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Resumo

Grafeno, uma rede bidimensional de átomos de carbono, tem sido amplamente estu-
dado durante os últimos anos. O interesse por este material não é apenas devido às suas
possíveis aplicações tecnológicas futuras, mas também porque oferece a possibilidade de
investigar fenômenos interessantes previstos pelas teorias quânticas de campo, que vão
desde o tunelamento de Klein e outros efeitos quasi-relativísticos à existência de novos
tipos de graus de liberdade do elétron, ou seja, o pseudo-spin, e a existência de dois vales
eletrônicos não-equivalentes na vizinhança dos pontos sem gap do seu espectro de ener-
gia. Várias das propriedades exóticas observadas no grafeno originam-se do facto de que
dentro da aproximação de baixas energias para o Hamiltoniano tight-binding do grafeno,
elétrons se comportam como férmions de Dirac sem massa, com uma dispersão de energia
linear. Assim como no caso de uma monocamada de grafeno, o espectro eletrônico de
baixas energias para uma bicamada de grafeno é sem gap, mas, neste caso, é dominado
pela dispersão parabólica. No entanto, uma característica interessante é compartilhada
por ambas monocamada e bicamada de grafeno: o grau de liberdade de vale.

Nesta tese, nós investigamos teoricamente: (i) as propriedades dinâmicas em mono e
bicamadas de grafeno, realizando um estudo sistemático do espalhamento de pacotes de
onda em diferentes formas de interfaces, bordas e potenciais; e, além disso, (ii) os níveis
de energia de sistemas confinados no grafeno na presença ou ausência de campos mag-
néticos e elétricos externos. Na primeira parte do trabalho, nós utilizamos a abordagem
tight-binding para estudar o espalhamento de um pacote de onda Gaussiano nas bordas
de uma monocamada de grafeno (armchair e zigzag) na presença de campos magnéticos
reais e pseudo-magnéticos (induzidos por tensão) e também calculamos as probabilidades
de transmissão de um pacote de onda Gaussiano através de um contato de ponto quântico
definido por potenciais eletrostáticos em bicamadas de grafeno. Estes cálculos numéri-
cos são baseados na solução da equação de Schrödinger dependente do tempo para o
Hamiltoniano do modelo tight-binding , usando a técnica Split-operator. Nossa teoria per-
mite investigar espalhamento no espaço recíproco, e dependendo do tipo de borda do
grafeno, nós observamos espalhamento dentro do mesmo vale, ou entre diferentes vales.
Na presença de um campo magnético externo, as bem conhecidas órbitas skipping orbits

são observadas. No entanto, nossos resultados demonstram que, no caso de um campo
pseudo-magnético induzido por uma tensão não-uniforme, o espalhamento por uma borba
armchair resulta em um estado de borda não-propagante. Nós também propomos um sis-
tema de filtragem de vales muito eficiente através de um sistema de contato de ponto
quântico definido por portas eletrostáticas em uma bicamada de grafeno. Para o sistema
de bicamadas sugerido, nós investigamos a forma de melhorar a eficiência do sistema como
um filtro de vales por diferentes parâmetros, como comprimento, largura e amplitude do
potencial aplicado.

Na segunda parte da tese, nós apresentamos um estudo sistemático dos espectros de
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energia de anéis quânticos de grafeno com diferentes geometrias e tipos de borda, na
presença de um campo magnético perpendicular. Nós discutimos quais características
obtidas por meio de um modelo simplificado de Dirac podem ser recuperadas quando os
auto-estados de anéis quânticos de grafeno são comparados com os resultados do modelo
tight-binding . Além disso, nós também investigamos os estados confinados em dois sis-
temas híbridos diferentes de monocamada - bicamada, identificando estados localizados
dentro do ponto e estados de borda para as estruturas de confinamento em bicamadas
sugeridas, assim como vamos estudar o comportamento dos níveis de energia em função
do tamanho do ponto e sob um campo magnético externo aplicado. Finalmente, usando
o modelo contínuo de Dirac de quatro bandas, nós também derivamos uma expressão
geral para a condição de contorno de massa infinita em bicamada de grafeno, a fim de
aplicar essa condição de contorno para calcular analiticamente os estados confinados e as
correspondentes funções de onda em um ponto quântico em uma bicamada de grafeno na
ausência e na presença de um campo magnético perpendicular. Nossos resultados analíti-
cos apresentam boa concordância quando comparados com os resultados tight-binding .



Abstract

Graphene, a two-dimensional lattice of carbon atoms, has been widely studied during
the past few years. The interest in this material is not only due to its possible future
technological applications, but also because it provides the possibility to probe interesting
phenomena predicted by quantum field theories, ranging from Klein tunneling and other
quasi-relativistic effects to the existence of new types of electron degrees of freedom,
namely, the pseudo-spin, and the existence of two inequivalent electronic valleys in the
vicinity of the gapless points of its energy spectrum. Several of the exotic properties
observed in graphene originate from the fact that within the low energy approximation for
the tight-binding Hamiltonian of graphene, electrons behave as massless Dirac fermions,
with a linear energy dispersion. Just like in single layer graphene, the low-energy eletronic
spectrum in bilayer graphene is gapless, but in this case it is dominated by the parabolic
dispersion. Nevertheless, one interesting feature is shared by both monolayer and bilayer
graphene: the valley degree of freedom.

In this thesis, we theoretically investigate: (i) the dynamic properties in mono and
bilayer graphene, performing a systematic study of wave packet scattering in different
interface shapes, edges and potentials; and furthermore (ii) the energy levels of confined
systems in graphene in the presence or absence of external magnetic and electric fields.
In the first part of the work, we use the tight-binding approach to study the scattering
of a Gaussian wave packet on monolayer graphene edges (armchair and zigzag) in the
presence of real and pseudo (strain induced) magnetic fields and also calculate the trans-
mission probabilities of a Gaussian wave packet through a quantum point contact defined
by electrostatic gates in bilayer graphene. These numerical calculations are based on the
solution of the time-dependent Schrödinger equation for the tight-binding model Hamilto-
nian, using the Split-operator technique. Our theory allows us to investigate scattering in
reciprocal space, and depending on the type of graphene edge we observe scattering within
the same valley, or between different valleys. In the presence of an external magnetic field,
the well known skipping orbits are observed. However, our results demonstrate that in
the case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an
armchair edge results in a non-propagating edge state. We propose also a very efficient
valley filtering through a quantum point contact system defined by electrostatic gates in
bilayer graphene. For the suggested bilayer system, we investigate how to improve the
efficiency of the system as a valley filter by varying parameters, such as length, width and
amplitude of the applied potential.

In the second part of the thesis, we present a systematic study of the energy spectra
of graphene quantum rings having different geometries and edge types, in the presence
of a perpendicular magnetic field. We discuss which features obtained through a simpli-
fied Dirac model can be recovered when the eigenstates of graphene quantum rings are
compared with the tight-binding results. Furthermore, we also investigate the confined
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states in two different hybrid monolayer - bilayer systems, identifying dot-localized states
and edge states for the suggested bilayer confinement structures, as well as we will study
the behavior of the energy levels as a function of dot size and under an applied external
magnetic field. Finally, using the four-band continuum Dirac model, we also derive a
general expression for the infinite-mass boundary condition in bilayer graphene in order
to apply this boundary condition to calculate analytically the confined states and the
corresponding wave functions in a bilayer graphene quantum dot in the absence and pres-
ence of a perpendicular magnetic field. Our analytic results exhibit good agreement when
compared with the tight-binding ones.



Abstract

Grafeen, een twee-dimensionaal rooster van koolstof atomen, vormt de laatste jaren
een zeer intens onderzoeksgebied. De interesse in dit materiaal is niet enkel dankzij zijn
mogelijke technologische toepassingen, maar ook omdat het een mogelijkheid voorziet om
interessante nieuwe kwantum fenomenen te observeren. Dit gaande van Klein tunneling
en andere quasirelativistische verschijnselen tot het bestaan ven nieuwe types van elektro-
nische vrijheidsgraden, namelijk de pseusospin en het bestaan van twee niet equivalente
elektronische valleien in de nabijheid van punten waarin het energiespectrum geen band-
kloof heeft. Verschillende exotische eigenschappen in grafeen hebben hun oorsprong in
het feit dat binnen de lage energie benadering voor de "tight-binding" Hamiltoniaan van
grafeen de elektronen zich gedragen als massaloze Dirac fermionen en dus een lineaire
energie dispersie hebben. Net als in monolaag grafeen is het energiespectrum in bilaag
grafeen kloofloos, maar in dit geval heeft het een parabolische dispersie. Desalniettemin
delen deze twee materialen de vallei vrijheidsgraad.

In deze thesis onderzoeken we theoretische: (i) de dynamische eigenschappen in mono-
en bilaag grafeen door een systematische studie uit te voeren van golfpakket verstrooi-
ing aan verschillende vormen van interface, rand en potentiaal; verder (ii) onderzoeken
we de energie niveaus van gebonden systemen in grafeen in de nabijheid of afwezigheid
van externe magnetische en elektrische velden. In he teerste deel van het werk gebruiken
we de thight-binding beschrijving om de verstrooing van een Gaussisch golfpakket aan
monolaag grafeen randen (zig-zag en “armchair”) te bestuderen in een echt en pseudo
(vervorming geinduceerd) magneetveld en berekenen ook de transmissie waarschijnlijkhe-
den van een Gaussisch golfpakket door een kwantum punt contact bepaald door elektro-
statische poorten in bilaag grafeen. Deze numerieke berekeningen zijn gebaseerd op de
oplossingen van de tijdsafhankelijke Schrodinger vergelijking voor de tight-binding model
Hamiltoniaan gebruikmakend van de split-operator techniek.onze theorie laat ons toe om
de verstrooiing te bestuderen in reciproke ruimte. Afhankelijk van het type grafeen rand
observeren we verstrooiing binnen dezelfde vallei of tussen verschillende valleien. In de
nabijheid van een extern magneetveld zien we de welbekende springende cirkelbanen.
Onze resultaten tonen echter dat in het geval dat een pseudomagneet veld geinduceerd
wordt door niet uniforme vervorming, de verstrooiing bij een armchair rand resulteert
in een niet propagerende randtoestand. We stellen ook een zeer efficiënte vallei filter
door een kwantum punt contact gevormd door een elektrostatische poort voor in bilaag
grafeen. Voor dit bilaag systeem onderzoeken we hoe de efficiency van het systeem als
valleifilter kan worden geoptimaliseerd door verschillende parameters te varieren zoals de
lengte, breedte of amplitude van de aangelegde potentiaal.

In het tweede deel van de thesis stellen we een systematische studie voor van de energie
spectra van grafeen kwantumringen met verschillende geometrien en rand types voor in
de nabijheid van een loodrecht magneetveld. We bespreken welke eigenschappen verk-
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laard kunnen worden door middel van een vereenvoudigd Dirac model kunnen worden
verklaard wanneer de eigentoestanden van de grafeen kwantum ring vergeleken worden et
de tight-binding resultaten. Verder onderzoeken we ook de gebonden toestanden in twee
verschillende hybride monolaag-bilaag systemen en identificeren we puntgelocaliseerde
toestanden en randtoestanden voor de voorgestelde bilaag gebonden structuren. Daaren-
boven bespreken we het gedrag van de energieniveaus als functie van de grootte van
het punt en onder een extern magneetveld. Ten slotte leiden we ook een algemene uit-
drukking af voor de oneindige massa randvoorwaarde in bilaag grafeen om de gebonden
toestanden en de overeenstemmende eigentoestanden analytisch te kunnen berekenen in
de vierbandshamiltoniaan van het bilaag grafeen kwantum punt. Dit doen we met en
zonder een extern magneetveld. Onze analytische resultaten stemmen goed overeen met
de numerieke resultaten die we verkregen via thight-binding.
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1
Introduction

In this chapter, we will explore some basic properties of the chemical element carbon,
which is responsible for the existence of a wide variety of materials in nature. Initially,
we will expose a brief history of obtaining isolated graphene, talking about the reasons
for delay in making this “discovery”. We also discuss the different allotropes of carbon
and the hybridizations that generate them. We will relate the physical properties, such
as dimensionality, with its crystalline forms and its hybridizations. Finally, we present
three ways of obtaining few-layer graphene (FLG).

1.1 A brief history: carbon materials

During the last twenty years, the scientific community has focused its attention to
research involving nanomaterials, especially for the study and exploration of properties of
those materials consisting only of carbon atoms, among which is graphene1.

Although some of the allotropes of carbon are known for many years, such as diamond
and graphite2, the invention/isolation of graphene, even being considered the mother of
all these different forms, was somehow very delayed. The reasons are due to the fact
that (i) studies of two-dimensional crystal structures have been guided by the idea that
such atomic arrangements would be thermodynamically unstable at finite temperatures,
and that (ii) there could be some graphene among the pencil debris, but there were no
experimental tools to search for one-atom-thick flakes there[1].

The idea that two-dimensional atomic crystals do not exist and are thermodynamically
unstable under ambient conditions is based on the physical theory of Peierls, Landau, Lif-
shitz and Mermin [3, 4, 5, 6], which states that thermal fluctuations existing at any finite
temperature should make the low dimensional crystal lattices undergo atomic displace-
ments comparable to interatomic distances such that this lattice would collapse. This

1Graphene is the name given to a polycyclic aromatic hydrocarbon (PAH) with carbon rings formed
by six carbon atoms, which extend infinitely in the 2D plane.

2Graphite has been know as a mineral for nearly 500 years and has been used in a pencil for at least
440 years [1, 2].
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statement is described in Mermin-Wagner theorem [6, 7]. Since the conventional methods
to synthesize crystal growth heretofore developed and used (before the graphene isolation)
were all based on temperature variations, and coupled with the Mermin-Wagner theorem,
such a synthesis was not feasible. Furthermore, it is known that the melting temperature
of a thin film decreases with its thickness. Thus, when some graphite layers are subjected
to high temperatures, it results in the formation of islands or in the decomposition of
the film, making it unstable. This led to the idea that the two-dimensional crystal lat-
tices could only exist as part of a three-dimensional system or on top of non-crystalline
substrates [8].

However, the discovery of new carbon allotropes in the last thirty years made reemerge
the interest in carbon materials. First, the fullerenes were discovered in 1985 by a team
from Rice University and University of Sussex, composed by R. F. Curl, H. W. Kroto
and R. E. Smalley [9], who were awarded the Nobel Prize in chemistry in 1996 “for their

discovery of fullerenes” [10]. And latter, in 1991 it is attributed to S. Iijima the discovery
of carbon nanotubes, where in his publication S. Iijima reported about multi-wall carbon
nanotubes (MWNTs) [11]. Two years latter in 1993, a single-wall carbon nanotubes
(SWNTs) was observed simultaneously by S. Iijima and D. S. Bethune and published in
the same issue of Nature [12, 13]. These discoveries have opened new perspectives for
innovations in the electronics industry based on carbon.

Until then, graphene was considered only as a “physics toy” [2] and an “academic
material” [8]. Its theory was developed by P. R. Wallace in 1947 [14], who explained
how the band structure of graphene is and showed the unusual semimetallic behavior in
this material even before it was found experimentally. This theory is used for describing
properties of fullerenes and carbon nanotubes and it is one of the reasons that graphene
is considered the mother of carbon materials.

After many experimental attempts of various research groups in condensed matter to
obtain graphene, in 2004, a group of physicists from Manchester University (UK) led by
Andre Geim and Kostya Novoselov finally succeeded in isolating films consisting of few
layers of graphene. This study by Geim’s group began in 2002/2003. The initial goal was
to obtain around 100-layer graphite and to study it with the hope of finding problems
similar to those in the carbon nanotube world [15]. This search to make graphite films
as thin as possible was part of the experiments performed by Geim and his collaborators
only for fun, without any strict commitment with the quality of results. They devoted ten
percent of their time to so-called “Friday evening” experiments and the graphene business
started as one of these Fridays [16]. In the experimental process to obtain thin films of
graphite, they employed a widely used procedure for the surface cleaning of graphite for
analysis in scanning tunneling microscope (STM), which consists only in sticking ordinary
adhesive tape in the graphite and then pull it, repeating this operation several times. At
the end, very thin flakes are left attached to the tape. After this stage, the researchers
needed to deposit the resulting thin films on a particular substrate previously unknown
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to analyze the films on tape. Luckily, they deposited on an oxidized silicon substrate
(Si/SiO2) (the only available substrate in the initial week of testing), and thus one could
notice that some films had only one layer [17]. Thus, in 2004, it was announced by
Geim and Novoselov the formal obtainment/“discovery” of graphene in an isolated and
stable form at room temperature3 [18], and in 2010 they were already awarded the Nobel
Prize in Physics “for groundbreaking experiments regarding the two-dimensional material

graphene” [19].

Figure 1.1: Ingredients to find out graphene: two good researchers, scotch tape and
graphite. Photographs taken when Geim and Novoselov were attending the 2010 Nobel
Prize ceremony (December 8, 2010) at Aula Magna, Stockholm University.

The following years after the discovery of graphene were marked by numerous publi-
cations that have consolidated this 2D nanomaterial in the scenario of scientific research.
This hot topic has received a lot of attention from the science community [20] due to its
importance in basic science [21, 22] and its unique electronic properties, which make it
an excellent and promising option for the industry to create new devices such as simple
molecular gas sensor, ballistic transistors and spintronic devices [8, 23]. The atypical
properties of charge carriers in graphene are due to its linear dispersion relation at low
energies (E < 1eV). Displaying a gapless energy spectrum with a conic format [21], the
low-energy electrons behave like zero-mass relativistic particles with an effective velocity
of the order of 106 m/s. Thus, the motion of these charge carriers is governed by the
massless Dirac fermions equation, which leads to several interesting phenomena such as,
for example, ambipolar electric field effect, minimum conductivity, anomalous quantum
Hall effect and Klein tunneling [1, 24].

These results stated the existence of thermodynamically stable two-dimensional crys-
tals, i. e., the few layers of graphene isolated, and with the improvement in experimental

3In fact, what Geim’s group found was still graphite, about 10-layers thick [15].
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techniques in the last years, they opened the doors to study other 2D atomic crystals,
such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN) [25]. Thus,
it is possible that the research area in 2D crystals remains as a hot topic for many years,
just like the semiconductor physics is still widely studied until today.

1.2 The carbon atom and its hybridizations

Carbon, an unique chemical element, composes the elementary building block of all
organic molecules. In this way, it is also responsible for life on Earth, as well as constitutes
plenty of inorganic materials. This element is the fourth most abundant chemical element
in the universe by mass, losing only to hydrogen, helium, and oxygen, being abundant in
the Sun, stars, comets, and in the atmosphere of most planets.

The carbon atom is a member of group 14 and the sixth element on the periodic
table, neighbor to Boron and Nitrogen. Its atom has six electrons distributed in the
ground state according the configuration 1s22s22p2. The 1s orbital is occupied by two
electrons strongly bound to the nucleus, such that they are irrelevant for chemical bounds.
These electrons, together with the nucleus, are called the core of the atom. On the other
hand, the other four electrons, the so-called valence electrons that occupy the 2s and
2p orbitals, are more weakly bound. Therefore, they have an effective participation in
chemical reactions. Since carbon has two half-filled orbitals, valence electrons open the
possibility to form at least two bonds with other atoms.

Let us start from the context of the hydrogen-like atom to understand how the wave
function is written for multi-electronic atoms. It is known that the eigenfunctions for
the hydrogen-like atom are called atomic orbitals, where the state corresponding to each
orbital is described as |nlm〉, or, in spectroscopic notation, as |nxm〉, with x = s, p, d, f ,
g, h... related to l = 0, 1, 2, 3, 4, 5..., respectively, and −l ≤ m ≤ l. These eigenfunctions
|nlm〉 (or Ψnlm) are given in terms of the product of spherical harmonics Y m

l (θ, φ) and a
function F (r) that depends on the radial direction, related to the central potential Vc(r).
Since only orbitals s and p are considered in the carbon atom interactions, corresponding
to l values equal to 0 and 1, then the Y m

l (θ, φ) functions concerned are

Y 0
0 (θ, φ) =

1

2
√
π
, (1.1a)

Y ±1
1 (θ, φ) =

∓1

2

√
3

2π
sin θe±iφ, (1.1b)

Y 0
1 (θ, φ) =

1

2

√
3

π
cos θ, (1.1c)

showing that the wave function for the s orbital is always real and has a spherical shape,
since Y 0

0 is constant. For p states that carry complex values in the |nlm〉 basis, it is
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convenient to make a transformation in order to obtain always orbitals that assume real
values. Using the linear combination of the states with m = ±1 we have

|npx〉 =
1√
2

(
|np1

〉
− |np−1

〉)
, (1.2a)

|npy〉 =
1

i
√
2

(
|np1

〉
+ |np−1

〉)
, (1.2b)

|npz〉 = |np0
〉
. (1.2c)

These p orbitals are plotted in Figs. 1.3, 1.5 and 1.7, and have the shape of two spheres
touching each other forming a dumbbell. The colors blue and orange represent, respec-
tively, the positive and negative signs of the wave function4.

Although the inclusion of electron-electron interactions makes it impossible to have
the exact solution for multi-electron atoms, we can still extend the concept of orbital for
an approximation of independent electrons to many-electron atoms. Thus, we use the
concept of orbitals of hydrogen-like atoms to describe the bounds between many-electron
atoms.

Despite the 2s orbital to be approximately 4 eV less energetic than the 2p orbitals,
this energy difference is smaller as compared to the binding energies involving the carbon
atom. Thus, for the ground state, it is more energetically favorable to keep two electrons
in the 2s orbital and two in the 2p orbitals, whereas in the presence of other atoms it is
favorable to promote one of the two electrons in 2s orbital to the third 2p orbital, that
was previously empty, as shown in Figs. 1.2, 1.4 and 1.6 on excited states. Therefore, one
has, after the process of electron promotion, four half-filled orbitals that can easily form
covalent bonds with the linear combination of states |2s〉, |2px〉, |2py〉 and |2pz〉. This
mixing of the state |2s〉 and n states |2pj〉, with j = 1, 2 and 3, that enhances the binding
energy between the carbon and its neighboring atoms, is called hybridization, where the
superposition of a single 2s electron with n 2p electrons is named as spn hybridization
[27].

We are now going to describe how the three types of hybridization happen on carbon,
showing which states get into to form the hybrid orbitals sp, sp2 and sp3. 5

1.2.1 sp hybridization

In the process of sp hybridization, after the promotion of one electron to 2p orbital,
as we can see in Fig. 1.2, the 2s orbital and one of the 2p orbitals, 2px for example, are

4The orbital figures were made using the Orbital Viewer program, available for free in [26].
5There are other kind of hybridization involving more energetic orbitals with other atoms, for example

sp3d hybridization, that composes the bounds in PF5, SF4 and BrF3 molecules, exhibiting a triangular

bipyramidal shape, and sp3d2 hybridization, that composes the bounds in SF6, ClF5 and XeF4 molecules,
exhibit an octahedral shape [28].
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combined. This mixing results in two 2sp hybridized orbitals and two 2p non-hybridized
orbitals. From this linear combination between |2s〉 and |2px〉 orbitals, arise two hybrids
states

|spa〉 = C1 |2s〉+ C2 |2px〉 , (1.3a)

|spb〉 = C3 |2s〉+ C4 |2px〉 , (1.3b)

that obey the orthonormality conditions

〈spa|spa〉 = 〈spb|spb〉 = 1, (1.4a)

〈spa|spb〉 = 〈spb|spa〉 = 0. (1.4b)

The fact that the probability of 2s orbital to be occupied in |spa〉 and |spb〉 combina-
tions should be 1, i. e. C2

1 + C2
3 = 1, implies that C1 = C2 = C3 = −C4 =

1√
2
. With all

these conditions we find the two hybrid states

|spa〉 =
1√
2
( |2s〉+ |2px〉) , (1.5)

|spb〉 =
1√
2
( |2s〉 − |2px〉) . (1.6)
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Figure 1.2: Process to derive sp hybridization in carbon atoms. Eletronic distribution
for carbon is presented from left to right in the ground state, excited state, after the
promotion of one electron to one of the 2p orbitals, and the last stage is the sp hybridized
state. The yellow background in the excited stage comprises the two orbitals involved to
make hybridization happen. The energy level of the two sp orbitals is smaller than the
two 2p pure orbitals and greater than 2s orbital in ground state. In the final process, one
has two sp hybridized states.

In Fig. 1.3 we present a schematic view of how the sp hybridization forms the two
hybrid states. We can see that the two hybrid orbitals have their large positive lobes
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2s 2px spa

2s 2px spb

sp

Figure 1.3: Schematic view of the sp hybridization showing the linear combination between
the s and px orbitals to form the two |spa〉 and |spb〉 hybrid states, according to Eqs.
(1.5) and (1.6), respectively. The color directions denote the positive (blue) and negative
(orange) amplitude of the wave function. Only positive lobes are presented in illustration
of |sp〉 state.

oriented at an angle of 1800 with respect to each other, with |spa〉 ( |spb〉) elongated in
positive (negative) x-direction, being a favorable orbital to form covalent σ bonds with
neighbor atoms connected to the carbon. The other two p pure orbitals not hybridized
are perpendicular to the axis that passes through the chain and are responsible to form
π bonds. An example of structure formed by carbon that presents this sp hybridization
is the acetylene (HC CH). This molecule is linear and has a triple bond between its
two carbon atoms, which corresponds to a stronger σ bond and two additional π bonds,
which are weaker than the former.

1.2.2 sp2 hybridization

Now, the mixing of orbitals involves the 2s orbital and two 2p orbitals, for example 2px
and 2py orbitals, as schematically represented in Fig. 1.4. This process is responsible for
the emergence of orbitals propitious to three identical and coplanar connections equally
spaced, making a 1200 angle with each carbon atom. Mathematically, the origin of the
three hybrid states can be written as a linear combination of |2s〉, |2px〉 and |2py〉 orbitals,
such as

|sp2a
〉
= C1 |2s〉+ C2 |2px〉+ C3 |2py〉 , (1.7a)

|sp2b
〉
= C4 |2s〉+ C5 |2px〉+ C6 |2py〉 , (1.7b)

|sp2c
〉
= C7 |2s〉+ C8 |2px〉+ C9 |2py〉 . (1.7c)

Given the fact that the sp2 hybridization gives rise to three identical bonds in xy-plane,
that the 2s orbital is also symmetrically spherical and that the probability of being occu-
pied should be 1 in |sp2a〉, |sp2b〉 and |sp2c〉 hybrid states, one has C2

1 +C
2
4 +C

2
7 = 1, leading
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to C1 = C4 = C7 = C. In addition to these facts, in order to find the other Ci’s constant
values, we have that only 2p orbitals are relevant to define the preferential direction of
hybrid states and that these directions of the orbitals are (0,−1, 0), (

√
3/2, 1/2, 0) and

(−
√
3/2, 1/2, 0), which implies that

|sp2a
〉
= C |2s〉+

√
1− C2 [− |2py〉] , (1.8a)

|sp2b
〉
= C |2s〉+

√
1− C2

[√
3

2
|2px〉+

1

2
|2py〉

]
, (1.8b)

|sp2c
〉
= C |2s〉+

√
1− C2

[
−
√
3

2
|2px〉+

1

2
|2py〉

]
. (1.8c)

Similarly to what was done to the sp hybridization (Eqs. (1.4a) and (1.4b)), we are
going to use the orthonormality conditions to find C: using the fact that

〈
sp2i |sp2j

〉
= δij ,

we have C = 1/
√
3. Consequently, Eqs. (1.8a)-(1.8c) become

|sp2a
〉
=

1√
3
|2s〉 −

√
2

3
|2py〉 , (1.9a)

|sp2b
〉
=

1√
3
|2s〉+ 1√

2
|2px〉+

1√
6
|2py〉 , (1.9b)

|sp2c
〉
=

1√
3
|2s〉 − 1√

2
|2px〉+

1√
6
|2py〉 , (1.9c)

where the sum to form the hybrid orbitals is shown in Fig. 1.5. Only the lobes part are
presented in |sp2〉 state.

Therefore, the three equivalent sp2 orbitals will arrange themselves in a trigonal planar
configuration, oriented in the xy-plane. The remaining non-hybridized 2pz orbital is
perpendicular to the plane. Such hybridization occurs in graphite, graphene and in chains
of polyacetylene, for example the ethylene (H2C CH2) [27, 28].

1.2.3 sp3 hybridization

When one superposes the 2s and all three 2p orbitals, this mixing provides the sp3

hybridization (see Fig. 1.6 to understand how this happens). It forms four identical bonds
symmetrically distributed in space and placed with the maximum separation possible, i.

e. making a 109028′ angle between each bonding and resulting in a tetrahedral shape for
the molecule.
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Figure 1.4: Process to derive sp2 hybridization in carbon atoms. Eletronic distribution for
carbon is presented from left to right in the ground state, excited state, after the promotion
of one electron to one of the 2p orbitals, and the last stage is the sp2 hybridized state.
The yellow background in the excited stage comprises the three orbitals involved to make
hybridization happen. The energy level of the three sp2 orbitals is smaller than the single
2p pure orbital and greater than 2s orbital in ground state. In the final process, one has
three sp2 hybridized states.
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Figure 1.5: Schematic view of the sp2 hybridization showing the linear combination be-
tween the s, px and py orbitals to form the three |sp2a〉, |sp2b〉 and |sp2c〉 hybrid states,
according to Eqs. (1.9a), (1.9b, and (1.9c), respectively. The color directions denote the
positive (blue) and negative (orange) amplitude of the wave function. Only positive lobes
are presented in illustration of |sp2〉 state.



1.2. THE CARBON ATOM AND ITS HYBRIDIZATIONS 43

Analogously to previous cases, we can write the four hybrid states as a linear combi-
nation of |2s〉, |2px〉, |2py〉 and |2pz〉 orbitals

|sp3a
〉
= C1 |2s〉+ C2 |2px〉+ C3 |2py〉+ C4 |2pz〉 , (1.10a)

|sp3b
〉
= C5 |2s〉+ C6 |2px〉+ C7 |2py〉+ C8 |2pz〉 , (1.10b)

|sp3c
〉
= C9 |2s〉+ C10 |2px〉+ C11 |2py〉+ C12 |2pz〉 , (1.10c)

|sp3d
〉
= C13 |2s〉+ C14 |2px〉+ C15 |2py〉+ C16 |2pz〉 . (1.10d)

As each |sp3i 〉 orbital, with i = a, b, c and d, is aligned to the axes of tetrahedron, then
we can build the four orbitals along the (1, 1, 1), (−1,−1, 1), (−1, 1,−1) and (1,−1, 1)
directions. From this, we obtain a set of equations similar to Eqs. (1.8a)-(1.8c)

|sp3a
〉
= C |2s〉+ (

√
1− C2)

1√
3
[ |2px〉+ |2py〉+ |2pz〉] , (1.11a)

|sp3b
〉
= C |2s〉+ (

√
1− C2)

1√
3
[− |2px〉 − |2py〉+ |2pz〉] , (1.11b)

|sp3c
〉
= C |2s〉+ (

√
1− C2)

1√
3
[− |2px〉+ |2py〉 − |2pz〉] , (1.11c)

|sp3d
〉
= C |2s〉+ (

√
1− C2)

1√
3
[ |2px〉 − |2py〉+ |2pz〉] . (1.11d)

Finally, using the orthonormality conditions, we obtain that C = 1/2. Replacing it in
Eqs. (1.11a)-(1.11d),

|sp3a
〉
=

1

2
[ |2s〉+ |2px〉+ |2py〉+ |2pz〉] , (1.12a)

|sp3b
〉
=

1

2
[ |2s〉 − |2px〉 − |2py〉+ |2pz〉] , (1.12b)

|sp3c
〉
=

1

2
[ |2s〉 − |2px〉+ |2py〉 − |2pz〉] , (1.12c)

|sp3d
〉
=

1

2
[ |2s〉+ |2px〉 − |2py〉+ |2pz〉] . (1.12d)

This sum is represented in Fig. 1.7. Chemical examples for this carbon hybridization
are methane (CH4) and diamond. We summarize the kind of structure, hybridization,
geometry and angle between each bond in Table 1.1.
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Figure 1.6: Process to derive sp3 hybridization in carbon atoms. Eletronic distribution for
carbon is presented from left to right in the ground state, excited state, after the promotion
of one electron to one of the 2p orbitals, and the last stage is the sp3 hybridized state.
The yellow background in the excited stage comprises the four orbitals involved to make
hybridization happen. The energy level of the four sp3 orbitals is smaller than the 2p

orbital and greater than 2s orbital of ground state. In the final process, one has four sp3

hybridized states.
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Figure 1.7: Schematic view of the sp3 hybridization showing the linear combination be-
tween the s, px, py and pz orbitals to form the four |sp3a〉, |sp3b〉, |sp3c〉 and |sp3d〉 hybrid
states, according to Eqs. (1.12a), (1.12b, (1.12c) and (1.12d), respectively. The color di-
rections denote the positive (blue) and negative (orange) amplitude of the wave function.
This hybridization originates molecules with a tetrahedral shape.
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Table 1.1: Carbon hybridization.
Structure Hybridization Type Geometry Angle Binding Type

C sp3 tetrahedral 109028′ Four single bonds (σ)

C sp2 trigonal planar 1200 A double bond (1π and 1σ)

and two single bonds
C A triple (2π and 1σ)

and a single (σ) bond
sp linear 1800

C Two double bonds
(1π and 1σ)

1.3 Allotropes of carbon

Due to different kinds of spn hybridization in carbon atom, this chemical element
assumes several structural forms, as shown in Fig. 1.8. The different hybridizations give
rise to a plethora of organic and inorganic compounds, forming an unlimited number
of structures with a wide variety of physical and chemical properties. Most of these
properties are crucial to determine the dimensionality of the structures. Table 1.2 shows
some relatively well-known allotropes of carbon and a couple of their features, for example,
their dimensionality, that varies from 0D to 3D. From Table 1.2, one can see that the
carbon material which has a n dimensionality will have a spn hybridization type.

Table 1.2: Allotropes made of carbon [27].
Dimension 0D 1D 2D 3D
Allotrope Fullerene, Nanotube, Graphite, Diamond,

C60 Carbyne Fiber,Graphene Amorphous
Hybridization sp2 sp2 (sp) sp2 sp3

Density (g/cm3) 1.72 1.2− 2.0 2.26 3.52

Bond Length (Å ) 1.40 (C C) 1.44 (C C) 1.42 (C C) 1.54 (C C)
1.46 (C C)

Electronic Properties Semiconductor Semiconductor Semimetal Insulating
Eg = 1.9 eV or Metal Eg = 5.47 eV

Let us now comment these structures. We start with an amorphous structure (Fig. 1.8
(b)). The amorphous carbon form is a non-crystalline and irregular three-dimensional ar-
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rangement, which looks like graphite but not held in a crystalline macrostructure, namely,
it has a disordered arrangement. It appears in nature in a glassy state as a powder, and
constitutes materials such as charcoal and activated carbon. Both sp2 and sp3 hybridiza-
tion are randomly present on amorphous carbon [27].

3D 2D

1D 0D

(a) (b) (c) (d)

(e)

(f) (g)

(h) (i)

Figure 1.8: Crystal structures of different allotropes of carbon according to their di-
mensionality. Three-dimensional (a) diamond and (b) carbon amorphous (3D); two-
dimensional (c) graphite and (d) graphene (2D); one-dimensional (e) carbon nanotube
(1D); and zero-dimensional fullerenes (0D): (f) C60, (g) C540, (h) C70 and (i) C84. The
idea is taken from Refs. [7] and [29].

The graphite is formed by carbon sheets that are stacked, bonded through weak van
der Waals forces (Fig. 1.8 (c)). The adjacent surfaces interact with each other through
the π electrons that populate the 2pz orbital perpendicular to sheet planes. These bonds
are weaker than the covalent σ bonds in plane. The atoms in each sheet are disposed in a
hexagonal network, such as each atom is bonded trigonally to three others, presenting a
sp2 hybridization. The distance (C C) in each sheet is 1.42 Å, while the displacement
between the layers is of 3.33 Å . Due to the weak interplanar conections between the
layers, graphite plans can move easily over each other forming a good solid lubricant and
making such material to behave like a 2D material. Although this topic will be still
explained further in more details when we discuss about graphene (Fig. 1.8 (d)), which is
the allotrope of interest in the following Chapters, we can already mention that graphene
is a single graphite sheet, arranged as a honeycomb lattice of atoms. Each carbon atom
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in this structure has a sp2 hybridization and is very strongly bound through σ bonds with
three other neighboring atoms. The π electrons in half-filled 2pz orbital are responsible
for the unusual electronic transport properties in graphene [30].

The diamond (Fig. 1.8 (a)), that is rather wished by many people, together with
graphite are the two allotropic forms that historically have been the most popular. Under
high pressure, carbon forms diamond, that is the most compact carbon allotrope. Its
3D lattice consists of two interpenetrating face-center-cubic (fcc) lattices, such as each
atom is bonded to four others nearest neighbors, forming a tetrahedron that possess a
sp3 hybridization. The lattice spacing in (C C) links are of 1.54 Å . Diamond is the
hardest mineral in nature, because all four bonds are covalent σ bonds. This fact is the
reason for diamond to be an insulator with a large gap of 5.47 eV [31]. Counter intuitively,
the diamond is thermodynamically unstable under normal conditions and when exposed
to some perturbations it transforms back into graphite, but at room temperature this
process is extremely slow [27].

Another allotropic form of carbon is the fullerene (Fig. 1.8 (f)-(i)). In this structure,
carbon atoms are packed in a spherical or oval surface, forming hexagons and pentagons or
even heptagons of carbons. These latter are responsible for the curvature of the structure
in spheroid shapes. The fullerenes are large molecules in which carbon atoms are bonded
trigonally and possess a sp2 hybridization. The best-known fullerene is the soccerball-
shaped C60 buckminnsterfullerene, that has twelve pentagons and twenty hexagons and
is also called buckyball. It has the same symmetry of a regular icosahedron and it forms
a 0D system in confinement sense [9].

Carbon nanotubes (CNTs) are one dimensional structures that can be understood as
a curved graphene sheet forming a hollow cylinder with a diameter of several nanometers,
depending on the number of walls (see Fig. 1.8 (e)).

1.4 Fabrication techniques

Since the 1960’s, many researchers have done many attempts to obtain a single isolated
sheet of graphite. Although they have failed, the techniques used in such attempts have
gained new perspectives with Geim and Novoselov results [18], which boosted the search
for other new methods of synthesis of graphene and the improvement of existing tech-
niques, aiming the development of very effective and inexpensive methods of graphene
production on a large industrial scale. In this way, even though this is a theoretical
thesis, it is important to discuss, in general lines, about the most commonly employed
growth/deposition methods used to obtain graphene: exfoliation from graphite, epitaxial
growth on silicon carbide (SiC) and catalytic growth on metal by chemical vapor deposi-
tion (CVD).
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1.4.1 Exfoliation from graphite

Although there are two kinds of exfoliation techniques, namely, mechanical and chem-
ical6 exfoliation, both are based in the same principle, that consists in breaking down the
Van der Waals forces between the graphite layers.

Mechanical exfoliation was developed first, hence, it is the most popular method for
producing graphene. Its procedure has two main steps: “peeling” and “rubbing”. In the
first step, one starts with highly oriented pyrolytic graphite (HOPG), which is sandwiched
between adhesive tapes to peel off layers from a graphite flake. This is done successively,
so that in each time the graphite is sliced into two parts, and each part is thinner than
the original one. After several cycles, the second step is performed, when the tape is
pressed down against a substrate, formed by silicon oxide (SiO2), to deposit a sample.
This process is very similar to what happens when we write with a pencil, except for the
level of purity of the used graphite. Due to the use of tapes, this technique is also called
“scotch-tape” method. As the inter-layer Van der Waals interaction energy is of about 2

eV/nm2, then the order of magnitude of the force required to exfoliate graphite is about
300 nN/µm2 [33].

(a) (b) (c)

Figure 1.9: (a) Graphite flakes on adhesive tape to isolate graphene through scotch-tap
method. (b) and (c) are optical images of few-layer graphene obtained by micromechanical
exfoliation from graphite. In (b) one has thin graphite and (c) FLG and a single layer
graphene shown in lighter purple contrast on a ≈ 300nm SiO2 layer. The colors are related
with local thickness of the sample. Yellowish color indicates thicker samples while bluish
and lighter contrast indicates thinner samples. Adapted from Refs. [33] and [34].

The graphene produced by this method has a perfect crystallinity and a high electrical
quality, once that this process is performed with a single crystalline graphite source and
does not undergo any intrusive procedure or equipment. However, the produced flakes
reach only 100 µm2 [2] and are obtained in the wafer form isolated or mixed with few-
layer graphene, which does not allow its application on a large scale. Thus, graphene

6This technique was widely used in the 70’s and consists of reducing the Van der Waals forces between

the atomic planes of graphite by inserting chemical species between the planes in order to expand the

bonds. For more details, see Refs. [2] and [32].
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synthesized by mechanical exfoliation is suitable only for basic research and demonstration
devices.

As the resulting flakes are composed by a mixing of FLG, then to visualize single flakes,
peeled HOPG should be placed on 300 nm thick SiO2 to enhance the optical contrast under
white light illumination in a optical microscope. Fig. 1.9 shows a sample of thin films
of graphite, where the different colors are related to the number of graphene layers. The
SiO2 substrate with a thickness of 300 nm has a violet coloration when observed by optical
microscope. With the increasing in thickness due to FLG presence, one can observe a
change in color to blue in the region where the films are located. The thinner the films
are, more tenuous is the change in coloration, until films with a thickness smaller than
1.5 nm are no longer visible by this method.

1.4.2 Epitaxial growth on SiC

Even before the isolation of a single layer of graphite, it was known since the 70’s
that layers of graphene could be grown epitaxially on solid substrates using thermal
decomposition of carbides [1, 33]. The most popular epitaxial process uses a silicon
carbide substrate. In fact this experimental method is actually a hybrid epitaxial and
thermal decomposition process of a crystal of SiC at high temperature.

The thermal treatment consists in the sublimation of the silicon atoms at the top of the
crystal, that are desorbed, leaving a carbon-enriched surface. As the silicon atoms are sub-
limated, the remaining carbon atoms reorganize themselves forming graphitic structures.
This stage is also called “graphitization”. This epitaxial growth requires temperatures
around 13000C and ultra high vacuum [35].

The number of layers and the physical properties of these graphitic layers are con-
trolled parameters in this growth technique. The accuracy in the number of layers can
be controlled by the growth time or by the temperature used in the heating treatment,
while the quality of the samples depends on the chosen SiC surface used for their growth.
There are two surface terminations: Si-terminated surface (0001) and C-terminated sur-
face (0001). In the case of C-terminated surface, the graphitization process is slow, so that
one may control more accurately how many layers are formed, and thus produce fewer
layers. The resulting electron mobility is rather low in such a way that this kind of surface
orientation is less chosen for samples used in transport measurements. On the other hand,
the epitaxial-thermal process using Si-terminated surface is very fast, producing a large
number of graphene layers. In this last termination, the electron mobility is rather high
[1, 35]. This formation process is schematically illustrated in Fig. 1.10, using Si- and
C-terminated surfaces.

An important point in this synthesis is that the SiC substrate must be considered as
an integral part of whole system. This implies that the electronic properties can change
along the sample, indicating a certain degree of inhomogeneity after graphene growth.
The interaction between substrate and the obtained FLG is stronger at the first graphite
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Figure 1.10: (a) Schematic illustration of the process of thermal decomposition of SiC
for graphene synthesis. (b) and (c) are AFM measurements showing respectively silicon
(0001) and carbon (0001) surfaces after graphene growth. Adapted from Refs. [32] and
[36].

layers. It is so tightly bound to the SiC substrate that the distance of the first carbon layer
directly on top of the substrate (≈ 2 Å) is smaller than the distance between graphene
sheets in crystalline graphite (≈ 3.4 Å), whereas the distance between the above layers
are bigger than the ones in crystalline graphite [37]. Furthermore, the graphene layers
produced in this experimental method are heavily doped, due to the charge transfer from
the substrate to graphene layers, leading the sample to exhibit a metallic character [1].
This excess of charges due to electronic doping moves the Fermi level away from the
graphene Dirac point, therefore changing the graphene properties [38].

1.4.3 Chemical vapor deposition

Another well-known possibility of synthesizing graphene on a substrate is by means of
the method called Chemical Vapor Deposition (CVD). This technique has many advan-
tages that made it becomes the most promising method for the production of graphene
on a large scale. Some of these advantages can be listed, as for example: the possibility
of synthesizing thin films of graphene with high uniformity, the fact that it can be trans-
ferred easily to other substrates, the relatively low cost and the rapidity and simplicity of
the process [33, 39, 40].

The process of graphene synthesis using CVD involves sputtering of an initial thin
metal film. It happens by the exposure of the transition metals to a carbon rich atmo-
sphere at high temperatures. In general, this gaseous flow of hydrocarbons is composed
by methane (CH4) or ethyne (C2H2). The gas molecules are deposited on the substrate,
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usually a Si/SiO2 wafer, on which a thin film of transition metal is deposited. The tran-
sition metal acts as a catalyst, thermally decomposing the molecules and providing the
necessary conditions for the formation of graphitic structures on the substrate surface.
The solubilization of carbon in the thin film after the thermal decomposition of hydro-
carbons gases occurs due to the fact that transition metals have specific characteristics
of melting and boiling points, along with the fact that these transition metals have a
great number of half-filled electronic orbitals which facilitate the breaking of the molec-
ular bonds, since in the catalyzation process, a compound interacts with the metal by
electrons donating such as the anti-bonding orbitals are populated, assisting the breaking
of the bonds. Thus, after heating and exposing stages, the sample is subjected to cooling
stage. It is during cool-down that the solubility of the carbon in the metal decreases,
resulting in crystallization of graphene on the surface [32, 41].

Low density

High density

(b) (c)

(d)

(a)

(e)

(f)

Figure 1.11: (a) Graphene growth process using a Ni film and its different stages (1-3):
1. The Ni film deposited on SiO2/Si is heated to 9000C and annealed for 20 minutes
under flowing H2 and Ar. 2. Exposure to H2 and CH4 for 5 minutes. CH4 is decomposed
catalytically and the carbon produced is incorporated into Ni film. 3. The substrate is
cooled down from 10000 to 5000C under Ar, H2. At 5000C, the sample is taken out of
the furnace and cooled rapidly to room temperature. (b)-(e) Two types of graphene films
with different densities and their characterization. (b) and (d) are optical images of the
graphene films on Ni, (c) and (e) are optical images of the graphene films transferred
to SiO2/Si. The transference to SiO2/Si substrate enables thickness analysis by optical
contrast. (f) Photograph of a large graphene film (blue film on the purple substrate of
SiO2/Si) with ≈ 87 percent of its area covered by 1 and 2 layers of graphene. Adapted
from Ref. [42]

Recent studies addressing the synthesis of graphene by CVD have used different tran-
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sition metals such as nickel (Ni) [39, 42, 43], iron (Fe) [44], copper (Cu) [45, 46], ruthenium
(Ru) [47], iridium (Ir) [48] and others. The most investigated ones are those involving
growth with nickel and copper as catalysts. As an example of CVD synthesis employing
one of these most used transition metals, the growth cycle using thin films of nickel is
schematically illustrated in Fig. 1.11.

As we can see in Fig 1.11(f), with this technique, one can cover an entire wafer with
graphene. However, these films (Figs. 1.11(b)-1.11(d)) can not be used directly in elec-
tronic applications, due to the conducting substrate. Therefore, it is necessary to transfer
them to a substrate like SiO2/Si (Figs. 1.11(c)-1.11(e)) [41, 42].

In summary, all these three presented techniques have each one their specificities.
Thus, depending on the desired application, one may choose one or another technique
which may be more attractive. Table 1.3 briefly lists advantages and disadvantages of
each method to isolate and to produce few graphene layers.

Table 1.3: Comparative table of growth/deposition techniques to isolate/produce few
graphene layers. Adapted from Refs. [33] and [41].

Method Description Advantages Disadvantages
Exfoliation Graphene peeled · Highest quality · Random (shape,

from graphite from HOPG using · Low-cost size, location)
scotch tape · No special · Does not scale

equipment needed

Epitaxial SiC annealed · Good control over · Expensive substrates
growth (≈ 13000C) number of layers · High temperature
on SiC → Si sublimation · Large domains · Surface steps

Catalytic Catalyst film heated · No limit of · Synthesized graphene
growth on and hydrocarbon substrate size have high electrical

metal (CVD) supplied · Low temperature resistance
· Rapid process · Fragile stability
· Straightforward of the colloidal

up scaling dispersion
· Versatile handling · Reduction to graphene
of the suspension is only partial

1.5 Applications

Graphene possess unusual electronic, mechanical and optical properties that make this
material a promising candidate for future electronic application, as already mentioned in
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the previous section [49], as well as an exceptional material to replace all the devices and
technology based on silicon [50]. According to Andre Geim, as reported in the BBC news
[51] on May 21th 2011, he said that “Graphene does not just have one application” and also
in the same issue of this journal Jari Kinaret, professor of technology at Chalmers Univer-
sity in Sweden, mentioned that “It can open completely new applications in transparent
electronics, in flexible electronics and electronics that are much faster than today”. Thus,
graphene and its derivatives offer the promise to significantly improve existing products
and to enable the design of materials and devices with novel functionalities. We will men-
tion here a few examples of graphene materials and devices. Some of these applications
they are in a more mature stage, in the sense that are closer to be implemented in the list
of commercial devices, while the other ones in different areas are in a more conceptual
stage.

1.5.1 Flexible graphene for displays

Graphene has emerged as an ideal candidate for transparent and flexible electrodes.
This is one of the most practical applications for graphene in electronics, which is based
on three important properties, two optical and one mechanical: (i) graphene can be
used as a very thin transparent conducting film, (ii) it presents low resistivity [52] and, in
addition, (iii) it has the smallest bending radius among all flexible transparent conductors
characterized so far [53] (see Figs. 1.12(a) and 1.12(b)). It has been also shown that plastic
can become conductive by adding only 1% of graphene while it will remain transparent
and that graphene is highly transparent even for the visual spectrum [52, 54] (see Fig.
1.12(c)). In this way, transparent conducting films based on graphene can be used in
many applications such as touchscreen, smart windows, mobile phones, TVs, solar cells,
Light Emitting Diodes (LEDs) and Liquid Crystal Displays (LCDs), as illustrated by Fig.
1.12(d).

Nowadays, the transparent electrodes are typically made from indium tin oxide (ITO),
because of its relatively good conductivity and optical transparency, as shown in a com-
parative way with graphene in Figs. 1.12(a) and 1.12(b). But Indium is very expensive
and toxic, moreover ITO has poor mechanical properties, such that it tends to crack
when bent or stretched [55]. Hence, graphene has a realistic chance to be used in the
manufacture of flexible components needed in flexible and transparent electrodes, since
it has been already demonstrated that graphene is mechanically robust and its synthesis
by CVD consumes only tiny amounts of carbon gases and does not need rare mineral
resources such as indium or silver, thus becoming, cheaper than ITO.

Many companies have been increasingly struggling to achieve reasonable and optimized
results to be able to apply those experimental techniques on the mass production of
graphene. An example of the biggest investors in the development of new technologies
using graphene is the Samsung company, being one of various results obtained by the team
supported by this company illustrated in Fig. 1.12(d), that is a large sample of graphene
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(a) (b)

(c) (d)

Figure 1.12: (a) Transmittance versus wavelength into the visual spectrum for different
transparent conductors: graphene, single-walled carbon nanotubes (SWNTs), indium tin
oxide (ITO), ZnO/Ag/Zno and TiO2/Ag/TiO2. (b) Transmittance versus sheet resistance
plots for different transparent conductive films, including CVD graphene and theoretical
calculation of graphene. (c) Transmittance for an increasing number of layers, which show
that graphene and bilayer graphene are highly transparent and that graphene absorbs
only 2.3% of light for a very large range of wavelengths. (d) Graphene-based touchscreen
panel (top, left) showing outstanding flexibility (bottom, left), a transparent ultralarge-
area graphene film transferred on a 30-inch sheet fabricated by Samsung company (top,
right) and possible applications in bendable mobile devices (bottom, right). Adapted
from Refs. [52], [54], [55] and [56].
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film developed in June 2010 by Samsung company using the roll-to-roll production and
wet-chemical doping of predominantly monolayer 30-inch graphene grown by chemical
vapour deposition onto flexible copper substrates [54].

1.5.2 Coating with graphene

Another very interesting graphene application is related to preventing corrosion of
metals such as steel. In this purpose, graphene is used to coating the metals against
corrosion process, which is one of the greatest challenges faced by the metal industry, since
this effect occurs in a natural way, triggered by environmental factors, as the presence of
water, oxygen and electrolytes.

(a) (b)

(c)

Figure 1.13: (a) Illustration depicting a graphene sheet as a chemically inert diffusion
barrier, preventing the reactive agent from ever reaching the metal underneath. (b)
Photograph showing graphene coated (upper) and uncoated (lower) penny after H2O2

treatment (30%, 2 min). (c) Photographs of Cu and Cu/Ni foil with and without graphene
coating taken before and after annealing in air (200 oC, 4 h). Adapted from Ref. [61].

Because of many adverse effects on human and environment health brought with
the usage of Chromium and Zinc as anticorrosive materials for metal coatings, different
corrosion protections have been sought in order to reduce production costs and the adverse
side effects [57]. In this direction, graphene has attracted attention of the steel industry
because it has a more efficient, innovative and cheaper technology to overcome corrosion
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issues, making a preventive and protective work against corrosion. The two properties
that provide graphene as a good anticorrosion mechanism are: (i) the impermeability of
pristine graphene, so that graphene coatings can make the path of permeating water more
tortuous, acting as an excellent barrier to water, oxygen and other corrosive materials,
and the fact that (ii) graphene has a higher electrical conductivity than steel.

Recent approaches in the production process have proposed graphene-based coatings,
which are composed by functionalized graphene incorporated into organic coatings [58].
It has been shown that these graphene hybrid nanocomposites demonstrate an excellent
corrosion inhibition capability when compared with current chromate-free anticorrosion
technology, and comparable performance to chromate-based anticorrosion technology [59].
Thus these graphene-based coatings can be used as inhibitors in protective coatings to
prevent oxidation of underlying metals in oxidizing chemicals, water or air for longer
period [60, 61] and for bipolar plates in fuel cells, which are stainless steel components
that separate individual cells in a stack and aid in the distribution of fuel and oxidant,
water management and current collection [57].

As an illustrative example that thin layers of graphene in the top of metal surface serve
as impermeable coatings, we show in Fig. 1.13 photograph images of two metal surfaces,
Nickel (Ni) and Copper (Cu), both graphene-coated and uncoated, after air anneals and
exposure to liquid etchant. In all showed cases, the graphene-coated metal surfaces exhibit
very little visible change, as opposed to the uncoated metals whose surfaces change ap-
pearance dramatically. Thus, the use of graphene in coating process reduce the oxidation
of the metals and in addition it does not alter their conductivity [61].

1.5.3 Graphene photodetector

The unique physical properties of graphene make it suitable for detecting light, since
that: (i) electrons and holes move much faster through graphene than through other
materials and (ii) it is very good at absorbing light over a very wide range of wavelengths,
ranging from the visible to the infrared, whereas thin layers of III-V semiconductors do not
absorb many infrared frequencies. The knowledge of these benefits opens the possibility
to exploit graphene for optoelectronics using graphene sheets to make photodetectors.

Photodetectors are electronic components that measure photon flux or optical power
by converting the absorbed photon energy (optical signals) into electrical current. They
are widely used in a range of common devices, such as remote controls, televisions, DVD
players and receivers in fiber optic networks where they return the light information
to the form of an electric signal [52]. The modern light detectors are typically made
using III-V semiconductors, such as silicon or gallium arsenide. When light strikes these
materials, each photon absorbed creates an electron-hole pair, which are then separated
in an electrical field, which leads to an electrical current. This electrical field usually is
generated by an external voltage applied to the component.

The photoelectrical response of graphene was first investigated by the IBM researchers
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team led by Phaedon Avouris (see Fig. 1.14), that made use of the internal electric
field that exists at the interface of graphene and metal [62]. Through a sophisticated
combination of palladium (Pd) and titanium (Ti) electrodes they created a photodetector
that does not rely on external current. They did this by placing palladium or titanium
electrodes on top of a piece of multilayered or single-layered graphene. The metal contacts
produce electric fields at the interface between the electrodes and graphene. This electric
field separates the electrons and holes in a very efficient way, and thus a photocurrent
is produced when light is shone onto the device. Using this specific arrangement, the
IBM team overcame the problem of quick carrier recombination of the electrons and holes
generated by incoming photons and, moreover, allowed to eliminate unwanted noise at the
same time, once that it does not need to apply a bias voltage for the device to operate.
Normally this pair combination in graphene happens within tens of picoseconds, leaving
no free electrons for current [62, 63].

Figure 1.14: Schematic view of the metal-graphene-metal photodetector, where the elec-
trodes are composed by palladium (Pd) and titanium (Ti) located on the top of a piece
of multilayered or single-layered graphene. VG is the gate bias. Adapted from Ref. [62].

Thereby, graphene-based devices can be also used in optical communications, remote
sensing, environmental monitoring, terahertz detection, and surveillance. This brings a
significant impact on mainstream optical applications into photonics, specially due to the
fact that graphene photodetectors can operate with an internal quantum efficiency of
15 − 30%, despite its gapless nature and, in addition, it enables an ultrawide range of
operational wavelengths [64].
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1.5.4 Challenges in graphene commercialization

Despite the plenty of possible advantages that graphene could bring with its usage
as a base-compound for electronics, photoelectronics, spintronics and valleytronics, many
considerable challenges must be overcome to integrate this material into the commercial
devices, even for the graphene researches that are in high progress level. It follows some
hindrances in the attempt to make graphene become useful for realistic applications, which
includes the development and the improvement of [55]:

• a low-cost and large-scale synthesis method for high-quality graphene [55];

• manufacturing techniques with guaranteed of uniformity and reproducibility [65];

• defect- and residue-free transfer method that is compatible with conventional device
manufacturing processes [66];

• doping processes that can assure stable, high electrical conductivity over long peri-
ods [67];

• methods to insure the environmental stability of graphene electrodes against mois-
ture and chemicals in the air [68];

• methods to decrease the contact resistance between electrodes and active materials
[69].

Limited material availability and material cost to produce in quality are the two of the
most significant factors that could affect the speed of commercial deployment of graphene.
Although there are diverse methods to produce different types of graphene material, the
development of graphene manufacturing methods still need achieve a experience degree
to outstrip demand for quality, quantity, reliability, consistency and price. The choice of
production process depends on the required graphene properties and the targeted appli-
cation, which it turn will define the volume and price requirements, i. e. the material cost
required to enable commercialization is application-dependent. In the other words, one
can see that the large-scale manufacturing method for the industry needs standardization
and industrialization, otherwise it may slow the commercial adoption of graphene in the
industry [70].

Another critical market barrier that could affect the speed of adoption of graphene
is the resistance produced by incumbent materials and technologies. For example, if the
graphene turn out to indeed replace silicon in electronics, then all sectors of industrial
chain must undergo a transformation to suit their methods of graphene production. Thus,
certainly graphene should feel a resistance by existing suppliers in an attempt to slow down
or prevent a switch to this new material [70].

To illustrate the level of some graphene applications and in which stages they are up
to now, we present in Fig. 1.15 a block diagram showing the applications related to three
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Figure 1.15: Some graphene applications for three main types of graphene product:
graphene films, graphene oxide (GO) flakes and graphene nanoplatelets (GNPs), in which
they are classified by technology readiness level. Adapted from Ref. [70].

main types of graphene product: graphene films, graphene oxide (GO) flakes and graphene
nanoplatelets, in which they are classified by technology readiness level from 1 (basic
principles) to 9 (operation). As one can realize, the discussed applications in previous
section using graphene as a based to photodetectors, flexible and transparent devices
and coating are placed respectively in the stage of applied research and development and
demonstration. It shows that these applications are niche applications that present low
barriers to adoption and are close to commercialization. According to some experts in
emerging technologies field, the number of organizations developing graphene applications
and the number of patents filed may suggest an opportunity for a further acceleration of
graphene commercialization, such as expressed in the following quote: “Judging from the
progress to date, the resources mobilized worldwide and the level of industry awareness,
graphene might be on track to become a commercial reality in less than 20 years from
the first attempts at commercialization.”, said by the researchers A. Zurutuza and C.
Marinelli that work at Graphenea and at Applied Graphene Materials [70].

1.5.5 Granted investments to graphene

Since the graphene isolation in 2004 [18] and the first series of published papers that
triggered a sharp rise in the level of graphene research efforts worldwide, many companies
have been attracted attention to the possible graphene applications. It has been esti-
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mated that more than 44 companies currently active are now involved in research around
graphene [70]. This wave of investments around the world heading toward a new techno-
logical revolution has been fuelled by both public and private investments, composed for
example by European Commission, UK and Korean governments and by the private ven-
tures from Samsung, IBM and Nokia. To have an idea of how much substantial is being
invested nowadays, we will cite now the amount by three mentioned governments. In 2013,
the European Commission elected graphene to be one of Europe’s 10-year 1 billion euro
Future Emerging Technology flagships. This program is called as Graphene Flagship7 and
coordinates 76 academic and industrial research groups in 17 European countries. An-
other examples are South Korea, that has invested US$ 200 million in graphene research
since 2012, where significant contributions come from private industries like Samsung,
and the United Kingdom, that has invested a more modest amount of 50 million euro at
the beginning of 2012 [71]. These investments indicate an important involvement of the
companies worldwide with graphene, proving it to be a very promising market. In 2013,
the size of the graphene market was estimated to be around US$12 million [70], and the
market projections for the next years indicate significant expansion and revenue increase.
The IDTechEx8, that has provided independent market research, business intelligence and
events on emerging technology to clients in over 80 countries, has been closely tracking the
graphene market for over two years and realized that: “Graphene markets will grow from
around $20 million in 2014 to more than $390 million in 2024 at the material level. The
market will be split across many application sectors; each attracting a different type of
graphene manufactured using different means. The market today remains dominated by
research interest but the composition will change as other sectors such as energy storage
and composites grow.”.

Other indexes that reflect the progress in the commercialization and research develop-
ment in graphene are the number of patents and publications in this field. These data are
shown in Fig. 1.16 for (a) the number of publications and (b) patent applications per year
for three carbon allotropes: carbon nanotubes, graphene and fullerenes, and (c) patents
yearly from both corporations and academic institutions. In all graphics in Fig. 1.16, it
is presented some historical points about the research evolution in the timeline. One can
realize the expressive amount of publications and patents involving graphene, that seems
to increase more and more leading a positive effect in the speed of commercial deployment
of graphene. Just in 2010, about 3000 papers were published on graphene, reflecting a
shift in research away from carbon nanotubes. Associating the representative scientific
discoveries and the number of patents in Fig. 1.16(c), one can notice that around 2007

graphene became more widely known in the science and industrial research communities
such as a spike in numbers of patent applications both from corporations and academic

7For more information visit the official website from Graphene Flagship:

<http://graphene-flagship.eu/>.
8Read more at: <http://www.idtechex.com/research/reports/graphene-markets-technologies-

and-opportunities-2014-2024-000390.asp?viewopt=showall>

<http://graphene-flagship.eu/>
<http://www.idtechex.com/research/reports/graphene-markets-technologies-
and-opportunities-2014-2024-000390.asp?viewopt=showall>
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(a)

(b)
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Figure 1.16: Number of (a) publications and (b) patent applications per year up to 2010

for three carbon allotropes: carbon nanotubes, graphene and fullerenes. The publications
in graphene are accelerating faster than the buzz that surrounded carbon nanotubes in the
1990s, whereas the number of patent applications involving graphene just mathed those
citing nanotubes. (c) The development of the total number of graphene-related patents
over the past few years together with selected scientific publications on the preparation
and application of graphene. Adapted from Refs. [20] and [72].
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institutions is observed.
All indices presented here are indicators of commercial potential of graphene, i. e. the

large number of companies, academies, publications and patents involved with graphene
represent a positive direction of viable commercial solutions based on graphene.

1.6 Organization of the thesis

In this thesis we will present a theoretical study of: (i) the dynamic properties in
multilayers graphene, performing a systematic study of the wave packets scattering in
different interface shapes, edges and potentials; and furthermore of (ii) the energy levels
of confined systems in graphene under the presence or absence of external magnetic and
electric fields.

In the next Chapter 2 we will develop the mathematical tools used to explain the basic
properties of mono and bilayer graphene
indexbilayer graphene. We will start from Tight-binding model, and under some approx-
imations, we will achieve the Dirac continuum model. We will also calculate the energy
spectra of both monolayer and bilayer graphene under the influence of an external per-
pendicular magnetic field, showing thus the Landau levels. In addition to the models
to compute the electronic structure of graphene, we will also present the Split-operator
technique for a Tight-binding Hamiltonian and for the Dirac Hamiltonian.

In Chapter 3, we will present a systematic study of the energy spectra of graphene
quantum rings having different geometries and edge types, in the presence of a perpen-
dicular magnetic field. Four kinds of geometry will be considered: triangle, rhombus,
hexagon and circle, with two edge types: armchair and zigzag. The results will be ob-
tained within both the tight-binding and Dirac models, in order to compare and discuss
which features can be recovered by using the approximations imposed by Dirac model.

In Chapter 4, we will derive a general expression for the infinite-mass boundary con-
dition in bilayer graphene using the four-band continuum model. This new boundary
condition can be used for any kind of circular confined structure, as a bilayer quantum
dot or a bilayer quantum ring. In this Chapter we will apply this boundary condition
to calculate analytically the confined states and the corresponding wave functions in a
bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic
field. We will discuss the kinds of symmetry present in the studied system and also show
some of its properties, such as its cyclotron resonance.

In Chapter 5, we will investigate the confined states in two different hybrid monolayer
- bilayer systems. They are defined as: (i) a hexagonal anti-dot in bilayer graphene under
perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded
by a hexagonal region of monolayer graphene. Using the tight-binding model, we will
study the behavior of the energy levels as a function of dot size and under an applied
external magnetic field. We will also identify which states are dot-localized states, or
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edge states or even mixed states.
In Chapter 6, we will numerically study the influence of the graphene edges in the

scattering of a Gaussian wave packet. Furthermore, we will investigate the skipping
orbits when an external magnetic field is applied and also what happens when the sample
is submitted to a pseudo-magnetic field induced by non-uniform strain.

In Chapter 7, we will calculate the transmission probabilities of a Gaussian wave packet
through a quantum point contact defined by electrostatic gates in bilayer graphene. Two
kinds of the potential alignment will be considered, in order to provide a bias between the
layers. In one of the cases, the gates will be set such that on both sides of the contact will
produce the same bias and so an energy gap. It is similar as in an usual quantum point
contact. In the other case, the bias will be inverted on one of the sides of the quantum
point contact, although still forming the same energy gap at both sides. It will be done
to allow only electrons belonging to one of the Dirac valleys to pass. Thus we will provide
which parameters improve the efficiency of proposed bilayer system as a valley filtering,
such as length, width and amplitude of the applied potential.

Finally, the thesis is concluded in Chapter 8, where we summarize the main results
and we give some suggestions for future works.



2
Theoretical framework and methodology

In the solution to the problems proposed in this thesis for the study of nano-graphene
structures, we shall use the tight-binding model and Dirac equation, which we will de-
tail below. Another mathematical tool that was computationally implemented and also
used in the development of this thesis is the Split-operator technique, which will also be
presented as follows in this Chapter.

2.1 Graphene

We start with the microscopic definition of graphene to obtain latter, in the low-energy
approximation, the continuum model for charge carriers dynamics. But first, let us discuss
how this material has been studied in recent years [8].

Graphene is a two-dimensional crystal formed by carbon atoms arranged in a hon-
eycomb lattice. This structure can be viewed as two superposed triangular sublattices
shifted one from each other, A and B, or as a single lattice with two atoms per unit cell,
as shown in Fig. 2.1.

The lattice vectors can be written as

~a1 =
3a

2
x̂+

√
3a

2
ŷ ~a2 =

3a

2
x̂−

√
3a

2
ŷ, (2.1)

where a ≈ 1.42 Å is the lattice parameter, i. e., the smallest distance between two carbon
atoms that forms the C C bond. The reciprocal lattice vectors are given by

~b1 =
2π

3a
x̂+

2
√
3π

3a
ŷ ~b2 =

2π

3a
x̂− 2

√
3π

3a
ŷ. (2.2)

In the second quantization formalism, we have that the tight-binding Hamiltonian for
electrons in graphene, considering only the first neighbors terms, is given by

H =
∑

i

(ǫi +Mi)(a
†
iai + b†

ibi) +
∑

<i,j>

(τi,ja
†
ibj + τ ∗i,jb

†
jai), (2.3)

where a†
i and ai are creation and annihilation operators, respectively, for electrons on the

site i, with self-energy ǫi, for the sublattice A, while b†
i and bi are the same operators for
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Figure 2.1: (a) Hexagonal lattice structure of graphene represented by two interpenetrat-
ing triangular lattices A and B, whose primitive vectors are ~a1 and ~a2, and ~δi, with i = 1,
2 and 3, are the vectors that locate the nearest neighbors. The area in yellow shows
the unit cell. (b) The first two Brillouin zones and the points of high symmetry of the
reciprocal lattice (~b1, ~b2) are also shown. The Dirac cones are located at the K and K ′

points.

the sublattice B, and τi,j is the hopping parameter. In order to consider the presence of an
external magnetic field in the tight-binding model, one should include a phase on hopping
parameters, taking a Peierls transformation [1, 73] described as τij → τij exp

[
i e
~

∫ i

j
~A.d~l

]
,

where ~A is the vector potential related to the external magnetic field. A strain field
would lead to a variation of the interatomic distances and, consequently, of the hopping
energy between sites, leading to changes such as τi,j → τi,j(1 + 2∆ai,j/a0) with ∆ai,j =

ai,j − a0, where ai,j is the distance between the atoms after the application of strain field
[74, 75, 76]. The Mi term appears as a mass-related term in the continuum model, as we
will demonstrate further on. This term is a staggered site-dependent potential, which is
positive (negative) if the i-site belongs to the lattice A (B). Due to this property, such
potential is normally used to simulate confining structures in graphene, such as quantum
dots and rings [77], where it leads to a gap.

Without loss of generality, we omit for simplicity the first sum of the Hamiltonian (2.3)
whose only effect is to shift the Fermi energy level of the system. Let us also consider
that all the hopping energies are equal to t ≈ 2.8 eV [1]. Thus we have that1

H = −
∑

<i,j>

t(a†
ibj + b†

jai). (2.4)

By considering an infinite lattice, we can make a Fourier transform of the creation and
annihilation operators presented in Hamiltonian (2.4):

ai =
1√
N

∑

k

ei
~k·~riak a†

i =
1√
N

∑

k

e−i~k·~ria†
k (2.5)

1The symbol <> below of the summation means that the sum is performed only for the nearest
neighbors.
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bj =
1√
N

∑

k′

ei
~k′·~rjbk′ b†

j =
1√
N

∑

k′

e−i~k′·~rjb†
k′. (2.6)

Replacing Eqs. (2.5) and (2.6) in Hamiltonian (2.4), and also considering only the
interactions with the first three nearest neighbors, we obtain that

H = −t
∑

k

[g(~k)a†
kbk + g∗(~k)b†

kak], (2.7)

where
g(~k) = eik

′

xa + 2 cos(k′y
√
3a/2)e−ik′xa/2 (2.8)

is the structure factor of the crystalline lattice.
Since we can write H =

∑
k 〈Ψk|Hk|Ψk〉, where |Ψk〉 = (ak,bk)

T and Hk are, respec-
tively, the electronic states and the Hamiltonian for a particular ~k, therefore we now write
the Hamiltonian (2.7) in a matrix form

Hk =

(
0 −tg(~k)

−tg∗(~k) 0

)
. (2.9)

By diagonalization on the Hamiltonian (2.9) we obtain that the eigenvalues are

E±k = ±t|g(~k)| = ±t
√

3 + f(~k), (2.10)

where f(~k) = 4 cos(3kxa/2) cos(
√
3kya/2) + 2 cos(

√
3kya).
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Figure 2.2: (a) Electronic dispersion relation of graphene with a zoom in the energy bands,
showing the conical relationship nearby K and K ′ Dirac points. (b) Contour plot of the
conduction band on the first Brillouin zone.

As it can be seen from Fig. 2.2, the band structure of graphene is gapless at six points,
known as the Dirac points. In the vicinity of these points, one observes that there is a
conical electronic dispersion, suggesting that the electron in these nearby of the reciprocal
space should behave as a massless quasiparticle described by the Dirac equation, which
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also has a linear dependence with energy. Only two of the six cones are not equivalent,
whose positions in reciprocal space are given by the vectors

~K =

(
2π

3a
,

2π

3
√
3a

)
~K ′ =

(
2π

3a
,− 2π

3
√
3a

)
. (2.11)

Until the present moment, we have described the electronic behavior in a microscopic
approach given by the Hamiltonian (2.9). Reducing the model to the study of the elec-
tronic behavior only in the vicinity of the Dirac points, we achieve the continuum model.
To do this, we will expand the non-zero terms of Hamiltonian (2.9) in a Taylor series
around these ~K e ~K ′ points. Thus, retaining just the first-order terms of g(~k), we get:

• For K:
g(~k) =

3a

2
(k′x − ik′y)e

−i 5π
6 . (2.12)

• For K ′:
g(~k) =

3a

2
(−k′x − ik′y)e

−iπ
6 . (2.13)

The complex exponentials in Eqs. (2.12) and (2.13) may be included in the wave functions
without any changes to the physical system, once that the quadratic norms of these terms
are 1. Including Eqs. (2.12) and (2.13) in Hamiltonian (2.9) we get

Hk = ~vf

(
0 ±k′x − ik′y

±k′x + ik′y 0

)
, (2.14)

where vf = 3at/2~ is the Fermi velocity and the signs + and − are related to the low-
energy electrons around K and K ′ points, respectively. In a more compact form, we can
write

Hk = vf~σ · ~p. (2.15)

The Hamiltonian (2.14) is the bidimensional Dirac Hamiltonian that describes rela-
tivistic electrons with a zero mass and with the light velocity c replaced by the Fermi
velocity vf . For this reason, it is usual to say that the electrons in graphene behave like
massless relativistic fermions.

In the presence of external magnetic fields ~B and potentials V and M , the Hamiltonian
from Eq. (2.15) can be generalized in the form

HD = vf~σ ·
(
~p+ e ~A

)
+ V (x, y)I+ τM(x, y)σz , (2.16)

where I is the identity matrix 2 × 2, τ = 1(−1) for the cone K(K ′), M(~r) is a site-
dependent potential related to the mass term, as previously mentioned in Eq. (2.3) being
used to create a gap in the energy spectrum and simulate electronic confinements [77, 78],
and the eigenstates are pseudospinors Ψ = [ΨA,ΨB]

T , where ΨA(B) gives the probability
of finding the electron in sublattice A(B).2 In the next sections we shall comment more

2The presented Hamiltonian one refers to the K point. For the K ′ point one should replace ~σ by ~σ∗.



2.2. BILAYER GRAPHENE 68

about the influence of magnetic field on the energy spectrum of monolayer and bilayer
graphene, and we shall discuss the Hamiltonian (2.15) in more details in the Chapter 3
as well.

With these two basic tools for the study of electrons in graphene, we can develop
theories for finite systems, based on tight-binding model, and for low-energy electrons in
infinite systems, through the Dirac model.

2.2 Bilayer graphene

As a natural extension of the model used for monolayer graphene, as given in the pre-
vious section, we shall introduce in this section the commonly-used tight-binding model
for bilayer graphene, as well its band and crystal structures. The the tight-binding frame-
work for bilayer graphene deals with a higher complexity due to the introduction of various
inter-layer hopping elements that were not considered in monolayer case. Although there
are these additional contributions, we shall treat here only the simplest generalization of
bilayer description under some approximations. The external bias potential shall be also
investigated.
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Figure 2.3: (a) The crystal structure of bilayer graphene in Bernal stacking with the
various hopping parameters. The bottom (top) layer is represented by dashed (solid)
lines with triangular sublattices formed by A1 (yellow) and B1 (brown) (A2 (black) and
B2 (green)) sites. γ0 is the inter-layer hopping energy and γ1,3,4 are the intra-layer hopping
energies. (b) Perspective and (c) top views of crystalline structure of bilayer graphene,
emphasizing the A1−B2 connections and the middle position of the A2 sites with respect
to the carbon hexagons in bottom layer. a ≈ 1.42 Å and d ≈ 3.35 Å are the inter-atomic
and intra-layer distances between the two closer carbon atoms in the same layer and
between the two layers, respectively.

The bilayer graphene (BLG) consists of two coupled graphene layers linked by Van-
der-Waals bounds with a separation distance of d ≈ 3.35 Å. These two parallel layers are
formed by carbon atoms and arranged each one with a honeycomb arrangement, as in
a monolayer. The most typical arrangement considered for the bilayer structure is the
Bernal stacked bilayer graphene, also called AB-stacked bilayer graphene, although AA
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stacking3 is also possible but not as stable [7]. In AB stacking, one layer is rotated by 60o

with respect to the other. It implies that the layers are positioned so that the sublattice
B of upper layer lies exactly on top of the sublattice A of the lower layer, whereas the
sublattice A of upper layer (A2) are located on the middle of the carbon hexagons of the
lower layer4. Figure 2.3 shows the crystal structure of bilayer graphene in Bernal stacking
configuration in different views.

The tight-binding Hamiltonian that describes π electrons in a AB-stacked bilayer
graphene can be written as [1, 79, 80]

HBLG =
∑

i,j

2∑

n=1

(
EAn

a†
i;nai;n + EBn

b†
j;naj;n

)
(2.17)

− γ0
∑

i,j

2∑

n=1

(
a†
i;nbj;n + b†

j;nai;n

)

− γ1
∑

i,j

(
a†
i;1bj;2 + b†

j;2ai;1

)

− γ3
∑

i,j

(
a†
i;2bj;1 + b†

j;1ai;2

)
(2.18)

− γ4
∑

i,j

(
a†
i;1aj;2 + a†

j;2ai;2 + b†
i;1bj;2 + b†

j;2bi;1

)
,

where ai;n(a
†
i;n) annihilates (creates) an electron on the site i of sublattice A of layer

n, while ai;n(a
†
i;n) act likewise on the site j of sublattice B. Thus, we can understand

each contribution of the Hamiltonian through the hopping parameters as in graphite
nomenclature, such as [1]: (i) the first term of the Hamiltonian represents the on-site
energy of the sublattices An and Bn for each layer n; (ii) the intra-layer contributions
between the atoms of the same layer n are described by the second part of the Hamiltonian,
once that γ0 = t ≈ 2.8 eV is the in-plane hopping energy (A1 − B1 and A2 − B2); (iii)
the third part of the Hamiltonian that contains the term γ1 = t⊥ ≈ 0.4 eV describes the
most important inter-layer coupling, since there is no projection of the vector connecting
the dimer bond between the two lattice sites A1 and B2 on the xy-plane (A1 − B2); (iv)
the inter-layer coupling γ3 ≈ 0.3 eV corresponds to the hopping between the sites B1 and
A2; and (v) the last term of the Hamiltonian is linked to the hopping energy due to the
bounds between the sites A1 and A2.

In the simplest case, we can approximate the Hamiltonian (2.17) considering only
inter-layer coupling t⊥, which connects the two atoms stacked right on top of each other,

3For more details[81] about the Hamiltonian described using the AA stacking to see Appendix A.
4The unit cell for the bilayer problem has four atoms, being a pair A1, B1 (A2, B2) from the lower

(upper) layer, instead of just two as in monolayer case. The primitive lattice vectors for bilayer lattice
are the same as for monolayer graphene ~a1 and ~a2, as well as the area in the x− y plane of the unit cell,

as shown in Fig. 2.1(a). Thus, since the unit cell of bilayer graphene contains four atoms, and, if the

tight-binding model includes one pz orbital per atomic site, there will be four bands near zero energy,
instead of the two bands in monolayer graphene, as showed in Fig. 2.4.
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and the nearest-neighbour in-plane hopping parameter t. Following the same scheme as
for the monolayer as discussed in section 2.1 and considering only the pz electrons which
form the π bands, there are this way four orbital wave functions and consequently the
tight-binding Hamiltonian is now a 4× 4 matrix given by

Hk =




0 −tg(~k) t⊥ 0

−tg∗(~k) 0 0 0

t⊥ 0 0 −tg∗(~k)
0 0 −tg(~k) 0


 . (2.19)

It consists of two single-layer Hamiltonian on the diagonal, similar as Eq. (2.9), with g(~k)
from Eq. (2.8). The off-diagonal 2×2 blocks describe the inter-layer coupling. The above
matrix can be diagonalized resulting in the corresponding spectrum [7]

E±
±k = ±t⊥

2
±
√
t2⊥
4

+ t|g(~k)|2, (2.20)

formed by four eigenvalues and consequently four bands. These four energy bands are
composed by two conduction bands and two valence bands. The bilayer graphene spec-
trum seems like the the band structure of monolayer graphene, except for the fact that
each monolayer band split into two by an energy approximately equal to the inter-layer
coupling t⊥, i. e. the gap separation between the two non-touching bands around the K
and K ′ points is 2t⊥ being these two upper bands with energies E+

+ ≥ t⊥ and E−
− ≤ −t⊥.

But in contrast to the band structure of monolayer graphene, bilayer graphene spectrum
turns out to be a gapless semiconductor with parabolic band. An illustration of the elec-
tronic band of the bilayer graphene in the absence of external bias potential is shown in
Fig. 2.4(a).

Repeating the same procedure performed for the single-layer case to obtain the effective
Hamiltonian in the form as expressed in Eq. (2.14), i. e. using continuum model for the
low-energy approximation close to the K and K ′ points, we can construct, in analogy, the
following effective Hamiltonian for bilayer graphene

HBLG =




0 π t⊥ 0

π† 0 0 0

t⊥ 0 0 π†

0 0 π 0


 , (2.21)

where π = vF (τpx + ipy) and π† = vF (τpx − ipy), with τ = +1 or τ = −1 to denote the
Hamiltonian that corresponds to the K or K ′ valleys, and px,y = ~kx,y. The corresponding
K and K ′ four component wave functions for the Hamiltonian (2.21) are assumed as

ΨK =




ϕA

ϕB

ϕB′

ϕA′


 and ΨK ′ =




ϕB

ϕA

ϕA′

ϕB′


 . (2.22)
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Figure 2.4: Drawing of the electronic band of (a) unbiased ∆U = 0 and (b) biased
bilayer graphene ∆U = U1 − U2 6= 0. (c) Energy spectrum of bilayer graphene for
four different potential configurations, being U1 = U2 = U = 0 (black solid curve),
U1 = −U2 = U = 0.1 eV (red dashed curve), U1 = −U2 = U = 0.2 eV (blue dotted curve)
and U1 = −U2 = U = 0.4 eV (green short-dotted curve).

In order to obtain the spectrum of a free particle, solving HΨ = EΨ for the Hamil-
tonian Eq. (2.21) and the wave function Eq. (2.22), we can write the following set of
equations

(kx − iky)ϕB = ǫϕA − t
′

⊥ϕB′ , (2.23a)

(kx + iky)ϕA = ǫϕB, (2.23b)

(kx + iky)ϕA′ = ǫϕB′ − t
′

⊥ϕA, (2.23c)

(kx − iky)ϕB′ = ǫϕA′ , (2.23d)

where it was considered the dimensionless units ǫ = E/~vF and t
′

⊥ = t⊥/~vF . Using
the definition of the wave vector k =

√
k2x + k2y , the above equations result in a simple

decoupled equation to ϕA such as
[
ǫ4 −

(
2k2 + t

′2

⊥

)
ǫ2 + k4

]
ϕA = 0. It can be readily

seen that the solution yields a spectrum

ǫ = ±

√√√√
k2 +

t
′2

⊥
2

± t
′

⊥

√(
t
′

⊥
2

)2

+ k2, (2.24)

formed by four energy bands, as already expect by Eq. (2.20). The four valley degenerate
bands given be above equation is plotted in Fig. 2.4(c) in black solid curve.

The presence of a perpendicularly applied external electric field produces a breaking
of the inversion symmetry, implying in opening of a band gap in the bilayer graphene
spectrum. The gap between the conduction and valence bands at the K (K ′) point in-
duced by external gates are possible in the bilayer graphene, since the sublattices A1/B2

that correspond to the inter-layer hopping energies t⊥ lie on different layers 5. To under-
stand the effect of external bias potential on the energy spectrum of bilayer graphene, we

5In monolayer graphene, breaking the A/B sublattice symmetry in a controllable way is very difficult,
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investigate this tunable gap due to the application of a voltage V perpendicular to the
carbon planes. In the present case, the Hamiltonian (2.19) becomes

Hk =




V/2 −tg(~k) t⊥ 0

−tg∗(~k) V/2 0 0

t⊥ 0 −V/2 −tg∗(~k)
0 0 −tg(~k) −V/2


 , (2.25)

and the eigenvalues is now given by [7]

E±
±k = ±

√
t2⊥
2

+
V 2

4
+ t2|g(~k)|2 ±

√
t4⊥
4

+ (t2⊥ + V 2) t2|g(~k)|2. (2.26)

This spectrum with an applied bias potential is illustrated in Fig. 2.4(b). As V can
be externally controlled, this model predicts that biased bilayer graphene should be a
tunable-gap semiconductor. Notice that the gap does not reach a minimum at the K
point (it has a maximum at k = 0) due to the “Mexican-hat” dispersion at low energies.

Using continuum model and expanding the Hamiltonian around to the K andK ′ Dirac
cones, we obtain in a similar manner to the procedure performed from Eq. (2.21) to Eq.
(2.24), the energy spectrum for the problem of a bilayer graphene under application of
electrostatic potentials U1 and U2, respectively, on the upper and lower layers. This can
be included by adding an extra potential term on the diagonal of the Hamiltonian (2.21)
as

HBLG → HBLG +

(
U1I 0

0 U2I

)
, (2.27)

being I the 2 × 2 unity matrix. Assuming the wave functions as Eq. (2.22) and doing
HΨ = EΨ, it results that the free particle spectrum is obtained as solution of the following
equation [

(ǫ− u1)
2 − k2

] [
(ǫ− u2)

2 − k2
]
− t

′2

⊥ (ǫ− u1) (ǫ− u2) = 0, (2.28)

being the dimensionless units ǫ = E/~vF , t′⊥ = t⊥/~vF and u1,2 = U1,2/~vF , which it
gives

ǫ =
u1 + u2

2
± 1

2

√√√√
(
t
′

⊥ ±
√
t
′2

⊥ + 4k2 + 4 (u1 − u2)
2 k2

t
′2

⊥

)2

+

(
1− 4

k2

t
′2

⊥

)
(u1 − u2)

2.

(2.29)
It can be easily seen that for u1 = u2 = u, the energy spectrum (2.29) recovers the
previous dispersion format as expressed by Eq. (2.26). The two lowest bands with a
“Mexican hat” format correspond to the signs inside the square being negative (−). Figure
2.4(c) shows the spectrum for four different potential configurations, being the black
solid, dashed red, dotted blue and green short-dotted curves corresponding respectively

because it would require a special periodic (staggered) potential, since the sites A and B are identical
and adjacent on the same layer.
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to values U1 = U2 = U = 0, U1 = −U2 = U = 0.1 eV, U1 = −U2 = U = 0.2 eV and
U1 = −U2 = U = 0.4 eV. One can realize that as |U | is made larger, the “Mexican hat”
shaped band gap becomes more pronounced.

These results for the bias bilayer graphene suggest a route to new nanoelectronic de-
vices. By combination of top and bottom gates, one can control the gap in the bilayer
spectrum and hence define confinement structures, which are even able to localize elec-
trons.

2.3 Influence of an external perpendicular magnetic field

Let us now investigate the influence of a perpendicular magnetic field ~B on the energy
levels of monolayer and bilayer graphene. We will obtain discrete energy levels (so called
Landau levels (LLs)) of two-dimensional electrons in the presence of an external magnetic
field. But first, we will discuss briefly the classical case.

2.3.1 Classical picture

In classical electrodynamics, a charged particle q with mass m under the influence of
a external magnetic field ~B experiences a magnetic force described by following equation

~F = q
(
~v × ~B

)
, (2.30)

where ~v is the charge velocity. An illustration is present in Fig. 2.5(a), where it is pointed
the orientation of each these vectors.

B v

F

r

q

(a) (b)

Figure 2.5: (a) Scheme of a charged particle with charge q and mass m performing a
circular motion due to the influence of an external perpendicular magnetic field. The
orientation of the vectors velocity ~v and magnetic force ~F are presented. (b) Classical
skipping orbits experienced by a charge particle under a perpendicular magnetic field.

Considering that a particle moves within an uniform magnetic field and there are no
other external forces in addition to the magnetic field, then if the initial particle velocity
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is perpendicular to the magnetic field with magnitude qvB, one has that in each instant
the magnitude of the velocity remains constant, once that at each moment the force
is perpendicular to the velocity. This results in an uniform circular motion, such as
mv2/r = qvB. The path is consequently a circular orbit, so called cyclotron orbit, with
radius r = mv/qB and angular velocity w = qB/m. An example of the charged particle
moving close to the edges of a certain material under the presence of a uniforme and
perpendicular magnetic field is shown in Fig. 2.5(b). Notice that the particle performs
semi-circular orbits. This orbits are called as skipping orbits, since that each time that
the particle reaches the edge, the direction of its momentum is changed.

2.3.2 Landau levels in a monolayer graphene

The Hamiltonian that describes a free electron in a single-layer graphene with a per-
pendicular applied magnetic field can be written as

H = vF~σ · ~Π (2.31)

where we performed the transformation ~p→ ~Π = ~p+e ~A in Eq. (2.15), being ~A the vector
potential that generates the magnetic field ~B = ∇× ~A and e the elementary charge. This
transformation for electrons on a lattice in the presence of magnetic field is valid for the
case that the magnetic length

lB =

√
eB

~
(2.32)

is much lager than the interatomic distance a. As a is in the order of 1.42 Å and any
experimentally available fields produced in the labs are less than B ≪ 104 T, then the
approximation involved in this transformation is not violated. Considering the Landau
gauge ~A = (0, B0x, 0) defined by an uniform magnetic field ~B = B0ẑ, we can write Eq.
(2.31) explicitly as

H = −i~vf
(

0 ∂
∂x

− i ∂
∂y

+ eB0

~
x

∂
∂x

+ i ∂
∂y

− eB0

~
x 0

)
. (2.33)

The two-component wave function Ψ(x, y) can be assumed as the following form

Ψ(x, y) =

(
ψA(x, y)

ψB(x, y)

)
= eikyy

(
ψA(x)

ψB(x)

)
, (2.34)

since that, for the choosen gauge, the y-coordinate does not appear in the Hamiltonian, the
Hamiltonian commutes with py, i. e. [H, py] = 0, being py this way a constant of motion.
This implies that the eigenstates of the py should be also eigenstates of the Hamiltonian,
with eigenvalue given by ~vF . Solving the eigenvalue problem HΨ(x, y) = EΨ(x, y)
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results in two coupled differential equations
[
∂

∂x
+ ky +

x

l2B

]
ψB =

iE

~vF
ψA, (2.35a)

[
∂

∂x
− ky −

x

l2B

]
ψA =

iE

~vF
ψB. (2.35b)

Inserting one equation into another, we can decouple the equations as
[
∂2

∂x2
− (kylB + x)2 + 1 +

(
ElB
~vF

)2
]
ψB = 0, (2.36)

where it was considered the dimensionless unit x = x/lB. The above second-order differ-
ential equation seems like [82]

ψ
′′

n(x) +
(
2n+ 1− x2

)
ψn(x) = 0, (2.37)

which solutions are the well-known Hermite polynomials Hn(x), with ψ(x)n = e−x2/2Hn(x).
Thus comparing Eqs. (2.36) and (2.37), we obtain a discrete spectrum given by

En = ±~vF
lB

√
2n, (2.38)

with n = 0, 1, 2, ..., where En are the Landau levels for a monolayer graphene. The
positive values correspond to electrons (conduction band), while the negative values cor-
respond to holes (valence band). Repeating the same procedure but now decoupling for
the ψA component, one obtains that

[
∂2

∂x2
− (kylB + x)2 − 1 +

(
ElB
~vF

)2
]
ψA = 0, (2.39)

such that now, comparing Eqs. (2.37) and (2.39), the energy levels are given by

En = ±~vF
lB

√
2(n + 1). (2.40)

which, comparing to the previous results Eq. (2.38), lacks the level with E = 0. The
existence of a zeroth Landau level E0 = 0 is a direct consequence of the zero gap in
the energy spectrum for Dirac fermions in graphene. This zeroth Landau level has twice
smaller degeneracy as compared with the other Landau levels. Another important remark
about Eqs. (2.38) and (2.40) is that the Landau levels are independent of the valley
index. Thus, the zeroth Landau level has actually four-fold degeneracy, being two-fold
associated with the electron-hole symmetry and the another two-fold because of valley
symmetry. A consequence of different dependence of the energy levels for sublattices A
(EA ∝

√
2(n+ 1)) and B (EA ∝

√
2n), which must differ in the index n for 1 to yield the

same energy eigenvalue for both, results in a different occupation of the sublattices A and
B. This means that the wave function at the Landau level n = 0 should have non-zero
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amplitude only on B (A) sublattice for valley K (K ′), while at the Landau level n 6= 0

should always have non-zero amplitudes on both sublattices A and B.
According to Eq. (2.37), the eigenfunctions can be written as

(
ψA(x)

ψB(x)

)
∝ e−(kylB+x)2/2

(
HnA

(kylB + x)

HnB
(kylB + x)

)
, (2.41)

with nB = 1
2

(
ElB
~vF

)2
and nA = nB − 1, being the wave functions not normalized.

Comparing the obtained Landau levels by Eqs. (2.38) and (2.40) with Landau levels
for a conventional electron gas within the Schrödinger equation, one can notice that the
latter has equidistant energy levels En = ~eB/m (n+ 1/2), which is due to the parabolic
dispersion law of free electron, and a linear dependence on the magnetic field En ∝
(n+ 1/2)B, whereas the Landau levels in graphene are not equally spaced and follow a
square root dependence on the magnetic field En ∝

√
2nB. The largest energy separation

is between the zeroth and first Landau levels, as one can see in Fig. 2.6(a). Experimental
results about the Landau levels in graphene have been reported in Refs. [83], [84] and
[85].

2.3.3 Landau levels in a bilayer graphene

The single particle Hamiltonian for bilayer graphene in the continuum approximation,
in the vicinity of the K point and in the presence of applied bias potentials U1 and U2,
respectively for the upper and lower layer, is the 4× 4 matrix

H =




U1 π t 0

π† U1 0 0

t 0 U2 π†

0 0 π U2


 , (2.42)

where it was considered only nearest-neighbor hopping t ≈ 400 meV that couples the A
and B′ sites at the two layers. In the presence of an external magnetic field ~B = B0ẑ

perpendicular to the bilayer graphene sheet, π and π† are given by

π = −i~vF
[
∂

∂x
+ i

(
∂

∂y
+ i

eB0

~
x

)]
, (2.43a)

π† = −i~vF
[
∂

∂x
− i

(
∂

∂y
+ i

eB0

~
x

)]
, (2.43b)

where we used the Landau gauge for the vector potential ~A = (0, B0x, 0). In a similar
way as for the Dirac Hamiltonian Eq. (2.33), the Hamiltonian for bilayer graphene Eq.
(2.42) commutes with py and therefore is a conserved quantity. As [H, py] = 0, then one
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can write the four-component wave function as

Ψ(x, y) = e−ikyy




ϕA(x)

ϕB(x)

ϕB′(x)

ϕA′(x)


 . (2.44)

Solving HΨ(x, y) = EΨ(x, y), we obtain the following set of equations

− i~vF

[
∂

∂x
− ky −

eB0

~
x

]
ϕB = (E − U1)ϕA − tϕB′ , (2.45a)

− i~vF

[
∂

∂x
+ ky +

eB0

~
x

]
ϕA = (E − U1)ϕB, (2.45b)

− i~vF

[
∂

∂x
+ ky +

eB0

~
x

]
ϕA′ = (E − U2)ϕB′ − tϕA, (2.45c)

− i~vF

[
∂

∂x
− ky −

eB0

~
x

]
ϕB′ = (E − U2)ϕA′. (2.45d)

Considering the dimensionless units x = kylB + x/lB, u1,2 = U1,2lB/~vF , ǫ = ElB/~vF ,
t′ = tlB/~vF , u0 = (u1 + u2)/2, ∆u = u1 − u2, α = ǫ − u0 and δ = ∆u/2, and replacing
them into the set of differential equation Eq. (2.45), yields

− i

[
∂

∂x
− x

]
ϕB = (α− δ)ϕA − t′ϕB′, (2.46a)

− i

[
∂

∂x
+ x

]
ϕA = (α− δ)ϕB, (2.46b)

− i

[
∂

∂x
+ x

]
ϕA′ = (α+ δ)ϕB′ − t′ϕA, (2.46c)

− i

[
∂

∂x
− x

]
ϕB′ = (α + δ)ϕA′. (2.46d)

We can reduce the above equations Eqs. (2.46)(a) - (2.46)(d) to a single differential
equation. Decoupling for ϕA,

[
∂

∂x2
− x2 + α2 + δ2

]2
ϕA =

[
t′2(α2 − δ2) + (1− 2αδ)2

]
ϕA. (2.47)

The solution for the above equation should also satisfy the following ansatz
[
− ∂

∂x2
+ x2

]
ϕA = γ±ϕA, (2.48)

where γ± = α2+δ2±
√
t′2(α2 − δ2) + (1− 2αδ)2. Assuming ϕA(x) = fA(x)e

−x2/2 to solve
Eq. (2.48), in order to eliminate the x2, we have that

∂2fA
∂x2

− 2x
∂fA
∂x

+ (γ± − 1)fA = 0, (2.49)
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whose solutions can be obtained in terms of Hermite polynomials Hn(x), that satisfies the
differential Hermite equation u

′′ − 2xu′ + 2nu = 0. Comparing the format of Eq. (2.49)
and Hermite equation, we can see that the eigenvalues obey the relation γ± = 2n + 1,
where n is a non-negative integer. After some straightforward algebra, we finally find that
the discrete spectrum of Landau levels will correspond to the solutions of the following
fourth-order algebraic equation

[
(α+ δ)2 − 2(n+ 1)

] [
(α− δ)2 − 2n

]
=
(
α2 − δ2

)
t′2. (2.50)

For an unbiased bilayer, i. e. u1,2 = 0 and consequently δ = 0, Eq. (2.50) results in

ǫ = ±
[
t′2

2
+ 2n+ 1±

√
t′4

4
+ (2n+ 1)t′2 + 1

]1/2
. (2.51)

A special case is when both the inter-hopping and the potential tend to zero, i. e. t′ → 0

and δ → 0. For this case, the spectrum is given by ǫ = ±
√
2n+ 1± 1, that corresponds

to two uncoupled layers of graphene6.
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Figure 2.6: Landau levels as a function of the magnetic flux
(

φ
φ0

= 3
√
3a2eB0

2h

)
for (a)

monolayer graphene En = ±~vF

√
8πn

3
√
3a2

φ
φ0

, (b) unbiased bilayer graphene, and (c) biased
bilayer graphene with gate potentials U1 = −U2 = 100 meV.

6For more details about the Landau levels and the wave functions which are solutions of the both

biased and unbiased bilayer graphene see Ref. [86].
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In an illustrative way, we show in Figs. 2.6(b) and 2.6(c) the Landau levels respectively
for unbiased and biased bilayer graphene. For the biased case, we considered the gate
potentials as being U1 = −U2 = 100 meV.

2.4 Boundary conditions

As it has been already demonstrated in the literature [27], the electronic states of
the carbon systems depend strongly on its size and geometry. For instance, in the case
of carbon nanotubes, the geometry dependence is strongly influenced by the bipartite
character of the graphene lattice and the wrapping direction imposes different boundary
conditions on the wave function in the different sublattices, which determine whether the
system is semiconducting or metallic [87]. For graphene nanoribbons, Brey & Fertig have
been reported in Refs. [88] and [89] that the electronic energies and states of graphene
nanoribbons with different atomic terminations may be understood in terms of eigenvalues
and eigenvectors of the Dirac Hamiltonian with correct boundary conditions. They have
focused in the two more conventional graphene edges terminations: zigzag and armchair
edges, as illustrated in Fig. 2.7(a). Akhmerov & Beenakker have derived in Ref. [90]
the boundary condition for the Dirac equation corresponding to a tight-binding model on
two-dimensional honeycomb lattice terminated along an arbitrary direction. They have
shown that the boundary condition for intermediate case (a mixed boundary condition)
remains orientations of the zigzag form, so that the armchair boundary condition is only
reached for a discrete set of orientations.
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Figure 2.7: (a) The lattice structure of a graphene sheet denoting the zigzag and armchair
type edge terminations. Top and bottom are armchair edges, left and right are zigzag
edges. (b) In the zigzag case, each edge is built from atoms of one sublattice only.
Following the dashed green lines forming a regular zigzag hexagon, one notice that the
sublattice switches at every side. (c) In the armchair case, both sublattices are present at
each edge forming dimer with A−B or B−A termination with respect to the tangential
direction.
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Other important topic in the understanding of the boundary conditions is related
to electron confinement in nanostructured systems. It is known that in conventional
two-dimensional electron gases, as realized in semiconductor heterostructures, the charge
carriers can be confined by the application of side or top gate voltages, such that these
voltages shift the Fermi energy locally from the conduction or valence band into the gap
of the spectrum. This can be achieved by defining an effective system boundary where
electrons are reflected from, and hence are confined. In the same way, the importance in
the studying of the boundary conditions in graphene nanostructures lies in the possibility
of confining carriers. Electrostatic potentials do, however, not necessarily confine massless
Dirac electrons in graphene, as their corresponding energy spectrum does not have a
gap. Instead, the Fermi energy can only be shifted from the conduction band into the
valence band or vice versa, such that electrons can be transmitted into the gated region.
It is due to well-known Klein tunneling [1], in which under normal incidence a perfect
transmission is allowed. Because of this (partial) transparency of electrostatic barriers for
charge carriers in graphene, electrons and holes in graphene nanostructures or flakes are
expected to scatter only from the edges that eventually terminate the graphene lattice
[91].

Since the physical properties of a carbon system are affected by its format and edge
terminations, we investigate in the following three subsections how are the boundary
conditions depending on the crystallographic orientation of the boundary and how to
implement it in the continuum model in a appropriate way. We focus our attention only on
the simplest and the most commonly considered boundary conditions for graphene formed
by zigzag edges, armchair edges and with infinite-mass term outside of the confinement
structure, described in the effective Dirac Hamiltonian.

Before presenting the appropriated boundary conditions for each edge termination, we
shall briefly derive the effective 4× 4 Hamiltonian to describe the quasiparticle dynamics
in graphene at low energies, i. e. close to the two inequivalent K and K ′ Dirac points,
being the Hamiltonian for each valley given by Eq. (2.15). Thus, the Hamiltonian for
massless Dirac fermions can be written as

H =

(
HK 0

0 HK ′

)
, (2.52)

where HK (HK ′) is the 2× 2 Hamiltonian in the K (K ′) valley, which are given by

HK = vf~σ · ~p and HK ′ = vf ~σ∗ · ~p, (2.53)

with ~σ = (σx, σy) being the Pauli matrices and ~σ∗ = (σx, σy) denotes the complex conju-
gate of the matrix ~σ.

The wave functions can be expressed via the ~k · ~p approximation, in terms of enve-
lope functions [ϕA(~r), ϕB(~r)] and [ϕA′(~r), ϕB′(~r)] for states near the K and K ′ points,
respectively. These states can be conveniently combined into a four-vector Ψ(~r) =



2.4. BOUNDARY CONDITIONS 81

[ϕA(~r), ϕB(~r), ϕA′(~r), ϕB′(~r)]. Thus, we can write the wave function in the real space
for the sublattice A as

ΨA(~r) = ei
~K·~rϕA(~r) + ei

~K ′·~rϕA′(~r), (2.54)

and for sublattice B as

ΨB(~r) = ei
~K·~rϕB(~r) + ei

~K ′·~rϕB′(~r), (2.55)

with ~K and ~K ′ given by Eq. (2.11).

2.4.1 Zigzag boundary condition

Let us consider the orientation of the lattice structure of a graphene sheet as presented
in Fig. 2.7(a). We have that the resulting type termination are zigzag edges when the
graphene lattice is terminated along a line including the angles given by 30o, 90o and
150o with respect to the x-axis, as demonstrated in Fig. 2.7(b). As one can notice,
the outermost row of atoms under the green dashed lines that surrounds the hexagon
contains solely atoms of either A− or B−type, such that the orientation of the edge
determines the sublattice. Let us assume that a piece of graphene has a zigzag edge along
the boundary curve denoted by s with ~r = ~rB(s). If the last atoms at the boundary
are from sublattice B, then the microscopic boundary condition is that the tight-binding
wave function vanishes on the (missing) A-type sites of the outermost atoms, which we
understand as being the line of lattice sites that would lie just above or below the system
if the bonds had not been cut to form the edge. Then the boundary condition reads

ϕA(~rB(s)) = ϕA′(~rB(s)) = 0 (2.56)

with the wave function set to zero on a single sublattice, while ϕB and ϕB′ are not
determined and not directly affected by the boundary condition. Actually, since the
effective Dirac equation couples the sublattice when we solve HΨ = EΨ, we have therefore
that ϕB and ϕB′ are affected indirectly. Similarly, when the zigzag edges are terminated
by the A atoms, one has in this case that ϕB and ϕB′ have to vanish individually, whereas
ϕA and ϕA′ are not determined.

In summary, the correct boundary condition for zigzag edges requires the wave function
to vanish on a single sublattice at each edge. In addition, it has been shown in Ref. [88]
that there are surface states strongly localized near the edges which are non-vanishing
only on a single sublattice. These states are called as zigzag edge states. They exist for
very low energies and present an exponential decay of the wave function away from the
edge.

2.4.2 Armchair boundary condition

For the considered lattice orientation as illustrated in Fig. 2.7(a), we have that the
armchair edge is achieved when the terminations of the atoms lie along the one of the
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green dashed lines that surround the hexagon. This type of termination is obtained for
the angle positions given by 0o, 60o and 120o with respect to the x-axis, as depicted in Fig.
2.7(c). This means that every armchair orientation lies exactly between two successive
zigzag orientations and vice versa. Note that in the case of armchair boundaries the
number of carbon atoms in each side is an even number. In contrast to the zigzag case,
now both sublattices are present at an armchair edge; more precisely, the edge atoms
consist of a line of A − B dimers, with one A− and one B−atom each. Therefore, as
a natural consequence, the boundary condition is that the tight-binding wave function
amplitude have to vanish on both sublattices (A− and B− wave function components
should be zero). From Eqs. (2.54) and (2.55) for ΨA = 0 and ΨB = 0, the armchair
boundary conditions become

ϕA(~rB(s)) = −ei( ~K ′− ~K)·~rBϕA′(~rB(s)), (2.57a)

ϕB(~rB(s)) = −ei( ~K ′− ~K)·~rBϕB′(~rB(s)), (2.57b)

where ~r is taken at the position of the edge ~rB.
Notice that this relates the contributions from both K and K ′ points to each other,

in other words, the armchair edge does couple the valleys, mixing the wave functions in
K and K ′ Dirac points.

2.4.3 Infinite-mass boundary condition

As it was presented in previous subsections, the boundary conditions for zigzag and
armchair type edges are derived from microscopic lattice termination for an abruptly
terminated boundary due to the cutting atoms from the system. On the other hand, we
can also think about a new type of boundary in such way that Dirac electrons can be
confined by means of a potential. It is well known that semiconductor nanostructures, like
quantum dots, rings and wires, are realized by using scalar potentials that are produced
by voltage gates. However, for massless Dirac fermions it is in principle not possible to
confine them in a restricted region with any configuration of a purely electrostatic (scalar)
potential. As mentioned before, the reason is the lack of a gap in the bulk band structure
and the resulting Klein tunneling.

A confining structure can be obtained by gap opening. This requires a violation of
the equivalence of the sublattices. Therefore, if instead of a scalar potential V (x, y) we
consider a potential in a form

m(x, y) = τM(x, y)σz , (2.58)

which has a different sign on each of the two sublattices due to the Pauli matirz σz,
where τ = 1(−1) for the K (K ′) Dirac point, the energy spectrum indeed has a gap
wherever m(x, y) is non-zero. Physically, such a staggered potential can result from
certain substrates, like boron nitride (h-BN) and SiC, that couple differently to A and
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B sites [78, 92], i. e. this term represents a difference of potential energy between the
A and B sites7. Considering the most simple case for a constant staggered potential,
such as M(x, y) = ∆ = constant, then we have that the Hamiltonian (2.16) can be easly
diagonalized resulting in the following energy spectrum, given by

E(~k) = ±
√

~2v2Fk
2 +∆2. (2.59)

One can notice that the above spectrum describe massive Dirac particles with a rest mass
of ∆. This is the reason why this kind of potential, as described by Eq. (2.58), is called
mass term or mass potential. Note that the including of this staggered potential leads to
a gap of 2|∆| in the energy spectrum and, consequently, opens the possibility of its usage
to effectively confine Dirac particles.

Let us now consider a surface S with outward unit normal vector ~n as shown in Fig.
2.8 to deal with a more complicated mass term. The infinity-mass boundary condition in
a monolayer graphene system is obtained when one considers mass as zero (infinity) inside
(outside) of the confinement region. This model was developed by Berry & Mondragon
even long before the discovery of graphene in order to describe confined neutrinos using
the 2D Dirac equation [93]. Consequently, it is achieved when the local current must be
such that there is no outward current at any point of the surface edge. This condition
reads as

~n(s) · ~u(r) = 0, (2.60)

where ~n(s) = (cosα, sinα) and the local current ~u(r) in state Ψ = [ψA, ψB]
T is defined as

the local expectation value of the current operator

û = ∇pH = vF~σ. (2.61)

The above equation can be rewritten after some algebraic manipulations as

~u(r) = vF (ψ
∗
A, ψ

∗
B)~σ

(
ψA

ψB

)
= 2vF [ℜ{ψ∗

AψB}x̂+ ℑ{ψ∗
AψB}ŷ] . (2.62)

Using the Eqs. (2.60) and (2.62), and the definition of ~n(s), we have that

cosαℜ{ψ∗
AψB}+ sinαℑ{ψ∗

AψB} = 0. (2.63)

We can split the above Eq. (2.63) as

cosαℜ{ψ∗
AψB} = −C sinα cosα,

sinαℑ{ψ∗
AψB} = C sinα cosα, (2.64)

leading to ψ∗
AψB = iCeiα(s). Since that C is an arbitrary constant, we can assume that

ψ∗
AψB = iψ∗

AψAτe
iα(s). Therefore, we finally find

ψB/ψA = iτeiα(s), (2.65)
7We have already mentioned briefly at the end of Sec. 2.1 about the staggered mass-related potential

in Eq. (2.16).
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Figure 2.8: Surface S with an outward unit normal vector ~n used to describe how to
find the infinity-mass boundary condition used in order to confine carriers in a monolayer
graphene. α(s) is the angle between the outward unit vector at the edges and the x-axis.
∆ is the mass-related potential, which it is zero inside the arbitrary graphene quantum
dot and infinity at its edges [93].

that is the infinity-mass boundary condition for monolayer graphene. Note that this
boundary condition couples the A and B sublattices and moreover it is not invariant
under the time-reversal operation [93]. τ is 1(−1) for the K (K ′) Dirac point. Due to the
simplicity of implementation and possibility of obtaining analytical solutions, this infinite-
mass boundary condition has been used in the study of circular graphene quantum dots
[77] and rings [94, 95] in the absence and presence of a external perpendicularly magnetic
field. Other different geometries, as triangular and hexagonal formats, have been already
reported [96]. It is possible, because when using this infinite-mass boundary condition,
the Klein tunneling effect at the interface between the internal and external regions of the
confinement structure can be avoided and this way charge carriers can be confined.

2.5 Split-operator method

In the dynamic description of a particle by a Hamiltonian H , ones has the time-
dependence of an initial wave function Ψ(~r, t0) given by

Ψ(~r, t) = Û(t, t0)Ψ(~r, t0), (2.66)

where Û(t, t0) is known as the time evolution operator [97]. For the case in which the
Hamiltonian does not depend explicitly of the time [97, 98], we have

Û(t, t0) = exp

[
− i

~
H(t− t0)

]
. (2.67)

In general, the exponential of Hamiltonian operator can not be solved exactly. Besides,
in order to calculate the exponential of an operator which is given by sum of two or more
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operators that do not commute with each other, one can not just rewrite the exponential
as the product of exponentials of these operators, i. e., exp[Â + B̂] = exp(Â) exp(B̂) if
and only if [Â, B̂] = 0. Therefore, to address this problem, we will use the Split-operator
technique [99, 100, 101, 102], that combines the separation between the Hamiltonian
operators in exponentials that depend only on one of these operators, given by Masuo
Suzuki [103] as

exp

[
ǫ

q∑

j=1

Âj

]
= fm(Â1, Â2, Â3, ...., Âq) +O(ǫm+1), (2.68)

and by the Cayley relation

exp
[
ǫÂ
]
=

[
1− ǫÂ

2

]−1 [
1 +

ǫÂ

2

]
+O(ǫ4), (2.69)

where O(ǫm) represents the neglected terms, which have an error of order ǫm. The ap-
proximants functions fm to m = 1 and 2 are:

f1(Â1, Â2) = exp[ǫÂ1] exp[ǫÂ2], (2.70)

f2(Â1, Â2) = exp

[
ǫÂ1

2

]
exp[ǫÂ2] exp

[
ǫÂ1

2

]
, (2.71)

f1(Â1, Â2, Â3) = exp[ǫÂ1] exp[ǫÂ2] exp[ǫÂ3], (2.72)

f2(Â1, Â2, Â3) = exp

[
ǫÂ1

2

]
exp

[
ǫÂ3

2

]
exp[ǫÂ2] exp

[
ǫÂ3

2

]
exp

[
ǫÂ1

2

]
. (2.73)

Applying this technique to Hamiltonians that do not involve spin, but only the terms
of kinetic T and potential V energies (H = T +V ), where T and V do not commute with
each other, we find that

exp

[
− i

~
H∆t

]
∼= exp

[
− i

2~
V∆t

]
exp

[
− i

~
T∆t

]
exp

[
− i

2~
V∆t

]
, (2.74)

where the terms of O(∆t3) order were neglected by considering a small time step ∆t. Let
us now discretize all involved functions in the space in order to implement this compu-
tationally (the potential Vi and the wave function Ψi). In this manner, we can multiply
point-by-point the terms of the potential energy with the wave function, obtaining

ξi(ri, t+∆t) = exp

[
− i

2~
Vi∆t

]
Ψi(ri, t). (2.75)

Having ξi, the next step is to perform an operation involving kinetic energy term, to then
obtain a new function ηi. To do this, maybe the most accessible way should be to take a
Fourier transform of ξi, bringing this function to reciprocal space. But in fact, the most
convenient one is to use Cayley form, Eq. (2.69), obtaining

(
1 +

i

2~
T∆t

)
ηi =

(
1− i

2~
T∆t

)
ξi, (2.76)
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and then to discretize the derivatives of kinetic term by Crank-Nicolson form [104]. The
resulting problem becomes a tridiagonal matrix equation that can be solved numerically
through the TRIDAG subroutine [104]. Now, having in hands the ηi’s, then we can again
multiply point-by-point the exponential that has the potential term, by the column matrix
of the ηi’s.

Therefore, for problems with more than one dimension, one has just products of tridi-
agonal matrices, once that the potential energy terms can be directly multiplied and the
total kinetic energy term can be divided into the product of exponential terms of its com-
ponents. Performing this procedure several times in increments of ∆t, we obtain the time
evolution of the wave function for a particular proposed system.

This technique is computationally easy to apply and has been widely used in studies
of wave packet propagation in semiconductor [105] and extended to the case of graphene
structures by A. Chaves et al. [106]. We shall show briefly in the following sections the
expansion of this technique for the Tight-binding and Dirac Hamiltonians.

2.5.1 Tight-binding Hamiltonian

A simple mathematical approach that has all the important aspects for the description
of a lattice of atoms is known as Kronig-Penney model [107, 108, 109]. In this model,
one approaches the potential of the crystal by a succession of rectangular potential wells
and barriers with a periodicity that is identical to the lattice. Each well is this way an
approximate representation of the potential produced by an ion.

For a one-dimensional lattice, we have that the periodic potential is formed as being
many one-dimensional potential wells equally spaced. If the wells are infinitely deep, a
particle would be completely located in one of the wells. Assuming that the particle is
located in the i-th well, denoting the state by |Ψi〉, then |Ψi〉 is an eigenstate of the system
with eigenvalue E0, such that H|Ψi〉 = E0|Ψi〉. As all the potential wells are identical
and do not interact with each other, they all have the same energy values. Therefore E0

would be an infinitely degenerate state. Otherwise, if the wells are finite, then the system
eigenstate will be a linear combination of all |Ψi〉’s, because, since the barriers are finite,
the particles have a finite tunneling probability. By completely neglecting the elements
of H which are related to distant wells and just considering the influence of the nearest
neighbors, we obtain the approximation known as tight-binding [97], i. e.

〈Ψj|H|Ψi〉 6= 0, only if j = i or j = i± 1, (2.77)

and
〈Ψi±1|H|Ψi〉 = τi,i±1, (2.78)

where τi (the hopping parameter) is the binding energy of the electron between the wells
i and j. In this way, one obtains

H|Ψi〉 ∼= τi−1|Ψi−1〉+ E0|Ψi〉+ τi+1|Ψi+1〉. (2.79)
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Let us now expand the tight-binding model for the description of a two-dimensional
crystal. To do this, we will consider respectively i and j as the row and column indexes
to locate a particular site in the lattice. So, one finds that

H|Ψi,j〉 ∼= (E0 + Vi,j)|Ψi,j〉+ τi−1,j|Ψi−1,j〉+ τi+1,j |Ψi+1,j〉+ τi,j−1|Ψi,j−1〉+ τi,j+1|Ψi,j+1〉.
(2.80)

Outlining the Hamiltonian obtained from one-dimensional and two-dimensional lattice
in matrix form, we see that they will be represented by tridiagonal and pentadiagonal ma-
trices in blocks, respectively. Thus, one can see the importance of using the Split-Operator
technique in the numerical simplification of the problem for the case of graphene, since
this structure is a two-dimensional crystal, which now can be dealt only with tridiagonal
matrices, thus avoiding pentadiagonal matrices.

Finally, let us now develop the Split-operator method for systems described by tight-
binding Hamiltonians in two dimensions. According to the procedure developed at the
beginning of this section, we shall split the Hamiltonian to transform the problem of
a pentadiagonal matrix in blocks to one problem involving only products of tridiagonal
matrices, so that we can rewrite the Eq. (2.80) as follows

H|Ψi,j〉 = Hi|Ψi,j〉+Hj|Ψi,j〉, (2.81)

where the operators Hi and Hj are defined as

Hi|Ψi,j〉 =
(
E0 + Vi,j

2

)
|Ψi,j〉+ τi,j−1|Ψi,j−1〉+ τi,j+1|Ψi,j+1〉 (2.82)

and

Hj|Ψi,j〉 =
(
E0 + Vi,j

2

)
|Ψi,j〉+ τi−1,j |Ψi−1,j〉+ τi+1,j|Ψi+1,j〉. (2.83)

Rewriting the time evolution operator in the same way as done in Eq. (2.74), we have
that

exp

[
− i

~
H∆t

]
= exp

[
− i

2~
Hj∆t

]
exp

[
− i

~
Hi∆t

]
exp

[
− i

2~
Hj∆t

]
+O(∆t3). (2.84)

The wave function at time step t+∆t is then given by

|Ψi,j〉t+∆t
∼= exp

[
− i

2~
Hj∆t

]
exp

[
− i

~
Hi∆t

]
exp

[
− i

2~
Hj∆t

]
|Ψi,j〉t, (2.85)

which can be developed in three steps

ηi,j = exp

[
− i

2~
Hj∆t

]
|Ψi,j〉t, (2.86)

ξi,j = exp

[
− i

~
Hi∆t

]
ηi,j, (2.87)

|Ψi,j〉t+∆t = exp

[
− i

2~
Hj∆t

]
ξi,j, (2.88)
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where on the intersection of each step we will use the Cayley equation (Eq. (2.69))
(
1 +

i

4~
Hj∆t

)
ηi, j =

(
1− i

4~
Hj∆t

)
|Ψi,j〉t, (2.89)

(
1 +

i

4~
Hi∆t

)
ξi, j =

(
1− i

4~
Hi∆t

)
ηi, j, (2.90)

(
1 +

i

4~
Hj∆t

)
|Ψi,j〉t+∆t =

(
1− i

4~
Hj∆t

)
ξi, j. (2.91)

Thus, as already mentioned, the problem becomes simpler because now we should deal
only with tridiagonal matrices.

2.5.2 Dirac Hamiltonian

As already presented earlier in section 2.1, the Dirac Hamiltonian, which describes the
low-energy electronic states near the Dirac points (K and K ′) as massless Dirac fermions,
is described by a Hamiltonian given in terms of Pauli matrices ~σi as given by Eq. (2.15),
and in a more general way by Eq. (2.16).

The kinetic part of the Dirac Hamiltonian belongs to a special class of Hamiltonians
that depend on the Pauli matrices in the form

H = ~S · ~σ. (2.92)

The main idea in this case to implement the Split-operator technique is split HD into two
terms such that, one of them should depend only on the coordinates of the real space,
whereas the other should contains reciprocal space terms. Thus, for the more general
Hamiltonian (2.16) we shall divide HD in Hk, that has terms that depend only on the
wave vector k, and in Hr, that contains only terms of real space coordinates, respectively
given by:

Hk = ~vf~σ · ~k, (2.93)

and
Hr = −vfe~σ · ~A + V I +Mσz . (2.94)

However, rewriting the time evolution operator for the Hamiltonian HD and perform-
ing the same procedure as done in Eqs. (2.74) and (7.7), we obtain

exp

[
− i

~
HD∆t

]
= exp

[
− i

2~
Hr∆t

]
exp

[
− i

~
Hk∆t

]
exp

[
− i

2~
Hr∆t

]
+O(∆t3), (2.95)

since Hk and Hr do not commute. Expanding each term in the exponential form

exp
[
−i~S · ~σ

]
=
∑

n

(−i~S · ~σ)n
n!

=
∑

k

(−1)k(~S · ~σ)2k
2k!

− i
∑

k

(−1)k(~S · ~σ)2k+1

(2k + 1)!
, (2.96)

and using the following properties of Pauli matrices

σiσj = I [σi, σj] = 0, (2.97)
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it readily easy to see that

(~S · ~σ)2k = S2k
I (~S · ~σ)2k+1 = S2k(~S · ~σ). (2.98)

Therefore, we can rewrite the expansion of the exponential, Eq. (2.96), in the form

exp
[
−i~S · ~σ

]
=

(
cos(S) 0

0 cos(S)

)
− i

sin(S)

S

(
Sz Sx − iSy

Sx + iSy −Sz

)
. (2.99)

Using the above expression for each exponential term of Eq. (2.95), it yields

Mr = exp

[
− i

2~
Hr∆t

]
=

(
cos(̺) 0

0 cos(̺)

)
− i

sin(̺)

̺

(
M Ax − iAy

Ax + iAy −M

)
e−

i
2~

V∆t

(2.100)

Mk = exp

[
− i

2~
Hk∆t

]
=

(
cos(κ) 0

0 cos(κ)

)
− i

sin(κ)

κ

(
0 κx − iκy

κx + iκy 0

)
, (2.101)

where κ = |~κ| = ∆tvf |~k|, ̺ = |~̺| = |(Ax, Ay,M)|, ~A = ∆tvfe ~A/2~ and M = ∆tM/2~ are
dimensionless units.

Finally, we can obtain the expression for the time evolution of the wave packet
ΨD(x, y) = [φA, φB]

TΨ(x, y). As you can see, it is computed simply through matrix
multiplications

Ψ(~r, t+∆t) = Mr · Mk · MrΨ(~r, t) +O(∆t3). (2.102)

In the matrix multiplication of the term Mk, one must perform a Fourier transform of
the functions in order to take the system in the reciprocal space.



3
Geometry and edge effects on the energy levels of

graphene quantum rings a comparison between

tight-binding and simplified Dirac models

We present a systematic study of the energy spectra of graphene quantum rings having
different geometries and edge types, in the presence of a perpendicular magnetic field.
Results are obtained within the tight-binding (TB) and Dirac models and we discuss
which features of the former can be recovered by using the approximations imposed by
the latter. Energy levels of graphene quantum rings obtained by diagonalizing the TB
Hamiltonian are demonstrated to be strongly dependent on the rings geometry and the
microscopical structure of the edges. This makes it difficult to recover those spectra by the
existing theories that are based on the continuum (Dirac) model. Nevertheless, our results
show that both approaches (i. e. TB and Dirac model) may provide similar results, but
only for very specific combinations of ring geometry and edge types. The results obtained
by a simplified model describing an infinitely thin circular Dirac ring show good agreement
with those obtained for hexagonal and rhombus armchair graphene rings within the TB
model. Moreover, we show that the energy levels of a circular quantum ring with an
infinite mass boundary condition obtained within the Dirac model agree with those for a
ring defined by a ring-shaped staggered potential obtained within the TB model.

3.1 Motivation

Graphene, a two-dimensional lattice of carbon atoms [18], has been a subject of great
interest during the past few years. This interest is not only due to its possible future
technological applications, but also because it provides the possibility to probe interesting
phenomena predicted by quantum field theories. Several of the exotic properties originate
from the fact that low energy electrons in graphene obey the zero mass Dirac equation.
(for a review, see e. g. Ref. [1])

Previous works have demonstrated interesting features coming from ring- and dot-
like confinement in graphene.[96, 110, 111, 112, 113, 114, 115] Theoretical studies have
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predicted Aharonov-Bohm (AB) oscillations in both the conductance [116] and the energy
spectrum [117] of graphene quantum rings. In fact, AB conductance oscillations were
observed in recent experiments on several circular rings fabricated in few-layer graphene.
[118] Luo et al. [119] demonstrated theoretically that the energy spectrum of armchair
quantum rings exhibits signatures of an effective time-reversal symmetry breaking, where
a gap around zero energy, which can be removed by applying an external magnetic field,
is observed.

From the point of view of the continuum model, where electrons are described as
massless Dirac fermions, several models have been suggested for studying the confined
states of graphene quantum rings. For instance, Recher et al. [94] have used the Dirac
model to show that the combined effects of a ring shaped mass-related potential and an
external magnetic field can be used to break the valley degeneracy in graphene. A similar
effect was also found by Wurm et al. [120], where it was theoretically demonstrated
that the splitting of the valley degeneracy by a magnetic field in such a system can
also be observed in the transport properties of rings that are weakly coupled to leads.
The analytical solution for the graphene ring proposed in Ref. [94] was used latter by
Abergel et al. [95] to study the interplay between valley polarization and electron-electron
interactions on some measurable quantities in such a structure, where they observe, e. g.,
extra steps in the persistent current as a function of an external magnetic field. A recent
paper [121] proposed a simplified model for obtaining energy levels in graphene quantum
rings, based on an idea widely used for semiconductor quantum rings, [122] where the
radial component of the momentum of the confined particle is assumed to be zero, so that
the effective Hamiltonian of the system depends only on the angular coordinate. This
model has been recently used, e. g. for the study of wave packet revivals in monolayer
and bilayer graphene rings. [123]

Notice that the continuum model for graphene is developed by considering a peri-
odic honeycomb lattice of carbon atoms of infinite size and by analysing only the low
energy sector of the corresponding tight-binding Hamiltonian. However, the experimen-
tally obtained graphene quantum rings reported in the literature are normally fabricated
by cutting out the graphene flake into a finite size ring shaped structure. In order to
take the finite size effects into account within the Dirac theory, the above mentioned
previous papers have usually considered either infinite mass boundary conditions, or a
“frozen” radial motion of the particles. But it is questionable that these conditions are
really sufficient in order to describe a real graphene ring sample. If so, what are the
limits of such approximations? Answering these questions is the main purpose of this
paper, where we use the tight-binding model (TBM) to calculate the energy spectrum of
graphene quantum rings with different geometries and different type of edges. We then
discuss the main qualitative features of the obtained spectra in terms of the continuum
(Dirac) approximation, making a comparison between the results obtained by such an ap-
proximation and those obtained by the TBM. Our results from tight-binding calculations
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show that the energy spectra of these systems strongly depend on the detailed structure
of the edges, which makes it difficult to find analytical solutions for the energy states in
these systems within the continuum model. Circular rings cut out of a graphene sheet
exhibit mixed armchair and zigzag edges, and the latter leads to strongly confined edge
states, which significantly affects its energy spectrum. The AB oscillations in the energy
spectra for other geometries of quantum rings, where one can obtain uniform edge type,
exhibit geometry-specific n-fold energy sub-bands, and in some cases, the qualitative fea-
tures of the spectrum are shown to depend even on the alignment between inner and
outer edges of the ring. Even so, we demonstrate that under specific conditions, one can
still use the proposed simplified model [121] to obtain analytically the main qualitative
features of the energy spectra of armchair rings, or use the analytical solution proposed
in Ref. [94] to observe some features exhibited by the energy spectrum obtained by the
tight-binding model for a mass-related ring confinement, as we will discuss in further
detail in the following sections.

The present paper is organized as follows. In Sec. 3.2 we briefly present an outline
of the TBM and the investigated graphene rings. An approximate analytical solution is
obtained for a simplified model within the Dirac approach in Sec. 3.3. Our numerical
results from TBM and the analytical ones from the simplified Dirac model are shown in
Sec. 3.5. A summary and concluding remarks are reported in Sec. 3.5.

3.2 Tight-Binding model

Graphene consists of a honeycomb lattice of carbon atoms, which can be described by
the Hamiltonian

HTB =
∑

i

(ǫi +Mi)c
†
ici +

∑

<i,j>

(
τijc

†
icj + τ ∗ijcic

†
j

)
, (3.1)

where ci(c
†
i ) annihilates (creates) an electron in site i, with on-site energy ǫi, and the sum

is taken only between the nearest neighbors sites i and j, with hopping energy τij . Due
to the Klein tunnelling effect in graphene, it is hard to confine electrons by applying an
external potential. [124, 125] On the other hand, a staggered site-dependent potential Mi,
which is positive (negative) if i belongs to the sublattice A (B), [126] opens a gap in the
energy spectrum of graphene. Due to this property, such a potential is normally used to
simulate confining structures in graphene, such as quantum dots [77] and rings [94], within
the Dirac model, where it appears as a mass-related term. Recent papers have suggested a
way to realize such a potential experimentally, namely, by depositing the graphene lattice
over specific substrates. [78, 92, 127] The effect of an external magnetic field can be
introduced in the TB model by including a phase in the hopping parameters according
to the Peierls substitution τij → τij exp

[
i e
~

∫ i

j
~A · d~l

]
, where ~A is the vector potential

describing the magnetic field. [128, 129] In the presence of a perpendicular magnetic field
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Figure 3.1: Sketch of (a, c, e) armchair and (b, d, f) zigzag rings, with hexagonal, tri-
angular and rhombus geometries respectively, as well as (g, h) circular rings, considered
in this work. The first six geometries are characterized by the number of carbon rings
NE(NI) in their outer (inner) edge. Circular rings are characterized by their width W and
average radius R. (g) Circular ring defined by cutting the graphene lattice. (h) Circular
graphene ring defined by a smooth ring-shaped staggered potential Mi, where the color
scale goes from Mi = −M0 (red) to Mi = +M0 (blue), and the Mi = 0 region inside the
ring is represented in green. The atoms belonging to sublattices A and B have different
colors because of the staggered potential profile.
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~B = Bẑ, we conveniently choose the Landau gauge ~A = (0, Bx, 0), so that the Peierls
phase becomes zero in the x-direction and exp

[
i2πx
3a

Φ
Φ0

]
in the y-direction, where a = 1.42

Å is the lattice parameter of graphene, Φ0 = h/e is the magnetic quantum flux and
Φ = 3

√
3a2B/2 is the magnetic flux through a carbon hexagon.

We write the Hamiltonian (3.1) in matrix form, diagonalize it numerically and obtain
the energy spectrum for the different ring geometries schematically shown in Fig. 1:
hexagonal, triangular and rhombus-shaped rings, with (a, c, e) armchair and (b, d, f)
zigzag edges. We also consider circular rings defined by cutting the graphene lattice (g),
or by considering a circular-shaped staggered potential (h). The edges of such circular
rings exhibit an admixture of zigzag and armchair regions and are not singly defined. The
ring-shaped staggered potential in Fig. 1(h) is given by

Mi(ri) = ±M0[2 + tanh
(
r+i
)
+ tanh

(
r−i
)
] (3.2)

where r+i = (ri − R − W/2)/S and r−i = (−ri + R − W/2)/S, S is the width of the
smooth region and ri =

√
x2i + y2j is the position of the i-th site of the lattice. Such a

staggered potential goes smoothly to zero (M0) inside (outside) the ring region, avoiding
edge-related effects.

Probability density currents within the TB model are numerically calculated based on
the method developed in Ref. [130], where one defines the probability current ~j in terms
of the continuity equation and, after some calculations, obtain the current components in
x and y directions for each site, which is defined by its line (n) and column (m) position
in the lattice (see Ref. [131]), as

jx(n,m) = ±a
~

{
2ℑ
[
Ψn,mΨ

∗
n,m±1τn,m±1

]

−ℑ
[
Ψn,mΨ

∗
n−1,mτn−1,m

]
− ℑ

[
Ψn,mΨ

∗
n+1,mτn+1,m

]}
(3.3)

and

jy(n,m) =

√
3a

~

{
ℑ
[
Ψn,mΨ

∗
n+1,mτn+1,m

]

−ℑ
[
Ψn,mΨ

∗
n−1,mτn−1,m

]}
(3.4)

where the ∓ sign in jx will be positive (negative) if the (n,m)-site belongs to the sublattice
A (B), and τn,m is the hopping parameter which, in the presence of a magnetic field,
includes an additional phase according to the Peierls substitution.

3.3 Continuum model

The energy spectrum of an infinite graphene sheet in the absence of external potentials
and magnetic field, as obtained from the TBM Hamiltonian (3.1), is gapless in six points
of the reciprocal space, from which only two are inequivalent, labelled as K and K ′.
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[1, 132] In the vicinity of each of these points, the energy depends linearly on the wave
vector ~k and the electron behaves as a quasi-particle described by the Dirac Hamiltonian

HD =
[
vF~σ · (~p+ e ~A) + V (~r)I + γM(~r)σz

]
, (3.5)

where vF = 3τa0/2~ is the Fermi velocity, ~A is the electromagnetic vector potential,
V (x, y) is an external potential, I is the identity matrix and ~σi denotes the components
of the Pauli matrices. The eigenstates of the Hamiltonian (3.5) are the two-component
spinors Ψ = [ΨA,ΨB]

T , where ΨA(B) are the envelop functions associated with the electron
probabilities in A(B) sublattices.

The site-dependent staggered potential Mi in the TB Hamiltonian (3.1) contributes
to the Dirac Hamiltonian as a mass-related potential M(~r), which is multiplied by a
factor γ = 1 (-1) for the K (K ′) Dirac point in Eq. (3.5). Considering the mass as zero
(infinity) inside (outside) of the confinement region yields the infinity-mass boundary
condition ΨB(~r)/ΨA(~r) = iγeiθ, where θ is the angle between the outward unit vector at
the boundaries and ~r (i. e. θ = 0 (θ = π) at outer (inner) boundaries of the ring). [93]

Let us now consider a simplified model of a circular graphene ring in order to find an
approximate analytical solution for the energy spectrum of graphene quantum rings that
agrees with those obtained within the TBM. In the absence of an external potential and
around the K point (γ = 1), [133] the Hamiltonian (3.5) in polar coordinates reads

HD = ~vF




M
~vF

−i
(
Π∗

r + e−iφ πrB
Φ0

)

−i
(
Πr − eiφ πrB

Φ0

)
− M

~vF


 , (3.6)

where Πr = eiφ
(

∂
∂r

+ i
r

∂
∂φ

)
. We assume that the width of the ring approaches zero and

therefore the momentum should be frozen in the radial direction. From the definition of
the radial momentum operator [134] in cylindrical coordinates

pr =
1

2
(pr · r̂ + r̂ · pr) =

∂

∂r
+

1

2R
, (3.7)

where r̂ is the unitary vector in the radial direction and R is the ring radius, we obtain
∂/∂r → −1

/
2R, as p̂r → 0 and r → R. Then, the simplified Hamiltonian for the graphene

quantum ring is

HD =


 M̄ −e−iφ

(
d
dφ

+ iΦR

Φ0
− i

2

)

eiφ
(

d
dφ

+ iΦR

Φ0
+ i

2

)
-M̄


 , (3.8)

where ΦR = πR2B is the magnetic flux through the quantum ring, the energy is in units
of E0 = ~vF/R and M̄ =M/E0.

Notice that the definition of the radial momentum in Eq. (3.7) was first used by Aronov
and Lyanda-Geller [135] in 1993 for the study of Schrödinger electrons in a quantum
ring with Rashba spin-orbit interaction. [1] However, they mistakenly defined the radial
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momentum as pr = ∂
∂r

, which leads to ∂
∂r

→ 0 as the radial momentum approaches
zero. Due to this wrong assumption, they ended up with a non-Hermitian Hamiltonian
for this system. The non-Hermiticity of this Hamiltonian was eliminated artificially in
sub-sequent papers, [136, 137] by assuming an additional term −1

/
2R in the off-diagonals

of the Hamiltonian. A physical explanation for such a term was given almost ten years
later in a work by Meijer et al. [122], where the authors split the Hamiltonian into two
parts, one for the radial confinement and the other for the Rashba interaction, and used
the eigenfunctions of the radial part to show that the average value of the radial first
derivative term in the Rashba Hamiltonian is 〈∂/∂r〉 = −1

/
2R. However, this is not

the most general way to explain this term and such an explanation does not help for
the graphene ring Hamiltonian (3.6), since in this case we cannot split the Hamiltonian
and obtain a separate radial confinement term. Using Eq. (3.7), on the other hand,
one obtains the result found by Meijer et al. in a more natural way, showing that the
identity 〈∂/∂r〉 = −1

/
2R is actually a consequence of the zero radial momentum. Our

derivation of the graphene ring Hamiltonian in Eqs. (3.6-6.6) shows that if one simply
defines the radial momentum properly, the correct expression for the radial derivatives
and, consequently, an Hermitian Hamiltonian will appear naturally from the derivation. It
is straightforwardly seen that the same happens in the derivation of the Rashba interaction
Hamiltonian for quantum rings.

The eigenstates of the Hamiltonian (6.6) are found as Ψl = [Ale
ilφ, iBle

i(l+1)φ]T , with
eigenenergies

E = ±
√(

l +
ΦR

Φ0
+ 1

)(
l +

ΦR

Φ0

)
+

1

4
+ M̄2, (3.9)

where l is the angular momentum index.

3.4 Results and discussion

3.4.1 Comparison between tight-binding and Dirac models

Firstly, let us investigate the energy spectrum of graphene quantum rings, with various
shapes and edge types, obtained by the TBM, focusing on the search for energy spectra
that can be satisfactorily described by the continuum model. With this purpose, we first
demonstrate that for a rhombus-shaped ring with armchair edges, a strong dependence
of the energy spectrum on the edge alignment is observed in Fig. 3.2 for NE = 17,
considering NI = 12 (a), where the inner and outer edges are anti-aligned, and NI = 11
(b), where the edges are aligned. In the former case, one obtains very regular oscillations
as the magnetic field increases, for a wide range of energies. High and irregular energy
differences between the excited states are found in the latter (aligned) case, as compared
to the smaller and more regular separations between energies of the eigenstates of the
system with anti-aligned edges. In both cases, the spectrum exhibits two-fold bands of
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oscillating energies, separated by anti-crossings, even in the higher energy region, as shown
in the insets.

(a)

(b)

Figure 3.2: Energy levels of armchair rhombus quantum rings, schematically shown in
Fig. 1(e), as a function of the magnetic flux through a single carbon hexagon for two
ring widths: (a) NE = 17, NI = 12 and (b) NE = 17, NI = 11. As shown in the insets,
the energy spectrum does not have a zero-energy state: states close to E = 0 are rather
similar to the first states above and below this energy, which are composed by branches
of two oscillating energy states.

Figure 3.3 shows that hexagonal armchair quantum rings also share the same kind of
spectrum as the anti-aligned armchair rhombus-shaped ring in Fig. 3.2(a), though in the
hexagonal case, the spectrum does not depend on the edges alignment, but only on the
ring width. The spectra exhibit crossings and anti-crossings, which separate them into
six-fold energy bands. A similar spectrum was also obtained in Ref. [138], but the focus
of this previous work was on the inner and outer edge distribution of the eigenfunctions,
so that details of the spectrum, e.g. its dependence on the ring width and the persistent
current profile of the energy states at non-zero magnetic field, were not investigated.
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Notice that changing the number of carbon hexagons in the inner edge NI and keeping
NE fixed, one effectively changes the width of the ring. Considering a larger ring width,
with NE = 15 and NI = 3, as shown in Fig. 3.3(b), the energy spectrum is more strongly
affected by the magnetic field, so that the regular set of crossings and anti-crossings in Fig.
3.3 (a) is no longer observed in this case. Nevertheless, the qualitative features observed
in Fig. 3.3(a), including the gap around E = 0 for zero magnetic field, are present for
all ring widths. This is surprising, since in armchair nanoribbons, the character of the
system oscillates between metallic and insulating as the width changes. [88] Although
the armchair ring in Fig. 3.3(a) is made just by connecting six armchair nanoribbons,
the qualitative features of such ribbons are not directly transferable to the quantum ring
case, which suggests that the ring geometry and the ribbons connections are playing a
major role in these systems. [119]

(a)

(b)

(I)

(II)

Figure 3.3: Energy levels of armchair hexagonal quantum rings, schematically shown in
Fig. 1(a), as a function of the magnetic flux through a single carbon hexagon for two ring
widths: (a) NE = 15, NI = 10 and (b) NE = 15, NI = 3. The spectrum is symmetric
with respect to E = 0.
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Notice that the energy spectra obtained by the TBM either in the case of a rhombus-
shaped armchair ring with anti-aligned edges in Fig. 3.2(a), or for hexagonal armchair
rings, specially the one with smaller width in Fig. 3.3(a), resembles the AB oscillations
for ideal quantum rings reported, e. g. in Fig. 3(a) of Ref. [121]. These structures are
then good candidates to be well described by the simplified Dirac model for quantum
rings, developed in Sec. II of the present paper and in Ref. [121].

Thus, let us investigate the spectra in Figs. 3.2(a) and 3.3(a) with more details. Notice
that both spectra exhibit a gap around E = 0 in the absence of a magnetic field, but the
E = 0 states are found for specific values of the magnetic flux, which are almost equally
spaced in flux. This is reminiscent of the energy spectrum for Schrödinger electrons
confined in quantum rings under perpendicular magnetic fields, [139, 140, 141] where
the energy oscillates periodically with the magnetic flux, due to the Aharonov-Bohm
effect. Similar to the AB effect in semiconductor quantum rings, the energy oscillations
in Fig. 3.3(a) can also be linked to transitions between states with clockwise and counter-
clockwise persistent currents, as one can observe in the probability density current plots
in Fig. 3.4. The current for the lowest energy state with decreasing (increasing) energy
as the magnetic field increases, which are marked by green (brown) ellipses labelled as I
(II) in Fig. 3.3(a), are found to be in (counter-)clockwise direction in Fig. 3.4.

As a matter of fact, assuming a Dirac fermion constrained to move in a circle that
is thread by the same magnetic flux as the rhombus or the hexagon, i. e. that encloses
the same area as these geometries, as illustrated in Figs. 3.5(a) and 3.6(a), respectively,
and performing the analytical calculations for AB oscillations in the continuum model
proposed in Sec. III, one obtains almost the same spectra as obtained by the TBM
for the respective structures. This is demonstrated in Figs. 3.5(b) and 3.6(b) for the
rhombus-shaped and hexagonal rings, respectively, where the dashed lines are obtained
by the TBM, whereas the solid lines are for a massless Dirac fermion in a circle of radius R.
By comparing both models, one observes that: i) the energy gap reaches a maximum value
E = ~vF/R at ΦR = nΦ0 (n integer) and ii) the system is gapless for ΦR = (n + 1/2)Φ0.
Better agreement between the models is observed for lower energies and magnetic fields,
where the effects of the curvature of the energy bands and the finite width of the TBM
sample are less important.

The main advantage of the simplified analytical model for these systems is to predict
effects and results just by analysing the solutions of the model, without effectively solving
the TBM equation, which may require high computational costs. Let us then consider the
case of a ring deposited over a substrate that provides a constant mass-related potential
M = 0.5E0. Notice that this is still not the case proposed in Fig. 3.1(h), since in the
present case we have a constant mass term M , instead of the space-dependent potential
Mi(ri) of Eq. (3.2). The simplified model for a M = 0.5E0 in a circle of radius R predicts
that such a mass term is responsible for a minimum gap of E0 in the energy spectrum
at ΦR = (n + 1/2)Φ0, as shown by the solid lines in Figs. 3.5(c) and 3.6(c) for the
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Figure 3.4: Current density profile for an armchair hexagonal quantum ring corresponding
to magnetic flux indicated by (I) and (II) in Fig. 3.3(a). The results for the current
density are numerically calculated based on the method discussed in Refs. [130], [142]
and reproduced in the present manuscript.
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rhombus-shaped and hexagonal rings, respectively. Such prediction is indeed confirmed
by the results from the TBM (dashed lines) for the respective site-dependent potentials,
which exhibit very good agreement with the continuum model results.

The simplified continuum model also predicts that, in the absence of magnetic field,
the energy levels converge to M̄ as the ring radius is enlarged, and diverge as E ≈
vF~|l + 1/2|/R for small radii, which can be inferred from Eq. (3.9). However, for non-
zero magnetic field, the energies are expected to increase almost linearly with the radius,
since Eq. (3.9) can be approximated by E =

√
(αR)2 +M2, with α = vFeB/2, as R→ ∞

in this case. This is illustrated by the solid lines in Fig. 3.7, which represent the energy
levels, obtained by the simplified continuum model, as a function of the ring radius, for a
circular ring with a substrate induced potential M = 0.1 eV, considering different values
of magnetic flux. The results obtained by the TBM for an armchair hexagonal ring are
computed by varying the number of external carbon rings NE , but keeping the ring width
constant (NI = NE −5), we obtain the dimensions LE = (3NE −2)a and LI = (3NI −1)a

and the average radius R =

(
3
√
3

2π

(
|LE+LI |

2

)2)1/2

, such that we can relate to the radius of

the simplified model. The TB results are shown by the dashed lines and exhibit almost
perfect agreement with the analytical results, both qualitatively and quantitatively. In
both models, the ground state energy would converge to E = 0 for large radius if it were
not for the gap opened by a background mass term considered in this case, which keeps
electron and hole bands from touching each other even for larger radii.

It is however important to point out that the comparison between the models in Figs.
3.4-3.7 is performed for narrow widths of the quantum ring. As previously mentioned, Fig.
3.3(b) demonstrates that larger ring width leads to a stronger dependence of the energy
spectrum on the magnetic field, which harms the similarities between the energy spectra
obtained by the TBM and the Dirac model. Indeed, the armchair nature of the edges
helps the electron to stay in the middle of the rings arms, since this kind of edge type does
not allow for edge states, while the narrow width of the ring leads to the “frozen” motion
in the radial direction, which makes systems with such narrow width more suitable to be
described as an ideal ring in the simplified Dirac model proposed here.

Finally, let us now discuss how the Dirac model compares to the TBM for a finite
width circular graphene ring. The difficulty in this case lies in the fact that one must
consider the appropriate boundary conditions in order to properly describe the zigzag and
armchair edges in this structure. [90] For the circular ring cut out from a graphene sheet,
as shown in Fig. 3.1(g), although the circular symmetry provides an easy way to study
the problem by a one-dimensional (radial) equation, the boundary conditions are still too
complicated for an analytical treatment of this system, since they are an admixture of
zigzag and armchair edges. The energy spectrum obtained by the TBM for the circular
ring schematically illustrated in Fig. 3.1(g) is presented in Fig. 3.8(a) as a function of
the magnetic flux ΦR = πR2B threading the average ring radius R = 80 Å . Due to the
circular symmetry, the energy bands are two-folded and exhibit AB oscillations as the
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Figure 3.5: (a) Rhombus armchair quantum ring (blue polygon figure) considered in the
TB calculation, with NE = 17 and NI = 12, along with the one-dimensional R ≈ 32.3Å
ring (red circle) considered in the simplified model. (b) Energy spectra, obtained from the
simplified (solid lines) and TB (dashed lines) models, as a function of the magnetic flux
threading the red circle illustrated in (a). Curves with different colors represent different
angular momentum index l. (c) The results from the TB model with a background mass
term M = 0.5E0 are also compared to those from the simplified model in this case.
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Figure 3.6: (a) Hexagonal armchair quantum ring (blue polygon figure) considered in the
TB calculation, with NE = 15 and NI = 10, along with the one-dimensional R ≈ 47Å
ring (red circle) considered in the simplified model. (b) Energy spectra, obtained from the
simplified (solid lines) and TB (dashed lines) models, as a function of the magnetic flux
threading the red circle illustrated in (a). Curves with different colors represent different
angular momentum index l. (c) The results from the TB model with a background mass
term M = 0.5E0 are also compared to those from the simplified model in this case.
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(b)

(c) (d)

(a)

Figure 3.7: Energy levels of armchair hexagonal quantum ring, obtained from the simpli-
fied (solid) and TB (dashed) models, as function of ring radius R, calculated assuming

an average radius given by R =

(
3
√
3

2π

(
|LE+LI |

2

)2)1/2

and mass term M = 0.1 eV, for

different values of the magnetic flux Φ/Φ0. Curves with green, red and blue colors repre-
sent angular momentum index l zero, negative and positive, respectively. The spectrum
is symmetric with respect to E = 0.
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magnetic flux increases, which are not perfectly periodic in ΦR due to the finite width
W = 60 Å of the system. The energy spectrum for a similar system was investigated in
Ref. [138], but there, the two-fold bands are absent, which is due to the fact that the
system considered in this previous work was not perfectly symmetric with respect to the
y−axis, as one can verify by a rigorous analysis of Fig. 7(b) in this reference. In Fig.
3.8(b), we present results for the mass defined circular quantum ring [94, 95, 117] sketched
in Fig. 3.1(h), considering a potential height M0 = 1 eV and a smooth interface S = 10

Å , for a ring with the same average radius and width as in Fig. 3.8(a). The spectrum in
this case exhibits a ≈ 170 meV gap, that decreases as the magnetic field increases, and a
degenerate ground state. The magnetic field lifts the ground state degeneracy and clear
AB oscillations are observed. Surprisingly, none of the spectra found for the two circular
structures investigated here within the TBM resembles the one obtained by the simplified
Dirac model of a circular ring. Actually, the results from the simplified model in the
presence of a background mass (see e. g. Figs. 3.5(b) and 3.6(b)) looks qualitatively
closer to the one observed in Fig. 3.8(b) for the mass defined ring, but some evident
disparities are clearly observed, such as the strong dependence of the gap on the magnetic
field, and the existence of two sets of oscillating energies, one that increases and the other
that decreases as the magnetic field increases, which will be explained further on. In the
case of the cut out ring (Fig. 3.1(g)), the different edge types play such an important role
that the only evidence of the circular character of the system on the energy spectrum lies
in its weak AB oscillations, and no resemblance with the simplified model spectrum for
circular rings can be realized in the TBM spectrum for such a system.

On the other hand, Recher et al. [94] have shown that when the ring confinement is
provided by a gap opened in its inner and outer regions due to an infinite mass term, an
analytical solution within the Dirac model can be obtained. This solution was repeated
in subsequent papers, [95, 117] where it was shown that the ground state energy oscillates
periodically with the magnetic flux and is degenerate in the absence of a magnetic field.
As the analytical solution was discussed previously in Refs. [94], [95] and [117], we will
not repeat them here, and will restrict ourselves to the discussion of the obtained results
within this model. Figure 3.9 shows the energy spectrum, obtained within the Dirac
model, for the mass defined ring in Fig. 3.1(h), considering the same parameters as in
Fig. 3.8(b). The results in this case agree very well with those in Fig. 3.8(b), which were
obtained within the TBM. Moreover, a better understanding of the TBM results is now
provided by this Dirac model - the two sets of energy states that increase and decrease
with the magnetic field, which are clearly observed in the TBM results in Fig. 3.8(b), are
now demonstrated to come from the contributions of K (red solid) and K ′ (blue dashed)
branches of the spectrum, and such a lifting of valley degeneracy may be important for
future valley-tronic devices. Hence, the development of a Dirac model that agrees well
with the TBM results in this case now proves its great importance, as there would be
no way to recognize such valley dependence of the energy branches only within the TBM



3.4. RESULTS AND DISCUSSION 106

(b)

(a)

Figure 3.8: Energy levels as a function of the magnetic flux through a single carbon
hexagon for (a) the circular graphene ring schematically shown in Fig. 3.1(g), and (b) a
quantum ring formed by a site-dependent potential given by Eq. (3.2) and schematically
shown in Fig. 3.1(h), with smoothness S = 10 Å and height M0 = 1 eV. In both cases, the
average radius of the ring is R = 80 Å and the width is 60 Å . The spectrum is symmetric
with respect to E = 0.



3.4. RESULTS AND DISCUSSION 107

approach.
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Figure 3.9: Energy spectrum, obtained by the continuum model for K (red solid) and K ′

(blue dashed), as a function of the magnetic flux for a graphene quantum ring defined by
an infinite mass boundary, with the same average radius and width as the ring in Fig.
3.8(b). The spectrum is symmetric with respect to E = 0.

3.4.2 Geometry, edge types, and n-fold energy bands

Let us now discuss the energy spectra of graphene rings having different geometries
and edge types, which were found to be non-compatible with the results from the Dirac
models proposed here, but which display interesting similarities among each other and
with previous results, besides exhibiting signatures from the symmetry of the ring, as we
will demonstrate further on.

Figure 3.10 shows the energy spectra of zigzag hexagonal rings with NE = 15 and
NI = 10 (a) and NI = 9 (b). Depending on the ring width, the spectrum can either
exhibit a central six-fold sub-band around E = 0, as in Fig. 3.10(a), or two six-fold
sub-bands separated by a gap around this energy, as shown in Fig. 3.10(b). A structural
difference determines the qualitative behavior of the spectrum: the (former) latter is
obtained when the external and internal zigzag edges of the ring are (anti-) aligned, as
illustrated in the insets. Contrary to the nanoribbon case, for quantum rings it is the
zigzag structure that exhibits an oscillatory behavior as the width changes. This agrees
with the fact that the electronic properties of zigzag nanoribbons oriented at 120◦ with
respect to one another, exhibit oscillatory behavior as the width changes, whereas such
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junctions made with armchair nanoribbons show no qualitative dependence on the width.
[143] This supports the idea that the energy spectra of hexagonal graphene rings are
strongly dependent on the electronic properties of their corner junctions.

Such a strong dependence on the edge type, where even the alignment of the edges play
an important role, is hard to be described by analytical solutions within the continuum
model. Besides, it is clear that both spectra in Fig. 3.10 cannot be obtained from our
simplified model. Nevertheless, we can still estimate the period of the energy oscillations
observed in Fig. 3.10 by ΦR = nΦ0, using a reasonable value of ring radius, which in the
case of Fig. 3.10 is ≈ 29 Å . As the energy spectrum for the aligned case, shown in Fig.
3.10(b), exhibits a gap around E = 0, one could expect that introducing M 6= 0 in Eq.
(3.9) would lead to the correct energy spectrum. Although the low-lying states of this
spectrum resembles qualitatively those in Fig. 3.6(b) for M = 0.5E0, the AB oscillations
found by the simplified model exhibit a π-phase shift in comparison to the results in Fig.
3.10(b), so that the ground state for ΦR = 0 in Fig. 3.6(b) (Fig. 3.10(b)) is double (non)
degenerate.

Notice that the energy spectrum of hexagonal graphene rings with zigzag edges has
been previously investigated in Ref. [138], but with a different focus. In these previous
results, the six-fold energy bands of this system were already pointed out. However,
information about the details of the energy spectrum close to the Fermi energy and their
dependence on the edges alignment, as well as the possibility of predicting the period of
AB oscillations by using the Dirac model, were missing, and are now complemented by
the results of the present manuscript.

The energy spectra of rhombus-shaped quantum rings with zigzag edges are shown
in Fig. 3.11 as a function of the magnetic flux, for the same value of NE as in Fig. 3.2
and with NI (a) 11 and (b) 9. In this case, due to the geometry of the system, it is not
possible to construct zigzag rhombus rings having different kinds of edges alignment. In
this way, the spectra for different ring widths exhibit the same qualitative behavior, with
two-fold energy sub-bands, just like those previously observed for the armchair case in
Fig. 3.2. Notice that the states around E = 0, that look like zero-energy states, are rather
composed by three pairs of oscillating states, with very low energy. As a matter of fact,
the two-fold energy bands of this system have been already pointed out by Bahamon et al.,
[138] therefore, our results complement the findings of this previous paper by providing
details of the energy spectrum around E = 0, as well as the dependence of the energy
spectrum on the ring width.

Figure 3.12 shows the energy spectra for triangular zigzag quantum rings considering
two ring sizes: (a) NE = 17, NI = 12 and (b) NE = 15, NI = 10. Just like the zigzag
rhombus case, the zigzag triangular rings can only be constructed with aligned edges.
The spectra look qualitatively similar to those observed for the zigzag rhombus-shaped
ring in Fig. 3.11, but with three-fold oscillating energy bands for higher energy states,
instead of the pairs of oscillating states observed in the rhombus-shaped zigzag case.
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Figure 3.10: Energy levels of zigzag hexagonal quantum rings, schematically shown in
Fig. 1(b), as a function of the magnetic flux through a single carbon hexagon for two ring
widths: (a) NE = 15, NI = 10 and (b) NE = 15, NI = 9. In the (former) latter the inner
and outer zigzag edges are (anti-) aligned, as sketched in the insets.

However, there are two important differences between these two spectra: (i) the zigzag
triangular rings, in fact, exhibit zero-energy (edge) states, no matter the length of its
sides, whereas zigzag rhombus-shaped rings do not, as shown by the insets of Fig. 3.11
and previously explained in the text; (ii) the first energy state in the zigzag rhombus-
shaped ring is always non-degenerate, whereas this state in the zigzag triangular ring is
doubly degenerate. Results in previous papers [138] demonstrate that the anti-crossings
separating the three-fold energy bands of triangular zigzag quantum rings originate from
the coupling between inner and outer edge states.

The magnetic field dependence of the energy levels of armchair triangular quantum
rings is shown in Fig. 3.13 for (a) anti-aligned and (b) aligned edges, where the spectra
are also composed by three-fold oscillating energies, as in the zigzag case. However, the
energy levels are shown to be much more affected by the magnetic field threading the ring
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(a)

(b)

Figure 3.11: Energy levels of zigzag rhombus quantum rings, schematically shown in Fig.
1(f), as a function of the magnetic flux through a single carbon hexagon for two ring
widths: (a) NE = 17, NI = 11 and (b) NE = 17, NI = 9. For both widths, the energy
spectrum does not have a zero-energy state, they are three pairs of oscillating states as
shown in the insets.

in the armchair case and no significant difference on the edges alignment was observed.
Another difference as compared to the zigzag triangular rings is the absence of the zero-
energy state, which is expected, since the zero energy states are normally related to edge
states in zigzag boundaries. [144, 145] The spectra also exhibit a huge gap of ∆E > 1 eV
around E = 0, which becomes smaller either as the magnetic field increases or as the ring
width becomes larger (i. e. as NI becomes smaller for a fixed NE).

It is important to emphasize a clear similarity between the results obtained in the
previous sub-section for armchair hexagonal (rhombus-shaped) rings in Fig. 3.3 (Fig.
3.2) and those obtained for the zigzag case in Fig. 3.10 (Fig. 3.11): for any edge type
or alignment, the energy spectra exhibit six(two)-fold energy bands, with AB oscillations
with varying magnetic field. A similar effect is also shared by zigzag and armchair tri-
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angular rings, as shown in Figs. 3.12 and 3.13, respectively, where the energy spectra
exhibit three-fold bands. These results strongly suggest that the number of energy states
composing these bands is related to the symmetry groups of rotation C6, C2 and C3, for
hexagon, rhombus and triangle, respectively, which are closely related to the number of
sides of the polygon formed by the ring.[138]

3.5 Conclusion

We calculated the energy levels of graphene quantum rings with several geometries
under an applied magnetic field and observed that the energy spectrum and the AB oscil-
lations for these systems are strongly dependent on their geometry and edge structures.

(a)

(b)

Figure 3.12: Energy levels of zigzag triangular quantum rings, schematically shown in
Fig. 1(d), as a function of the magnetic flux through a single carbon hexagon for two ring
widths: (a) NE = 17, NI = 12 and (b) NE = 15, NI = 10. For both widths, the energy
spectrum has a zero-energy state.
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(a)

(b)

Figure 3.13: Energy levels of armchair triangular quantum rings, schematically shown in
Fig. 1(c), as a function of the magnetic flux through a single carbon hexagon for two ring
widths: (a) NE = 15, NI = 10 and (b) NE = 15, NI = 9. The spectrum is symmetric
with respect to E = 0.

For rings with zigzag edges, the TB spectra for each geometry are qualitatively different,
showing six-, three- and two-fold energy sub-bands, separated by large gaps, for hexago-
nal, triangular and rhombus-like rings, respectively. In the hexagonal case, the alignment
between inner and outer zigzag edges is demonstrated to play an important role in the for-
mation of the sub-bands, whereas the triangular and rhombus rings have only the aligned
edge case due to geometric reasons, presenting similar energy spectra for different sizes.
Such a strong dependence of the energy spectrum on the edge structure, specially the ob-
served oscillatory behavior of the spectra with changing ring width, due to the alignment
or anti-alignment of the inner and outer edges, is a feature of the quantum ring spectra
that can hardly be captured by the continuum models.

The energy spectrum obtained from the TB model for hexagonal quantum rings with
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armchair edges exhibits six-fold sub-bands separated by narrow gaps, which become larger
as the width of the ring increases. The spectrum does not have E = 0 states at zero
magnetic field, but exhibits such states for certain values of magnetic flux. Similar features
are observed for a rhombus-like ring with armchair edges (except for the six-fold sub-
bands which, in this case, are two-fold), but only in the case where the inner and outer
edges are anti-aligned. The main features of these energy spectra can be obtained by a
simplified model, which considers electrons obeying the Dirac equation for a circular ring
with zero width. Despite the different geometry of the actual rings, with such a simple
circular model one can (i) estimate the energy levels and the period of AB oscillations or,
alternatively, estimate the ring radius by analyzing its energy spectrum as a function of
the magnetic field, even in the presence of a substrate induced staggered potential, which
appears in the continuum model as a background mass term; (ii) predict the alternating
direction of the persistent currents through the ring arms as the magnetic field increases,
observed in the TBM; and (iii) predict the almost linearly increasing energy states as
a function of the ring radius in the presence of an uniform magnetic field, which is also
confirmed by the TBM results. The approximation is better suited for rings with smaller
widths and for lower energies and magnetic fields. On the other hand, all the results for
the triangular geometry in the armchair case exhibit three-fold sub-bands separated by
large energy gaps, which cannot be described by such a simplified model.

We also studied two cases of circular rings within the TB model: in the first one,
where the ring is cut from a graphene layer, we observe an energy spectrum composed
by pairs of energy states which exhibit AB oscillations as the magnetic field increases.
In the second, where the electrons are confined in a ring-like structure by an external
staggered site-dependent potential, the energy spectrum exhibits a gap around E = 0

and the ground state is doubly degenerate in the absence of a magnetic field. As the
magnetic field increases, this degeneracy is lifted, the energy gap is reduced, and AB
oscillations are observed in two different branches of energies, one that increases and
the other that decreases with magnetic field. Surprisingly, the TBM results for both
circular cases are very different from those obtained by the simplified continuum model
for a circular ring, which, in turn, was demonstrated to perfectly describe hexagonal

and rhombus-like armchair rings. On the other hand, our results demonstrate that the
spectrum of the staggered potential case can be obtained by the continuum model for a
finite width circular ring defined by mass barriers, where one identifies the different energy
branches observed in the TBM results as coming from different Dirac cones, demonstrating
a magnetic field induced lifting of the valley degeneracy in these systems. However, the
mass boundary conditions used here and in Refs. [94], [95] and [117] are shown to describe
only the case of a ring defined by a ring-like staggered potential, so that the complicated
energy spectrum of the more realistic circular ring cut out of a graphene sheet cannot
be described by any of the simplistic boundary conditions or simplified models analyzed
here.
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We thus summarize our findings with the following general conclusions: 1) rings with
a given n-fold symmetry exhibit n-fold energy subbands; 2) edge alignment in zigzag
hexagonal rings lead to differences in the six-fold sub-bands distribution around the Fermi
level, whereas for armchair rhombus-shaped rings, drastic modifications to the energy
spectrum are observed, specially regarding the separation between the two-fold bands; 3)
an infinitely thin Dirac ring describes quite well armchair hexagonal and rhombus-shaped
(with anti-aligned edges) structures, specially for thin ring widths; and 4) the Dirac model
for a ring defined by infinite mass boundaries does not describe rings cut out of a graphene
flake, but rather those defined by a ring-shaped staggered potential.



4
Analytical study of the energy levels in bilayer

graphene quantum dots

Using the four-band continuum model we derive a general expression for the infinite-
mass boundary condition in bilayer graphene. Applying this new boundary condition
we analytically calculate the confined states and the corresponding wave functions in a
bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic
field. Our results for the energy spectrum show an energy gap between the electron
and hole states at small magnetic fields. Furthermore the electron (e) and hole (h) energy
levels corresponding to the K and K ′ valleys exhibit the Ee(h)

K (m) = −Eh(e)
K ′ (m) symmetry,

where m is the angular momentum quantum number.

4.1 Motivation

A considerable number of studies have addressed the electronic properties of quantum
dots (QDs) in semiconductors [146, 147]. Such QDs can be used as single photon sources,
lasers and are promising candidates for spin qubits and thus for future quantum infor-
mation technology. However the spin-orbit and electron spin-nuclear spin interactions in
conventional semiconductor QDs, i.e. mainly based on GaAs, limit the spin coherence
time and thus the functionality of the device.

Very soon after the discovery of graphene [1, 18], theoretical and experimental studies
appeared on graphene quantum dots (GQDs). GQDs can be exceptional systems for
spintronics applications due to their long spin coherence time which is a consequence of
the very weak spin-orbit interaction in graphene. The gapless and linear spectrum of
graphene at its Fermi energy in the vicinity of two non-equivalent points in the Brillouin
zone, namely K and K ′, results in the Klein tunneling effect which prevents electrical
confinement of carriers in graphene structures [124]. Therefore, the direct etching of
a graphene sheet into small flakes seems to be the only realizable way for fabricating
monolayer graphene QDs. In a series of theoretical studies the energy levels of triangular,
hexagonal, rectangular and circular QDs have been investigated using both tight-binding
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and continuum (i.e. solving the Dirac-Weyl equation) models in the absence and presence
of a perpendicular magnetic field [77, 111, 121, 148, 149, 150, 151, 152]. These studies
demonstrate that the energy spectrum of graphene QDs are highly dependent on the
shapes and edges (which implies different boundary conditions) of the dot.

It has been recognized that two weakly van der Waals coupled sheets of graphene, i.e.
known as bilayer graphene (BLG), has very different electronic properties from graphene
[79]. Pristine BLG is gapless and exhibits an almost parabolic energy spectrum around
the K and K ′ points in its Brillouin zone. The possibility of opening an energy gap in
BLG using a perpendicular electric field, leads to the prediction [125, 153, 154, 155, 156]
and realization [157, 158] of gate defined QDs in BLG. In such QDs, the edges are no
longer important.

D = 8

R

D = 0

Figure 4.1: An illustration of a circular quantum dot of radius R made of bilayer graphene.
The dot is surrounded by an infinity mass potential ∆ → ∞.

Alternatively, bilayer graphene flakes are another type of QDs which may exhibit very
different properties but which have been barely studied. Ref. [159] investigated triangular
BLG dots and Ref. [160] showed the energy levels of circular QDs in BLG surrounded
with finite flakes within a tight-binding approach.

Using the Dirac-Weyl equation a system very similar to circular GQDs was investigated
half a century ago, i.e. many years before the excitement about graphene, by Berry and
Mondragon [93] as a theoretical example for the confinement of neutrino’s. The main
advantage of this model is that: (i) analytic results can be obtained, and (ii) that the
results are comparable [111, 121] to the tight-binding results for not too large energies
and for particular edge termination. It is very surprising that up to now no equivalent
theoretical study has been made for QDs in BLG. The reason for this can be traced back
to the non availability of appropriate boundary conditions.

In this paper, by solving the Dirac-Weyl equation, we obtain for the first time analyti-
cal results for the energy levels of circular QDs in BLG in the presence of a perpendicular
magnetic field. A schematic picture of our system is shown in Fig. 4.1. First we derive
novel infinite-mass boundary conditions for BLG. Recent experiments in both monolayer
[78, 161, 162] and bilayer [163, 164] graphene report the appearance of an energy gap
in the energy spectrum due to the interaction with the substrate that is composed by
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a hexagonal atomic lattice, such as hexagonal boron nitride (h-BN) and SiC. This en-
ergy gap is a consequence of an effective mass potential induced by the substrate. The
virtues of the infinite-mass boundary conditions has been already discussed for monolayer
graphene QDs [77, 90, 126]. The results in Ref. [77] for the energy spectrum of graphene
QDs with infinite-mass boundary conditions have demonstrated reasonable agreement be-
tween theory and experiment. To complement our study, we compare analytical results
with the energy levels of a BLG quantum dot surrounded by a mass potential media using
the tight-binding approach.

Our paper is organized as follows. In Sec. 4.2, we derive the infinite-mass boundary
conditions for BLG which can be applicable for any dot geometry in BLG. In Sec. 4.3,
we solve the Dirac-Weyl equation analytically (for both K and K ′ valleys) and obtain
the energy levels of circular QDs in BLG for zero magnetic field and in Sec. 4.4 in the
presence of a perpendicular magnetic field. The cyclotron resonance for the system is
discussed in Sec. 4.5. We summarize our results in Sec. 4.6.

4.2 Infinite-mass boundary condition

Here we will generalise the infinite-mass boundary condition for monolayer graphene
to BLG. Our approach will be based on the formalism discussed in Ref. [165] in which
the authors obtain the boundary conditions for the scattering problem of a circular mass
barrier in monolayer graphene and extend their work to the case of BLG. The Hamiltonian
describing a Dirac electron in the presence of a circular mass barrier in BLG is given by

H =




0 π t 0

π† 0 0 0

t 0 0 π†

0 0 π 0




+




τ∆ 0 0 0

0 −τ∆ 0 0

0 0 τ∆ 0

0 0 0 −τ∆


 , (4.1)

where ∆ indicates a position-dependent mass term [153, 154] and the index τ = ±1

distinguishes the two K and K ′ valleys. t ∼ 400 meV is the interlayer coupling term, π
and π† are the momentum operators in polar coordinates

π = −i~vF eiθ
(
∂

∂ρ
+
i

ρ

∂

∂θ

)
, (4.2a)

π† = −i~vF e−iθ

(
∂

∂ρ
− i

ρ

∂

∂θ

)
, (4.2b)

with vF ≈ 106 m/s being the velocity of the carriers in BLG. The eigenstates of the
Hamiltonian (4.1) are given by the four-component wave function Ψ = [ψA, ψB, ψB′ , ψA′ ]T .



4.2. INFINITE-MASS BOUNDARY CONDITION 118

Solving the stationary Schrödinger equation HΨ = EΨ we obtain the following system
of coupled differential equations

eiθ
(
∂

∂ρ
+
i

ρ

∂

∂θ

)
ψB = i [(ǫ− τ∆′)ψA − t′ψB′ ] ,

e−iθ

(
∂

∂ρ
− i

ρ

∂

∂θ

)
ψA = i [(ǫ+ τ∆′)ψB] ,

e−iθ

(
∂

∂ρ
− i

ρ

∂

∂θ

)
ψA′ = i [(ǫ− τ∆′)ψB′ − t′ψA] ,

eiθ
(
∂

∂ρ
+
i

ρ

∂

∂θ

)
ψB′ = i [(ǫ+ τ∆′)ψA′ ] , (4.3)

where the radial coordinate ρ is given in units of the dot radius R. The energy ǫ, the
hopping term t′ and the mass potential ∆′ are in units of E0 = ~vF/R. The circular
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Figure 4.2: Schematic picture of the mass potential profile for a (a) ring-shaped barrier
and (b) dot barrier divided into three and two regions, respectively. The width of the
barrier, i.e. δ << 1, is shown by the yellow region and the radius of the dot and ring is
set to 1.

symmetry of our problem allows us to take the following angular dependence of the wave
function components:

[
ψA, ψB, ψB′ , ψA′

]T
=

eimθ
[
φA(ρ), ie

−iθφB(ρ), φB′(ρ), ieiθφA′(ρ)
]T
, (4.4)

where the integer value m denotes the angular momentum label. Inserting Eq. (4.4) into
the set of differential equations (4.3), we obtain

[
∂

∂ρ
− (m− 1)

ρ

]
φB(ρ) = (ǫ− τ∆′)φA(ρ)− t′φB′(ρ),

[
∂

∂ρ
+
m

ρ

]
φA(ρ) = − (ǫ+ τ∆′)φB(ρ),

[
∂

∂ρ
+

(m+ 1)

ρ

]
φA′(ρ) = (ǫ− τ∆′)φB′(ρ)− t′φA(ρ),

[
∂

∂ρ
− m

ρ

]
φB′(ρ) = − (ǫ+ τ∆′)φA′(ρ). (4.5)
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In order to find the infinite-mass boundary condition we consider a Dirac electron
interacting with circular barrier structures shown in yellow color in Fig. 4.2. We start by
solving the set of differential equations (4.5) in the barrier region (region II) applying the
standard boundary condition for the four wave function components on the solid circles
shown in Fig. 4.2(a) and take the limit ∆′ → ∞. We obtain the following system of
differential equations for region II, i.e. inside the barrier,

∂

∂ρ
φB = −τ∆′φA − t′φB′ ,

∂

∂ρ
φA = −τ∆′φB,

∂

∂ρ
φA′ = −τ∆′φB′ − t′φA,

∂

∂ρ
φB′ = −τ∆′φA′, (4.6)

which has the solution

φA = Feα+(ρ−1) +Ge−α+(ρ−1)

+Heα−(ρ−1) + Ie−α−(ρ−1),

φB = − τ

∆′
[
α+Fe

α+(ρ−1) − α+Ge
−α+(ρ−1)

+ α−He
α−(ρ−1) − α−Ie

−α−(ρ−1)
]
,

φB′ = τ
[
Feα+(ρ−1) +Ge−α+(ρ−1)

− Heα−(ρ−1) − Ie−α−(ρ−1)
]
,

φA′ = − 1

∆′
[
α+Fe

α+(ρ−1) − α+Ge
−α+(ρ−1)

− α−He
α−(ρ−1) + α−Ie

−α−(ρ−1)
}
. (4.7)

where α± =
√
∆′(∆′ ± t′). The boundaries of the mass barrier region are determined by

−δ ≤ ρ− 1 ≤ δ. The above solutions at the different boundaries become

φI
A(1− δ) = Fe−α+δ +Geα+δ

+He−α−δ + Ieα−δ,

φI
B(1− δ) = − τ

∆′
[
α+Fe

−α+δ − α+Ge
α+δ

+ α−He
−α−δ − α−Ie

α−δ
]
,

φI
B′(1− δ) = τ

[
Fe−α+δ +Geα+δ

− He−α−δ − Ieα−δ
]
,

φI
A′(1− δ) = − 1

∆′
[
α+Fe

−α+δ − α+Ge
α+δ

− α−He
−α−δ + α−Ie

α−δ
]
,
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φIII
A (1 + δ) = Feα+δ +Ge−α+δ

+Heα−δ + Ie−α−δ,

φIII
B (1 + δ) = − τ

∆′
[
α+Fe

α+δ − α+Ge
−α+δ

+ α−He
α−δ − α−Ie

−α−δ
]
,

φIII
B′ (1 + δ) = τ

[
Feα+δ +Ge−α+δ

− Heα−δ − Ie−α−δ
]
,

φIII
A′ (1 + δ) = − 1

∆′
[
α+Fe

α+δ − α+Ge
−α+δ

− α−He
α−δ + α−Ie

−α−δ
]
. (4.8)

Eliminating the coefficients F , G, H and I the solution in the limit of δ ≪ 1 becomes

φIII
A′ (1)− φI

A′(1) = τ
[
φIII
B (1)− φI

B(1)
]

+
α−
∆′ tanh (α−δ)

{
φIII
A (1) + φI

A(1)

− τ
[
φIII
B′ (1) + φI

B′(1)
]}
,

φIII
B′ (1)− φI

B′(1) = −τ
[
φIII
A (1)− φI

A(1)
]

−∆′

α+
tanh (α+δ)

{
φIII
B (1) + φI

B(1)

+ τ
[
φIII
A′ (1) + φI

A′(1)
]}
. (4.9)

Considering a very thin and very high mass barrier we take the following limits

δ → 0, ∆′ ≫ t′, tanh (α±δ) = P = const

which allows us to rewrite the set of Eqs. (4.9) as

φIII
A′ (1)− φI

A′(1) = τ
[
φIII
B (1)− φI

B(1)
]

+ P
{[
φIII
A (1) + φI

A(1)
]
− τ

[
φIII
B′ + φI

B′

]}
, (4.10a)

φIII
B′ (1)− φI

B′(1) = −τ
[
φIII
A (1)− φI

A(1)
]

− P
{[
φIII
B + φI

B

]
+ τ

[
φIII
A′ + φI

A′

]}
, (4.10b)

where the parameter P is related to the magnitude of the height of the barrier with the
maximum value 1.[165] Equations (4.10a) and (4.10b) correspond to a general form of
the boundary conditions for the structure shown in Fig. 4.2(a). These general conditions
allow us to write the boundary condition for a dot-shaped mass barrier, as depicted in
Fig. 4.2(b). For this case we take the following limits

∆′ = ∞, P = 1,

φIII
A (1) = φIII

B (1) = φIII
A′ (1) = φIII

B′ (1) = 0, (4.11)
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which results into

φI
A′(1)− τφI

B(1)− τφI
B′(1) + φI

A(1) = 0, (4.12a)

φI
A′(1)− τφI

B(1) + τφI
B′(1) + φI

A(1) = 0. (4.12b)

These are the boundary conditions for a BLG quantum dot surrounded by an infinite-
mass potential barrier. Notice that Eqs. (4.12a) and (4.12b) connect the value of the
pseudospin components at the boundary of the two sublattices of each layer with each
other. Both equations have the same structure, except for a single sign change. However,
we can not simply add the two equations in order to reduce the boundary condition to a
single equation. The reason is that the general solution of a four band problem is always
composed of two coefficients to each of the four pseudospin components. The infinite-mass
boundary condition for a monolayer GQD can easily be obtained by removing the second
layer, i.e. by putting φI

A′(1) = φI
B′(1) = 0. In the next section we obtain the energy levels

of a circular QD in BLG using the boundary conditions (4.12). In order to find the energy
spectrum of a BLG quantum dot we need to apply both conditions at the boundaries,
which will result in a transcendental equation for the energy levels.

4.3 Energy levels: Zero magnetic field

Now, we consider our main problem and obtain the energy levels of a circular QD
in BLG in the absence (in current section) and presence (in Sec. 4) of a perpendicular
magnetic field. We will employ the infinite-mass boundary conditions (i.e. Eqs. (4.12a)
and (4.12b)).

In the absence of a magnetic field the Hamiltonian of a BLG and the corresponding
wave function are respectively given by Eq. (4.1) and Eq. (4.4). Solving HΨ = EΨ leads
to the set of coupled equations given by Eq. (4.5). We solved these equation for ∆′ = 0

(The infinity mass potential will be applied at the boundary). Decoupling the system of
differential equations (4.5) we arrive at the ordinary Bessel differential equation

ρ2
∂2φA(ρ)

∂ρ2
+ ρ

∂φA(ρ)

∂ρ
+
[
κ2±ρ

2 −m2
]
φA(ρ) = 0, (4.13)

where κ± =
√
ǫ2 ± t′|ǫ|. We define the solution inside the dot as [166]

φA = C1Jm(κ+ρ) + C2Jm(κ−ρ),

φB = −1

ǫ
[C1κ+Jm−1(κ+ρ) + C2κ−Jm−1(κ−ρ)] ,

φB′ = sgn(ǫ) [−C1Jm(κ+ρ) + C2Jm(κ−ρ)] ,

φA′ =
1

|ǫ| [C1κ+Jm+1(κ+ρ)− C2κ−Jm+1(κ−ρ)] ,

(4.14)
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where Jm(κ±ρ) is the Bessel function of the first kind and sgn is the sign function. It is
important to point out that in the range of |ǫ| ≤ t′, κ− is pure complex, such that the
Bessel function returns a complex (real) value whenm is odd (even), for small values of the
Bessel function argument (k−ρ). Based on this we take into account the real (imaginary)
part of Jm(κ−ρ) and κ−Jm±1(κ−ρ) when κ− is complex and m is even (odd).

Applying the boundary conditions (4.12a) and (4.12b) we arrive at a system of two
algebraic equations. Finding the roots of the determinant of the coefficients, i.e. C1 and
C2, we obtain a transcendental equation for the energy levels that we solve numerically.
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Figure 4.3: Energy levels of a circular BLG quantum dot as a function of angular mo-
mentum label m for R = 70 nm and in the absence of a magnetic field. The energy levels
corresponding to the K and K ′ valleys are shown by the blue crosses and the red dashed
, respectively.

Figure 4.3 shows the energy levels of a QD with radius R = 70 nm as function of
angular momentum m for zero magnetic field. The results show that the ground state is
degenerate and correspond to m = 0 and m = 1. This can be linked to the geometric
phase which shifts the angular momentum labels in the first and third expressions of Eq.
(4.5). The electron (e) and hole (h) states in Fig. 4.3 are related by Ee

K(m) = −Eh
K ′(m)

symmetry, corresponding to a reversal of electrons and hole states when going from valley
K to K ′. Another remarkable symmetry is Ee

K(m) = Ee
K(−m) (Eh

K ′(m) = Eh
K ′(−m))

between the electron (hole) states of the K (K ′) valley while the levels corresponding
to the K ′ (K) valley display a shift in energy between negative and positive angular
momenta.

Results for the energy levels as a function of the dot radius are shown in Figs. 4.4(a, c,
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Figure 4.4: Energy levels of a circular BLG quantum dot as a function of the dot radius
with m = 1 (a, b), m = 0 (c, d) and m = −1 (e, f). Left and right panels correspond,
respectively, to zero magnetic field and B0 = 5 T. The energy levels corresponding to the
K and K ′ valleys are shown by the blue dashed and the red solid curves respectively.
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e) for zero magnetic field andm = 0,±1. The blue-dashed and red-solid curves correspond
respectively to the K and K ′ valleys. The energy spectrum shows two sets of levels. The
upper set of levels approach for large R the inter-layer hopping term in BLG, i.e. t ≈ 400

meV and is related to the upper band of BLG. For B0 = 0, the spectrum shows a 1/R2

dependence for the lowest states and 1/R for the states in the upper set. This can be
linked to the fact that in BLG the low energy levels are related to a parabolic dispersion
E ∼ k2 and the higher energies can be approximated with a linear dispersion E ∼ k.

4.4 Energy levels: Perpendicular magnetic field

In the presence of a perpendicular magnetic field B0 the momentum operators π and
π† in Hamiltonian (4.1) are defined as

π = vF e
iθ

[
−i~

(
∂

∂r
+
i

r

∂

∂θ

)
+ i

eB0r

2

]
, (4.15a)

π† = vF e
−iθ

[
−i~

(
∂

∂r
− i

r

∂

∂θ

)
− i

eB0r

2

]
, (4.15b)

where we used the symmetric gauge for the vector potential ~A = (0, B0r/2, 0). Acting
the Hamiltonian (4.1) on ψ, given by Eq. (4.4) we obtain the following set of coupled
differential equations

[
∂

∂ρ
− (m− 1)

ρ
− βρ

]
φB(ρ) = ǫφA(ρ)− t′φB′(ρ),

[
∂

∂ρ
+
m

ρ
+ βρ

]
φA(ρ) = −ǫφB(ρ),

[
∂

∂ρ
+

(m+ 1)

ρ
+ βρ

]
φA′(ρ) = ǫφB′(ρ)− t′φA(ρ),

[
∂

∂ρ
− m

ρ
− βρ

]
φB′(ρ) = −ǫφA′(ρ), (4.16)

where ρ = r/R, ǫ = ER/~vF , t′ = tR/~vF and β = eB0R
2/2~ = R2/2l2B are dimen-

sionless, with lB =
√
~/eB0 the magnetic length. Decoupling the above equations with

respect to φA we arrive at
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2
− 2mβ − β2ρ2

]
φA(ρ)

= γ±(ǫ)φA(ρ), (4.17)

where the eigenvalues are given by γ±(ǫ) = −ǫ2±
√
ǫ2t′2 + 4β2 and γ±(ǫ) = −2β (2n + |m|

+m+ 1), with n = 0, 1, 2.... Using the ansatz φA(ρ) = ρ|m|e−ρ2β/2ξ(ρ2), Eq. (4.17) yields
the confluent hypergeometric ordinary differential equation

ρ̃
∂2ξ(ρ̃)

∂ρ̃2
+ [|m|+ 1− ρ̃]

∂ξ(ρ̃)

∂ρ̃

−
[
γ±(ǫ)

4β
+

(|m|+m+ 1)

2

]
ξ(ρ̃) = 0, (4.18)
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which has the solution ξ(ρ̃) = C1M̃(A+, B, ρ̃) +C2M̃(A−, B, ρ̃) where M̃(A±, B, ρ̃) is the
regularized confluent hypergeometric function with

ρ̃→ βρ2 = βr2/R2, (4.19a)

B → |m|+ 1, (4.19b)

A± → γ±(ǫ)/4β + (|m|+m+ 1)/2. (4.19c)

and Cj’s (j = 1, 2) are the normalization coefficients. In order to find φB, φB′ and φA′ we
insert the solution for φA in the differential equations (4.16). Using the properties of the
regularized confluent hypergeometric function[167], this results into

φB(ρ) = −ρ
|m|

ǫ
e−ρ2β/2

{
([|m|+m)]ξ(ρ̃)

ρ

+ 2βρ
[
C1A+M̃(A+ + 1, B + 1, ρ̃)

+ C2A−M̃(A− + 1, B + 1, ρ̃)
]}

, (4.20)

φB′(ρ) =
ρ|m|

ǫt′
e−ρ2β/2

{
4β2ρ2 [C1A+(A+ + 1)

× M̃(A+ + 2, B + 2, ρ̃) + C2A−(A− + 1)

× M̃(A− + 2, B + 2, ρ̃)
]
+ 4β [|m|+ 1

− βρ2
] [
C1A+M̃(A+ + 1, B + 1, ρ̃)

+ C2A−M̃(A− + 1, B + 1, ρ̃)
]

+
[
ǫ2 − 2β(|m|+m)

]
ξ(ρ̃)

}
, (4.21)

φA′(ρ) = −ρ
|m|

ǫ2t′
e−ρ2β/2

{
8β3ρ3 [C1A+(A+ + 1)

× (A+ + 2)M̃(A+ + 3, B + 3, ρ̃) + C2A−

× (A− + 1)(A− + 2)M̃(A− + 3, B + 3, ρ̃)
]

+ 4β2ρ
(
3|m| −m+ 4− 4βρ2

)
[C1A+

× (A+ + 1)M̃(A+ + 2, B + 2, ρ̃) + C2A−

× (A− + 1)M̃(A− + 2, B + 2, ρ̃)
]
+ 2βρ

×
(
ǫ2 − 8β(|m|+ 1) + 4β2ρ2 +

2

ρ2
(|m|

− m)(|m|+ 1))
[
C1A+M̃(A+ + 1, B + 1, ρ̃)

+ C2A−M̃(A− + 1, B + 1, ρ̃)
]
+
(
ǫ2 − 2β

× (|m|+m))

(
(|m| −m)

ρ
− 2βρ

)
ξ(ρ̃)

}
. (4.22)
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After demanding the boundary conditions Eqs. (4.12a) and (4.12b) at ρ = 1 we
arrive at two algebraic equations from which we find the energy levels by solving them
numerically.

Figures 4.4(b, d, f) show the energy levels as a function of radius for B0 = 5 T. For
B0 6= 0 as the size of the dot increases the spectrum becomes weakly dependent on the
dot radius and the energy levels approach the Landau levels (LLs) of BLG. As a result,
the low-lying states approach E = 0, which corresponds to the zeroth LL of BLG. The
interplay between the confinement due to the magnetic field and due to the infinite-mass
potential leads to the appearance of anti-crossings between the levels of one valley and
crossings between the levels of two different valleys.

m = 0

m = -1

m = 1

m = -2

m = 1

m = 0m = 2

m = 0, -1, -2, -3, -4

m = 0, -1, -2, -3, -4

Figure 4.5: Energy spectrum of a circular BLG quantum dot as a function of a per-
pendicular magnetic field with R = 70 nm and for −4 ≤ m ≤ 4. The energy levels
corresponding to the K and K ′ valleys are shown by the blue dashed and the red solid
curves, respectively. The black dotted lines are the three first LLs of BLG. The inset
shows an enlargement of the low energy levels at small magnetic fields.

Figure 4.5 shows the energy spectrum of a BLG quantum dot as a function of external
magnetic field with radius R = 70 nm and for −4 ≤ m ≤ 4. The blue dashed and red
solid curves respectively show the energy levels for the K and K ′ valleys. In the inset
of Fig. 4.5 we present a zoom of the energy levels at low magnetic fields. At B = 0,
the two lowest degenerate states, i.e. EK(m = 1) and EK ′(m = 0), belong to different
valleys. Notice that the upper set of degenerate levels are pertinent to the same valleys
(i.e. EK(m = −1) = EK(m = 1) and EK(m = 0) = EK(m = 2)). This degeneracy
is lifted for nonzero magnetic field which is a consequence of the discretization of the
energy spectrum when a magnetic field is applied. Furthermore, the spectrum shows the
symmetry Ee

K(m) = −Eh
K ′(m) for the QD system created by an infinite-mass potential at
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Figure 4.6: Energy spectrum of a circular BLG quantum dot as a function of a perpen-
dicular magnetic field with R = 10 nm obtained within (a) the continuum model taking
−22 ≤ m ≤ 22 and (b) the tight-binding model. The energy levels corresponding to the
K and K ′ valleys are shown in (a) by the blue dashed and the red solid curves, respec-
tively. The green dashed lines are the three first LLs of bulk BLG. Figures (c) and (d)
show the squared total wave function (|ΨTB|2) for the states indicated by (c) ǫ ≈ 0.5348

and (d) ǫ ≈ 0.6746 in figure (b), respectively. Blue (red, black) color is low (high, very
high) density. The mass potential region is shadowed by the gray color.

the edge. We should emphasize that this symmetry is present in both zero and nonzero
magnetic fields. For large magnetic field (i.e. when lB ≪ R) the carriers become strongly
localized at the center of the dot and the energy levels approach the LLs of a pristine
BLG sheet, i.e. En = (~vF/lB)

√
2n+ 1± 1 with n = 0, 1, 2, .... The energy states that

approach the LLs of BLG satisfy the condition m ≤ n where n denotes the nth LL of
BLG. For example those states that approach the zeroth and the first LLs respectively
correspond to the m ≤ 0 and m ≤ 1 states. This behavior is qualitatively similar to that
found in monolayer QDs with infinite-mass potential [111] and in semiconductor QDs
[168].

Despite of having the advantage of analytical solutions using the continuum model, it
is interesting to obtain the energy spectrum within the tight-binding approach in which
we are able to study a QD in BLG with realistic edges. We employ a first-nearest-neighbor
tight-binding formalism [111, 149] for circular QDs cut out from BLG and surrounded by
a mass potential media where the sublattices A and B in both upper and lower layers are
respectively connected to potentials +V and −V with V = 1 eV. In order to avoid the
influence of outer edges we take a hexagonal structure with armchair edges for the mass
potential media. The energy levels of a QD with radius R = 10 nm is shown in Figs.
4.6(a) and 4.6(b) respectively obtained using the continuum and tight-binding models.
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A circularly cut-out region in bilayer graphene has a combination of both zigzag and
armchair edges at the boundaries which mixes the states in the K and K ′ valleys. This
makes the QD more complex system. Therefore, our results presented in Fig. 4.6(b) are
only qualitatively comparable with those obtained using the previous continuum model in
Fig. 4.6(a). In both cases, the energy levels approach the LLs of bulk BLG as magnetic
field increases. The energy levels in both spectra exhibit similar magnetic field depen-
dences. Two interesting features are found within the tight-binding calculations (see Fig.
4.6(b)): (i) the energy levels approach the zeroth LL of BLG in groups of two. This can
be linked to the symmetry of the wave functions due to the confinement brought by the
zigzag edges of the cut out circular QD. In Figs. 4.6(c) and 4.6(d) we show the electron
densities corresponding to the points indicated by (c) and (d) (chosen from one group of
energy levels) in Fig. 4.6(b). (ii) Degeneracies are lifted resulting in many more energy
levels. This is a consequence of the mixing of the K and K ′ states due to the presence of
armchair and zigzag edges at the circular boundary of the QD.

In Fig. 4.7, we show a contour plot of the probability density, separately for each
layer, as a function of the normalized magnetic field and the dot radius for the states
corresponding to the K valley and for (a, b) m = 0, (c, d) m = 1, and (e, f) m = −1. Left
and right panels show respectively the densities |φA|2 + |φB|2 and |φA′|2 + |φB′|2 which
correspond to the charge density in the different layers. As the magnetic field increases
the electrons become more localized closer to the center of the dot. Our results clearly
show different distributions of the electrons in each layer. This can be traced back to the
definition of the infinite-mass boundary conditions in Eqs. (4.12a) and (4.12b) in which the
spinor φB′ has a different sign in the equations. This will influence the density balance in
each layer. Another consequence of the boundary condition used in the continuum model
is the symmetry between the four wave function components φK

A(A′)(m) = φK ′

A(A′)(m) and
φK
B(B′)(m) = φK ′

B(B′)(m).

4.5 Cyclotron resonance

In cyclotron resonance experiments, e.g. see Refs. [169, 170, 171, 172, 173], transitions
are induced between the ground state and excited states. We calculated the transition
between the state i and j using the relation |〈Ψi|ρe±iφ|Ψj〉|2 which dictates the selection
rule ∆m = ±1. Another selection rule which is due to the valley index in graphene is
∆τ = 0 implying that transitions between inter-valley states is not allowed [174, 175].
In Figs. 4.8(a) and 4.8(b) we show the transition energies ∆ǫ and the corresponding
transition rates as function of magnetic field from the two lowest energy states shown in
the inset of Fig. 5, i.e. EK ′(m = 0), EK(m = 1). The transitions between the states
in K (or K ′) valley are labelled by (m → m′)K(K ′) where m and m′ are respectively the
angular momentum of the initial and final state. The transition energies for the states that
approach the same (different) LLs of BLG decrease (increase) as β increases. Our results
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Figure 4.7: Contour plot of the electron probability density as a function of the normalized
magnetic field β and the dot radius ρ for the lowest states of the K valley and with (a,
b) m = 0, (c, d) m = 1, and (e, f) m = −1. Left and right panels show respectively
|φA|2 + |φB|2 and |φA′|2 + |φB′|2 corresponding to the density in the different layers.

in Fig. 4.8(b) show that the transition rates decrease as the magnetic field increases.
For large fields, e.g. for β & 7, we found that the rates associated with the (1 → 0)K ,
(0 → 1)K ′, and (0 → −1)K ′ transitions approach each other. These transitions are weaker
than that of the (1 → 2)K transition which occurs between the states with higher angular
momentums.

4.6 Conclusion

In this paper, we derived novel infinite-mass boundary conditions for BLG. The bound-
ary conditions were obtained from a four-band continuum model. Subsequently, we em-
ployed these boundary conditions for a circular QDs in BLG surrounded by an infinite-
mass potential. Such a mass potential can be realized experimentally using an appropriate
substrate that breaks the sublattice symmetry of BLG resulting in the opening of an en-
ergy gap in the band structure of BLG.

Solving the four-band Dirac-Weyl Hamiltonian, in the vicinity of both K and K ′

valleys, we obtained analytically the energy levels and the corresponding wave functions
of a BLG quantum dot. The energy spectrum was calculated in the absence and presence
of a perpendicular magnetic field. We demonstrated that the energy spectrum exhibit
two sets of states as function of dot radius R. The upper set of levels is related to the
upper band of BLG and approach the inter-layer hopping term in BLG, i.e. t ≈ 400 meV.
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Figure 4.8: (a) Transition energies and (b) the corresponding transition rates as a function
of the normalized magnetic field for a QD with radius R = 70 nm. The label (m → m′)

indicates the angular momentum of the initial m and the final m′ states. The results
corresponding to the K and K ′ valleys are respectively shown by the solid and dashed
curves.

At zero magnetic field the spectrum shows a 1/R2 dependence for the lowest states and
1/R for the states in the upper set.

Our results show that the energy levels approach the LLs of a BLG sheet with in-
creasing magnetic field. The spectrum shows the symmetry Ee(h)

K (m) = −Eh(e)
K ′ (m) corre-

sponding to a reversal of electron and hole states. This symmetry is present in the absence
and presence of a magnetic field and it is a consequence of the confinement due to the
infinity mass potential. Within the tight-binding approach, we obtained the energy levels
of a BLG quantum dot with actual edges and showed that the results are qualitatively
similar to those obtained with the continuum model. Further, we obtained the transition
energies and evaluated the corresponding transition rates for the lowest energy levels in
a BLG quantum dot.

The QDs we studied in this paper may be realized experimentally by using appropriate
substrates containing a circular hole, e.g. hexagonal boron nitride [176], in order to induce
an infinity mass potential on BLG.



5
Monolayer-bilayer graphene quantum dots

Using the tight-binding model, we study the confined states in two different hybrid
monolayer - bilayer systems: (i) a hexagonal anti-dot in bilayer graphene under perpen-
dicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by a
hexagonal region of monolayer graphene. The behavior of the energy levels as a function
of dot size and under an applied external magnetic field is investigated. In the presence
of electrostatic bias we find that the energy spectrum for dots formed by zigzag edges
presents states inside the gap whose features are marked by dot-localized states, edge
states and mixed states coexisting together, whereas for dots with armchair edges one has
only dot-localized states. We demonstrate that these dot-localized energy levels inside the
gap formed by the potential bias decrease as the dot size increases as already expected
for a quantum dot confined state, while edge and mixed states exhibit an opposite be-
havior. In the presence of both magnetic and electric fields for a zigzag dot we observe
topologically protected states inside the gap and the convergence of the energy spectra to
the Landau levels in all system configurations.

5.1 Motivation

Quantum dots (QDs) in graphene, a monolayer of graphite [1, 18], and in bilayer
graphene are the subject of a considerable number of both theoretical and experimen-
tal studies [148, 177, 178] with the hope of benefiting of the exceptional properties of
graphene, such as high carrier mobility and long spin coherence time for electronic and
particularly spintronic applications. The absence of an energy gap in both monolayer
(MLG) and bilayer graphene (BLG) spectrum is the main obstacle preventing straight-
forward fabrication of graphene QDs. However, BLG is in particular of interest, in which
a perpendicular electric field realized by external gate potentials applied to the different
layers of BLG can open an energy gap [79]. Recent theoretical [125, 153, 154, 155] and
experimental [157, 158] studies demonstrate electron confinement into gate-defined QDs
by tailoring the gap in BLG.
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QDs in MLG are fabricated by direct etching of a pristine graphene sheet into the small
flakes in which the shape and edges of the dot become very important. The electronic and
transport properties of such QDs with different shapes and different edges are investigated
extensively [77, 96, 111, 121, 149, 150, 151, 152]. There also exist several theoretical
studies pertinent to BLG flakes in which, in contrast to the gate-defined QDs in BLG,
edge disorder influences the electronic properties of the dot significantly [159, 160].

Realistic few layer graphene samples extracted from graphite often contain patches of
both MLG and BLG. Electronic transport measurements demonstrated the importance
of monolayer-bilayer interface states in transport and electronic properties of quantum
structures fabricated based on such samples [179, 180, 181, 182, 183, 184]. The monolayer-
bilayer interface states were theoretically investigated in a system of two semi-infinite
MLG and BLG sheets with both zigzag- and armchair-terminated junctions in the absence
[185, 186] and presence [187, 188] of an external magnetic field.

Figure 5.1: (Color online) Sketches of the studied systems in this work composed by
hexagonal shaped quantum dots of size L in bilayer graphene created by (a) cutting out
atoms in the inner region of the top layer and (b) with the top layer being smaller than
the bottom one. In both cases (a) and (b), the outer edges are taken armchair forming
a hexagonal dot with a larger size. A cross-section view of the dots are presented at the
bottom of each system. The distance between the layers is d, that was taken as ≈ 100 Å.

The existence of both monolayer and bilayer islands in exfoliated graphene samples,
motivated us to propose different types of graphene QDs consisting of both MLG and
BLG. In this paper, we study the confined states into two different systems schematically
depicted in Figs. 1(a) and 1(b): (i) a hexagonal MLG dot surrounded by a hexagonal
biased BLG region, and (ii) a hexagonal BLG dot surrounded by a hexagonal region of
MLG. The outer boundaries of the considered systems are terminated by armchair edges
in order to avoid the influence of edge states corresponding to the outer hexagonal dot.
The found QD states are therefore not influenced by the finite size of the total system
and are therefore representative for an infinite system. Using nearest-neighbour tight-
binding formalism we obtain the energy levels of these QDs for both zigzag and armchair
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terminated monolayer-bilayer interface. We report our results in the absence and presence
of a perpendicular magnetic field.

The paper is organized as follows. In Sec. II, we briefly discuss the tight-binding
approach used in our numerical calculations. In Sections III(A) and III(B) we present
the energy levels of the QDs illustrated in Figs. 5.1(a) and (b), respectively, for zero and
external magnetic field. Finally we present concluding remarks in Sec. IV.

5.2 Numerical Method

In order to describe electrons in an AB-stacked bilayer graphene, we work within the
tight-binding approximation, whose nearest-neighbor tight-binding Hamiltonian can be
written as

HTB =

2∑

n=1

∑

i

(ǫn;i + Vn;i)c
†
n;icn;i (5.1)

+

2∑

n=1

∑

<i,j>

(
τijc

†
n;icn;j + τ ∗ijcn;ic

†
n;j

)

+ τ⊥
∑

i,j

(
c†1;ic2;j + c1;ic

†
2;j

)
,

where cn;i(c
†
n;i) annihilates (creates) an electron in site i, with on-site energy ǫi. n is the

layer index, the sum
∑

<i,j> is taken only between nearest neighbor sites i and j in each
layer and τij (τ⊥) is the (intra-) inter-layer hopping energy. Let us label the bottom layer
as layer 1 and the upper layer as layer 2. Thus, the first term of HTB corresponds to the
on-site energy and external potential, the second term is related to the Hamiltonian for
each layer and the third term describes the interlayer coupling in which we consider only
the hopping between the two atoms stacked right on top of each other. The potential
in each site i and in each layer n is represented by Vn;i and was included only for the
system configuration shown in Fig. 5.1(a) where we considered the symmetric situation
V1;i = −V0 and V2;i = V0 for the bottom and top layers, respectively. The way that we
apply the bias potential is similar as has been done in Ref. [160], where it was assumed
opposite potentials applied to the two layers, thereby allowing the conservation of electron-
hole symmetry. Note that different works the external gate potential was taken just in one
of the layers while keeping the other at a constant value [154]. By applying an external
electrical potential, a gap in the energy spectrum is opened. Due to this feature, different
kinds of confining structures in bilayer graphene can be achieved [160]. In this perspective
quantum dots [154, 155] and rings [121, 156, 166] in bilayer graphene have been already
studied analytically by applying appropriate gate potentials. Nowadays, nanostructure
fabrication allows for an accurate spatial control of the electrostatic modern potential and
this independent on the top and bottom layer[189, 190] of suspended BLG [157] and in
addition in a split and localized way for the bottom[191] and top[192] gates.
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The actual outer hexagonal structure used in this work has dimension of ≈ 325, 18

Å which corresponds to a length of ≈ 77 carbon hexagons in each side. The tight-
binding approach applied here has been already discussed [79, 80, 193] and used [159, 160]
previously, as well as in the theoretical treatment of the interface between MLG and BLG
[185, 188].

5.3 Results and discussion

5.3.1 Zero magnetic field

Let us now investigate the energy spectrum for the system configurations Figs. 5.1(a)
and 5.1(b) in the absence of a magnetic field and in the presence of a bias voltage for the
former case. In both cases we verify the dependence on the type of edge of the inner dot:
(i) the inner edge of the top hexagonal anti-dot (for Fig. 5.1(a)) and (ii) the hexagonal
bilayer dot in the top layer (for Fig. 5.1(b)). Figure 5.2 shows the energy spectrum as
a function of the anti-dot size L for hexagonal BLG quantum dots with zigzag edges as
sketched in Fig. 5.1(a). In the bottom (top) layer a potential −V0 (+V0) with V0 = 0.1

eV was applied such that it opens a gap of 2V0 in the spectrum, as can be seen in Fig.
5.2. Since the dot has zigzag edges, we obtain many energy levels inside the gap. This
characteristic is a signature of the zero energy states observed in MLG quantum dots with
zigzag edges [149, 194].

Another important remark about Fig. 5.2 is related to the anti-crossings that appear
in the spectrum, as shown in the enlarged region (yellow circle) around L ≈ 110 Å.
The anti-crossing behavior can be better understood when we look at the corresponding
electron probability densities for the points (1 to 15) indicated in the zoom. These results
for |ψ|2 = |ψ1|2+ |ψ2|2, where ψ1(2) represents the wave function in the bottom (top) layer,
are shown in Fig. 5.3 and they indicate that at the anti-crossing (points 6, 7, 9 and 10)
the electrons are confined due to the interplay between edges states corresponding to the
zigzag edges and inside the dot owing to bias voltages, as presented in Fig. 5.3(c). The
levels with increasing energy indicated by points 1, 2 and 3 and shown in Fig. 5.3(a),
correspond to states that are confined at the zigzag edges near the MLG and BLG junction.
It was realized that, even though the bottom layer does not present explicit edges close to
the middle of the system, the electron feels the edges corresponding to interlayer coupling
near to the MLG and BLG junction. The same kind of confinement was observed for the
points 8, 13, 14 and 15 as shown in Figs. 5.3(d) and 5.3(e), respectively. Each set of
points formed by (a) 1, 2 and 3, and (d) 8, 13 and 14 have the same symmetry and all of
them are edges states whose only difference is the fact that they are shifted by π/3 due
to the C3 symmetry which belongs to the hexagonal geometry. It can be observed that
the levels 1, 2 and 3 that are going up are almost degenerated and only one of them (3)
keeps increasing and the others two edge states (1 and 2) undergo a transition from a mix
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Figure 5.2: (Color online) Energy spectrum of hexagonal BLG quantum dots with zigzag
edges as a function of dot size L in the presence of a symmetric electrical bias with V0 = 0.1

eV for the system represented in Fig. 5.1(a). A zoom of the yellow region is shown to
emphasize the behaviour around the anti-crossing of different states.

of edge states and states inside the dot (6 and 7) to just states localised inside the dot
(11 and 12). The level corresponding to point 3 remains to be an edge state as indicated
by points 8 and 13 in the same line, as shown in Fig. 5.3(d). The levels corresponding
to states 4, 5, 11 and 12 are states purely inside the dot and they are decreasing as the
anti-dot size increases, as shown in Fig. 5.3(b). Thus, it can be summarized that the
states inside the gap, for an anti-dot created at the top layer of bilayer graphene and in
the presence of a gate potential, are due to the interplay of zigzag edge states that are
increasing in energy with L and states completely inside the anti-dot located only on the
bottom layer that present decreases in energy with L.

In the quest to obtain an energy spectrum which has a gap, but on the other hand
that is not too polluted by other states as observed in the spectrum for anti-dot formed
by zigzag edge in bilayer graphene shown in Fig. 5.2, we perform now a study in the case
that the cut out bilayer graphene anti-dot is built with armchair edges. The result for
the energy levels of armchair anti-dots as a function of the side length L is presented in
Fig. 5.4. Note that if we put the spectrum shown in Fig. 5.4 on the top of the spectrum
demonstrated in Fig. 5.2, one verifies that they match to a very good agreement, such
as all energy levels inside the gap (for energies between E ∈ [−V0, V0]) decrease in the
same way and with the same slope. These decreasing energies correspond to states that
are confined inside the dot created in the bottom layer. It can be seen in Figs. 5.5(a, b,
c) for the point 1 (E ≈ 0.03499 eV and L ≈ 78.10 Å) in the spectrum of Fig. 5.4 that
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(e)(d)(c)(b)(a)

Figure 5.3: (Color online) Squared total wave function (|ψ|2 = |ψ1|2+ |ψ2|2) for the states
labeled in Fig. 5.2 as (a) 1, 2, 3, (b) 4, 5, 11, 12, (c) 6, 7, 9, 10, (d) 8, 13, 14 and (e)
15. The wave functions corresponding to the states represented in each item from (a)
to (d) have the same symmetry, but they have a phase difference such that are rotated
as related to each other. Small (large) circle with blue (red) color represents low (high)
density. The bilayer region is shadowed by the gray color.
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Figure 5.4: (Color online) Energy spectrum of hexagonal BLG quantum dots with arm-
chair edges as a function of dot size L in the presence of electrical bias with V0 = 0.1 eV
for the system represented in Fig. 5.1(a).

the probability density is strongly localised (red color) around the center of the dot in
the bottom layer (a), whereas (b) in the top layer the electron density is localised around
the anti-dot center. It implies that the total probability density is largely localized in
the center of the system. Thus, it indicates that most significant difference between the
energy spectra for the zigzag (Fig. 5.2) and armchair (Fig. 5.4) edged QDs is the presence
of states inside the gap that correspond to edge states localised at the inner zigzag edge.
Moreover, as for the zigzag case (Fig. 5.2) the energy levels above (E > V0) and below
(E < −V0) the gap region converge to the values V0 and −V0, respectively. These states
are spread out over the bilayer graphene, i. e. they are localized on the large hexagonal
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Figure 5.5: (Color online) Squared total wave function |ψ|2 and contribution from each
layer: bottom |ψ1|2 and up |ψ2|2 for the states indicated by 1 and 2 in Fig. 5.4. Small
(large) circle with blue (red) color represents low (high) density. The bilayer region is
shadowed by the gray color.

bilayer dot. However, there is a transition between dot-localized states that are inside the
gap (|E| < V0) and states that are completely spread along the large hexagonal bilayer
dot (|E| > V0). These energy levels can be seen immediately below E ≈ V0 and above
E ≈ −V0. Their dependence on L is almost flat and the counter plot of their density
probabilities demonstrate a mix of dot-localized state for the bottom layer and a spread
state along the top layer. It is illustrated in Figs. 5.5(d, e, f) for the point 2 indicated in
the armchair energy spectrum shown in Fig. 5.4, respectively for (d) bottom layer |ψ1|2,
(e) top layer |ψ2|2 and (f) the total probability |ψ1|2 + |ψ2|2.

As a suggestion of another kind of confinement structure in bilayer graphene, we shall
study the dependence of the energy levels of the system sketched in Fig. 5.1(b) as a
function of the flake size L that is surround by hexagonal monolayer graphene. This
analysis is done in the absence of any external potential, as can be identified in the
schematic cross-section view at the bottom part of the system, i. e. we assumed that
V1(2) = 0. A general feature noticed in this kind of system is that the energy spectrum
for quantum dots formed by both edges, zigzag and armchair shown in Figs. 5.6(a) and
5.6(b) respectively, does not change for sizes smaller than ≈ 25 Å (≈ 40 Å) for the zigzag
(armchair) case. This invariance, related to the type of edges, is due to the fact that for
small size of the dot in the bilayer region the electron does not feel and does not recognize
the system as a bilayer, but rather as monolayer graphene. Thus, for small sizes L . 25

Å (zigzag edge) and L . 40 Å (armchair edge), the energy spectrum forms plateaus
converging to values, that match the same values for both edge configurations, as shown
by the black dashed lines in Fig. 5.6. These are the monolayer energy levels, since for
both edge termination, systems (a) and (b) have the same size. Notice that in general,
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Figure 5.6: (Color online) Energy spectrum of hexagonal BLG quantum dots with (a)
zigzag and (b) armchair edges as a function of dot size L for the system represented in
Fig. 5.1(b). The dashed lines are the energy levels of the monolayer system that has the
same dimension as the bottom layer for the bilayer system sketched in Fig. 5.1(b).

the degeneracy of the energy levels is lifted and the plateaus become less pronounced
as one increases the size L, resulting in many more energy levels. An illustration of an
exception in the degeneracy breaking is the first state in the spectrum for the armchair dot
in Fig. 5.6(b), that remains a degenerate state. For both edge terminations, Fig. 5.6(a)
zigzag and 5.6(b) armchair, the energy levels decrease when L increases, being different
in two aspects: (i) for the zigzag case, more states are obtained and they decrease with
L converging to zero-energy and forming plateaus when E matches the monolayer levels;
and (ii) a large gap in the armchair spectrum stays open even for large dot sizes.

To confirm our statements about delocalized states for small L and dot-localized states
for large L, we show in Fig. 5.7 the modulus squared of the wave functions for the points
1, 2, 3 and 4 indicated in panels (a) and (b) of spectrum presented in Fig. 5.6. As shown
in the zoom on the circular panel of Fig. 5.6(a), there are three states that are going
down being two of them approximately degenerate (E ≈ 0.02150 eV and E ≈ 0.02159

eV), given by the point 1 located at L ≈ 100.84 Å. It was verified that these two states
come from the same initial plateau, hence their wave functions have the same behavior
and type of symmetry, as shown in Fig. 5.7(a). Both levels are essentially edge states
and only differ by a rotation of π. The other energy level, point 2 shown in Fig. 5.7(b)
with energy E ≈ 0.02556 eV, is a combination of edge and center localized state. The
probability densities for armchair dots are shown in Figs. 5.7(c) and 5.7(d) corresponding
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Figure 5.7: (Color online) Squared total wave function |ψ|2 for the states indicated by
(a) 1 and (b) 2 in Fig. 5.6(a) for the zigzag (zz) case and (c) 3 and (d) 4 in Fig. 5.6(b)
for the armchair (ac) case. Small (large) circle with blue (red) color represents low (high)
density. The bilayer region is shadowed by the gray color.

to the points 3 and 4 in Fig. 5.6(b), respectively. The point 3 placed on the plateaus
energy range (L ≈ 22, 72 Å) is an example of a delocalized state that is spread out over
only the monolayer graphene. On the other hand, for large dot size, as for example for
L ≈ 99.40 Å given by point 4, one finds dot-localized state with |ψ|2 located in the middle
of the bilayer system. Thus, we can verify that the proposed structure sketched in Fig.
5.1(b) can be used as a confined system for carriers in MLG/BLG junction.

5.3.2 In the presence of a perpendicular magnetic field

In this section, we include an external magnetic field, with possible addition or not of
a bias voltage for the system sketched in Fig. 5.1(a). The effect of an external magnetic
field is incorporated in the tight-binding model via the Peierls substitution, i. e. a phase is
included in the inter-layer hopping parameters, such that τij → τij exp

[
i e
~

∫ i

j
~A · d~l

]
, where

~A is the vector potential that corresponds to the applied magnetic field. We conveniently
choose the Landau gauge ~A = (0, Bx, 0), for a magnetic field perpendicular to graphene
~B = Bẑ. For the chosen gauge, one has that the Peierls phase is zero and exp i2πx

3a
φ
φ0

in
the x- and y-directions, where a = 1.42Å is the lattice parameter of graphene, φ0 = h/e

is the magnetic quantum flux and φ = 3
√
3a2B/2 is the magnetic flux through a carbon

hexagon. The magnetic field has no effect on the intra-layer hopping τ⊥.
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Figure 5.8: (Color online) Energy spectrum of hexagonal BLG quantum dots with (a, b)
armchair and (c, d) zigzag edges as a function of magnetic flux in the absence of electrical
bias for the system represented in Fig. 5.1(a). The red lines in (a) and (c) correspond
to the first six Landau levels of an unbiased bilayer graphene. (b) and (d) show a zoom
closer around E = 0.
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Let us first consider the unbiased case, and investigate the effect of a magnetic field.
In Fig. 5.8 we show the results for the energy spectrum of hexagonal bilayer graphene
quantum dots with (a, b) armchair and (c, d) zigzag edges as a function of the magnetic
flux (φ/φ0). In this section, our results for the zigzag and armchair edges are obtained
for fixed anti-dot side lengths, respectively L ≈ 49.19 Å and L ≈ 52.54 Å corresponding
to N = 20 and N = 13 hexagonal carbon rings in each edge. In general, for both edge
terminations, as the magnetic flux increases, the energy levels approach the Landau levels
of an unbiased bilayer graphene[86, 155], represented by the red lines, and more and
more excited states converge to the zeroth Landau level, which naturally produces (anti)-
crossings between the excited states, as shown in Figs. 5.8(b) and 5.8(d). Furthermore,
these figures clearly demonstrate that the energy spectrum possesses an electron-hole
symmetry, i. e. Eh = −Ee, where h(e) denotes hole (electron). Comparing Figs. 5.8(a,
b) and 5.8(c, d), we can realize that the energy levels are almost similar, except at small
magnetic flux values in which: (i) the spectrum for zigzag quantum dots exhibits edge
states that are not present in armchair dots for the levels near zero energy and (ii) in
addition, the spectrum for armchair quantum dots exhibits a gap around E = 0. As
magnetic flux increases, the degeneracy of the energy levels is lifted resulting in a closing
of the energy gap in the spectrum of armchair quantum dots. These two behaviours
given by the presence of many zero energy states for zigzag hexagonal dots and by the
presence of a gap in the energy spectrum for armchair hexagonal dots for B = 0 are also
found in zigzag and armchair quantum dots in monolayer graphene under the influence
of an external magnetic field, as it has been already studied in Refs. [111], [138] and
[194]. These results are comparable between monolayer and bilayer quantum dots, since
the confinement created by the system sketched in Fig. 5.1(a) is located mainly in one
layer, i. e. the bottom one, in this manner the confined states exhibit qualitatively
similar behavior as if the system were only composed of one layer. The interplay between
confinement by the magnetic field and quantum dot confinement is responsible for the
appearance of several crossings and anti-crossings in the energy spectrum for both edge
termination cases.

Figure 5.9 depicts the density distribution for the states denoted in the Fig. 5.8(a)
that are emphasized in the yellow circular region and shown in the inset by the red
points 1 and 2. The points 1 and 2 have respectively energies E ≈ 0.05638 eV and
E ≈ 0.05369 eV and magnetic flux φ/φ0 ≈ 0.00154 and φ/φ0 ≈ 0.00159. As one observes
in the inset, the pair of states that have nearby energy they switch their behaviour at the
anti-crossing. This kind of feature can only be captured by the tight-binding approach,
because in the continuum model these increasing states should be formed by a single
state. These seemingly degenerate states become even more separated as the magnetic
flux increases, which is related to the lifting of the degeneracy by the magnetic field.
Thus, to identify the origin of each tendency we plot the contribution of each layer to
the electron density in separated way for the points 1 and 2 corresponding to the states
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Figure 5.9: (Color online) Squared total wave function |ψ|2 = |ψ1|2 + |ψ2|2 in each layer:
bottom |ψ1|2 and upper |ψ2|2 for the states indicated by 1 and 2 in Fig. 5.8(a). Small
(large) circle with blue (red) color represents low (high) density. The bilayer region is
shadowed by the gray color.

that are respectively decreasing and increasing with B. Figures 5.9(a) and 5.9(b) show
respectively the bottom and top layer contribution for the wave function corresponding
to the electron states indicated by the point 1, while Figs. 5.9(d) and 5.9(e) are for the
wave function of the point 2. The squared total wave function for the points 1 and 2 are
shown in Figs. 5.9(c) and 5.9(f). Notice that both group of states are edge states, but
located in different regions of the bilayer system. This resembles the inner and outer edge
states found in quantum rings made of monolayer graphene [138].

The dependence of the energy levels of hexagonal BLG quantum dots on the magnetic
flux for non-zero bias field is shown in Fig. 5.10, respectively for anti-dots with (a, b) arm-
chair and (c, d) zigzag edges. The applied bias was V0 = 0.1 eV. As can be seen, the energy
spectrum for both edge terminations approaches the Landau levels, that in this case are
the Landau levels for biased bilayer graphene with V0 = 0.1 eV, shown by dashed red lines.
As has been already reported[86, 195, 196], the Landau levels for biased bilayer graphene is
given by γ = [ǫ−u0]2/2+(∆u)2/8±1/2

√
τ ′2[(ǫ− u0)2 − (∆u/2)2] + [β −∆u(ǫ− u0)]2 =

(β/2)(2n + |m| + m + 1), being n = 0, 1, 2, 3...., m is the angular momentum label,
β = 4π

3
√
3a2

φ
φ0

, u1 = −u2 = −V0/~vF , ǫ = E/~vF , τ ′ = τ/~vF , vF is the Fermi velocity,
∆u = u2 − u1 and u0 = (u1 + u2)/2.

A striking feature of these results is that the energy levels have a non-monotonic
dependence on the magnetic field, which is not found for the unbiased case. As one can
notice, the vast majority of Landau levels increase as the magnetic flux increases, but there
are two states, for electrons and holes, that intersect each other at E = 0. In addition,
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Figure 5.10: (Color online) Energy spectrum of hexagonal BLG quantum dots with (a, b)
armchair and (c, d) zigzag edges as a function of magnetic flux in the presence of electrical
bias with V0 = 0.1 eV for the system represented in Fig. 5.1(a). The red lines in (a) and
(c) correspond to the first six Landau levels of a biased bilayer graphene. (b) and (d)
show a zoom closer around E = 0 to emphasize the points 1− 10 and the opening of the
energy levels around the zero energy.
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another aspect can be observed in the Landau levels of biased BLG and, consequently, in
the energy spectrum calculated here, is the appearance of crossings at very small values
of φ/φ0. As already studied in Ref. [86], the crossings between the Landau levels for a
biased bilayer graphene in each branch (positive and negative levels) occur at larger values
of the magnetic field as the potential difference increases. These two features arise from
the potential difference between the layers and can be explained by taking into account
the non-parabolicity of the band structure of biased bilayer graphene, which displays a
mexican hat shape that becomes more pronounced as the potential difference becomes
larger.

One important consequence of the combination of the magnetic field together with
the presence of an electrostatic confinement is that it breaks the inversion symmetry of
the bilayer, i. e. the spectrum is now electron-hole asymmetric Eh 6= −Ee. Furthermore,
one can notice from Fig. 5.10 that: (i) for small values of φ/φ0 the spectrum for both
edge termination possesses a large gap around E = 0 that becomes less pronounced as
the magnetic flux increases; (ii) two different bands can be recognized, one for the levels
inside the gap between E ∈ [−V0, V0] and the other for the highest states that converge
to the E = ±V0 axes defined by the value of the bias; (iii) similarly as in the unbiased
case, i. e. Fig. 5.8, pairs of states with nearby energy values are decreasing together and
end up converging to the E = ±V0 axis in the present case and to the zeroth Landau
level in the former case, but here for instance they seem to cross each other in the same
magnetic field range; (iv) the positive part of the spectrum that forms the band located
inside the gap has a different characteristic as compared with the negative part of the
spectrum, in which the negative part presents many crossings that are not present in
positive one; and (v) states that do not change whit the magnetic field are observed only
for zigzag BLG quantum dots, and can be associated with topologically protected (edge)
states, since their properties are preserved even when some external parameter varies.
These topologically protected states are observed only for the positive part of the zigzag
quantum dot spectrum inside the gap and, according to the inset shown in Fig. 5.10(c),
which presents a zoom of the yellow rectangle around φ/φ0 ≈ 1.7× 10−3, one can realize
that these topological states in fact are composed not really by a single state, but rather
by a band of curves that has a flat behaviour for the same specific magnetic flux values.

Let us now investigate the density distribution for some states inside the gap region, as
denoted by points 1−6 and 7−10, respectively for armchair and zigzag edge terminations
in the presence of both magnetic field and a gate voltage, as shown in Figs. 5.10(b) and
5.10(d). We first analyze the wave functions for anti-dots formed by inner armchair
edges, whose plots are shown in Fig. 5.11 for the points 1 − 6. As already expected,
and similar to Figs. 5.5(a)-5.5(c) corresponding to the armchair anti-dot case in Sec.
5.3.1, the decreasing states inside the gap are dot-localized states, as observed for the
state shown in Fig. 5.11(a) corresponding to the point 1 in the spectrum given by Fig.
5.10(b). All the decreasing states inside the gap region and before the crossing between
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Figure 5.11: (Color online) Squared total wave function |ψ|2 for the states indicated in
Fig. 5.10(b) for the system sketched in Fig. 5.1(a) with armchair edges, such as the points
1−6 correspond to the plots (a) 1, (b) 2 and 5, (c) 3 and 4 and (d) 6. Small (large) circle
with blue (red) color represents low (high) density. The bilayer region is shadowed by the
gray color.

the two zeroth biased Landau levels have the same feature as the one for the point 1,
but the same behaviour does not occur for the states with higher magnetic flux after the
Landau levels crossing. As one can notice from Figs. 5.11(b)-5.11(d) these states are
spread out over the whole bilayer system. The wave functions for the pairs of points 2

and 5 (Fig. 5.11(b)) and 3 and 4 (Fig. 5.11(c)) have the same kind of symmetry differing
only by a phase rotation of π. It is easily to understand the difference between the wave
function symmetries for these two pairs of points 2 − 5 and 3 − 4, since they come from
the energy levels that possess the same feature. The energy levels for the points 2 and 5

have a decreasing tendency, while the points 3 and 4 are related to states that are split
in energy. For the states with larger energy, more peaks are observed in the delocalized
wave function, as already expected and as shown in Fig. 5.11(d) for the point 6 located
close to the upper zeroth Landau level and that presents two peaks.

Just like in the armchair anti-dot case, the wave functions for the energy levels of the
zigzag anti-dot inside the gap that exhibit a decreasing behaviour as the magnetic flux
increase are dot-localized states, as demonstrated by Fig. 5.12(a) for the point 7 in the
energy spectrum given by Fig. 5.10(d). In fact, the energy levels that appear intercepting
the decreasing dot-localized states are edge states, as demonstrated by Fig. 5.12(b) for
point 8. The three energy levels marked by point 8 have the same symmetry being just
rotated by a phase of π/3 due to the fact that a hexagon presents a C3 symmetry rotation
group. Let us now check the total contribution |ψ1|2+ |ψ2|2 for the points 9 and 10 to find
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(d)(c)

(b)(a)

Figure 5.12: (Color online) Squared total wave function |ψ|2 for the states indicated in
Fig. 5.10(d) for a system sketched in Fig. 5.1(a) with zigzag edges, such as the points
7 − 10 correspond to the plots (a) 7, (b) 8, (c) 9 and (d) 10. Small (large) circle with
blue (red) color represents low (high) density. The bilayer region is shadowed by the gray
color.

the origin of the topological protected states as emphasized in the yellow zoom region in
Fig. 5.10(c). The point 9 corresponds to a state that decreases in energy with B, whereas
the point 10 is located on the flat part for the same energy level. Just looking at the
squared modules of the wave functions for these two points, we can see that one of them
is a mixed state of an edge state and a spread state, as given by Fig. 5.12(c) for the point
9, while the wave function for the flat state denoted by 10 is only an edge state. Moreover,
although it was not shown for the zigzag edge case, one can observe also that the energy
levels that approach the zeroth Landau levels that cross each other around energy E = 0

correspond to states that are spread out throughout the whole bilayer system, as shown
for the armchair case in Fig. 5.11(d).

5.4 Conclusion

We proposed two different type of QD systems composed of nanostructured bilayer
graphene. We presented a theoretical study of the energy levels within the tight-binding
approach. The two proposed system are hexagonal bilayer quantum dots created by (i)
cutting out atoms in the inner region of the top layer forming, in this way, an hexagonal
bilayer anti-dot and (ii) a hexagonal flake at the top layer surrounded by a hexagonal
region of monolayer graphene at the bottom. We have obtained results for the energy
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spectra for both quantum dots with armchair and zigzag edges and discussed localization
of carriers in these MLG/BLG quantum dots, analyzing the energy spectra in the presence
of a perpendicular magnetic field and a gate potential. Our numerical calculations also
allow us to find the density probability and thus to check which states are dot-localized
and which are localized outside the middle of the system.

In the absence of magnetic field we computed the energy levels as a function of the
side length of the top hexagonal (anti-)dot for the (first) second proposed system. For
the anti-dot case, we considered the application of an external bias potential that opens
a gap in the energy spectrum only for the bilayer region. Two different sets of energy
levels are observed in this case, one of them inside the gap E ∈ [−V0, V0] and the other
for high energy values |E| < −V0. The latter decreases with the dot size, converging
to the energies E = V0 and E = −V0 for positive and negative region of the spectrum,
respectively. The former depends on the edge termination, such that it has a mix of
decreasing and increasing levels with increasing size of the anti-dot with zigzag edges
and only decreasing energy levels for the armchair case. We showed that the energy
levels inside the gap that decrease as the dot size increases are dot-localized states for
the both edge terminations, so that they are localized essentially on the bottom layer.
In addition, in zigzag anti-dot case we obtained many more states inside the gap region
that are increasing as the dot size also increases. These states correspond to edge states
related to the anti-dot zigzag edges. Another feature observed in the zigzag system is the
appearance of anti-crossings in the spectrum, related to the interplay between edges states
in the zigzag edges near the MLG and BLG junction and states inside the dot confined
by bias voltage.

The second proposed structure can be used as a type of hybrid MLG/BLG system
to confine carriers. Even in the absence of external bias potential, it presents a strong
localization in the middle of the system, as well as for smaller dot sizes the energy levels
converge to flat states that correspond to the monolayer energy levels, such that the
electron probability density is spread out along only the monolayer graphene flake.

In the presence of a perpendicular magnetic field we observed that the energy levels
approach to the Landau levels in the both edge termination and also for both cases
considering or not the effect of an applied bias potential. Similar way to hexagonal
monolayer graphene dots, we demonstrated that the energy spectrum as a function of the
magnetic flux possesses a gap for smaller values of magnetic flux in the armchair dot case
and many zero energies in the zigzag case that correspond to edge states. Furthermore,
the energy spectrum for the unbiased case presents (i) an electron-hole symmetry and
(ii) the appearance of several crossing and anti-crossings for both edge terminations that
can be linked to the interplay between the magnetic field confinement and the quantum
dot confinement. For the biased quantum dot case, we found some states that exhibit
behaviour similar to topologically protected states, since that the properties of these state
do not change as the magnetic flux changes. We showed that these states are edge states
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and they preserve this symmetry even when the magnetic flux increases. Other important
consequence of the combination of magnetic field and an electrostatic confinement is that
it breaks the inversion symmetry of the bilayer such as the electron-hole symmetry is not
preserved in the energy spectrum.



6
Wave packet scattering on graphene edges in the

presence of a (pseudo) magnetic field

The scattering of a Gaussian wave packet in armchair and zigzag graphene edges is
theoretically investigated by numerically solving the time dependent Schrödinger equation
for the tight-binding model Hamiltonian. Our theory allows to investigate scattering in
reciprocal space, and depending on the type of graphene edge we observe scattering within
the same valley, or between different valleys. In the presence of an external magnetic field,
the well know skipping orbits are observed. However, our results demonstrate that in the
case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an
armchair edge results in a non-propagating edge state.

6.1 Motivation

Due to its unique electronic properties, graphene has become a topic of intensive study
in recent years. Within the low energy approximation for the tight-binding Hamiltonian
of graphene, electrons behave as massless Dirac fermions, with a linear energy dispersion.
[1] This leads to a plethora of interesting physical phenomena, ranging from Klein tunnel-
ing and other quasi-relativistic effects [124, 197] to the existence of new types of electron
degrees of freedom, namely, the pseudo-spin, related to the distribution of the wave func-
tion over the carbon atoms belonging to the different triangular sublattices composing
the graphene hexagonal lattice, and the presence of two inequivalent electronic valleys,
usually labeled as K and K’, in the vicinity of the gapless points of the energy spectrum
of graphene.

Recent papers studied the scattering of electrons by edges [198] and defects [199] in
graphene, both theoretically [165] and experimentally [200]. Armchair and zigzag are the
two types of edges which are most frequently considered in the study of graphene ribbons,
although other types of terminations exist due to edge reconstruction, which has been
demonstrated both theoretically [201] and experimentally [202, 203, 204]. Even so, the
edge reconstruction effect strongly depends on how the nanoribbon is made: normally, it
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occurs when the technique used to fabricate the nanoribbon is based on a mechanism that
drives the system to thermodynamic equilibrium. According to the continuum (Dirac)
model, armchair edges in finite graphene samples lead to a boundary condition that
mixes the wavefunctions of K and K’ valleys, whereas a zigzag edge appears in the Dirac
theory of graphene as a separate boundary condition for the wavefunctions of each valley.
[90, 96] This suggests that electrons reflected by a graphene edge would exhibit inter-
valley scattering only in the armchair case, whereas reflection by a zigzag edge would
produce scattering inside the same Dirac valley. This prediction was confirmed by recent
experiments, [205] where inter-valley scattering by armchair edges was even shown to be
very robust in the presence of defects. The inter- and intra-valley scattering possibilities
are schematically illustrated in Fig. 6.1(a), which shows K and K’ Dirac cones in the
reciprocal space of graphene.

Besides its singular electronic properties, graphene also exhibits interesting mechan-
ical properties, as it can support strong elastic stretch. This provides us with the
new possibility to tune the electron properties in graphene through strain engineering.
[74, 206, 207, 208, 209, 210, 211, 212, 213, 214] In fact, it has been demonstrated recently
that electrons in a strained graphene lattice behave as if they were under an external mag-
netic field, which points towards opposite directions in the K and K’ valleys, so that the
time reversal symmetry of the system as a whole is preserved. [215, 216] Such fields were
experimentally observed recently, when measurements of the energy states in a graphene
bubble revealed a Landau level-like structure corresponding to an external magnetic field
of ≈ 300 T. [217] By designing non-uniform strain fields in a graphene sheet, one is able
to produce a uniform pseudo-magnetic field for electrons. [218]
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Figure 6.1: (a) Dirac cones of graphene, along with an illustrative scheme of the inter-
(green circles) and intra-(gray circles) valley scattering. (b) Sketch of the strained
graphene sample considered in this work, where the (open green) full black circles repre-
sent the (un)strained case. The upper boundary is set as the y = 0 axis for convenience.

The aim of this chapter is two fold - we use wave packet dynamics calculations: (i) to
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investigate electron reflection by armchair and zigzag edges in a finite graphene sample,
assumed to be made by cutting a graphene monolayer, such that no edge reconstruction
is expected to occur at room temperature, where our results demonstrate the possibilities
of inter- and intra-valley scattering, depending on the type of edge, and (ii) to study
the influence of an external magnetic field and a non-uniform strain distribution on the
electron trajectories in these systems. We compare the features observed for electrons
under a perpendicular external magnetic field with those seen with a pseudo-magnetic
field. Fig. 6.1(b) shows a sketch of the graphene flake considered in our calculations,
where the open (green) circles illustrate the unstrained sample and the closed (black)
circles illustrate the strained one. Such a non-uniform strain field was suggested by
Guinea et al. [218] and was shown to exhibit an almost uniform pseudo-magnetic field.

All the calculations were done within the tight-binding description of graphene, using
the time-evolution method developed in Ref. [131] and in the Chapter 2 of this thesis.
As we are not restricting ourselves to a single Dirac cone in our model, the scattering
between Dirac cones by armchair edges will appear naturally. Notice that Fig. 6.1(b)
is just an illustrative scheme of our system, where the number of atoms was reduced in
order to help its visualization. Besides, the sample shown in Fig. 6.1(b) is a ribbon, which
improves the visualization of the strained case. However, the actual flake considered in
our calculations has 1801×2000 atoms, which looks more like a rectangle, rather than a
ribbon and corresponds to a flake with dimensions of about 426×221 nm2. Such a large
flake is necessary to isolate each reflection of the wave packet on a single edge, as we need
to consider a large packet in order to avoid dispersion. [131, 219]

6.2 Edge-dependent scattering

Let us first analyze the wave packet reflection by zigzag and armchair edges in a plain
graphene sample, i.e. in the absence of magnetic fields and strain. The initial wave packet
Ψ(x, y) is taken as a circularly symmetric gaussian distribution of width d, multiplied by
a plane wave with wave vector ~k = (kx, ky) and a pseudo-spinor σ = (A,B)T

Ψ(~r) =
1

d
√
2π

(
A

B

)

× exp

[
−(x− x0)

2 + (y − y0)
2

2d2
+ i~k.~r

]
. (6.1)

The pseudo-spinor in our model is simulated by defining a multiplication factor in the
wave function, which assumes different values for sites belonging to the A and B sublat-
tices. Notice that for low energy electrons in graphene, the tight-binding Hamiltonian can
be approximated as H = vF~~k ·~σ, where vF is the Fermi velocity, so that the propagation
velocity vector in the Heisenberg picture is given by d~x/dt = −[~x,H ]i/~ = vF~σ. Hence,
the pseudo-spin polarization of the wave packet plays an important role in defining the
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direction of propagation. As the upper and right edges of the flake are of armchair and
zigzag type, respectively, we consider σ = (1, i)T , i.e. propagation in the y-direction, in
order to observe wave packet scattering on the upper armchair edge, and σ = (1, 1)T ,
i.e. propagation in the x-direction, for scattering on the right zigzag edge. The ini-
tial wave vector ~k is taken in the vicinity of the Dirac point ~K = (0, 4π

/
3
√
3a), where

a = 1.42Å is the inter-atomic distance. At each time step, we calculate the average
values 〈x〉 =

∫∞
−∞ x|Ψ|2dxdy and 〈y〉 =

∫∞
−∞ y|Ψ|2dxdy, in order to track the wave packet

trajectory in real space. Besides, a fast Fourier transform (FFT) of the wave packet is
taken at each time step, in order to track its scattering in reciprocal space.

The average positions 〈x〉 (black solid) and 〈y〉 (red dashed) are shown in Fig. 6.2
as a function of time, for a wave packet propagating in the x (y) direction, towards the

(a)

(b)

Figure 6.2: Average position of a gaussian wave packet of width d = 300 Å in an
unstrained graphene flake, in the absence of external magnetic fields, as a function
of time. (a) Horizontal propagation of a wave packet with ~k = (0.03Å−1, 4π

/
3
√
3a),

and its consequent reflection by a zigzag edge. In this case the origin of the system
is shifted, so that the right zigzag edge is set as the x = 0 axis. The wave packet
starts at (x0, y0) = (−600Å ,−600Å ), and exhibits also a slow drag towards the upper
edge, due to Zitterbewegung effects. (b) Vertical propagation of a wave packet with
~k = (0, 4π

/
3
√
3a + 0.02Å−1), starting at (0,−600Å ), exhibiting reflection by the upper

armchair border. In this case, the sample is not shifted, i.e. the upper edge is at the
y = 0 axis, as sketched in Fig. 6.1(b).
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right zigzag (upper armchair) edge of the sample, and being reflected by this edge back
to its initial position. Figs. 6.2(a) and (b) correspond to zigzag and armchair reflections,
respectively. The wave packet starts at 600 Å from the sample edge and reaches the edge
at t ≈ 70 fs in both cases. Due to the finite width of the packet (d = 300 Å ), its center of
mass never reaches the border [131], so that 〈x〉 or 〈y〉 start to exhibit backscattering when
they are still ≈ 150 Å far from the edge. Notice that the motion in the y−direction shown
in Fig. 6.2(b) is perfectly vertical, i.e. 〈x〉 = 0 during the whole propagation. However,
this is not the case for propagation in the x−direction as apparent in Fig. 6.2(a), which is
not perfectly horizontal, i.e. 〈y〉 does not stay the same, as the wave packet slowly drags
towards larger y during propagation. This effect is a manifestation of the zitterbewegung,
as discussed in detail in Ref. [131]. Although we did not manage to construct a wave
packet that propagates perfectly horizontal, avoiding such a vertical drag, this effect does
not interfere in our results and conclusions, as our analysis of scattering on the zigzag
edge depends only on the horizontal component of motion.

Once we know the instant when the wave packet is reflected by the graphene edge in
real space, at that moment we analyze what happens in reciprocal space. Fig. 6.3(a) shows
the lines (red dashed) in reciprocal space along which we will take the wave functions. The
contour plots in Fig. 6.3(b) illustrate the wave function along the horizontal line (i)− (ii)

depicted in Fig. 6.3(a) in reciprocal space, as time elapses, in the case of x-direction
propagation and, consequently, zigzag edge reflection. For such a propagation direction,
we assumed the initial wave vector as ~k = (0.03Å−1, 4π

/
3
√
3a). Therefore, the initial

wave packet (at t = 0) has a peak around ki−ii
x = 0.03 Å−1. This peak is conserved until

the wave packet starts to be reflected by the right zigzag edge, when interference patterns
start to show up. At ≈ 70 fs, a peak at ki−ii

x = −0.03 Å−1 starts to appear, while the
former peak at ki−ii

x = 0.03 Å−1 smoothly decays. This is indeed the instant when the
wave packet is reflected by the zigzag edge in real space, as shown in Fig. 6.2(a). As time
elapses, the wave packet ends up only around ki−ii

x = −0.03 Å−1. This is direct evidence
of intra-valley scattering as schematically illustrated in Fig. 6.1(a).

Figs. 6.3(c) and (d) show the wave function in reciprocal space taken along the vertical
line (iii) − (iv) depicted in Fig. 6.3(a) as time elapses, for vertical propagation and,
consequently, armchair edge reflection. For propagation in the y-direction, we consider
~k = (0, 4π

/
3
√
3a + 0.02Å−1), so that the wave packet initially exhibits a peak around

≈ 1.723 Å−1, as shown in Fig. 6.3(c). This peak is preserved up to t ≈ 70 fs, when the
wave packet is scattered by the upper armchair edge (see Fig. 6.2(b)) and the amplitude
of the peak starts to decrease. Meanwhile, another peak appears around kiii−iv

y ≈ −1.723

Å−1, which is located in the K’ valley, as shown in Fig. 6.1(a). The inter-valley scattering
situation is illustrated by the green circles in Fig. 6.1(a) which is clearly observed in
reciprocal space.
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(i) (ii)

(iv)

(iii) (b)(a)

(c) (d)

Figure 6.3: Time evolution of the wave packet in reciprocal space corresponding to the
situations shown in Fig. 6.2. (a) Illustrative scheme of the lines in reciprocal space
along which Fourier transform of the wave functions are taken. For the propagation in
the horizontal direction (see Fig. 6.2(a)), we consider ~k = (0.03Å−1, 4π

/
3
√
3a). The

time evolution of the wave function along the (i) − (ii) line of reciprocal space is shown
in (b) as contour plots. For vertical propagation (see Fig. 6.2(b)), we consider ~k =

(0, 4π
/
3
√
3a + 0.02Å−1). The time evolution of the wave function along the (iii) − (iv)

line of reciprocal space is shown as contour plots in (c) and (d), corresponding to different
ranges of kiii−iv

y .

6.3 Skipping orbits

Let us now investigate the trajectory of a wave packet in the presence of an external
magnetic field, while it undergoes reflection at the edges of our rectangular graphene flake.
We consider the same conditions as in Fig. 6.2(a), i.e. the wave packet in this case moves
to the right, being thus pushed to the upper armchair edge by the Lorentz force due to the
perpendicular magnetic field. The trajectory drawn by ~r = (〈x〉, 〈y〉) for such a packet in
the xy-plane after a t = 2000 fs propagation, under a ≈5 T field, is shown in Fig. 6.4(a),
where skipping orbits are clearly observed, [220] coming from the successive reflections at
the borders of the system, followed by ciclotronic semi-circles, as one would expect from
such a scattering problem. The arrows indicate the direction of propagation, and the
edges of the figure are set to be exactly at the position of the edges of the graphene flake.
In order to help their analysis, the trajectories where divided into four regions, labeled
from (I) to (V). Fig. 6.4(b) shows 〈x〉 and 〈y〉 separately as a function of time, where one
verifies e.g. the attachment of the packet to the upper edge (〈y〉 close to y = 0 in region
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(b)

(a)

Figure 6.4: Trajectories drawn by 〈x〉 and 〈y〉 for a gaussian wave packet in the presence
of an external magnetic field ≈ 5 T, propagating close to the edges in a rectangular
graphene flake, within a t = 2000 fs propagation time. The arrows indicate the direction
of propagation. Different values of the initial wave packet width d are considered. The
edges of this panel are placed at the positions of the actual edges of the sample. (b)
Average values of the wave packet position 〈x〉 and 〈y〉 as a function of time for the
trajectories drawn in (a). Different parts of the trajectory in (a) were labeled from (I) to
(V), and the time intervals where they occur are delimited by the vertical lines in (b).

(I)), followed by a decrease in 〈y〉, when it attaches to the right edge (〈x〉 close to x = 2100

Å , in region (II)), and its further attachment to the bottom edge of the sample (〈y〉 close
to y = −2100 Å in region (III)). As previously mentioned, due to the finiteness of the
packet width, the trajectory as described by (〈x〉, 〈y〉) does not reach the edges of the
system. Besides, the wave packet disperses as time elapses, which distorts the trajectory
as compared to the one obtained by classical ballistic motion. [131] Even so, the main
conclusion one draws from this result is quite clear: as well as in ordinary systems with
confined Schrödinger particles, [221] electrons in graphene under external magnetic fields
exhibit a skipping orbit pattern when propagating close to the edges of the sample. We
performed calculations for different wave packet widths d = 100 Å and 300 Å , and the
results lead to the same qualitative conclusion, differing only by the distance the wave
packet may reach the edge. There is, however, an important difference between these
skipping orbits and those in ordinary Schrödinger systems, namely, the wave packet in
this case may scatter not only between momentum states with opposite signs within the
same valley, as usual, but they can also scatter from one valley to another, depending on
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the type of edge, as we demonstrated in Fig. 6.3. Nevertheless, the effect of an external
magnetic field on electron states belonging to both valleys is the same, therefore, there is
no detectable manifestation of inter-valley scattering in this situation. This is not the case
when, instead of an external magnetic field, we consider a strain induced pseudo-magnetic
field, as we will demonstrate in what follows.

(b)

(a)

Figure 6.5: (a) Trajectories drawn by 〈x〉 and 〈y〉 for a t = 2000 fs time evolution of a
wave packet, which propagates close to the upper (armchair) border of a bent rectangular
graphene sample, for two values of wave packet width d. The radius of the circular
distortion is R = 104 Å , corresponding to an almost uniform ≈ 5 T pseudo-magnetic
field. The horizontal dashed line represents the upper edge of the sample. (b) Average
values of the wave packet position 〈x〉 and 〈y〉 as a function of time for the trajectories
drawn in (a).

For a circularly strained graphene flake, like that sketched in Fig. 6.1(b), electrons in
the sample behave as if they were in an almost uniform magnetic field perpendicular to
the plane. In order to produce such a strain, our 1801 × 2000 atoms sample is distorted
into a semi-circle of radius R = 104 Å , leading to a pseudo-magnetic field ≈ 5 T, i.e.

close to the value considered for the external magnetic field in Fig. 6.4. The presence of
such a pseudo-magnetic field when electrons move close to the edge are expected to result
in skipping orbits, similar to those in Fig. 6.4. Surprisingly, Fig. 6.5(a) shows this is not
really the case: after performing a semi-circular trajectory due to the Lorentz force coming
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from the pseudo-magnetic field, the packet, which started in the K valley, is reflected by
the upper armchair edge and scatters to the K’ valley, where the pseudo-magnetic field
points in the opposite direction. The semi-circular trajectory now travels in the opposite
direction until the packet reaches the edge again, being scattered back to its former Dirac
cone at the K valley. This procedure occurs several times until the packet is so strongly
dispersed that it, eventually, does not reach any of the edges, and performs only circular
trajectories in the middle of the graphene flake. The series of reflections by the armchair
border obtained in the strained case suggests the existence of a quasi-bound state at this
edge, which is clearly seen by the time-dependence of the average coordinates 〈x〉 and 〈y〉,
shown in Fig. 6.5(b). As time elapses, both 〈x〉 and 〈y〉 simply oscillate around x = 0

and close to the upper border of the sample, respectively. Notice that differently from
Fig. 6.4(a), the lateral and bottom borders of the panel in Fig. 6.5(a) do not match the
edges of the sample, in order to help the visualization of the trajectory, which in this
case is localized in a small region of the sample. One can also observe that the results for
different wave packet widths d are qualitatively the same, differing only by the amplitudes
of the 〈x〉 and 〈y〉 oscillations in time.

(b)(a)

Figure 6.6: Contour plots of the time evolution of the wave packet in reciprocal space
corresponding to the propagation shown in Fig. 6.5, i.e. for a strained graphene sample.
The Fourier transform of the wave packet is taken in the vicinity of the (a) K and (b)
K’ points of the reciprocal space illustrated in Fig. 6.3(a), along the kx = −0.06Å−1

(kx = 0.045Å−1) vertical axis for K (K’).

The sequence of scatterings between K and K’ valleys suggested by the trajectories
observed in Fig. 6.5 is confirmed by a direct observation of the wavefunction in reciprocal
space. This is illustrated by Fig. 6.6, which shows the Fourier-transformed wavefunction
(contour plots) as a function of the vertical component of the wave vector ky as function
of time t, similar to Figs. 6.3 (c) and (d). Since the initial wave packet in this case is at
~k = (−0.06Å−1, 4π

/
3
√
3a), in the vicinity of the K point, the ky in Fig. 6.6(a) is taken

for a fixed kx = −0.06 Å−1, i.e. in the center of the initial wave packet. One clearly
sees that the peak of the wave packet in reciprocal space oscillates between the K (a) and
K’ (b) regions in Fig. 6.6 as time elapses, as a consequence of the successive inter-valley



6.4. PROBABILITY DENSITY CURRENT CALCULATIONS 158

scatterings by the upper armchair edge of the system, as observed in Fig. 6.5. Indeed,
the first peak in the K’ cone (Fig. 6.6(b)), for instance, starts to appear at t ≈ 200 fs,
which is the same time when 〈x〉 and 〈y〉 start to decrease in Fig. 6.5(b), after the wave
packet is scattered by the edge for the first time. It is important to point out that we
had to take the kx = 0.045 Å−1 vertical axis in order to observe the K’ propagation in
Fig. 6.6(b), instead of the kx = 0.06 Å−1 that would be expected from the value of the
wave vector in our initial wave packet. In fact, one cannot expect that the K and K’
points in the strained case remain vertically aligned in reciprocal space, as illustrated in
Fig. 6.3(a), due to the distortion of the Dirac cones caused by the strain. [217] Also, we
observe that the scattered wave packets are no longer gaussian, as they start to exhibit
interference patterns due to the scattering by the edges. Even so, the conclusions drawn
from the results in Fig. 6.6 are not affected by this fact, while Fig. 6.6 gives us a clear
demonstration that the successive K to K’ scatterings are indeed strongly related to the
non-propagating edge states found for the strained case in Fig. 6.5.

6.4 Probability density current calculations

The trajectories illustrated in Figs. 6.4 and 6.5 have a direct effect on the probability
density currents, which are numerically calculated based on the method developed in Ref.
[222]. Since we can define the probability current j in terms of the continuity equation,
then the discrete current centered on site n can be written as

jn − jn+1 = a
∂

∂t
ρn,n, (6.2)

where ρn,n = 〈n|ρ̂|n〉 are the matrix elements of the density matrix operator ρ̂ = |Ψ〉〈Ψ|,
and the time derivative is determined by the equation of motion for ρ̂

∂

∂t
ρnn =

i

~

∑

m

(ΨnΨ
∗
mHmn −HnmΨmΨ

∗
n) (6.3)

where Ψn = 〈n|Ψ〉. We will limit ourselves to the case of nearest-neighbor interaction,
i.e. Hn,m = 0 when |m− n| > 1, from which we obtain

∂

∂t
ρnn =

i

~

[(
ΨnΨ

∗
n+1Hn+1,n −Hn,n+1Ψn+1Ψ

∗
n

)]

+
i

~

[
ΨnΨ

∗
n−1Hn−1,n −Hn,n−1Ψn−1Ψ

∗
n

]
, (6.4)

which is easily rewritten in the form

∂

∂t
ρnn = −2

~
ℑ
[
ΨnΨ

∗
n+1Hn+1,n

]

+
2

~
ℑ [Ψn−1Ψ

∗
nHn,n−1] . (6.5)

By comparing Eqs. (6.2) and (6.5), one easily identifies the local current in n as

jn =
2a

~
ℑ [Ψ∗

nΨn−1Hn,n−1] . (6.6)
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Notice that Eq. (6.6) was developed without taking into account any specific lattice
and the presence of magnetic fields. However, a generalization to arbitrary discrete lattice
is straightforward, and the presence of a magnetic field is included simply by the Peierls
substitution of the hopping parameters. [223] As graphene is a hexagonal lattice, the
current components in x and y directions have different forms and are site dependent.
Defining the sites location through their line (n) and column (m) positions in the lattice
(see Ref. [131]), one obtains

jx(n,m) = ±a
~

{
2ℑ
[
Ψn,mΨ

∗
n,m±1τn,m±1

]

−ℑ
[
Ψn,mΨ

∗
n−1,mτn−1,m

]
− ℑ

[
Ψn,mΨ

∗
n+1,mτn+1,m

]}
(6.7)

and

jy(n,m) =

√
3a

~

{
ℑ
[
Ψn,mΨ

∗
n+1,mτn+1,m

]

−ℑ
[
Ψn,mΨ

∗
n−1,mτn−1,m

]}
(6.8)

where the ∓ sign in jx will be positive (negative) if the (n,m)-site belongs to the sub-
lattice A (B), and τn,m is the hopping parameter which, in the presence of a mag-
netic field, includes an additional phase according to the Peierls substitution τn,m →
τn,m exp

[
i e
~

∫ n

m
~A · d~l

]
, where ~A is the vector potential describing the magnetic field.

The probability density currents calculated by Eq. (6.6) are integrated in space and
plotted as a function of time in Fig. 6.7 for the situations proposed in Figs. 6.4 and
6.5, i.e. (a) in the presence of an external 5 T magnetic field, and (b) in a strained
graphene sample, which produces an almost uniform ≈ 5 T pseudo-magnetic field. As
in the other results discussed previously, the results obtained for the two different values
of wave packet width considered in this case, d = 100 Å (black solid - circles) and
d = 300 Å (red dashed - triangles), exhibit similar qualitative features, differing only in
a quantitative way. In Fig. 6.7(a), for an external field, one observes a total current flow
in the x-direction oscillating around a positive value in the region I, whereas jy oscillates
around zero in this region. This is a manifestation of the propagation of the wave packet
through the upper edge of the sample, by means of skipping orbits, as illustrated in Fig.
6.4(a). What follows can also be understood by analyzing Fig. 6.4(a): In regions II and
IV (III and V), where the wave packet propagates along the vertical (horizontal) edges,
the component of the current in the y(x)-direction oscillates around a non-zero value,
indicating an electron propagation through the sample by the skipping orbits mechanism.
This is not the case when we consider a strain-induced pseudo-magnetic field: Fig. 6.7(b)
shows that both jx and jy always oscillating around zero, confirming that there is no net
current in the system and that the skipping orbits near the armchair edge in this case are
non-propagating states.

The results found in our work have observable consequences in experiments. For ex-
ample, the edge propagation of electrons through skipping orbits in an ordinary system
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(b)

(a)

Figure 6.7: Integrated probability density currents as a function of time for the situations
proposed in Figs. 6.4 and 6.5, namely, (a) for an unstrained graphene sample in the
presence of an external 5 T magnetic field, and (b) in a circularly bent graphene sample,
which produces an almost uniform ≈ 5 T pseudo-magnetic field. The curves (symbols)
represent the component of the current in the x (y)-direction, i.e. jx (jy). Two different
values of wave packet width are considered: d = 100 Å (black solid - circles) and 300 Å
(red dashed - triangles) The regions delimited in (a) are the same as in Fig. 6.4.

under an external magnetic field plays an important role in electron transport in the
direction parallel to the edge. [221] Our results demonstrate that these skipping orbits
are still present in a graphene ribbon under an external magnetic field, but they are not
observed in the case of pseudo-magnetic fields in the direction parallel to an armchair
border of graphene. This is a clear example that the pseudo-magnetic field has different
consequences as compared to a real magnetic field. Therefore, in a strained armchair
graphene ribbon, edge electrons should not propagate along the ribbon, so that the trans-
port in these systems must be dominated only by electrons propagating far from the edge.
Moreover, the non-propagating state found at the armchair edge of a strained sample is
a consequence of periodic inter-valley scattering processes, and this type of scattering
has an important effect on Raman spectroscopy. [224] Therefore, the successive electron
reflections at the armchair edge of a strained sample would manifests itself as an intense
peak in Raman experiments taken close to the border of the graphene sample.
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6.5 Conclusion

In summary, we investigated the reflection of a wave packet on zigzag and armchair
edges of a graphene ribbon. Our results demonstrate the scattering of the wave packet
from K to K’ Dirac cones in the case of armchair edges, whereas scattering from posi-
tive to negative average momentum inside the same cone is observed in the zigzag case,
which is in agreement with predictions from mean field (Dirac) theory of graphene and
with recent experimental results. [205] In the presence of an external magnetic field,
skipping orbits are observed. However, for a strain induced pseudo-magnetic field, our
numerical results demonstrate that the incoming and scattered wave packets perform or-
bits in opposite directions in the armchair case. This effect is easy to be understood if
one considers the combination between two events, both already predicted by the Dirac
theory of graphene: (i) the K to K’ scattering by armchair edges and (ii) the opposite
sign of the pseudo-magnetic field in the different cones. This result points directly to the
possibility of observing non-propagating edge states in an armchair terminated strained
graphene sample under pseudo-magnetic fields, which is completely different from the ex-
ternal magnetic fields case, where the skipping orbit states are always propagating. The
effects predicted by our theoretical work are expected to have important consequences in
future experiments on strained graphene samples.



7
Valley filtering using electrostatic potentials in

bilayer graphene

Propagation of an electron wave packet through a quantum point contact (QPC)
defined by electrostatic gates in bilayer graphene is investigated. The gates are set as to
provide a bias between the layers, in order to produce an energy gap. If the gates on both
sides of the contact produce the same bias, steps in the electron transmission probability
are observed, as in an usual QPC. However, if the bias is inverted on one of the sides of
the QPC, only electrons belonging to one of the Dirac valleys are allowed to pass, which
provides a very efficient valley filtering.

7.1 Motivation

The unique band structure of graphene has brought the possibility of developing de-
vices based on different degrees of freedom, other than charge (electronics) and spin (spin-
tronics), namely, using its different pseudo-spin states (pseudo-spintronics) and electronic
valleys (valleytronics). Valley filtering in graphene has been pursued by many researchers,
as a path to use the valley degree of freedom of electrons in this material as the basis
for future valley-tronics. Previous theoretical proposals for valley filtering demand a high
control of the atomic structure of the graphene layer, either by cutting it in specific direc-
tions as to produce uniform zigzag edges [225], or by applying stress in a specific manner
in order to obtain an almost uniform pseudo-magnetic field [131, 226, 227], or even by
taking advantage of the valley filtering process that occurs when an electron propagates
through a line of heptagon-pentagon defects on the honeycomb lattice.[199, 228, 229]

Monolayer graphene is gapless and therefore its usage in electronic devices is un-
favourable. [1] In bilayer graphene on the other hand, a gap may be opened by applying
a bias between the two layers.[79] Therefore, in bilayer graphene, it is possible to produce
electrostatic confined structures, such as quantum wires, dots and rings.[121, 154, 155,
156, 160, 166] A special case of quantum wire confinement occurs when one applies oppo-
site bias on the different sides of the quantum wire potential: in this case, one dimensional
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uni-directional chiral states are created, whose subband structures along the free direction
for K and K ′ valleys are mirror symmetric. [230, 231, 232] In the present chapter we will
use the latter property to propose a novel valley filter, which is solely based on the use of
electrostatic potentials and we do not require any complicated tailoring of the graphene
lattice as needed in previous proposed filters.

In this chapter, we demonstrate that a quantum point contact (QPC) defined by
electrostatic gates in bilayer graphene, as sketched in Fig. 7.1(a), exhibits steps in its
transmission probabilities as the energy of the incident electron increases, just like in an
ordinary point contact. On the other hand, valley polarized current is predicted when
the sides of the point contact have opposite bias, as sketched in Fig. 7.1(b). The specific
conditions for such polarization are discussed in detail in Sec. 7.3. In Sec. 7.2 we present
our technique to solve the time-dependent Schrödinger equation based on a tight-binding
model. The numerical results are presented in Sec. 7.3 and we summarize our discussion
giving the main conclusions in Sec. 7.4.

Figure 7.1: Sketch of the QPC structure, forming a channel with length L and width
W , with (a) aligned and (b) anti-aligned bias. The actual sample used in our numerical
calculation is retangular with 3601× 1000 atoms in each layer that corresponds to a size
≈ 213× 443 nm2.

7.2 Split-operator technique for the bilayer graphene

Hamiltonian

In this section we present the theoretical tools for the carrier time evolution in bilayer
graphene. In order to do so, we solve the time-dependent Schrödinger equation for the
tight-binding Hamiltonian of bilayer graphene in order to investigate the time evolution
of a wave packet describing an electron propagating through a quantum point contact.

The time evolution of a quantum state is described by the time-dependent Schrödinger
equation given by

Ψ(~r, t) = Û(t, t0)Ψ(~r, t0), (7.1)

where Û(t, t0) is known as the time evolution operator. For the case in which the Hamil-
tonian does not explicitly depend on time, this operator can be written as Û(t, t0) =
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exp
[
− i

~
H(t− t0)

]
. Different techniques to expand this exponential operator are found

in the literature, for example iterative methods based on the Crank-Nicholson scheme
and the Chebyschev polynomials method. Furthermore for systems with moderate space
dimensions there is the possibility to solve this problem by brute force, using full diago-
nalisation [233]. Here, we opted for the split-operator technique [131].

Our approach is based on the tight-binding model for the description of an electron
in bilayer graphene. We consider respectively n and m as the row and column indexes to
locate a particular site in the lattice, and l = {1, 2} index corresponds to bottom and top
layers, respectively. The basis vector state is defined as |n,m, l〉. So, the tight-binding
Hamiltonian reads

HTB|n,m, l〉 ∼= (En,m,l + Vn,m,l)|n,m, l〉
+ τn−1,m|n− 1, m, l〉+ τn+1,m|n+ 1, m, l〉
+ τn,m−1|n,m− 1, l〉+ τn,m+1|n,m+ 1, l〉
+∆n,m|n,m, l + 1〉+∆n,m|n,m, l − 1〉, (7.2)

where τn,m−1 and ∆n,m are the intra- and inter-layer hopping energies between the sites,
respectively. The tight-binding Hamiltonian for bilayer graphene in matrix form is now
represented by two pentadiagonal matrices in blocks, connected by two diagonal matrices.
To numerically simplify the problem, which is important when dealing with large systems,
we first rewrite Eq. (7.2) as follows

HTB|n,m, l〉 = Hn,l|n,m, l〉+Hm,l|n,m, l〉+Hn,m|n,m, l〉, (7.3)

where the operators Hn,l, Hm,l and Hn,m are defined as

Hn,l|n,m, l〉 =
(
ǫn,m,l + Vn,m,l

2

)
|n,m, l〉

+ τn,m−1|n,m− 1, l〉+ τn,m+1|n,m+ 1, l〉, (7.4)

Hm,l|n,m, l〉 =
(
ǫn,m,l + Vn,m,l

2

)
|n,m, l〉

+ τn−1,m|n− 1, m, l〉+ τn+1,m|n+ 1, m, l〉 (7.5)

and

Hn,m|n,m, l〉 = ∆n,m|n,m, l + 1〉+∆n,m|n,m, l − 1〉. (7.6)

In doing so, we split the Hamiltonian and thus transform the problem of pentadiagonal
matrices in blocks into a series of calculations involving only products of tridiagonal
matrices, which are much easier to handle with known computational routines.

Subsequently, the time evolution operator is expanded as follows

e−(i/~)HTB∆t = e−(i/2~)Hn,m∆te−(i/2~)Hm,l∆te−(i/~)Hn,l∆t

× e−(i/2~)Hm,l∆te−(i/2~)Hn,m∆t +O(∆t3), (7.7)
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and we neglect terms of order O(∆t3) which correspond to the non-commutativity between
the operators Hn,l, Hm,l and Hn,m. Higher accuracy is realised by considering a smaller
time step. Here, we took ∆t = 0.1 fs. Using the well-known property of the Pauli matrices

exp
[
−i ~A · ~σ

]
= cos(A)I − i

sin(A)

A

(
Az Ax − iAy

Ax + iAy −Az

)
, (7.8)

for any vector ~A, where A = | ~A| and I is the identity matrix, and realising that the
Hn,m operator for each n and m fixed is just a 2× 2 matrix with zero-diagonal elements
described by ∆n,mσx, we have that the exponential of Hn,m is given exactly by

e−(i/2~)∆n,mσx∆t =

(
cos(Ax) −i sin(Ax)

−i sin(Ax) cos(Ax)

)
= Ml, (7.9)

where Ax = ∆n,m∆t/2~.
The wave function at time step t+∆t is then given by

|Ψn,m,l〉t+∆t
∼= e−(i/2~)Hn,m∆te−(i/2~)Hm,l∆te−(i/~)Hn,l∆t

× e−(i/2~)Hm,l∆te−(i/2~)Hn,m∆t|Ψn,m〉t, (7.10)

that can be developed in five steps

ηn,m,l = e−(i/2~)Hn,m∆t|Ψn,m,l〉t, (7.11)

ξn,m,l = e−(i/2~)Hm,l∆tηn,m,l, (7.12)

χn,m,l = e−(i/~)Hn,l∆tξn,m,l, (7.13)

̺n,m,l = e−(i/2~)Hm,l∆tχn,m,l, (7.14)

|Ψn,m,l〉t+∆t = e−(i/2~)Hn,m∆t̺n,m,l, (7.15)

where at each step we use the Cayley equation for the exponentials [234], such that

ηn,m,l = Ml|Ψn,m,l〉t,
(
1 +

i∆t

4~
Hm,l

)
ξn,m,l =

(
1− i∆t

4~
Hm,l

)
ηn,m,l,

(
1 +

i∆t

2~
Hn,l

)
χn,m,l =

(
1− i∆t

2~
Hn,l

)
ξn,m,l,

(
1 +

i∆t

4~
Hm,l

)
̺n,m,l =

(
1− i∆t

4~
Hm,l

)
χn,m,l,

|Ψn,m,l〉t+∆t = Ml̺n,m,l. (7.16)

The problem is now strongly simplified because now we have to deal only with tridiagonal
matrices. We propagate a Gaussian wave packet following this numerical procedure and
calculate the transmission probability by integrating the squared modulus of the wave
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packet only in the region of the bilayer which is after the QPC. The initial Gaussian wave
packet is defined as:

Ψ0(~r) =
1

d
√
2π




A

B

A′

B′




× exp

[
−(x− x0)

2 + (y − y0)
2

2d2
+ i~k · ~r

]
. (7.17)

The coefficients A(A′) and B(B′) in the pseudospinor are related to the probability of
finding the electron in each triangular sublattice A(A′) and B(B′) of the graphene lattice
in a given layer. For the bilayer case, we choose the same pseudospinor for both layers,
since the total wave function is composed of two Gaussian wave packets, one in each
layer, with the same properties, as initial momentum, initial energy and initial position
of Gaussian center ~r0 = (x0, y0) in real space. The pseudospinor is characterised by the
pseudospin polarization angle θ, such as

(
1 , eiθ

)T . Thus the pseudospin polarization has
a conceptual connection with the direction of propagation of the wave packet in the tight-
binding model and the choice of the angle θ depends also on which Dirac valley the initial
wave packet is taken[130, 131]. We take θ = 0(π) for an initial wave packet starting from
K(K ′) valley, since we want it to propagate in the y-direction. The initial wave vector is
~k = (k0x, k

0
y)+K, which is shifted with respect to the Dirac points, where K represents the

two non-equivalent K andK ′ points that are located at (0,±4π/3
√
3a), with a = 0.142 nm

being the in plane inter-atomic distance. For our numerical calculations, the initial wave
packet energy E is set by k, the modulus of the wave vector, once that the bottom of the
low-energy bands may be approximated by[79] E = −(τ⊥/2)

(√
1 + 4(vF~k/τ⊥)2 − 1

)
,

in bilayer graphene, where τ⊥ ≈ 0.4 eV is the interlayer coupling corresponding to per-
pendicular hopping between the Bernal stacked layers and vF ≈ 106 m/s is the Fermi
velocity. The width of the Gaussian wave packet was taken as d = 20 nm and its initial
position as (x0, y0) = (0,−42) nm.

An important remark concerning the wave packet dynamics is about the oscillatory
behavior of the velocity, i.e. the zitterbewegung manifestation on the wave packet motion
[131, 197]. We shall show that it can not be avoided for motion of an electron in bilayer
graphene that propagates in the y-direction. To understand how this affects the velocity
in the y-direction, we use the Dirac Hamiltonian for electrons in bilayer graphene in the
vicinity of the K point[79]

HBI
D =




0 vFπ τ⊥ 0

vFπ
† 0 0 0

τ⊥ 0 0 vFπ
†

0 0 vFπ 0


 , (7.18)

where π = px + ipy and π† = px − ipy are the momentum operators in Cartesian coor-
dinates, and calculate the commutator [HBI

D , vBI
y ]. According to the Heisenberg picture,
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the velocity in the y-direction is given by

vy =
dy

dt
=

1

i~
[HD, y]. (7.19)

Replacing HBI
D into Eq. (7.19) and using the well-known commutation relation [xi, pj] =

i~δij we find

vBI
y =




0 ivF 0 0

−ivF 0 0 0

0 0 0 −ivF
0 0 ivF 0


 . (7.20)

Now we shall verify whether vBI
y is a constant of motion or not, and if there is any

situation where the velocity is not affected by the zitterbewegung in the y-direction.
Evaluating [HBI

D , vBI
y ] by making use of Eqs. (7.18) and (7.20), one obtains

[HBI
D , vBI

y ] =




−2iv2Fpx 0 0 −iτ⊥vF
0 2iv2Fpx iτ⊥vF 0

0 iτ⊥vF 2iv2Fpx 0

−iτ⊥vF 0 0 −2iv2F px


 , (7.21)

suggesting that even if px = 0, one has [HBI
D , vBI

y ] 6= 0, implying that vy is not a constant
of motion, because we are still left with non-zero off-diagonal terms. Conversely, in
the monolayer case, we obtain that the velocity in the y-direction is expressed by vMO

y =

−vFσy, where σy is the y Pauli matrix and with the monolayer Hamiltonian being HMO
D =

vF~σ · ~p. Following the same procedure as for bilayer graphene, we obtain

[HMO
D , vMO

y ] =

(
−2iv2Fpx 0

0 2iv2Fpx

)
, (7.22)

and thus [HMO
D , vMO

y ] = 0 if px = 0. Therefore, there is no way to avoid the trembling
motion at small times for the wave packet propagation in bilayer graphene - even for
motion in the y-direction, i. e. k0x = 0 and k0y 6= 0, the wave packet will also move in the
x-direction. For this reason, all presented results in this chapter are normalized for the
maximum transmission obtained for the case in the absence of any potential.

7.3 Results and discussion

In order to better understand our tight-binding results, let us first investigate the
energy dispersions in a BLG quantum wire defined by aligned (Fig. 7.1(a)) and anti-
aligned (Fig. 7.1(b)) potential barriers, as obtained by the Dirac approximation for BLG,
using the 4×4 Hamiltonian. [79] These spectra are shown in Figs. 7.2(a) and 7.2(b),
respectively, for different values of well width. Only states with energy below the barrier
height (V0 = 200 meV) are shown. Notice the qualitative difference between the two
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spectra. The energy dispersion in the former case exhibits symmetry with respect to
positive and negative values of the wave vector in the propagation direction ky. As
the propagation velocity is obtained from vg = ∂E/∂py , with py = ~ky, this spectrum
suggests that wave packets may propagate towards either positive or negative y-direction,
provided the average wave vector ky of the wave packet is in a region of positive or
negative derivative of the spectrum, respectively. On the other hand, the spectra for the
anti-aligned case does not exhibit the same symmetry. Besides, low energy electrons in
this system can only exhibit positive velocity of propagation, since the derivative of the
spectrum around E = 0 is positive for any value of ky. In fact, this spectrum is obtained
for the BLG Dirac Hamiltonian for electrons around the K point of the first Brillouin
zone. The spectrum for K ′ is obtained just by replacing ky by −ky in Fig. 7.2(b), or,
equivalently by inverting the polarization of all gates in Fig. 7.1(b).

Figure 7.2: Band structure for the two potential configurations sketched in Fig. 7.1,
namely, (a) aligned and (b) anti-aligned potential barriers. Results are presented for
V0 = 200 meV and three values for the quantum well width W = 5 (black solid), 10 (red
dashed) and 20 nm, (blue dotted).

Due to the fact that the low energy spectra for the aligned bias case inK andK ′ points
have the EK(K ′)(kx, ky) = EK(K ′)(−kx, ky) and EK(kx, ky) = EK ′(kx,−ky) symmetries, the
transmission probabilities are the same no matter if the wave packet started in K or K ′

valley. This is verified in Fig. 7.3, which shows the transmission probability as a function
of the wave packet energy, for different configurations of the channel defined by aligned
potentials, as sketched in Fig. 7.1(a). Results for K and K ′ valleys in this case are exactly
the same. Steps are observed in the transmission probabilities as the wave packet energy
increases. This is a well known feature of any QPC, which is related to the existence of
quantized energy levels inside the channel - whenever the energy crosses one of the energy
levels, a step is produced. In fact, although not shown in the Fig. 7.3, we verify that
increasing W moves the steps to lower E, just as expected for an usual QPC, once that
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Figure 7.3: Transmission probability as a function of wave packet energy for aligned
potentials with V0 = 100 meV (closed symbols) and V0 = 200 meV (open symbols). The
value for width of the QPC was considered W = 10 nm. The square and circular symbols
correspond to the lengths L = 5 and 20 nm, respectively.

the energy of the quantized states of the channel decreases as W increases. The figure
shows that as L varies the position of the step does not change, but for smaller L, the
steps are less pronounced.

Similar features are observed in the anti-aligned case, though with a fundamental
difference - results for K and K ′ in this case are very different, as one can verify by
comparing Figs. 7.4(a) and 7.4(b), respectively. This is a clear manifestation of the lack
of inter-valley symmetry exhibited by the band structure shown in Fig. 7.2(b). Such
a difference between transmission probabilities in different valleys suggests the use of
this system as a valley filter. However, in order to do so, we should seek for the best
configuration of the system that enhances valley polarization.

Figure 7.5 shows the transmission probabilities (upper panels) and the valley polar-
ization (lower panels) for the anti-aligned system of Fig. 7.1(b) as a function of the bias
potential V0, for different values of W and L, considering a wave packet energy E = 30

meV. Once the wave packet is initially injected in the lowest subband of the energy spec-
trum (Fig. 7.2), then we limit ourselves to the lowest QPC steps. Valley polarization is
defined as P = 1−TK ′/TK , where TK(K ′) is the transmission probability for a wave packet
starting at the K(K ′) Dirac points, so that P = 1 (0) means a wave packet completely
(un)polarized in K after the QPC. Transmission probabilities in all cases are reduced as
V0 increases, which is expected, since the existence of a barrier leads to stronger reflection
of the tails of the wave packet that are outside the channel region. A very weak oscillation
is observed in each curve, which is due to an interference related to the path difference
between electrons that go straight through the channel and those that are reflected at
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Figure 7.4: The same as Fig. 7.3, but for anti-aligned potentials and with initial wave
packet in K valley (a) and in K ′ valley (b).

the exit and entrance of the channel. Results in Figs. 7.5 (b, d, f) show a polarization
that increases up to 1 for higher values of L and V0, in particular for small W . For larger
W , however, the electron starts to see a larger unbiased area in the channel, thus reduc-
ing the polarization effect. This polarization reduction for large W becomes even more
significant for wave packets with higher energy. Indeed, extra energy bands with higher
energy appear as W increases (see Fig. 7.1(b), blue dotted curves). These bands exhibit
states with negative velocities, which, consequently, harness the polarization effect pro-
posed here, which relies on bands with a single direction of the propagation velocity. The
results in Fig. 7.4 demonstrate that as the initial energy of the wave packet E increases,
high transmission probabilities are reached for wave packets starting in both valleys (K
and K ′) and thus a suppression of the polarization effect is expected in this case, which is
due to the low screening of the packet by the barriers for a fixed range of bias potential.
It is also clear that increasing the channel length improves the valley polarization.

As already mentioned, even such almost perfect polarization for large L can be de-
stroyed by increasing W . This is clarified in Fig. 7.6, which shows transmission proba-
bilities (upper panels) and polarization (lower panels) as a function of the well width W

in an anti-aligned QPC. In the case of L = 20 nm (dotted blue line), polarization stays
around ≈ 100% for smaller W , but starts to decrease for W > 10 nm and 13 nm, in the
cases of V0 = 100 meV and 200 meV, respectively.

In summary, our results demonstrate that an almost perfect valley filtering can be
realised, provided (i) the electron energy is sufficiently low, (ii) the channel length is
sufficiently long, and (iii) the channel width is narrow enough.
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Figure 7.5: Transmission probability (top panels) and valley polarization (bottom panels)
as a function of the electrostatic bias V0 in the case of anti-aligned potentials with initial
wave packet energy E = 30 meV and three different values of L: (a, b) 5 nm, (c, d) 10

nm and (e, f) 20 nm. The opened (closed) square-like, circular and triangular symbols
correspond to W = 5, 10 and 20 nm, for the K (K ′) valley, respectively in panels (a),
(c) and (e). The black solid, red dashed and blue dotted lines show the polarization for
W = 5, 10 and 20 nm, respectively in panels (b), (d) and (f).
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Figure 7.6: (a, c) Transmission probability and (b, d) the polarization as a function of
width W of the QPC for anti-aligned potentials with V0 = 100 meV (left side panels) and
V0 = 200 meV (right side panels). The average wave packet energy was E = 30 meV. The
opened (closed) square-like, circular and triangular symbols correspond to L = 5, 10 and
20 nm, for the K (K ′) valley, respectively in Figs. (a) and (c). The black solid, red dashed
and blue dotted curves show the polarization for L = 5, 10 and 20 nm, respectively in
Figs. (b) and (d).
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7.4 Conclusion

We calculated the transmission probabilities of a Gaussian wave packet through a
quantum point contact defined by electrostatic gates in bilayer graphene. Our results
demonstrate that, if one uses the energy gaps introduced by a bias between upper and
lower layers in order to define the channel in the point contact, transmission plateaus
are observed as the energy of the packet increases, which reflects the discrete eigenstate
spectrum in the channel, just like in a conventional QPC. On the other hand, if the bias
in the left and right sides of the channel are opposite to each other, although still forming
the same energy gap at both sides, a special situation of energy dispersion is obtained,
where electrons in each valley have only one possible direction of propagation. In this
case, the QPC works as an efficient valley filter, where valley polarization may reach
≈ 1 with increasing gate potential. Such a valley filtering device can have an important
impact on future graphene valley-tronics, as it can be relatively easily achieved just by
depositing electrostatic gates on graphene[235], with no need either to control edge types,
or to produce strain or non-zero mass regions, in contrast to the valley filters previously
proposed in the literature.



8
Conclusions and perspectives

In this thesis, we studied and developed computationally the Split-operator technique
for tight-binding and Dirac Hamiltonians in order to investigate electronic properties of
carbon nanostructures formed by one or two graphite layers. Further, we also investigated
the electronic properties of confined systems formed by monolayer, bilayer and hybrid
mono-bilayer graphene using both continuum model and tight-binding approach.

We made a comparison between the energy levels obtained by tight-binding and Dirac
models in order to identify which graphene ring structures can be described, to a good ac-
curacy by the continuum model. Different shapes and edge terminations were considered,
and a graphene ring defined by a staggered potential was investigated as well. Our results
demonstrated that the energy levels of graphene quantum rings show a strong dependence
on the ring geometry and the edge termination. Under an applied magnetic field these
energy spectra presented the AB oscillations and in general rings with n-fold symmetry
exhibited a formation of subbands with n-fold energies. Furthermore, we obtained that
infinitely thin Dirac rings describe quite well two ring structures: armchair hexagonal and
rhombus-shaped rings.

Further on, we obtained a general expression for the infinite-mass boundary condition
in bilayer graphene that can be used for any kind of circular geometry. It was derived
using the 4× 4 Dirac-Weyl Hamiltoninan in the vicinity of both K and K ′ points. Some
electric properties for the bilayer graphene quantum dots defined by this new boundary
condition were calculated, such as the energy spectrum as a function of the dot size, of
the perpendicular magnetic field intensity and the cyclotron resonance. Our results for
the energy spectrum presented an electron(e)-hole(h) symmetry E

e(h)
K (m) = −Eh(e)

K ′ (m)

that is kept for both cases, under the presence or absence of magnetic field. In absence
of magnetic field, the energy spectrum exhibits two sets of states that correspond to the
upper and lower bilayer energy bands. The lowest states demonstrated a 1/R2 dependence,
while the upper set that approaches the inter-layer hopping parameter exhibited 1/R

behavior. Furthermore, the energy spectrum obtained via continuum model was compared
with the results calculated within the tight-binding approach for a circular quantum dot
with actual edges and showed a good qualitative similarity.
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Using the tight-binding approach, we numerically investigated the confined states in
two different hybrid monolayer-bilayer systems. In order to understand the energy spec-
trum for these two hybrid structures, we calculated the influence of an external perpendic-
ular magnetic field as well of different dot sizes on the spectra. Our results allowed us to
identify which states are dot-localized states, edge states and mixed states in the energy
spectrum. In the presence of the magnetic field, the energy levels approached to the Lan-
dau levels in the both zigzag and armchair edge terminations of the bilayer anti-dot and
they exhibited an electron-hole symmetry. Both suggested monolayer-bilayer graphene
quantum dot were demonstrated to be reasonable systems to confine carriers in graphene
nanostructures. The confinement occurs due to the fact that: (i) a gap was opened just in
bilayer region for the anti-dot case when it was considered an applied bias gate, whereas
(ii) for the case of a bilayer graphene dot surround by a hexagonal region of monolayer
graphene, even in the absence of a bias voltage the bilayer energies are lower than energy
levels of the monolayer graphene.

Afterwards, we numerically studied the scattering, in the reciprocal and real spaces,
of a Gaussian wave packet propagating close to graphene edges. Using the tight-binding
model and the Split-operator technique we demonstrated the inter- and intra-valley scat-
tering between K to K ′ Dirac cones for the reflections close respectively to the zigzag and
armchair edges. Under the presence of an external magnetic field we verified the so called
skipping orbits due to the scattering of the electron nearby the edge of the sample. On
the other hand, for a pseudo-magnetic field induced by non-uniform strain our numerical
results demonstrated that scattered wave packet behaved as a non-propagating edge state
for the armchair terminated strained graphene.

Finally, we demonstrated that a quantum point contact defined by electrostatic gates in
bilayer graphene can be used as a valley filtering device, being this way a very simple form
to build valleytronic devices as compared to the already suggested structures proposed in
the literature. Two kinds of the gate alignments were investigated using the tight-binding
model and the Split-operator techniques in order to compute the transport properties
for these systems. For the aligned case, plateaus in the transmission probability as a
function of the initial wave packet energy were observed, suggesting a behaviour just like
in a conventional quantum point contact. But if the bias are opposite in each side of the
device, then the situation is favorable for valley filtering, because in this case the energy
dispersion is not symmetric anymore. The chiral states are by this way responsible for
allowing only certain direction of propagation in each valley. Our results provided the
parameters that improve the efficiency of proposed bilayer system as a valley filter, such
as length, width and amplitude of the applied potential. By our simulations, we observed
that the almost perfect efficiency can be achieved for a long length and a narrow width
of the channel formed between the bias gates.

Regarding the study of charge carriers dynamics in multi-layer graphene-related sys-
tems using the wave packet propagation or by a wavefront and for the works concerned
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with electronic states in graphene, we propose some interesting problems to be investi-
gated and to be developed in the near future. So, as a short-term perspective, we intend
to address a study about the following problems:

• the wave packet scattering on bilayer graphene edges in order to check how much
of the incident wave packet is spread to each one of the valleys K and K ′ in the
reciprocal space [130];

• valley filtering in graphene due to substrate-induced potential: in this system, the
mass potential is generated by a staggered potential, such that a spacial constric-
tion for the electron in a certain region of monolayer is performed. Thus, we will
investigate in which situations there will be a greater percentage of the transmission
probability coefficient, leading to a valley filtering effect [127];

• the effect of a periodic potential induced by strain in the graphene eigenenergies: we
will investigate which situations present opening of a gap in the energy spectrum.
The pseudo-magnetic field induced by strain in our tight-binding model will not
be introduced by artificially introducing a vector potential to the Peierls phase
[216, 218], but rather by changing the interatomic distances of the carbon atoms of
the lattice;

• the scattering of a Gaussian wave packet by an interface between monolayer and
bilayer graphene formed by a single and a double boundary with zigzag or arm-
chair edges. In this work, we shall demonstrate the dependence of the transmission
probability related to the incident angle and also we shall present different features
depending on the edge type of interface between monolayer and bilayer graphene,
theK andK ′ Dirac cones considered and also on the alignment of the atomic bounds
at monolayer / bilayer interface [186, 236, 237, 238, 239].



Appendix A

Multilayer graphene in AA stacking

An effective two-component Hamiltonian may be derived under some approximations
for a n-layer graphene, in a similiar way as for graphite. This 2 × 2 Hamiltonian is
described in the low energy limit, i. e. in the limit such that the energy is much smaller
than the hopping energy t⊥ between the parallel layers E ≪ t⊥, where the upper bands
of the energy spectrum of the n-layer graphene are neglected. Thus, in a two-band
approximation, one can write the 2×2 Hamiltonian for n coupled layers in rhombohedral
stacking as [81]

Hn(k) =
(~vFk)

n

tn−1
⊥

(
0 e−inϕk

e+inϕk 0

)
, (8.1)

where k =
√
k2x + k2y and ϕk = tan−1 (ky/kx). The corresponding eigenenergy and wave-

function of the lowest (highest) conduction (valence) band are

Ek,s,n =
s (~vFk)

n

tn−1
⊥

, Ψk,s,n =
1√
2

(
1

−seinϕk

)
, with s = ±1, (8.2)

where the sign of s refers to the conduction (+) or valence (−) bands, respectively.
Note that for n-layer graphene E ∝ kn. This approximation is valid for small ener-

gies and the quantitative deviation of this approximation gets more significant as the n
increases.
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