
Faculteit Wetenschappen
Departement Fysica

Development and application of a non-local theory for
the description of positron surface states

Ontwikkeling en toepassing van een niet-lokale
theorie voor de beschrijving van positron oppervlakte

toestanden

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen: Fysica

aan de Universiteit Antwerpen te verdedigen door

Vincent Callewaert

Promotoren:
Prof. dr. Bart Partoens
Dr. Rolando Saniz Antwerpen 2018



ii

Members of jury:

Chairman
Prof. Dr. Jo Verbeeck, Universiteit Antwerpen, Belgium

Promotors
Prof. Dr. Bart Partoens, Universiteit Antwerpen, Belgium
Dr. Rolando Saniz, Universiteit Antwerpen, Belgium

Members
Prof. Dr. Nick Van Remortel, Universiteit Antwerpen, Belgium
Prof. Dr. Bernardo Barbiellini, Lappeenranta University of Technology, Finland
Dr. Stephan W. H. Eijt, Delft University of Technology, Netherlands
Prof. Dr. Stephen Dugdale, University of Bristol, United Kingdom



Abstract

Positrons are the anti-particles of electrons, and have the same mass but the opposite
charge. As a consequence of the strong Coulomb repulsion with atomic nuclei, positrons
are very sensitive to open volumes in materials, such as vacancies but also surfaces. The
fact that electrons and positrons annihilate shortly after coming into contact, a process
in which the resulting photons conserve the total momentum and energy of the original
particles, makes that positrons are convenient to characterize these open volumes in
materials.

A downside of positron annihilation experiments is that one has little control of
where positrons end up in the material. An additional complication is that different
situations can result in qualitatively similar outcomes for the experiment. In many cases,
first-principles calculations can help significantly in the interpretation of experiments.
Indeed, from these calculations, it is possible to predict where in the material positrons
will annihilate as well as the resulting spectrum measured in the experiment.

The existing theoretical description of positron states in bulk materials is quite accurate.
Using local or semi-local approximations to describe electron-positron correlations, it
is possible to obtain electron-positron annihilation properties, such as the positron’s
annihilation rate, which closely match the experiment. In the case of surfaces, however,
the situation is quite different. Indeed, the aforementioned approximations are unable to
describe long-range correlation effects that are critical to obtain a correct description of
positron states at the surface of a material.

A non-local approximation that captures long-range correlation effects was developed
in this thesis. Additionally, we critically investigated a phenomenological model from
literature. Both approaches were applied to provide theoretical support for three recent
positron annihilation experiments on surfaces. In all cases, we managed to obtain
satisfactory agreement with the experiment, demonstrating the usefulness of our approach.
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Nederlandstalige Abstract

Positronen zijn de anti-deeltjes van elektronen, en hebben dezelfde massa maar een
tegengestelde lading. Als gevolg van de sterke Coulomb afstoting met atoomkernen, zijn
positronen zeer gevoelig voor open volumes in materialen, zoals vacatures, maar ook voor
oppervlakken. Het feit dat elektronen en positronen, kort na met elkaar in contact te
komen, annihileren, een proces waarin de resulterende fotonen de totale energie en impuls
van de originele deeltjes behouden, maakt positronen nuttige deeltjes om open volumes in
materialen te karakteriseren.

Een nadeel van positron annihilatie experimenten is dat men weinig controle heeft over
waar de positronen naartoe gaan in het materiaal. Een bijkomende moeilijkheid is dat
verschillende situaties een kwalitatief gelijkaardig resultaat van het experiment kunnen
opleveren. In veel gevallen kunnen eerste principes berekeningen significant bijdragen
aan de correcte interpretatie van de experimenten. Het is immers mogelijk om met deze
berekeningen te voorspellen waar in het materiaal het positron zal annihileren, en hoe
het annihilatie spectrum er zal uitzien.

De bestaande theorie voor de beschrijving van positron toestanden in de bulk van
materialen is redelijke accuraat. Gebruik makend van lokale of semi-lokale benaderingen
om elektron-positron correlaties te beschrijven, is het mogelijk om elektron-positron
annihilatie eigenschappen, zoals de annihilatie snelheid van het positron, te berekenen die
in goede overeenstemming zijn met experimenten. De situatie is echter heel verschillend
voor oppervlakken van materialen. De zonet vernoemde benaderingen zijn immers niet
in staat om lange dracht correlatie effecten te beschrijven, welke net kritisch zijn om
een correcte beschrijving van positron toestanden te bekomen aan het oppervlak van
materialen.

In deze thesis werd een niet-lokale benadering ontwikkeld die lange dracht correlaties
wel correct beschrijft. Bovendien hebben we een bestaand fenomenologisch model uit
de literatuur kritisch onderzocht. Beide aanpakken werden toegepast om theoretische
ondersteuning te bieden aan drie recente positron annihilatie experimenten uitgevoerd op
oppervlakken. In alle gevallen zijn we erin geslaagd om een goede overeenstemming met
het experiment te bekomen, wat de bruikbaarheid van onze aanpak aantoont.
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Chapter 1

Introduction

In this chapter, I provide a general introduction to the work presented in this thesis.
To this end, a brief description of different positron spectroscopy techniques and some
of their applications are given. It is not my intention to give an exhaustive overview
of all existing positron techniques as they are quite numerous. The focus lies on the
experimental techniques which are relevant in the rest of the thesis. Afterwards, the
status of the theory at the start of my PhD is discussed, and I pinpoint the shortcomings.
This will clarify the main topic of the thesis. At the end of this chapter, I provide an
overview of the work presented in this thesis.

1.1 Positron Spectroscopy
It is well-known that positrons annihilate with electrons when they come into contact.
Less well-known is that the typical positron annihilation lifetime of a few 100 ps allows
practical applications exploited in various spectroscopic techniques, denoted with the
umbrella term Positron Annihilation Spectroscopy (PAS). What all these techniques have
in common, is that they rely on electron-positron annihilation, either to measure the
annihilation radiation, or as starting point for another process. Fig. 1.1 shows a schematic
overview of several processes, which will be discussed in more detail in the coming sections.

Aside from more fundamental experiments, PAS finds its application in largely two
domains. The first is mainly concerned with finite sized systems such as atoms, molecules
and polymers. In this introduction and the rest of the thesis, we are concerned with the
second application area, which focusses on solid state systems. The purpose of this section
is to give the reader a basic background on the topic of PAS. More detailed discussions
can be found in several reviews, e.g. Refs. [1, 2].

1.1.1 Sources and beams

An obvious question about PAS is where the positrons come from. We can determine two
main categories of positron sources. The first are β+ emitters, radioactive isotopes that
decay with the emission of positrons. In particular, 22Na is a widely used positron source
in many positron labs. Much higher luminosity can be achieved with the second category,
where positrons created in pair production from highly energetic γ-rays are extracted

1
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Figure 1.1: Schematic overview of some PAS techniques relevant to the work presented in
this thesis. At the top of the figure, an incident positron with kinetic energy Ei is shown.
If its energy is sufficiently low, it can get trapped in the image potential at the surface of
the sample in a one-step process called AMPS, shown schematically in the middle left.
The energy difference between the scattering state and the surface state ∆E = Ei −Es,
is transferred to a valence electron in the material, which can escape as an Auger electron
from the sample if it absorbs sufficient energy. After a positron gets trapped in a surface
state, it has a small probability to annihilate with a core electron. This highly unstable
empty core level is usually neutralized through an Auger process, as shown in the middle
right of the figure. When an Auger process is triggered by electron-positron annihilation,
it is called PAES. Most PAS studies on solid state systems are concerned with measuring
the annihilation radiation, however. At the bottom of the figure, the most important
quantities that can be extracted from the annihilation γ-rays are shown. The time that
passes between the entrance of the positron in the sample and the annihilation event, is
called the positron annihilation lifetime and is characteristic for the electron density at
the annihilation site. Deviations in the angle and energy of the annihilation photons w.r.t.
annihilation in the centre-of-mass system, give information about the electron momentum
density. The former is called the ACAR and the latter DBAR.



1.1 Positron Spectroscopy 3

from a nuclear reactor. Using such setups, up to ∼ 109 slow positrons/s can be produced
versus ∼ 106 positrons/s achievable with radioactive sources [3].

Important in many modern positron setups is the moderation step in which energetic
positrons are converted to a mono-energetic beam. Quite often, this step is realized by
passing energetic positrons created by the source through a thin W-foil. A small fraction
(< 0.1%) thermalizes in the moderator and gets re-emitted as slow (∼ 2− 3 eV) positrons.
The spontaneous re-emission occurs due to the negative positron workfunction of the
moderator (φ+ ≈ −3.0 eV for W(001) [4]). Afterwards, the positrons can be accelerated
again, typically to energies between 20 − 20000 eV. Remoderated beams are usually
called slow positron beams as incident energies are significantly lower than the ∼ 0.5 MeV
positrons emitted by a 22Na source. The tunable energy of the beam allows researchers
to vary the penetration depth of the positrons in the sample, which is, e.g., useful to
characterize heterostructures or the depth-dependence of defects. Especially for positron
surface studies, it is important that very low-energy positrons E ≤ 20 eV are used to
maximize the number of positrons that diffuse back to the surface. The highly energetic
positrons emitted by a conventional source remain useful for bulk studies. Indeed, the
penetration depth of ∼ 0.1− 0.3 mm lies significantly higher than the ∼ 1 µm attainable
with remoderated beams.

1.1.2 Thermalization and trapping
An important observation that underlies the usefulness of PAS techniques in the study of
solid state systems, is that energetic positrons quickly thermalize (1− 3 ps) after entering
the sample [1]. Between the time that a positron reaches its groundstate and the moment
it annihilates, it diffuses in the order of ∼ 100 ps through the sample. During its diffusive
motion, a positron can get trapped in (neutral or negatively charged) vacancy type defects,
embedded nanoparticles, or in its image potential well at the surface of the sample. A
different process with which positrons can end up at the surface is through AMPS. Here,
incident positrons with very low kinetic energy (E < 10 eV) transition directly to their
groundstate upon arrival at the sample by transferring their excess kinetic energy to a
valence electron of the sample [5]. This process has been shown to be rather efficient to
deposit positrons at the surface.

An important application of PAS stems from the sensitivity of positrons to open
volumes, where they often get trapped during their thermal motion through the material.
Indeed PAS techniques can pick up signals when vacancy concentrations are as low
as ∼ 1/108 units cells [1]. This sensitivity follows from the strong Coulomb repulsion
positrons experience by the ions, which confines them in the interstitial region of the
lattice. When a positron encounters open volume, it can further lower the Coulomb
repulsion of the ions and reduce its confinement energy. Furthermore, electrons in these
regions are generally more polarizable, such that electron-positron correlation effects
further lower the total energy of the system. In this regard, it is not very surprising that
positrons are sensitive to surfaces as well.

Several materials have a negative positron workfunction, such that they would get
spontaneously emitted in the vacuum when they reach the surface. In many cases, however,
the positron induced polarization of the sample can bind the particle in a surface state.
This long range correlation effect is known from elementary electrostatics as the ‘image
potential’ and decays as ∼ 1/z, with z the distance from the surface. Positrons captured
in a surface state typically overlap only with the topmost few atomic layers of the material.
This gives PAS techniques a surface sensitivity capable of, e.g., monitoring sub-monolayer
coverages of surfaces with adatoms [6].
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Figure 1.2: The pulsed low-energy positron system (PLEPS) at Garching; a positron
annihilation lifetime setup coupled to a reactor beamline. NEPOMUC is the name of
the beamline which is coupled to the reactor. The buncher and chopper are part of the
system that transforms the continuous flow of positrons to short, time-separated pulses
required to measure the annihilation lifetimes.

1.1.3 Positron annihilation lifetime
Since the annihilation rate is roughly proportional to the electron density, the positron
annihilation lifetime in a sample is a useful quantity to identify and characterize open
volumes. In positron lifetime experiments, one tries to accurately determine the time that
passes between the entry of the positron in the sample and the moment it annihilates.
The time of the annihilation event is easily obtained from measuring the annihilation rays.
Figuring out when a positron enters the sample turns out to be more difficult, however.

The simplest lifetime measurements are performed by preparing a sandwich with the
sample of interest and a radioactive source, typically 22Na. The 1.27 MeV photon emitted
(nearly) simultaneously with the positron during the β-decay in the source provides the
start signal for the timer, and the 2γ annihilation radiation the stop signal.

Lifetime measurements are significantly more complicated with moderated positron
beams. The primary issue lies with generating a useful start signal. Indeed, moderated
beams have a roughly uniform temporal intensity but there is no accompanying signal that
indicates when a positron arrives at the sample as with the 22Na source. One approach
is to bunch the positrons in a pulse train. Here, the repetition rate is limited by the
lifetime of the positron in the sample. Indeed, the positrons of a previous pulse should
have annihilated before the next one arrives. A second important factor is the temporal
width of the pulse itself, which limits the accuracy of the positron lifetime that can be
extracted from experiments. Fig. 1.2 shows the lifetime setup at the NEPOMUC beamline
in Garching, Germany, which is operated with moderated positrons.

Fig. 1.3 shows a typical lifetime spectrum obtained in experiment. Lifetimes are
obtained by fitting a set of exponentials to the data

I(t) =
∑
i

Aie
−t/τi . (1.1)
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Figure 1.3: A positron annihilation lifetime spectrum measured for CdSe quantum dots.
The red dots indicate measured data, the full black line the fit to the data which consist
out of a sum of three exponentials, shown in red blue and green. The lifetimes and relative
amplitudes are indicated in the legend. The bump in the spectrum around 16 ns was
identified with positrons that are scattered from the surface and annihilate elsewhere in
the sample chamber.

Typically between one and three components are required to accurately fit a spectrum.
Different components in the fit indicate different initial states of the positron prior to anni-
hilation. For instance, one might find two components of which one indicates annihilation
in bulk and a second component with a larger lifetime that indicates annihilation of a
positron trapped in a vacancy. It is not always possible, however, to discriminate between
different components of a lifetime spectrum, e.g. when two similarly sized vacancies exist
in a system. In such cases, a fit with a single component is likely to give a good fit, but
the obtained lifetime will be a weighted average of the constituent lifetimes.

1.1.4 Angular correlation of the annihilation radiation
In ACAR experiments deviations from perfect anti-collinearity, expected for electron-
positron pairs at rest, of the two annihilation photons are measured. The deviations are
a result of the non-zero total momentum of the annihilating electron-positron pair.

In the ideal case, one would measure directly the momentum density of the electrons
in the material. It turns out, however, that several effects cause a distortion. First, due to
the Coulomb repulsion between the ions of the material with the positron, the measured
momentum distribution will contain a much larger contribution from the valence electrons
than from core electrons. Due to the large difference in the momentum distribution of
valence electrons and different core shell electrons, one can still measure the contribution
of the core electrons, though. It just takes more time to accumulate a sufficient signal
from the core electrons.

Second, as we will show in a later section, the positron distorts the momentum
distribution of the electrons in the material. Two effects come into play. First, we
note that the observed momentum distribution depends on the positron’s groundstate
momentum distribution. This means that if the positron is, e.g., confined in a potential
well, the observed momentum distribution will broaden. Second are enhancement effects;
due to the conditional nature of the many-body wavefunction, the momentum distribution
of an electron-positron pair residing at the same point in space (required for annihilation)
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Figure 1.4: The 2D-ACAR setup at TU Delft. Panel (a) shows one of the two scintillation
cameras (detector), which are used to measure the angle between the annihilation photons.
The positron beamline in the background is coupled to the reactor and provides a high
intensity positron flux that can be tuned in the energy range between 100eV − 13.5 keV.
A closer view of the sample chambers are shows in panel (b). The POSH-ACAR sample
chamber is coupled to the reactor beam. The bulk-ACAR chamber is operated with
a conventional radioactive source, due to the higher penetration depth of the highly
energetic unmoderated positrons. Panel (c) shows a schematic of the setup.

is not the same as the individual electron and positron momentum distributions at that
point. For instance, if one were to fix the positron at a given position in the sample, it is
conceivable that the electrons will react to this and form a cloud around the positron
(due to the attractive Coulomb interaction). This distortion of the electron density with
respect to its ground state in real space is reflected in momentum space.

In practice, Two-dimensional Angular Correlation of the Annihilation Radiation
(2D-ACAR) experiments employ two positron-sensitive detectors (such as scintillation
detectors) that are positioned several metres from the sample. Fig. 1.4 shows the 2D-
ACAR setup from TU Delft. Decreasing the distance to the sample increases the count
rate but at the same time decreases the momentum resolution. The limiting factor in
these type of experiments is typically the count rate, which is directly linked with the
beam intensity. ACAR experiments were used to measure Fermi-surfaces before Angular
Resolved Photoemission Spectroscopy (ARPES) became widespread. Despite the latter
being superior in some ways, ACAR experiments still find their applications in areas
where ARPES measurements have limited applicability due to stringent requirements on
sample preparation. The study of colloidial quantum dots, presented in a later chapter, is
one such example. Another difference between ARPES and ACAR is that the former is
mainly a surface selective technique as the photoelectrons have to be close to the surface
in order to escape without scattering. ACAR on the other hand, can be used for both
bulk and surfaces, as the γ-rays only interact weakly with the sample.

Since a one dimensional projection of the momentum density is often sufficient for
chemical characterization of the positron’s annihilation site, DBAR experiments are more
widespread in defect studies. Instead of measuring the net momentum of annihilating
electron-positron pairs, DBAR experiments determine the Doppler shift from the broad-
ening of the 511 keV annihilation line. Exactly the same information can be extracted
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from Doppler spectra as from ACAR experiments. Though, typically Doppler spectra
have a lower resolution but obtain a higher count rate.

1.1.5 Auger electron spectroscopy

The Auger process typically occurs when a hole is present in a core level of an atom. In
the actual Auger transition, an electron from a higher energy level will fill the empty
level, and transfer the freed energy to a second electron. Often, the energy difference is
sufficient to kick out the second electron, called an Auger electron, as a free particle.

Since the transferred energies in Auger processes are characteristic to different elements,
Auger Electron Spectroscopy (AES) is a useful technique to chemically characterize
surfaces1. To initiate Auger transitions, one first needs to create holes in the core levels.
Both X-rays and energetic electron beams can be used for this purpose but their downside
is that they create a large secondary electron background which is unrelated with the
actual Auger electrons. Weiss et al. showed that the core holes can also be created through
electron-positron annihilation [7]. Even though the probability of annihilation of positrons
with core electrons is small, it is sufficient to create a strong Auger signal. The advantages
of positrons over more traditional beams is twofold. First, the core electron and positron
disappear from the sample as two γ-rays, which interact very little with the sample, and
hence create practically no secondary electron background. Second, the positron beam
can be low energetic, which reduces significantly impact induced electron emission. In
fact, recent advances in slow positron beams have allowed measurements that are nearly
completely free of a beam induced secondary electron background. Several discoveries
related with Auger processes have been made using positrons. Amongst them are the
realization that low energy positrons can initiate electron emission if they transition
from their (incident) scattering state to the groundstate in the sample, which is often
a surface state. The technique is relatively new and is coined AMPS [5]. Next is the
direct observation of an Auger process initiated by a hole in the valence band, which is
usually masked by the secondary electron background with conventional AES techniques,
in contrast to the core shell levels [8]. Chapter 6 is devoted to modelling this last Auger
process.

PAES experiment usually operate with a low energetic moderated positron beam to
make sure as many positrons as possible annihilate close to the surface. Typical energies
lie between 2 − 20 eV, where beam energies of a couple eV allow direct deposition of
positrons in a surface state through positron sticking. One limitation, especially with 22Na
sources is the limited beam intensity and correspondingly low Auger electron intensity.
Thanks to its very low background, however, conventional source based beams are still
sufficient for PAES experiments. The much higher intensities of reactor based beams allow
experiments such as time-resolved PAES. For instance, one application of this technique
tracked segregation of Cu in Pd over several hours [9]. The energy distribution of the
Auger electrons can be inferred from their Time Of Flight (TOF), i.e. the time which
passes between the detection of an annihilation photon and the detection of an electron
through a specialized tube. The experimental setup of the TOF-PAES system of the
positron lab of Weiss’ group is shown in Fig. 1.5.

1Similar to ARPES, the technique is surface sensitive because excited electrons do not travel far in a
sample before being scattered.
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(a) (b)

Figure 1.5: (a) Schematic of the TOF-PAES setup used in the positron group of A. Weiss
at Arlington, Texas in the United States. Remoderated positrons are guided to the sample
with help of the E×B plates, and can be accelerated in the TOF tube. The annihilation
γ-rays are recorded with NaI and BaF2 scintillators (not shown in the schematic), of
which the latter provides the start signal for the TOF. (b) Photograph of the actual setup.

1.2 Motivation, Goals & Overview
Although positron surface studies have been quite scarce compared to bulk studies, the
topic received a considerable amount of attention in the late 1970’s and 1980’s [10–18].
Afterwards, the interest has faded, but recent years have witnessed a renewed interest in
positron surface experiments, see e.g. Refs. [5, 9, 19–21].

The purpose of this thesis is to provide theoretical support for several recent positron
experiments performed on surfaces. In Chapter 5, we study whether a positron surface
state exists near the Topological Insulator (TI) Bi2Te2Se, as PAES and AMPS studies seem
to suggest [8]. In our theoretical survey, we also investigate whether future experiments
can probe the topological states of this system. For this purpose, we extend the existing
theory for the calculation of electron-positron momentum densities to deal with systems in
which the electron spins are non-collinear. This result is presented in Chapter 2. Another
system of interest is graphene deposited on a Cu(111) substrate, studied in Chapter 6.
Here, PAES experiments have revealed the emission of Auger electrons initiated by holes
created in the valence band of graphene, which requires the presence of a surface state. In
our study, we investigate whether this interpretation can be reconciled with first-principles
calculations of the positron state. Thereafter, we study in some detail the Auger spectrum
for comparison with experiment. Finally, we try to resolve a long-standing debate on
whether positrons annihilate from a surface state or from the interior of colloidal CdSe
Quantum Dots in Chapter 7.

Before we present these applications, we explain the theoretical background relevant
to this work in Chapter 2. There, we derive how one can calculate electron-positron
annihilation characteristics from the groundstate of the system. The theoretical basis of
the Two Component Density Functional Theory (2CDFT), which we apply to calculate
electron and positron groundstate properties, is also be treated. Finally, we point out
the approximations that are involved in the calculation of electron-positron annihilation
spectra in the framework of the 2CDFT.

Simple electron-positron correlation functionals used in the 2CDFT, such as the Local
Density Approximation (LDA) and Generalized Gradient Approximation (GGA), provide
good results for most bulk studies. Unfortunately, they give an erroneous limit in the
vacuum when performing calculations for surfaces. It turns out that this is a fundamental
limitation of (semi-)local approximations, such that non-local functionals are required
in order to make progress. Research in this direction has remained limited in the field,
however, and modelling of positron surface states has hence lagged behind compared to
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their bulk counterparts.
During the 1980’s, when positron surface experiments received considerable attention,

a popular model, the Corrugated Mirror Model (CMM) [22, 23], emerged. In this model,
the erroneous potential predicted by LDA and GGA potentials is empirically corrected
to give the correct long-range limit. Despite its shortcomings and limited applicability
outside the simplest surfaces, it is still the only widely applied model. After the 1980’s
interest in the theoretical description of surface states has faded, likely due to the limited
amount of experiments in this direction. In Chapter 4 we present the details of the CMM
and apply it to a set of simple surfaces to assess its accuracy. Some of its shortcomings
are illustrated as well.

Application of non-local electron-positron functionals in literature is rather limited.
The Weighted Density Approximation (WDA) by Jensen [24] and Rubaszek [25–31] are
notable exceptions. We note that most of these references are studies of bulk systems,
with the exception of Refs. [24–26] where surfaces are represented by jellium models. We
see several factors for the limited application of non-local models in positron literature:
(i) LDA and GGA functionals generally give satisfactory results for bulk systems, (ii)
positron surface experiments have been relatively scarce compared to bulk studies, (iii)
the application of the WDA (and non-local functionals in general) is hindered by the much
higher computational resources required to evaluate them, and (iv) the implementation
of the WDA is considerably more involved than the LDA or GGA, and publicly available
implementations are not present.

A large part of this work went into the development of a WDA applicable for the study
of positron surface states. Before such a functional can be confidently applied to surfaces,
a required first step is to make sure that it gives acceptable results for annihilation
properties in bulk. This is the topic of Chapter 3, where we investigate the positron
annihilation lifetime for a set of elementary bulk material for which experimental data
is available. The application of the developed WDA to surfaces is deferred to chapter 4.
There, we compare the positron workfunctions and surface binding energies predicted by
the WDA with the CMM predictions and experiment. Next, we analyse some qualitative
features such as in how far the WDA reproduces the correct long range behaviour of the
potential. Shortcoming of the WDA approach developed in Chapter 3 are pinpointed,
and possible improvements are suggested.





Chapter 2

Theory of electron-positron
annihilation in solids

The purpose of this chapter is to introduce the basic theory required to understand the rest
of this thesis. To this end, I will first show how we can calculate PAS spectra. Afterwards,
we discuss two approximate methods to obtain the groundstate of the system. The first
is the Hartree-Fock (HF) approach, in which we directly approximate the many-body
wave function. We will see, however, that in this approximation we obtain the so-called
Independent Particle Model (IPM) for the calculation of PAS spectra, which does not
provide sufficiently accurate results as it neglects correlation effects. The second method
is the 2CDFT, which is a generalization of regular Density Functional Theory (DFT) to
include positrons as well, where the fundamental quantities are the groundstate densities.
Correlation effects can be treated in this framework, though only for the densities which
is, strictly speaking, not enough to calculate PAS spectra. We will discuss, however, how
we can get around this limitation.

2.1 Electron-Positron annihilation

2.1.1 Introduction
The purpose of the research presented in this thesis is to calculate PAS spectra from
first-principles. An obvious first element to discuss is then how to obtain electron-positron
annihilation characteristics from the system’s properties.

We restrict our discussion to the production of two photons from an initial electron-
positron pair. In the introduction, we already discussed that this two photon annihilation
is the relevant one in momentum density studies. Decay with more gamma rays is
also possible, but much less likely as they are higher order processes. One notable
exception is the three gamma decay of Ortho-Positronium (o-Ps), which cannot decay
through two photons due to conservation of angular momentum. The lifetime of isolated
o-Ps is, however, well-known and these lifetime components are easily recognized in
lifetime spectra. Deviations from the vacuum value are possible and occur due to pick-off
annihilations, i.e. annihilation of the positron with electrons from e.g. a surface in the
vicinity. We will, however, not be concerned with describing these effects in this work.
In momentum density studies where the targets are operated in coincidence mode, the
contribution to the spectrum from o-Ps is also expected to be small. Indeed, two of the

11
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Figure 2.1: The two distinct lowest order QED-diagrams that describes the annihilation
of an electron-positron pair in vacuum. The time axis is chosen to point upwards. The full
lines indicate electron and positron propagators and the wavy lines photon propagators.

three photons would have to be emitted antiparallel to each other, which is generally not
the case in the three-gamma decay.

2.1.2 Isolated electron-positron pair
The annihilation rate of an isolated electron-positron pair to a pair of photons is well-known
from particle physics. Though, as is common in that field, these rates are expressed as a
Lorentz invariant that is convenient in collision experiments: the cross section. According
to Ref. [32] the cross section σ for a two particle collision is easily related to the transition
rate Γfi as

σ = Γfi
vrel

, (2.1)

where vrel is the relative speed of the particles involved.
The cross section for an isolated electron-positron pair is obtained by calculating the

contribution from the lowest non-trivial Feynmann diagrams, shown in figure 2.1, and
multiplying it with the phase space available for the final states. The result is given
by [33, 34]

σ = πr2
e

2τ2(τ − 1)

{(
τ2 + τ − 1

2

)
log
(√

τ +
√
τ − 1

√
τ −
√
τ − 1

)
− (τ + 1)

√
τ(τ − 1)

}
(2.2)

with re the classical electron radius, and where

τ = t

4m2 , t = (pe + pp)2 = (k1 + k2)2, (2.3)

with pe, pp, k1 and k2 the four momenta of the electron, positron, and photons, respectively.
In the non-relativistic limit τ ≈ 1 this reduces to

σ = πr2
e

2
√
τ − 1

. (2.4)

In this limit we have up to first order for the energy

Eα ≈ m
(

1 + |pα|
2

2m2

)
, (2.5)

such that
τ ≈ 1 + 1

4m2 (pe − pp)2. (2.6)
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After restoring c1, we thus obtain for the cross section

σ ≈ πr2
ec

vrel
, (2.7)

from which we can easily extract the transition rate

Γfi = πr2
ec. (2.8)

2.1.3 Spin considerations
Note that the result in Eq. (2.8) is the result averaged over the initial spins of the positron
and electron. Let us examine how to obtain the non-averaged result, which will be used
in the rest of the derivation. We follow the arguments given in Ref. [35], which treats the
decay of Positronium (Ps) in the non-relativistic case.

First, we note that we can separate the centre of mass and relative motions of the
isolated electron-positron pair. The centre of mass motion can be described by a plane
wave, and that of the relative motion by (a linear combination of) rescaled solutions of
the H atom. The spin angular momentum is either in a singlet state (Para-Positronium
(p-Ps)) or a triplet state (o-Ps) with S = 0 and S = 1, respectively.

In the decay process, the parity of the system has to be conserved as it is a fundamental
symmetry of QED, i.e. the state of the system is either symmetric or anti-symmetric
under inversion of all vector quantities. For the relative motion we have Pψnlm(r) =
ψnlm(−r) = (−1)lψnlm(r) and for the spin part, the parity is determined by the product
of the intrinsic parity of the particles. Since particles and anti-particles have opposite
intrinsic parity, we get a minus by applying the parity operator. The total parity of the
Ps system is thus −(−1)l. Since in the non-relativistic case the annihilation takes place
in a point in space only the l = 0 terms can contribute, such that the photon states
resulting from the decay should have odd parity. It is always possible to construct an n
photon state that has the correct Bose symmetry, and furthermore can be written as a
linear combination of even and odd parity. Hence, the parity operator does not restrict
the number of photons produced in the decay of the Ps state.

Next, Ps is an eigenstate of charge conjugation, which exchanges particles and anti-
particles. We can calculate the eigenvalue easily in this case by noting that applying
the parity operator and exchanging the spins of the particles is equivalent to charge
conjugation. From the spin exchange, we obtain −(−1)S , such that we get (−1)l+S under
charge conjugation. For the photon states, the charge conjugation changes the sign of the
associated electrical fields, and we get (−1)n for decay into a n photon state. As a result,
p-Ps, with l = 0 and S = 0, can only decay in an even number of photons, and o-Ps, with
l = 0 and S = 1, in states with an odd number of photons.

From this last argument, we note that only the singlet state contributes to the
two-gamma annihilation, hence the non-averaged transition rate is

Γfi = 4πr2
ec. (2.9)

If we use this expression for the transition rate, we should be careful to select only singlet
states as initial states.

1The required modification is found by introducing a factor c such that the correct dimension of the
cross section (an area) is obtained.
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2.1.4 Many-body systems
So far we have obtained the transition rate for an isolated singlet electron-positron
pair with momenta pe and pp, respectively, to a two-photon state with the same total
momentum p. In condensed matter systems, however, the initial state contains Ne
electrons and a single positron, and the final state Ne − 1 electrons and two photons. To
obtain the total transition rate, we generalize the derivation for isolated pair annihilation
in vacuum.

Applying Fermi’s golden rule

According to Fermi’s golden rule, the total transition rate for annihilation of electron-
positron pairs in the sample to pairs of photons with total momentum p is given by

ρ2γ(p) = 2π
~

∑
Final States

∣∣∣〈Ψf |ĤI(p)|Ψi〉
∣∣∣2 , (2.10)

where |Ψi〉 is the Ne electron plus a single positron initial state, and |Ψf 〉 a Ne−1 electron
|Φν〉 plus two photon final state. The perturbation ĤI that couples the initial state to the
final state is the same as for annihilation in vacuum. We already know the result of the
matrix element between an initial plane wave electron and positron pair to a two photon
final state, which simplifies the calculation. Indeed, if we can count the number of initial
electron-positron plane wave states with total momentum p, then we can substitute the
result of Eq. (2.9) for each of these pair. We can accomplish this by defining [36]

ĤI(p)→ Â(p) =
∫
dpedpp âepe â

p
pp Ŝσe,σpδ(pe + pp − p). (2.11)

The symbol âαp is the annihilation operator for a particle of type α in a plane wave
state with momentum and spin pα = {p, σ}. To ensure we only count singlet states, we
introduced the singlet projection operator [37]

Ŝσe,σp |σe, σp〉 =
(

1
4 − σ

eσp
)

(|σe, σp〉 − | − σe,−σp〉) . (2.12)

Counting indistinguishable final states

We make the reasonable assumption that we can factorize the final state as a Ne − 1
electron wave function |Φν〉 multiplied by two plane wave photon states. This enables us
to carry out the summation over indistinguishable photon and electron states separately.
The result of Eq. (2.9) is ultimately derived from an application of Fermi’s golden rule
and includes the phase space considerations for the final photon states, such that we
substitute 2π/~

∑
photon states → 4πr2

ec. Next, in PAS experiments, we cannot distinguish
between the different possible Ne − 1 electron states |Φν〉. Therefore

ρ2γ(p) = 4πr2
ec
∑
ν

〈Ψi|Â†(p)|Φν〉〈Φν |Â(p)|Ψi〉 (2.13)

= 4πr2
ec 〈Ψi|Â†(p)Â(p)|Ψi〉, (2.14)

where we exploited the completeness relation
∑
ν |Φν〉〈Φν | = 1.

Note that the result of a PAS experiment is not influenced by the final electronic state
of the system. This absence of ‘matrix element effects’ is an advantage over some other
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spectroscopic methods. Take for example ARPES, which uses light to excite electrons
from their groundstate to an empty state above the Fermi level. The electrical field of the
incident light is the perturbation that couples the initial and final states. It is possible
that certain transitions are forbidden by fundamental conservation rules. For example,
the initial and final states cannot have the same total angular momentum due to the unit
angular momentum carried by the indicdent photon. Also the energy and polarization of
the incident light can affect the results in non-trivial ways [38, 39].

Counting electron-positron pairs

We can write the many-body initial state in terms of field operators as [40]

|Ψi〉 = 1√
Ne!

∫
dre1 . . . dr

e
Nedr

p Ψ(re1, · · · , reNe , r
p)

× ψ̂e+(re1) · · · ψ̂e+(reNe)ψ̂
p+(rp)|0〉 (2.15)

where ψ̂α+(r) creates a particle of species α at position and in spin state r = {r, σ}.
Expanding the field operators in terms of plane-wave creation operators

ψ̂α+(r) =
∫

dk
(2π)3/2 â

α+
k e−ik·r, (2.16)

and substituting the Fourier transform of the many-body wave function

Ψ(ke1, . . . , keNe , k
p) =

∫
dre1

(2π)3/2 · · ·
dreNe

(2π)3/2
drp

(2π)3/2

× e−ik
e
1·r

e
1 · · · e−ik

e
Ne
·reNe e−ik

e
p·r

p

Ψ(re1, . . . , reNe , r
p), (2.17)

we can rewrite our many-body state as

|Ψi〉 = 1√
Ne!

∫
dke1 . . . dk

e
Nedk

p Ψ(ke1, · · · , keNe , k
p) âe+ke1 · · · â

e+
ke
Ne

âp+kp |0〉. (2.18)

Using the standard anti-commutation rules between fermion operators, and commuta-
tion rules between electron and positron operators, we can show that the effect of the
annihilation operator, Eq. (2.11), on the initial state gives

Â(p)|Ψi〉 = 1√
Ne!

∫
dpedpp δ(pe + pp − p)Ŝσe,σp

×
∫
dke1 . . . dk

e
Nedk

p Ψ(ke1, . . . , keNe , k
p)

×
Ne∑
j=1

(−1)j+1δ(pe − kej )δ(pp − kp)
Ne∏
i=1
i 6=j

[
âe+ke

i

]
|0〉. (2.19)

For convenience in the rest of the derivation, we will write Ψs(. . . ) for the wavefunctions
to denote the effect of the singlet projection operator. This eliminates the sum over the
spins of the annihilating pair

∫
dpedpp =

∑
σe,σp

∫
dpedpp →

∫
dpedpp. At the end of
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the derivation we just need to remember that we need to take the singlet combinations of
the annihilating pairs. The matrix element of interest gives

〈Ψi|Â†(p)Â(p)|Ψi〉 = 1
Ne!

∫
dpe′dpp′dpedpp δ(pe′ + pp′ − p)δ(pe + pp − p)

×
∫ (Ne∏

i=1
dke′i dk

e
i

)
dkp′dkp Ψs∗(ke′1 , . . . , ke′Ne , k

p′)Ψs(ke1, . . . , keNe , k
p)

×
Ne∑
j=1
j′=1

(−1)j+j
′
δ(pe − kej )δ(pp − kp)δ(pe′ − ke′j′)δ(pp′ − kp′)

× 〈0|
Ne∏
i′=1
i′ 6=j′

[
âeke′

i′

] Ne∏
i=1
i 6=j

[
âe+ke

i

]
|0〉. (2.20)

To work out this rather daunting expression, let us first focus on the matrix element
between the creation and annihilation operators on the last line. The result can be obtained
by noting that (i) every creation operator must have a matching annihilation operator with
the same momentum and spin k in order to obtain non-zero results, (ii) if the previous point
is satisfied, we can form (Ne−1)! such pairs, and (iii) 〈0|âek1

. . . âekNe â
e+
kNe

. . . âe+k1
|0〉 = 1 [40].

Next, note that we generally need to permute the annihilation operators to bring them
in the order depicted in point (iii), which gives an extra minus sign if the number of
permutations is odd. However, the same permutations can be applied to the coordinates
of Ψs∗ and due to its anti-symmetry, the minus signs cancel and all (Ne − 1)! terms give
the same result. Finally, using a similar argument, one can realize that also all (Ne)2

terms contained in the sums over j and j′ give identical results. Our result becomes,
choosing the index of the annihilating electron equal to Ne,

〈Ψi|Â†(p)Â(p)|Ψi〉 = Ne

∫
dke1 · · · dkeNe−1

×
∣∣∣∣∫ dkedkp Ψs(ke1, . . . , keNe−1,k

e,kp)δ(ke + kp − p)
∣∣∣∣2 (2.21)

We get for the electron-positron momentum density

ρ2γ(p) = 4πr2
ecNe

∫
dke1 . . . dk

e
Ne−1

∣∣∣∣∫ dkp Ψs(ke1, . . . , keNe−1,p− kp,kp)
∣∣∣∣2 (2.22)

= 4πr2
ecNe

∫
dτ

∣∣∣∣∫ dr e−ip·rΨs(re1, . . . , reNe−1, r, r)
∣∣∣∣2 , (2.23)

where in the last step, we have performed the Fourier transformation to real space. Here,
dτ =

∏Ne−1
i=1 drei denotes integration over all electron coordinates that do not belong to

the annihilating electron-positron pair. Notice that the last expression tells us that the
electron and positron have to reside at the same point in space in order to annihilate.

To obtain the total transition rate, or the positron annihilation lifetime, we still need
to count the total number of accessible final photon states. This gives2

λa = 1
τ

=
∫

dp
(2π)3 ρ

2γ(p) = 4πr2
ecNe

∫
dτdr |Ψs(re1, . . . , reNe−1, r, r)|2. (2.24)

2The factor 1/(2π)3 gives the number of accessible states within in the infinitesimal volume dp [32].
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We have succeeded in writing down the expressions for the electron-positron momentum
density ρ2γ(p) and the total annihilation rate λa in terms of the many-body wave function
of our system. For practical calculations, we still need to make a connection with a single
particle picture as obtaining the many-body wave function is unfeasible. In the next
section, we introduce what can be interpreted as electron-positron pair wave functions
that will prove useful for this purpose.

2.1.5 Geminals
In the above equations, we can recognize the electron-positron Two-Body Reduced Density
Matrix (2RDM), defined as

Γep(re, rp, re′, rp′) = Ne

∫
dτ Ψ∗(re1, . . . , reNe−1, r

e, rp)

×Ψ(re1, . . . , reNe−1, r
e′, rp′). (2.25)

Though, instead of the 16 possible spin components of the above 2RDM, we should only
consider the 4 combinations that have non-zero singlet components. It is convenient to
introduce the so-called ‘natural geminals’ αj which are the orthonormal eigenfunction of
the electron-positron 2RDM [41] and can be interpreted as electron-positron pairing wave
functions,

Γep(re, rp, re′, rp′) =
∑
j

gjα
∗
j (re, rp)αj(re′, rp′). (2.26)

The singlet components of the 2RDM are obtained by taking the singlet projected geminals,
which will again be denoted with a superscript s. Substituting the above in Eq. (2.23)
gives

ρ2γ(p) = 4πr2
ec
∑
j

gj

∣∣∣∣∫ dr e−ip·rαsj(r, r)
∣∣∣∣2 . (2.27)

For the annihilation rate, we obtain

λa = 1
τ

= 4πr2
ec
∑
j

gj

∫
dr|αsj(r, r)|2 (2.28)

2.1.6 Spin-polarized measurements
We continue our derivation by taking into account the polarization of the incoming
positron beam3, which determines the initial states. An approximation we will make is
that the positron does not experience any interactions acting on its spin, such that it
retains the polarization with which it enters the sample. As a consequence, the geminals
are collinear in the positron spin. If we represent a general geminal by a four-component
spinor, we get

αj(pe, pp) =


αj(pe, ↑,pp, ↑)
αj(pe, ↑,pp, ↓)
αj(pe, ↓,pp, ↑)
αj(pe, ↓,pp, ↓)

 =
(
αj(pe, ↑,pp)
αj(pe, ↓,pp)

)
⊗ χp, (2.29)

3The derivation in this section is part of my work published in Ref. [42].
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where ⊗ denotes the direct product and χp is the positron spinor. In most experiments,
the incident positron beam is has a given polarization P along a chosen quantization axis.
Analogous to the density matrix formalism, we sum over all distinct initial states of the
systems and weight them by their statistical probability

ρ2γ(p) = 4πr2
ec

∑
i={χp+,χ

p
−}

pi
∑
j

gj

∣∣∣∣∫ dr e−ip·rαsj,i(r, r)
∣∣∣∣2 , (2.30)

where extra sum is taken over the polarization states for the positron, and the extra
subscript on the geminal denotes the positron spinor that enters the expression of the
geminals.

Let us have a closer look at the most common case, in which we have an unpolarized
positron beam. If we take the quantization axis along the z-axis, we have for the spin-up
and spin-down positron spinors

χpz+ =
(

1
0

)
and χpz− =

(
0
1

)
, (2.31)

respectively, which both have equal statistical weights pχp
z+

= pχp
z−

= 1/2. The singlet
component of the geminals is in general

αsj(re, rp) = 1√
2

[αj(re, ↑, rp, ↓)− αj(re, ↓, rp, ↑)] , (2.32)

such that the singlet components for the oppositely polarized positron states become

αsj,χp
z+

(re, rp) = −αj(re, ↓, rp, ↑), αsj,χp
z−

(re, rp) = αj(re, ↑, rp, ↓). (2.33)

Substituting these in the equation for the momentum density gives

ρ2γ(p) = πr2
ec
∑
j

gj

∫∫
drdr′ e−ip·(r−r′){α∗j (r′, ↑, r′, ↓)αj(r, ↑, r, ↓)

+ α∗j (r′, ↓, r′, ↑)αj(r, ↓, r, ↑)}. (2.34)

Using spin-polarized positron beams, it is possible to measure the spin dependence
of the momentum density. This sounds plausible since the positron can only annihilate
with electrons that have the opposite spin. In practice this requires two measurements;
each one with the opposite direction for the positron spin. The magnetization is then
obtained by taking the difference between the measured spectra [42–44]. If we take again
the polarization along the z-axis, and call the polarization of the bundle P , then we
have for the first measurement pχp

z+
= P , pχp

z−
= (1− P ), and vice-versa for the second

measurement. The difference between the two measurements is then

ρ2γ(p) = 4πr2
ec
∑
j

gj

∫∫
drdr′ e−ip·(r−r′)

×
{

2P − 1
2

[
α∗j (r′, ↑, r′, ↓)αj(r, ↑, r, ↓)

]
+ 1− 2P

2
[
α∗j (r′, ↓, r′, ↑)αj(r, ↓, r, ↑)

]}
(2.35)

Similar derivations can be made for the magnetization along the other axes, where the
positron spinor then has to be replaced by

χpx+ = 1√
2

(
1
1

)
, χpx− = 1√

2

(
1
−1

)
, χpy+ = 1√

2

(
1
i

)
, χpy− = 1√

2

(
1
−i

)
. (2.36)
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In the ideal case of a perfectly polarized positron beam, we can bundle our results in
a more concise form. For this, we first introduce the following notation for the Fourier
transform of the contact term of the geminals

Aj,σeσp(p) =
∫
dr e−ip·rαj(r, σe, r, σp). (2.37)

The four possible terms that can be obtained by taking the modulus squared of a general
singlet geminal are then contained in the matrix

Γj(p) =
(

|Aj,↑↓(p)|2 Aj,↑↓(p)A∗j,↓↑(p)
Aj,↓↑(p)A∗j,↑↓(p) |Aj,↓↑(p)|2

)
. (2.38)

The magnetization of the momentum density extracted from experiment is then given by

ρ2γ
i (p) = 2πr2

ec
∑
j

gj Tr[σiΓj(p)], (2.39)

with i = {x, y, z} and where σi are the Pauli matrices. Note that the unpolarized case is
obtained by setting σi = 1/2, i.e. half the unit matrix.

Finally, we note that positron annihilation lifetime experiments are generally performed
using unpolarized beams, for which the relevant expression then becomes

λa = 1
τ

= πr2
ec
∑
j

gj

∫
dr
[
|αj(r, ↑, r, ↓)|2 + |αj(r, ↓, r, ↑)|2

]
(2.40)

2.2 The Many-Body Problem
In the previous section, we saw that we need the 2RDM in order to calculate the desired
PAS characteristics. Since these are derived from the many-body wave function, we have
to solve the following many-body Schrödinger equation[

Ĥe + Ĥp + ĤI + Ĥee + Ĥpp + ĤII + Ĥep + ĤeI + ĤpI

]
Ψ = EΨ (2.41)

Here,

Ĥα = −1
2

Nα∑
i=1

mi∇2
i (2.42)

is the usual kinetic energy operator, with mi the mass of the particle, Nα is the number
of particles of a particular species, and ∇2

i the Laplace operator. The subscript e is used
to denote electrons, p for positrons and I for ions. Next we have

Ĥαβ = cdc

Nα∑
i=1

Nβ∑
j=1

qiqj
|ri − rj |

, (2.43)

the interaction between the particles. In this equation, qi is the charge of particle i and
ri its position in space. The constant cdc is equal to 1/2 when α = β to avoid double
counting.

It is well-known, however, that directly solving the many-body Schrödinger equation
is unfeasible due to the dimensionality of the problem. Hence, approximations have to
be made in order to obtain any results at all. The first simplification we will make is
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the Born-Oppenheimer approximation [45]. This basically means that we will ignore the
quantum character of the ions. The approximation is justified because the masses of the
ions are much larger than of the electrons (and positrons) in the material, which implies
that they are much more localized in space and move slowly compared to the electrons and
positrons. As a consequence we can treat them as classical particles, that create a static
potential for the electrons and positrons, which adapt instantaneously to this potential.
In the rest of this chapter, we will use Ψ to denote a wave function that depends on the
electron and positron coordinates, and only parametrically on the ionic coordinates. We
will also write the Hamiltonian as Ĥ = Ĥe + Ĥp + Ĥee + Ĥpp + Ĥep + Vext, where the
latter term indicates the ‘external’ potential. This includes, among external fields, the
potential created by the presence of the ions.

Further simplifications can be achieved by writing the remaining electron-positron
wave function as a product of one-particle wave functions (orbitals). In the simplest case,
this leads to the HF equations. Alternatively, one can treat the electron and positron
densities as the fundamental quantities, which are inherently three dimensional. This is
the 2CDFT approach, and we will study some aspects of it in this chapter.

2.2.1 Many-Body quantities
Let us introduce some quantities that are important in the rest of the thesis. The first
is the joint probability density between two particles α and β, ραβ . This pair density is
derived from the many-body probability density by integrating out all coordinates except
those for the particles in question. For example, if we have a system of Ne electrons, we
get the electron pair density4

ρee(re1, re2) = Ne(Ne − 1)
∫
dre3 · · ·

∫
dreNe

∣∣Ψ(re1, . . . , reNe)
∣∣2 , (2.44)

and similarly, for a system with Ne electrons and a single positron,

ρep(re, rp) = Ne

∫
dre2 · · ·

∫
dreNe

∣∣Ψ(re1, . . . , reNe , r
p)
∣∣2 , (2.45)

gives the electron-positron pair density. The contact density is obtained by evaluating
the pair density at the same position for both particles, e.g. ρee(r, r). This is not to be
confused by the particle density, where an additional coordinate is integrated out; for the
positron density

ρp(rp) =
∫
dre ρep(re, rp). (2.46)

As shown in the previous sections, the contact density is used to calculate the annihilation
rate. Note from Eq. (2.24) that the annihilation rate is proportional to the contact
density.

For the rest of this thesis, it is important to realize that the densities ρe and ρp give us,
respectively, the probability of finding an electron or positron at some position in space,
independent of where the other particles are. This means that, given that a positron is at
rp, the probability of finding some electron at re, is not given by multiplying the densities
ρep(re, rp) 6= ρe(re)ρp(rp). Instead, we have ρep(re, rp) = gep(re, rp)ρe(re)ρp(rp), where
gep(re, rp) is the electron-positron pair correlation function. It is defined by the equation
just shown, and thus describes the change in the probability, relative to the unconditional

4Due to the symmetry of the wave function it does not matter which electron coordinates we choose,
i.e. the subscript numbers have no special meaning.
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probability, of finding an electron at re given a positron density ρp at rp. The change in
the electron density at re due to a positron at rp is then given by5

∆ρe(re|rp) = (gep(re, rp)− 1)ρe(re). (2.47)

We will call this quantity the screening cloud and it has a central role in the rest of this
thesis. Finally, the screening cloud at zero distance γ(rp) = ∆ρe(rp|rp) is important for
the calculation of PAS spectra and is called the enhancement factor.

2.3 Hartree-Fock

We now proceed by presenting one of the most well-known methods to approximately
solve the many-body Schrödinger equation, namely HF theory. In this approach, we are
interested in minimizing the total energy of the system

E = 〈Ψ|Ĥ|Ψ〉, (2.48)

with some approximate wave function Ψ. Since electrons are fermions, the wave function
has to be antisymmetric under exchange of two of these particles. If we would only be
dealing with electrons, the simplest wave function build from one-particle wave functions
with the correct permutation symmetry is a Slater determinant

Ψ(re1, . . . , reNe) = 1√
Ne!

∣∣∣∣∣∣∣
ψe1(re1) . . . ψeNe(r

e
1)

...
. . .

...
ψe1(reNee ) . . . ψeNe(r

e
Ne

)

∣∣∣∣∣∣∣
≡ |ψe1 . . . ψeNe |.

(2.49)

Here the ψei are the orbitals and rei = {rei , σei } denotes both the position rei and spin σei
of the particle. It is simple to extend this to include positrons as well. Since all positrons
are also identical particles, we have the same anti-symmetry requirement for the wave
function under permutation of a pair of positrons. Next, since electrons and positrons
have opposite charge, the Hamiltonian is in general not invariant under permutation of an
electron and positron coordinate. Hence, there is no symmetry under exchange of electrons
and positrons. The trial wave function for our problem is thus given by the product of
two Slater determinants Ψ(re1, . . . , reNe , r

p
1 , . . . , r

p
Np

) = |ψe1 . . . ψeNe | × |ψ
p
1 . . . ψ

p
Np
|, one for

the electrons and one for the positrons.
One can find the set of electron and positron orbitals that minimize the total energy

by applying the variational principle

δ

(
E −

∑
i,j

λei,j
[
〈ψei |ψej 〉 − δi,j

]
−
∑
i,j

λpi,j
[
〈ψpi |ψ

p
j 〉 − δi,j

])
= 0, (2.50)

where we introduced the Lagrange multipliers λαi,j to ensure that the orbitals of each
species are orthonormal. The derivation then proceeds as usual [45] and the result is

5Assuming that there is a positron at rp means ρp(rp) = 1.
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given by Ĥe +
Ne∑
i=1

(
Ĵei − K̂e

i

)
+

Np∑
i=1

Ĵpi

ψek = εekψ
e
kĤp +

Np∑
i=1

(
Ĵpi − K̂

p
i

)
+

Ne∑
i=1

Ĵei

ψpk = εpkψ
p
k.

(2.51)

We thus end up with two sets of equations, one for the electrons and one for the positrons.
In the above equations, we have the direct interaction

Ĵαi ψ
β
k (r) = qαqβ

(∫
dr′
|ψα(r′)|2

|r− r′|

)
ψβk (r), (2.52)

where the prefactor qαqβ ensures a positive result if the interaction is between particles of
the same species, and negative if they are between electrons and positrons. The exchange
interaction only exists between particles of the same species6, and is given by

K̂α
i ψ

α
k (r) =

(∫
dr′

ψα∗i (r′)ψαk (r′)
|r− r′|

)
ψαi (r). (2.53)

Just as with the regular HF equations, these equations have to be solved self-consistently.
In this case, however, one would need three self-consistent loops instead of one. This
because we have an equation for each of the species, and because they are coupled to each
other. We will see momentarily, however, that in many cases this can be significantly
simplified.

2.3.1 The zero-density limit
Let us now focus on the special case where we only have a single positron in the sample.
This case is the relevant one in most PAS setups, as the beam intensity is low compared
to the typical lifetime of a positron in a sample7. Since we have Np = 1, we see that the
direct and exchange interaction for the positron cancel in Eq. (2.51). This makes sense as
the positron should not interact with itself. As a consequence, the positron equation only
depends on the electron orbitals, which removes one of the self-consistent loops.

A next simplification comes from the fact that in many cases the potential is periodic
in at least one dimension. This is for instance the case when we study a perfect bulk
crystal (or surface). The positron state is then delocalized, and, if we assume we have
only a single positron in the system, the positron orbital approaches zero everywhere,
ψp1(r) ≈ 0, ∀r. As a consequence, the direct interaction with the positron state in the
electron equation vanishes, Ĵp1ψek(x) = 0. This removes the dependence of the electronic
part of the equations on the positron orbital.

6The exchange interaction does not affect particles in orthogonal spin states either, which is implicit
in equation (2.53). Note, though, that we are treating the orbitals as spinors in this section, and it is
thus possible that the spin parts of different orbitals are not aligned. Hence, there is exchange interaction
between the like components of the spinors.

7The brightest documented positron beam at the time of writing is NEPOMUC, which produces
slightly more than 109 positrons/second [46]. The lifetime of positrons is typically a few 100 ps. This
means that the likelihood of two positrons encountering each other in the sample is vanishingly small.
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In the zero-density limit the equations (2.51) thus simplify to[
Ĥe +

Ne∑
i=1

(
Ĵei − K̂e

i

)]
ψek = εekψ

e
k[

Ĥp +
Ne∑
i=1

Ĵei

]
ψpk = εpkψ

p
k.

(2.54)

Compared to the original problem, this is an important simplification. Indeed, we see that
we can solve the electronic problem separately, without any dependence on the positron
part of the problem. This means that we can use existing electronic structure programs to
solve the electron part of the problem and use its output to tackle the positron problem.
Furthermore, the positron problem is reduced to a simple Schrödinger equation for a
particle moving in an external potential, which unlike the HF equations, does not have to
be solved self-consistently.

2.3.2 Limitations of the Hartree-Fock approach
Since the HF approach gives us an approximation for the many-body wave function,
we can proceed with the evaluation of the annihilation formulas derived in an earlier
section. Our many-body wave function is build from a Slater determinant for the electrons
multiplied with a positron orbital. We then have for the 2RDM

Γep(re, rp, re′, rp′) =
Ne∑
j=1

(
ψej (re)

)∗
ψej (re′) (ψp(rp))∗ ψp(rp′). (2.55)

It is easy to identify from Eq. (2.26) that the natural geminals are simply the product of
the one-particle wave functions in the HF approximation

αj(re, rp) = ψej (re)ψp(rp), (2.56)

and the eigenvalues gj are replaced by the occupation number of the electronic orbitals.
The annihilation rate in the HF approximation becomes

λa = πr2
ec

∫
dr ρe(r)ρp(r), (2.57)

where ρe(r) =
∑Ne
i |ψei (r)|2, and ρp(r) = |ψp(r)|2.

In the above results, we have ρep(r, r′) = ρe(r)ρp(r), such that the pair correlation
function g(r, r′) = 1. Hence, a positron does not attract a screening cloud in the HF
approximation, ∆ρe(re|rp) = 0. The positron orbital is still determined by the electronic
orbitals (and vice-versa if the zero-density limit is not taken), but there is no reaction
of the electron density when one ‘pins down’ the positron at a specific position. This
approximations is therefore often called the IPM model in PAS literature. Physically, we
expect of course an enhancement of the electron density around the positron position.
This is also confirmed by positron lifetime experiments, which measure much higher
annihilation rates than predicted with the IPM model. Hence, in order to get useful
results, we should include correlation effects that describe the electron enhancement
around the positron. In the following section, we will see one such approach to this
problem.
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2.4 Two Component Density Functional Theory
In this section, we discuss the 2CDFT, which allows us to include correlation effects in
the calculation of the electron and positron groundstate densities. This is already an
improvement over HF, where these effects are not incorporated. We will see, though, that
the framework only provides the electron and positron groundstate densities, but not
the pair density. Hence, strictly speaking, we cannot evaluate annihilation properties in
the framework. We could of course approximate the pair density with the product of
the electron and positron groundstate densities, but that would yield the IPM we have
encountered in the HF approach. A common workaround exists by introducing a density
enhancement term, which models the reaction of the electron density upon pinning of the
positron to point in space8.

In this section, we start by generalizing DFT to include the positron component of
the system, which gives the 2CDFT. Afterwards, we examine the simplifications that
are obtained by taking the zero-density limit. At the end of the section, we discuss how
annihilation properties are commonly calculated starting from the groundstate results
obtained from 2CDFT calculations, and the approximations involved.

2.4.1 The energy functional
In regular DFT [47, 48], the Hohenberg-Kohn theorems tell us that there exists a universal
functional of the density F [ρe], which is independent of the external potential, such that
the total energy functional defined by

Etot[ρe] = F [ρe] +
∫
dr ρe(r)vext(r) (2.58)

is minimized by the exact groundstate density for the given external potential vext(r).
Furthermore, the minimum of the above energy functional is equal to the true groundstate
energy of the system. The extension of the theory to include effects of the electron spins
can be found in Refs. [49, 50]. We will neglect spin effects in the rest of this section,
however.

One can easily generalize the proofs given in Ref. [47] to include densities for several
kinds of particles. In our case, this means that total energy functional

Etot[ρe, ρp] = F [ρe, ρp] +
∫
dr ρe(r)veext(r) +

∫
dr ρp(r)vpext(r) (2.59)

is minimized for the exact groundstate electron and positron densities ρe0 and ρp0. From
now on we will use Eext[ρe, ρp] to denote the energy due to external potentials. The
universal functional F [ρe, ρp] should give the same energy as the groundstate energy
calculated from the wave function, i.e.

F [ρe, ρp] = Etot[Ψ] = 〈Ψ|Ĥe + Ĥp + Ĥee + Ĥpp + Ĥep|Ψ〉, (2.60)

but, like for regular DFT, no exact expression in terms of the electron and positron
densities is known.

The Kohn-Sham (KS) approach [51], which has been extended to deal with electron-
positron mixtures [52, 53], provides a way to get accurate approximations of the total

8Although practically always applied in conjunction with 2CDFT, the enhancement correction could
also be applied to HF results.
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energy functional. To this extent, we write the total energy functional as

Etot[ρe, ρp] = F [ρe] + F [ρp] + EH [ρe, ρp] + Ec[ρe, ρp] + Eext[ρe, ρp], (2.61)

The first two terms on the right-hand side are the universal functional for a single
component gas, which is written as

F [ρα] = T [ρα] + EH [ρα] + Exc[ρα]. (2.62)

The kinetic energy T is obtained by taking the kinetic energy of the (fictitious) non-
interacting electron or positron gas at the same density as the interacting system. The
second term is the Hartree energy

EH [ρα] =
∫∫

drdr′ ρ
α(r)ρα(r′)
|r− r′| , (2.63)

and the last term is everything of the single component gas we do not know exactly
in terms of the density, i.e. the exchange and correlation energy. This includes both
corrections to the kinetic and Coulomb energies of the single component system. Next, we
have the Hartree energy between the electron and positron density in Eq. (2.61), which is
very similar the Hartree energy between like particles, but instead lowers the energy

EH [ρe, ρp] = −
∫∫

drdr′ ρ
e(r)ρp(r′)
|r− r′| . (2.64)

Like the exchange and correlation energy for the single component functionals, we gather
the remaining energy which we do not know how to express in terms of the electron and
positron densities in Ec[ρe, ρp], and call it the electron-positron correlation energy. Note
that since the many-body wave function is not anti-symmetric between electrons and
positrons, as discussed in Sec. 2.3, it contains no contribution from exchange.

2.4.2 Minimization of the energy
In order to find the groundstate of the system, we need to minimize the total energy
functional in Eq. (2.61). At the minimum, the energy has to be stationary under a
variations of both the electron and positron densities around the groundstate values ρe0, ρ

p
0.

Denoting the variations as δρe, δρp, we need to determine

δEtot = Etot[ρe0 + δρe, ρp0 + δρp]− Etot[ρe0, ρ
p
0] = 0. (2.65)

Interaction terms

Expanding up to first order, we find for the single component functionals

δF = δT +
∫
dr (vαH(r) + vαxc(r)) δρα(r), (2.66)

with α = {e, p} and where we defined the Hartree potential

vαH(r) =
∫
dr′ ρ

α
0 (r′)
|r− r′| , (2.67)

and exchange and correlation potential

vαxc(r) = δExc[ρα]
δρα(r)

∣∣∣∣
ρα=ρα0

. (2.68)
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We will work out an expression for the variation of the kinetic energy in the next paragraph.
The variation of the remaining terms in the energy functional gives∫

dr [veext(r) + vpH(r) + vec(r)] δρe(r) + [vpext(r) + veH(r) + vpc (r)] δρp(r), (2.69)

with vαext the external potential experienced by the particles, and the electron-positron
correlation potentials9

vαc (r) = δEc[ρe, ρp]
δρα(r)

∣∣∣∣
ρα=ρα0

. (2.70)

Kinetic energy; The Kohn-Sham system

What remains to be sought is the variation of the kinetic energy, for which I will follow
the derivation given in Ref. [54]. This question brings us to the central assumption of the
KS approach: We assume that there exists a local, orbital independent potential vαf (r)
for each component of the system, such that the groundstate density of a non-interacting
system moving through it, is the same as the groundstate density of the interacting
many-body system. How this potential can be determined, will become apparent later in
the derivation. Since each fictitious system is non-interacting, their groundstates can be
represented exactly by a Slater determinant Ψα

f (rα1 , . . . rαNα) = |ψα1 . . . ψαNα |. The orbitals
ψαi that result in the lowest energy for the non-interacting system are obtained by solving(

−1
2∇

2 + vαf (r)
)
ψαi (r) = εαi ψ

α
i (r), (2.71)

which are of course the KS equations. The density is obtained from the Slater determinant
by summing the moduli squared of the occupied orbitals

ρα(r) =
Nα∑
i=1
|ψαi (r)|2. (2.72)

The kinetic energy of the system is easy to evaluate

T [ρα] = −1
2

Nα∑
i=1
〈ψαi |∇2|ψαi 〉. (2.73)

Minimization of the kinetic energy

We can now determine the variation of the kinetic energy, which gives

δT = −1
2

Nα∑
i=1

∫
dr
[
δ(ψαi )∗(r)∇2ψαi (r) + (ψαi )∗(r)∇2δψαi (r)

]
(2.74)

= −1
2

Nα∑
i=1

∫
dr
[
δ(ψαi )∗(r)∇2ψαi (r) + δψα(r)∇2(ψαi )∗(r)

]
, (2.75)

9I realize that the notation is quite similar to the exchange and correlation potential between like
species. Whenever the subscript does not contain x for exchange, I will denote the correlation between
electrons and positrons. The focus of this thesis is on the electron-positron correlation potential, so the
chance for confusion in the rest of the work should be small.
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where last step follows from Green’s second identity10. Since the orbitals satisfy the KS
equations, we find

δT =
Nα∑
i=1

εαi

∫
dr δ|ψαi (r)|2 −

Nα∑
i=1

∫
dr vαf (r)δ|ψαi (r)|2. (2.76)

Expanding the variation up to first order

δ|ψαi |2 ≈ (δ(ψαi )∗)ψαi + (ψαi )∗(δψαi ) = |ψαi + δψαi |2 − |ψαi |2, (2.77)

we note that the first term of Eq. (2.76) vanishes since both the first and second term in
the last result have to be normalized. Next, since δρα(x) = δ(

∑Nα
i=1|ψαi |2), we arrive at

the result
δT = −

∫
dx vαf (x)δρα(x). (2.78)

Note that at this point, do not have a formal expression for the external potentials vαf .

Minimum of the total energy; Kohn-Sham equations

If we now collect the results (2.66), (2.69) and (2.78), we see that the variation of the
total energy functional becomes

δF =
∫
dx δρe(x)

{
−vef (x) + veH(x) + vpH(x) + vexc(x) + vec(x) + veext(x)

}
+
∫
dx δρp(x)

{
−vpf (x) + veH(x) + vpH(x) + vpxc(x) + vpc (x) + vpext(x)

}
. (2.79)

The variation can only vanish for an arbitrary variation of the densities around their
groundstate value if the terms in between the curly brackets vanish separately. This
determines the external potentials for the non-interacting electron and positron systems.

vαf (x) = veH(x) + vpH(x) + vαxc(x) + vαc (x) + vαext(x). (2.80)

Thus, solving the set of coupled equations(
−1

2∇
2 + veH(x) + vpH(x) + vexc(x) + vec(x) + veext(x)

)
ψei (x) = εeiψ

e
i (x) (2.81)(

−1
2∇

2 + veH(x) + vpH(x) + vpxc(x) + vpc (x) + vpext(x)
)
ψpi (x) = εpiψ

p
i (x) (2.82)

for the Ne and Np lowest orbitals, gives us the groundstate densities through Eq. (2.72)
that minimize the energy functional defined in Eq. (2.61).

2.4.3 Zero-density limit
In this thesis, we will be working in the zero positron density limit of the 2CDFT. As
with the HF approach, this implies an important practical simplification. In this section,

10For finite systems, the wave function have to be square integrable such that the boundary terms
vanish. For periodic systems, we also have

∫
c
f∇2g =

∫
c
g∇2f , where the integration is taken over the

primitive cell, but for a different reason. See e.g. Ref. [55] Appendix I for a proof.
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we investigate how the two component KS problem changes in the zero positron density
limit.

Note that the Hartree potential is equivalent to the direct interaction defined for
Hartree-Fock

vαH(x)ψαi (x) =
Nα∑
i=1

Ĵαi ψ
α
i (x), (2.83)

such that we can apply the same reasoning as presented in Sec. 2.3.1. We thus have
vpH(x) = 0 in the electron KS equation. Next, since we only have a single positron,
we do not have to approximate a many-body positron wave function with a product
of single positron wave functions. As a consequence vpxc certainly does not contain
correlation effects. Next, we argued in Sec. 2.3.1 that the exchange potential for a single
particle systems cancels the self-interaction of the Hartree potential. We conclude that
vpH(x) = −vpxc(x), such that both drop out of the positron KS equation.

Let us now have a more detailed look at the electron-positron correlation energy. In
regular DFT, one can write the exchange-correlation energy as [51]

Exc[ρ] =
∫
dx ρ(x)εxc[ρ(x)], (2.84)

provided that the density varies sufficiently slowly. In the above equation, εxc is an
energy per particle. This forms the basis of (semi-) local density functionals, where εxc
is then taken as a function of the local density, and possibly gradients and higher order
derivatives of the density.

In multi-component mixtures, the situation is generally more complicated, as the
correlation energy cannot be written as a particle density multiplied with an energy per
particle [53]. Fortunately, in the zero-density limit, it is possible to write a LDA in the
form

Ec[ρe, ρp] =
∫
dx ρp(x)εepc (ρe(x)). (2.85)

The local correlation energy εepc (ρe(x)) is defined as the energy difference of an electron
gas at density ρe(x) without and with a single immersed positron [56]. The correlation
potentials obtained from this expression are

vec(x) = δEc[ρe, ρp]
δρe(x) = 0, (2.86)

vpc (x) = δEc[ρe, ρp]
δρp(x) = εepc (ρe(x)). (2.87)

If we gather the above results, we find that the 2CDFT equations reduce to(
−1

2∇
2 + veH(x) + vexc(x) + veext(x)

)
ψei (x) = εeiψ

e
i (x), (2.88)(

−1
2∇

2 + veH(x) + vpc (x) + vpext(x)
)
ψpi (x) = εpiψ

p
i (x). (2.89)

There are two important simplifications with respect to the full 2CDFT problem. The
first is that the electron part of the problem is decoupled from the positron problem,
which means we can use existing electronic structure codes without modifications to
obtain the groundstate electron density. The second is that, the positron equation only
depends on the electron density, and thus does not have to be solved self-consistently.
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2.4.4 Annihilation characteristics
One issue with the calculation of PAS spectra in the framework of 2CDFT is that strictly
speaking, we only have access to the groundstate electron and positron densities. For
the calculation of the positron annihilation lifetime and the electron-positron momentum
density, we require, however, the geminals or the contact density.

From our discussion of the many-body wave function and its derived properties, we
note that we can in principle obtain the contact density from the groundstate electron
and positron densities as

ρep(r, r) = gep(r, r)ρe(r)ρp(r). (2.90)

The pair-correlation function is, however, a system dependent quantity which we cannot
calculate in the framework of 2CDFT.

A common approximation is to replace the pair correlation function by the pair
correlation function of a homogeneous electron gas. This pair correlation function only
depends on the distance between the particles, and the local electron and positron
densities gep(re, rp)→ geph (|re − rp|, ρe(re), ρp(rp)). The pair correlation function at zero
distance is commonly called the enhancement factor, γ(ρe(r), ρp(r)) = geph (0, ρe(r), ρp(r)).
Several parametrizations (fits to the results of accurate many-body calculations) of the
enhancement factor exist in literature both for finite positron densities [53, 57], as the
zero-density limit which only depends on the electron density [53, 56, 58]. The positron
annihilation rate is then obtained by calculating

λa = 1
τ

= πr2
ec

∫
dr ρe(r)ρp(r)γ(ρe(r), ρp(r)). (2.91)

The LDA enhancement factor is well-known to slightly overestimate the annihilation
rate, which in turn is attributed to the overestimation of the core electron enhancement.
This overestimation can be cured to some extent by introducing a correction based on
the gradient of the electron density [59–62]. Note that in the calculation of annihilation
rates, the individual contributions of different electron shells to the total annihilation
rate is generally less important. This makes that the overestimation of the core electron
annihilation is not severe in many cases, since the overlap of the positron with these
states is small due to the strong Coulomb repulsion of the ions.

In contrast to lifetime studies, the relative contribution of core electrons to the
spectrum is important in many momentum density studies. Since core electrons of
different species give characteristic contributions to the momentum density, the medium
to high momentum part of Doppler spectra are often used to characterize vacancy type
defects. As the lifetime is usually not simultaneously measured with Doppler spectra,
these are typically normalized to unity. This operation puts the emphasis on the correct
relative contributions to the spectrum, instead of the total annihilation rate.

Ref. [41] addresses the question whether it is feasible to obtain an accurate result for
the electron-positron momentum density starting from a set of single particle functions. It
turns out that a reasonable approximation of the geminals can be obtained by taking the
product of the Kohn-Sham orbitals with the square root of the LDA density enhancement
factor

αj,σeσp(r, r) = ψejσe(r)ψ
p
σp(r)

√
γ(r), (2.92)

and setting the geminal eigenvalues equal to the occupation numbers of the electron
orbitals.
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In defect identification, one often uses ratio plots to investigate the relative increase
and decrease of the momentum density spectrum relative to a defect-free bulk sample, i.e.
ρ2γ(p)/ρ2γ

ref(p). The above approximation provides overall a reasonable approximation
for the momentum density, but oscillates around the exact result. A state-dependent
enhancement factor

αj,σeσp(r, r) = ψejσe(r)ψ
p
σp(r)√γj,σe (2.93)

on the other hand gives worse overall agreement in the least-squares sense, but due to
its rather monotonic discrepancy with the exact results, provides better results in ratio
plots. In the above equation, the state-dependent enhancement factor is often defined
by the enhancement of the state-dependent annihilation rate in the LDA over its IPM
annihilation rate [61, 63], i.e.

γj,σe =
λLDA
j,σe

λIPM
j,σe

, (2.94)

where the state-dependent annihilation rates are defined as

λLDA
j,σe = πr2

ec

∫
dr |ψejσe(r)|2ρp(r)

√
γ(r), (2.95)

and similarly λIPM
j,σe but with γ(r) = 1.



Chapter 3

The Weighted Density
Approximation

3.1 Introduction

In this chapter, we introduce the framework of the WDA. We start by presenting the
adiabatic connection formula, which is an exact expression for the electron-positron
correlation energy. Central in the adiabatic connection formula is the electron-positron
pair-correlation function. The WDA is obtained by choosing an approximate form for
this pair-correlation function, and constraining it by means of a sum rule. Due to its
importance in the WDA, we will spend some time discussing exact constraints that can
be placed on the pair correlation function. Next, we will introduce the practical WDA
scheme from Ref. [25].

We investigate the WDA mainly to describe positron states at surfaces. Indeed, due
to its non-local nature, it is capable to reproduce long ranged correlation effects required
to obtain the correct image potential at surfaces, as opposed to semi-local functionals
such as the LDA and GGA. Extensive experimental data, of typical properties such as
lifetimes and surface binding energies, are unfortunately not available in literature. As a
consequence, it is hard to test the accuracy of the WDA directly on surfaces. Instead, we
will use the WDA to calculate a set of bulk lifetimes of simple elemental materials for
which experimental data are available.

We will see that the initial formulation of the WDA yields lifetimes in poor agreement
with experiment. The rest of the chapter is devoted to proposing modifications to the
WDA scheme in order to obtain more accurate results. One of the modifications is a
gradient correction, which has been investigated as a correction to local functionals,
but has not been considered in literature as a correction to the non-local WDA. The
other modification we propose is a shell partitioning scheme in which core and valence
electrons are treated on a different footing. This idea has been investigated before, e.g. in
Ref. [28], but the details will differ in our implementation for reasons we will explain in
the respective section. At the end of the chapter, we propose to use a sum rule parameter
to fit the experimental bulk lifetimes. This approach is in the same spirit as hybrid
functionals in electronic structure calculations, where the ammount of the exact exchange
is used to fit the experimental badgap. The results presented in this chapter are published
in Ref. [64].

31
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3.2 Theory
An exact expression for the electron-positron correlation energy can be written in terms
of a coupling constant (or adiabatic) integration [1, 24]

Ec[ρe, ρp] = −
∫ 1

0
dλ

∫∫
dredrp ρ

e(re)ρp(rp) {g(re, rp; [ρe, ρp];λ)− 1}
|re − rp| , (3.1)

where ρe and ρp are the electron and positron densities, respectively. The pair-correlation
function g(re, rp; [ρe, ρp];λ) describes the relative increase of the electron density ρe at re
given a positron density ρp at rp. The pair correlation function is itself a functional of
the electron and positron densities, and thus, unknown a priori. The coupling constant
λ takes the electron-positron interaction from the non-interacting, λ = 0, to the fully
interacting limit, λ = 1.

The electron-positron correlation potentials are obtained by taking the functional
derivatives w.r.t. the densities. The positron correlation potential then becomes

δEc
δρp(r) = −

∫ 1

0
dλ

∫
dre ρ

e(re)
|re − r|

{
{g(re, r, [ρe, ρp];λ)− 1}+ ρp(r) δg

δρp(r)

}
. (3.2)

The result for the electron correlation potential is obtained by swapping the appropriate
indices. In the zero-density limit, which will be the focus of the rest of this chapter, we
have ρp(r) ≈ 0, such that the electron correlation potential vanishes everywhere. This is
in accordance with our discussion of the zero-density limit of the previous chapter. Also
the expression for the positron simplifies since the term with the functional derivative
of the pair correlation function gives no contribution to the potential. This allows us to
identify what we will call the ‘screening cloud’

∆ρ(re|rp;λ) = ρe(re){g(re, rp; [ρe, ρp];λ)− 1}, (3.3)

and we can interpret the correlation potential as the coupling constant averaged Coulomb
interaction of the positron with its screening cloud

vpc (rp) = −
∫ 1

0
dλ

∫
dre∆ρ(re|rp;λ)

|re − rp| . (3.4)

The expressions (3.3) and (3.4) are formally exact but do not provide a scheme for
practical calculations. The pair-correlation function g is an unknown, system-dependent
function, and in order to proceed the true pair-correlation function must necessarily
be approximated. In fact, the LDA is obtained by replacing both the pair-correlation
function and the electron-density prefactor in eq. (3.3) by the corresponding quantities
from the homogeneous electron gas at the local density ρe(rp),

∆ρLDA(re|rp;λ) = ρe(rp){gh(|re − rp|; ρe(rp);λ)− 1}, (3.5)

where the pair-correlation function for the homogeneous electron gas gh depends only on
the electron-positron distance. Note that in the zero-density limit, the pair-correlation
function does not depend on the local positron density. Since the resulting potential then
only depends on the local electron density at rp, one can immediately parametrize the
correlation energy as a function of the local electron density. In the WDA, the idea is
to keep the pair correlation function of the homogeneous electron gas, but restore the
proper electron density prefactor in the equation for the screening cloud. In order to
retain some of the favourable properties of the LDA, one additionally imposes conditions
on the screening cloud in the form of a sum rule, e.g. on the net induced screening charge.
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3.2.1 Sum rule
An important reason why the LDA for electron-electron correlations works well for a
large variety of systems is that it is in principle the exact functional for the homogeneous
electron gas. It thus also satisfies all exact conditions that can be imposed on the
functional in the homogeneous case. In order to construct reliable functionals that go
beyond the LDA, it is important in this spirit to satisfy known exact constrains and limits
as far as possible1. In this connection, Gunnarsson et al. realized that the sum rule on the
electron-electron exchange-correlation hole, which states that the hole corresponds to the
removal of one electron worth of charge, is a key reason for the success of the LDA [67].

Note, though, that the preceding sum rule arises because the interaction involves
indistinguishable particles, so that the exchange-correlation energy should cancel the
self-interaction of the Hartree term. Since electrons and positrons are different particles,
there is no formal reason for the same sum rule to hold for the electron-positron correlation
cloud. In fact, the Coulomb correlation can now only cause a redistribution of the electron
charge, suggesting that the positron’s correlation cloud should integrate to zero2. This
observation is in conflict with the ‘charge neutrality’ condition, which is imposed in several
works on the electron-positron WDA [25, 27, 30]. This sum rule states that the positron
always has a screening cloud which is exactly opposite to its own charge.

Despite these remarks, some statements can be made about the short-range part of the
correlation cloud. In a very dilute homogeneous electron gas, one expects the formation of
Ps− [56], indicating that a charge equal to twice the electron charge is accumulated in the
screening cloud. With this motivation, we assume that the screening cloud can be written
as ∆ρ = ∆ρsr+∆ρlr, where the first term is to capture the short-range part and the second
for the long range part of the screening cloud. From electron-positron pair-correlation
data, we expect that the short range part can be described roughly by an exponentially
decaying function, while the long range part resembles Friedel oscillations [56, 68, 69].
Fig. 3.1(a) shows in the full lines the recent quantum Monte Carlo data for a single
positron immersed in a homogeneous electron gas of Ref. [56], and largely confirms
our assumption. Indeed, the dashed and dotted lines in Fig. 3.1(a) show exponentially
decaying functions (defined later in this chapter) that fit the data well for high densities
and the short-range part at lower densities. Subtracting the exponential part shows the
Friedel oscillations that develop at lower densities, as shown in Fig. 3.1(b). If we now
make the assumption that the charge in the short range part is compensated by the long
range part3, i.e.

∫
dre ∆ρsr(re|rp;λ) = −

∫
dre ∆ρlr(re|re;λ), we can write∫

dre ∆ρsr(re|rp;λ) = Q(rp; ρe;λ). (3.6)

It is important to recognize that, in general, the screening charge Q depends on the screen-
ing properties of a specific system and thus does not provide a sum rule that holds for all
systems. Indeed, going back to the case of Ps− formation, we have limρe→0Q(rp; ρe; 1) = 2
for the homogeneous electron gas. On the other hand, for metallic systems, we generally
expect Q(rp; ρe; 1) ≈ 1, whereas for good insulators, it seems reasonable to assume
Q(rp; ρe; 1)� 1.

1Some of the most widely applied electron-electron exchange-correlation functional are designed this
way [65, 66].

2Formally, this statement is correct only for finite systems. In an infinite system, the integral over the
correlation hole could strictly take a finite value [68].

3Note that inclusion of the volume element upon integration of the screening cloud significantly alters
the data shown in Fig. 3.1(a). A plot of (g(r)− 1)r2 shows that it is plausible that the long range part
compensates the short range part.
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Figure 3.1: (a) Plot of electron-positron pair correlation data from the quantum Monte
Carlo calculations (gQMC) of Ref. [56] for several values of the electron density parameter
rs (full lines). Dashed and dotted lines show the pair correlation functions used in
Rubaszek’s WDA (gR), Eq. (3.14), and the constrained pair correlation function (gC) of
Eq. (3.13). The enhancement factor used in these results is the one paramaterized by
Drummond et al. [56], derived from the same quantum Monte Carlo data. (b) Relative
difference of the pair correlation functions with the Monte Carlo data. Unlike panel (a),
the results are plotted as function of the dimensionless parameter r/rs to show relevant
regions on the same plot. Note that excellent agreement is obtained at high densities (low
rs) but that the defined pair correlation functions do not capture the Friedel oscillations
that develop at lower densities (high rs). Remarkably, gC , which satisfies the cusp
condition, shows somewhat worse agreement with the Monte Carlo results than the more
phenomenological gR. Large deviations near the origin are due to numerical noise in the
Monte Carlo results.
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We would already like to emphasize that there is a large difference between the ‘true’
screening charge Q, i.e. the one we would obtain from the true pair correlation function
and ground state densities, and the screening charge Q, which is used in the sum rule of
the WDA. We will show below, for example, that even though for insulators Q is expected
to be small, a large Q has to be imposed in order to obtain reasonable results within the
WDA. The reason for the counterintuitive behaviour will become apparent later in this
chapter.

In order to construct a WDA functional for the electron-positron problem, Jensen
and Walker [24] imposed the charge-neutrality condition, which states that the screening
and positron charge should be exactly equal. Formulated differently, they assumed that
the positron charge is always perfectly screened by the electrons. Their charge-neutrality
condition takes the form ∫ 1

0
dλ

∫
dre ∆ρ(re|rp;λ) = 1. (3.7)

Rubaszek [25, 27], on the other hand, interpreted the coupling constant λ as the scaled
charge of the positron, and hence concluded that the charge neutrality condition should
hold for any λ. This slightly different interpretation yields the sum rule∫

dre ∆ρ(re|rp;λ) = λ, ∀λ ∈ [0, 1]. (3.8)

From our discussion above, it is clear that these sum rules should not be interpreted
as exact conditions on the electron-positron screening cloud but merely represent an ad
hoc assumption on the screening properties of the system. In fact, a priori there is no
guarantee that imposing either of these conditions will yield improved results.

3.2.2 Electron-positron pair correlation function
If the electron-positron pair correlation function were known exactly for a given system,
we could obtain the exact KS potential for the positron through equation (3.4). As
mentioned before, however, the exact pair correlation function is in general not known
and an essential step in the WDA is the replacement of the true pair correlation function
by the one for the homogeneous electron gas (in the zero-density limit)

g(re, rp; [ρe, ρp];λ)→ gh(r; ρe(re);λ), (3.9)

where r = |re − rp|. Also, the pair correlation gh is not known in closed form, and
additional assumptions have to be made to obtain a useful expression. In the remainder
of this section, we first discuss the known part of the pair correlation function, then
introduce a reasonable general form based on the exact limit at low electron densities,
and finally, we impose additional exact conditions which will be seen to almost completely
determine gh.

An important constraint we can place on the pair correlation function is that it
should reproduce the enhancement factor γ of the LDA in the fully interacting case, i.e.
γ(ρe(r)) = gh(0; ρe(r); 1). The gh(0; ρe; 1) dependence of the pair correlation function
alone is not sufficient, though, to obtain a useful form of the pair correlation function.
One can make progress by assuming that the short-range part of the screening cloud
resembles the Ps atom. Since the Ps problem is equivalent to the Hydrogen problem with
rescaled length and energy scales, we can take the functional form of the radial part of
the 1s orbital

gh(r; ρe(re);λ) = 1 + α(ρe(re);λ)e−β(ρe(re);λ)r, (3.10)
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where several choices for α and β can be made. Interestingly, a number of parametrizations
of the LDA correlation energy and the enhancement factor γ assume that g(r; ρe; 1) =
1 + e−r/(8πρe) is an exact limit for ρe → 0 as it yield the Ps contact density [53, 58]. As
mentioned earlier, and as shown in Fig. 3.1, recent quantum Monte Carlo data confirm
that this is a reasonable assumption for the short range part of the screening cloud over a
wide range of electron densities [56].

We now discuss additional constraints on the pair correlation function. Two obvious
conditions are limr→∞ gh(r; ρe(re);λ) = 1 and gh(r; ρe(re); 0) = 1. The first condition
tells us that the electron density remains unperturbed far away from the positron and it
is satisfied by the Ps form for any reasonable choice of α and β. The second condition
simply states that electrons remain unperturbed by the presence of the positron, if
there is no interaction between them, so that α(ρe(re); 0) = 0. Next, we should recover
the LDA enhancement term in the fully interacting case, which poses the condition
α(ρe(re); 1) = {γ(ρe(re))− 1}. A final condition comes from the Coulomb interaction
between the particles, namely the Kimball cusp condition [68, 70](

∂gh

∂r

)
r=0

= −gh(0), (3.11)

from which one can easily derive that

β(ρe(re);λ) = 1 + α(ρe(re);λ)
α(ρe(re);λ) . (3.12)

Note that, with the exception of the scaling of α with λ, the Ps form of the pair correlation
function is thus completely determined by the enhancement term γ(ρe(re)). If we assume
linear scaling for α, the pair correlation function becomes

gh(r; ρe(re);λ) = 1 + λ{γ(ρe(re))− 1} exp
[
− γ(ρe(re))r
γ(ρe(re))− 1

]
, (3.13)

which is plotted in Fig. 3.1 in the dotted lines.

3.2.3 The weighted density approximation
We now present the WDA approximation developed by Rubaszek [25]. In this approach,
the starting point is the sum rule (3.8), which is imposed to hold for all rp. The pair
correlation function is assumed to take the form

gh(r; ρe(rp);λ) = 1 + λ {γ(ρe(rp))− 1} e−a(ρe(rp))r, (3.14)

where the decay length a is derived from the sum rule (3.8) for the homogeneous electron
gas

a3(ρe(rp)) = 8πρe(rp) {γ(ρe(rp))− 1} . (3.15)

For inhomogeneous systems, the sum rule is, using the pair correlation function for the
homogeneous electron gas, generally not satisfied. In order to restore it, one introduces
an effective (weighted) electron density %e(rp) at each point, i.e. one determines %e(rp)
such that

{γ(%e(rp))− 1}
∫
dreρe(re)e−a(%e(rp))|re−rp| = 1, (3.16)
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where the coupling constant dependence drops out due to the linear scaling of gh with λ,
and as a result the adiabatic integration in the expression for the correlation potential (3.4)
can be performed analytically to obtain

vpc (rp) = −1
2 {γ(%e(re))− 1}

∫
dre ρ

e(re)e−a(%e(rp))|re−rp|

|re − rp| . (3.17)

For the calculation of positron lifetimes, the local density ρe in the enhancement factor
has to be replaced by the effective density %e,

λa = 1
τ

= πr2
ec

∫
dr ρe(r)ρp(r)γ(%e(r)). (3.18)

We note that the pair correlation function in this approach does not satisfy the Kimball
cusp condition (3.11), and as discussed earlier, there is no formal reason why the sum
rule should hold. Fig. 3.1 shows, however, that for λ = 1 better overall agreement
with the quantum Monte Carlo data is obtained with this form of the pair correlation
function, than the constrained form of Eq. (3.13). We will return to investigate the effect
of modifying the sum rule in a later section.

Aside from these remarks, the pair correlation function defined by Eqs. (3.14) and
(3.15) has some favourable properties. The first is that the correlation potential for the
homogeneous electron gas obtained within this approach

vpc = −3 {γ(ρe)− 1}1/3

2× 62/3 × rs
, (3.19)

results in the correct Ps limit vpc = −1/4 Ha for the dilute electron gas, if the enhancement
factor has the correct coresponding limiting γ ∼ r3

s/6 lehaviour. In the limit rs → 0,
on the other hand, the potential goes as ∼ r−2/3

s and does not reduce to the RPA limit
∼ r

−1/2
s [71]. A second advantage is that the adiabatic integration can be performed

analytically, which reduces the required computational resources.
Fig. 3.2 shows a comparison between the LDA parametrizations of Refs. [53, 56] and

the WDA potential for the homogeneous electron gas. Note that the WDA predicts a
correlation potential which is generally more negative than the LDA. Only at very high
densities (rs < 0.9), the Drummond LDA is more negative than the WDA. The agreement
between the LDA and WDA is reasonable for the Boronski-Nieminen parametrization [53],
whereas the WDA is substantially more negative for the Drummond parametrization [56].
It is important to point out that in the study of bulk positron annihilation lifetimes
of the present chapter, only the relative values of the positron correlation potential in
different parts of the unit cell can influence the results, i.e. our results do not depend on
the absolute value of the potential.

3.3 Bulk tests
Here we consider a set of elemental bulk materials for which experimental positron-
annihilation lifetimes are available [62]. Details of the electronic structure calculations and
the implementation details of the WDA are presented in the Appendices of this chapter.
Table 3.1 gives the experimental and LDA lifetimes, obtained with the Brandt-Reinheimer
expression [25, 72, 73], the Boronski-Nieminen parametrization [53] and the Drummond
parametrization [56] of the LDA. In principle, the Drummond parametrization is the most
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Figure 3.2: Comparison of the LDA potentials as parametrized by Boronski and
Nieminen [53] (BN), and Drummond et al. [56] (Dr) with the corresponding WDA
potentials of Eq. (3.19) for the homogeneous electron gas. For the enhancement factors,
we took the parametrizations from the same references.

accurate one currently available but the Boronski-Nieminen parametrization is still in
wide use. The Brandt-Reinheimer expression is not a very accurate parametrization of
the enhancement term, including the fact that it does not satisfy the RPA limit, but we
consider it nonetheless because it was used in early WDA work [24, 25, 74]. The potential
for the Brandt-Reinheimer expression is not given explicitly in literature, but can be
derived by solving the WDA potential equation (3.17) for the homogeneous electron gas.
The result is given by vpc (rs) = −0.25(1 + 10/r3

s)1/3.

3.3.1 Rubaszek WDA
We now apply the WDA of Rubaszek as explained in Sec. 3.2.3 for different parametriza-
tions of the enhancement factor to a set of elemental bulk materials. Figure 3.3(a)
shows the results of our calculations. Our WDA based on the Boronski-Nieminen and
Drummond enhancements is seen to result in a systematic overestimation of the lifetime.
The Brandt-Reinheimer expression for the enhancement term gives somewhat better
results, although it does not satisfy the RPA limit, and that the Boronski-Nieminen and
Drummond parametrizations are more accurate. We expect the Brandt-Reinheimer-based
WDA to benefit from a fortunate cancellation of errors.

Insight into the failure of the present WDA approach is obtained by considering the
expression of the annihilation rate, Eq. (3.18), which shows that the decrease of the
annihilation rate (increase of the lifetime) with respect to the LDA could result from two
different factors: (1) a decrease of the electron-positron overlap, or (2) a decrease of the
enhancement factor. The first factor is driven by the change in the correlation potential
between the LDA and WDA. This effect can be quantified by comparing the lifetimes
obtained within the IPM (setting γ(r) = 1) from the LDA and WDA positron densities.
More specifically, we examine the relative increase of the electron-positron overlap for the
WDA, i.e. (λWDA

IPM − λLDA
IPM )/λLDA

IPM . The results are displayed in Fig. 3.3(b). The WDA is
seen to systematically predict a larger electron-positron overlap compared to the LDA.
This implies that, relative to the LDA, the WDA correlation potential is more attractive
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System Structure BR BN Dr Expt.
Li bcc 296 300 304 291
C diamond 81 93 95 98
Na bcc 316 328 343 338
Al fcc 158 165 161 160
Si diamond 204 211 208 216
Fe bcc 86 100 101 105
Cu fcc 88 105 106 110
Nb bcc 112 121 121 120
W bcc 89 100 100 105
Pt fcc 84 96 97 99

Table 3.1: Overview of the elemental materials considered. The third to fifth columns give
positron-annihilation lifetimes (in ps) using an LDA derived from the Brandt-Reinheimer
(BR) expression, the Boronski-Niemenen (BN) LDA and the Drummond (Dr) LDA. The
last column gives experimental lifetimes taken from Ref. [62] and references therein.

near the cores compared to the interstitial region. Since an increase of the overlap will
lead to an increased annihilation rate, our lifetime results can only be explained through
a decrease of the enhancement factor.

In this connection, it is interesting to examine the behaviour of the effective density
%e in the vicinity of a local minimum and maximum4. For the minimum case, consider
the model density

ρe(re) = 1
2(1 + sin2(r)), (3.20)

where r = |re|, and we take rp = 0. In the LDA, the screening charge is given by

∆ρ(r) = ρe(0){γ(ρe(0))− 1}e−a(ρe(0))r, (3.21)

which, by the choice of a (Eq. (3.15)), satisfies the sum rule. The dependence is plotted
(green line) in Fig. 3.4(b). In the WDA, we take into account the inhomogeneity of the
electron density around rp

∆ρ(r) = ρe(r){γ(%e)− 1}e−a(%e)r, (3.22)

where %e has to be determined such that ∆ρ(r) integrates to one. If one takes %e = ρe(0)
around a local minimum, the screening charge will be overestimated, see the orange
curves in Figs. 3.4(b) and (c). For this simple model, one can easily solve (3.16) to find
%e ≈ 1.59 ρe(0), where we used the enhancement factor parametrized by Boronski and
Nieminen [53], see the blue curves in Figs. 3.4(b)-(c). The final result is that the local
contribution to the annihilation rate decreases due to a decrease in the enhancement
term g(0, %e) ≈ 0.94 g(0, ρe(0)). Around a local maximum, the opposite conclusion holds.
Indeed, consider

ρe(re) = 1
2(1 + cos2(r)), (3.23)

for which the effective density is found to be %e ≈ 0.70 ρe(0), which yields a relative
increase of the enhancement term g(0, %e) ≈ 1.05 g(0, ρe(0)). The corresponding curves
are given in Figs. 3.4(d)-(f).

4Here, we assume that the electron density varies smoothly on the length scale of the decay length
1/a.
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Figure 3.3: Results of (a) positron annihilation lifetime calculations and (b) the relative
change in the electron positron overlap w.r.t. the LDA for various elemental materials
using Rubaszek’s [25] approach. Horizontal black lines denote the LDA lifetimes for
each system. Different colors are used to distinguish the results for various choices of
the enhancement factor γ: BR (Brandt-Reinheimer); BN (Boronski-Nieminen); and, Dr
(Drummond).

These results explain why the average enhancement factor decreases. The reason
is that even though there is a shift of the positron density towards the core regions in
the WDA, the positron is still mostly localized in the interstitial region due to the large
Coulomb repulsion from the ions. In the interstitial region, the effective density will
generally decrease due to the large contributions of the cores to the screening charge,
leading to a decrease in the enhancement factor and, hence, the annihilation rate.

We note that, physically, the charge of the positron will mostly be screened by the
valence electrons, so that core electrons should not contribute significantly to the screening
charge. If we can reduce the contribution of the cores to the screening charge, we expect
an increase in the annihilation rate. In the next sections, we will explore two such
approaches, which are motivated by these observations.

3.3.2 Gradient correction
One obvious way to reduce the screening effect of core electrons is to introduce a correction
based on the gradient of the electron density. Since the density varies rapidly near the ions
but more smoothly in the interstitial region, the density gradient provides a convenient
quantity to selectively reduce the core contribution to the screening cloud. In fact, the
GGA correction to the LDA positron correlation potential is derived from a gradient
correction to the induced contact charge density [59]

∆ρGGA(rp|rp) = ∆ρLDA(rp|rp)e−αε(rp), (3.24)

with ε = |∇ρe|2/q2
TF, where 1/qTF is the Thomas-Fermi screening length, and q2

TF =
4(3ρe/π)1/3. The parameter α can be chosen phenomenologically [59, 75], though recently
a connection with the LDA potential was found [62].

In the non-local case we want to apply this gradient correction to the electron density
surrounding the positron position. Indeed, if we would use the gradient of the electron
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Figure 3.4: Results of a simple model to illustrate the behaviour of WDA screening in
the vicinity of a local minimum (top row of panels) and maximum (bottom row of panels)
of the electron density. The position of the positron, rp, is taken at r = 0 (red dots in
leftmost figures). The second column plots the radial dependence of the screening cloud
for the LDA (green), the WDA using the local electron density (orange), and the WDA
using an effective density that satisfies the sum rule (blue). The insets show the same
quantities on a linear scale. Figures in the last column show the spherically integrated
differences between the WDA and LDA screening clouds; in order to satisfy the sum rule,
this quantity should integrate to zero.

density at the positron’s position, the screening of the core electrons would, e.g., not be
reduced in the interstitial region. We thus suggest the modified pair correlation function

g(re, rp; ρe(rp);λ) = 1 + λ {γ(ρe(rp))− 1} e−a(ρe(rp))re−αε(re). (3.25)

The screening cloud then becomes

∆ρ(re|rp) = ρe(re)e−αε(re)λ {γ(ρe(rp))− 1} e−a(ρe(rp))r, (3.26)

from which we can see that we replace the electron density with a modified version that
takes into account its local ability to screen external charges ρe(re) → ρe(re)e−αε(re).
The enhancement factor is obtained as usual by setting re = rp in the pair correlation
function, such that the lifetime formula becomes

λa = 1
τ

=
∫
dr ρe(r)ρp(r)

[
1 + {γ(%e(r))− 1} e−αε(r)

]
, (3.27)

which, with exception of the effective density %e in the enhancement term, has the same
form as the GGA correction to the lifetime formula [59].
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An important difference between the gradient correction proposed here and the GGA
correction to the LDA should be emphasized. In the LDA, the potential is too attractive
and the enhancement factor is overestimated in the core region due to an overestimation
of the local screening of the core electrons. As a result, positron lifetimes are generally
slightly underestimated. By introducing a local gradient correction [59] both these effects
are corrected, leading to an increase in the lifetime because the gradient corrections
dominate in the core regions. In our proposed gradient correction to the WDA, we attempt
to correct for the overestimation of the non-local screening of the core densities, i.e. the
contribution of the core charges to the screening cloud of the positron at a (possibly)
different position. Since the density participating in the screening is decreased with
respect to the true electron density, the screening length must be increased with respect
to the unmodified WDA in order to accumulate the same total amount of screening
charge. An increase of the screening length is obtained via a decrease of the effective
density and, as a consequence, the enhancement term is increased everywhere. A second
consequence of the increase of the screening length is that the accumulated screening
cloud is on average located further away from the positron, which lowers the Coulomb
interaction. This, and because the correction will dominate in the core regions, leads us
to expect a shift of the positron density away from the ions. If the gradient correction
to the annihilation rate is neglected, these effects will always lead to a decrease of the
lifetime. In reality, however, the results depend on the balance between the decreased
effective density and the gradient correction to the enhancement term.

The results for this approach with the Drummond enhancement are shown in Fig. 3.5
as a function of the parameter α, which controls the strength of the gradient correction.
We start our evaluation of the gradient correction by discussing the change in the electron-
positron overlap, shown in Fig. 3.5(b), which results from the change in the correlation
potential. In most cases, we see a slight, nearly linear decrease in the overlap with
increasing α. For diamond and Si, the change in the overlap quickly saturates and the
gradient correction has a relatively small effect. On the other hand, this correction is
much more pronounced for the alkali metals Li and Na. Note that the gradient correction
decreases the electron density participating in the screening cloud mainly in the core
regions. As a result, it yields a correlation potential that is less attractive in the core
regions relative to the interstitial region when compared to the uncorrected WDA, hence
explaining the observed decrease in the overlap.

Next, we discuss the decrease in annihilation rate caused by the gradient correction to
the enhancement factor. For this purpose, we replace the effective electron density %e
in the enhancement factor γ in Eq. (3.27) by the true electron density ρe. The results
are shown in Fig. 3.5(c). Note that the gradient correction has the largest effect on
the lifetime in those regions where the positron density is large. This explains why the
gradient correction has a more pronounced effect in systems such as Si and diamond,
where there are larger inhomogeneities in the valence electron density due to covalent
bonding, than in metals like Al and W.

The final lifetime results are shown in Fig. 3.5(a). The gradient correction to the
WDA is seen to decrease the lifetime with increasing α for all metals considered. This
implies that the effect of the decrease of the effective density %e in the interstitial regions
dominates over that of the decrease in the electron-positron overlap and the gradient
correction to the enhancement factor. On the other hand, for diamond, the opposite
scenario holds, leading to a slight increase of the lifetime. The results show, though, that
we cannot expect accurate lifetimes from the gradient correction to the WDA proposed
in this section. Despite a slight improvement for the metallic systems, we do not obtain
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Figure 3.5: Scaling of (a) the relative error of the lifetime and (b) the relative change
in the electron-positron overlap w.r.t. the LDA with the gradient correction parameter
α applied to the WDA. (c) Lifetimes obtained via Eq. (3.27) where the local density is
inserted in the enhancement factor instead of the effective density (unlike the results
in panel (a)). Only results obtained with the Drummond enhancement term are shown.
Markers indicate calculated results and lines serve as guides to the eye.

acceptable lifetimes with reasonable values of the parameter α, which for the Boronski-
Nieminen LDA is set to α = 0.22 [59] and for the Drummond LDA to α = 0.05 [75]. It is
clear that another approach is needed for reducing the screening of the core electrons.

3.3.3 Shell-partitioning
The idea of shell-partitioning is as old as the WDA itself and in connection with electron-
electron exchange, it provides a scheme to correct the (erroneous) large exchange interac-
tion involved in the WDA between spatially well separated electron shells [67]. Rubaszek
et al. [27, 28] proposed such a scheme for electron-positron correlation in which the
electron density is separated into core and valence parts. The latter is again split into its
s-, p-, d- and f -components in a sphere around each ion, and the part in the remainder of
the unit cell. The idea is that each of these electrons will in general contribute differently
to the screening cloud around the positron [30, 60, 76–80]. One can then introduce a
specific enhancement factor γt for each type of electron density ρet . For instance, for
the core electrons we expect γc ≈ 1 whereas for the valence electrons in the interstitial
region the LDA enhancement factor is likely a reasonable approximation. Next, for each
contribution, a sum rule is imposed, which in the work of Rubasek et al. is assumed to
take the form ∫

dre ρet (re)
{
ght (|re − rp|, %̃t(rp), λ)− 1

}
= λ

{
ght (0, ρe(rp), λ)− 1

}
ρet (rp)∑

t′

{
ght′(0, ρe(rp), λ)− 1

}
ρet′(rp)

,

(3.28)

where
%̃t(re) = ρe(re) + (%et (re)− ρet (re)), (3.29)

is the effective density for a given type of electron t. The preceding sum rule states
that various electrons contribute to the screening charge depending on the ratios of their
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local densities to the total electron density. Though, note that each electron type is
weighted by its local enhancement term ght − 1, and not the bare density. As a result,
valence electrons, for example, can contribute a larger fraction to the screening cloud
than d-electrons, even though their local density can be smaller. As required, this form
reproduces the LDA in the homogeneous electron gas [27].

Although excellent results for positron lifetimes have been obtained within this shell-
partitioning approach, a first point of critique is that no clear motivation for the above
form of the sum rule is given in Ref. [27]. For instance, it is not obvious why a separate
sum rule should be imposed for each partition of the electron density. Instead, we could
impose a single sum rule and simply use a different pair correlation function for the
individual densities as follows∫

dre
∑
t

[
ρet (re){ght (|re − rp|, %e(rp), λ)− 1}

]
= λ. (3.30)

This seems a more natural extension of the WDA, since it simply states that not all
electrons contribute equally to the screening charge and substitutes a suitable pair
correlation function to describe the effect. It avoids placing the additional restrictions
that each electron type should contribute a fixed amount of charge depending on a
strictly local quantity. Furthermore, the simplified version suggested above avoids solving
multiple sum rules, and hence makes it more computationally tractable. On the other
hand, imposing fixed fractions for the screening of each electron type depending on the
local (enhanced) density certainly avoids overestimating the core electron screening in
the interstitial region. Hence, it is guaranteed to solve the issue we are dealing with.

A second point of critique is that a number of technical issues arise. One is that
there is no unique way to split the electron density into an interstitial part and its
angular momentum components around each ion. It is also not clear what form for the
enhancement factor should be used for each l channel. Rubaszek et al. [27] used a Kahana-
type enhancement factor ε(El/EF , ρe(rp)), where El are the l-dependent linearization
energies used in the linear muffin tin orbital method and EF is the Fermi energy. Even
though the results obtained are excellent, this choice is arbitrary and depends on method-
specific computational parameters, which do not carry over easily to our present approach,
where the electron density is presented on a grid and no linearization energies are used.

In order to address these difficulties, we investigate a simpler shell partitioning scheme
in this study in which we distinguish only between the valence and core electrons. The
latter are treated within the LDA and the former within the WDA. We expect that the
essence of the problems in the previous sections will be solved by removing the core
electrons from the non-local screening. The introduction of l-dependent enhancement
factors can be expected to provide a further improvement of the results, but are likely
only of secondary importance.

We now turn to present the details of our shell-partitioning approach, which is based
on Refs. [81, 82]. We start by writing the (total) effective electron density as

%̃e(r) = %ev(r) + ρec(r), (3.31)

where ρec is the core electron density and %ev is an effective valence electron density, which
is determined by solving the modified sum rule∫

dre ∆ρ(re|rp) = {γ(%̃e(rp))− 1}
∫
dre ρev(re)e−a(%̃e(rp))|re−rp| = ρev(rp)

ρe(rp) . (3.32)
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Figure 3.6: Results of (a) positron annihilation lifetime calculations and (b) the relative
change in the electron positron overlap w.r.t. the LDA for various elemental materials
using the WDA with shell partitioning. Horizontal black lines denote the LDA lifetimes
for each system. Different colors are used to distinguish the results for various choices of
the enhancement factor γ: BR (Brandt-Reinheimer); BN (Boronski-Nieminen); and, Dr
(Drummond).

The correlation potential is given by

vpc (rp) = ρec(rp)
ρe(rp)εc(ρ

e(re)) + 1
2

∫
dre∆ρ(re|rp)
|re − rp| , (3.33)

where εc is the LDA correlation potential. Lifetimes are obtain from

λa = 1
τ

= πr2
ec

∫
dr ρe(r)ρp(r)γ(%̃e(r)). (3.34)

The electrons taken as valence electrons are listed in table 3.3.
This approach, even though somewhat arbitrary as it depends on the chosen partition-

ing between core and valence electrons, leads to substantially improved lifetime results, see
Fig. 3.6. In particular, Li and Na now give better lifetimes than the LDA, whereas WDA
results without shell-partitioning were poor. We attribute this striking improvement
to the fact that valence electrons of alkali metals are quite free electron-like. These
electrons are very efficient in screening the positron charge, so that the core electrons
contribute little to screening. For the five materials in our test set that do not have
d-electron valence orbitals and W, we obtain results comparable to the LDA using the
Drummond parametrization of the LDA potentials and enhancement factors. The results
for transition metals (expect W) are notably poorer due to an overestimation of the effect
of d-electrons in the screening process. Overall, our analysis indicates that the WDA
with shell-partitioning yields reasonable results. An l-dependent shell-partitioning should
provide further improvement.

Our tests of shell partitioning indicate that the LDA is generally more reliable than the
WDA, although the WDA appears to work well when all valence electrons are sufficiently
free-electron-like. This is a consequence of the local nature of the LDA, which prevents
localized non free electron like core electrons from strongly influencing the overall potential
and enhancement factor.
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3.3.4 Effect of the sum rule
In section 3.2.1, we pointed out that in the treatment of electron-electron correlation,
the sum rule expresses that electrons should not experience self-interaction. We also
commented that such a self-interaction is not involved in treating electron-positron
correlation effects, and we argued that there is no real reason why the short ranged part
of the screening cloud should have a value of one.

To illustrate this, let us take the gradient correction of Eq. (3.25), but instead apply
it at the positron position, we obtain

∆ρ′(re|rp) = {γ(%e(rp))− 1} ρe(re)e−αε(rp)e−a(%e(rp))|re−rp|. (3.35)

Since the term gradient correction term does not depend on the positron position, we can
rewrite the sum rule equation based on the above screening cloud in terms of the original
screening cloud but with a modified screening charge∫

dre∆ρ(re|rp) = eαε(re). (3.36)

Thus, such a gradient correction would correspond with imposing a position dependent
sum rule. It also shows that the screening charge determines an average screening length of
the system. Next, note that, even though the gradient correction decreases the screening,
it is equivalent with imposing an increased screening charge. This may seem counter
intuitive, but on setting aside physical intuition and thinking about the mechanics of
the WDA reveals the underlying reason: The gradient term uniformly decreases the
charge contained in the screening cloud, hence in order to satisfy the sum rule Q = 1
the screening length has to be increased (through tuning of the effective density) to
accumulate sufficient charge. Taking a different point of view, we can impose a larger
screening charge instead of reducing uniformly the charge of the screening cloud. This
exactly what we did in Eq. (3.36).

In the remainder of this section we discuss, within the framework of the shell-
partitioning scheme of the preceding section, effects of the imposed screening charge on
the positron lifetime, i.e. we now determine the effective electron density by solving the
modified sum rule∫

dre ∆ρ(re|rp) = {γ(%̃e(rp))− 1}
∫
dre ρev(re)e−a(%̃e(rp))|re−rp| = Q

ρev(rp)
ρe(rp) . (3.37)

In particular, we determine which value of the screening charge Q reproduces the experi-
mental lifetime. In order to accumulate more charge in the screening cloud, the effective
density %̃e must decrease, and thus we expect the lifetime to decrease monotonically with
increasing Q. The scaling of the lifetime w.r.t. the imposed value of the sum rule is
displayed in Fig. 3.7 and the related values which reproduce experimental lifetimes are
given in table 3.2.

Table 3.2 reveals interesting trends. The experimental lifetimes in free-electron-like
materials (Li, Na and Al) are all reproduced with Q ≈ 1. The d-electron materials with
exception of W, on the other hand, require significantly larger values of Q, especially Cu
and Nb. We attribute this to the presence of the 3d-shell in Cu and the 4p-shell in Nb,
both of which are physically expected to contribute little to the screening of the positron.
For Si and diamond, which have strong covalent bonds, we also find an optimal value of
Q slightly larger than one. This again is in line with the expectation that screening in
these materials is less effective than in metals, a point to which we return in the next
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Figure 3.7: Scaling of the calculated positron annihilation lifetimes with an imposed
screening charge in the sum rule. The results have been obtained with shell-partitioning
and the Drummond enhancement factor.

paragraph. The sensitivity of the lifetime w.r.t. changes in Q, see Fig. 3.7, is related to
the density ρe which enters in the sum rule, where lower densities yield greater sensitivity
to the choice of Q.

Values of Q > 1 discussed above seem counterintuitive and deserve further explanation.
Physically, we expect the true screening cloud to have Q < 1 in a good insulator. Even so,
we need to impose Q > 1 in the WDA because, like the core electrons, the electron density
in the sum rule involves electrons which do not participate efficiently in the screening
process, at least not as efficiently as free electrons, which is implicit through the use of
the pair correlation function of the homogeneous electron gas. In order to understand
how this plays out technically, assume that the positron is located at a point where the
local electron density screens the positron like free electrons, even though there may be
some electrons in the neighborhood that are very ineffective in screening, such as the
those forming strong covalent bonds. The enhancement effect in this case is described
correctly by the LDA evaluated at the local electron density. In the WDA, however, the
effective density will generally be higher than the local electron density since the regions
where electrons do not participate significantly in screening are often characterized by
large local electron densities. Thus, the (approximately) free electrons in the material are
located close to local minima, and the conclusions from our simple model of section 3.3.1
hold. These considerations also lead to an underestimation of the local enhancement
factor. There are two ways to address this problem. The first approach is to replace the
true electron density in the sum rule with a modified value (generally reduced) that takes
into account its screening capacity. We investigated this approach within the gradient
correction and shell-partitioning schemes in the previous sections. The second approach
is to allow the screening cloud to accumulate more than one electron to approximately
account for the fact that too many electrons are contained in the electron density that
enters in the sum rule equation.

With all this in mind, it is natural to wonder if the results could be improved by
applying the gradient correction of section 3.3.2 in combination with the shell partioning.
We have investigated this possibility but did not find any improvement. The reason is
that the decrease in the effective density turns out to be too small to compensate for the
gradient correction to the enhancement term in the lifetime formula, Eq. (3.27).

The screening charge Q can, in principle, be used as a phenomenological parameter in
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Li C Na Al Si Fe Cu Nb W Pt
1.06 1.10 1.00 1.02 1.13 1.43 1.66 1.60 0.92 1.35

Table 3.2: Screening charge values that reproduce experimental lifetimes using the WDA
scheme with the Drummond enhancement term and shell-partitioning.

WDA calculations5. In this vein, we could fit the Q value to reproduce the experimental
lifetime in a specific material. This value of Q can then be employed to investigate PAS
properties at defects and surfaces/interfaces more generally. This approach will be in the
spirit of the hybrid functionals in electronic structure calculations, where a part of the
exact exchange is used to correct the bandgap. It is not guaranteed that this approach
will give a reliable description of the positron properties. Tests will have to point out
whether it is a useful scheme. In the Chapter 4, we investigate whether the approach
yields accurate positron surface binding energies.

3.4 Summary
In this chapter, we have carried out an in-depth study of the WDA approach for describing
electron-positron correlations as a basis for constructing a functional, which is suitable
for modeling PAS properties of strongly inhomogeneous systems such as surfaces. We
critically examined the general theory behind the WDA and the approximations and
assumptions underlying earlier related work in the literature [24, 25, 27].

Positron annihilation lifetimes obtained from the WDA of Ref. [25] were shown to
yield poor results due to the (unphysical) involvement of core electrons in the screening
of the positron charge. This leads us to consider a gradient correction for removing the
large core-electron contribution to the screening cloud, but this approach fails to obtain
accurate lifetimes. A shell-partitioning scheme, on the other hand, was shown to yield
excellent results for positron lifetimes in free-electron-like materials. The results are
somewhat worse for insulators and most d-electron systems, though, where not all valence
electrons participate in the screening of the positron as free electrons. We have attempted
to account for this by combining the gradient correction with the shell partitioning
but, unfortunately, found no further improvement of the results. It is expected that
more sophisticated versions of the shell partitioning, such as the one from Ref. [27] can
further improve the results. Finally, we considered a semi-empirical scheme in which the
screening charge is described in terms of a single material-specific parameter, which is
fitted to reproduce experimental lifetimes; the scheme will then allow effective treatment
of positron properties in strongly inhomogeneous regions such as surfaces and large voids.
Tests will have to point out, though, if a realistic description of positron properties in
strongly inhomogeneous environments can be obtained in this way.

Notably, we do not expect the WDA and its modifications discussed in this chapter
to provide more accurate functionals (compared to the standard LDA or GGA schemes)
for treating relatively homogenous bulk systems and small defects. Instead, their use-
fulness lies in the treatment of strongly inhomogeneous systems where the semi-local
approximations are known to fail.

Recent work has shown that incorporation of exact constraints on electron-electron
correlation functionals can yield improved results in a wide variety of diversely bonded
systems [66, 83, 84]. It will be interesting to explore the extent to which improvements in

5As we have already pointed out, Q defines a material-dependent screening length.
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Li C Na Al Si
2s 2s2 2p2 3s 3s2 3p 3s2 3p2

Fe Cu Nb W Pt
3d6 4s2 3d10 4s 4p6 4d4 5s 5d4 6s2 5d9 6s

Table 3.3: Electrons treated as valence electrons in the ground state calculations and in
the shell-partitioning of Sec. 3.3.3.

WDA-based electron-positron correlation functionals could be obtained along similar lines.
A specific example will be the imposition of the Kimball cusp condition [68, 70] on the
WDA-based electron-positron functional. A different approach to achieve better results
would be to move away from results for the homogeneous gas, and instead calculate a
pair correlation function directly from the electronic structure of the material.

3.A Details of the electronic structure calculations
The electronic densities used in this chapter were obtained with the Projector Augmented
Wave (PAW) method [85] as implemented in The Vienna Ab-initio Simulation Package
(VASP) [86–88]. The plane wave cutoff and k-mesh in the calculation were checked
until the positron lifetimes were converged to within 1 ps. Due to the sensitivity of the
positron lifetimes to the lattice constant of the material, we used experimental lattice
parameters [89] for all systems. In Sec. 3.3.3, we distinguish between the core and valence
electrons in each system for which we take the same partitioning as in the electronic
groundstate calculation. The electrons taken as valence electrons are summarized in
table 3.3.

We compared the lifetimes obtained with the ground state LDA [90, 91] and Perdew-
Burke-Ernzerhof (PBE) [65] electron densities (using experimental lattice parameters)
but in none of the considered cases, we found a difference in the lifetime larger than
1 ps. Therefore, the uncertainty in positron lifetimes due to electronic and structural
properties depends mainly on the accuracy with which the electron correlation functional
used can predict lattice constants. Accordingly, only the results obtained with the LDA
are reported.

3.B Details of the positron calculations

3.B.1 Positron groundstate calculations
Positron groundstate and lifetime calculations were performed with the MIKA/doppler
package [92]. Calculations are performed in an all-electron way in the sense that the
Hartree and correlation potentials are calculated using the total electron density. The
total electron density is constructed by taking the sum of the self-consistent groundstate
electron density from VASP, and a superposition of free atomic core densities. All densities
and potentials in the positron calculations are represented on real-space three-dimensional
grids unless mentioned otherwise. The spacing of the grid is determined by the plane-wave
cutoff in the electronic structure calculations. The positron groundstate is sought using a
conjugate gradient algorithm.
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This rest of this appendix provides some details about the WDA implementation used
in this work. The primary goal in the WDA to determine the effective electron density
%e(r), by solving the sum rule, and subsequently the correlation potential vc(r) on a
regular 3-dimensional real space grid.

3.B.2 Solving the sum rule
The value of the effective density %e(rp) is determined at all grid points by searching
for the roots of the sum rule equation. To search for the roots of this equation, we first
bracket the root, i.e. determine two values %e such that each yields a different sign for the
sum rule equation. Then we update our guess for %e according to Newton’s method, with
a bisection method fallback if the updated guess lies outside the bracket interval. Despite
the necessity to evaluate the derivative of the sum rule equation in each step, our tests
have shown that this approach is roughly twice as fast as Brent’s method. The latter
method avoids analytic evaluation of the derivative and instead uses either the secant
method or inverse quadratic interpolation on the guess history.

3.B.3 Calculation of the screening charge and potential
Because it is not feasible to accurately integrate the contribution of core and valence
charges on the same grid, we separate the total charge density as, ρe(r) = ρev(r) + ρec(r),
where ρev and ρec are the valence and core charge distributions, respectively. The valence
electron density is represented on a regular 3-dimensional real-space grid, while the core
charges are stored on logarithmic radial grids, which are centered around ionic positions.
The screening charge is thus calculated as

Q = {γ(%e)− 1}
(
Qv +

∑
α

Qα

)
, (3.38)

where Qv and Qα are valence and core contributions, respectively. An analogue partition-
ing scheme is used for the calculation of the potential as well.

Core integration

Core contributions are taken into account for all ions for which dα = |Rα − rp| <
Rmax + Rc,α, where Rα denotes the position of the ion and Rc,α is its core radius. In
spherical coordinates, chosing the z-axis along Rα− rp, the contribution of an ion labeled
α is

Qα =
∫ Rmax

0
dr r2ρec(r)

∫ π

0
dθ sin(θ)

∫ 2π

0
dφ e−a

√
(dα)2+r2+2dαr cos(θ), (3.39)

where r is the radial distance from the ion. The angular integrals can be performed
analytically, and the remaining radial integral is performed numerically. We have

Qα = 4π
∑
i

wiri(ρec)α,if i (3.40)

where, for d 6= 0,

f i = 1
2adα

[(
1
a

+ |dα − ri|
)
e−a|d

α−ri| −
(

1
a

+ |dα + ri|
)
e−a|d

α+ri|
]
, (3.41)
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and, for d = 0,
f i = rie−ar

i

. (3.42)

For the correlation potential, the relevant formulas are

vαc = 4π
∑
i

wiri(ρec)α,if i, (3.43)

where
f i = 1

2adα
(
e−a|d

α−ri| − e−a|d
α+ri|

)
(3.44)

for d 6= 0 and
f i = e−ar

i

(3.45)

for dα = 0.

Valence integration

The most straightforward way to integrate the valence contribution to the screening
charge is to use a weighted sum over all grid points within a selected cutoff radius Rmax

Qv =
∑

ri≤Rmax

wi(ρev)ie−ar
i

, (3.46)

with (ρev)i = ρev(re,i), ri = |re,i − rp| and the wi are integration weights. In practice,
though, we simply set all wi equal to the volume element since in general we are working
with non-orthogonal grids6. The integral for the potential is

vvc =
∑

ri≤Rmax

wi(ρev)i
e−ar

i

ri
. (3.47)

A different integration scheme is obtained by substituting the Fourier transform of
the density in the sum rule equation

Qv =
∫
dre

(∑
G
cGe

iG·re
)
e−a|r

e−rp|. (3.48)

The integral can be carried out analytically, and the result is given by

Qv =
∑
G

8πa
(a2 +G2)2 cGe

iG·rp , (3.49)

where G = |G|. Similarly, we find that the integral in the potential equation can be
replaced by ∑

G

4π
(a2 +G2)cGe

iG·rp , (3.50)

Note that since the electron density a real quantity, we have c−G = c∗G and∑
G6=0

cGe
iG·rp =

∑
G+

2<(cG) cos(G · rp)− 2=(cC) sin(G · rp). (3.51)

6For orthogonal grids we could easily use, e.g., Simpson’s rule on the successive one dimensional
integrals.
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The sum on the right hand side runs over the positive half-space of the reciprocal space.
A first major advantage of the reciprocal space integration is that it is in principle

exact, in contrast to the real space integration scheme. The only approximation comes
from the G vector cutoff of the electron density. Usually, though, the valence electron
density can be very accurate represented with a reasonable amount of plane waves. Next
is that the reciprocal space integration is generally significantly faster to evaluate when
solving the sum rule. The reason is that the exponential factors, which are very slow
to evaluate, do not depend on the inverse screening length a, and thus do not have to
be reevaluated in every step of the root finding algorithm. For very large systems, it is
expected, however, that the real space integration becomes faster than the reciprocal
one. Indeed, in real space the number of elements in the screening charge integral is
determined by Rmax which is independent of the system size, such that the algorithm
scales linearly. In reciprocal space the overall scaling is quadratic because the number of
plane waves increases linearly with the system size.



Chapter 4

Comparison of Positron
Surface Models

4.1 Introduction
The LDA for electron-positron correlations is fundamentally limited for the description
of positron surface states. To understand this, we first examine the correct limit of
the electron-positron correlation energy in a three dimensional homogeneous electron
gas. The most stable isolated electron-positron system is Ps−, with a binding energy of
7.130 eV [93] which is slightly larger than the binding energy of 6.803 eV for Ps. In the
low-density limit of the homogeneous electron gas with a single immersed positron, Ps−
is thus expected to form. When we study surfaces, the electron density in the vacuum
region typically decays exponentially, and hence the LDA will predict a correlation energy
in the vacuum region equal to the Ps− binding energy. In reality, however, electrons at a
surface are confined to the material, and cannot follow the positron outside the surface to
form Ps−.

In the case of the GGAs from Refs. [59, 62, 75] a simple derivation shows that the
potential decays faster than exponentially at a surface. This is a consequence of the
functional form of the GGA

vpc,GGA = vpc,LDAe
−αε/3, (4.1)

where ε = (|∇ρe|/qTF)2. The Thomas-Fermi wave vector is given by q2
TF = 4(3π2ρe)1/3/π.

The parameter α is either a phenomenological constant, or an expression that depends on
the LDA potential. Both give the same super-exponential decay though.

Fig. 4.1 shows the results of positron calculations with the LDA and GGA at a CdSe
(101̄0) surface. When left uncorrected, positron surface calculations with the LDA will
generally predict a positron state in the vacuum region. This is because the correlation
energy there is significant and the confinement of the wavefunction in the vacuum is
low1. The outcome of a GGA calculation is harder to predict in general. Despite the fast
asymptotic decay, a wide potential well at the surface is possible. For the CdSe (101̄0),
for instance, the groundstate as predicted by the GGA turns out the be a surface state.

Neither the LDA or the GGA capture the correct ∼ 1/z dependence of the correlation
potential outside the surface, known from elementary electrostatics as the image potential

1There is some finite confinement energy in the calculations due to the periodic images of the slab
model.

53
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Figure 4.1: Planar averages of the positron Kohn-Sham potential (full lines), i.e. the sum
of the Hartree and correlation potentials, and of the positron densities (dashed lines) at a
CdSe (101̄0) surface. The green and orange curves represent the LDA and GGA results,
respectively. The sharp feature in the GGA potential around ∼ 5 Å is a due to numerical
noise in in the calculated gradients. Note that the LDA positron density is not shown
because the calculation predicts a positron state in the middle of the vacuum. Hence
any density we show would be a consequence of the finite width of the vacuum in our
simulation cell. The figure on the right shows the CdSe (101̄0) surface with Cd atoms in
purple and Se atoms in green.

for a point charge outside a metallic surface. This long-range correlation effect arises
because the screening cloud, which is centered around the positron inside materials,
detaches from the positron and spreads out over the surface when the positron is outside
the material. To obtain this long-range correlation effect, one has to turn to non-local
functionals. Such functionals are, however, notorious for the large increase in the required
computational resources necessary to evaluate them. Furthermore, as we have seen in
Chapter 3, accurate non-local functionals are hard to construct. It is thus not unsurprising
that the first solution to the problem in the literature was an empirical one, namely the
CMM [22], which is in fact the only widely applied approach for theoretical work on
positron surface states at the time of writing [42, 94–98]. In the WDA on the other hand,
the image potential can be anticipated to arise naturally because the correlation potential
is obtained directly from the Coulomb interaction with its screening cloud. This was in
fact already shown to be true for jellium surfaces in the early work of Rubaszek on the
WDA [25].

The purpose of this chapter is to assess the accuracy of the CMM and WDA for the
calculation of positron surface properties, by comparing calculated positron workfunctions
and surface binding energies with experiment. Additionally, we look into qualitative
features of the models, such as the asymptotic decay of the potential far from the surface.
Before presenting results of the calculations, we give a brief background on how positron
workfunctions and surface binding energies can be obtained experimentally.

The rest of the chapter is organized as follows. In Sec. 4.2 we briefly discuss experi-
mental techniques to determine positron workfunctions and surface binding energies, and
we present reference results from literature. Sec. 4.3 provides the details of the CMM.
Afterwards, in Sec. 4.4, we compare CMM and WDA results for positron workfunctions
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Figure 4.2: Schematic overview of some electron and positron energy levels. Panel (a)
shows the electrostatic (Hartree) potentials for the positron vpH and electron veH in green
and orange lines, respectively. The surface dipole D is the same in magnitude for both
particles, but has the opposite sign. It is defined as the energy difference between average
Hartree potential in the bulk of the material and the vacuum level Evac. The electron
and positron chemical potentials are given by the highest occupied level, and the lowest
available state in the bulk crystal, respectively. In panel (b), we show the positron
potential at the surface, which generally hosts a positron surface state with binding energy
Eb. For completeness, we also indicated the Ps binding energy EPs. In both figures, the
origin of the z-axis is taken at the position of the last atom at the surface.

and surface binding energies to experiments. Qualitative aspects, such as the continuation
of the positron potential across the vacuum interface, are presented in Sec. 4.5. A summary
of our most important findings and an outlook are provided in Sec. 4.6.

4.2 Experimental reference values
For many materials, it turns out that positron workfunctions are negative, as indicated
in Fig. 4.2. Hence, when positrons diffuse back to the surface after thermalization in
the bulk of the material, they are spontaneously ejected from the material if they do
not get trapped in a surface state. Positron workfunctions can thus be determined
straightforwardly from the kinetic energy of re-emitted positrons.

Modern positron beams have advanced to the point where deposition of positrons
directly into a surface state without thermalization in bulk, through AMPS, becomes
possible [21]. Fig. 1.1 shows the process schematically. The maximal kinetic energy of
an Auger electron is determined by the relation Emax = Ebeam + Eb − φe, with Ebeam
the kinetic energy of the incident positrons, Eb the binding energy of the positron to
the surface and φe the electron workfunction. By tuning the incident beam energy, one
can determine the threshold value of the incident beam energy for which the Auger peak
disappears: 0 = EThr

beam + Eb − φe. Hence, from such experiments the binding energy of
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the positron can be extracted if the sample’s electron workfunction φe is known. This
technique is however, relatively recent and only binding energies for Cu, Ag and Bi2Te2Se
obtained this way have been reported in literature [21, 42].

Older experiments relied on thermally activated Ps emission from surfaces, after
positrons diffuse back to the surface and become trapped in a surface state [11, 15].
It turns out that for many surfaces the Ps workfunction, in contrast to the positron
workfunction φp, is positive. Hence, to form Ps in the vacuum, extra energy has to be
added to the system. The activation energy Ea for the process is determined by

φe + Eb = EPs + Ea, (4.2)

where EPs = 6.8 eV is the Ps binding energy. Once the activation energy is determined,
the positron binding energy Eb can be extracted if the electron workfunction is known. In
experiment, Ea is extracted from the temperature dependence of the Ps fraction observed
in the annihilation data. Note that it is reasonable to assume that thermally desorbed
Ps originates from a positron surface state. Indeed, electron workfunctions are typically
between 4−5 eV, whereas positron workfunctions are generally negative (or close to zero),
such that Ps desorption with a positron originating from a bulk state should happen
spontaneously.

We note that both methods above require a value for the electron workfunction. As
these values are generally taken from other experiments, this adds some extra uncertainty
to the cited values. Indeed, it is known that the electron workfunction is sensitive to the
precise surface conditions of the sample as contaminants alter the surface dipole. For
this reason, we also cite the electron workfunctions in Table 4.1 used to determine the
positron binding energies. We note that by combining AMPS and thermal Ps desorption
experiments, one can determine the binding energy without knowledge of the electron
workfunction. This is the approach we use in Chapter 5 to find Eb at the Bi2Te2Se
surface.

Table 4.1 summarizes the experimental values for low index surfaces of Al, Cu, W
and diamond. Note that all positron binding energies are remarkable close, which could
be a consequence of the metallic nature of the considered systems. Indeed, for Si (100)
and Si (111), binding energies of Eb = 2.06 and Eb = 2.69 were observed [11]. This is
likely explained by the fact that for semi-conductors and insulators, the image potential
strength should be rescaled by (ε0 − 1)/(ε0 + 1) [95]2.

Instead of the Si (001) surface, we study the diamond (001) surface, mainly because of
its simpler surface reconstruction [104]. Unfortunately, we were unable to find experimental
binding energies for this surface. The main reason we consider it, however, is to investigate
the applicability of the CMM model to somewhat more complex surfaces. In particular,
we will study the (001) diamond surface in its pristine form, when dangling bonds are
passivated with H, and the (2 x 1) dimer reconstructed surface. Fig. 4.3 shows these
structures. The details of our electronic structure calculations for the systems in the
Table 4.1 can be found in appendix 4.A.

2We will not take into account this factor in the rest of this chapter since we are mainly studying
metallic systems for which the correction is negligible. Whereas for the only non-metallic system in our
tests, diamond, we did not find any reference value for the positron binding energy.
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System Ea (eV) φe (eV) Eb (eV) φp (eV)

Al (001) 0.64± 0.02a,
0.41± 0.01b

4.41a 3.03± 0.05a −0.30± 0.03c

Al (011) 0.40± 0.01a 4.28a 2.92± 0.04a

Al (111) 0.34± 0.03a,
0.33± 0.01b

4.24a 2.90± 0.06a −0.08± 0.03c

Cu (001) 0.56± 0.02a 4.59a,
4.65e

2.77± 0.05a,
2.79e

−0.24d

Cu (011) 0.64± 0.02a 4.48a 2.97± 0.05a −0.13± 0.08f

Cu (111) 0.85± 0.02a 4.85a 2.80± 0.05a −0.40± 0.09f

W (001) −3.00± 0.15g,
−3.0± 0.3h

W (011) −2.96± 0.20i

W (111) 0.48± 0.10j 4.47j 2.81± 0.10j −2.59± 0.10j

C (001) −4.13± 0.10k

C (001) + H −3.83± 0.10k

C (001) (2 x 1) −4.20± 0.10k

Table 4.1: Experimental values for the positron workfunction φp and binding energies Eb.
The latter are derived from the equation Ea = φe + Eb − EPs, where φe is the electron
workfunction and EPs = 6.8 eV is the Ps binding energy. Hence, the cited values for
the positron binding energy depend on the value of the electron workfunction, which
are experimental values taken from literature for all references cited here. a: Ref. [11],
b: Ref. [14], c: Ref. [99], d: Ref. [100], e: Ref. [5], f : Ref. [13], g: Ref. [4], h: Ref. [101],
i: Ref. [102], j : Ref. [15], k: Ref. [103].
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Figure 4.3: Unit cells of the considered diamond surfaces: Top (a) and side (d) view of
the diamond (001) surface. The H passivated surface is shown in panels (b) and (e), and
the (2×1) dimer reconstructed surface in panels (c) and (f). Results for the reconstructed
surface agree well with the results of Ref. [104].
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4.3 Corrugated Mirror Model
4.3.1 Theory
In the CMM, the image potential is enforced in the vacuum area, in such a way that (i)
continuity of the potential is ensured, and (ii) the potential and the electron density show
the same corrugations, i.e. equal values of the electron density correspond with equal
values of the image potential [22]. The positron correlation potential in the CMM can be
written as

vpc (ρe(rp)) =
{
vpc,LDA(ρe(rp)) z ≤ z0

max{vpc,LDA(ρe(rp)), vpc,im(ρe(rp))} z > z0
, (4.3)

where z0 is the image potential reference plane, vpc,LDA is the LDA potential, and [94]

vpc,im(ρe(rp)) = − 1
4(zeff(ρe(rp))− z0) . (4.4)

The effective distance to the surface is determined as

zeff(ρe(rp)) =
∫ ∞
z0

dz′ z′δ(ρe(rp)− 〈ρe〉(z′)). (4.5)

In the last equation 〈ρe〉 denotes the electron density averaged over the planes parallel to
the surface. Hence, zeff(ρe(rp)) gives the distance from the surface where the electron
density is on average equal to ρe(rp). This definition ensures that points with the same
electron density will map to the same value of the image potential, such that condition
(ii) is fulfilled. By taking the maximal value (i.e. the least negative) of the LDA and
image potential in Eq. (4.3) for z > z0, we replace the problematic behaviour of the LDA
in a continuous way by the image potential. Note that if the GGA would be used instead,
one should be more careful in the construction of the potential; Unlike in the LDA, the
correlation potential decays to zero. Hence, taking the maximum in Eq. 4.3 will not yield
the desired result. One possibility would be to track the behaviour of the potential from
the bulk into the vacuum region along each line perpendicular to the surface and impose
the image potential for z ≥ z1, where z1 is the first point for which the image potential is
less negative than the GGA potential.

The image potential arises because the positron’s screening cloud is spread over the
sample’s surface when the particle resides in the vacuum. Even though the CMM implicitly
assumes this, it provides no direct modification for the enhancement factor. Remember
that the LDA enhancement factor depends only on the local electron density, and assumes
that the screening cloud is centered around the positron and resembles the Ps atom. If
the LDA enhancement factor is applied in the calculation of the positron annihilation
rate, we can expect lifetimes are underestimated. This is indeed what experiments on Al
point out [17]. One workaround from literature suggests to assume that the positron will
not annihilate where the image potential is imposed [23]. This would, however, imply
that the pair density far in the vacuum is lower than the unperturbed electron density.
A conceptually more acceptable modification is to set the enhancement factor to unity
everywhere the image potential is imposed, i.e. use the IPM model3. Explicitly

γ(ρe(rp)) =


γLDA(ρe(rp)) z ≤ z0

γLDA(ρe(rp))Θ
(
vpc (ρe(rp)) = vpc,LDA(ρe(rp))

)
+Θ

(
vpc (ρe(rp)) = vpc,im(ρe(rp))

)
z > z0

, (4.6)

3This means assuming that the pair density and unperturbed electron density are the same.
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d d/2

x-y plane

z-axis

z0 zpzb0

Solid Vacuum

Figure 4.4: Illustration of the different parameters that enter in the Lang-Kohn method
to determine the image potential reference plane z0. The position of the positron along
the z-axis, i.e. the normal to the surface, is given by zp. Subsequent atomic layers are
separated by a distance d. The background edge zb is located half this spacing d/2 outside
the surface, measured from the topmost atom at z = 0. Offsets between the background
edge and the location of the image potential reference plane z0, are taken from results for
the jellium model.

with Θ the Heaviside function. We note that, unlike the potential, the electron-positron
contact density obtained this way is not continuous.

In linear response theory the image potential reference plane z0 corresponds with
the centre of mass of the induced charge density by an external point charge, as shown
by Lang and Kohn [105]. Non-linear effects, however, shift the position of the induced
charge density while the image potential reference plane remains fixed [106]. To apply
the CMM, we thus have to determine the center of mass of the positron screening
cloud when the particle resides far in the vacuum. Unfortunately, we do not have a
clear recipe to calculate the screening cloud from first-principles. Hence, in literature,
authors use different methods to determine an approximation of the image potential
reference plane. For instance some authors have treated z0 as a fitting parameter for the
experimental positron binding energy [107], or equated z0 with the Wigner-Seitz radius
of the material [94].

A common approximation, applied in Refs. [22, 95, 97]4, is the ‘Lang-Kohn’ method.
In this approach one takes (z0 − zb) = (z0 − zb)jellium, where the right hand side is
the location of the center of mass of the induced charge density z0 for a jellium slab
model measured from the edge of its positive background zb. These results are obtained
by applying a small homogeneous electrical field perpendicular to the surface, and are
tabulated for a few electron density values in Refs. [105, 108]. The background edge zb
for the material is set to zb = d/2, where the topmost atomic position is taken as the
origin of the z-axis and d is the spacing between subsequent atomic layers. A sketch of
the different quantities is given in Fig. 4.4.

In our work on Bi2Te2Se, discussed in more detail in Chapter 5, we have set z0 to the
background edge zb calculated from the self-consistent electron density. The procedure is
presented in more detail in Appendix 4.C, and turned out to yield a positron binding
energy in close agreement with experiment [42]. Even though we possibly obtained a
more accurate value for zb by calculating it from the electron density rather than taking
d/2, we have as such neglected the (possible) shift of the induced charge density with
respect to the materials ‘edge’. We attempt to evaluate the accuracy of the approaches
described in this and the previous paragraph in some detail in the following sections.

4Unfortunately, Refs. [95, 97] only refer vaguely to ‘the method of Lang and Kohn’ with a citation to
Ref. [105], without providing any further details. Hence, I am not 100% sure that they actually applied
the procedure described in the text, but it seems plausible.
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z0 = zb z0 = zb + (z0 − zb)jellium z0 = d/2 + (z0 − zb)jellium

System φp (eV) d/2 (Å) zb (Å) τ (ps) Eb (eV) z0 (Å) τ (ps) Eb (eV) z0 (Å) τ (ps) Eb (eV)
Al (001) −0.18 1.01 1.66+0.21

−0.26 541+20
−11 2.82+0.21

−0.31 2.48+0.21
−0.26 512+8

−6 3.55+0.16
−0.21 1.83 532 3.00

Al (011) −0.02 0.72 1.26+0.05
−0.09 547+9

−4 2.56+0.06
−0.11 2.08+0.05

−0.09 512+2
−1 3.39+0.04

−0.07 1.53 529 2.88
Al (111) 0.04 1.17 1.36+0.06

−0.10 589+16
−10 2.34+0.08

−0.15 2.17+0.06
−0.10 526+6

−0 3.24+0.05
−0.09 1.99 536 3.07

Cu (001) −0.27 0.90 0.84+0.10
−0.05 495+12

−17 1.86+0.16
−0.09 1.61+0.08

−0.05 452+1
−0 2.90+0.08

−0.05 1.66 452 2.96
Cu (011) −0.09 0.64 1.29+0.02

−0.01 429+1
−0 2.81+0.03

−0.02 2.05+0.02
−0.01 443+1

−1 3.50+0.02
−0.01 1.40 430 2.93

Cu (111) −0.57 1.04 1.01+0.04
−0.03 535+7

−8 1.94+0.06
−0.05 1.77+0.04

−0.03 473+8
−0 2.94+0.04

−0.03 1.80 478 2.97
W (001) −2.17 0.79 0.99+0.04

−0.05 589+19
−14 1.79+0.07

−0.08 1.78+0.04
−0.05 492+1

−2 2.88+0.04
−0.05 1.58 497 2.66

W (011) −2.88 1.12 1.64+0.07
−0.11 570+20

−11 2.41+0.09
−0.15 2.43+0.07

−0.11 516+2
−6 3.26+0.06

−0.10 1.91 546 2.75
W (111) −2.06 0.46 0.90+0.02

−0.01 516+3
−5 2.19+0.03

−0.02 1.69+0.02
−0.01 459+1

−1 3.19+0.02
−0.01 1.25 471 2.71

C (001) −5.35 0.45 0.52+0.02
−0.03 890+46

−31 1.44+0.04
−0.05 1.38+0.02

−0.03 498+2
−2 2.82+0.02

−0.03 1.31 504 2.73
C (001) + H 0.22 0.45 0.52+0.02

−0.03 297+1
−1 2.79+0.03

−0.03 1.36+0.02
−0.03 336+1

−2 3.58+0.02
−0.02 1.31 334 3.54

C (001) dimer −3.55 0.45 1.83+0.04
−0.04 490+2

−2 3.22+0.04
−0.04 2.69+0.04

−0.04 466+2
−2 3.95+0.03

−0.03 1.31 517 2.65

Table 4.2: Results of positron calculations with the CMM for the surfaces considered in this chapter. The second last and last line are the
results for the H passivated and the (2× 1) dimer reconstructed diamond (001) surfaces, respectively. The second and third column give
the positron workfunction φp and half the spacing between subsequent atomic layers d/2. The rest of the columns are the value of the
image potential reference plane used in the calculations z0, the calculated positron annihilation lifetimes τ and the energy of the positron
binding energy to the surface Eb. The first set of results is obtained by setting the background edge zb, calculated from the self-consistent
electron density, equal to the image potential reference plane. In the second set of results, the jellium shift of the reference plane position
(z0 − zb)jellium is added to the calculated zb. In the final results, d/2 is substituted for zb. For the positron workfunction φp, we take the
lowest positron state from a bulk calculation. Hence note that the differences between facets of the same material only reflect the change
in the surface dipole. As explained in Appendix 4.C, there is an uncertainty involved in determining the background edge values zb, which
are indicated by the sub- and superscripts. This in turn gives an uncertainty on the lifetimes and binding energies.
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4.3.2 Parameters in the model
In this section, we discuss in some detail different approaches to approximate the image
potential reference plane z0. We start by comparing calculated background edges zb
with half the distance between subsequent atomic layers along the normal of the surface
d/2. Technical details concerning the calculation of the background edge from the
electron density can be found in Appendix 4.C. Afterwards, we discuss how to obtain
the approximations for z0. The results are gathered in Table 4.2. The discussion of the
positron binding energies Eb and positron workfunctions φp is deferred to a later section
where we compare the CMM and WDA results with experiment. Positron annihilation
lifetimes are given for completeness, as we are only aware of experimental results for the
Al (011) surface [17].

The background edge

We start our discussion of the results by comparing the calculated zb values, which
is the position where the exponential decay of the electron density sets in, with the
simple approximation of Lang and Kohn [105]. In their work, Lang and Kohn replace
the ionic lattice with a uniform positive background (i.e. jellium) which terminates at
zb = zlast + d/2, where zlast is the coordinate of the last atomic layer along the normal of
the surface and d the distance between subsequent atomic layers. The results are given in
the second and third column of Table 4.2. We mention that for the H passivated surface,
we could not accurately fit the decay of the electron density with a single exponential
function. As a consequence, our method to calculated zb does not yield a sensible value.
Therefor we choose to take the same value for the image potential reference plane as for
the non-passivated surface5.

With the exception of Cu (001) and Cu (111), the calculated background edges are
located further in the vacuum than half the interlayer distance. Aside from that, it is
difficult, however, to observe general trends in the results. For the Cu (001), Cu (111)
and C (001) surface the values determined with both methods are in close agreement,
with differences ≤ 0.1 Å. On the other hand, for Al (001), Al (011), Cu (011), W (011)
and W (111) the results differ > 0.5 Å. Also the dimer reconstructed diamond surface
shows a large difference between the two methods, which is however expected due to the
reconstruction at the surface. This example also illustrates that setting zb = d/2 is largely
limited to simple elemental surfaces. On the other hand, as mention previously, we did
not manage to determine an accurate value for zb from the self-consistent electron density
for the H passivated diamond surface either. Hence we conclude that zb introduces an
important uncertainty in the results of the CMM method.

Image potential reference plane

In the Lang-Kohn method, z0 is determined by applying the offset for jellium of the image
potential reference plane with respect to zb. These values can be found in Table I of
their work [105], though we will instead use the slightly more accurate results reported
in Table I of Ref. [108]. The values give the centroids of the induced charge density as
calculated for the jellium model in the presence of a small electrical field perpendicular
to the surface. To use this scheme, we first determine an effective uniform density by
dividing the valence charge in the unit cell by its volume. Afterwards, we determine

5Note that distances are measured with respect to the last atom at the surface, i.e. from the H atom
for the passivated surface.
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System zval rs (a.u.) z0 − zb (a.u.) z0 − zb (Å)
Al 3 2.07 1.55 0.82
Cu 1 2.67 1.43 0.76
W 2 2.34 1.50 0.79
C 4 1.66 1.62 0.86

Table 4.3: Effective electron density parameters and image potential reference planes
offsets following Lang and Kohn [105]. The effective densities are equal to the average
valence electron density in the unit cells. Following Ref. [109], only s and p electrons in
the outer shells are counted here. The offset of the image potential reference plane with
respect the jellium edge is found by linearly interpolating the results given in Table I of
Ref. [108].

the offset by linearly interpolating the results from Ref. [108]. Table 4.3 summarizes the
results. Note that these shifts are comparable with d/2 and the calculated zb values, such
that they are not a small correction in determining the image potential reference plane.

In the next sections, we will discuss results of three methods used to determine the
value of the image potential reference plane. In the first, we follow the approach taken
in Ref. [42] and set z0 = zb. With this method we obtained excellent agreement with
measured positron binding energies for Bi2Te2Se. In the second method, we add to the
background egde the shift of the reference plane obtained for jellium (z0 − zb)jellium [105,
108]. Finally, we apply the Lang-Kohn method, which is obtained by replacing the
calculated background edge with half of the interplanar distance along the normal to the
surface d/2: z0 = d/2 + (z0 − zb)jellium.

Considering that the three methods described above give large differences in the
value for z0, one can wonder if it is not possible to calculate the value of z0 directly. In
principle this is possible, as the induced charge density in the linear response regime
can be obtained by applying a small electrical field perpendicular to the surface [105,
106]. One important assumption that is made in the derivation of the image potential
is, though, that a point charge outside the surface attracts an equal but opposite charge
to the surface region. In practice, this turns out to be problematic for many modern
first-principles electronic structure codes which use periodic boundary conditions. In such
packages surfaces are modelled by a slab, with a vacuum added to the simulation cell to
avoid interactions with its periodic images. We found that the response under an applied
electrical field in such calculations is quadratic instead of linear. The reason is that the
net induced charge has to be zero, since the number of electrons in a calculation is fixed.
On the other hand, if we add additional electrons to the system to allow a screening
charge to build up at the surface, we face the problem that the energy diverges due to the
long range Coulomb interaction of the slab with its periodic images. Hence, no sensible
results can be obtained this way. Lang and Kohn [105, 110, 111] modelled instead a
semi-infinite jellium model where appropriate boundary conditions can be applied and
enable the calculation of the induced charge density.

4.4 Comparison with experiment
In this section we compare results obtained with the CMM and the WDA with experimental
values where available. The results of the latter are gathered in Table 4.4. Details of the
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Q = 1.00 Q = Qopt

System φp (eV) τ (ps) Eb (eV) φp (eV) τ (ps) Eb (eV)
Al (001) 0.74 664 3.10 0.85 642 3.19
Al (011) 0.90 673 3.16 1.02 651 3.26
Al (111) 0.96 674 3.02 1.07 652 3.11
Cu (001) −0.61 963 2.22 4.02 288 5.02
Cu (011) −0.43 902 2.30 4.21 285 5.16
Cu (111) −0.91 1082 2.15 3.72 315 4.84
W (001) −1.69 883 2.72 −2.20 1056 2.42
W (011) −2.39 970 2.56 −2.91 1152 2.28
W (111) −1.57 747 2.82 −2.09 868 2.50
C (001) −5.06 821 2.45 −4.23 682 2.85

C (001) + H 0.51 336 3.05 1.33 280 3.58
C (001) dimer −3.26 876 2.35 −2.44 718 2.74

Table 4.4: Results of positron calculations in the WDA with the screening parameter
set to Q = 1 (columns 2-4), and with the screening parameter that reproduces the
experimental bulk lifetime Q = Qopt from Table 3.2 (columns 5-7). The last two lines
give the results for the H passivated and the (2× 1) dimer reconstructed diamond (001)
surfaces, respectively. φp: Positron workfunction. τ : Positron surface state annihilation
lifetime. Eb: Binding energy of the positron state. The workfunction is determined by
the surface dipole and the lowest available positron level in the bulk of the material. The
first depends on the material’s facet whereas the latter is purely a bulk quantity.

positron calculations are given in Appendix 4.B. For the WDA we use the shell partitioning
from Sec. 3.3.3. We investigate the WDA results both with the screening parameter Q = 1
and the optimized parameter Q = Qopt which reproduces the experimental bulk positron
annihilation lifetimes, as explained in Sec. 3.3.4 and given in Table 3.2.

4.4.1 Positron workfunctions
We first discuss the results for positron workfunctions, which do not depend on the details
of the positron potential at the surface. Indeed, the positron workfunction is obtained as
φp = −(µp+D), with D the surface dipole barrier, which is purely electrostatic in nature6,
and µp the positron chemical potential. The latter is obtained from a bulk calculation and
hence is not influenced by the image potential, but does depend on the electron-positron
correlation functional. By comparing the workfunction values, we hope to gain some
insight on the accuracy of the correlation potential in the bulk of the material.

The comparison with experiment is displayed in Fig. 4.5, with LDA and WDA results
in green and orange, respectively. We find that for Al and Cu, the obtained LDA results
are in very good agreement with experiment. For W, we only obtain reasonable results
for the (011) facet, whereas the other facets show discrepancies of > 0.5 eV. The WDA
results with both considered Q parameters are worse than the LDA for most surfaces.

6Since we are working in the zero positron density limit, the presence of the positron does not alter
the electron density or ionic positions and hence has no effect on the dipole barrier. We note, though,
that the dipole barrier is influenced by electron-electron exchange and correlation effects.
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Figure 4.5: Energy differences between calculated and experimental values for positron
workfunctions φp. Results are taken from Tables 4.1, 4.2 and 4.4. The gray area indicates
the uncertainty on the experimental values, LDA results are indicated by green symbols
and WDA results with orange symbols. For the WDA, circles indicate workfunction
obtained by setting Q = 1.00; for the squares the Q parameters from Table 3.2 were used.

The exceptions are the workfunctions calculated with Q = Qopt for W, which differ only
−0.03 eV with the LDA, and C (001). Notably, the WDA wrongly predicts positive
workfunctions for all Al surfaces with both Q values, and for the Cu surface with Q = Qopt,
as can be seen from Table 4.4. The only WDA results that agree with experiment to
within ∼ 0.5 eV are the Cu surfaces with Q = 1.00, and the W (011), W (111) and C
(001) with Q = Qopt.

Both the LDA and WDA show large deviations for the workfunctions calculated for
the diamond surfaces, with expection of the WDA results for the C (001) surface with
Q = 1.10. Especially our result for the H passivated surface gives a very different result
than measured in experiment. Indeed, from Table 4.2 and Table 4.4, we see that all
functionals predict a positive workfunction for this surface, in contrast to the strongly
negative value for the pristine diamond surface. The reason is that the dipole at the
surface is largely reversed by the presence of the positively polarized side of the H at
the vacuum interface. It is highly unlikely that the observed differences with experiment
can be attributed solely to correlation energy. Instead, it seems plausible that our
model surface does not quite correspond with the sample in the experiments reported in
Ref. [103]. Although this reference claims that the difference in the workfunction they
observe upon heating the sample is due to desorption of H from the surface, it could be
that their surface was only partially passivated for instance. For the reconstructed surface,
our calculations predict an increase of the workfunction by ∆φp = 1.80 eV. This again
contradicts the experiment, where a small decrease of the workfunction was observed
∆φp = −0.07 eV. Hence, considering these discrepancies which cannot be attributed to
the positron correlation functional, it is difficult to extract any meaningful conclusions
from the diamond results about the accuracy of the LDA compared to the WDA.

It is interesting to observe that with Q = 1 the chemical potential obtained with
the WDA is generally lower than with the LDA, as reflected by the higher value of the
workfuntion7. With larger Q values, this trend becomes more obvious as is apparent by
comparing the results for Cu with Q = 1.00 and Q = 1.66. This follows from the fact

7We keep in mind, though, that our benchmark here is too limited to draw general conclusions.
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that Q determines the charge in the screening cloud, and hence directly influences the
correlation energy. This exposes a shortcoming of the sumrule tuning scheme we proposed
in Sec. 3.3.4. Indeed, we raised the parameter Q to account for the fact that d electrons
do not screen the positron charge very efficiently. On the other hand, this operation
simultaneously increases the correlation energy. However, for materials in which screening
is less efficient we instead expect lower correlation energies. Only for Cu, the results
with Q = 1.00 seems to underestimate the correlation energy as they are the only ones
(disregarding diamond) that gives lower workfunctions as measured in experiment. As a
consequence the ‘ideal’ Q that reproduces the correct chemical potential is likely obtained
with screening parameters Q < 1, even for free-electron like materials. Comparing the
WDA and LDA correlation energies for the free electron gas in Fig. 3.2, we indeed see
that the WDA potential is more negative for the homogeneous electron gas.

From this section, we can conclude that the LDA predictions for workfunctions, and
thus also positron chemical potentials, are quite accurate. In most cases, the WDA
predictions are worse due to an overestimation of the correlation energy. This worsens
when the screening parameter is raised Q > 1. Hence, our scheme proposed in Sec. 3.3.4
is unlikely to give both accurate positron annihilation lifetimes and correlation energies
at the same time.

4.4.2 Positron binding energies
We now examine calculated positron binding energies, of which differences with experi-
mental values are shown in Fig. 4.6. Before starting our discussion, we first point out that
for all considered surfaces, the positron groundstate is strongly localized at the surface
with vanishing overlap with the material beyond the first few atomic layers below the
surface. Next, it is important to realize that our findings of the correlation energy in bulk
materials derived from the workfunctions in the previous section, do not directly carry
over to surface states. Indeed, since the positron is mainly localized in the vacuum region,
the correlation energy is mostly determined by the behaviour of the correlation potential
in this region. From the introduction, we already know that this is very different from
the bulk situation.

Let us first investigate which of the three methods to determine the background edge
position z0 gives the best results with the CMM. From Fig. 4.6, we can see that this is
consistently Lang and Kohn’s simple approach which sets z0 = d/2 + (z0 − zb)jellium. The
largest discrepancies with experiment following this method are observed for Al (111), Cu
(001) and Cu (111), for which Eb − Eb,exp ≈ 0.18 eV. For all other surfaces differences
with experiment are ≤ 0.10 eV. Clearly, taking the calculated background edge zb as an
approximation for z0 sets the reference plane too close to the surface, at least for the results
displayed in Fig. 4.6. As a consequence, binding energies are significantly underestimated
in most cases. On the other hand, adding the jellium offset of the image potential reference
plane to the calculated background edge, i.e. z0 = zb + (z0 − zb)jellium, places z0 too far
out in the vacuum. This can be derived from the consistent overestimation of the binding
energy. Notable exception here are Cu (001) and Cu (111) for which d/2 ≈ zb.

Considering the simplicity of the Lang-Kohn method, the results above are maybe
somewhat surprising. Mainly the observation that a, presumably, more sophisticated
approach to determine the material’s ‘edge’ does not bring any improvement is puzzling.
This indicates that the effect of the ionic lattice on z0 is small. Ref. [108] investigated
the effect of the lattice8 on the position of z0. For Al (111) the author finds z0 = 1.76 Å,

8We note that lattice effects are only accounted for approximately in this work.
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Figure 4.6: Energy differences between experimental and calculated positron binding
energies. The figure shows the CMM results from Table 4.2, obtained by using three
different methods to determine the image potential reference plane z0, in green symbols.
WDA results from Table 4.4 are shown in orange symbols. The gray area denotes the
experimental uncertainty. We have left out the error bars due to the uncertainty on zb on
the calculated CMM results to avoid cluttering the plot. For most studied surfaces, these
uncertainties are significantly smaller than the discrepancy with the experimental value.
One notable exception is the CMM result for Al (001) obtained with z0 = zb for which
the experimental and calculated uncertainties overlap.

i.e. 0.17 Å closer to the surface than obtained by applying the Lang-Kohn method. For
some Alkali metals, much larger deviations are observed, however. Hence, despite good
agreement for the three considered metals, it seems unlikely that the Lang-Kohn method
will work as well for other systems. Aside from the apparent limited effect of the lattice
on the image potential reference plane, the results show that our method to calculate
the background edge is not very accurate in general. Hence, a robust method to directly
determine the location of the image potential reference plane z0, that is also applicable
when periodic boundary conditions are used, is desirable and requires further research.

The WDA gives very decent results with Q = 1.00 for the Al and W surfaces, on par
with the CMM where z0 is set using the Lang-Kohn method. We note that changing
the screening parameter to Q = Qopt consistently worsens the results. Our observation
from the previous section that correlation energies and lifetimes cannot be simultaneously
improved by tuning Q is thus confirmed here. On the other hand, the binding energies
calculated with the WDA are, overall, in better agreement with experiment than the
positron workfunctions, certainly with Q = 1.00. This indicates that the WDA gives
a more accurate description of the correlation potential in the surface region than in
bulk. Hence the WDA with Q = 1.00 may still provide a somewhat reliable approach to
describe positron surface states when the CMM is not applicable, e.g. for surface with
complex geometries.

4.5 Qualitative aspects
Previous section showed that for simple metallic surfaces, the WDA does not give a
quantitative improvement for positron binding energies over the CMM. In this section
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we focus on some qualitative aspects of both approaches, namely the transition from
the bulk potential to the long-range image potential, as well as the continuation of the
enhancement factor in the vacuum.

4.5.1 Potentials
Let us first discuss the transition of the potential from the bulk region into the vacuum
region. Panel (a) of Fig. 4.7 shows the potential averaged over planes parallel to the
surface. For certain values of z0, the transition of the LDA to the imposed image
potential part, appears to happen quite smoothly. This is for instance the case with
z0 = d/2 + (z0 − zb)jellium, for which the potential is shown by the green curve. On
the other hand, if the image potential reference plane is further out in the vacuum, a
plateau develops as is illustrated by the orange curve. When we look at cuts through the
potential (Fig. 4.7(b)) we notice that generally, the transition is quite abrupt, and that
the potential’s derivative shows a significant discontinuity. Note that in the WDA, the
transition happens smoothly, which is at least a qualitative improvement over the CMM.

We now examine in more detail the long-range behaviour of the potential. For the
CMM, we find that the averaged potential closely follows the ∼ 1/c(z − z0) behaviour,
with c = 4. A fit to the averaged potential in the region defined by z ∈ [3, 6] Å results
in c = −3.98, z0 = 1.22 Å and c = −3.99, z0 = 1.68 Å for the CMM results with
z0 = d/2 + (z0− zb)jellium and z0 = zb + (z0− zb)jellium. That the z0 values do not exactly
match the parameters from Table 4.2 is a consequence of the fact that the image potential
is first parametrized as a function of the averaged electron density, see Eq. (4.4) and
Eq. (4.5).

We have also attempted to fit the image potential form to the WDA potential. Our
first observation is that the WDA only closely follows the image potential decay in the
intermediate region from the surface, for the W (111) surface roughly for z ∈ [2, 4] Å.
Further away, the decay of the potential becomes slower. In fact, in the middle of the
vacuum (not shown in the figures), there is generally a potential well present. This is a
consequence of numerical limitations that cause the electron density far in the vacuum
region to approach a constant, low value. The WDA will thus start sampling a nearly
homogeneous low density electron gas, and the potential accordingly approaches the Ps
binding energy. Second, fitting the image potential to the WDA potential for W (111)
in the region z ∈ [2, 4] Å yields c = −1.43, z0 = −0.42 Å and c = −1.57, z0 = −0.38 Å,
with Q = 1.00 and Q = Qopt, respectively. Hence, as is also clear from the blue and pink
curves in Fig. 4.7, the decay of the WDA potential is significantly slower than the exact
limit for a perfect metal. Additionally, the reference plane is placed behind the first row
of atoms9. Physically, we expect, however, that the screening charge is concentrated in
front of the first row of atoms.

The wrong c coefficient has been found in studies of the WDA in the context of
electron-electron exchange and correlation as well. According to Refs. [112, 113], this can
be attributed to the fact that the pair correlation function used in the WDA is spherically
symmetric. This assumption is justified for a particle in the bulk of a material. However,
when the particle resides in the vacuum region, the screening cloud strongly deforms,
which cannot be described appropriately by the spherically symmetric pair correlation
function. These arguments are quite general and likely apply to the electron-positron
WDA as well. Ref. [112] found that by allowing anisotropic scaling of the screening cloud,

9The location of the reference plane can be estimate from Fig. 4.7 by extrapolating the 1/z dependence
of the potential in the direction of the surface and looking for the location where it diverges.
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Figure 4.7: Positron total potentials, densities and electron-positron contact densities
for the W (111) surface. Panel (a) shows laterally averaged potentials (full lines) and
positron groundstate densities (dashed lines). In panel (c) the density is replaced by the
laterally averaged contact density, obtained by multiplying the groundstate electron and
positron densities including the enhancement factor. Panels (b) and (d) show the same
as panels (a) and (c), respectively, but now for a cut through the quantities instead of
the average. The cut is taken at the position of the topmost W ion in the plane of the
surface. Green and orange lines show CMM results, with z0 as indicated in the legend,
and blue and pink lines WDA results with specific values for the screening parameter Q,
also displayed in the legend.
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the correct constant c = 4 can be obtained in the WDA.

4.5.2 Densities

We now examine the positron densities obtained with the CMM and the WDA, displayed
in the dashed lines in Fig. 4.7(a) and (b). From panel (b), we note that positron densities
in the CMM (green and orange lines) are peaked close to the transition point between
the LDA and image potential. Hence, it is expected that the potential in the vicinity of
this point, which is presumably the least accurate region, has a non-negligible influence
on the calculated binding energies. The slow decay of the WDA potential in the vacuum
region makes that the calculated positron states are less confined in the well close to the
surface compared to the CMM results. From Fig. 4.7(a) we see that > 50% of the density
is located in the region where the potential decays as ∼ 1/z. Hence, this part of the
potential has an important effect on the predicted binding energy. From the previous
section, we know, however, that the decay of the potential in the WDA is incorrect. We
can thus not attribute the good agreement of the WDA binding energy with experiment
to a proper description of the potential. Instead, they likely follow from a cancellation
of errors, and the results for Cu in Fig. 4.6 show that the cancellation is certainly not a
general trend.

One qualitative shortcoming of the CMM is solved by the WDA, though. Panels
(c) and (d) show the contact densities obtained in both models. The dashed green and
orange lines in panel (d) illustrate the discontinuity in the contact density when the LDA
enhancement is replaced by the IPM for z > z0. On the other hand, from the slow decay
of the LDA contact density right before z0, we can appreciate that the decay is really
too slow in the LDA and roughly follows the decay of the positron density itself, i.e.
disregarding the rapid decay of the electron density in the vacuum. This is because the
positron always attracts an electron density close to the Ps density in the LDA. The WDA
contact densities (pink and blue dashed lines) on the other hand decay smoothly and
significantly faster than the LDA. Qualitatively at least, this seems to better represent
the detachment of the screening cloud when the positron resides in the vacuum10.

Quantitative comparison of the contact densities with experiment is difficult as we are
only aware of one experimental result, namely τ = 580±10 ps for the Al (011) surface [17].
Our calculated results are compared with experiment in Table 4.5, which shows that the
best result is obtained in the CMM with z0 = zb. The WDA gives worse lifetimes, though
we note that the relative differences in the contact densities are actually comparable to
the CMM results with z0 = zb+ (z0− zb)jellium and z0 = d/2 + (z0− zb)jellium. Overall, we
see that the CMM results underestimate the lifetime, even though the enhancement factor
is abruptly set to unity when the image potential is imposed. This indicates that the LDA
enhancement is already overestimated for z < z0. The WDA thus qualitatively improves
on this point, as it yields a contact density which is more localized to the surface11. On
the other hand, the WDA significantly underestimates the total contact density. One
reason might be the (too) slow decay of the positron state in the vacuum, which lowers
the electron-positron overlap. Of course this one experimental result does not permit us
to draw general conclusions.

10Note that all densities shown in Fig. 4.7 have been normalized to unity. The actual contact densities
in the WDA are smaller than in the CMM, as reflected by the calculated lifetimes in Table 4.4 and
Table 4.2

11We do not show the positron state for Al (011) here, though the same conclusions can be drawn as
for the W (111) surface. In fact, all surface states studied in this chapter look very similar.
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CMM WDA
z0 = 1.26 Å z0 = 2.08 Å z0 = 1.53 Å Q = 1.00 Q = 1.02

(∆τ)abs -33 ps -68 ps -51 ps 93 ps 71 ps
(∆λa)rel 0.06 0.13 0.10 -0.14 -0.11

Table 4.5: Comparison of calculated lifetimes and annihilation rates for Al (011) with the
experimental results τ = 580± 10 ps from Ref. [17]. Lifetimes differences are calculated as
(∆τ)abs = τ −τ exp, differences in the corresponding annihilation rates are given as relative
differences (∆λa)rel = (λa − λa,exp)/λa,exp. The CMM results use the image potential
references planes set by z0 = zb, z0 = zb + (z0 − zb)jellium and z0 = d/2 + (z0 − zb)jellium
in that order.

4.6 Conclusions and Outlook
In this chapter, we presented the theory of the CMM. An important parameter in this
model is the image potential reference plane z0, which is difficult to calculate directly using
modern first-principles electronic structure packages. Hence, we used three approximations
to determine the location of the reference plane (taking z = 0 at the topmost atomic
position): (i) z0 = zb, with zb the point where the self-consistent electron density starts
decaying exponentially, (ii) z0 = zb + (z0 − zb)jellium where (z0 − zb)jellium is the offset of
the reference plane calculated for a jellium model, measured with respect to the jellium
edge [105, 108], and (iii) z0 = d/2 + (z0 − zb)jellium where the d/2 is half the spacing
between subsequent atomic planes along the normal to the surface.

To assess the accuracy of the correlation energy in bulk materials, we compared
calculated positron workfunctions, using the LDA and WDA, with experiments. Our
results showed that the LDA results are generally in very good agreement with experiment.
In the WDA, most of the results are worse. Notably, we found that in the Q tuning
scheme from Sec. 3.3.4, raising Q increases the correlation energy as it directly controls
the total amount of charge the positron interacts with. For Cu, for instance, this leads to
a severe overestimation of the correlation energy in bulk.

For surface binding energies, we found that, of the investigated approximations
for the image potential reference plane, setting z0 = d/2 + (z0 − zb)jellium consistently
compares best with experiment. In fact, for all surfaces considered in this chapter, this
method yields binding energies with errors < 0.2 eV. The WDA results are somewhat
worse, but still acceptable for Al and W. Notably, using Q = 1.00 we obtained better
results than Q = Qopt from Table 3.2. For Cu, we found that Q = 1.00 significantly
underestimates binding to the surface, and Qopt serverely overestimates the binding
energy. This illustrates that fitting Q to reproduce experimental bulk lifetimes in general
does not improve correlation energies. In fact, our results show that Q = 1.00 might in
general give better results for binding energies at the surface.

Next, we evaluated some qualitative features of both the CMM and the WDA. The
most import shortcomings in the CMM are (i) the transition region of the bulk LDA
potential to the image potential, and (ii) the enhancement factor in the near-surface and
vacuum region. For point (i), we saw that the potential’s derivative shows a significant
discontinuity, and as a consequence we can expect that this region is not very accurately
described. At the same time, the positron density is peaked near the transition point
between the LDA and image potential. This likely has some effect on the accuracy of
calculated binding energies. For the enhancement factor, we discussed that the LDA
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overestimates the contact density, and thus the annihilation rate, by incorrectly imposing
Ps formation in the vacuum. Setting the enhancement to unity wherever the image
potential is imposed improves the situation somewhat, but leads to discontinuity in the
contact density. Furthermore, our result for Al (011) seems to suggest that even then the
enhancement is still overestimated. In the WDA, we showed that both the potential and
enhancement factor are continuous across the vacuum interface, which is a qualitative
improvement over the CMM. On the other hand, we showed that, even though the
potential decays as ∼ 1/z, the expected image potential is not accurately reproduced.
Notably, the potential decays too slowly, which results in positron states that extend too
far in the vacuum. This has an important effect on calculated binding energies, and good
agreement with experiment for some materials has to be attributed to cancellation effects
rather than an accurate description of the overall potential. Next, the image potential
reference plane for W (111) was found to lie behind the first row of atoms inside the
material. This observation does not correspond with the assumed physical picture that
the screening cloud is concentrated at the surface. As for the electron-positron contact
density, we found that at least qualitatively there is an improvement. Indeed, the WDA
predicts a contact density located closer to the surface than in the CMM. On the other
hand, the lifetime for Al (011) is overestimated, which we attributed to the slow decay of
the positron state in the vacuum.

From the results presented in this chapter, it is clear that further work is required
to arrive at a widely applicable, reliable model to describe positron surface states. For
elemental materials with simple surface geometries, the CMM model has proven to yield
the best surface binding energies when setting z0 = d/2 + (z0 − zb)jellium. It is difficult to
say, however, if this simple approach is as effective for more complex materials. Hence, a
method to directly calculate the value of z0, that is applicable with periodic boundary
conditions, is desirable. We note, though, that even if we can obtain an exact value for
z0, the problem with the enhancement factor in the vacuum region remains. Complex
surface geometries also lie outside the capabilities of the model.

The WDA shows potential to improve on these points, but further work is required
to ensure that (i) both lifetimes and correlation energies are accurately described simul-
taneously, and (ii) the correct constant in the image potential is reproduced. Both are
ultimately a consequence of the crude approximation of the pair correlation function
used in the WDA. Point (i) is caused by neglecting the screening properties of individual
electron states and instead treating all of them as free electrons. Point (ii) is, according to
Ref. [112], caused by the imposed spherical symmetry of the electron enhancement, and
anisotropic scaling of the screening cloud is required to reproduce the correct constant [112,
113]. We expect that many of these issues can be solved by replacing the approximate pair
correlation function for the homogeneous electron gas by one that is directly calculated
from the electronic structure of the material. Indeed, such a pair correlation function is
expected to include the screening properties of the electron states, and does not impose a
shape approximation for the screening cloud.

4.A Details of the electronic structure calculations
Electronic groundstate calculations are performed using the PAW [85] method as imple-
mented in VASP [86–88]. Electron exchange and correlation effect are described with the
PBE functional [65]. Parameters in the calculations were checked for convergence of the
positron annihilation lifetimes within 1 ps. A vacuum width of 15 Å was found to be
sufficient for all quantities of interest in this chapter. Experimental lattice parameters [89]
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were used for all considered surfaces. In the relaxation the middlemost atoms were fixed
to their bulk locations, and atoms close to the surface were allowed to relax until forces
on the atoms were converged to within 0.01 eV/Å. Valence electrons taken as valence for
the different considered elements can be found in table 3.3.

4.B Details of the positron calculations
Positron lifetime calculations were performed with the MIKA/doppler package [92], and
follow the details given in Sec. 3.B.1. The Drummond LDA [56] was used in the bulk of
the unit cell in conjunction with the CMM discussed in Sec. 4.3. Calculations with the
WDA use the shell partitioning discussed in Sec. 3.3.3. Details of the Q-value tuning can
be found in Sec. 3.3.4.

4.C Determination of the background edge
The background edge in the CMM calculations, is determined by the point where the
exponential decay of the electron density sets in. To determine this value, we fit a line to
the logarithm of the laterally averaged electron density, and look for the point where the
relative difference between the fit and the density becomes larger than a threshold value.
For the calculations reported in this chapter, we selected a threshold value of 0.1.

In practice, the electron density saturates far in the vacuum region to a small value
due to numerical limitations. Thus, the decay of the density is only exponential in the
intermediate range from the surface and we select a window outside the surface for the fit.
The choice of this window influences the obtained result for zb. To obtain an estimate
of the involved uncertainty, we first select a window for the fit in the vacuum where the
decay of the electron density is close to exponential, and subsequently repeat the fitting
procedure in which we shrink the window symmetrically. The reported values for zb in
this chapter are the average value for zb obtained by the fits, and the lower and upper
bounds are, respectively, the smallest and largest value for zb obtained from the different
fits.





Chapter 5

Positron surface state and
spin-texture of Bi2Te2Se

In this chapter we show that PAS can be used to investigate the spin-texture associated
with the surface states of TIs. After a short motivation for this work, we describe the
experiments on the prototypical 3D TI Bi2Te2Se, performed at the University of Texas at
Arlington by the group of A. Weiss, which showed compelling evidence for the existence
of positron surface states. We provide theoretical support for these observations by
obtaining close agreement with experiment. Afterwards we show that the positron state
has sufficient overlap with the edge states of the TI to expect a significant signal in the
annihilation radiation originating from them. Finally, we show they indeed leave a clear
fingerprint in the electron-positron momentum density, and that it should be possible to
measure the spin-texture associated with them using spin-polarized positron experiments.
The results in this chapter have been published in Ref. [42].

5.1 Introduction
5.1.1 Topological insulators
We first provide a short description of TIs and what properties we want to investigate.
Our discussion of TIs here is very limited, and we refer the interested reader to review
papers for a thorough discussion of the matter [114, 115].

Concisely, a TI is a material that behaves as an ordinary insulator in the interior of
the material, but hosts conductive states at its surface (or edge) that are topologically
protected. In the rest of this chapter, we will refer to these conductive states also as edge,
Dirac or topological states. The interest in TIs stems from the special properties of the
edge states.

A first remarkable property is that the existence of such edge states is unaffected
by imperfections in the lattice such as (non-magnetic) impurities. Indeed, the origin
of the states lies in what is called a ‘band inversion’ in the bulk of the material, in
which the normal ordering of the (atomic) energy levels in vacuum gets inverted due to
a combination of chemical bonding, the crystal potential, and spin-orbit coupling. The
normal ordering has to be restored when transitioning from the bulk of the material to
the vacuum, and can only occur when a band passes through the bulk band gap [114,
116]. In this chapter, we study the prototypical TI Bi2Te2Se, which consists of a stacking
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Figure 5.1: (a) Hexagonal bulk unit cell of Bi2Te2Se, which consists of a stacking of
QL, as indicated in the figure. Inside each QL, the atoms form strong covalent bonds,
whereas separate QLs are held together by weak Van der Waals forces. (b) Bandstructure
calculated for a Bi2Te2Se slab consisting of four stacked QLs. The Fermi level is set at
0 eV. Red dots indicate states located close to the surface. More precisely, they have a
density that is at least 40% located in the outermost QLs at the top and bottom of the
slab.

of covalently bonded Te-Bi-Se-Bi-Te Quintuple Layers (QLs) held together by weak Van
der Waals forces. In this material, the topological states show up in the surface band
structure as a cone with an approximately linear dispersion, i.e. a Dirac cone, centered
around the Γ-point in the (First) Brillouin Zone (BZ). This is shown in Fig. 5.1(b), where
surface states are identified by the red dots.

A second special property relevant to our study is the spin-momentum locking of the
edge states, due to the spin-orbit coupling: The spin of the states located on the Dirac
cone around the Γ point are oriented perpendicular to their crystal momentum k. A
consequence thereof is the suppression of backscattering of the edge states [117]. Indeed,
in absence of magnetic impurities, clockwise or anti-clockwise rotation of the electron’s
spin in the scattering process is equally likely, and due to the fermionic nature of the
particles, these two states interfere destructively.

5.1.2 Motivation
In this chapter, we demonstrate that positrons provide a highly surface-sensitive probe
for the topological Dirac states. Since PAS techniques, with measurements of the 2D-
ACAR in particular, are well suited to measure both the low- and the high-momentum
components of the annihilating electronic states without complication of matrix element
effects, they can provide useful information on the Dirac state orbitals. Additionally, our
calculations will show that spin-polarized positron beams can resolve the spin textures
associated with the topological states, owing to the predominant annihilation between
electron-positron pairs with opposite spins [43].

The matrix element effects mentioned in the previous paragraph are important in,
e.g., photoemission experiments, where it is required that the initial and final electron
state have a net angular momentum difference of 1, due to the angular momentum carried
by the absorbed photon. In some cases, this can render certain states ‘invisible’ to
the experiment, as certain transitions are forbidden by fundamental conservation rules.
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Furthermore, spin-orbit effects have been shown to significantly distort the observed
photoelectron’s properties compared to the quasi-particle excitations of the material [39,
118, 119]. Similar limitations apply to many other frequently used spectroscopy methods.
PAS does not suffer from such final state effects since the final photon states form a
continuum, and can safely be summed over. This is in fact always assumed in the
calculation of electron-positron annihilation properties1.

5.1.3 Overview
In Sec. 5.2, we present the experimental evidence for the existence of a bound positron
state at the surface of the TI Bi2Te2Se. The experiments furthermore provide the energy
of the state [120]. In Sec. 5.3, we show that the theory confirms the experimental
interpretation with a binding energy of the positron state close to the experimental result.
The calculations predict a significant overlap between the positron and the topological
states. We also demonstrate that spin-polarized positron measurements can reveal the
spin structure at the surface. Technical details concerning the calculations can be found
in the appendices at the end of the chapter.

5.2 Experiments
Three distinct experiments have been performed on Bi2Te2Se, which point convincingly
in the direction of a bound state at the surface of the sample. The PAES and AMPS
experiments both point directly to the presence of a positron state. The last experiment
provides less direct evidence as it deals with Ps rather than (bare) positron states.
Nevertheless, the results of the experiment are useful to estimate the positron binding
energy, and therefore will be discussed as well. Modelling Ps states will not be undertaken
here as it lies outside the scope of this thesis, but has been discussed at length elsewhere [42,
121]. Details related to the sample preparation and experimental setup are left out in the
present discussion, but can be found in Refs. [42, 120].

5.2.1 Positron annihilation induced Auger emission
Positrons annihilate predominantly with the valence electrons but the small fraction that
annihilates with core electrons produces highly unstable core holes, which are filled via
an Auger process. Therefore, if positrons annihilate in a surface state, PAES provides
a method to determine the composition of the surface, free from a secondary electron
background [7]. A schematic of the process is drawn in Fig. 5.2(a).

Results of PAES experiments from the TI Bi2Te2Se surface are shown in Fig. 5.2(b)
where signals from Bi, Te, Se, C, and O can be identified; the latter two are caused by the
presence of a small concentration of contaminants adsorbed on the surface [120]. These
results reveal the presence of a bound positron surface state. Were this not the case,
positrons would either get trapped between the slabs of QLs of the material or would be
reemitted before they annihilate. Since the thickness of one QL is about 10,Å, which
corresponds roughly to the mean free path of a 60, eV electron, any Auger signal coming
from below the first QL is too weak to be detected. Thus, the fact that the annihilation

1The summation over the final states is already contained in the pair-annihilation rate for an isolated
electron-positron pair, Eq. (2.9). Since this expression lies at the basis of expressions for electron-positron
annihilation properties, the final state summation is contained in the standard expressions for the
electron-positron momentum density and positron annihilation lifetime.
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Figure 5.2: (a) Schematic of the PAES mechanism. In the first step, a positron (blue)
annihilates with an electron (red) occupying a core level and creates a highly unstable
hole. In the second step, an electron from a higher level fills this hole and transfers the
energy difference between the two levels to a second electron. If the energy difference is
sufficiently large and the second electron is close enough to the surface, it can traverse
the surface dipole and escape from the sample. The measured outgoing electron energy
corresponds to the transferred energy in the Auger process minus the energy difference
between the second electron’s state and the vacuum level. (b) Results of the PAES
measurements on the Bi2Te2Se sample in which Auger signals from the different elements
are indicated.
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Figure 5.3: (a) Schematic of the AMPS mechanism. The left part of the diagram shows
the incident positron (blue) that drops in the image potential well. In this process, the
positron transfers an energy ∆E, determined by the incident kinetic energy Ep and the
binding energy of the surface state Eb, to an electron of the system through a virtual
photon as indicated in the right part of the figure. If the energy difference is larger
than the electronic work function φ−, the electron can escape to the vacuum. (b) The
measured low-energy Auger signals for the Bi2Te2Se sample. The outgoing electron energy
is determined by the transferred energy ∆E minus the required energy to escape from the
sample. The different lines show the result for varying energies of the incident positron.
(c) The integrated peak amplitudes of the low-energy Auger signal associated with the
AMPS mechanism as a function of the incident positron energy.

induced Auger peak intensities are observable provides strong evidence that the positron
is in a state localized at the surface at the time it annihilates.

5.2.2 Auger mediated positron sticking
AMPS experiments provide an independent proof for the existence of the positron surface
state and allow us to determine its binding energy [5]. In the AMPS mechanism, the excess
energy from a positron dropping into the image potential well is transferred to a valence
electron. This can result in the emission of an Auger electron if the energy difference
between the positron’s final and initial state, determined by the incident positron’s kinetic
energy, is larger than the electron work function [5]. The maximum kinetic energy of the
Auger electrons is then given by Emax = Ep + Eb − φ−, where Ep is the energy of the
incident positron, Eb is the binding energy of the positron surface state, and φ− is the
electron workfunction. Figure 5.3(a) illustrates the AMPS mechanism schematically.

The observed increase in amplitude of the Auger signal at low energies as the energy



80 Chapter 5: Positron surface state and spin-texture of Bi2Te2Se

of the incident positrons is increased is shown in Fig. 5.3(b), and it confirms the presence
of the surface state. Knowing the electron workfunction, the binding energy of the surface
state can be determined from the positron energy threshold value for Auger electron
emission: ETh = Ep for which Emax = 0, i.e.

Eb = φe − ETh (5.1)

The linear fit shown in Fig. 5.3(c) yields ETh = 1.8 eV. Our calculations give a workfunc-
tion of φe = 4.9 eV, which then results in a binding energy for the positron surface state
of Eb = φe − ETh = 3.1 eV.

We note that the value of the electron workfunction can be influenced significantly by
the presence of adatoms on the surface. In fact, from the PAES experiment, we know
there is a significant amount of O and C present at the sample’s surface. Hence, our
estimate for the positron binding energy in this section is somewhat uncertain. In the
next section we will show that, by combining the results of the AMPS and Ps desorption
experiments, we can obtain an estimate for the positron binding energy that does not
depend on the value of the electron workfunction.

5.2.3 Positronium desorption
In the third experiment, Ps desorption from the surface was monitored by heating
the sample. The idea behind such experiments is that spontaneous emission, i.e. at
T = 0 K, of Ps is generally forbidden. Indeed, energy should be conserved when a
positron and an electron are brought from the sample to the vacuum in a bound Ps state:
Eb + Ee = Eb,Ps + Ek,Ps. Here, Eb,Ps = 6.80 eV is the Ps binding energy, and Ek,Ps > 0
its kinetic energy. At absolute zero, the minimal binding energy of an electron Ee is equal
to the electron workfunction, and generally Eb + φe < 6.80 eV. By heating the sample,
however, we can populate excited electrons states and enhance Ps emission. The minimal
required excitation energy for the electrons for Ps desorption to be possible (Ek,Ps = 0)
is called the activation energy Ea, and is determined by the relation

Eb + (φe − Ea) = 6.80 eV. (5.2)

Combining the above with Eq. (5.1) to eliminate the electronic workfunction gives the
binding energy in terms of the measured values

Eb = 1
2 (Ea − ETh + 6.80 eV) . (5.3)

Using the activation energy Ea = 0.4 eV determined from the Ps-desorption exper-
iment [120] along with the threshold value from the AMPS experiment, an estimated
binding energy of Eb = 2.7± 0.2 eV for the positron surface state is obtained. Working
backwards, we find that this corresponds with an electronic workfunction of φe = 4.5 eV.
Since the workfunction of materials can change significantly due to the presence of con-
taminants at the surface, this derived value seems quite reasonable. In the rest of this
chapter, we will also take Eb = 2.7± 0.2 eV as the experimental value for the positron
binding energy, as it does not rely on any theoretical input.

5.3 Results of the calculations
The experiments discussed in the previous section provide convincing evidence for the
existence of a positron state at the Bi2Te2Se surface, with a binding energy of Eb =
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2.7 ± 0.2 eV. In this section we discuss the results of our first-principles calculations.
As a first step, we show that the calculated positron groundstate is indeed located at
the surface of the material and that its binding energy is close to experiment. Next, we
demonstrate that there is sufficient overlap between the positron state and the topological
states to expect that PAS experiments can pick up a significant signal from the Dirac
states. Finally, we calculate the electron-positron momentum density and find that
2D-ACAR experiments should be able to distinguish the topological states in this system,
and furthermore resolve the spin-texture associated with them.

5.3.1 Positron state
We start our discussion with the positron state to establish that they support the
interpretation put forward by the experiment. Fig. 5.4(a) shows the averaged positron
density at the Bi2Te2Se surface as the blue curve, calculated using the CMM model of
which the details are presented in Appendix 5.A.2. Our first observation is that the
positron in its ground state indeed resides at the surface, due to the image potential well,
rather than the gaps in between the QLs, which also act as strong positron traps. This
observation is by itself sufficient to support the PAES experiment.

Next, we obtain the binding energy of the positron by taking the difference between
the vacuum level and the positron’s chemical potential. The vacuum level is determined in
the usual way by the taking the value of the Hartree potential in the middle of the vacuum
region. We find that the positron surface state has a binding energy of Eb = 2.69 eV, in
excellent agreement with the measured value2.

5.3.2 Overlap with Topological states
Now that the calculations confirmed the existence of the bound positron surface state, we
turn to the question of the extent to which this surface state overlaps with the Dirac cone
electrons. This overlap is of central importance because it determines the annihilation
rate of the positron with the electrons occupying the topological states and thus the
sensitivity with which PAS can probe the Dirac states.

The computed densities of the positron surface state, ρp, and the topological Dirac
states ρeDirac are shown in Fig. 5.4. The density of the topological states is obtained by
summing the one-particle densities for all states on the cone between the Dirac point, i.e.
the apex of the Dirac cone, and the specified value for the electron chemical potential µe
indicated in the legend of the figure. Note from Fig. 5.4 that even though the Dirac states
are commonly referred to as protected surface states, they are not confined to a thin layer
at the surface but instead over the first few QLs below the surface. Although the positron
is seen to probe only the topmost atomic layers of the material, it still penetrates the
material sufficiently to have a significant overlap with the Dirac states3. Moreover, the
left panel of Fig. 5.4 shows that the overlap with the Dirac states changes sensitively
depending on the population of the Dirac states near the Fermi level. Our calculations
of the momentum density, discussed below, demonstrate that this underlying overlap

2This value is obtained with the CMM with the image potential reference plane set to the background
edge z0 = zb. The results of the CMM where z0 is determined with the Lang-Kohn method yields
Eb = 3.91 eV, and the WDA, with Q = 1.0 yields Eb = 3.13 eV. More details are provided in
Appendix 5.A.2. The results in the rest of the chapter are obtained using the positron state for which we
reported the binding energy in the text.

3Note that the one-dimensional averages shown in Fig. 5.4(a) exagerate the overlap. Indeed, Fig. 5.4(b)
shows that the density related to the topological states (red isosurfaces) mostly located around the ions,
whereas the positron density (blue isosurfaces) resides mostly in the interstitial regions.



82 Chapter 5: Positron surface state and spin-texture of Bi2Te2Se

D
is
ta
n
ce

to
to
p
m
o
st

a
to
m
ic

la
y
er

(Å
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Figure 5.4: Overlap of the positron surface state with the Dirac states. (a) Planar
average of the positron (blue) and electron (red/yellow) densities associated with the
Dirac states below the Fermi energy for two different values of the chemical potential
µ−. (b) Density of the topological surface state and the positron in the same spatial
region as panel (a). The progressively lighter blue isosurfaces show the positron density
at 80%, 20%, and 2% of the maximum value, respectively, and the red isosurfaces show
the electronic charge density associated with the electron states on the Dirac cone below
the Fermi-level at 10% of the maximum value. The Bi, Te, and Se atoms are shown in
purple, brown, and green colors, respectively.
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Figure 5.5: Calculated momentum densities. (a) LCW-map with the chemical potential
located at the Fermi level. (b) LCW-map with the chemical potential raised by 0.2 eV.
The dashed lines denote the location of the Fermi-surface as derived from the electronic
band structure. (c) High resolution cuts through the LCW-map along the Γ−M direction
for different values of the chemical potential. The inset shows the band structure near
the Fermi level (EF = 0.0 eV).

translates into a clear signal coming from the annihilation of the positron with the Dirac
fermions.

5.3.3 Electron-positron momentum density
We now investigate the fingerprint the topological states leave in 2D-ACAR spectra, and
importantly whether the signal is strong enough to distinguish it from annihilation with
other electrons from the sample.

A partially filled energy band when it crosses the Fermi energy gives rise to a break in
the electron momentum density, which is the basis of the measurement of Fermi surfaces
in materials via 2D-ACAR experiments. The Lock-Crisp-West (LCW)-map enhances
this signal by folding all the higher momentum contributions into the first Brillouin
zone [122], as detailed in the Appendix of this chapter. Figure 5.5 shows the calculated
LCW-map together with a cut along Γ−M over a range of values of the electron chemical
potential, which simulates different doping levels of the Dirac cone. The evolution of the
plateau around the Γ-point clearly indicates the sensitivity of the positron to the Dirac
cone states. The relative drop in intensity between 5%− 7% at the Fermi momentum
compares favourably with, for example, the 1% drop found for the Nd2−xCexCuO4−δ
high-Tc superconductor in which 2D-ACAR experiments have been shown previously to
be viable in detecting Fermi surface sheets due to Cu-O planes [123, 124].

A topic which has drawn considerable interest in the case of topological insulators
is the spin-momentum locking of the topological states. Measurements using spin-
polarized positron beams exploit the fact that a two-photon decay is only possible between
electrons and positrons with opposite spins [43]. This fact was exploited in pioneering
2D-ACAR experiments to provide direct evidence for the half-metallic character of the
band structure of NiMnSb [125]. In recent work, spin-effects in the electronic structure
of simple ferromagnets were observed using differences between the DBAR measured
with positrons aligned parallel and antiparallel to a polarizing magnetic field. [126]. In a
similar 2D-ACAR experiment, Weber et al. [44] successfully resolved the spin-dependent
Fermi surface of the ferromagnetic Heusler compound Cu2MnAl. This motivates us to
investigate whether spin-polarized positrons can be used to detect the spin structure of
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the topological states at the surface.
The signal from the Dirac cone can be extracted from the LCW map by taking the

difference between the signal obtained at different electron doping levels4 In Fig. 5.6, we
show the results obtained by taking the difference between the LCW-maps obtained with
µe = EF + 0.2 eV and µe = EF in the vicinity of the Γ-point. As expected, we see the
plateau due to the extra occupation of the cone in the total amplitude. Our results for the
magnetization along the x- and y-directions, agree well with the results obtained in several
studies of various tetradymite TIs [127–130], which all predict a clockwise rotation of the
spin. We see that the z-component of the magnetization increases gradually away from
the Γ-point. This out-of-plane component develops due to the hexagonal warping of the
Dirac cone as pointed out in Ref. [131]. We note that the difference in amplitude for the
magnetic components is quite pronounced with regard to the Fermi-surface signal. Indeed,
we find that the signal from the magnetization is about half that of the Fermi-surface
signal obtainable with an unpolarized beam. This means that the magnetization signal
still constitutes a promising 2% − 4% of the total signal. We note, though, that in
real experiments, positron beams are not perfectly polarized as we have assumed in our
calculations. Thus, in experiment, a proper weighting has to be performed which will
lead to a smaller signal.

5.4 Conclusion and Outlook

Our study establishes the existence of a positron surface state near the topological
insulator Bi2Te2Se. The results of our calculations show that this surface state can
be exploited as a spectroscopic characterization tool for probing surfaces of topological
materials. Since a significant fraction of positrons annihilate with electrons occupying
Dirac cone states, 2D-ACAR experiments should be able to measure their momentum
distribution with high precision [132], and thus obtain information concerning the nature
of the Dirac states which is complementary to that accessed through angle-resolved
photoemission, scanning tunneling and other surface-sensitive spectroscopies without the
complications of related matrix element effects [38, 133, 134]. PAES and coincidence
doppler broadening measurements can, in turn, be used to characterize the chemical
composition of surfaces. In combination with 2D-ACAR experiments, these positron
spectroscopies could be exploited to determine effects of various surface impurities on
the topological states in addition to the role of bulk defects [135]. Now that our study
identified a positron surface state, positron spectroscopies can prove valuable for the
characterization of nanostructured topological insulators. Indeed, positrons have been
shown to act as effective self-seeking probes for nanocrystal surfaces without requiring the
preparation of single-crystal specimens [136], whereas the applicability of conventional
spectroscopic techniques is limited. Finally, our calculations show that the spin textures
of the Dirac states should be accessible through 2D-ACAR measurements using a spin-
polarized positron beam since positrons predominantly annihilate with electrons of the
opposite spin [43, 44, 126].

4In the ideal case one would do one measurement in which a large part of the Dirac cone is occupied,
and a second measurement the chemical potential is as low as possible but such that all bulk bands
remain occupied.
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−1

)

ρz

0.00

0.25

0.50

0.75

1.00

×10−2

−5.0

−2.5

0.0

2.5

5.0

×10−3

−6

−3

0

3

6

×10−3

−3

−2

−1

0

1

2

3
×10−3

Figure 5.6: Difference between the LCW-maps obtained with different doping levels of
the Dirac cone: µe = EF + 0.2 eV and µe = EF . The top left pane of the figure shows the
total amplitude of the LCW-map. The top right, bottom left, and bottom right figures
show the magnetization components along the x, y and z axes, respectively. We only
show the result zoomed in around the Γ point as the difference between the LCW-maps
is exactly zero in the rest of the Brillouin zone. The inner and othermost edges of the
nonzero part in the plots correspond with the dashed lines shown in Figs. 5.5(a) and 5.5(b),
respectively. The length of the reciprocal axes is |b| = 1.688 Å−1 and the amplitudes are
given in ps−1Å2. (It is readily seen that the units of the LCW-map are in ps−1Å2 by
realizing that the integral over the LCW-map yields the positron’s annihilation rate, or,
in the case of the magnetic LCW-maps, the difference in annihilation rate between two
measurements with opposite spin polarizations for the positron.)
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5.A Computational details
The first-principles calculations carried out for this chapter are in line with the rest of the
work: Since we consider a perfect surface, the positron will reside in a delocalized state,
and the zero-positron-density limit of the 2CDFT applies [52, 53]. Hence, we can first
calculate the electronic properties of the material, and once we obtain those, we proceed
with the calculation the positron groundstate and related electron-positron annihilation
properties. The rest of this appendix deals with the technical details of the calculations.

5.A.1 Electronic structure
The electronic ground state is obtained using the PAW method [85] as implemented
in VASP [86–88]. Electron exchange-correlation effects are treated using the PBE
functional [65], and spin-orbit coupling is included in the computations [137]. The kinetic
energy cutoff for the plane-wave expansion of the wavefunctions is set at 275 eV. For the
bulk calculations, we use the rhombohedral unit cell with a Γ-centered 11× 11× 11 k-grid
in combination with a Gaussian smearing of width 0.1 eV. In the surface calculations, we
use a slab geometry with a vacuum of 15Å to avoid spurious interactions between periodic
images. Here, the calculations are performed with a Γ-centered k-grid with 11× 11× 1
points in the hexagonal unit cell in combination with a Gaussian smearing of 0.1 eV.

We used the experimental lattice parameters in all our calculations. This because the
distance between the QL blocks is severely overestimated when using the PBE functional.
As positrons are strongly repelled by the ions, the separation between the QLs strongly
influences the value of the positron workfunction and in order to obtain reliable results, we
deem it appropriate to work with the experimental lattice parameters instead. The lattice
parameters only slightly affect the electronic structure as the results of our bandstructure
calculations agree very well with the previously reported first-principles results [129, 130,
138, 139] and those of ARPES measurements [140, 141].

5.A.2 Positron state
Positron calculations for this chapter are calculated in the zero-density limit of the 2CDFT.
In the bulk part of the unit cell, the correlation potential is determined using the LDA
parametrized by Drummond et al. [56]. The erroneous potential in the vacuum of the
unit cell is corrected using the CMM [22]. Our recipe for this correction can be found in
section 4.3.1. The image potential refence plane is approximated by background edge
positions z0 = zb, for which we found zb = 1.25 Å.

For completeness, we also mention here the results obtained following the Lang-Kohn
method which sets z0 = d/2 + (z0− zb)jellium. For the interplanar spacing d we considered
the spacing between the QLs, and with zval, Bi = 5, zval, Te = 6 and zval, Se = 6 to
determine the effective electron density, we found z0 = 2.63 Å. The resulting binding
energy is Eb = 3.91 eV. The WDA with Q = 1.00 results in Eb = 3.13 eV. Note, though,
that we only show results obtained from the CMM with z0 = 1.25 Å in this chapter,
which yields a binding energy of Eb = 2.69 eV.

5.A.3 Electron-positron momentum density
The electron-positron momentum density is calculated from Eq. (2.39), where the geminals
are approximated by the product of the electron and positron orbitals with inclusion
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of the state-dependent enhancement factor (Eq. (2.93)). In the calculation of the state-
dependent enhancement factors of Eq. (2.94), we do not set γ(r) = 1 in the vacuum
region where the image potential is imposed as suggested in Ref. [23]. This correction is
mainly important in the calculation of positron annihilation lifetimes, and we expect it to
be less important for momentum density calculations.

The high-momentum components of the wave functions are important to accurately
calculate the electron-positron momentum density. It is thus necessary to use the all-
electron wavefunctions in the above formulas instead of the soft pseudo wavefunctions,
i.e., we explicitly perform the PAW transformation [85],

|ψej 〉 = |ψ̃ej 〉+
∑
i

(
|φei 〉 − |φ̃ei 〉

)
〈p̃i|ψ̃ej 〉. (5.4)

Here, |ψ̃ej 〉 are the soft pseudowave functions, 〈p̃i| are the projectors and |φei 〉 and |φ̃ei 〉 are
the localized all-electron and soft pseudo partial waves of the ions respectively. Details
on how to performed this transformation can be found in Refs. [92, 142].

Since the Fermi-surface of Bi2Te2Se surface is made up of its topological states, the
Fermi-surface is of special interest in this chapter. Note that the intensity of the electron-
positron momentum density at a given momentum vector k+G, with k inside the BZ and
G a reciprocal lattice vector, is determined by the number of occupied electrons states at
k. Hence, denoting kF a vector on the Fermi-surface in the BZ, the momentum density
will display a sharp intensity difference at all kF + G. The so-called LCW-map [122] is
specially useful to identify the Fermi-surface signature in the momentum density, as it
enhances the intensity drop by folding all higher momentum contributions into the BZ:

ρ2γ
LCW (k) =

∑
G
ρ2γ(k + G). (5.5)





Chapter 6

Positron induced Auger
spectroscopy of graphene

In this chapter we use the framework of the WDA to provide theoretical support for
an experiment performed by the positron group of A. Weiss at the University of Texas
at Arlington, USA. First, we explain the performed experiment and its results. Then
we discuss the physical process that is expected to take place. Afterwards we present
a theoretical model of said process, and discuss which ingredients we need to extract
from first-principles calculations. The rest of the chapter is devoted to the analysis of the
model and comparison with experiment. Part of the work presented in this chapter is
published in Ref. [8].

6.1 Introduction
An Auger process denotes a process in which a core electron vacancy is filled by an
electron of a higher shell, and the energy difference between the two levels is transferred
to another electron. If the energy difference is sufficiently large, this second electron can
escape from the sample as a free electron. Auger electron spectroscopy exploits the fact
that core electron energy levels are characteristic for different species of atoms to analyse
the chemical composition of surfaces.

Traditionally, Auger electron spectroscopy experiments use energetic beams of X-rays
or electrons to create the core holes that trigger the Auger effect. The downside of
these methods is that the beam creates a large background of secondary electrons in
the low energy regime, e.g. scattered beam electrons or core electrons. On the other
hand, positrons provide a particularly clean method to create core holes. Indeed, after
annihilation of the positron with a core hole, only the gamma rays remain which typically
escape the sample without scattering. This technique has been around for some time
and has been termed PAES [7]. The only source of secondary electrons is caused by
the impact of the positrons with the sample, i.e. if the kinetic energy of the positron
is sufficiently large, it can knock valence electrons out of the sample. Another possible
source of secondary electrons is that the energetic Auger electron causes a cascade effect,
i.e. that it scatters off valence electrons which gain sufficient energy in the process to also
leave the sample.

Recent advances in low energy positron beams allow the deposition of very low energy
positrons on a sample’s surface [5, 21]. Since these beams carry positrons with an energy

89
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of only a few eV, impact induced secondary electrons are not expected when the kinetic
energy of the positron is smaller than the electron workfunction. Despite this fact, a beam-
energy dependent peak at low energies has still been observed for several samples [21].
The effect that takes place in this case is called AMPS. In this Auger-like effect, the
positron transfers the energy difference between its incident scattering state and surface
or bulk final state to a valence electron, which can then escape from the sample if it has
sufficient energy. The kinetic energy of the electron is then

εek = (εpk − ε
p
f )− φe, (6.1)

where εαk denotes the kinetic energy of the particles, εpf the energy of the final state of the
positron and φe the electron workfunction. Hence, this process has a threshold value for
the beam energy, below which no Auger electron can be observed, namely εpk,thr < φe + εpf .

In Auger experiments performed on Cu (111) and Single Layer Graphene (SLG) on
top of Cu (111), the group of Weiss observed the spectrum shown in Fig. 6.1. This figure
shows the number of Auger electrons on the y-axis versus the time of flight on the x-axis,
of which the corresponding kinetic energy is shown on the top. Characteristic Auger peaks
for different identified elements have been indicated. The PAES measurements confirm
the presence of C in the graphene sample, but also O contamination, which is assumed
to be absorbed on top of the graphene layer. The signal of the Cu substrate is also
still clearly observable. Aside from the C and O signals, the most important difference
between the two measurements is the prominent low energy electron peak for SLG on
Cu which persists at beam energies even below the AMPS threshold. Indeed, the beam
energy was set to 1.25 eV in the experiments, and electronic workfunction in graphene
and Cu are ∼ 4.5 eV and ∼ 4.5− 5.1 eV, respectively. Hence the positron states should
have a binding energy of at least 3.25 eV in order to observe impact induced secondary
electrons. This value is however significantly larger than typical values observed for the
positron workfunction or surface state binding energies, hence this possibility is unlikely.

One possibility could be that the observed electrons at low energies originate from
inelastic loss of the higher energy Auger electrons, created by core level holes. In the Cu
spectrum, we can separate this inelastic tail by comparing the integrated amplitudes of the
spectrum above and below ∼ 30 eV. This choice of the energy separates the M2,3VV peak
in the spectrum from the low-energy part. We then find that the intensity of low energy
part is ∼ 1.7 times the intensity of the Auger peaks above 30 eV. A similar intensity can
be expected for the graphene sample. The same analysis points out, however, that the
intensity at low energies (< 30 eV is an order of magnitude higher than the integrated
intensity of the Auger peaks at higher energy (> 30 eV). We conclude it is hard to explain
the observed low-energy peak with inelastic loss alone.

The only plausible explanation left, after ruling out impact induced electron emission
and inelastic loss from Auger peaks at higher energies, is that the annihilation of the
positron with valence electrons in the material causes an Auger transition including only
valence electrons. This in contrast with the usual core hole that forms the starting point.
The kinetic energy of the observed Auger electrons εesc + εvac is determined by

εesc + εvac = ε2 + φe + (ε1 − εh) (6.2)

where we dropped the superscripts on the energies as no positron energies will enter for
the rest of the chapter, εh is the energy of the hole that is the starting point of the Auger
transition, ε1 and ε2 are the initial energies of the two electrons, and φe is the electron
workfunction of the sample. The vacuum energy εvac enters explicitly if we chose the
Fermi level εF as the reference level. Fig. 6.2 clarifies the situation. A rough estimate
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Figure 6.1: Results of the PAES experiment for Cu (111) (green curve), SLG on a Cu
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the figure.
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Figure 6.2: Schematic representation of the VVV process. An electron occupying an
energy level ε1 drops into a hole in the valence band at energy εh and releases an energy
∆ε. This energy is absorbed by a second electron from the valence band which occupies
an initial energy level ε2. If the resulting energy of this electron is sufficiently large, i.e.
situated above the vacuum level, it can escape from the sample. The observed kinetic
energy of the particle is equal to its initial energy plus the absorbed energy but minus
the energy required to pass through the surface dipole barrier (the workfunction).

vouches for this process. Indeed, the width of the valence band of graphene is roughly
∼ 20 eV, hence, using φe ≈ 4.5 eV, the spectrum should contain Auger electrons with
kinetic energies up to ∼ 15 eV, in agreement with the experiment. For Cu, the width of
the valence band with an appreciable density of states is only 4 eV, which implies that the
transition is not observable, again in agreement with what was measured. The process just
described is, according to the Auger nomenclature, termed as a Valence-Valence-Valence
Auger Transition (VVV). The first letter indicates the energy level of the initial hole, the
second letter the energy level that transitions to the hole, and the final letter the one of
the electron that absorbs the energy. Hence, the VVV Auger indicates that all states are
located in the valence band.

The goal of the rest of this chapter is clear. We search a model to describe the
VVV process and try to calculate it using input from first-principles calculations. If the
calculated spectrum is in reasonable agreement with the experiment, we can confidently
claim that the VVV process has been observed in graphene.

6.2 Theory
The transition rate of the Auger process for a given initial hole state can be calculated
from Fermi’s golden rule

A(εAuger) = 2π
~
|Hfi|2ρ. (6.3)

Let us first identify what we should take as the initial state and the final states in the
matrix elements. We start with a system that contains Ne electrons. Afterwards, the
positron enters the sample and annihilates with one of the electrons. We will assume that
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the resulting hole does not relax towards its groundstate (the top of the valence band)
before the Auger process takes place. Hence, the initial state we should use in Fermi’s
golden rule is one with Ne − 1 electrons and a hole that occupies the state of the electron
that annihilated with the positron. The final state after the Auger process is a state with
Ne − 1 electrons, of which one in an excited state, and two holes. The perturbation that
couples the two states is the Coulomb interaction. Assuming that the wavefunction can
be written as a product of one-particle orbitals, we are interested in the matrix elements

Hfi =
∫∫

dx1dx2 ψ
∗
hole(x1)ψ∗ex(x2) 1

|r1 − r2|
ψ1(x1)ψ2(x2), (6.4)

where ψ1, ψ2 are the orbitals of the initial electrons involved in the process, ψhole is the
state occupied by the initial hole, and ψex is the excited (Auger) electron. Note that the
above formula ignores correlation effects. For instance, the states interact through a bare
Coulomb interaction instead of a possibly more appropriate screened interaction. Since
we currently consider only a fixed initial hole state, the density of (indistinguishable) final
states is solely determined by the density of states of the excited state electron in the
material at the relevant energy. We should take into account some geometrical factors,
though, as we will only observe those electrons which have a momentum lying in the
solid angle dΩ spanned by the detector. Hence, only that fraction of the density of states
should be taken into account. Furthermore, if the excited state is created in the material,
it has to traverse the surface dipole on its way to the detector. Finally, in order to obtain
the total transition rate for the Auger process with a fixed initial hole state, we should
additionally sum over all possible initial electron pairs that result in a final state with the
same momentum and energy.

The calculation of the Auger matrix elements and the inclusion of the geometrical
factors from first-principles is rather involved. Instead, we will use an approximate model
described by Hagstrum [143, 144], in which matrix element effects are neglected and the
escape of electrons to the vacuum is treated classically. This model was developed to
describe Auger neutralization, a process in which an ion close to a surface is neutralized
through an Auger transition. The main difference with our current problem is that the
initial hole state is the one of the missing electron of the ion, instead of a missing electron
in the material. We will see, though, that only the energy of the initial hole state enters
in the model, such that it is suited to describe the VVV process as well.

The Hagstrum model does not give an absolute transition rate, but instead predicts
the relative intensity of electrons escaping with a kinetic energy εk from the sample, which
is given by

Dc(εesc + εvac)Pe(εesc)T [εh, εesc + εvac]. (6.5)

Let us first discuss how this can be related with our general discussion of the transition
rate in terms of Fermi’s golden rule. First, in the above expression, we denote the
measured kinetic energy of the Auger electron by εesc, and the reference energy is the
Fermi level εF . The density of final states is here given by the density of states of the
material Dc. The escape function Pe(εesc) takes into account the probability that the
excited electron has sufficient kinetic energy along the normal of the surface to climb the
surface dipole barrier. Finally, T is the so-called Auger transform [145], and represents
the sum over all initial state electron pairs that give a final state in which the excited
state electron has energy εesc + εvac. It is given by a convolution of the valence density of
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states with itself,

T [εh, εesc + εvac] =
∞∫
−∞

dε1

∞∫
−∞

dε2Dv(ε1)Dv(ε2)

× δ((ε1 − εh) + (ε2 − εvac − εesc))Θ(ε1 > εh). (6.6)

The valence density of states used above is simply the density of states below the valence
band maximum Dv(ε) = D(ε)Θ(ε < εv). Energy conservation is taken into account
through the delta function, and the Heaviside function ensures the hole in the valence
band gets occupied by an electron from a state higher in energy. Note that the energy
conservation we impose is only approximate. For example, it is possible that the excited
electron does not carry away all energy released in the electron-hole transition as the two
holes in the final state interact. We will not be concerned with these relaxation effects in
the rest of this chapter.

Taking into account that we do not have a single hole at energy εh, but rather a
distribution of holes λ(εh) which is determined by the annihilation probability of the
positron with electrons at εh, we obtain

A(εesc) =
∞∫
−∞

dεh λ(εh)Dc(εvac + εesc)Pe(εesc)T [εh, εvac + εesc]
N(εh) Θ(εh < εg). (6.7)

The Heaviside function indicates that Auger transitions can only happen when holes are
created sufficiently deep in the valence band, such that the excited electrons can cross
the band gap εg. We also introduced a normalization factor N(εh) which ensures that
every hole created results in a single Auger transition, i.e.

N(εh) =
∞∫
−∞

dεf Dc(εf )T [εh, εf ], (6.8)

which simply gives all possible Auger transitions given the initial hole energy εh. The
hole distribution can be extracted from the state-dependent electron-positron annihilation
rates by integrating over the BZ

λ(εh) = 1
Ω
∑
i

∫
Ω
dkλi(k)f(εi(k))δ(εh − εi(k)), (6.9)

where the sum runs over all electronic energy levels i, which have an occupation f(εi(k)),
and Ω denotes the volume of the BZ. The state dependent annihilation rates are calculated
as

λi(k) = πr2
ec

∫
dr |ψei,k(r)|2|ψp(r)|2γ(r). (6.10)

For the calculation of the BZ integral, we have used the tetrahedron method for which
formulas are given in Ref. [146].

Hence, we have a recipe to calculate all quantities in Eq. (6.7) from first-principles
with exception of the escape function, for which we now derive an expression. Hagstrum
treats the excited electron as a classical particle that gets diffracted at the surface of the
material. The kinetic energy of the particle in the material is assumed to be given by the
energy of the electron above some reference energy εref. In Hagstrum’s work, this reference
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energy is the bottom of the conduction band for metals [143], or the bottom of the highest
valence band for semi-conductors [144]. We take instead the average potential in the
bulk of the sample. Our choice is merely conceptual, and has little effect on the actual
results. Since we measure the final electron’s energies with respect to the vacuum level,
the kinetic energy in the material is given by εvac + εesc− εref. Passing through the surface
dipole barrier, the particle loses kinetic energy equal to the energy difference between the
reference energy and the vacuum level. The critical angle of incidence, measured from
surface’s normal, for which the particle retains a positive kinetic energy in the vacuum is

θc = arccos
(√

εvac − εref

εvac + εesc − εref

)
. (6.11)

The escape function is then determined from

Pe(εesc) =
∫ 2π

0
dφ

∫ θc

0
dθ PΩ(θ, φ, εvac + εesc), (6.12)

where PΩ(θ, φ, εvac +εesc) is the probability that the wavevector of an excited state electron
with energy εvac +εesc is in the direction (θ, φ). Here, we take the z-axis along the direction
of the surface normal. This probability is determined by the matrix elements, and for
simplicity, we will assume that the distribution is isotropic, PΩ(θ, φ, εvac + εesc) = 1/4π.
The resulting integral is easy to perform and gives

Pe(εesc) = 1
2

[
1−

(
εvac − εref

εvac + εesc − εref

)β]α
, (6.13)

with β = 1/2 and α = 1. The parameters α and β were introduced by Hagstrum [144] to
model the non-isotropy of the matrix elements. We will investigate their effect on our
results in a later section.

6.3 Results
Now that we presented our recipe for the calculation of the Auger spectrum, we will
gather the required ingredients from the first-principles calculations. We need the Density
Of States (DOS) of the material, the energy dependent electron-positron annihilation
rates, the vacuum level, and the average potential in the bulk of the material. Once we
obtain these quantities, we will examine the result of the model and compare it with the
experimental results. As we will see, the agreement is reasonable, but nonetheless we
spend some extra time on refining the recipe to see if we can obtain better agreement.
Finally, we make an attempt to estimate the relative contribution of the VVV Auger
process to the decay of excited holes in the valence band1, i.e. its branching ratio, by
comparing calculated and measured values.

6.3.1 First-principles calculations
Technical details

To calculate the electronic properties of the samples, we used the PAW method, as
implemented in VASP [86–88, 146]. The kinetic energy cutoff for the plane-wave expansion

1Other decay channels include excitation of phonons, creation of electron-hole pairs, etc.
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(a) (b)

Figure 6.3: (a) Top view and (b) side view of the unit cell to model graphene on a Cu
(111) substrate. Cu atoms are indicated in blue and C atoms in brown and gray, where,
for clarity, C atoms at different Cu surfaces have different colors.

of the wave functions was set at 520 eV in all calculations containing C atoms, and 384
eV when only Cu was included. For the relaxation and ground state calculation of SLG,
a Γ-centered k-mesh of 15× 15× 1 was used, and was refined to 45× 45× 1 to calculate
the DOS accurately. In the case of the ground state calculation and relaxation of Cu
(111) both with and without graphene layer(s), a Γ-centered k-mesh of 21× 21× 1 was
selected. In all calculations, the structures were relaxed until the forces on the atoms
were smaller than 5 meV/Å. A vacuum of 15 Å was present in all slab models to avoid
interaction between periodic images. Electron-electron exchange and correlation effects
were described using the optB88-vdW functional [147], appropriate for layered materials,
which includes long-range Van der Waals effects and yields accurate lattice constants for
both Cu [148] and Graphite [149]. We find that this functional yields a SLG - Cu interface
spacing of 3.287 Å, which is in agreement with the value of 3.34± 0.06 Å obtained from
total-reflection high-energy positron diffraction experiments [150]. Fig. 6.3 shows the unit
cell used in the Cu (111) + SLG calculations. Our slab model for the Cu (111) substrate
contains 9 atomic layers. For MLG, we found that electronic properties of interest, i.e.
the DOS and electron workfunction, for a slab consisting of 6 layers approaches the bulk
graphite limit sufficiently for our purposes.

The positron state was calculated with the MIKA/doppler program [92], the general
details of which are explained in more detail in Sec. 3.B.1. We used the WDA with shell
partitioning described in Sec. 3.3.3, where we take the C(2s), C(2p), Cu(3d) and Cu(4s)
as the valence electrons. For the LDA part, and the enhancement factor, we take the
parametrization by Drummond [56]. Since we have no experimental lifetime to compare
with, we leave the screening charge at Q = 1 in the sum rule equation.

Positron states

Fig. 6.4 shows the localization of the positron state in our slab models. From these plots,
we see that the positron forms surface states for SLG on Cu (111), Cu (111), SLG, and
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MLG, which are shown in panels (a)-(d), respectively. In the case SLG on Cu (111)
(Fig. 6.4(a)), the positron is mostly located at the vacuum side of the graphene sheet,
though the overlap with the Cu substrate is not negligible. For the graphite surface, we
note that the positron density decays slower in the bulk of the material compared to the
other systems, which we can attribute mainly to the large open space between successive
graphene layers. We also find a positron surface state for MLG on Cu (not shown), which
is very similar to the result shown for graphite; the positron state is dominantly located at
the vacuum side of the sample and has non-negligible overlap with the first few graphene
layers. Note that this implies a negligible overlap with the Cu substrate.

Aside from the positron state, Fig. 6.4 also show the contact density (pink lines),
which in essence shows the spatial distribution of the initial hole states. It is clear that,
for SLG on Cu, most of the initial hole states are created in the graphene layer and only
a small fraction in the Cu substrate.

Electronic structure

The calculated valence DOS, conduction DOS and the hole distributions for SLG on Cu
(111), Cu (111), SLG, and MLG are shown in Fig. 6.5(a)-(d), respectively.

We start our discussion by noting the similarity in the valence DOS and hole distri-
butions between SLG (Fig. 6.5(c)), MLG (Fig. 6.5(d)) and graphite (not shown). It is
well-known, though, that graphene is a zero-gap semiconductor with a linear band disper-
sion around the Fermi-level, in contrast to MLG and graphite which are semi-metals [151].
The difference in the electronic structure is, however, located close to the Fermi-level and
might have a very limited quantitative effect on our results, but qualitatively, we do not
expect a notable difference originating from the occupied DOS and the hole distributions.
The same applies for the calculated workfunction values of 4.47 eV, 4.45 eV and 4.45 eV
for SLG, MLG and bulk graphite, respectively.

The results for Cu (111), shown in Fig. 6.5(b) support our earlier claim that we do
not expect to observe a significant VVV signal from it. Indeed, from the energy resolved
annihilation rates, we have calculated that barely 5% of the holes are created sufficiently
deep in the valence band to allow any Auger electrons to escape from the sample. This
corresponds with the portion of the blue curve not situated in the shaded area. Also,
the DOS is relatively small up to ∼ 1.5 eV from the Fermi-level, from which we can
already expect, without explicitly calculating the Auger transform, that most of the Auger
electrons will end up below the vacuum level.

For SLG on Cu (111), we see in Fig. 6.5(a) that the DOS is dominated by the Cu
contribution. This is to be expected since in our calculations 86% of the electrons belong
to the Cu substrate. However, the hole distribution still closely resembles the SLG DOS,
with exception of the region around ∼ 2 eV below the Fermi-level. This is line with
our expectations from the results of the positron state and contact densities shown in
Fig 6.4(a). Indeed, using the atomic densities, we calculated that 96% of the annihilation
occurs with C states2. The difference in the hole distribution can safely be attributed to
the annihilation with the Cu states, as the deviation compared to SLG is situated around
the position where the Cu hole distribution, shown in Fig. 6.5(a), is peaked.

We note that there is a small contribution to the conduction DOS due to free electron-
like states in the vacuum of the simulation cell, confined between periodic images of the
slab [152]. This adds the well-known step like contribution of a confined 2D electron

2This is the LDA result. In the IPM we find 95%.
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Figure 6.4: Results of the positron groundstate calculation for (a) SLG on Cu (111), (b)
Cu (111), (c) SLG and (d) graphite. The curves show averages over the planes parallel to
the surface. The densities are shows on a relative scale for ease of comparison. vptot: Total
positron potential, vpc : Positron correlation potential, ρp: Positron density, ρep: Contact
density. Panel (e) shows a cut through the positron density and potential for SLG on Cu
(111) along the C-C bond. This result shows that the positron state is relatively uniform,
except in the region close to the ions where it decays quickly, as can be expected from
the potential.
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gas to the conduction DOS above the vacuum level3. The spacing between these states
increases as ∼ n2/L, with n indicating the level and L the width of the potential well
created by the periodic images of the slab. As a consequence, the relative contribution to
the conduction DOS due to these states is small, and in practice has little effect on our
calculated spectra.

6.3.2 VVV spectrum
Preliminaries

Before presenting the VVV spectra calculated by applying Eq. (6.7), we study the
integrand of this equation. This gives additional insight in how the different quantities
from our first-principles calculations contribute to the VVV spectrum. The DOS and
hole distribution of MLG, shown in Fig. 6.5(d), have a peak structure that makes it easy
to interpret4, and will be discussed here as an example.

Fig. 6.6(a) shows the Auger transform of Eq. (6.6) and quantifies the number of
transitions possible for a given initial hole energy εh and excitation energy of the Auger
electron εesc + εvac. We see that even for a material with a wide valence band such
as MLG, the majority of the final state electrons end up below the vacuum energy, as
indicated by the hatched region on the left side of the plot. Note also the small amplitude
of the Auger transform for holes with an energy above the threshold value for Auger
emission, i.e. εF − εh < φe which is delineated by the hatched region at the top of the
plot. The reason for this is twofold: (i) The possible combinations of initial and final
states become small because most of the DOS does not contribute to the Auger transform
at that point, and (ii) the amplitude of the DOS vanishes towards the Fermi level. For
point (i), consider for instance εh = εF − φe, then only the shaded region in Fig. 6.5 is
contained in the Auger transform.

The Auger transform weighted by the hole distribution and the conduction DOS, i.e.
the product λ(εh)Dc(εvac + εesc)T [εh, εvac + εesc] in Eq. (6.7), is shown in Fig. 6.6(b). The
hole distribution can be recognized along the vertical lines of fixed final energy in the
plots, in particular the peaks and the dip in the DOS a bit above −15 eV. Analogously,
the conduction DOS can be recognized by taking a cut through the plot at a fixed hole
energy, with most notable feature the peak just below 10 eV.

The VVV spectrum is obtained from the results shown in Fig. 6.6(b) by additionally
multiplying with the escape function Pe(εesc), which will quench the amplitude to zero
at the vacuum level, dividing by the normalization factor λ(εh) and integrating over the
hole energies. Hence note that the fine structure of our calculated VVV spectra will
clearly reflect the conduction DOS whereas the valence DOS and hole distribution only
contribute to the overall amplitude.

Results VVV calculations

Now we illustrated how the different material properties contribute to the VVV spectra, we
show the final results in Fig. 6.7. The result for Cu (111) confirms our earlier anticipation,
showing that the VVV process has a vanishingly small amplitude. Likewise, the spectra
for SLG and MLG are very similar. The differences between the two results are well
explained by comparing the conduction DOS of the two systems. For SLG on the Cu (111)

3One such step can be identified in Fig. 6.5(c) at the vacuum level, indicated by the dashed vertical
line. Mind that the two preceding steps in the conduction DOS correspond with conduction states of
graphene. Hence, not all steps can straightforwardly be attributed to vacuum states.

4The results of SLG have several additional small peaks that clutter the plots.
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Figure 6.5: DOS and hole distribution for (a) SLG on Cu (111), (b) Cu (111), (c) SLG,
and (d) MLG. All quantities are shown on a relative scale. Energies are measured with
respect to the Fermi level, and the vacuum level εvac is indicated with the dashed line.
The valence DOS Dv is shown in green, the conduction DOS Dc in orange, and the hole
distribution λa, i.e. the energy resolved annihilation rate, in blue. The shaded region
indicates the portion of the hole distribution that is too close to the Fermi energy to
allow Auger transitions with an excited electron above the vacuum level, i.e. the maximal
transferred energy is smaller than the electron workfunction ∆εmax < φe. The values of
the work functions are quoted in the plots for each sample.
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Figure 6.6: (a) The Auger transform (Eq. (6.6)) for MLG as a function of the initial hole
energy (vertical axis) and the energy of the excited electron with respect to the Fermi
energy (horizontal axis). (b) The Auger transform multiplied with the hole distribution
λa and the conduction DOS Dc as in the integrand of Eq. (6.7). The hatched regions
at the left of the plots indicates final energies that are below the vacuum level, and the
hatched regions at the top initial hole energies that are too close to the Fermi level in
order to create an Auger process with an excited electron above the vacuum level.

substrate, we find a rather different result without any pronounced peaks but instead a
wide slowly varying amplitude over the range 0− 12 eV. This is caused by the relatively
flat, steadily increasing conduction DOS of the system.

The calculated result of SLG without inclusion of the Cu substrate (blue line) is in
reasonable agreement with the experimental results of SLG (dotted green line). We find a
peak position around 4 eV in the calculated results, which is fairly close to the maximum
at ∼ 3.5 eV seen in experiment. Also the decay of the amplitude between 5 − 10 eV
compares well against the measured result. The major difference is the higher amplitude
at low energies observed in the experiment. Somewhat surprisingly, our calculations of
SLG with inclusion of the Cu substrate (orange line) shows notably worse agreement with
experiment. The agreement between experiment (dotted yellow line) and theory (pink
line) for MLG is somewhat worse than for SLG, mainly due to the shift in the amplitude
towards lower energies in the experiment.

Let us search for an explanation why the SLG on Cu (111) calculation differs so
strongly from the (better) SLG result. We already know that the conduction DOS is the
most important factor that determines the shape of the spectrum. Earlier, we also noted
that the calculated DOS of the Cu + SLG is dominated by the Cu states. Hence, in our
result for this system, we mainly see transitions where the initial hole is situated in the
graphene layer (due to the hole distribution) and the excited electrons occupy excited
states of the Cu substrate. This is certainly not what we physically expect to happen.
Indeed, since the graphene layer is only weakly coupled to the Cu substrate, there is little
hybridization/overlap between the graphene and Cu states [153]. Hence, from the Auger
matrix elements, Eq. (6.4), we expect that the electron that transitions to the hole state
will also be a graphene state. This observation suggests that it is more appropriate to use
the graphene valence DOS in the calculation of the Auger transform even though there is
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Figure 6.7: Results of the Auger calculation for the considered systems. The normalization
is chosen such that, before applying the escape function and taking into account the
fraction of electrons that end up below the vacuum level, there is a single Auger transition
per created hole in the valence band (i.e. the normalization of Eq. (6.8)). Note that the
amplitude for Cu (111) has been multiplied by a factor 100 in order to make it visible on
the plot. Measured spectra are shown by the dotted lines, and have been normalized to
the same total amplitude as the calculated results (without Cu substrate).

a Cu substrate present in the experiment5. Next, we expect that also the observed Auger
electrons occupied initially graphene states. We have two reasons to make this claim. The
first is that it is reasonable to expect that the Coulomb interaction between the graphene
layer and the Cu substrate will be screened to some extent [154]. This decreases the
amplitude of the Auger matrix elements between Cu and graphene states. The second is
that if the excited electron is created in the Cu substrate, it is less likely to make it out
of the sample without being scattered. However, if we use the DOS calculated for the Cu
+ SLG system in our model, we essentially assume that the final electrons in the Auger
process are dominated by the Cu states. Hence, just as was the case for the valence DOS,
it is again more appropriate to use the conduction DOS of SLG.

The above discussion shows that an important limitation of neglecting the matrix
elements is the resultant lack of spatial selectivity. As we suggested, using the graphene
DOS cures the problem to some extent, as confirmed by the reasonable agreement between
the measured and calculated SLG spectra.

In the following sections, we explore three effects not directly related to matrix element
effects (which we will not investigate in this work) that can ameliorate the agreement
between experiment and theory in the low energy part of the spectrum. Cascade effects,
in which a single electron-positron annihilation induced hole leads to a series of Auger
transitions, will be explored first. Since the additional Auger electrons will generally have
reduced energy, this should increase the amplitude of the calculated spectrum at lower
energies. Second, we will attempt to model effects of inelastic scattering, which should
shift the amplitude of the results presented in this section towards lower energies. Finally,

5Even better would be to sum the Auger transforms of the isolated SLG and Cu (111) systems. We
know from the latter, though, that it gives a vanishingly small contribution, hence we will ignore it.
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we will examine the effect of the parameters of the escape function on the VVV spectrum.

6.3.3 Cascade effects
One possibility to explain the higher intensity at low energies observed in the experiment
is that multiple Auger processes happen in succession. Indeed, after the first Auger
process, the system is actually left with two holes in the valence band. These two holes
can serve as the starting point of an equal amount of additional Auger processes. Each of
these successive transitions, will create holes higher up in energy, such that the additional
Auger electrons are mainly expected in the low energy part of the spectrum. The amount
of sufficiently energetic Auger electrons in the cascade effect is thus also limited.

Theory

We will now calculate the upper bound of this effect by assuming, as before, that the
Auger process is the only decay channel, i.e. the holes do not loose energy through other
processes. Hence, we start with the initial annihilation induced hole distribution, and
obtain a new hole distribution in the second iteration which is determined by the initial
energies of the two electrons of the first iteration. To derive a formula for the hole
distribution after each iteration, we need to count the number of times that each initial
electron state is involved in an Auger transition. Our expression for the VVV spectrum,
Eq. (6.7), counts the number of possible transitions from all initial energy levels to a given
final energy state, and weights them by the escape probability. The latter, we ignore for
our current purpose, as we need to count all transitions, not just the ones that result
in an escaping electron. Now, if we fix the initial energy of one of the electrons which
appears in the Auger transform of Eq. (6.6), and integrate over all possible final energy
levels, we obtain what we are looking for. Summing the contributions for both initial
electrons, given us

λi(εh) =
∫∫

dε′h dεf
λi−1(ε′h)Dc(εf )

N(ε′h)

×
{∫

dε1Dv(ε1)Dv(εh)δ((ε1 − ε′h)− (εh − εf ))Θ(ε1 > ε′h)

+
∫
dε2Dv(εh)Dv(ε2)δ((εh − ε′h)− (ε2 − εf ))Θ(εh > ε′h)

}
, (6.14)

where we replaced εvac + εesc by εf to indicate that we should integrate over all possible
final energies, not just the ones above the vacuum level. The subscript i denotes the order
of the hole distribution, with λ0 = λa the one created by the annihilation process.

Results

Fig. 6.8(a) shows the effect on the spectrum for graphene. We see that the cascade effect
has a very limited impact on the spectrum. We get limited extra contribution at low
energies, which quickly decreases towards higher energies. It is maybe slightly surprising
that the effect is so small, but it turns out that the additional holes created in the valence
band quickly end up above the threshold energy for Auger emission. This is indicated
in panel (b) of the same figure. Still, according to the numbers given in Table 6.1, the
first iterative contribution has about half as much holes with the potential to contribute
to the spectrum, which is not at all reflected by the curve A1 of Fig. 6.8(a). Indeed,
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Iteration I(λi) I(λi(εh < εf − φe)) I(Ai)
0 1 7.28e-01 1.44e-02
1 2 3.26e-01 1.94e-04
2 4 2.27e-02 9.08e-07
3 8 3.76e-04 1.80e-09

Table 6.1: Relative amounts per annihilation of I(λi): holes in the valence band, I(λi(εh <
εf − φe)): holes sufficiently deep in the valence band to trigger an Auger transition with
an electron above the vacuum level , and I(Ai): Auger electrons that escape from the
sample. I(λi(εh < εf − φe)) corresponds with the integral over the hole distributions in
Fig. 6.8 not contained in the gray region.

from our Table 6.1 we can read off that this contribution is only 1.3% of the that of the
annihilation induced effect. There are two reasons for this rapid quenching of the iterative
contributions. First, most of the transitions originating from the potentially contributing
hole states, end up below the vacuum level. The actual amount of transitions with an
electron above the vacuum level for iteration i is reflected by the hole distribution of
iteration i+ 1. It can be seen from Fig. 6.8(b) as well as the third column of Table 6.1
that this decreases rapidly after the first order. Second, the escape function significantly
damps the actual amount of escaping electrons in the low energy region. Indeed, this is
illustrated by the numbers shown in the third and last column of our table. Whereas
about 4% of the holes with εh < εF − φe result in an emitted electron for the annihilation
induced step, this drops to barely 0.3% in the first cascade.

We can conclude from the results presented in this section that cascade effects cannot
be responsible for the discrepancy in the amplitude between the calculated and measured
VVV spectra. Indeed, our results here are an absolute upper bound and have no qualitative
influence on the spectrum compared to the result without inclusion of higher order Auger
effects.

6.3.4 Inelastic scattering

Inelastic scattering of Auger electrons as they make their way out of the material is the
second effect we investigate to obtain better agreement with experiment. The Auger
experiment for Cu contains, in fact, a significant low energy tail due to inelastic scatter-
ing [5, 8, 21], indicating that inelastic scattering could indeed be important. Modelling
this effect accurately is, however, far from straightforward. Hence, we concentrate on
a simple model to estimate if inelastic effects can be held responsible for the increased
amplitude at low energies. We neglect the cascade effects from the previous section, and
start from the results presented in Sec. 6.3.2.

In the following, we motivate the approach we take to model inelastic scattering. As
we will see, we can obtain the spectrum of scattered electrons by convolving the original
spectrum with an energy dependent cross section, and we will consider three different
such cross sections found in literature. After discussing the cross sections, we present
the required modifications to the equations for the VVV spectrum to incorporate the
inelastic scattering. The results and discussion are presented in the subsequent section.
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Figure 6.8: (a) The VVV Auger spectrum with inclusion of cascades effects. The full line
indicates the total amplitude obtained by summing all the iterative contributions. The
dashed lines show the contributions of the individual orders Ai. (b) Hole distributions λi
at each step of the cascade, with λ0 = λa the hole distribution created by the positron
annihilation. The shaded area indicates holes that cannot trigger Auger transitions that
result in escaping electrons.
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Theory

Introduction: The probability for an electron with kinetic energy E to lose an energy ~ω
to an excitation in the solid, per unit length, is given by [155, 156]

K(E, ~ω) = 1
πEa0

∫ k+

k−
dk

1
k
=
[
− 1
ε(k, ω)

]
, (6.15)

where a0 is the Bohr radius, k± =
√

2m/~2(
√
E±
√
E − ~ω), and ε(k, ω) is the dielectric

function, which is assumed to be a scalar rather than a tensor for simplicity. To obtain
the energy distribution of scattered electrons, this quantity has to be multiplied with the
inelastic mean free path l(E) for electrons with kinetic energy E. Albeit computationally
intensive, it is possible to calculate the full dielectric function from first-principles. We
will not attempt to do so here, however, as our purpose is mainly to get a rough estimate
of the inelastic scattering. What we will use later on, is the k → 0 optical limit of
the dielectric function which is much faster to calculate. This limit will prove useful in
conjunction with the expansion [155–157]

=
[
− 1
ε(k, ω)

]
=
∑
i

Ai
Γi~ω[(

~ω0i + ~2k2

2m

)2

− (~ω)2

]2

+ (Γi~ω)2

. (6.16)

The above expansion gives an approximation of the dependence of the loss function on the
wave vector which satisfies some sum rules, and can be fitted to optical spectra [155–157].
For k = 0, Γi give the full width at half maximum of a peak i in the spectrum, ω0i its
center, and Ai the amplitude.

Tougaard noticed that the product l(E)K(E, ~ω) is weakly dependent on both the
initial kinetic energy of the electrons and the material for several metals [155]. Motivated
by this observation, he proposed a ‘universal cross section’ σ(~ω) that roughly describes
the energy loss of electrons over a wide energy range, and is applicable to a wide range of
materials as well. The validity of the cross section has been confirmed by comparison with
loss functions measured with Reflected Electron Energy Loss Spectroscopy (REELS) [156,
158, 159]. Later, it was noticed that when the loss spectra of certain materials display a
clear plasmon peak, the cross section is better described with a slightly different form [156].
We will denote this form of the cross section as the ‘plasmon’ cross section in the rest of
this section.

Usually, the cross sections mentioned above are used to subtract the background of
inelastically scattered electrons from AES or X-ray Photoemission Spectroscopy (XPS)
experiments. Aside from Tougaard’s cross sections, the method proposed by Shirley [160]
is also widely used to perform this background subtraction. It turns out that, although
not initially formulated as such, this methods also coincides with assuming a cross section
σ(~ω), though with a somewhat different form as the one by Tougaard [161].

Cross sections: The functional forms of the cross sections discussed above are given by

σS(ε) = B

C + ε2
, σT (ε) = Bε

(C + ε2)2 , σp(ε) = Γε
(ω2

0 − ε2)2 + (Γε)2 , (6.17)

where we the subscripts denote the Shirley, Tougaard, and plasmon cross sections,
respectively. We have written the plasmon cross section in a suggestive form that
allows for easy identification with the energy loss expansion of Eq. (6.16). Notice that,
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Figure 6.9: Plots of the Shirley σS , Tougaard σT and plasmon σp cross sections, normalized
to unity. Panel (a) shows the optical spectrum as calculated from first principles. We
have fitted the plasmon cross section to the prominent low-energy plasmon peak around
∼ 5.5 eV, and obtained Γ = 1.56 eV2 and ω0 = 5.46 eV. This single term fit reproduces
the peak very well, but does not quite capture the plateau between 2−5 eV, and obviously
neglects the peak at higher energies. Panel (b) shows the dependences of the cross sections
over a wider energy range. Note the difference in scale between the two plots.

aside from the amplitude parameter it corresponds with a single term fit to an optical
spectrum. The usual parameters for the Tougaard cross section are given by B = 2866 eV2,
C = 1643 eV2 [155]. A reasonable choice for the parameters in the Shirley cross section is
B = 36 eV, C = 900 eV2 [161].

The parameters mentioned above, have been chosen to describe the energy loss of
electrons with kinetic energies of several 100 eV. A point of critique is then obviously
that they may not quite describe the energy loss for the low energy electrons we are
dealing with. To counter this critique, we have fitted the plasmon cross section to the
low-energy plasmon peak in the graphene loss spectrum. The calculated energy loss
spectrum =[−1/ε(0, ω)] (dashed line), with the fitted cross section (full pink line) are
shown in Fig. 6.9, along with the other two cross sections for comparison. Our result
for optical loss spectrum agrees well with results from literature [162, 163]. Note that
we have normalized the integral over the cross sections to unity for a fair comparison.
The parameters of our fit are Γ = 1.56 eV2 and ω0 = 5.46 eV. It will become apparent,
though, that the exact choice of the parameters and the cross section do not crucially
influence the results.

Modifications to the VVV model: The amplitude of inelastically scattered electrons can be
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obtained by convolving a spectrum A′ with the energy dependent cross-sections σ(ε1− ε2),
which describe the probability that an electron with energy ε1 will scatter to a (lower)
energy level ε2 [161]

A′n(ε2) =
∫ ∞
ε2

dε1 σ(ε1 − ε2)A′n−1(ε1). (6.18)

Here, we introduce the subscript n since electrons can get scattered multiple times before
they get detected. The limits on the integral indicate that, obviously, we only expect
electrons to lose energy in the scattering process. We could substitute the calculated VVV
spectrum for A′0 in Eq. (6.18), but we already applied the escape function in calculating
that result and do not expect electrons to scatter inelastically in the vacuum region6.
Hence, we modify our expression for the VVV spectrum, Eq. (6.7), as follows

A(εesc) = Pe(εesc)
∞∑
n=0

cnA
′
n(εesc), (6.19)

A′0(εesc) =
∫
dεh λ(εh)Dc(εvac + εesc)T [εh, εvac + εesc]

N(εh) (6.20)

where the various symbols retain the same meaning, and A′n is calculated from Eq. (6.18).
In the above, we thus first calculate the transition amplitude A′0 which is simply the VVV
formula from before but without the escape function. Afterwards, we obtain the spectra
A′n of electrons that have undergone n scattering events through Eq. (6.18). Finally,
we sum all these contributions and apply the escape function7. The constants cn give
the relative amplitudes of electrons that have been scattered n times. These coefficients
are determined such that in each iteration a fixed relative amount Dinel are scattered
inelastically8. Note that only the dependence of the cross section on the energy loss is
relevant in our calculations, not its absolute amplitude.

Results

We tried several values for the amount of inelastic scattering, and found close agreement
with the experimental spectrum (teal line) for Dinel = 0.85 with the fitted plasmon cross
section (blue line), as depicted in Fig. 6.10(a). Note that the inelastic amplitude Dinel is
the most important parameter is these calculations. Indeed, Fig. 6.10(b) demonstrates
that the difference in the shape of the spectra obtained with the various cross sections
is only minor, and corresponds with what can be anticipated from the plots of the
individual cross sections. For the Shirley cross section, shown in pink, we find slightly
higher amplitude at low energies for the same Dinel since it has a finite amplitude at zero
energy loss, in contrast to the two other cross sections. The difference between the results
obtained with the Tougaard (green line) and the plasmon (blue line) cross section is small,
which is somewhat remarkable considering the difference of the actual loss functions, but

6A possible exception could be that electrons end up in the vacuum through the scattering process.
7In practice we select a maximum number of iterations nmax such that the result is sufficiently

converged.
8More precisely, we set cn = I(A′n−1)Dinel(1−Dinel), where I(A′n−1) denotes the integrated intensity

of the spectrum in the previous step. For the annihilation induced step we have c0 = I(A′0)(1−Dinel),
and for the final interaction cnmax = I(A′nmax−1)Dinel. Note that this choice takes into account that
the number of excited electrons does not change due to the inelastic scattering. However, this does
not imply that the final spectrum A has the same amplitude as the one calculated without inclusion of
inelastic scattering. Indeed, there will be a shift of electrons towards lower energies, which implies that
more electrons will be located below the vacuum level. Additionally, the escape function has a stronger
damping effect for electrons closer to the vacuum level.
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Figure 6.10: Influence of inelastic scattering on the shape of the VVV spectra. The
total amplitudes of the results shown here have been normalized to unity over the shown
range. Panel (a) compares the experimental spectrum with the result without inelastic
scattering and the result with inclusion of inelastic scattering with the fitted plasmon
cross section σp. The relative amount of inelastically scattered electrons Dinel is indicated
in the legends of the plots. Panel (b) shows the effect of the different cross sections, as
well as the influence of Dinel for the plasmon cross section.

demonstrates that the precise form and the parameters of the cross section are not that
crucial. Table 6.2 gives the effect on the amplitudes of the VVV spectra for completeness.

In conclusion, a simple model for the inclusion of an inelastic scattering yields a
remarkable improvement of the calculated spectrum’s shape compared to the experimental
spectrum. The amount of inelastic scattering (Dinel = 0.85) we have to impose is high,
but seems reasonable compared to the values inelastic loss found in the experiment.
Indeed, for the clean Cu substrate, the low energy tail (< 30 eV) was found to have an
intensity of ∼ 1.7 times the amplitude at higher energies (> 30 eV) [8]. If we assume
that the scattered Auger electrons generate no secondary electrons, this amounts to a
relative contribution of 63% of inelastically scattered electrons to the spectrum. From
Table 6.2, we can calculate that the inelastic electrons make up 61%, 44% and 40% of
the spectrum for the Shirley, Tougaard and plasmon cross sections, respectively, if we set
Dinel = 0.85. Hence, we conclude that inelastic scattering forms a plausible explanation
for the discrepancy between experiment and the theoretical result. We note, however,
that there are too many other possible sources of error to make a definite conclusion.
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Dinel Shirley Tougaard plasmon
0.25 0.94 0.88 0.87
0.50 0.82 0.69 0.67
0.75 0.57 0.42 0.39
0.85 0.41 0.27 0.25

Table 6.2: Comparison of the total VVV amplitudes with inclusion of inelastic scattering
relative to the result without. The columns give the results for each cross section for
several values of the relative amount of inelastic scattering Dinel. Note that the relative
contribution of electrons that have been scattered inelastically at least once can easily
be calculated from this table as (I − (1−Dinel))/I, with I the relative VVV amplitudes
given in the table.

6.3.5 Effect of the escape function
We now investigate an alternative modification to our model that can ameliorate the
agreement between theory and experiment. Specifically, we now are interested in the
effect of the α and β parameters of the escape function in Eq. (6.13). Hagstrum namely
noted in his work that the simple geometric factor, which assumes that the momentum
distribution of final state electrons with energy εk is isotropic, yields insufficient amplitude
of the spectrum at low energies in ion neutralization experiments [144]. He explained that
the observed enhanced amplitude indicates that the momentum distribution of excited
electrons is not isotropic. Hence, he introduced the parameters α and β in the escape
function to fit the spectrum. In our problem, it seems unlikely that the momentum
distribution of the final electrons is isotropic as well, considering the states involved in
the transitions are part of a 2D system.

We start again from the unmodified VVV spectrum discussed in Sec. 6.3.2, ignoring
cascade effects and inelastic scattering . In Fig. 6.11(a), we show the dependence of
the escape function on both parameters. It is clear from the curves shown, that we can
significantly modify the amplitude at low energies by tuning α and β.

Fig. 6.11(b) compares the shape of two modified VVV spectra with the measured
and unmodified VVV spectra, shown in teal and orange, respectively. The green curve
shows the result published in our work (Ref. [8]), obtained with the choices α = 1/4 and
β = 1/2, and gives better agreement of the amplitude between in the range 1− 4 eV. The
agreement is further enhanced when experimental broadening is accounted, as shown in
Fig. 6.12. It is noteworthy that this value of α is also used in Hagstrum’s work [144] and
more recent applications of his model [164, 165], although in conjunction with β = 1.
Comparing the dashed yellow and teal curves with the orange curve in Fig. 6.11(a), we
see, though, that β mainly influences the overall amplitude of the spectrum and not so
much its shape.

Better overall agreement with experiment is obtained by a more drastic change of
the parameters to α = 3/2 and β = 10. It is obvious we can likely fit whatever shape
we want with unrestricted tuning of the escape function parameters. Whether the result
with these parameters is realistic thus depends on if the escape probability shown in
Fig. 6.11(a) accurately models the effect of the Auger matrix elements, and electron
escape mechanisms.

In light of our last remark, we conclude this section by making some critical remarks
about the appropriateness of the escape function in this study. First, we recall that the
escape function is derived from a semi-classical picture in which the particle approaches
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Figure 6.11: Panel (a) shows the dependence of the escape function from Eq. (6.13) on the
parameters α and β. Increasing β and decreasing α both increase the escape probability.
Panel (b) shows the effect on the shape of the VVV spectrum for two choices of parameters
that give a good fit to the experiment. The unmodified result with α = 1, β = 1/2 is also
shown for comparison.

Figure 6.12: Comparison of the experimental spectrum (dots) and the calculated spectrum
(line) for SLG on a Cu (111) substrate. The calculated spectrum is obtained with the
parameters α = 1/4 and β = 1/2 in the escape function from Eq. (6.13), and is broadened
by an experimental response function, the details of which are given in Ref. [8]. Figure
taken from Ref. [8].
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an energy barrier from within the sample. We immediately run into issues when we
go along with this line of reasoning. Indeed, if the excited states are created in the
graphene sample, and if they are truly excited states of graphene, they need to have a
momentum vector that lies in the plane of the graphene layer (otherwise they would
escape). According to the classical picture, none of these electrons get to the vacuum
because they have no (net) momentum component perpendicular to the sample. Hence, a
collision process of some sort would be required for electron emission. An accurate model
for the escape probability of electrons might thus require inclusion of phonon assisted
electron emission. Another problem with the classical picture is that it does not consider
the possibility that the Auger process couples immediately to a vacuum state, without
the intermediate excited bulk state. It does seem likely that there is some overlap of
vacuum states with the graphene orbitals, considering it is only a single atom thick. Such
processes can be expected to increase the net ‘escape probability’ of the electrons at low
energies. It is hard to judge how pronounced this effect is, however, and a definite answer
likely has to come from an actual calculation of the Auger matrix elements.

6.3.6 Branching ratio
Introduction: Now that we have analysed in detail the VVV spectrum and searched
for explanations for the differences seen between experiment and theory, we attempt to
estimate the branching ratio of the Auger process for holes in the valence band. With
branching ratio, we mean the number of excited holes that decay to the top of the valence
band through Auger processes, compared to all possible decay channels, which include
e.g. excitation of phonons or electron-hole pairs close to the Fermi-level.

In experiment, the measured intensity of the VVV peak was 21± 4 times the intensity
of the KVV peak associated with a primary hole in the C(1s) level [8]. What we will
do in the following is determine this ratio from our calculated data, assuming that all
holes decay through Auger processes. According to Ref. [166], the transition rate for the
Auger process with a hole in the C(1s) level is about 285 times larger than for radiative
decays. Hence, for the KVV peak, our approximation is likely quite accurate. For the
VVV transition rate, we expect an overestimation, since transition rates for alternative
decay channels are expected to become more important for holes closer to the Fermi level.
The ratio derived from experiment over the ratio obtained from theory then gives an
estimation of the branching ratio for the Auger process for holes in the valence band. In
what follows, we will attempt to get a conservative estimate of the branching ratio, which
we can obtain by making sure we do not under- and overestimate the valence and core
contributions to the spectrum, respectively.

The theoretical ratio of the VVV and KVV transition rates is given by

R = λv
λ1s

I(AV V V )
I(AKV V ) , (6.21)

where λv and λ1s are the annihilation rate of positrons with valence electrons, and C(1s)
electrons, respectively. The integrated intensities of the VVV and KVV spectra are
denoted I(AV V V ) and I(AKV V )9.

Annihilation rates: The annihilation rates for the systems are summarized in Table 6.3.
To make a fair comparison with experiment, we will take the annihilation rates obtained

9Remember that the intensities of the spectra are normalized such that every hole decays through an
Auger process, i.e. Eq. (6.8)
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Graphene Graphene + Cu (111)
λ1s λ2s+2p λv λ1s λ2s+2p

WDA/LDA 2.356e-05 1.890e-03 1.630e-03 1.937e-05 1.650e-03
IPM 1.394e-05 5.950e-04 5.335e-04 1.158e-05 5.145e-04

Table 6.3: Annihilation rates calculated for free standing graphene and graphene on a Cu
(111) substrate. Subscripts indicate the partial annihilation rates with valence electrons,
C(1s) electrons, or C(2s) and C(2p) electrons. The first row gives the annihilation rates
obtained with inclusion of the enhancement factor, the second those without. The IPM is
more appropriate for core electrons, the result with enhancement gives more accurate
results for the valence electrons. Stated values are in ps−1.

for the system with inclusion of the Cu (111) substrate, though, the difference in the ratio
of the annihilation rates is not that different from the result without substrate. From
the values in Table 6.3 for SLG, we find that the annihilation with valence electrons
is somewhat exaggerated using free atomic orbitals (λ2s+2p) as compared to the self-
consistent electron density (λv). The influence on the fraction of the annihilation rates
is, however, rather modest. Keeping in mind we are after a conservative estimate of the
branching ratio, we will continue to work with the orbital annihilation rates. In this
light, we should also select the IPM annihilation rates for the core orbitals, as the LDA
enhancement factor is known to overestimate the core annihilation [59].

Intensity fraction: To determine the KVV intensity, we assume that the C(1s) level
has a sharp energy level at 263 eV below the vacuum level, such that its amplitude is
simply obtained by the escape probability evaluated with said escape energy. We do not
want to underestimate the VVV transition rate, hence we neglect the inelastic scattering
investigated earlier. It is more difficult to make a decision for the parameters of the escape
function, as the choices considered earlier increase the VVV over the KVV intensities,
but is unclear how realistically the results describes the Auger matrix element effects and
escape probabilities. Hence, we summarize the results for various choices of the α and β
parameters in table 6.4.

Discussion: From table 6.4, we see that only our most conservative estimate, which is
not expected to be very accurate, gives a branching ratio B = 0.459 in which a slight
minority of the holes in the valence band relax through Auger transitions. The Auger
process is clearly the dominant decay channel, for all other cases. In fact, for many
choices of parameters we find results which indicate that the VVV process would be
more than 100% efficient, which is impossible unless a single hole in the valence bands
results in the emission of multiple Auger electrons. We showed that cascade effects cannot
account for a significant increase of the amplitude, and inclusion of inelastic scattering in
our calculations would only increase the branching ratio. We could thus pose that the
predicted branching ratios support the claim that the escape function does not provide a
reasonable description of the escape probability for many parameters.

A quantitative estimate of the branching ratio is clearly not possible from our current
results. We can, however, conclude quite confidently that the Auger process is the
dominant decay channel for holes deep in the valence band. Ignoring the results with
α = 0, β = 0, we find a branching ratio of at least > 65% and more likely > 80%, obtained
by taking Rexp = 21 instead of the lower bound.
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α = 1, β = 1
2 α = 1

4 , β = 1
2 α = 3

2 , β = 10 α = 0, β = 0
I(AV V V )
I(AKV V ) 0.036 0.149 0.183 0.260
RLDA 3.103 12.700 15.561 22.161
RIPM 5.189 21.236 26.020 37.056
BLDA 5.478 1.339 1.092 0.767
BIPM 3.276 0.801 0.653 0.459

Table 6.4: Overview of several theoretical ratios relevant to estimate the branching ratio
of the VVV Auger process, for various choices of the escape function parameters. The
first three columns correspond with the curves shown in Fig. 6.11, and the last with an
escape probability of 1/2 for all electrons above the vacuum level. Peak intensities of the
VVV over the KVV Auger transitions are given in the first row. Predicted ratios R, as
defined in Eq. (6.21), are obtained from this result after weighting by the annihilation
rates of the positron with the different orbitals, and are shown in the second and third
row. The bottom two rows give the estimate for the branching ratio B, obtained by
dividing the experimental peak ratio, for which we took the lower bound of Rexp = 17,
over the calculate one. The subscripts denotes whether the LDA or IPM annihilation
rate for the C(1s) orbital was taken.

6.4 Conclusions

6.4.1 Summary

PAES experiments performed on graphene deposited on a Cu (111) substrate showed
compelling evidence for Auger emission initiated by holes in the valence band of graphene,
denoted a VVV Auger process. In this chapter, we presented a thorough theoretical
investigation of this process, based on first-principles calculations and a simple model for
the Auger process.

As a first step, we performed first-principles calculations which showed that for
graphene on the Cu (111) substrate, the positron groundstate is a surface state. Further-
more, we found that 96% of the annihilation occurs with electrons from the graphene
layer. These results are important, as they confirm that VVV process should indeed be
observable in experiment.

Next, we considered a model for the VVV spectrum which is an extension of a similar
model for Auger neutralization formulated by Hagstrum [143], where the hole has a fixed
energy, to a distribution of holes determined by the electron-positron annihilation. The
main approximations of the model are the neglect of the Auger matrix elements and
the introduction of a semi-classical energy dependent escape function that describes the
transition of excited electron in the material to the vacuum. All other quantities that
enter in the model, were obtained from our first-principles calculations.

One issue encountered early on in our study, was the lack of spatial selectivity that
resulted from the neglect of the matrix elements. However, we argued that mostly the
graphene states should be involved in the VVV process, and by using the electronic
structure of a free standing graphene layer, we obtained satisfactory agreement with
experiment. The measured VVV spectrum shows somewhat higher intensity at low
energies, and a slightly longer tail at higher energies, however.

To explain the low-energy discrepancy we considered (i) cascade effects (ii) inelastic
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scattering of Auger electrons and (iii) the possible effects of the Auger matrix elements
through tuning of the escape function parameters. It was found that cascade effects,
even with the upper bound that we considered, only have a very small effect on the
amplitude. The simple model we considered for inelastic scattering does give an important
improvement compared to experiment. Furthermore, the amount of inelastic scattering
assumed to obtain the agreement is close to the inelastic scattering found in PAES
experiments for Cu. Alternative to inelastic scattering, we managed to obtain better
agreement with experiment also with a modified escape function, although it is unclear
how realistic these results are.

Finally, by comparing the KVV and VVV peak intensities with experimental results,
we found that the VVV is the dominant decay channel for holes deep in the valence band.
Indeed, our results show that the branching ratio lies somewhere between 65% and 100%.

6.4.2 Outlook
It would be interesting in future work to explicitly take into account the matrix element
effects, as it remains the main source of uncertainty in our results. Indeed, inclusion of
the matrix elements should solve the issue of the spatial selectivity described previously.
Next, the escape function and its related uncertainties can be reduced, and could allow
one to make a more definite conclusion about the importance of inelastic scattering.
Additionally, it would allow us to get a tighter estimate of the branching ratio of the VVV
Auger process. Finally, the effect of the substrate, which we had to neglect to isolate
the graphene electronic structure, could be assessed. A second possible refinement of
the model could include some correlation effects we have neglected in this study. For
example, we did not investigate the effect of the final state hole-hole interaction energy,
which could shift the peak in the calculated spectrum to lower energies.





Chapter 7

The positron state in CdSe
quantum dots

In this chapter we attempt to resolve a long standing debate on the question whether
positrons annihilate from the interior of colloidal CdSe Quantum Dots (QDs) or primarily
from a surface state. The results presented here are published in Ref. [167].

7.1 Introduction
Positron spectroscopy proves useful in the study of embedded [168–172] and colloidal
QDs [136, 173–176]. In both cases, positrons act as self-seeking1 probes for the nanoparti-
cles if the positron can occupy a lower energy state inside or at the surface of the dot
compared to its surroundings2. Especially the self-seeking property of the positrons makes
PAS a powerful tool for characterizing the electronic properties of QDs.

In the present study, we focus on colloidal CdSe QDs. CdSe, CdS, PbSe and PbS
nanoparticles are promising candidates for, among other applications, use in solar cells
because of their size-tunable optical properties. Due to confinement of frequencies in the
electrons and holes, the absorption/fluorescence frequency of nanoparticles can be tuned
over a wide range of the visible spectrum with particles sizes between ∼ 2− 8 nm. Hence,
by selecting a size distribution of particles, an absorber layer with a wide absorption band
can be manifactured. Recently, some of these QD solar cells have exceeded 10% power
conversion efficiency [178]. One limiting factor arises from dangling bonds at the surface,
which can form electron or hole trap states in the bandgap of the material, that promote
carrier recombination. Hence, dangling bonds are detrimental for the power conversion
efficiency of the QDs, and it is desirable to passivate them.

1Self-seeking in the sense that in experiment, one can rely on trapping of positrons inside or at the
surface of the nanoparticles during their diffusive motion through the host matrix or through the colloid,
without having to deposit the positrons precisely in the region of interest.

2For interfaces, the positron affinity A+ = µ− + µ+, with µ− and µ+ the electron and positron
chemical potentials, is a useful quantity to estimate if trapping in embedded QDs is probable. Indeed, it
turns out that the difference in the positron affinities of two materials α and β is equal to the energy
difference of the positron levels after the electron chemical potentials aligned, A+

α −A+
β

= E+
α −E+

β
[177].

Hence, for trapping of positrons in an embedded QD of material β in a host matrix of material α, one
needs to have A+

α > A+
β
. Note that this ignores confinement effects in the dot as well as other possible

interface effects.
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During solution based synthesis, QDs are typically capped with ligands [179]. A first
reason for this is that attachment of ligands to the surface prevent clustering of particles
during growth. Importantly, ligands also passivate dangling bonds at the surface, though
the efficiency of the passivation depends on the type of ligand used [178]. A second reason
is that the size of the ligands determines the distances between neighbouring QDs, which
is important to tune the electronic coupling between the nanoparticles required for the
transport of charge carriers. Hence the ligands should preferably be short3 [180]. Finally,
ligands are also found to influence the charge carriers’ lifetime [180]. Not all ligands
are suitable for synthesising the QDs, however. Thus, ligands are often replaced in a
post-processing step called ligand exchange. Unfortunately, this process often creates
extra dangling bonds at the surface [178]. Much research is conducted to determine the
ideal ligands, which may differ depending on the envisioned application, as well as the
process to attach them to the surface.

From the above, it is clear that precise information on the surface conditions of
colloidal QDs is important to gain insight into the effect of different ligands on the surface
conditions of the particles. The unique property of PAS, where positrons are believed to
be attracted to the surface of the QDs, provides a potentially powerful tool in the study
of these type of systems. Especially because with other technique the surface conditions
of these nanocrystals are difficult to assess without a large background from the rest of
the sample. For colloidal CdSe QDs, there is, however, discussion on the annihilation site
of the positron. Hence, the annihilation of the positron from a surface state should first
be established before trends in the annihilation spectra can confidently be attributed to
changes in the surface conditions. We give an overview of the discussion in the literature
on the topic in the next section.

7.2 Overview experimental results
The study of colloidal QDs with PAS was initiated by Weber et al. [173], who measured
Doppler broadening spectra of CdSe QDs between 1.8−6.0 nm in diameter. They observed
an increasing broadening of the electron-positron momentum density in particles with
decreasing size, which is consistent with widening of the electronic band gap [181]. The
same work reports a positron annihilation lifetime of 251 ps for the 6 nm QDs, which
is significantly lower than the bulk CdSe lifetime of 275 ps reported in the same paper.
Along with the very small Ps component (< 1.3%), they concluded that positron get
efficiently trapped inside the QDs and annihilate from the bulk (i.e. interior) of the dots.

Later, work conducted by Eijt et al. [136] largely reproduced the trends in the electron-
positron momentum density found by Weber. Additional ACAR data and comparison
with first-principles calculations for bulk CdSe showed, however, that the results were
difficult to reconcile with the model of a positron annihilating in the bulk of the QD.
In particular, the high momentum part of the momentum density revealed a strong but
constant decrease as function of the particle’s size in the contribution of Cd (4d) electrons
when compared to the bulk sample. The observed effect is much larger than predicted
by first-principles calculations for Cd vacancies [79]. Additionally, the authors argued
that unrealistic concentrations of these vacancies should be present to explain the effect.
Instead, they proposed a model in which the positron is strongly confined at the surface
of the dot. The decreased annihilation with the Cd (4d) electrons is attributed to the

3Obviously, though, one wants to avoid clustering of the particles to retain the increased bandgap
compared to bulk CdSe
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outward relaxation of the Se atoms at the surface. With the exception of the positron
annihilation lifetime, this model does not contradict the measurements of Weber.

Sharma et al. [182] also performed measurements on CdSe QDs, but of larger sizes
(7− 17 nm). Their results indicate an increased annihilation of positrons with Cd (4d)
electrons with increasing QD sizes. The authors attribute this trend to an increase of Cd
vacancies as the size of the QDs shrinks.

New positron annihilation lifetime measurements for CdSe QDs with a mean diameter
of 6.5 nm capped with various ligands were recently reported by Shi et al [167]. In contrast
with the initial work of Weber, this new work reports positron annihilation lifetimes well
above the bulk CdSe value (275 ps), and rules out annihilation from bulk. With only
weak dependence on the capping ligands, a lifetime component not attributable to Ps
in the narrow range of 358− 371 ps was measured. The contribution of the component
to the total annihilation was found to lie between 77− 86%. Hence, the contribution of
Ps is also significantly larger than reported in Weber’s work. The observed increase in
the lifetime (+83− 96 ps) is much larger than calculated for Cd and Se monovacancies
(+12− 19 ps) [79, 183]. The Cd-Se divacancy is predicted to show an increase of 78 ps
in the annihilation lifetime [183]. Although closer to the observed shift, the increase is
still too small, and would anyways require unlikely high defect concentrations to explain
the data. Hence, these results seem to point convincingly in the direction of a positron
state at the surface of the CdSe QDs. In the rest of the chapter we investigate if this
interpretation is supported by first-principles calculations.

7.3 Positron calculations
We now investigate from first-principles the nature of the positron state in CdSe QDs.
As we have discussed in the preceding section, experimental data points convincingly in
the direction of a positron surface state. In our calculations we will check if the positron
groundstate is indeed located at the surface, and analyse the Se and Cd contributions to
the annihilation rate.

Modeling entire QDs is computationally difficult, as a 6 nm diameter dot contains
several thousand atoms. Only for the smallest particles (< 2 nm) it is feasible to simulate
the complete particle. Instead, we will perform simulations for low index non-polar CdSe
surfaces, which serve as a model for individual facets of a real QD. Computational details
are given in Appendix 7.A.

7.3.1 Bulk properties
We begin our study with calculating the annihilation properties of the wurtzite CdSe
bulk crystal, using relaxed lattice parameters. Using the Drummond LDA [56], we find
a lifetime of 246 ps which is significantly shorter than the value measured by Weber et
al. [173], but in good agreement with other calculations which find 253− 254 ps [79, 183].
The parameter-free GGA [62] on the other hand compares, with 267 ps, fairly good with
experiment4.

It is noteworthy that the bulk lifetime for CdSe reported by Weber [173] is close to
the lifetime calculated for a Cd monovacancy in Refs. [79, 183]. At the same time, our
calculated bulk lifetime in the defect-free crystal is close to the value reported by Weber
for the CdSe QDs. It is tempting to reinterpret τ = 251 ps as the bulk lifetime and

4With experimental lattice parameters [89], the LDA gives τ = 236 ps and the parameter free GGA
τ = 257 ps
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Cd (4d) Cd (5s) Se (4s) Se (4p)
LDA 0.165 0.319 0.089 0.384
WDA 0.200 0.225 0.122 0.373

Table 7.1: Relative contribution of the valence electron shells to the total annihilation
rate as calculated with the LDA and the WDA with Q = 1.35.

τ = 275 ps as the Cd mono vacancy lifetime. Unfortunately, no other sources report
experimental lifetimes for CdSe, making it difficult to confidently draw conclusions. Hence,
in the rest of the chapter we follow the interpretation of Weber et al., and take the values
of τ = 275 ps for the defect free bulk lifetime.

We now apply the screening parameter tuning scheme proposed in Sec. 3.3.4. With
Q = 1.00, the WDA overestimates the lifetime significantly: τ = 327 ps. According to our
discussion in Chapter 3, this can be attributed to the presence of the Cd (4d) electrons.
By raising the screening parameter to Q = 1.35, we can reproduce the experimental value.

Part of the arguments given in the papers of Eijt and Sharma, rely on the contribution
of the Cd (4d) electrons to annihilation spectra. For this reason, we calculate the
relative contributions of the valence electron shells to the total annihilation rate5. The
results are summarized in Table 7.1. We will use these results at a later stage when
we compare the annihilation properties for the surface and bulk state. Note the large
differences between the WDA and LDA. We expect that the WDA overestimates the
relative contribution of the Cd (4d) and Se (4s) electrons. However, because we will only
compare the contributions to the different shells in the surface calculations relative to the
bulk obtained with the same functional, the overestimation should not be an issue.

7.3.2 Surface states
Standard approach

We now look at the surface states as predicted by the CMM and the WDA following
the approaches we developed in earlier chapters, i.e. we use the background edge of
the material as the image potential reference plane in the CMM and the screening
parameter that reproduces the bulk lifetime in the WDA. The background edge positions
are z0 = 1.84 bohr (0.93 Å) and z0 = 1.91 bohr (1.01 Å) for the CdSe (101̄0) and CdSe
(112̄0) surfaces, respectively6. The positron annihilation lifetimes obtained with these
values are, respectively, τ = 259 ps and τ = 274 ps. Both of these values are very close to
the bulk lifetimes, and thus indicate that the positron groundstate is not located at the
surface. In the WDA, setting Q = 1.35 as determined in the previous section, we find
τ = 327 ps and τ = 333 ps for the CdSe (101̄0) and CdSe (112̄0) surfaces, respectively.
Although these values are clearly lower than the experimental values, they are significantly
closer than the CMM prediction. The large increase in the lifetime compared to the bulk
lifetime signals that the positron does not annihilate (purely) from the bulk.

The positron states corresponding with the lifetimes, are shown as full lines in Fig. 7.1(a)
5Note that we used the free atomic densities instead of the self-consistent valence electron density to

obtain these results
6The distance between the background edge and the centre of the induced charge density, calculated

in accordance with the approach detailed in Table 4.3, yields (zb − z0)jellium = 1.51 bohr. Including
this shift leads to lifetimes between ∼ 340 − 350 ps for the two CdSe surfaces. Hence this approach
overestimates the experimental lifetimes but results in surface states. We discuss the results of the CMM
with other values of z0 later in the chapter.
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and Fig. 7.1(b) for the CMM and WDA, respectively. We see that, as anticipated from
the positron lifetime, the CMM model yields a positron state that is mainly localized in
the bulk of our slab model. On the other hand, the WDA predicts a state that has a
clear peak at the surface and decays slowly in the bulk of the material. Since the state
has a non-negligible overlap with atoms up to > 20 a.u. below the surface, a significant
bulk-like contribution to the annihilation signal can be expected.

Parameter analysis

So far, we have followed the approach that we developed in the previous chapters. It is
interesting at this stage, however, to vary the parameters in both models, i.e. the image
potential reference plane in the CMM and the screening parameter Q in the WDA, and
fit the measured surface lifetimes. This way, we can evaluate what kind of positron states
corresponds with the experimental lifetime in both models.

We plot the calculated positron annihilation lifetimes as a function of z0 and Q in
Fig. 7.2(a) and Fig. 7.2(b), respectively. The shaded area indicates the range of the
lifetimes determined from experiment.

First, we discuss the evolution of the lifetimes in the CMM result. We note that
between z0 ∼ 1.8 bohr and z0 ∼ 3.0 bohr, the positron annihilation lifetime increases
steeply. This signals the transition of the positron groundstate from one that is located
dominantly in the bulk of the material, to one that is located at the surface. This is also
illustrated in Fig. 7.1(a). For z0 > 3.0 bohr the lifetime saturates because the positron is
already dominantly localized at the surface and the change in the electron-positron overlap
becomes much smaller. The experimental lifetime is reproduced with z0 = 2.3 bohr,
which gives a lifetime of τ = 371 ps for the CdSe (101̄0) surface and τ = 369 ps for the
CdSe (112̄0) surface. Fig. 7.1(a) shows this state in the dashed blue line for the former.
Hence, in the CMM, the state that is consistent with the experimental lifetime, is one
that is strongly localized at the surface with minimal overlap beyond the second layer
below the surface.

We now turn to discuss the influence of the screening parameter on the WDA prediction
for the lifetime. Fig. 7.2(b) shows a strong increase of the lifetime as we lower the screening
parameter to Q = 1.00. Two effects are into play here. First, Fig. 7.1(b) shows that
the positron becomes more localized at the surface if Q is decreased. This decreases
the electron-positron overlap and thus the annihilation rate. The second effect comes
from the fact that Q controls the charge in accumulated in the screening cloud, and
hence determines the enhancement factor7. The lifetimes that corresponds with the
experimental results are obtained with Q = 1.30 which gives τ = 357 ps and τ = 359 ps
for the CdSe (101̄0) and CdSe (112̄0) surfaces, respectively. The corresponding state
for the former surface (dashed blue line in Fig. 7.1(b)) is qualitatively very similar to
the result with Q = 1.35. The peak at the surface is slightly more pronounced and
the state decays somewhat faster in the bulk. In the WDA the measured lifetime thus
also corresponds with a surface state. In contrast to the CMM, however, a significant
annihilation signal from the bulk is expected. The slow decay of the positron state in
the bulk of the QDs could additionally explain the increased annihilation with Cd (4d)
observed for larger QDs in Ref. [182], as the surface to volume ratio decreases.

7A decrease in Q leads to a decreased annihilation rate, or increased lifetime. Note that we increased
Q in the first place to obtain a shorter lifetime in the bulk calculation.
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Figure 7.1: Positron potential (dotted lines) and density (full and dashed lines) at the
CdSe (101̄0) surface as calculated with (a) the CMM and (b) the WDA. Quantities are
averaged over planes parallel to the surface. The full lines show the positron density
obtained using the standard approach for (a) the background edge position z0 = 1.84 bohr
as the image potential reference plane and (b) the screening parameter Q = 1.35 that
reproduces the experimental CdSe bulk lifetime. Dashed lines give the positron densities
obtained by varying these parameters. The corresponding potentials are shown in the
same color as the positron density.
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Figure 7.2: Lifetimes as computed with (a) the CMM as a function of the image potential
reference plane z0, and (b) the WDA as a function of the screening parameter Q. Markers
indicate the calculated values; lines serve as a guide to the eye. The results with
z0 = 1.8 bohr and Q = 1.35 are shown in filled markers to emphasise that they are
obtained by following the standard approach. The grey area in both panels indicates the
range of lifetimes measured in the experiments [167].

7.3.3 Overlap with Cd and Se
We now discuss the change in the annihilation rate with the different orbitals at the
surface compared to bulk. Eijt et al. found, from their analysis of the momentum density,
that the annihilation with the Cd (4d) electrons is reduced by 50% at the surface [136].
They attribute this to the outwards relaxation of the Se atoms.

Our calculated results are summarized in Table 7.2. We have used the parameters
z0 = 2.3 bohr and Q = 1.30 that reproduced the experimental lifetimes at the surface.
The values are given relative to the contributions found in the bulk calculations8, given
in Table 7.1.

Although the precise numeric values vary, the results obtained with both the CMM
and WDA follow the same trend for both surfaces. There is a decrease in annihilation
with the Cd orbitals of 10− 20% and a likewise increase in annihilation with the Se atoms.
Notably, our results do not reproduce the strong 50% decreased annihilation with the
Cd (4d) electrons reported in Eijt’s work [136]. One possible explanation follows from
the observation that the TOPO ligands used in their study bind preferably with the
Cd atoms at the surface [136, 184, 185]. The presence of the ligands reduces the free
volume available in the vicinity the Cd sites and as such further promotes annihilation
with outward relaxed Se atoms.

Ref. [136] also notes that their measured ACAR profiles do not contain a clear
fingerprint of the TOPO molecules. Furthermore, the same study obtained similar ACAR

8The bulk values with the WDA are obtained with Q = 1.35, hence we are comparing orbital
annihilation rates obtained with different Q parameters. The fractions obtained with either Q = 1.30 or
Q = 1.35 in both the bulk and the surface calculation, has little effect in the fractions reported here,
however.
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Cd (4d) Cd (5s) Se (4s) Se (4p)
(101̄0) CMM 0.829 0.875 1.113 1.159
(101̄0) WDA 0.862 0.873 1.118 1.116
(112̄0) CMM 0.852 0.898 1.095 1.133
(112̄0) WDA 0.900 0.908 1.081 1.086

Table 7.2: Relative contribution of the orbital annihilation rates to the total annihilation
compared to the bulk situation. Hence, a value of 0.5 means that the positron only
annihilates half as often with a certain orbital compared to annihilation in bulk. The
values cited here are obtained with the optimized parameters z0 = 2.3 bohr and Q = 1.30
that reproduce the measured surface lifetimes.

results when pyridine capping ligands were used. Although they form weaker bonds, these
molecules also preferably bind to the Cd sites. These findings support our interpretation
that annihilation with Cd is decreased by the presence of the capping ligands. In fact, the
absence of their fingerprint in the ACAR profiles strengthens our claim that the positrons
are pushed away from the Cd sites. Indeed, if this were not the case, at least some overlap
would be expected with the ligand molecules. Thus, although there is no direct signal
from the ligand molecules in the ACAR data, our calculations suggest that they are at
least partly responsible for the reduction in the Cd contribution to the spectra.

7.4 Conclusions

We have carried out first-principles calculations on CdSe surfaces to determine the nature
of the positron groundstate. To this end, we have followed the approaches we developed
in earlier chapters. Calculations with the CMM, in which the background edge is used for
the image potential reference plane, predict a positron state in the bulk of the material.
The WDA on the other hand, using a screening parameter that reproduced the bulk
positron annihilation lifetime, yields a positron surface state which slowly decays in the
bulk of the material. The experimental lifetimes, in the range τ = 358 − 371 ps [167],
contradict the CMM prediction of τ = 259− 274 ps, and are somewhat higher than the
WDA result of 327− 333 ps.

By varying the image potential reference plane position and the screening charge in
the CMM and WDA respectively, we found that the experimental lifetimes are reproduced
when the positron forms a surface state. In the CMM, the state is strongly confined at
the surface and has a non-negligible overlap only with the first couple of layers under the
surface. The WDA suggests a significant overlap with the bulk of the material due to the
slow decay of the state inside the material.

Our analysis of the orbital annihilation rates for the surface states shows increased
annihilation with Se atoms of ∼ 10% relative to bulk, in favour of annihilation with Cd.
This is explained by the outwards relaxation of the Se atoms at the surface. Experiments
find a much stronger decrease in annihilation with Cd (4d) electrons. We attribute this
to the presence of the ligands which preferably bind to the Cd sites and push away the
positron.

Hence, the combined results reported in Refs. [136, 167, 173, 182] and our calculations,
are strongly in favour of positron annihilating from a surface state.
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7.A Computational details
Electronic structure calculations presented in this chapter were performed with the PAW
method [85] as implemented in VASP [86–88]. A plane wave cutoff of 357 eV was found
to be sufficient to converge the quantities of interest. A 11× 11× 7 Γ-centered k-grid and
two-dimensional grids of comparable density were selected for BZ integration in the bulk
and surface calculations, respectively. Exchange and correlation effects in the electronic
structure calculations were performed using the PBE functional [65]. Lattice parameters
and atomic positions were optimized for the bulk unit cell prior to construction of the
surface slab models. In the slab models forces on the atoms were relaxed, keeping lattice
parameters fixed. Our slab models contain 12 and 8 atomic layers for the CdSe (101̄0)
and CdSe (112̄0) surfaces, respectively, which corresponds with thicknesses of 20 Å and
15 Å. Periodic images of the slab are separated by a vacuum of 15 Å.

Positron calculations follow the same procedure as explained in previous chapters. To
describe electron-positron correlations, we consider both the CMM, detailed in Sec. 4.3,
and the WDA with shell partitioning and sum rule tuning explained in Sec. 3.3.3 and
Sec. 3.3.4, respectively. In the shell partitioning scheme, the Cd (4d10), Cd (5s2), Se (4s2)
and Se (4p4) were taken as the valence electrons. All calculations use the Drummond
parameterizations for the homogeneous electron gas [56].





Chapter 8

Summary and Outlook

8.1 Summary

In Chapter 1, we have given a brief introduction to the topic of PAS. We described
how positrons, obtained from β decay of a radioactive material or otherwise produced
from highly energetic γ rays extracted from a nuclear reactor, are exploited to gain
insight into various properties of solid state systems. For instance, the rate with which
positrons annihilate in a material is roughly proportional to the electron density, and is
thus useful to characterize open volumes. We learned that the photons created in the
annihilation process carry information about the electron momentum density in materials.
The annihilation radiation is therefore useful both in characterization of the chemical
environment of the annihilation site, and for mapping the Fermi-surface of materials.
Aside from providing information through their annihilation radiation, positrons can
trigger Auger processes as well. Indeed, either through AMPS to the surface, or by
creating holes in the occupied electron levels, positrons can generate Auger electrons that
provide information about the chemical composition or the electronic structure at the
surface of a sample.

The sensitivity of positrons to open volumes has already been exploited to characterize
vacancy type defects in metals and semiconductors for several decades. For the same
reasons, positrons make a highly sensitive probe for surfaces, as various experiments have
repeatedly confirmed. The fact that positrons act as self-seeking probes for open space is
convenient on the one hand, but on the other hand often complicates the interpretation
of experiments. For this reason, PAS experiments often benefit significantly from guiding
first-principles calculations which help with the interpretation of measured data. Bulk
solids, including point defects, are quite successfully described in the framework of the
2CDFT with semi-local approximations for the electron-positron correlation. These semi-
local approximations are known, however, to fundamentally fail in capturing long-range
correlation effects required to describe positron surface states. The common thread
through the work presented in this thesis, was to investigate a non-local approach capable
of describing these long-range correlation effects correctly.

Chapter 2 dealt with the theory of positrons in solid state systems. Of central
importance in the chapter, was the calculation of annihilation characteristics, such as the
framework for calculating the electron-positron momentum densities and the positron
annihilation lifetimes. We have provided a rather complete derivation starting from the
annihilation rate of an isolated electron-positron pair and extending it to the many-body
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problem relevant in solid state systems. The derivation showed that in the classical limit,
electron-positron annihilation properties are determined by the electron-positron contact
density, i.e. the probability that the positron resides at the same point in space as an
electron. It is worth mentioning that in our derivation we have not made the usual
assumption that electron spins in the many-body system are collinear, as such extending
the existing theory to deal with non-collinear spin systems. Next, we have shown in
some detail how the well-known DFT is extended in the 2CDFT to take into account
the effect of the positron. We explained that, in principle, the electron-positron contact
density is unobtainable in the framework since it is a two-body quantity and, strictly
speaking, the 2CDFT only provides single particle groundstate properties. Generally,
though, the annihilation properties can be obtained to good approximation by introducing
an enhancement factor which describes the accumulation of the electron density around
the positron when it is pinned to a position in space.

In Chapter 3 we started our investigation of the WDA, a non-local functional in
which the correlation potential is obtained from the Coulomb interaction of the positron
with its screening cloud. We first presented a critical discussion on some aspects of the
approach. In particular, we argued that the sum rule, which states that the screening
cloud should contain exactly the opposite charge of the positron, is not an exact condition
as previously suggested in literature. Instead, it is merely an assumption about the
screening properties of the system; one that is realistic for metallic systems, but unlikely
to hold for insulators. Our tests with the WDA on a set of elemental bulk materials,
showed that the WDA yields poor results for positron annihilation lifetimes without
modifications. The problem lies with the fact that the WDA treats all electrons as if they
are free electrons. Screening by core and d electrons is therefore severely overestimated,
leading in general to a screening cloud which is too delocalized, and as a consequence
thereof, an underestimated annihilation rate. By treating core electrons in the LDA
instead an important part of the issue was solved. Subsequently, by tuning the sum rule
to a value Q, we arrived at an approach with which the experimental lifetimes can be
reproduced.

We turned our attention to the description of positron surface states in Chapter 4. At
the start of the chapter, we discussed the details of the CMM, a phenomenological model
in which the erroneous LDA potential in the vacuum is replaced by the correct image
potential. An important parameter in the model is the image potential reference plane
z0, which we showed is hard to determine directly from first-principles calculations. Next,
we compared positron workfunctions calculated in the LDA and WDA with experiment.
The LDA in general provides an accurate description of the positron state in bulk.
Unfortunately, the WDA provides results which are less reliable. Binding energies of
positron surface states are well described in the CMM if the image potential reference
plane is determined through the Lang-Kohn method. The WDA provides reasonable
results in some cases as well, but again not as consistently. Throughout the chapter, our
results indicated that changing Q in the sum rule to fit the bulk annihilation lifetime
generally does not improve the positron potential. The WDA does provide a qualitative
improvement over the CMM by providing a smooth continuation of the potential from
bulk into the vacuum. There is also a very limited indication that the description of
the contact density is qualitatively improved. On the other hand, we showed that the
asymptotic decay of the image potential is incorrect and that positron states calculated
in the WDA thus decay too slowly in the vacuum. Despite its current shortcomings, the
WDA has the important advantage over the CMM that it does not rely on an ad-hoc
correction of the potential in the vacuum region. As a consequence, the former can be
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applied to complex surface geometries that are inaccessible with the CMM.

Possible applications of PAS in the study of topological surface states were discussed
in Chapter 5. We described several experiments that convincingly showed that a positron
surface state exists for the TI Bi2Te2Se. Positron calculations conducted with the CMM
confirmed this interpretation and closely reproduced the binding energy determined from
the experiment. After establishing the existence of the surface state, we examined if
PAS can provide a useful tool to characterize the topological surface states. A significant
overlap between the electron states of interest and the positron indeed indicated this
possibility. Calculations of the LCW-map showed that 2D-ACAR experiments should
be able to pick up a significant annihilation signal originating from the topological
states. Additionally, we demonstrated that PAS experiments should be able to reveal the
electronic spin texture at the surface by calculating the magnetic LCW-maps.

An Auger process triggered by holes created in the valence band, termed a VVV
process, was the central topic in Chapter 6. From PAES experiments on Cu and graphene
deposited on a Cu substrate, where only the latter showed a strong Auger peak at low
energies, mechanisms other than the VVV Auger emission were ruled out systematically.
Our first-principles positron calculations showed that a positron states exists at the
surface of graphene, Cu, and graphene deposited on a Cu substrate. After establishing
this requirement for the observation of the VVV process, we turned our attention to the
calculation of the lineshape. Based on a model for ion neutralization by Hagstrum, we
wrote down a simple model appropriate for a positron annihilation triggered VVV Auger
process. The main approximations in the model involve neglecting the Auger matrix
elements and introducing a phenomenological function to describe the escape process
of excited electrons in the material to the vacuum. All other quantities are determined
from electronic structure and positron calculations. The line shape calculated for a free
standing graphene layer matched reasonably with the outcome of the PAES measurement,
confirming that the VVV process was indeed seen in experiment. In an attempt to improve
agreement with experiment, we included cascade effects, in which a single annihilation
induced hole triggers multiple Auger electrons, and simple approximations to account for
inelastic scattering of Auger electrons in our model. Whereas cascade effects were found
to have a negligible effect on the spectrum, inelastic scattering did improve agreement
but only if high scattering rates are assumed. Finally, we estimated that the VVV Auger
is the dominant channel for decay of holes deep in the valence band, yielding a branching
ratio between 65% and 100%.

A long standing debate about the nature of the positron state in colloidal CdSe QDs
was resolved in Chapter 7. We presented an overview of the discussion from literature,
which showed that it was unclear whether positrons annihilate from the interior, from
vacancy type defects in the dots, or from the surface of the particles. New positron
annihilation lifetime experiments obtained results that are only consistent with the latter
interpretation, however. We presented calculations of the positron state at low index CdSe
surfaces using the CMM and WDA and found that the groundstates in these systems
are indeed positron surface states. Our analysis of the annihilation rates with Cd and Se
electrons reproduced the experimental findings that positrons in CdSe QDs annihilate
more often with Se electrons compared to the bulk situation. On a quantitative level,
however, the effect in our calculations is not quite as pronounced. This indicates that
positrons are pushed away from the binding sites of the ligands to the QDs.
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8.2 Outlook
At the start of this thesis, a true first-principles approach applicable to the description of
positron surface states was lacking. The work presented here has made some progress
on the topic, but further work is definitely required. Nonetheless, we demonstrated
that the current state of the theory allows first-principles studies to reliably support
experiments. Below, we present some possibly interesting directions to improve the
theoretical description of positron surface states.

Our survey of binding energies predicted by the CMM in Chapter 4, as well as accurate
binding energy for Bi2Te2Se obtained in Chapter 5, shows that the CMM is a useful and
accurate model to calculate positron surface states and binding energies for perfect, flat
surface geometries. Annihilation properties are somewhat less accurate, due to the lack
of a suitable modification of the enhancement factor. We see two important points in
which the model can further be improved. The first is to devise a method to calculate
the image potential reference plane position z0 directly from the electronic groundstate.
Indeed, currently, the phenomenological methods to determine its value introduce an
important uncertainty. In our work, we mentioned that in principle, one can calculate
z0 from the charge density induced by applying a small electrical field perpendicular to
the surface. However, this approach does not work for simulations that impose periodic
boundary conditions, as most modern electronic structure codes do. A workaround for
this problem could significantly boost the reliability of the CMM method. Second, it
would be interesting to investigate whether it is possible to come up with a more accurate
continuation of the enhancement factor in the vacuum region, rather than abruptly
replacing the LDA with the IPM. Such a modification could allow accurate predictions of
the annihilation rate and related quantities.

Our work on the WDA revealed several shortcomings of the approach. Though all
of them can be traced back to the observation that the assumed non-selective Ps-like
pair correlation function is too simple to give an adequate description of the electron
pileup around the positron. An important issue, that to some extend can be solved by a
partitioning of the electron density, is that all electrons are treated as if they screen the
positron charge like free electrons. Further partitioning of the electron density beyond
just core and valence, and introducing specific pair correlation functions for each of the
components, as done in previous work on the WDA by some authors, is expected to
improve the results. At the same time, it introduces many parameters that may undermine
the predictive capabilities of the model. Instead, we expect that the best approach might
be to calculate a pair correlation function directly from the electronic structure of the
material. Indeed, this way the screening properties of the electrons are automatically
taken into account, the accuracy of which is controlled by the level of sophistication the
pair correlation function is calculated with. Additionally, such an approach is expected to
solve the issue with the asymptotic decay of the potential we encountered in Chapter 4.
Indeed, by replacing the phenomenological pair correlation function with one derived
from the electronic structure, shape approximations are removed and the spreading of the
screening cloud over the surface area is expected to be properly described. This should
lead to the correct constant in the potential decay far away from the surface.

Although satisfactory agreement of the calculated VVV Auger spectrum with ex-
periment was obtained in Chapter 6, it would nonetheless be interesting to assess the
effect of the Auger matrix elements on the line shape. Work in this direction may allow
quantitative comparison with experiments.

Finally, it would be interesting to extend our research of the QDs to PbSe. For
these nanoparticles, clear effects of different ligands on the electron-positron momentum
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density were observed. First-principles calculations of the positron surface state and its
annihilation properties can help significantly in relating the observed signatures in the
momentum density to changes in the structural and electronic properties induced by
various ligands. We note, though, that modelling of ligands absorbed on surfaces is likely
outside the capabilities of the CMM. Some insights may already be obtained by applying
the WDA developed in this thesis, though progress in the accuracy of the functional may
be required to allow definite conclusions.





Chapter 9

Samenvatting en
vooruitzichten

9.1 Samenvatting
In Hoofdstuk 1, hebben we de lezer een korte inleiding gegeven tot het onderwerp van
Positron Annihilatie Spectroscopie (PAS). We beschreven hoe positronen, afkomstig van
β verval in een radioactief materiaal of geproduceerd met hoog energetische γ stralen
onttrokken uit een nucleaire reactor, gebruikt kunnen worden om inzichten te verwerven
in verschillende aspecten van vaste stoffen. Zo is bijvoorbeeld de annihilatie snelheid
van een positron ruwweg evenredig met de elektronen dichtheid, wat nuttig is om open
volumes te karakteriseren. We zagen dat de fotonen die vrijkomen tijdens het annihilatie
proces informatie dragen over de impuls verdeling van elektronen in een materiaal. De
annihilatie straling is daarom bruikbaar om de chemische omgeving van de annihilatie site
te bepalen, evenals voor het in beeld brengen van het Fermi-oppervlak van materialen.
Naast informatie te verschaffen over materialen via de annihilatie straling, zijn positronen
ook nuttig om Auger processen te triggeren. Door Auger gemedieerde positronen ‘sticking’
(AMPS), of door gaten te creëren in bezette elektronen niveaus, kunnen positronen
Auger elektronen genereren die informatie dragen over de chemische samenstelling of de
elektronische structuur van het oppervlak van een sample.

De gevoeligheid van positronen voor open volumes wordt reeds verschillende decennia
gebruikt voor het karakteriseren van vacatures in metalen en halfgeleiders. Verschillende
experimenten wijzen uit dat voor diezelfde reden positronen bijzonder gevoelig zijn
voor oppervlakken. Hoewel het handig is dat positronen zich gedragen als zelfgeleide
projectielen die open volumes opzoeken, is de keerzijde ervan dat dit de interpretatie van
het experiment bemoeilijkt. Voor deze reden zijn PAS experimenten vaak sterk gebaat
bij ondersteunende eerste principes berekeningen voor de interpretatie van gemeten
data. Gebruik makend van semi-lokale benaderingen voor de elektron-positron correlatie,
worden bulk materialen en punt defecten behoorlijk accuraat beschreven binnen het kader
van de twee-componenten dichtheidsfunctionaaltheory (2CDFT). Van deze semi-lokale
benaderingen is echter geweten dat ze fundamenteel falen in de beschrijving van lange
dracht correlatie effecten die nodig zijn om positron oppervlakte toestanden te modelleren.
De rode draad doorheen dit werk was om een niet-lokale aanpak te bestuderen die in
staat is deze lange dracht effecten correct te beschrijven.

In Hoofdstuk 2 hebben we de theorie van elektron-positron annihilatie in vaste
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stoffen behandeld. Het centrale onderwerp van het hoofdstuk was de berekening van
annihilatie eigenschappen, zoals het kader voor de berekening van elektron-positron impuls
verdelingen en de positron annihilatie snelheden. Startend van de annihilatie snelheid
voor een geïsoleerd elektron-positron paar hebben we de veralgemening naar het veel
deeltjes probleem, relevant voor vaste stoffen, gemaakt. Uit de afleiding zagen we dat, in
de klassieke limiet, elektron-positron annihilatie eigenschappen bepaald worden door de
electron-positron contactdichtheid, dit is de kans dat een positron zich op dezelfde plek
bevindt als een elektron. Het is het vermelden waard dat we in onze afleiding niet gebruik
hebben gemaakt van de gangbare veronderstelling dat elektronen in het veel-deeltjes
systeem colineaire spins hebben, en dat we op die manier de bestaande theorie hebben
veralgemeend naar niet-colineaire spin systemen. Vervolgens hebben we in zeker detail
getoond hoe de welgekende dichtheidsfunctionaaltheorie (DFT) veralgemeend wordt in de
2CDFT om effecten van positronen in rekening te brengen. We legden uit dat, in principe,
de elektron-positron contactdichtheid niet berekenend kan worden in dit kader omdat
het een twee-deeltjes grootheid is, en dat strikt genomen de 2CDFT enkel één deeltje
eigenschappen levert. Veelal kunnen de annihilatie eigenschappen bij goede benadering
echter bekomen worden door een ‘enhancement’ factor te introduceren, die de ophoping
van de elektronen dichtheid rond het positron beschrijft wanneer deze zich op een bepaalde
locatie bevindt.

In Hoofdstuk 3 zijn we begonnen aan ons onderzoek van de gewogen dichtheid benader-
ing (WDA), een niet-lokale functionaal waarbij de correlatie potentiaal verkregen wordt
door de Coulomb interactie tussen het positron en zijn afschermingswolk te berekenen.
Eerst gaven we een kritische bespreking van sommige aspecten van de aanpak. In het
bijzonder hebben we beargumenteerd dat de somregel, die stelt dat de afschermingswolk
een lading bevat die exact tegengesteld is aan de lading van het positron, geen exacte
voorwaarde is zoals eerder gesuggereerd in de literatuur. In plaats daarvan is het slechts
een veronderstelling over de afschermingseigenschappen van het systeem; één die realis-
tisch is voor metalen, maar waarschijnlijk niet van toepassing is voor isolatoren. Zonder
aanpassingen verkregen we in onze testen met de WDA op een verzameling van elementaire
bulk materialen povere resultaten voor positron annihilatie leeftijden. Het probleem ligt
bij het feit dat de WDA alle elektronen behandeld als vrije elektronen. Afscherming van de
positron lading door kern en d elektronen wordt daardoor sterk overschat, wat leidt tot een
afschermingswolk die te uitgespreid is, en als gevolg daarvan worden annihilatiesnelheden
onderschat. Indien kern elektronen behandeld worden in de lokale dichtheid benadering
(LDA) wordt een belangrijk deel van het probleem opgelost. Door verder de somregel aan
te passen tot een waarde Q, verkregen we een aanpak waarmee experimentele annihilatie
leeftijden gereproduceerd kunnen worden.

De beschrijving van positron oppervlakte toestanden stond centraal in Hoofdstuk 4.
Aan het begin van het hoofdstuk, hebben we de details van het gecorrugeerde spiegel
model (CMM) besproken, een fenomenologisch model waarin de foutieve LDA potentiaal
in het vacuüm vervangen wordt door de correcte beeldlading potentiaal. Een belangrijke
parameter in het model is het beeldlading referentie vlak z0, waarvan we hebben getoond
dat het moeilijk direct te bepalen valt uit eerste principes berekeningen. Vervolgens hebben
we positron werkfuncties, berekend in de LDA en WDA, vergeleken met experimenten.
De LDA geeft in het algemeen een accurate beschrijving van de positron toestand
in de bulk van het materiaal. Helaas geeft de WDA minder betrouwbare resultaten.
Bindingsenergieën worden goed beschreven in het CMM indien het beeldlading referentie
vlak bepaald wordt met de methode van Lang en Kohn. De WDA geeft in bepaalde
gevallen eveneens redelijke resultaten, maar opnieuw niet even consistent. Doorheen
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het hoofdstuk zagen we dat het fitten van de parameter Q in de somregel, om de
experimentele bulk annihilatie leeftijden te reproduceren, in het algemeen de beschrijving
van de positron potentiaal niet verbetert. Kwalitatief geeft de WDA wel een verbetering
ten opzichte van het CMM door een gladde voortzetting van de potentiaal van bulk
naar het vacuüm te leveren. Er is ook een zeer beperkte indicatie dat de beschrijving
van de contactdichtheid verbeterd wordt in de WDA. Langs de andere kant hebben we
getoond dat het asymptotisch afvallen van de potentiaal incorrect is en dat de WDA
daardoor positron toestanden voorspelt die te traag afvallen in het vacuüm. Ondanks
deze tekortkomingen heeft de WDA het belangrijke voordeel ten opzichte van het CMM
dat het niet gebaseerd is op een ad-hoc correctie van de potentiaal in het vacuüm. Als
gevolg daarvan kan deze toegepast worden op ingewikkelde oppervlakte geometrieën die
niet te beschrijven vallen in het CMM.

Mogelijke toepassingen van PAS in de studie van topologische oppervlakte toestanden
werden besproken in Hoofdstuk 5. We beschreven verschillende experimenten die over-
tuigend aantoonden dat een positron oppervlakte toestand bestaat voor de topologische
isolator (TI) Bi2Te2Se. Positron berekeningen met het CMM bevestigden deze interpretatie
en reproduceerden nauwkeurig de bindingsenergie bepaald uit het experiment. Na het
aantonen van het bestaan van de oppervlakte toestand, bekeken we of PAS nuttig kan
zijn voor het karakteriseren van de topologische oppervlakte toestanden. Een significante
overlap tussen de relevante elektron toestanden en het positron wezen alvast in deze
richting. Berekeningen van de Lock-Crisp-West (LCW) map toonden aan dat metingen
van de 2-dimensionale correlatie van de annihilatie straling (2D-ACAR) een significant
signaal afkomstig van de topologische toestanden zouden moeten kunnen oppikken. Door
het berekenen van de magnetische LCW map, toonden we bovendien aan dat PAS
experimenten in staat zouden moeten zijn om de elektronische spin textuur aan het
oppervlak in kaart te brengen.

Een Auger proces in gang gezet door holtes gecreëerd in de valentieband, een zogenaamd
VVV proces, vormde het centrale onderwerp in Hoofdstuk 6. Vanuit positron geïnduceerde
Auger elektron spectroscopie (PAES) experimenten op Cu en grafeen op een Cu substraat,
waarbij enkel deze laatste een sterk Auger signaal vertoonde bij lage energieën, werden
mechanismes anders dan de VVV Auger emissie systematisch uitgesloten. Onze eerste
principes positron berekeningen toonden aan dat positron toestanden bestaan aan de
oppervlakken van grafeen, Cu, en grafeen op een Cu substraat. Na aantonen van deze
vereiste oppervlakte toestanden voor het observeren van het VVV proces, hebben we
onze aandacht gericht op het berekenen van de lijnvorm. Gebaseerd op het model van
Hagstrum voor ionen neutralisatie, hebben we een eenvoudig model neergeschreven dat van
toepassing is op het VVV Auger proces dat in gang gezet wordt door positron annihilatie.
De voornaamste benaderingen in het model zijn het negeren van de Auger matrix elementen
en het introduceren van een fenomenologische functie die het ontsnappen van elektronen
uit het materiaal naar het vacuüm beschrijft. Alle andere grootheden die optreden in
het model worden bepaald uit de elektronische structuur en positron berekeningen. De
lijnvorm berekend voor een alleenstaande grafeenlaag kwam redelijk overeen met de
PAES metingen, wat bevestigd dat het VVV proces inderdaad was waargenomen in het
experiment. In een poging om betere overeenstemming te verkrijgen met het experiment,
verwerkten we in ons model cascade effecten, waarin een enkele annihilatie geïnduceerde
holte meerdere Auger elektronen triggert, en eenvoudige benaderingen om inelastische
verstrooiing van Auger elektronen in rekening te brengen. Terwijl cascade effect een
verwaarloosbaar effect hadden op het spectrum, vonden we dat in rekening brengen van
de inelastische verstrooiing de overeenkomst met het experiment verbeterde, maar enkel
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indien we hoge mate van verstrooiing veronderstellen. Tenslotte bleek uit schattingen dat
het VVV Auger process het dominante kanaal is voor verval van holtes die zich diep in
de valentieband bevinden, met een vertakkingsgraad tussen 65% en 100%.

Een reeds lang bestaande discussie over de aard van de positron toestand in colloidale
CdSe kwantumdots (QDs) werd beslecht in Hoofdstuk 7. We gaven een overzicht van
de bestaande discussie in de literatuur, waaruit bleek dat het niet eenduidig was of
positronen annihileren uit het binnenste, vanuit vacatures, dan wel van bij het oppervlak
van de deeltjes. Nieuwe experimenten toonden echter aan dat enkel het laatste model
consistent is met de gemeten positron annihilatie snelheden. We voerden positron
berekeningen uit voor CdSe oppervlakken met een lage index, gebruik makend van het
CMM en de WDA, en vonden dat de grondtoestand voor deze systemen inderdaad
positron oppervlakte toestanden zijn. Onze analyse van de annihilatie snelheden met
Cd en Se elektronen reproduceerden de experimentele bevindingen dat positronen bij
CdSe QDs vaker annihileren met Se elektronen in vergelijking met de situatie in bulk.
Kwantitatief was het effect echter niet zo uitgesproken in de berekeningen. Dit duidt
erop dat positronen weggeduwd worden van de sites waarop liganden binden aan het QD
oppervlak.

9.2 Vooruitzichten
Aan de start van deze thesis ontbrak een echte eerste principes aanpak die toepasbaar is
voor het beschrijven van positron oppervlakte toestanden. Het werk dat hier gepresenteerd
is, heeft een zekere vooruitgang geboekt op dit onderwerp maar verder onderzoek in deze
richting is zeker noodzakelijk. Desalniettemin hebben we aangetoond dat de huidige staat
van de theorie eerste principes berekening toelaat experimenten te ondersteunen. We
beschrijven nu enkele richtingen die mogelijk interessant zijn om te onderzoeken om de
theoretische beschrijving van positron toestanden aan oppervlakken te verbeteren.

Ons overzicht van de bindingsenergieën in Hoofdstuk 4 en de accurate bindingsenergie
bekomen voor Bi2Te2Se, tonen aan dat het CMM een bruikbaar en accuraat model
is voor de berekening van positron oppervlakte toestanden en bindingsenergieën voor
perfecte, vlakke oppervlakken. Annihilatiesnelheden zijn iets minder accuraat doordat er
geen geschikte aanpassing van de enhancement factor bestaat in het vacuüm. We zien
twee belangrijke punten waar het model verbeterd kan worden. Het eerste is om een
methode te bedenken om de positie van het beeldlading referentievlak z0 te berekenen
direct vanuit de elektronische structuur. De huidige fenomenologische methoden om deze
waarde te bepalen introduceren namelijk een belangrijke onzekerheid. We hebben in ons
werk vermeld dat het in principe mogelijk is om de waarde van z0 te berekenen vanuit de
lading die geïnduceerd wordt door een klein elektrisch veld aan te leggen loodrecht op het
oppervlak. Deze aanpak werkt echter niet in simulaties die periodische randvoorwaarden
opleggen, wat in de meeste moderne software pakketten voor elektronische structuur
berekeningen het geval is. Een oplossing voor dit probleem kan een belangrijke verbetering
van de betrouwbaarheid van het CMM model betekenen. Ten tweede zou het interessant
zijn een nauwkeurigere aanpassing van de enhancement factor in the vacuüm te bedenken,
in plaats van deze abrupt te vervangen door het onafhankelijk deeltjes model (IPM).
Dergelijke wijziging kan nauwkeurigere voorspellingen toelaten van de annihilatie snelheid
en gerelateerde grootheden.

Ons onderzoek van de WDA heeft verschillende gebreken van de methode bloot-
gelegd. Al deze gebreken komen voort uit de vaststelling dat de gebruikte niet-selectieve
Ps-achtige paar correlatie functie te eenvoudig is om een adequate beschrijving van de
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afschermende elektronenwolk rond het positron te bekomen. Een belangrijk probleem, dat
tot op zekere hoogte kan verholpen worden door het opdelen van de elektronen dichtheid
in een kern en valentie partitie, is dat van alle elektronen verondersteld wordt dat ze
de lading van het positron afschermen als vrije elektronen. Van meer gesofisticeerde
opdelingen van de elektronendichtheid, zoals reeds onderzocht door andere auteurs, kan
verwacht worden dat ze de resultaten verbeteren. Tegelijkertijd introduceert zulke aanpak
veel parameters, die de voorspellende capaciteiten van het model kunnen ondermijnen.
In plaats daarvan verwachten we dat de meest belovende aanpak er één zou kunnen zijn
waarbij de paar correlatie functie direct berekend wordt uit de elektronische structuur van
het materiaal. Op deze wijze worden de afschermingseigenschappen van de elektronen
automatisch in rekening gebracht, en wordt de nauwkeurigheid bepaald door de verfijning
van de methode om de paar correlatie functie te berekenen. Bovendien wordt verwacht dat
deze aanpak het probleem van de incorrecte asymptotische limiet van de potentiaal in het
vacuüm, die we tegenkwamen in Hoofdstuk 4, oplost. Immers, door de fenomenologische
paar correlatie functie te vervangen, worden benaderingen in de ruimtelijke vorm van de
afschermingslading verwijderd. Als gevolg daarvan, wordt verwacht dat het uitspreiden
van de afschermingslading over het oppervlak op een correcte manier wordt beschreven,
wat zou moeten leiden tot de correcte limiet voor de potentiaal ver in het vacuüm gebied.

Hoewel we redelijk goede overeenkomst tussen het berekende VVV Auger spectrum
en het experiment bekwamen in Hoofdstuk 6, zou het desalniettemin interessant zijn om
de effecten van Auger matrix elementen op de lijnvorm te bestuderen. Onderzoek in deze
richting zou kwantitatieve vergelijkingen tussen experiment en theorie kunnen toelaten.

Tenslotte zou het interessant zijn ons onderzoek op de QDs uit te breiden naar PbSe.
Voor deze nanodeeltjes werden duidelijke effecten van verschillende liganden op de elektron-
positron impulsverdeling waargenomen. Eerste principes berekeningen van de positron
oppervlakte toestand en gerelateerde annihilatie eigenschappen kunnen aanzienlijk helpen
bij het relateren van de geobserveerde veranderingen in de impulsverdeling aan structurele
en elektronische veranderingen geïnduceerd door verschillende liganden. We merken echter
op dat het modelleren van liganden geabsorbeerd op oppervlakken te complex is om te
behandelen met het CMM. De WDA ontwikkeld in deze thesis kan reeds toegepast worden
om bepaalde inzichten te verkrijgen in deze systemen, maar voor definitieve conclusies te
trekken zijn waarschijnlijk verdere verfijningen van de aanpak noodzakelijk.
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