoms in the rectangular carbon rings are close to sp? hybridization, because
the angle of the two neighboring single bonds of carbon (-C—C-) is not equal to 120°
while the carbon atoms in the -C=C- are close to sp hybridization, because the four carbon
atoms (-C—C=C—C-) are not located in a strict straight line. According to the naming rule
of graphyne [16], the new graphyne should be named as 4,4,4-graphyne. To distinguish
the rectangular graphyne (R-graphyne) [155], which can also be called as 4,4,4-graphyne
using the naming rule of graphyne, we call our proposed graphyne hexagonal-4,4,4-
graphyne (Hy 4 4-graphyne). Most new predicted graphyne structures are based on the
hexagonal graphene structure by inserting triple bonds of carbon, such as 6,6,12-graphyne
[129], 14,14,14-graphyne [156], and o-graphyne (&-2/a-3/¢-4 graphyne) [157, 158],
while those with non-hexagonal carbon rings are rather exceptional [133-135, 155]. Here,
we provide a novel structure model in which the rectangular carbon rings and triple
bonds of carbon can coexist, providing a novel structure model for new stable carbon
monolayers.

The lattice of the Hy4 4 4-graphyne is not only a hexagonal lattice, but also a kagome
lattice [152], which is formed by all the centers of the rectangular carbon rings. Its
lattice constant is 11.82 A. There are four kinds of bond lengths, which are labeled I,
I, I3, and l4, as shown in Fig. reffig:3-1(a). The /; = 1.247 A is the length of the carbon
triple bond, which is formed by two carbon atoms close to sp hybridization and the
value of /; is close to that of the other graphyne structures [127]. All the other carbon
atoms are close to sp2 hybridization with bond lengths, [, = 1.351 A, I3 =1.453 A, and
I3 =1.489 A. Since Hj 4 4-graphyne can be regarded as inserting -C=C- into the -C—-C-
of graphenylene that are shared by 6 and 12 carbon rings [130], the graphenylene bond
lengths (1.367/1.474/1.473 A) are close to those of our structure (/»/13/14). The nanoporous
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Fig. 3.1 Schematic representations (top and side views) of Hy 4 4-graphyne (a) and its
phonon spectrum along the high-symmetry points in the BZ (b). The blue dots are the
carbon atoms. The four kinds of bond lengths are labeled /1, /5, /3, and /4, and the diameter
of the circumcircle (red dotted line) of the 24 carbon ring is labeled d. The black box is
the unit cell.

graphenylene membrane has been theoretically predicted to achieve efficient He/*He
separation for industrial applications [130], while the graphyne membrane has been
proposed for water desalination [131]. Besides these carbon monolayers, the C,;N-A2D
[159] and g-C3N4 [160] membranes have also been proposed for separation applications,
depending on their nanoporous structure. The diameter d = 9.30 A of the circumcircle
(red dotted line in Fig. 3.1(a)) of the 24 carbon ring of Hy 4 4-graphyne is much larger
than the one of other monolayers (5.49 A for graphenylene [130], 6.90 A for graphyne-3
[131], 5.51 A for C,oN-h2D [159], and 4.76 A for g- C3Ny [160]) and is comparable to
that of the well-known covalent organic frameworks, which have been shown to have

potential for a wide range of applications in gas/liquid separation [161].

3.3.2 Energy and Stability

Introducing sp-hybridized carbon atoms can increase the system total energy (£; in units
of eV per carbon atom) of carbon allotropes. Graphene shows the lowest E; in all the
carbon allotropes while the graphyne structures have a higher E; due to the presence
of sp-hybridized carbon atoms [128]. Setting n (N) as the number of sp-hybridized
carbon atoms (total carbon atoms) in the unit cell, we calculated the ratio n/N. For
y-graphyne, B-graphyne, and a-graphyne, E, increases with the value of this ratio
(Table 3.1). However, Hy 4 4-graphyne shows the same ratio (0.50) as y-graphyne, but its
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E; is higher than that of y-graphyne and comparable to that of S-graphyne. This can be
ascribed to the special structure of Hy 4 4-graphyne. In contrast to fully sp>-hybridized
carbon atoms of y-graphyne in which the three angles of the two neighboring single
bonds are all 120° [127], the three angles in our structure are 140.1° (belonging to the
24 carbon ring), 129.9° (belonging to the 12 carbon ring), and 90° (belonging to the
4 carbon ring), which leads to an increase of E;. Similar situations can apply to the
sp-hybridized carbon atoms, where the angle between single bond and triple bond of
Hy 4 4-graphyne becomes 170.1° (belonging to the 12 carbon ring) instead of 180° of
y-graphyne. Although Hy 4 4-graphyne shows a higher E; as compared to graphene, it is
still energetically preferable over some experimentally investigated carbon nanostructures,
such as the B-graphdiyne film [162, 163] and the T-carbon nanowire [164]. The calculated
E; of B-graphdiyne/T-carbon is —8.31/—7.92 eV/atom [165], which is less favorable than
the —8.37 eV/atom of the proposed Hy 4 4-graphyne structure, implying that there is a

possibility that Hs 4 4-graphyne can be realized experimentally.

Table 3.1 Calculated ratio of sp-hybridized carbon atoms (#) to the total carbon atoms
(N) in the unit cell and total energy E, (eV/atom) of different 2D carbon allotropes.

2D carbon allotropes  Ratio (n/N)  E; (eV/atom)

Graphene 0(0/2) —-9.22
Hy 4 4-graphyne 0.50 (12/24) —8.37
y-graphyne 0.50 (6/12) —8.58
B-graphyne 0.67 (12/18) —8.38
o-graphyne 0.75 (6/8) —8.30

Here we propose a possible chemical route to realize our new carbon material using
the cyclobutadiene molecule (C4Hy) [166, 167] and acetylene molecule (C2H;). Our
calculated energy results confirm that the dehydrogenation process of C4H4 and CyH»,
3 C4Hs + 6 CoHy — Hy 4 4-graphyne (24 carbon atoms per unit cell) + 12H», is an
exothermic reaction (—4.76 eV/ unit cell of Hy 4 4-graphyne), implying that the chemical
method is thermodynamically allowed [168]. Besides, many recent experiments clearly
indicate that the members of the 2D carbon family are continuously increasing day by day.
The successful syntheses of y-graphyne (one triple bond between two hexagonal rings)
[169] and graphtetrayne (four triple bonds between two hexagonal rings) [170] enrich
the graphyne family while the successful synthesis of 4-6 carbophene (graphenylene)

[130, 171] consisting of 4-carbon and 6-carbon rings in 1:1 ratio confirms the existence
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of rectangular carbon rings in 2D carbon materials. The above experimental progresses
of the syntheses of novel 2D carbon materials indicate that the Hy 4 4-graphyne structure
with rectangular carbon rings and triple bonds of carbon will have a very good chance
to be synthesized in the future. Next, we studied the stability of Hy 4 4-graphyne from
dynamical and thermal aspects. The phonon spectrum of Hy 4 4-graphyne is shown
in Fig. 3.1(b). The phonon spectrum is free from imaginary frequency modes, which
indicates that the Hy 4 4-graphyne monolayer is dynamically stable. Then we confirm the
thermal stability of the Hy 4 4-graphyne monolayer by first-principles MD simulations.
The MD simulations were performed by adopting the canonical ensemble with a Nose
thermostat. We used a 2 x 2 supercell to perform MD simulations at 500 K, 1000 K, and
1500 K for 10 ps with a time step of 1 fs. The fluctuations of the total energy with time
at the three temperatures are shown in Fig. 3.2(a), (b), and (c), and the corresponding
snapshot of the atomic configuration after the MD simulations (10 ps) is given at the
bottom of Fig. 3.2(a)/(b)/(c). The total energy of the system converges within this time
scale. The final geometrical framework of the Hy 4 4-graphyne structure containing the
4-12-24 carbon rings is well preserved and no structure reconstruction is found to occur in
all the three cases. The three different temperatures have little influence on the nanoporous
structure, implying that Hy 4 4-graphyne monolayer is robust. The above dynamical and
thermal results indicate that the Hy 4 4-graphyne monolayer is stable at least up to 1500 K,

which shows its great potential for applications in a high temperature environment.

3.3.3 Band Structure

The electronic band structure of the Hy 4 4-graphyne monolayer is shown in Fig. 3.3. The
red lines indicate the band structure at the PBE level (Fig. 3.3(a)), which shows two
Dirac points at the P (M-I") and Q (I'-K) points along the high-symmetry points in the
BZ. An enlarged view of the bands at the P/Q point near the Fermi level is presented in
Fig. 3.4(a)/(b), which shows that two bands cross linearly at the Fermi level and thus
the charge carriers can be characterized by massless Dirac fermions. To fully confirm
the existence of the double Dirac points, we used the more sophisticated Heyd-Scuseria-
Ernzerhof (HSEO06) [97, 98] hybrid functional method to calculate the band structure of
Hy 4 4-graphyne monolayer, which is shown in Fig. 3.3(b) (blue lines). Similar double
Dirac points at P> (M-I') and Q’ (I'-K) points can also be clearly seen. From the enlarged
view of the bands at the P’/Q’ point near the Fermi level (Fig. 3.4(c)/(d)), we confirm
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Fig. 3.2 Fluctuations of total energy as function of simulation time and the corresponding
snapshots of the atomic configuration (top view) after the MD simulations (10 ps) at the
temperature of 500 K (a), 1000 K (b), and 1500 K (c).

that the two bands cross linearly at the Fermi level, which is similar to the result of PBE.
Although the PBE method typically underestimates the band gap of semiconductors, the
fact that the HSEO6 method gives the same Dirac points [172, 173] strengthens us in the
validity of the band structure around the Fermi level. A few 2D carbon structures exhibit
a Dirac point at the K point with a high velocity, such as a-graphyne [127], §-graphyne
[128], and graphene. Phagraphene [123] and B-graphyne [174] have a distorted Dirac
point, which is not located in one of the high-symmetry points. In contrast to the above
band structures with a single Dirac point, 6,6,12-graphyne [129] and buckled T graphene
[125] show a band structure with double Dirac points along the high-symmetry points.
Although Hy 4 4-graphyne and buckled T graphene have similar double Dirac points
around the I" point, there is a major difference. The two Dirac points of Hy 4 4-graphyne
are at the same energy (|E(P) —E(Q)| < 0.05 meV and |E(P’) —E(Q’)| < 0.09 meV),
which is different from that of buckled 7 graphene where the two Dirac points are
separated by an energy of 25 meV [125].

From the Dirac point with linear bands, we can calculate the Fermi velocity (vg) by a
linear fitting of the first-principles calculations date. Because the Dirac points are not at
the high-symmetry points, the double Dirac points can be regarded as two distorted Dirac
points, which is similar to that in phagraphene [123]/distorted GaBi-X, monolayers (X =1,
Br, Cl) [175]/1T-YN, [176]. In general, the distorted Dirac point has two different Fermi



3.3 Results and Discussions 35

——PBE ——HSEQB
(a) (b}

Energy (e\V)
o -
o T T T
Energy (V)

M P r Q K Y

Fig. 3.3 Band structures of the Hs 4 4-graphyne monolayer from PBE calculations (red
lines, (a)) and HSEQG6 calculations (blue lines, (b)). The Dirac point in reciprocal space is
labeled as P/Q/P’/Q’. The energy at the Fermi level was set to zero.
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Fig. 3.4 An enlarged view of the bands at the P(a)/Q(b)/P’(c)/Q’(d) point near the Fermi
level along the direction of M-I'/I"-K/M-I'/T*-K. Corresponding to Fig 3.3, the red/blue
lines are the band structures from PBE/HSEQ6 calculations. The slope of the band close
to the Dirac point P is indicated by S and a similar label can be applied to Q/P’/Q’.
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velocities along the high-symmetry line directions. Setting the slope of the bands close
to the Dirac point along the M-I" (I'-K) direction as S (Fig. 3.4(a)), we obtain two kinds
of slopes (S > 0 and S < 0) at each Dirac point, and thus two different Fermi velocities
can be obtained. For the band structures at the PBE level (red lines, Fig. 3.4(a) and
(b)), the Fermi velocities of the two distorted Dirac points are vp (P, S > 0) = 0.87 x 10°
m/s, vp(P, S < 0) = 0.99 x 10° m/s, vp(Q, S > 0) = 1.07 x 10° m/s, and vr(Q, S <
0) = 0.95 x 10% m/s. Comparing these results with that of graphene at the PBE level,
vr(K) = 0.83 x 10° m/s, the Fermi velocities of Hy 4 4-graphyne (0.87 ~ 1.07times10°
m/s) are slightly high. It is well known that there are many kinds of 2D carbon structures
with a Dirac point, but their Fermi velocities are lower than that of graphene [123], such
as a-graphyne (0.687 x 10% m/s) [158] and §-graphyne (0.696 x 10% m/s) [128]. To
our knowledge, the Fermi velocities of Hy 4 4-graphyne are the highest Fermi velocities
among all the 2D carbon structures. To further confirm the superiority to graphene, we
also calculated the four Fermi velocities at the HSEOQG6 level (blue lines, Fig. 3.4(c) and
(d)). The Fermi velocities are vy (P’, S > 0) = 1.04 x 10° m/s, v (P, S < 0) = 1.19 x 10°
m/s, vr(Q’, S > 0) = 1.27 x 10% m/s, and v (Q’, S < 0) = 1.13 x 10 m/s. These results
(1.04 ~ 1.27 x 10 m/s) are also slightly higher than the result for graphene at the
HSE06 level, v (K) = 1.01 x 10 m/s. From the above results obtained within different
calculations methods, we confirm the ultrahigh Fermi velocity of Hy 4 4-graphyne, which
is advantageous for building high-speed electronic devices, such as field effect transistor.

To investigate the origin of the double Dirac points, we calculated the orbital-projected
band structure along the high-symmetry points in the BZ at the PBE level as shown in
Fig. 3.5(a). It is clear that the bands (red dots) including the double Dirac points close
to the Fermi level originate from the p, atomic orbitals of the carbon atoms. This is
similar to most other 2D carbon structures having a Dirac point, such as phagraphene
[123], §-graphyne [128], and a-graphyne [158] and the interaction between the p, atomic
orbitals leads to the formation of a 7-conjugated framework. The s + p, + p, atomic
orbitals only contribute to the bands (blue dots) located in the region around 1.2 eV
(valence band) and 2.4 eV (conduction band) away from the Fermi level.

For most 2D carbon structures, their low energy band structures can be well repro-
duced by a TB model. To further illustrate the band structure with the double Dirac points
of Hy 4 4-graphyne monolayer, we propose a TB model involving only the p, atomic

orbitals of the twenty-four carbon atoms in the unit cell. The effective Hamiltonian is
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Fig. 3.5 Orbital-projected band structure of Hy 4 4-graphyne monolayer from PBE calcu-
lations (a) and band structure of Hy 4 4-graphyne monolayer from TB calculations (b). In
figure (a), the red (blue) dots represent the contributions from the p, (s+px+py) atomic
orbitals of the carbon atoms. The red dots in figure (b) correspond to those in figure (a).
The 3D band structure from TB calculations around the nodal line is presented as an
insert in figure (b).

taken as [128]

H=Y (tjcfcj+hc.), 3.1
(ij)
where ¢; and c; represent the creation and annihilation operators of an electron at the
i-th atom, respectively. Since all atoms are carbon atoms, we can neglect the on-site
energy difference of these carbon atoms and set it as zero. To get a better understanding
for the appearance of the double Dirac points, we only consider the hopping of the
p. atomic orbitals between the nearest-neighboring carbon atoms. Corresponding to
the four bond lengths (/1, I, /3, and Iy), there are four hopping parameters 7(1;), t(L),
t(l3), and #(l4). The distance-dependent hopping energy is determined by the formula
t(Ln) = toexplq(1 =1, /1p)] [123], wheretg =2.7eV, ¢ =2.2,lp = 1.5 Aandm=1,2,3,4.
We can obtain the band structure of Hy 4 4-graphyne by diagonalizing a 24 x 24 matrix in
reciprocal space along the high-symmetry points and the result is shown in Fig. 3.5(b).
Corresponding the red dots representing the contributions from the p, atomic orbitals of
the carbon atoms in Fig. 3.5(a), the TB bands that are also indicated by the red dots are in
good agreement with the PBE results; in particular, the double Dirac points at the Fermi
level are very accurately reproduced.

Double Dirac points in 2D carbon structures can have two kinds of origins. One is the

double Dirac cones as shown in cp-graphyne [133] and 6,6,12-graphyne [174], where the
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two Dirac points come from the two Dirac cones. Another one is that the linear dispersion
relation near the Fermi level exists in each direction forming a Dirac loop, which is called
a nodal line band structure, such as in buckled 7" graphene [125]. To further distinguish
the two kinds of origins in Hy 4 4-graphyne, we calculated the 3D band structure (insert of
Fig. 3.5(b)) around the double Dirac points. Notice that the two band lines forming the
double Dirac points become two band surfaces, which cross at the Fermi level forming
a Dirac loop (black line in insert of Fig. 3.5(b)). This kind of band structure should
obviously be a Dirac nodal line band structure, which implies that Hy 4 4-graphyne is a
2D Dirac nodal line semimetal [137, 150-152, 177-179].

3.3.4 Moiré Superstructure

H-BN is an appealing substrate material, because it has an atomically smooth surface that
is relatively free of dangling bonds and charge traps [180]. It has been a standard substrate
for graphene, as confirmed experimentally and theoretically [181, 182]. Different from
the simple stacking models, such as AA and AB, the graphene/h-BN heterostructure
results in a moire superstructure stacking model, where the interaction between the two
planer layers is due to van der Waals (vdW) force [181, 182]. In theoretical calcula-
tions and experimental syntheses, since h-BN substrate can well preserve the hexagonal
honeycomb structure of graphene [181, 182], it has been a preferential substrate for
other 2D monolayer structures, such as silicene [183]/germanene [184] and f3-graphdiyne
[163]/graphdiyne [185]. Here, we constructed a Hy 4 4-graphyne/h-BN heterostructure
with the moire superstructure stacking model. The superstructure is shown in Figure 6(a),
in which we used the v/21 x v/21 h-BN supercell to match the 1 x 1 Hy 4 4-graphyne. In
the PBE calculations of the superstructure, the vdW interaction is included (DFT-D3)
[186]. Similar to other moire superstructures, such as graphene/h-BN [182], silicene/h-
BN [183], germanene/h-BN [184], and silicene/MoS; [187], an obviously rotation angle
between the lattices of Hy 4 4-graphyne and h-BN substrate can be seen. The correspond-
ing band structure is shown in Fig. 3.6(b). It is clear that the bands from the h-BN
substrate are far away from the Fermi level and the double Dirac points are still located at
the Fermi Level. Due to the effect of h-BN substrate, a small band gap will be opened
in the two Dirac points, which is similar to the experiment of graphene/h-BN [188]. We
therefore propose that the h-BN substrate may be an ideal substrate for Hs 4 4-graphyne,

which contributes to the stabilization of the monolayer.
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Fig. 3.6 Schematic representation (top view) of Hy 4 4-graphyne/h-BN moire superstruc-
ture (a) and corresponding band structure from PBE + vdW calculations (b). The
blue/green/silver dots are carbon/boron/nitride atoms.

3.4 Conclusion

In summary, using first-principles calculations combined with a TB model, we predict
that the new carbon monolayer, Hy 4 4-graphyne, is a nodal line semimetal with: 1) a
nanoporous structure, 2) high stability, 3) band structure with double Dirac points, and
4) ultrahigh Fermi velocities. The nanoporous structure shows potential applications
for gas/liquid separation. The value of the total energy, phonon calculations, and MD
simulations fully confirm its energetic, dynamical, and thermal stability. The double
Dirac points with ultrahigh Fermi velocities make Hy 4 4-graphyne a promising material
for high-speed electronic devices. A simple TB model was constructed and shows that
the origin of the double Dirac points is the nodal line states. At last, we pointed out
that the Hy 4 4-graphyne/h-BN moiré superstructure shows a possible way of realizing

Hy 4 4-graphyne monolayer experimentally.






Chapter 4

C-Based Materials: Dumbbell CsN

"Two-dimensional (2D) carbon nitride materials play an important role in energy-harvesting,
energy-storage and environmental applications. Recently, a new carbon nitride, 2D
polyaniline (C3N) was proposed [PNAS 113 (2016) 7414-7419]. Based on the structure
model of this CzN monolayer, we propose two new carbon nitride monolayers, named
dumbbell (DB) C4N-I and C4N-II. Using first-principles calculations, we systematically
study the structure, stability, and band structure of these two materials. In contrast to other
carbon nitride monolayers, the orbital hybridization of the C/N atoms in the DB C4N
monolayers is sp>. Remarkably, the band structures of the two DB C4N monolayers have
a Dirac cone at the K point and their Fermi velocities (2.6/2.4x 10> m/s) are comparable
to that of graphene. This makes them promising materials for applications in high-speed

electronic devices. Using a tight-binding model, we explain the origin of the Dirac cone.

4.1 Introduction

Monolayer graphene was first realized in 2004 [2] and since then the group IV elemental
monolayers have played a crucial role in the field of two-dimensional (2D) materials.
In experiments, silicene, germanene, and stanene were all synthesized on different
substrates [189—-197], such as heterostructures of silicene(germanene)/MoS, [193, 195]
and stanene/Bi;Tes [197], which preserve the hexagonal honeycomb structure of the
isolated monolayers. Without spin-orbit coupling (SOC), silicene, germanene, and

stanene all have a zero electronic band gap with two bands crossing linearly at the

IThe results of this chapter were published as: L. Li, X. Kong, O. Leenaerts, X. Chen, B. Sanyal, and F.
M. Peeters, Carbon 118, 285 (2017).
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Fermi level and their extremely large Fermi velocity (vr) makes them ideal materials
for high-speed electronic devices [198, 199]. Taking SOC into account, they all show a
nontrivial band gap at the K point which can reach up to 73.5 meV (stanene), making
them promising to realize quantum spin Hall (QSH) effect at room-temperature [199].
Besides the buckled hexagonal honeycomb structure, another stable structure model
of Si/Ge/Sn, known as the dumbbell (DB) structure, was proposed in previous studies
[200-202]. Different to the band structure of stanene, the DB structure of Sn shows
a band inversion at the I" point due to SOC and was predicted to be a 2D topological
insulator [200]. By functionalization, Sn/Ge DB structures show nontrivial band gaps
that can reach up to 235 meV [203-206] while the Si DB structure can also become a 2D
topological insulator under external strain [207]. In contrast to the extended literature on
DB structures of Si/Ge/Sn, studies on the DB structure of C have been scarce up to now
[208].

Besides the group IV elemental monolayers and their allotropes, carbon nitride
materials are another important set of 2D materials. Many 2D carbon nitride materials can
be applied in some important physical and chemical processes. Among these, graphitic
carbon nitride (g-C3N4) has been studied for a long time [209] and it can be used in many
energetic and environmental applications, such as hydrogen generation [210], efficient
energy storage [211], and photocatalytic degradation of pollutants [212]. Nanoporous
carbon nitride materials, such as the Co,N monolayer [34], can be applied in gas separation
[213, 214, 160] or water desalination [215]. The carbon nitride materials not only
have a huge potential in applications but also exhibit many interesting physical effects,
including QSH [216], quantum anomalous Hall (QAH) [217, 218], and spin-polarization
[219, 220] effects. More and more new 2D carbon nitride materials have been produced
in experiment. Recently, an interesting new 2D carbon nitride material, called polyaniline
(C3N), was synthesized [35]. Its monolayer shows a similar structure as graphene and its
band structure is semiconducting with an indirect band gap, in contrast to the Dirac band
structure of graphene.

Based on the C3N monolayer structure and the DB structure of Si/Ge/Sn, we propose
two new C4N monolayers with a DB structure (DB C4N). According to the positions of
the raised C/N atoms, two configurations, DB C4N-I and DB C4N-II, can be obtained.
Using first-principles calculations, we investigated systematically the structure, energy,
stability, and electronic band structure of these two DB C4N monolayers. Different to

other carbon nitride monolayers, all the C and N atoms in the DB C4N monolayers have
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sp> hybridization. Although the two DB C4N monolayers have a different structure and
ground state energy, the phonon spectra provide convincing evidence for their thermal
and dynamical stability. Similar to the Dirac cone band structure of graphene, the two
DB C4N monolayers both show a Dirac cone at the K point with a large Fermi velocity.
An analysis of the projected electron density of states (PDOS) and the electron wave
functions of the Dirac cones shows that four p, atomic orbitals are responsible for the
Dirac cone in these two C4N monolayers. This is also supported by our tight-binding
(TB) model including four p, atomic orbitals that reproduces the first-principles results

quite well.

4.2 Calculation Method

Our first-principles calculations were performed using the Vienna ab initio simulation
package (VASP) code [100, 101], implementing density functional theory (DFT). The ion-
electron interactions were described using projector-augmented-wave potentials (PAW)
[102]. The electron exchange-correlation functional was treated by using the generalized
gradient approximation (GGA) in the form proposed by Perdew, Burke, and Ernzerhof
(PBE) [153]. The Brillouin zone (BZ) was sampled by using a 17 x 17 x 1 I'-centered
Monkhorst-Pack grid. The vacuum space was set to at least 20 A in all the calculations
to minimize artificial interactions between neighboring slabs. The phonon spectra were
calculated using a supercell approach within the PHONOPY code [154]. Other settings

of calculation are the same to Chapter 3.2.

4.3 Results and Discussions

4.3.1 Geometrical Structure

The two investigated DB C4N monolayers are shown in Fig. 4.1(a) and (b). They are
based on the C3N monolayer (Fig. 4.1(c)), which was recently synthesized in experiment
[35]. By adsorbing C atoms on all the N atom positions of the C3N monolayer, we obtain
two different DB C4N monolayers. The two patterns are classified as follows: (1) If the
raised N/C atoms are on one side of the monolayer, as shown in Fig. 4.1(a), we call it
DB C4N-I; (2) If the raised N/C atoms are on two opposite sides of the monolayer, as
shown in Fig. 4.1(b), we call it DB C4N-II. In the following, we will analyze the three
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monolayers (DB C4N-I, DB C4N-II, and C3N) from the points of view of symmetry,
orbital hybridization style, and bond length.
(a) DB CaN-| (b) DB CaN-II (c) CaN
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Fig. 4.1 Schematic representations (top and side views) of the DB C4N-I (a), DB C4N-II
(b) and C3N (c). The raised C atoms are labeled as Cg and the planar C atoms are labeled
as Cp. The yellow (red) symbols are the carbon (nitrogen) atoms.

Considering symmetry first, the C3N monolayer has higher symmetry than the C4N
monolayers. For the C3N monolayer, the C/N atoms are not only center symmetric about
the point o (black point, Fig. 4.1(c)), but also mirror symmetric about the plane & (blue
dashed line, Fig. 4.1(c)) parallel to the z axis. However, the C/N atoms of the DB C4N-I
are only mirror symmetric about the plane / (blue dashed line, Fig. 4.1(a)) parallel to the
z axis while the C/N atoms of the DB C4N-II are only center symmetric about the point
o (black point, Fig. 4.1(b)). Next, let us take a look at the hybridization of the atoms.
The C/N atoms in the C3N monolayer have sp? hybridization, similar to the atoms in
graphene or g-C3N4. On the other hand, all the C/N atoms in the DB C4N monolayers
have sp> hybridization, similar to the C atoms in diamond.

Corresponding to the change in hybridization, their bond lengths are very different.
There are three kinds of atoms in the DB C4N monolayers, N atoms, raised C (Cg)
atoms, and planar C (Cp) atoms, while there are only N atoms and Cp atoms in the C3N
monolayer. In the following, we will discuss the bonds between the different atoms.
Considering the N—Cp bond, one N atom can form a bond with three Cp atoms and the
lengths of the three bonds are the same, labeled as L. For the DB C4N-I and C4N-II,
L =1.558 A and L = 1.545 A, respectively, which is larger than the L = 1.403 A in C3N.
Between the C atoms, only Cp—Cp bonds are found in the C3N monolayer and we label
them as M (M = 1.404 A). Similar bonds are also found in the DB C4N monolayers.

The Cp atoms of the DB C4N-I are all in the same xy plane. However, there is a little
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buckling (0.095 A) along the z axis between the Cp atoms in the DB C4N-II due to the
inequivalence of the N and Cg atoms. The M of the DB C4N-I and C4N-II is 1.491
A and 1.488 A, respectively. There is also another C—C bond in the DB C4N monolayers
between the Cp atom and the Cg atom, which is labeled as M’. The M’ of the DB C4N-I
(C4N-II) is 1.567 A (1.583 A). From the above data of bond lengths, we can summarize
that all the bond lengths in the two DB C4N monolayers are 1.49 ~ 1.58 A, which is much
larger than the 1.40 A in the C3N monolayer. A similar difference is also found in the
C—C bond length of diamond (1.54 A) [221] and graphene (1.42 A) [222], which comes
from the different hybridization of the C atoms (sp> and sp?). In most experimental
and predicted carbon nitride monolayers, the C and N atoms have sp>/sp hybridization,
while the carbon nitride monolayers with sp3-hybridized C/N atoms are rarely studied
[223]. Here, we provide a novel structure model for new stable carbon nitride monolayers.
Although there is much difference in bond length, the lattice constants of the C3N (4.861
A) and the DB C4N (4.775 A (C4N-I) and 4.768 A (C4N-II)) are almost the same. The

optimized geometrical structure data are summarized in Table 4.1.

Table 4.1 Structure parameters and formation energies of the DB C4N and C3N mono-
layers. « is the lattice constant. L, M, and M’ are the lengths of the N—Cp, Cp—Cp, and
Cp—Cp bonds, respectively. The unit of o, L, M, and M’ is A. The formation energy AE
corresponds to the energy release of the C3N monolayer adsorbing isolated magnetic C
atoms (eV/C atom).

Three monolayers o L(N—-Cp) M (Cp—Cp) M’ (Cp—CR) AE

C4N-1 4.775 1.558 1.491 1.567 —-3.272
CyN-1I 4.768 1.545 1.488 1.583 —3.379
C3N 4.861 1.403 1.404 — —

4.3.2 Energy and Stability

We calculated the formation energy of the DB C4N monolayers as AE = [E(C4N) —
E((C5N)) —2 x uc]/2, where E(C4N)/ E((C5N)) is the total energy of the DB C4N/C3N
monolayer. The chemical potential of the adsorbed C atoms (u¢) is highly dependent
on the carbon resources. Using graphene as a carbon resource, we will get positive
formation energy (4.707 eV/C atom and 4.600 eV/C atom), which is similar to that of
incorporating C atoms into g-C3N4 [224]. Using isolated magnetic C atoms as the carbon
resource, the formation energy AE of the DB C4N-I (C4N-II) is —3.272 eV/C atom
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(—=3.379 eV/C atom), which is of the same magnitude as adsorbed C atoms on graphene
[225]. The negative formation energy suggests the stability and feasibility of the DB
C4N. In experiment, carbon atoms and carbon atomic chains have been observed on
graphene using transmission electron microscope (TEM) and TEM studies demonstrated
that individual carbon atoms can be adsorbed on graphene surfaces with a stable structure
at room-temperature [225-227]. Since 2D C3N has been realized in experiment, the
DB C4N monolayers are probably also suited for experimental synthesis. Considering
the two DB C4N monolayers, the energy of the DB C4N-II is lower than that of the
DB C4N-I. This can be ascribed to the differences in their structures. The DB C4N-I
monolayer exhibits a polarized structure due to the absence of inversion symmetry while
the DB C4N-II has no dipole moment. From the views of energy and symmetry, the
DB C4N-II is more stable than the DB C4N-I. Although the two DB C4N monolayers
have different ground state energies, their phonon spectra (Fig. 4.2) are both free from

imaginary frequency modes, which indicates that they are dynamically stable.
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Fig. 4.2 Phonon spectra of DB C4N-I (a) and DB C4N-II (b) along the high-symmetry
lines in the BZ.
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4.3.3 Band Structure

The C3N monolayer shows a band gap close to the Fermi level and a Dirac point below
the Fermi level (Fig. 4.3), in agreement with a previous study [35]. The electronic band
structures of the DB C4N-I and C4N-II monolayers are shown in Fig. 4.4. For both
cases, a zero band gap at the K point is seen. Two bands cross linearly at the Fermi level
and the charge carriers can be characterized by massless Dirac fermions, similar to the
band structure of graphene (silicene/germanene/stanene) at the K point [198, 199]. To
confirm the existence of the Dirac cones, we used the more sophisticated Heyd-Scuseria-
Ernzerhof (HSE06) [97, 98] hybrid functional method to calculate the band structures
of the DB C4N monolayers (Fig. 4.5) and the Dirac cones at the K point can be clearly
seen. By a linear fitting of the first-principles calculations data, we can obtain the Fermi
velocity of the DB C4N. For the DB C4N-I (C4N-II), the Fermi velocity is 2.6 x 10°
m/s (2.4 x 10° m/s), which is comparable to that of the group IV elemental monolayers
(4.70 ~ 8.46 x 10° m/s) [199]. The extremely large Fermi velocity makes the DB C4N
monolayers ideal materials for building high-speed electronic devices, such as field effect
transistor (FET). It is well known that there are many kinds of Dirac carbon monolayers in
experiment and theory, such as graphene [228], a/f/7/6,6,12-graphyne [174, 158, 128],
phagraphene [123], etc. However, the 2D carbon nitride materials in experiment, such
as g-C3Ny, C;N, and g-CgNg monolayers, all show semiconductor behavior with a band
gap of 2.73 eV [229], 1.96 eV [34], and 1.53 eV [216], respectively. Dirac cone band
structures for carbon nitride materials are rarely predicted and only the g-C4N, and
g-C19Ng were proposed as spin-polarized Dirac materials [217, 218]. To our knowledge,
the two DB C4N monolayers are the first predicted Dirac carbon nitride materials without
spin-polarization. In contrast to the g-C6N6 monolayer proposed by Wang et al. [216]
and the C3N monolayer [35], the Dirac cone of the DB C4N is right at the Fermi level,
which is advantageous for experiments and applications.

To investigate the origin of the Dirac cones, we calculated the PDOS for different
atomic orbitals and the Kohn-Sham wave functions at the Dirac points, as shown in
Fig. 4.6. From the PDOS analysis of the two DB C4N monolayers, it is clear that the
summed states of the s, p,, and p, atomic orbitals around the Fermi level are far less
than the PDOS corresponding to the p. atomic orbitals. Although the C/N atoms are sp>-
hybridized, the states close to the Fermi level mainly come from the p, atomic orbitals,

which is similar to graphene/graphyne [174, 158, 128, 123]. As for phagraphene where
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Fig. 4.3 Band structure of C3N monolayer from DFT (PBE) calculations.
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Fig. 4.4 Band structures of DB C4N-I (a) and DB C4N-II (b) monolayers from DFT (PBE)
calculations. vr is the Fermi velocity of the Dirac cone. The energy at the Fermi level
was set to zero. An enlarged view of the band lines at the K point near the Fermi level is

presented to the right of the figures.
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Fig. 4.5 Band structures of DB C4N-I (a) and DB C4N-II (b) monolayers from HSE
calculations.

only the p, orbitals of eight out of twenty C atoms in the unit cell are responsible for
the formation of the Dirac cone [230], not all ten atoms in the unit cell of the DB C4N
contribute to the Dirac cone. Only the two Cg and the two N atoms play an important
role in the formation of the Dirac cone, which is clearly shown in the corresponding
Kohn-Sham wave functions at the Dirac point (Fig. 4.6(a) and (b)).

We also investigated the SOC effect on the band structures of the DB C4N monolayers.
For the DB C4N monolayers, the SOC effect is very small with a band gap at the K point
below 0.25 meV. This will be difficult to be detected in a real experiment because of the
possible presence of disorder. We can understand the weak SOC effect from two aspects.
First, the SOC effect is related to the element type: the heavier the element, the more
pronounced the SOC effect becomes. Structures including heavy elements, such as Bi,
can have a large SOC effect [231, 175]. Second, the SOC effect is also related to the
atomic orbitals forming the Dirac cone. For the g-C¢Ng monolayer, the SOC band gap
of the Dirac cone at the K point (below the Fermi level) can reach 5.50 meV [216]. In
this case the Dirac cone is formed by the p, and p, atomic orbitals of the N atoms and
the SOC gap originates directly from the onsite term. According to the PDOS and the
corresponding Kohn-Sham wave functions of the Dirac point, the four p, atomic orbitals
of the Cg and N atoms in the DB C4N are responsible for the formation of the Dirac

cone, which is the main reason for the weak SOC effect. The band gap values of the DB
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Fig. 4.6 The PDOS for the summed states of the s, py, and p,/p, atomic orbitals of all
the atoms in the unit cell and the corresponding Kohn-Sham wave functions at the Dirac
points ((a) DB C4N-I and (b) DB C4N-II). The isosurface values of the Kohn-Sham wave

functions were set to 0.02 A3,
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C4N monolayers are between the 0.0008 meV of graphene [199] and the 0.59 meV of
-graphyne [128], where the Dirac cones are formed by the p, atomic orbitals of the C
atoms. Since SOC opens up a small band gap at the Dirac cone and SOC effect is more
obvious in DB C4N-II than that in DB C4N-I, we investigated the topological properties
of the DB C4N-II. Due to the inversion symmetry of the DB C4N-II structure, the work
of Fu and Kane showed that the inversion symmetry can simplify the calculations of the
7, topological invariant (), which can be determined from the knowledge of the parity
eigenvalues for the occupied states at the time-reversal invariant points in the BZ [232].
For the DB C4N-II monolayer, there are four time-reversal invariant points: one I" point
and three M points. The parity eigenvalue is —1 at the I" point and +1 at the three M
points, which indicates a nontrivial topological invariant, v = 1. This shows that the DB

C4N-IL is a 2D topological insulator.

4.3.4 TB Model

Although the two Cg and the two N atoms all contribute to the Dirac cone, it is clear
that the Kohn-Sham wave functions of the Cg atoms are much larger than those of the
N atoms for both DB C4N monolayers (Fig. 4.6). We can understand the origin of the
Dirac cone from a simple TB model by only including the p, atomic orbitals of the two
Cg atoms without the two N atoms. The two DB C4N monolayers can be regarded as
to consist of two Cg atoms in one unit cell. Setting d; and d, as the primitive vectors,
the positions of the two Cg atoms in the xy plane can be expressed as 1/3 x (d| + a»)
and 2/3 x (d) + @), similar to graphene/silicene. The DB C4N-I can be regarded as a
graphene structure because the two Cg atoms are in the same xy plane while the DB
C4N-II can be regarded as a silicene structure due to the buckling along the z axis between
the two Cg atoms. The two Cg atoms in the unit cell can be labeled as A and B atoms.
The TB Hamiltonian that describes the electronic structure near the Fermi level of such a

system can be written as [187, 233],

€ hvp (ky — iky)> @

H —

where k is the wave vector relative to the Dirac point and vr is the Fermi velocity. Similar
to graphene/silicene, the difference of the onsite energy between the two Cg atoms is zero

(& = 0) because they have the same chemical environment [183, 234]. Thus we obtain a
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linear dispersion relation E = +#|k|, which is the origin of the Dirac cone. Although the
above simple model leads to a direct understanding of the Dirac cone, the two N atoms
still have contributions in the formation of the Dirac cone. We further confirm these
results by a TB model including the p, atomic orbitals of the two Cg and two N atoms
in the unit cell [230]. We resorted to maximally localized Wannier functions (MLWFs)
[235] using the Wannier90 code [236]. Starting from the bands of the first-principles
calculations, we used the four p, atomic orbitals of the Cg and N atoms. Minimizing the
MLWEF spread, the band structures obtained using the Wannier90 interpolation method

and the DFT calculations are in excellent agreement, as shown in Fig. 4.7.
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Fig. 4.7 Band structures of DB C4N-I (a) and DB C4N-II (b) from DFT (PBE) and TB
calculations. The red lines represent the results of DFT calculations and the blue dotted
lines represent the results of TB calculations.

4.3.5 Synthesis and Application

At last, we comment on the possible routes for synthesizing the DB C4N monolayers and
their applications. It is noteworthy that the carbon self-doped g-C3N4 has been achieved
experimentally, which can increase the C : N value [237]. Although the synthetic route

of the substitution pattern is different from that of the adsorption pattern, under carbon-
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rich environment, we expect that the C atoms can be adsorbed on C3N forming DB
C4N monolayer, because it is almost barrierless as atomic carbon resources are supplied
[224, 238]. Similar to graphene or other 2D Dirac materials [239], the band structures of
the two monolayers have a zero band gap, which will limit their applications in high-speed
electronic devices. Many theoretical methods have been proposed to open a band gap in
graphene. Among them, hydrogenated graphene has been achieved in experiment [240].
We also investigated the hydrogenation of the proposed DB C4N by the adsorption of an
H atom on each Cg atom. In this way, we obtain two hydrogenated DB C4N monolayers
(DB C4NH-I and DB C4NH-II). Their band structures are shown in Fig. 4.8. It is clear that
a band gap can be opened close to the Fermi level, which is beneficial for the applications

in electronic devices and other aspects [241].
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Fig. 4.8 Band structures of DB C4NH-I (a) and DB C4NH-II (b) monolayers from DFT
(PBE) calculations. On each Cg atom, an H atom is adsorbed. The direction of the CR—H
bond is parallel to the z axis.

4.4 Conclusion

In summary, using first-principles calculations, we predict the first Dirac carbon nitride
monolayers without spin-polarization. In contrast to the existing 2D carbon nitride
materials that have been realized in experiments, they have a dumbbell structure and all

the C and N atoms are sp>-hybridized. Their formation energies compared to C3N and
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the phonon calculations fully confirm their energetic and dynamical stability. The Dirac
cone band structure and large Fermi velocity are comparable to graphene and make the
DB C4N monolayers promising materials for high-speed electronic devices. A simple
TB model was constructed in order to understand the origin of the Dirac cone which is
helpful for further investigations of the massless Dirac fermions. The here proposed DB
C4N monolayer structures provide a new way to search for Dirac cone band structures in

2D group IV-V elemental materials.



Chapter 5

Bi-Based Topological Insulators:
GaBi-X, (X =1, Br, C])

'Quantum Spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are
crucial for future applications of the QSH effect. Among these, group III-V monolayers
and their halides with a chair structure (regular hexagonal framework, RHF) were widely
studied. Using first-principles calculations, we propose a new structure model for the
functionalized group III-V monolayers, which consist of rectangular GaBi-X, (X =1, Br,
C1) monolayers with a distorted hexagonal framework (DHF). These structures have a
much lower energy than the GaBi-X; monolayers with a chair structure. Remarkably, the
DHF GaBi-X, monolayers are all QSH insulators, which exhibit sizeable nontrivial band
gaps ranging from 0.17 eV to 0.39 eV. Those band gaps can be widely tuned by applying

different spin-orbit coupling (SOC) strengths, resulting in a distorted Dirac cone.

5.1 Introduction

Monolayer graphene was first realized in 2004 and since then two-dimensional (2D)
materials play a crucial role in the field of nanomaterials [2]. In the meantime, more and
more 2D materials with unusual electronic and spintronic properties have been synthe-
sized, that are promising for applications in quantum devices. For example, the group
IV element monolayers, silicene [242-244, 189, 190, 245, 191, 246, 247, 192, 248, 193],
germanene [249-251, 194], and stanene [197] were all successfully synthesized on differ-

IThe results of this chapter were published as: L. Li, O. Leenaerts, X. Kong, X. Chen, M. Zhao, and F.
M. Peeters, Nano Research 10, 2168 (2017).
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ent substrates. Besides graphene and its analogs, layered transition-metal dichalcogenides
(TMDs) are another family of 2D materials that have been realized experimentally [252—
254]. All these 2D materials can be regarded as being composed of a regular hexagonal
framework (RHF), which is usually called the chair structure. Most predictions of new
2D materials are also based on the RHF model, such as the silicon-germanium monolayer
[255], HgSe/HgTe monolayer [256], III-Bi monolayer [257], and organic metal frame-
works [258-261]. A natural question arises: Can we find other stable structure models
for those 2D materials?

Quantum spin Hall (QSH) insulators are another important set of 2D materials
[262, 263, 48]. The QSH effect has been observed in HgTe/CdTe and InAs/GaSb quantum
wells [264, 55, 265], but the operating temperature is limited due to their small bulk gap
arising from weak spin-orbit coupling (SOC). The necessary low temperature also limits
its applications. For the synthesis of the QSH insulators with a large gap, Bi (111) bilayer
has been realized in experiment and its time-reversal symmetry-protected edge states
have been observed, but there is still experimental discrepancy regarding its topological
nature [88, 266, 267]. Therefore, searching for newer QSH insulators with a large bulk
gap will provide more choices for experiment and application. Starting from graphene
[268], many kinds of QSH insulators have been predicted, including graphene with
a sandwich structure [269, 270], silicene (germanene/stanene) with RHF [198, 199],
stanene with a dumbbell structure [200, 271, 203], MoS, allotropes [272, 273, 232,
274-277], and monolayers containing heavy metal atoms (Bi/Sb/Hf) [257, 278-281].
In the case of particular substrates [282], applying an external field [283], or using
hydrogenation/functionalization [284-298, 231, 299-302], the size of those nontrivial
bulk gaps can be further increased. Currently, the largest nontrivial bulk gap is 1.0 8eV
found in BiyF, monolayer [284, 285], which shows that chemical functionalization is a
very powerful way to obtain a large nontrivial bulk gap. Using first-principles calculations,
some group III-V monolayers were predicted to be QSH insulators with a large bulk gap
[257] and it was found that this gap can be enlarged via hydrogenation/functionalization
[296-298, 231, 299-302]. After functionalization, their structures can all be regarded
as being composed of RHF. However, similar as the different ways of functionalization
of graphene, one may ask if there are other ways of functionalization of group III-V
monolayers that simultaneously retain their topologically nontrivial properties?

In order to tackle the above questions, we propose a new functionalization model,

called distorted hexagonal framework (DHF), for iodization, bromization, and chloriza-
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tion of gallium bismuth monolayer (GaBi-X,, X=I, Br, Cl). We find that the ground
state energy of the DHF GaBi-X; monolayers is less than that of the RHF GaBi-X,
monolayers, which were widely studied in previous works [296-298, 231, 299-302].
Using first-principles calculations, we investigated systematically the structure, stabil-
ity and electronic property of the DHF GaBi-X; monolayers. The GaBi framework is
robust against different ways of functionalization for the three DHF GaBi-X, monolayers.
Phonon spectra provide convincing evidence for the thermal and dynamical stabilities
of those DHF GaBi-X, monolayers. Remarkably, we find a distorted Dirac cone in the
band structure without SOC of the DHF GaBi-I, monolayer and a large nontrivial bulk
gap (0.39 eV) in the band structure with SOC, which is large enough to achieve the QSH
effect at room-temperature. Both GaBi-Br; and GaBi-Cl, have indirect band gaps without
and with SOC. However, we find that a distorted Dirac cone appears when changing the
strength of the SOC. Furthermore, the topologically nontrivial property of the bulk gaps
is confirmed by the nonzero Z, topological invariant and the appearance of a gapless

Dirac state from the edges.

5.2 Calculation Method

Our first-principles calculations were performed using the Vienna ab initio simulation
package (VASP) code [100, 101], implementing density functional theory (DFT). The ion-
electron interactions were described using projector-augmented-wave potentials (PAW)
[102]. The electron exchange-correlation functional was treated by using the generalized
gradient approximation (GGA) in the form proposed by Perdew, Burke, and Ernzerhof
(PBE) [153]. For the 2D structure relaxation, the Brillouin zone (BZ) was sampled by
using a 11 x 11 x 1 I'-centered Monkhorst-Pack grid, while a 15 x 15 x 1 grid was used
for the static calculations. A 1 x 11 x 1 grid was used for the nanoribbon calculations.
The vacuum space was set to at least 15 A in all the calculations to minimize artificial
interactions between neighboring slabs. Other settings of calculation are the same to
Chapter 3.2. SOC was included by a second variational procedure on a fully self-
consistent basis. The phonon spectra were calculated using a supercell approach within
the PHONON code [303].

As our systems preserve time-reversal symmetry and break space-inversion symmetry,
we can obtain the Z, topological invariant by calculating Wannier Charge Centers (WCCs)

[113]. In the concept of time-reversal polarization [304], the integer Z, invariant (A) can
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be written as
A= pe(T/2) — pg(0)mod2, (5.1)

where pg(t) is the total charge polarization with the cyclic parameter 7 and T is the period
of cyclic adiabatic evolution. The above equation can be rewritten in terms of WCCs
(Xa):

AZ;[XQ(T/2)—XL’(T/2)] — Y [5%,(0) — 5% (0)], (5.2)

o
where I and /1 indicate the Kramers pairs. In explicit numerical implementations, a more
straightforward and more easily automated approach is to track the largest gap in the
spectrum of the WCCs. Let A, be the number of WCCs that appear between neighboring
gap centers and M is the total number of changes in A,,. The Z, invariant is then given by:
M
A=Y Aymod2, (5.3)
m=0
Therefore, the Z, invariants can be obtained easily by numerical computations with ab

initio codes together with the Wannier90 code [235, 236].

5.3 Results and Discussion

5.3.1 Geometrical Structure

The three investigated DHF GaBi-X, monolayers exhibit a similar structure. Fig. 5.1(a)
and (b) show the optimized geometrical structure of the DHF GaBi-Xj;. From the top
view, the framework of GaBi is DHF, which is totally different from the previous chair
models [296-298, 231, 299-302], which are RHF with a three-fold rotation symmetry
like silicene/germanene [198, 199], as shown in Fig. 5.1(c) and (d). To obtain the DHF
structure, we used a larger rectangular supercell and moved the X atoms from their original
location, which is right on top of the Ga/Bi atoms. The fully optimized DHF GaBi-X,
monolayer shows a high symmetric space group of Pca2;. We choose a rectangular
primitive cell with lattice constants a along the x direction and b along the y direction.
Without loss of generality, we can take the DHF GaBi-I, monolayer as an example. Its
lattice constants are a = 8.58 A and b = 8.14 A. Considering the Ga—Bi bonds, there
are three kinds of bonds with different lengths, which is totally different from the RHF
GaBi-I; monolayer. For the direction along y, the length of the Ga-Bi bond is labeled as
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L1, which is equal to 2.91 A. For the direction along x, the lengths of the Ga-Bi bonds
are labeled as L2 and L3, respectively, as shown in Fig. 5.1(a). L2 is equal to 2.95 A and
L3 is equal to 2.80 A. L2 and L3 alternate along the x direction. The different lengths
of the Ga—Bi bonds lead to the DHF, while the lengths of L1, L2 and L3 are the same
in the RHF (Fig. 5.1(c)). For the RHF GaBi-I; monolayer, all the I atoms are right on
the Ga/Bi atoms along the z direction forming a chair configuration (Fig. 5.1(d)), but in
the DHF GaBi-I, monolayer, the bonds of Ga—I and Bi—I are totally different. For Bi—I
bonds, one I atom forms a bond with two Bi atoms and the lengths of the two Bi—I bonds
can be labeled as M1 and M2. Along the x direction, M1 and M2 alternate, similar to L2
and L3. For Ga—I bonds, labeled as N (Fig. 5.1(b)), the I atom is not right on top of a
Ga atom along the z direction, but there is a little deviation between them. For the three
DHF GaBi-X; monolayers, the optimized geometrical structure data are summarized in
Table 5.1. From iodization to chlorization, the lattice constants (a and b) diminish slightly
and the lengths of M1, M2, and N also decrease, but the lengths of the three Ga—Bi bonds
(L1, L2, and L3) remain almost unchanged.

L L, .

Oca @B  ©@x=1,BrCl

Fig. 5.1 Top view (a) and side view (b) of the DHF GaBi-X;. Top view (c) and side view
(d) of the RHF GaBi-X5.
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Table 5.1 Structure parameters and relative energies of the DHF GaBi-X, monolayers. a
and b are the lattice constants. L1, L2, and L3 are the three lengths of the Ga—Bi bonds.
M1 and M2 correspond to the two lengths of the Bi-X bonds and N is the length of the
Ga—X bond. The relative formation energy AE is obtained with respect to the energy of
the RHF GaBi-X, monolayer. Z; is the topological invariant.

GaBi-X,  a/b (A) L1/L2/L3/M1/M2/N (A) AE (meV/atom) Z,

GaBi-I, 8.58/8.14  2.91/2.95/2.80/3.08/3.15/2.54 —49 1
GaBi-Br, 8.36/8.03 2.89/2.95/2.79/2.88/2.95/2.32 =55 1
GaBi-Cl, 8.22/8.00 2.89/2.95/2.79/2.73/2.79/2.17 -57 1

5.3.2 Energy and Stability

We compare the energies of the RHF GaBi-X; monolayers, that have been investigated in
previous studies [296-298, 231, 299-302], with those of the newly proposed DHF GaBi-
X, monolayers. We set the energy of RHF GaBi-X; as 0 and then calculated the relative
formation energy of DHF GaBi-X,, which we show in Table 5.1. The DHF GaBi-X;
monolayers all have a substantially lower energy. The RHF GaBi-X; monolayers exhibit
a polarized structure due to the up-down asymmetry, which increases their energy and
probably will lead to a curled configuration. In comparison, the DHF GaBi-X; has no
dipole moment. The above two aspects are responsible for the superiority in the structural
stability of the DHF GaBi-X, over the RHF GaBi-X,. To investigate the dynamical
stability of DHF GaBi-X; monolayers, we calculated their phonon spectra and show them
in Fig. 5.2. It is clear that the DHF GaBi-X, monolayers are all free from imaginary

frequency modes and are therefore dynamically stable.

(a) GaBi-l2 (b) GaBi-Brz - (c) GaBi-Clz
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Fig. 5.2 Phonon spectra of the DHF GaBi-X; monolayers along the high-symmetry points
in the BZ.
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It should be noted that although there are some experiments on GaBi(As) [305, 306],
InBi [307] and TIBi [308] films, the experimental support for their functionalization is
still missing, similar to the experimental absence of other functionalized monolayers
(e.g. functionalized Bi and Pb monolayers) [88]. Regarding experimental realization, we
suggest obtaining the GaBi monolayer first and then synthesize the GaBi-X; monolayers
through functionalization. Another possible chemical route is as follows. Taking the
DHF GaBi-I; monolayer as an example, it could be synthetized by: Bils [309, 310]
+ Gals [311-313] 4+ 4Na — GaBi-I, (DHF) + 4Nal. Our DFT calculations show that
the reaction is exothermic with an energy release of 0.6 eV/atom, which indicates its

feasibility for experimental synthesis.

5.3.3 Electronic Band Structure

The electronic band structures of the RHF GaBi-X, monolayers are topologically non-
trivial and show a relatively larger bulk gap due to the strong SOC at the I" point [296—
298, 231, 299-302]. The electronic band structures of the DHF GaBi-I, monolayer
obtained from DFT are plotted in Fig. 5.3. For the DHF GaBi-I, monolayer, the valence
and conduction bands meet at a single point along the I'-X line, giving rise to a distorted
Dirac cone, as shown in Fig. 5.3(a). To further confirm the Dirac cone band structure, we
calculated the total density of states (DOS), as shown in Fig. 5.4. It is clear that the DOS
are O at the Fermi level. Similar band structures can also be found in other rectangular
lattices [123, 314]. The orbital-projected band structure without SOC of the DHF GaBi-I,
monolayer close to the Fermi level is shown in Fig. 5.5(a). It is clearly seen that the
distorted Dirac cone mainly comes from the atomic orbitals of the Ga and Bi atoms.
For the crossing bands forming the Dirac cone, one band comes from the p, atomic
orbitals (green dots) and the other originates from the s, py, and p, atomic orbitals (red
dots). The band structure with SOC for the DHF GaBi-I, monolayer shows an indirect
band gap (Fig. 5.3(b)). The indirect band gap is 0.39 eV along the I'-X line, which is
less than that of the RHF GaBi-I; monolayer (0.606 eV) [299]. From its corresponding
orbital-projected band structure close to the Fermi level (Fig. 5.5(b)), we find that these
bands are mainly due to the s and p atomic orbitals of the Ga and Bi atoms. We now focus
on the valence and conduction bands along the I'-X line. The orbital contributions can be
divided into two parts. The first part of the valence band corresponds to the s, p,, and

p; orbitals (red dots) and the second part comes from the p, orbitals (green dots). The
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situation of the conduction band is the opposite. However, previous studies of the RHF
GaBi-X; monolayer showed that the orbital contributions of the bands close to the Fermi
level are mainly from the s, py, and p, without p, [296-298, 231, 299-302]. We may
conclude that the p, orbital contributions are due to the partial hybridization between the
p. orbitals and the X atomic orbitals, which comes from the deviations along the x direc-
tion between the X atoms and the Ga/Bi atoms. It is noteworthy that the spin degeneracy
is lifted due to the asymmetric geometric structure. Such spin-splitting effect has also
been found in III-Bi [257], hydrogenated/functionalized III-Bi [296-298, 231, 299, 300],
and g-TIA (A =N, P, As and Sb) [278] monolayers. This lifting of spin degeneracy is
due to spin-orbit interaction and results in terms linear in electron wave vector k in the
effective Hamiltonian. The origin of these terms linear in low-dimensional systems is
structure and bulk inversion asymmetry which lead to Rashba and Dresselhaus spin-orbit
terms in the Hamiltonian, respectively [315-318]. It is well known that spin-splitting of
Rashba states in a two-dimensional electron system provide a promising mechanism for
spin manipulation that is needed in spintronics applications [319].

In contrast to the gapless band structure of the DHF GaBi-I, monolayer, the band
structure without SOC of the DHF GaBi-Br, monolayer shows semiconducting behavior.
The indirect band gap is 0.13 eV without SOC (Fig. 5.3(c)) while it becomes 0.30 eV with
SOC (Fig. 5.3(d)), which is less than that of the RHF GaBi-Br, (0.628 eV) [299]. From
the corresponding orbital-projected band structures close to the Fermi level (Fig. 5.5(c)
and (d)), we find that those bands result from the s and p atomic orbitals of the Ga and Bi
atoms. They are similar to the band structure with SOC of the DHF GaBi-I,, which can
also be divided into two parts. The SOC band structure also shows obvious spin-splitting
of Rashba states. The band structures without and with SOC of the DHF GaBi-Cl,
monolayer are shown in Fig. 5.6(a) and (c) and are similar to those of the DHF GaBi-Br,.
An indirect band gap of 0.22 eV (0.17eV) is found without (with) SOC. The band gap
with SOC is much less than that of the RHF GaBi-Cl, monolayer, which was found to be
0.645eV [299].

5.3.4 Topologically Nontrivial Property

Similar to the band structures of graphene (silicene, germanene, and stanene) [268,
198, 199] and other 2D topological insulators, the DHF GaBi-I, monolayer also has

a Dirac cone in its band structure without SOC, which is an important sign of a QSH
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Fig. 5.3 Band structure of the DHF GaBi-I; and GaBi-Br, monolayers without and
with SOC from DFT calculations. (a) GaBi-I, without SOC, (b) GaBi-I, with SOC, (c¢)
GaBi-Br; without SOC, and (d) GaBi-Br, with SOC.
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Fig. 5.4 DOS of the DHF GaBi-I, monolayer without SOC.

insulator [198, 199, 320, 321] and a large SOC bulk gap in its band structure with SOC.
To confirm the topologically nontrivial property of the bulk gap, we calculated its Z,
topological invariant (see Table 5.1), which is equal to 1. This indicates that the DHF
GaBi-I; monolayer is a 2D topological insulator. For the DHF GaBi-Br; and GaBi-Cl,
monolayers, we also calculated the Z, topological invariant (see Table 5.1). We find that
the Z, topological invariant is 1 in both cases, although there are no Dirac cones in their
band structures without SOC. To find the Dirac cone, we applied different SOC strengths
(Asoc) [320, 321] and calculated the corresponding band gaps of the DHF GaBi-Br;
(Fig. 5.7(a)). The band gap decreases with increasing Asoc at the beginning. When Agoc
reaches 0.24, a gapless state can be found. Then the band gap increases with increasing
Asoc. We plot the band structure for Agsoc = 0.24 (Fig. 5.7(b)) and a distorted Dirac
cone can be seen. From its corresponding orbital-projected band structure close to the
Fermi level along the I'-X line (Fig. 5.7(c)), it is seen that the crossing bands forming
the distorted Dirac cone arise from the s and p atomic orbitals of the Ga and Bi atoms,
similar to the case of the DHF GaBi-I, monolayer. For some QSH insulators, such as
GaBi monolayer [257] and tetragonal Bi bilayer [320], the topological phase transition

results from a band inversion when the band gap at the I" point closes and reopens in the
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Fig. 5.5 Orbital-projected band structure close to the Fermi level without and with SOC
along the I'-X line. (a) GaBi-I, without SOC, (b) GaBi-I, with SOC, (¢) GaBi-Br;
without SOC, and (d) GaBi-Br, with SOC. The red dots represent the contributions from
the s, py, and p, atomic orbitals of the Ga and Bi atoms and the green dots represent
contributions from the p, atomic orbitals of the Ga and Bi atoms.
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process of changing the SOC strength. In our case, however, there is no band inversion at
the T point. In changing the Agoc from O to 1 for the DHF GaBi-Br;, the Z, topological
invariant is O before the gap closes at a point along the I'-X line while it becomes 1 after
the gapless state. This topological phase transition is similar as the case of stanene with
an effective electric field (substrate) [322], where the competition between the trivial
band gap introduced by the effective electric field and the SOC band gap can lead to a
change of Z; and a topological phase transition. Here, the functionalized elements are
equal to a build-in electric field and the Dirac cone is an important sign of a topological
phase transition. For the DHF GaBi-Cl, monolayer, we find a similar distorted Dirac
cone when Agoc is equal to 0.43 (Fig. 5.6(b)).

Although iodization, bromization, and chlorization of GaBi lead to qualitatively
similar bands close to the Fermi level that arise from the atomic orbitals of the Ga and Bi
atoms, their band gaps are totally different. We conclude that the different functionalized
elements lead to different build-in electric fields, and then change the effective mass
terms, which can influence the band gaps [231]. For the DHF GaBi-X, monolayer, we
only find the Dirac cone for a particular Asoc and if we tune the Agoc or change the
calculation method, the Dirac cone will disappear. It can be seen that the Dirac cone of
the DHF GaBi-I, disappears for Asoc = 0, when we use the more sophisticated Heyd-
Scuseria-Ernzerhof (HSE06) [97, 98] hybrid functional method (Fig. 5.8). With HSE, the
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Fig. 5.7 (a) Variation of the DHF GaBi-Br; band gap as a function of SOC strength
Asoc. (b) Band structure of the DHF GaBi-Br, for Asoc = 0.24. (c) Orbital-projected
band structure for Asoc = 0.24 close to the Fermi level along the I'-X line. The red dots
represent the contributions from the s, p,, and p, atomic orbitals of the Ga and Bi atoms
and the green dots represent contributions from the p, atomic orbitals of the Ga and Bi
atoms.

band gap including SOC is 0.47 eV (Fig. 5.8(b)), which is a little larger than the 0.39 eV
from PBE calculations. For the HSE without SOC, a small band gap (0.05 eV) is opened
(Fig. 5.8(a)), which is different from the Dirac cone of the PBE result. Similar to the
band structures of the GaBi-Br, and GaBi-Cl, monolayers, the appearance of the DHF
GaBi-I, Dirac cone in the HSE calculations will show up for a particular Agoc between 0
and 1 [320]. It is certain that we can always find Dirac cones for the three DHF GaBi-X;
monolayers when varying Agoc from O to 1, but we can’t find a Dirac cone for the DHF
GaBi-F, monolayer. Its band gap ranges from 0.32 eV (Asoc = 0) to 0.03 eV (Asoc = 1)
(Fig. 5.9) and no gapless state is found in the process. Corresponding to the absence
of a Dirac cone, its Z, topological invariant is equal to 0, which indicates that the DHF
GaBi-F, monolayer is a trivial insulator.

Besides the nonzero Z, topological invariant, the existence of gapless edge states is
another prominent feature of QSH insulators. Since the DHF GaBi-Br, and GaBi-Cl,
monolayers show a similar band structure, without loss of generality, we only considered
the DHF GaBi-I, and GaBi-Br, nanoribbons with armchair edges. The nanoribbon struc-
ture is shown in Fig. 5.10(a) and their widths (W) are wide enough to avoid interactions
between the edge states from the two sides. The band structures of the DHF GaBi-I, and

GaBi-Br; nanoribbons are shown in Fig. 5.10(b) and (c), respectively. We can see that



68 Bi-Based Topological Insulators: GaBi-X; (X =1, Br, Cl)

Energy (eV)

154 . D N
Y r X M ry I X M r
(a) GaBi-l2 (b) GaBi-I2
(HSE Without SOC) (HSE With SOC)

Fig. 5.8 Band structure of the DHF GaBi-I, monolayer without and with SOC from HSE
calculations. (a) GaBi-I, without SOC and (b) GaBi-I, with SOC.
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the gapless edge states (Dirac point) appear in the bulk gap and the bands cross linearly

at the I" point, demonstrating the topologically nontrivial nature of these 2D materials.
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Fig. 5.10 (a) Top view of the nanoribbon structure. The width of the nanoribbon is labeled
as W. Electronic band structure of the GaBi-I; nanoribbon with W = 10.2 nm (b) and the
GaBi-Br, nanoribbon with W = 9.9 nm (c¢).

5.4 Conclusion

In summary, using first-principles calculations, we predict that the DHF GaBi-X, (X =
I, Br, ClI) monolayers are QSH insulators with: 1) a novel framework structure, 2) high
stability, 3) a sizeable nontrivial bulk gap, and 4) exhibiting the Rashba effect. The DHF
structure is robust against different types of functionalization and is more favorable in

energy than the RHF structure. The largest nontrivial bulk gap can reach 0.47 eV, which
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is sufficient to achieve room-temperature QSH effect. Corresponding to the nonzero
Z, topological invariant, band calculations show that distorted Dirac cones will appear
when the SOC strength is tuned. The nanoribbon edge states with a Dirac point are very

promising for future spintronics device applications.



Chapter 6

Bi-Based Topological Insulators: Bi
Bilayers with 4,6,8-Atom Rings

ITwo-dimensional (2D) group V elemental materials have attracted widespread attention
due to their nonzero band gap while displaying high electron mobility. Using first-
principles calculations, we propose a series of new elemental bilayers with group V
elements (Bi, Sb, As). Our study reveals the dynamical stability of 4, 6, and 8-atom
ring structures, demonstrating their possible coexistence in such bilayer systems. The
proposed structures for Sb and As are large-gap semiconductors that are potentially
interesting for applications in future nanodevices. The Bi structures have nontrivial
topological properties with a direct nontrivial band gap. The nontrivial gap is shown
to arise from a band inversion at the Brillouin zone center due to the strong intrinsic
spin-orbit coupling (SOC) in Bi atoms. Moreover, we demonstrate the possibility to tune
the properties of these materials by enhancing the ratio of 6-atom rings to 4 and 8-atom

rings, which results in wider nontrivial band gaps and lower formation energies.

6.1 Introduction

The story of 2D materials begins with the successful exfoliation of graphene from graphite
[2]. 2D materials are usually defined as crystalline materials consisting of a single or few

layers of atoms. The unusual physical properties, caused by dimensional restrictions, lead

IThe results of this chapter were published as: X. Kong, L. Li, O. Leenaerts, X.-J. Liu, and F. M. Peeters,
Physical Review B 96, 035123 (2017). My contributions: I proposed the idea and performed partial DFT
calculations. I took part in analyzing the data and writing the paper.
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researchers to study these materials for possible use in applications and future nanodevices
[323]. The search for other 2D materials besides graphene is an on-going field of research.
In analogy to graphene, other group IV elements also form 2D hexagonal structures, such
as silicene [189, 324, 325, 193], germanene [326, 327], and stanene [328], and have been
successfully synthesized on different substrates. Similar structures could also be observed
for the 2D group V elemental structures. In theory, buckled hexagonal honeycomb
bilayers of group V elements are also stable and favorable in energy [329]. For example,
hexagonal Bi(111) bilayers [266, 267, 330, 331] have been experimentally synthesized on
BiyTes or BipSes surfaces [332—-334]. In this connection, the successful growth of single
layer blue phosphorus has attracted widespread attention to the group V elemental bilayers
due to their nonzero band gap and high electron mobility [335]. There have also been
many suggestions for other 2D stable carbon allotropes [126, 336], such as phagraphene
[123] and graphyne [337, 158], and some of them have been successfully created or can
be found as defects in graphene. The physical properties of such crystalline materials
mainly originate from the underlying symmetry of the crystal structure. Therefore, it
is interesting to study 2D crystal structures with different symmetries. Recently, some
theoretical works have studied 2D group V structures with 4-atom and 8-atom rings on
a square lattice [338, 339]. However, the formation energy of these bilayer structures
is relatively high which makes it difficult to realize them in experiments. It is thus an
interesting question how such materials can be made more stable.

One of the most intriguing properties of some 2D materials is their nontrivial band
topology. 2D topological insulators with time-reversal (TR) symmetry, also known as
quantum spin Hall (QSH) insulators, are a very important set of 2D materials [340,
40, 48, 341]. Graphene was the first proposal for such a topological insulator, but its
negligible nontrivial band gap makes it impossible to observe the QSH effect [341, 342].
In experiment, the QSH effect has been observed in HgTe/CdTe and InAs/GaSb quantum
wells [343-345], but the small bulk gap arising from weak SOC makes the operating
temperature very low and this limits its further applications [231, 346, 271, 347, 302].
To realize 2D topological insulators with a large band gap, most studies have focused
on some heavy elements, such as Bi, which exhibit a strong SOC effect. The largest
nontrivial bulk gap (1.08 eV) is found in BiyF; bilayer. The huge SOC gap in this material
originates from the Bi p, and p, orbitals [284, 285]. But also, hexagonal Bi(111) bilayer

have been realized and their time-reversal symmetry-protected edge states have been
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observed [332]. However, their topological nature is still debated. The search for other
Bi-based QSH insulators is therefore interesting.

In this work, we propose a new structure model with 4-atom, 6-atom, and 8-atom
(4,6,8-atom) rings for the group V elements: Bi, Sb, and As. The formation energy of
these proposed structures is lower than those of other reported 2D group V structures
containing 4- and 8-atom rings [338, 339]. We find that their phonon spectra contain
no imaginary frequency modes, indicating their dynamical stability. In the case of Bi,
the calculated band structure suggests nontrivial topological properties with a direct
nontrivial bulk gap, resulting from a band inversion at the I" point. The proposed Sb and
As bilayers show large indirect band gaps with SOC, but these band gaps are trivial. We
demonstrate that the properties of the proposed structures can be tuned by the number of
6-atom rings. For Bi, we show that the formation energy can be decreased while retaining

the topologically nontrivial properties.

6.2 Computational Method

Our first-principles calculations are based on Density Functional Theory (DFT) with the
projector augmented wave method as implemented in the Vienna ab initio simulation
package (VASP) [100, 102, 101]. The generalized gradient approximation (GGA) in
the form proposed by Perdew, Burke and Ernzerhof (PBE) [153] was chosen as the
electron exchange-correlation functional. The structure relaxation including the atomic
positions and lattice vectors was performed by the conjugate gradient (CG) scheme until
the maximum force on each atom was less than 0.01 eV/A. The energy cutoff of the
plane waves was set to 500 eV with an energy precision of 107> eV. The Brillouin zone
(BZ) was sampled by using a 13 x 7 x 1 I'-centered Monkhorst-Pack grid. At the same
time, to give a more reliable calculation for electronic band structures, the screened
Heyd-Scuseria-Ernzerhof Hybrid functional method (HSE06) [97, 98] are also used with
a 7 x 3 x 1 I'-centered Monkhorst-Pack grid for BZ integration. The main electronic
band structures in the article for discussions are obtained at the HSEQ6 level. Phonon
frequencies are calculated by the finite displacement method with the PHONOPY code
[154].

The Z, topological invariants were obtained by calculating the Wannier Charge
Centers (WCCs) and tracking the largest gap in the spectrum of the WCCs [113], which

is equivalent to the computation of the Wilson loop [114]. The explicit numerical
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computations were done with the Z2Pack code [111] which combines the ab initio
calculations with the Wannier90 code [348]. The surface state calculations are illustrated
with an effective tight-binding Hamiltonian generated from the first-principles Wannier
functions. The py, py and p, orbitals of the Bi atoms from the first-principles wave
functions are used as the initial trial orbitals. The iterative Green’s function method [349]

was used with the software package Wannier_tools [350].

6.3 Results and Discussions

6.3.1 Structure and Stability

Due to the similarity of the proposed structures for the various investigated elements, we
mainly focus on the structure model of Bi in this section. An example of such a structure
is given in Fig. 6.1. Its lattice is rectangular, which is different from the hexagonal lattice
of Bi(111) bilayers [266, 267, 330, 331] and the square lattice of the recently proposed
Bi bilayers consisting of 4,8-atom rings [338, 339]. The space group of the proposed
orthorhombic crystals is Pccm (or Dgh). There is a two-fold rotation, mirror, and inversion
symmetry in this structure. Along the x direction, there are two kinds of arrangements
of atomic rings. One is formed by the line along the center of 4(8)-atom rings while
the other is along the center of the 6-atom rings, as indicated by the blue dashed line in
Fig. 6.1(a). The two arrangements of atomic rings alternate along the y direction and
form a new type of Bi bilayer. Regarding the number of atomic rings, one 4-atom ring
corresponds to one 8-atom ring and one 6-atom ring. Since the 4-atom rings always
come in pairs with the 8-atom rings, our structure is denoted as a 4(8)-6 Bi bilayer in the
following. As demonstrated below, such structures can be easily tuned by including more
hexagons. A similar structure model can be applied to Sb and As.

The optimized structure parameters for the 4(8)-6 bilayers of Bi, Sb, and As are listed
in Table 6.1. Due to the similarity of these 4(8)-6 bilayers, we focus on the Bi bilayer first.
The lattice constant a (b) in the x (y) direction of Bi is 7.918 A (13.050 A). Although
the lattice of the 4(8)-6 bilayer has different symmetry than the hexagonal and square
Bi bilayers, the local arrangement of the neighboring atoms is similar [266, 267, 330,
331, 338, 339]. One Bi atom forms a bond with three other Bi atoms that are all above or
below than the position of the Bi atom in the z direction. However, while there is only one

kind of Bi atoms (one Wyckoff Position) in the hexagonal and square Bi bilayers, there
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Fig. 6.1 (a) Top view of the 4(8)-6 Bi bilayer: the rectangle indicates the unit cell, the blue
dashed lines are the 4(8)-center-connected and 6-center-connected lines, and the inset in
the upper right corner depicts the Brillouin zone (BZ) with the time-reversal invariant
momenta (TRIM). (b) Side view of the 4(8)-6 Bi bilayer. (c) Phonon spectra of 4(8)-6 Bi,
Sb, and As bilayers.
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are two kinds of Bi atoms (two Wyckoff Positions) in the 4(8)-6 structure, as illustrated
in Fig. 6.1(b). Corresponding to these two kinds of Bi atoms, denoted as Bi(1) and
Bi(2) in the following, there are two buckling heights, #; = 1.579 A and hy, =2.014 A.
The buckling heights of the hexagonal (1.737 A) and square (1.757 10%) Bi bilayer are
in between the two heights of the 4(8)-6 Bi bilayer. The Bi atoms in the 4(8)-6 bilayer
are connected by four different bonds (see Fig. 6.1(a)) of which the lengths are shown
in Table 6.1. The length d; of the bond shared by the 6-atom and 8-atom rings is about
3.046 A which is practically the same as the bond length in the buckled hexagonal Bi
bilayer (3.046 A) [266, 267, 330, 331]. The length d; of the bond shared by 4-atom and
6-atom rings is about 3.055 A, which is slightly larger than d;. The bond length d3 shared
by the 4-atom and 8-atom rings is about 3.079 A which is larger than the reported bond
length (3.059 A) shared by the 4-atom and 8-atom rings in square Bi bilayer [338]. The
bond length dj shared by the 8-atom and 8-atom rings is about 3.043 A, which is nearly
the same as the reported bond length (3.044 A) shared by the 8-atom and 8-atom rings in
square Bi bilayer [338]. We can therefore conclude that the proposed structure is formed
by an only slightly distorted combination of the square and hexagonal bilayer structures.
Similar results are obtained for the 4(8)-6 Sb and As bilayers, although the structure
parameters of Sb and As are smaller than that of 4(8)-6 Bi bilayer (see Table 6.1). This is
in accordance with the general expectation that the lighter the atoms are, the smaller the

structure parameters become.

Table 6.1 The optimized structure parameters of 4(8)-6 Bi, Sb and As bilayers. a (b) is
the lattice constant in the x (y) direction; s and h; is the buckling height as shown in
Fig. 6.1(b); d1 >34 denotes the different bond lengths shown in Fig. 6.1(a). AE is the
formation energy defined by Eq. (1).

Elements alb (A) hilhald, ldyldslds (A) AE (meV/atom)
Bi 7.918/13.050 1.579/2.014/3.046/3.055/3.079/3.043 52.8
Sb 7.529/12.402  1.505/1.897/2.893/2.901/2.919/2.892 58.1
As 6.581/10.904 1.290/1.593/2.510/2.516/2.531/2.509 71.9

Next, let us focus on the stability of the 