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Theoretical description

Defining the system that allow appearance of in-gap states



Graphene, monolayer and bilayer
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Monolayer and AB stacked bilayer system

Brillouin zone



Graphene, monolayer and bilayer
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Brillouin zone



Graphene, monolayer and bilayer
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Brillouin zone

Band structure and electric field effect



Graphene, monolayer and bilayer
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Brillouin zone



Graphene, monolayer and bilayer
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Brillouin zone

Valley polarized topological states in bilayer 
graphene AB/BA nanoribbon.
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Appearance of in-gap states in bilayer graphene

Martin et al., PRL 100, 036804 (2008)

Zarenia et al., PRB 84, 125451 (2011)

Kink potential configuration

- chiral topological states, 
- valley polarized unidirectional motion,
- additional non chiral bands due to kink flattening,
- weakly affected by the magnetic field.
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AB/BA stacking bilayer graphene produced by a pentagon-octagon defect line
a) top view, b) bottom view.

Jaskólski et al., Nanoscale 8, 6079-6084 (2016)

Appearance of in-gap states

Defect line
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Jaskólski et al., Nanoscale 8, 6079-6084 (2016)

Appearance of in-gap states

LDOS(k) a) V=0V, with a system 
with a grain boundary, b), c) 

AB/BA bilayer graphene 
(corrugation) with 

positive and negative voltage 
applied to the bottom layer.
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Jaskólski et al., Nanoscale 8, 6079-6084 (2016)

Appearance of in-gap states

LDOS(k) a) V=0V, with a system 
with a grain boundary, b), c) 

AB/BA bilayer graphene 
(corrugation) with 

positive and negative voltage 
applied to the bottom layer.

LDOS(k) AB/BA bilayer graphene 
induced by a octagon-pentagon 

grain boundary with 
a) positive and b) negative 

voltage applied to the bottom 
layer.
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Tilt boundary (stacking change) + corrugation (delamination)

Appearance of in-gap states

Vaezi et al., PRX 3, 021918 (2013)

Lane et al., PRB 97, 045301 (2018)
Pelc et al., PRB 92, 085433 (2015)

W Jaskólski et al., 2D Mater. 5 025006 (2018)

Domain wall

Zhang et al., PNAS 110, 10546–10551 (2013)
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Manipulation
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Understanding the motion to be able to design the functionality

Manipulation
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Delamination in bilayer graphene

𝐻 = −

𝑙



𝑖,𝑗

𝛾0𝑒
𝑖2𝜋𝜙𝑖𝑗/𝜙0𝑐𝑙,𝑖

† 𝑐𝑙,𝑗 −

𝑖,𝑗

𝜃(𝑦𝑖 + 𝜃(𝑦𝑖 −𝑊 𝛾1𝑐1,𝑖
† 𝑐2,𝑗 + 𝐻. 𝐶. +

𝑖

𝑉±𝑐𝑖
† 𝑐𝑖

𝛾0=3.1eV
𝛾1=0.39eV

𝑉± = Δ 𝑦𝑖 + 𝑈 𝑦𝑖 + 𝛿(𝑦𝑖)

Lane et al., PRB 97, 045301 (2018)
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Delamination in bilayer graphene

𝐻 = −

𝑙



𝑖,𝑗

𝛾0𝑒
𝑖2𝜋𝜙𝑖𝑗/𝜙0𝑐𝑙,𝑖

† 𝑐𝑙,𝑗 −

𝑖,𝑗

𝜃(𝑦𝑖 + 𝜃(𝑦𝑖 −𝑊 𝛾1𝑐1,𝑖
† 𝑐2,𝑗 + 𝐻. 𝐶. +

𝑖

𝑉±𝑐𝑖
† 𝑐𝑖

𝛾0=3.1eV
𝛾1=0.39eV

𝑉± = Δ 𝑦𝑖 + 𝑈 𝑦𝑖 + 𝛿(𝑦𝑖)

𝛿 = 0.2𝑒𝑉 𝛿 = 0.3𝑒𝑉 𝛿 = 0.4𝑒𝑉

Δ = 0.2𝑒𝑉
𝑈 = 0𝑒𝑉

Lane et al., PRB 97, 045301 (2018)
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Delamination in bilayer graphene

𝛿 = 0.2𝑒𝑉 𝛿 = 0.3𝑒𝑉 𝛿 = 0.4𝑒𝑉

Δ = 0.2𝑒𝑉
𝑈 = 0𝑒𝑉

Lane et al., PRB 97, 045301 (2018)
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Delamination in bilayer graphene

𝛿 = 0.2𝑒𝑉 𝛿 = 0.3𝑒𝑉 𝛿 = 0.4𝑒𝑉

Δ = 0.2𝑒𝑉
𝑈 = 0𝑒𝑉

Lane et al., PRB 97, 045301 (2018)

- localized along the edges,
- monolayer bouncing bands are distributed along 
delamination.
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Delamination in magnetic field

𝑟0~𝑙𝐵 = ℏ/𝑒𝐵 < 𝑊/2

𝐹𝐿 = 𝑒 Ԧ𝑣 × 𝐵

Lane et al., PRB 97, 045301 (2018)
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Delamination in magnetic field

𝑟0~𝑙𝐵 = ℏ/𝑒𝐵 < 𝑊/2

𝐹𝐿 = 𝑒 Ԧ𝑣 × 𝐵

Lane et al., PRB 97, 045301 (2018)
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Delamination in magnetic field

𝑟0~𝑙𝐵 = ℏ/𝑒𝐵 < 𝑊/2

𝐹𝐿 = 𝑒 Ԧ𝑣 × 𝐵

Lane et al., PRB 97, 045301 (2018)
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Delamination in magnetic field

𝑟0~𝑙𝐵 = ℏ/𝑒𝐵 < 𝑊/2

𝐹𝐿 = 𝑒 Ԧ𝑣 × 𝐵

Lane et al., PRB 97, 045301 (2018)

-𝐹𝐿 is acting on the 
modes 
- monolayer bands 
are forming LL.
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W Jaskólski et al., 2D Mater. 5 025006 (2018)

Layer polarization

Layer dependent LDOS(k). Red and blue show 
localization in top and bottom layer 

respectively

AB/domain wall/BA nanoribbon

- layer degree of freedom beside the 
valley and sublattice,

- tuned by doping and modified by 
electric field.
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Oostinga et al., Nature Materials 7, 151–157 (2008) ~ bellow 50 meV
Zhang et al., Nature (London) 459, 820–823 (2009) ~ 250 meV

Gapless states in gated bilayer.
Is the gated bilayer really gapped?
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Domain walls, stacking solitons

Obtaining different stacking through domain wall, strain 
soliton

STEM images and simulation of AB-BA 
domain boundary, shear + tensile strain 

soliton. 

Koshino, PRB 11, 115409 (2013)

Alden et al., PNAS 110 (28), 11256-11260 (2013)



Change of stacking
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Lin et al., Nano Lett. 13 (7),
3262–3268 (2013)

Dark-field TEM of a 
large bilayer 

graphene flake.



Change of stacking

presentation sampleSlide 28 of 46

Lin et al., Nano Lett. 13 (7),
3262–3268 (2013)

Dark-field TEM of a 
large bilayer 

graphene flake.



Change of stacking
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Ju et al., Nature 520 (7549), 650-655 (2015)Lin et al., Nano Lett. 13 (7),
3262–3268 (2013)

AFM topography map of 
bilayer graphene on SiO2/Si 

+ graphene monolayer 
bottom right.

Near-field infrared 
nanoscopy of the same 

sample.

Dark-field TEM of a 
large bilayer 

graphene flake.
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Experimental observation and realization 
possibilities
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AB/BA domain walls in 
exfoliated bilayer graphene

Topological transport at a domain wall

Ju et al., Nature 520, 650–655 (2015)
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AB/BA domain walls in 
exfoliated bilayer graphene

Topological transport at a domain wall

Ju et al., Nature 520, 650–655 (2015)

Gating a bilayer graphene flake, sample with and without a 
domain wall. Applied perpendicular electric field, appearance 

of boundary states. 

- conductance on the order of 
2𝑒2

ℎ
, smaller due to gate resistance, shorter chanells up to 

4𝑒2

ℎ

- MFP up to 400 nm,
- limitation random appearance.



Imaging of topological states

presentation sampleSlide 33 of 46

Yin et al., Nat. Comm. 7, 11760 (2016)

STM image of the domain wall states. Dependence on the Fermi energy.

Imaging the domain wall states in the magnetic field.
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Manipulation of domain walls

Jiang et al., Nat. Nano. Letters (2018)

- move, erase, and split the domain walls with an AFM tip,
- most are stable at room temperature.
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Manipulation of domain walls

Jiang et al., Nat. Nano. Letters (2018)
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Manipulation of domain walls

Jiang et al., Nat. Nano. Letters (2018)

Erasing
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Manipulation of domain walls

Jiang et al., Nat. Nano. Letters (2018)

Erasing Splitting
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Manipulation of domain walls

Jiang et al., Nat. Nano. Letters (2018)

Erasing Splitting

Moving

Near-field infrared nanoscopy images of treated samples of bilayer and trilayer graphene



Anisotropy in creation

Manipulation of domain walls
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Jiang et al., Nat. Nano. Letters (2018)

Creation of different shapes



Anisotropy in creation

Manipulation of domain walls
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rounded 
rectangular

Jiang et al., Nat. Nano. Letters (2018)

Creation of different shapes



Anisotropy in creation

Manipulation of domain walls
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triangular
rounded 

rectangular

Jiang et al., Nat. Nano. Letters (2018)

Creation of different shapes



Anisotropy in creation

Manipulation of domain walls
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rectangulartriangular
rounded 

rectangular

Jiang et al., Nat. Nano. Letters (2018)

Creation of different shapes
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Double gating 

Li et al., Nat. Nano. 11, 1060–1065 (2016)

- lithography limitations,
- MFP up to 200 nm,

- resistance close to 
ℎ

4𝑒2
, larger,

- valley valve and beam splitter, 4 gate structure.

Jing et al., arXiv (2018)

Design of the double gate device and measurements



Conclusion

I  Possibility to define ballistic transport channels could 
lead to low power dissipation devices.

II Prospective applications in fields of valleytronics and 
very recently suggested layertronics.

III Approach is applicable to different materials and 
structures.

Is there a possibility to control spin in similar manner
in TMDC-s, with strong spin-orbit coupling? 
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Electronic transport in 2D Materials

CMT
Condensed Matter Theory cmt.uantwerpen.be



Bonus
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