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Motivation
Why should the canonical ensemble (CE) bother us?
Seriously?

Because the grand-canonical ensemble (GCE) has become an
“addictive comfort zone” to condensed matter theorists.

• Sometimes, the exact number of particles N (CE), rather than the
average number of particles 〈N̂〉 (GCE), can be considered fixed:
isolated (super)conductors, single-electron transistors, etc.

• For small 〈N̂〉 (nanostructures), the GCE fluctuations of 〈N̂〉 become
too large compared to 〈N̂〉.

• A critical review of approximation schemes that rely on the absence
of particle number conservation – and hence on the GCE – would be
highly recommended.
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Motivation
Why should non-interacting particles bother us?
Confronting answer:
because our brains fail to cope with interacting particles.

Comforting answer:
because lots of approximation schemes still rely on non-interacting
particle models:

• perturbation theory with un unperturbed Hamiltonian describing
free particles,

• variational techniques, approximate canonical transformations,
Hubbard – Stratonovich transforms, BCS theory, partial
diagonalizations, Hartree-like Poisson – Schrödinger solvers . . .

Non-interacting systems are everything BUT trivial!
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Free bosons and fermions in the CE . . .
• Canonical partition function for N identical

particles
ZN = Tr

(
exp(−βĤN)

)
, β = 1/kBT

– Calculating ZN involves the diagonalization of the N-particle
Hamiltonian ĤN , yielding

ZN =
∑

j

exp
(
−βEjN

)
, {EjN} = N-particle energy eigenvalues

– Non-interacting (spinless) particles:

EjN =
∑

k

nkεk, εk = single-particle energy eigenvalues,

nk = 0, 1, 2, 3, . . . (bosons) or nk = 0, 1 (fermions).

but ALWAYS
∑

k

nk = N
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Free bosons and fermions in the CE . . .
• Canonical ensemble (CE) versus grand-canonical

ensemble (GCE)
CE GCE

N fixed, 〈N̂2〉 − N2 = 0 〈N̂〉 fixed, 〈N̂2〉 − 〈N̂〉2 , 0

Implicit chemical potential µN Explicit chemical potential µ
but limited summation but unlimited summation

ZN =
∑

n1,n2,...︸︷︷︸
n1+n2+...=N

exp(−β(n1ε1 + n2ε2 + . . .))

,
∏

k


∑

nk

exp(−βnkεk)



Q(µ) =
∑

n1,n2,...

exp(−β(n1(ε1 − µ))×

exp(−β(n2(ε2 − µ)) × . . .

=
∏

k


∑

nk

exp(−βnk(εk − µ))
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Free bosons and fermions in the CE . . .
• Feynman’s warning from the past

R. P. Feynman, “Statistical Mechanics”, W. A. Benjamin, Inc., 1972,
page 26.
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Free bosons and fermions in the CE . . .
• Some “canonical” work at TQC in the recent past

– F. Brosens, J. T. Devreese, and L. F. Lemmens, “Canonical
Bose-Einstein condensation in a parabolic well”, Solid-St.
Commun. 100, 123 – 127 (1996).

– J. Tempere and J. T. Devreese, “Canonical Bose-Einstein
condensation of interacting bosons in two dimensions”, Solid-St.
Commun. 101, 657 – 659 (1997).

– L. Lemmens, F. Brosens, and J. Devreese, “Statistical mechanics
and path integrals for a finite number of bosons”, Solid-St.
Commun. 109, 615 – 620 (1999).
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A projection operator . . .
• Operators in Fock space

– The particle number operator N̂ and the many-particle Hamiltonian
Ĥ are beneficially represented by their second-quantized forms.

– Advantage:
second quantization naturally and automatically encoding particle
permutation symmetry, l
first quantization “manually” bringing up Slater determinants and
permanents.

– Drawback:
Fock space ignores (fixed) particle numbers.

– Escape route:
invoking a projection onto the subspace of N-particle states.
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A projection operator . . .
• Fiddling around with the restricted summation

ZN =
∑

n1,n2,...︸︷︷︸
n1+n2+...=N

exp(−β(n1ε1 + n2ε2 + . . .))

=
∑

n1,n2,...

exp(−β(n1ε1 + n2ε2 + . . .)) δn1+n2+..., N

=
∑

n1,n2,...

exp(−β(n1ε1 + n2ε2 + . . .))
1

2π

∫ π

−π
dθ exp(i(n1 + n2 + . . . − N)θ)

=
1

2π

∫ π

−π
dθ exp(−iNθ)

∑

n1,n2,...

exp((iθ − βε1)n1) exp((iθ − βε2)n2) × . . .

=
1

2π

∫ π

−π
dθ exp(−iNθ)

∏

k

∑

nk

exp((iθ − βεk)nk)
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A projection operator . . .
• Projection operator

Same story, but now the posh way of telling . . .

P̂N =
1

2π

∫ π

−π
dθ exp

(
i(N̂ − N) θ

)

⇓

N̂
(
P̂N |ψ〉

)
= N

(
P̂N |ψ〉

)
for any state |ψ〉 in Fock space.

⇓
– P̂N projects any state onto the N-particle sub-space.

– The N-particle Hamiltonian is the projected “Fock Hamiltonian”:
ĤN = P̂NĤ P̂N .
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A projection operator . . .
• Recasting the CE partition function

– Under the (reasonable) assumption [Ĥ, N̂] = 0 it follows that

exp(−β ĤN) = exp(−β P̂NĤ P̂N) = P̂N exp(−β Ĥ) P̂N

⇓
ZN(β) = Tr

(
P̂N exp(−β Ĥ)

)

– Generating function

G(β, θ) = Tr
(
exp

(
iN̂θ

)
exp(−β Ĥ)

)

– Partition function = N-th Fourier coefficient of G(β, θ)

ZN(β) =
1

2π

∫ π

−π
dθ exp(−iNθ) G(β, θ),
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A projection operator . . .
• Non-interacting particles (1/3)

– Particle statistics tag ξ
ξ = 1 bosons
ξ = −1 fermions

– Creation / destruction operators – (anti)commutation relations

ckck′ − ξck′ck = c†k c†k′ − ξc†k′c†k = 0, ckc†k′ − ξc†k′ck = δk,k′

– Other operators Ĥ =
∑

k

εkc†k ck, N̂ =
∑

k

c†k ck

– Factorizing the generating function, freed from summation
restrictions

G(β, θ) =
∏

k

Tr exp
(
(iθ − βεk) c†k ck

)

=
∏

k

∑

nk

exp
(
(iθ − βεk) nk

)
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A projection operator . . .
• Non-interacting particles (2/3)

– Generating function as a product over all single-particle modes k

G(β, θ) =


∏

k

(
1 − ξ exp

(
iθ − βεk

))

−ξ

– Fourier representation of ZN(β) is equivalent with a complex
contour integral

ZN(β) =
1

2πi

∮

Γ

dz
zN+1 G̃(β, z), G̃(β, z) ≡


∏

k

(
1 − ξz exp

(
−βεk

))

−ξ
.

Γ is a closed contour encircling z = 0, G̃(β, z) being analytic inside Γ,
e.g. |z| = 1. ⇓
An old recursion relation can be rederived in a few lines.



17

A projection operator . . .
• Non-interacting particles (3/3)

– Previously known recursion relation

Z0(β) = 1, Z1(β) =
∑

k

exp(−βεk),

ZN(β) =
1
N

N∑

l=1

ξl−1Z1(lβ) ZN−l(β) for N > 1.

– Correlation functions
Projector approach + commutator algebra = generic expressions
for 2-point and 4-point correlation functions, e.g.

〈c†q c†q′ ck′ ck〉β =
1

2πZN

(
ξδkqδk′q′ + δkq′δk′q

) ∫ π

−π
dθ exp (−iNθ)

× G(β, θ)(
exp

(
βεk − iθ

)
− ξ

) (
exp

(
βεk′ − iθ

)
− ξ

) .
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Exact results
• One-dimensional oscillators (1/3)

– Harmonic potential : U(x) =
1
2

mω2x2

– Single-particle spectrum: εk = ~ω

(
k +

1
2

)
, k = 0, 1, 2, 3, . . .

– Exact results derived from projection technique and two Euler
identities

– Partition function

ZN(β) =



e−Nβ~ω/2
N∏

k=1

1
1 − e−β~ωk

for bosons,

e−N2β~ω/2
N∏

k=0

(
1 − e−β~ωk

)
for fermions.
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Exact results
• One-dimensional oscillators (2/3)

– Helmholtz free energy

FN(β) =
1
β

N∑

k=1

ln
(
1 − e−β~ωk

)
+



1
2

N~ω for bosons,

1
2

N2~ω for fermions.

– Chemical potential

µN(β) = FN+1(β) − FN(β)

=
1
β

ln
(
1 − e−(N+1)β~ω

)
+



1
2
~ω for bosons,

(
N +

1
2

)
~ω for fermions.
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Exact results
• One-dimensional oscillators (3/3)

fermions
bosons

Chemical potential for 1D oscillators

N

µ
N
=
F
N
+
1
−
F
N
(m

eV
)

~ω = 40 meV
T = 300 K

302520151050

104
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Two-dimensional electron gas
• Free electrons on a (finite) sheet

x

y

Lx

Ly N e−

2DEG
Single electron

spectrum

ǫk =
~2k2

2m

φk(r) =
exp(ik · r)
√
LxLy

Periodic boundary conditions ⇒ k = 2π
(

nx

Lx
,

ny

Ly

)
, nx, ny = 0,±1,±2, . . .

Areal concentration: nS =
N

LxLy
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Two-dimensional electron gas
• Helmholtz free energy

N

F N
(e
V
)

for N > 520.

Numerical instability

FN = −kBT lnZN

Lx = Ly = 100 nm

T = 300 K

5004003002001000

0
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−10
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Two-dimensional electron gas
• Chemical potential (1/2)

GCE

CE

N

µ
N
a
n
d
µ
G
C
E
(m

e
V
)

µN = FN+1 − FN

Lx = Ly = 100 nm

T = 300 K
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−80
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Two-dimensional electron gas
• Chemical potential (2/2)

GCE

CE

N

µ
N
a
n
d
µ
G
C
E
(m

e
V
)

N < 20

GCE unreliable for

µN = FN+1 − FN

Lx = Ly = 100 nm

T = 300 K
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−90

−110
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Two-dimensional electron gas
• Application: n-channel MOS capacitor

z

- eV(z) / n(z)

metal oxide p-type semiconductor

1 occupied subband

Vgate > 0

Lx = Ly = 100 nm
nS =

∫ ∞
0 dz n(z)

= N/(LxLy)
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Free bosons and fermions in the CE . . .
• Recent publications

– Wim Magnus, Lucien Lemmens, Fons Brosens, “Quantum
canonical ensemble: a projection operator approach”,
arXiv:1505.04923v2 [cond-mat.stat-mech] 22 Dec 2016.

– Wim Magnus, Lucien Lemmens, Fons Brosens, “Quantum
canonical ensemble: A projection operator approach”,
Physica A 482, 1 – 13 (2017).
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Two-dimensional electron gas
• Two caveats related to the GCE (1/2)

1. The GCE increases the numerical burden in device
simulators

– Transcendental equation fixing the chemical potential µ for a
given value of 〈N̂〉 (or nS for the MOSCAP):

〈N̂〉 =
∑

k

1

1 + exp
(
β
(
εk − µ

)) ⇒ µ = µ
(
〈N̂〉

)
.

– No analytical solution available in general, i.e. for an arbitrary
potential and several occupied subbands.

– The numerical solution is carried out in the outer loops of the
Poisson-Schrödinger solver.
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Two-dimensional electron gas
• Two caveats related to the GCE (2/2)

2. The GCE is unreliable for small values of 〈N̂〉.
– The GCE variance σ = 〈N̂2〉 − 〈N̂〉2 is negligible only if 〈N̂〉 → ∞.

l
In an inversion layer covering a 100 nm x 100 nm active area
nS typically ranges between

nS = 1011cm−2 ⇒ 〈N̂〉 = 10,

nS = 1012cm−2 ⇒ 〈N̂〉 = 100,

i.e. 〈N̂〉 doesn’t exactly take large values . . .

– “Threshold voltage” models rely on the transition area between
nS ≈ 0 and nS ≈ 1011 cm−2. i.e. the region where µ→ −∞.

⇒ unreliable estimates for the subthreshold slope in
nanodevices.
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Conclusion and outlook
+ The projector operator approach provides a tool to systematically

investigate non-interacting fermions and bosons in the CE (incl.
correlation functions).

+ All quantum systems containing a number of particles that can be
considered fixed, can be accessed from the CE approach, e.g.
nanostructures, quantum dots, quantum rings, SETs, superconducting,
rings, BCS-like systems etc.

+ A by-product, µN needs not be extracted from a transcendental equation,
as would be required for the GCE.

+ In practice, the calculation of ZN and FN is reduced to a numerical
problem (angular integral, recursion relation).

– Attention needs to be paid to the numerical problems related to the
evaluation of the angular or contour integrals, for “large” values of N.



33




