

The quantum canonical ensemble: a projection operator treatment

Wim Magnus (UA / imec Leuven),
in collaboration with
Fons Brosens (UA), Lucien Lemmens (UA)

CMT, 14 June 2017

Outline

- Motivation
- Free bosons and fermions in the canonical ensemble ... a long standing problem
- A projection operator for the dirty work
- Exact results
- Two-dimensional electron gas
- Conclusion and outlook

Outline

- Motivation
- Free bosons and fermions in the canonical ensemble ... a long standing problem
- A projection operator for the dirty work
- Exact results
- Two-dimensional electron gas
- Conclusion and outlook

Motivation

Why should the canonical ensemble (CE) bother us?

Seriously?

Because the grand-canonical ensemble (GCE) has become an "addictive comfort zone" to condensed matter theorists.

- Sometimes, the exact number of particles N (CE), rather than the average number of particles $\langle\hat{\mathrm{N}}\rangle$ (GCE), can be considered fixed: isolated (super)conductors, single-electron transistors, etc.
- For small $\langle\hat{N}\rangle$ (nanostructures), the GCE fluctuations of $\langle\hat{N}\rangle$ become too large compared to $\langle\hat{\mathrm{N}}\rangle$.
- A critical review of approximation schemes that rely on the absence of particle number conservation - and hence on the GCE - would be highly recommended.

Motivation

Why should non-interacting particles bother us?

Confronting answer:
because our brains fail to cope with interacting particles.
Comforting answer: because lots of approximation schemes still rely on non-interacting particle models:

- perturbation theory with un unperturbed Hamiltonian describing free particles,
- variational techniques, approximate canonical transformations, Hubbard - Stratonovich transforms, BCS theory, partial diagonalizations, Hartree-like Poisson - Schrödinger solvers ...

Non-interacting systems are everything BUT trivial!

Outline

- Motivation
- Free bosons and fermions in the canonical ensemble ... a long standing problem
- A projection operator for the dirty work
- Exact results
- Two-dimensional electron gas
- Conclusion and outlook

Free bosons and fermions in the CE ...

- Canonical partition function for N identical particles

$$
Z_{N}=\operatorname{Tr}\left(\exp \left(-\beta \hat{\mathrm{H}}_{N}\right)\right), \quad \beta=1 / k_{\mathrm{B}} T
$$

- Calculating Z_{N} involves the diagonalization of the N-particle Hamiltonian $\hat{\mathrm{H}}_{N}$, yielding

$$
Z_{N}=\sum_{j} \exp \left(-\beta E_{j N}\right), \quad\left\{E_{j N}\right\}=N \text {-particle energy eigenvalues }
$$

- Non-interacting (spinless) particles:

$$
\begin{aligned}
E_{j N} & =\sum_{k} n_{k} \epsilon_{k}, \quad \epsilon_{k}=\text { single-particle energy eigenvalues, } \\
n_{k} & =0,1,2,3, \ldots \text { (bosons) or } n_{k}=0,1 \text { (fermions). }
\end{aligned}
$$

but ALWAYS

$$
\sum_{k} n_{k}=N
$$

Free bosons and fermions in the CE ...

- Canonical ensemble (CE) versus grand-canonical ensemble (GCE)

CE

GCE

N fixed, $\left\langle\hat{\mathbf{N}}^{2}\right\rangle-N^{2}=\mathbf{0}$	$\langle\hat{\mathbf{N}}\rangle$ fixed, $\left\langle\hat{\mathbf{N}}^{2}\right\rangle-\langle\hat{\mathbf{N}}\rangle^{2} \neq \mathbf{0}$

Implicit chemical potential μ_{N} but limited summation

$$
\begin{aligned}
& Z_{N}=\sum_{\underbrace{}_{n_{1}+n_{2}+\ldots, \ldots}+\ldots} \exp \left(-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)\right) \\
& \neq \prod_{k}\left(\sum_{n_{k}} \exp \left(-\beta n_{k} \epsilon_{k}\right)\right)
\end{aligned}
$$

Explicit chemical potential μ but unlimited summation

$$
\begin{gathered}
Q(\mu)=\sum_{n_{1}, n_{2}, \ldots} \exp \left(-\beta\left(n_{1}\left(\epsilon_{1}-\mu\right)\right) \times\right. \\
\quad \exp \left(-\beta\left(n_{2}\left(\epsilon_{2}-\mu\right)\right) \times \ldots\right. \\
=\prod_{k}\left(\sum_{n_{k}} \exp \left(-\beta n_{k}\left(\epsilon_{k}-\mu\right)\right)\right)
\end{gathered}
$$

Free bosons and fermions in the CE ...

- Feynman's warning from the past

26 Introduction to statistical mechanics

A state of the system is described by the set of numbers n_{a}, which can take on any set of values allowed both by the statistics and by the conditio $\sum_{a} n_{a}=N$.

$$
\begin{equation*}
Q=\sum_{n_{1}, n_{2}, \ldots} \exp \left(-\beta \sum_{a} n_{a} \varepsilon_{a}\right) . \tag{1.42}
\end{equation*}
$$

If there were no restriction on the number of particles, we could write

$$
\begin{equation*}
Q=\prod_{a}\left(\sum_{n_{a}} e^{-\beta n_{a} \varepsilon_{a}}\right), \tag{1.43}
\end{equation*}
$$

and we would have in the Bose-Einstein case
R. P. Feynman, "Statistical Mechanics", W. A. Benjamin, Inc., 1972, page 26.

Free bosons and fermions in the CE ...

- Some "canonical" work at TQC in the recent past
- F. Brosens, J. T. Devreese, and L. F. Lemmens, "Canonical Bose-Einstein condensation in a parabolic well", Solid-St. Commun. 100, 123 - 127 (1996).
- J. Tempere and J. T. Devreese, "Canonical Bose-Einstein condensation of interacting bosons in two dimensions", Solid-St. Commun. 101, 657 - 659 (1997).
- L. Lemmens, F. Brosens, and J. Devreese, "Statistical mechanics and path integrals for a finite number of bosons", Solid-St. Commun. 109, 615 - 620 (1999).

Outline

- Motivation
- Free bosons and fermions in the canonical ensemble ... a long standing problem
- A projection operator for the dirty work
- Exact results
- Two-dimensional electron gas
- Conclusion and outlook

A projection operator ...

- Operators in Fock space
- The particle number operator \hat{N} and the many-particle Hamiltonian \hat{H} are beneficially represented by their second-quantized forms.
- Advantage: second quantization naturally and automatically encoding particle permutation symmetry,
first quantization "manually" bringing up Slater determinants and permanents.
- Drawback:

Fock space ignores (fixed) particle numbers.

- Escape route: invoking a projection onto the subspace of N -particle states.

A projection operator ...

- Fiddling around with the restricted summation

$$
\begin{aligned}
Z_{N} & =\underbrace{}_{n_{1}+n_{2}+\ldots=N} \exp \left(-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)\right) \\
& =\sum_{n_{1}, n_{2}, \ldots} \exp \left(-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)\right) \delta_{n_{1}+n_{2}+\ldots, N} \\
& =\sum_{n_{1}, n_{2}, \ldots} \exp \left(-\beta\left(n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\ldots\right)\right) \frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{d} \theta \exp \left(\mathrm{i}\left(n_{1}+n_{2}+\ldots-N\right) \theta\right) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{d} \theta \exp (-\mathrm{i} N \theta) \sum_{n_{1}, n_{2}, \ldots} \exp \left(\left(\mathrm{i} \theta-\beta \epsilon_{1}\right) n_{1}\right) \exp \left(\left(\mathrm{i} \theta-\beta \epsilon_{2}\right) n_{2}\right) \times \ldots \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{d} \theta \exp (-\mathrm{i} N \theta) \prod_{k} \sum_{n_{k}} \exp \left(\left(\mathrm{i} \theta-\beta \epsilon_{k}\right) n_{k}\right)
\end{aligned}
$$

A projection operator ...

- Projection operator

Same story, but now the posh way of telling ...

$$
\hat{\mathrm{P}}_{N}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{d} \theta \exp (\mathrm{i}(\hat{\mathrm{~N}}-N) \theta)
$$

\Downarrow
$\hat{\mathrm{N}}\left(\hat{\mathrm{P}}_{N}|\psi\rangle\right)=N\left(\hat{\mathrm{P}}_{N}|\psi\rangle\right)$ for any state $|\psi\rangle$ in Fock space.

- $\hat{\mathrm{P}}_{N}$ projects any state onto the N-particle sub-space.
- The N-particle Hamiltonian is the projected "Fock Hamiltonian":
$\hat{\mathrm{H}}_{N}=\hat{\mathrm{P}}_{N} \hat{\mathrm{H}} \hat{\mathrm{P}}_{N}$.

A projection operator ...

- Recasting the CE partition function
- Under the (reasonable) assumption $[\hat{H}, \hat{N}]=0$ it follows that

$$
\begin{array}{r}
\exp \left(-\beta \hat{\mathrm{H}}_{N}\right)=\exp \left(-\beta \hat{\mathrm{P}}_{N} \hat{\mathrm{H}} \hat{\mathrm{P}}_{N}\right)=\hat{\mathrm{P}}_{N} \exp (-\beta \hat{\mathrm{H}}) \hat{\mathrm{P}}_{N} \\
\Downarrow \\
Z_{N}(\beta)=\operatorname{Tr}\left(\hat{\mathrm{P}}_{N} \exp (-\beta \hat{\mathrm{H}})\right)
\end{array}
$$

- Generating function

$$
G(\beta, \theta)=\operatorname{Tr}(\exp (\mathrm{i} \hat{\mathrm{~N}} \theta) \exp (-\beta \hat{\mathrm{H}}))
$$

- Partition function $=N$-th Fourier coefficient of $G(\beta, \theta)$

$$
Z_{N}(\beta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{d} \theta \exp (-\mathrm{i} N \theta) G(\beta, \theta),
$$

A projection operator ...

- Non-interacting particles (1/3)
- Particle statistics tag ξ| $=1$ | bosons |
| :--- | :--- |
| | $\xi=-1$ |
- Creation / destruction operators - (anti)commutation relations

$$
c_{k} c_{k^{\prime}}-\xi c_{k^{\prime}} c_{k}=c_{k}^{\dagger} c_{k^{\prime}}^{\dagger}-\xi c_{k^{\prime}}^{\dagger} c_{k}^{\dagger}=0, \quad c_{k} c_{k^{\prime}}^{\dagger}-\xi c_{k^{\prime}}^{\dagger} c_{k}=\delta_{k, k^{\prime}}
$$

- Other operators $\hat{\mathrm{H}}=\sum_{k} \epsilon_{k} c_{k}^{\dagger} c_{k}, \quad \hat{\mathrm{~N}}=\sum_{k} c_{k}^{\dagger} c_{k}$
- Factorizing the generating function, freed from summation restrictions

$$
\begin{aligned}
G(\beta, \theta) & =\prod_{k} \operatorname{Tr} \exp \left(\left(\mathrm{i} \theta-\beta \epsilon_{k}\right) c_{k}^{\dagger} c_{k}\right) \\
& =\prod_{k} \sum_{n_{k}} \exp \left(\left(\mathrm{i} \theta-\beta \epsilon_{k}\right) n_{k}\right)
\end{aligned}
$$

A projection operator ...

- Non-interacting particles (2/3)
- Generating function as a product over all single-particle modes k

$$
G(\beta, \theta)=\left[\prod_{k}\left(1-\xi \exp \left(\mathrm{i} \theta-\beta \epsilon_{k}\right)\right)\right]^{-\xi}
$$

- Fourier representation of $Z_{N}(\beta)$ is equivalent with a complex contour integral

$$
Z_{N}(\beta)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} \frac{\mathrm{d} z}{z^{N+1}} \tilde{G}(\beta, z), \quad \tilde{G}(\beta, z) \equiv\left[\prod_{k}\left(1-\xi z \exp \left(-\beta \epsilon_{k}\right)\right)\right]^{-\xi} .
$$

Γ is a closed contour encircling $z=0, \tilde{G}(\beta, z)$ being analytic inside Γ, e.g. $|z|=1$.

An old recursion relation can be rederived in a few lines.

A projection operator ...

- Non-interacting particles (3/3)
- Previously known recursion relation

$$
\begin{aligned}
Z_{0}(\beta) & =1, \quad Z_{1}(\beta)=\sum_{k} \exp \left(-\beta \epsilon_{k}\right) \\
Z_{N}(\beta) & =\frac{1}{N} \sum_{l=1}^{N} \xi^{l-1} Z_{1}(l \beta) Z_{N-l}(\beta) \quad \text { for } N \geqslant 1 .
\end{aligned}
$$

- Correlation functions Projector approach + commutator algebra = generic expressions for 2-point and 4-point correlation functions, e.g.

$$
\begin{aligned}
\left\langle c_{q}^{\dagger} c_{q^{\prime}}^{\dagger} c_{k^{\prime}} c_{k}\right\rangle_{\beta}= & \frac{1}{2 \pi Z_{N}}\left(\xi \delta_{k q} \delta_{k^{\prime} q^{\prime}}+\delta_{k q^{\prime}} \delta_{k^{\prime} q}\right) \int_{-\pi}^{\pi} \mathrm{d} \theta \exp (-\mathrm{i} N \theta) \\
& \times \frac{G(\beta, \theta)}{\left(\exp \left(\beta \epsilon_{k}-\mathrm{i} \theta\right)-\xi\right)\left(\exp \left(\beta \epsilon_{k^{\prime}}-\mathrm{i} \theta\right)-\xi\right)} .
\end{aligned}
$$

Outline

- Motivation
- Free bosons and fermions in the canonical ensemble ... a long standing problem
- A projection operator for the dirty work
- Exact results
- Two-dimensional electron gas
- Conclusion and outlook

Exact results

- One-dimensional oscillators (1/3)
- Harmonic potential : $U(x)=\frac{1}{2} m \omega^{2} x^{2}$
- Single-particle spectrum: $\quad \epsilon_{k}=\hbar \omega\left(k+\frac{1}{2}\right), \quad k=0,1,2,3, \ldots$
- Exact results derived from projection technique and two Euler identities
- Partition function

$$
Z_{N}(\beta)= \begin{cases}\mathrm{e}^{-N \beta \hbar \omega / 2} \prod_{k=1}^{N} \frac{1}{1-\mathrm{e}^{-\beta \hbar \omega k}} & \text { for bosons }, \\ \mathrm{e}^{-N^{2} \beta \hbar \omega / 2} \prod_{k=0}^{N}\left(1-\mathrm{e}^{-\beta \hbar \omega k}\right) & \text { for fermions. }\end{cases}
$$

Exact results

- One-dimensional oscillators (2/3)
- Helmholtz free energy

$$
F_{N}(\beta)=\frac{1}{\beta} \sum_{k=1}^{N} \ln \left(1-\mathrm{e}^{-\beta \hbar \omega k}\right)+ \begin{cases}\frac{1}{2} N \hbar \omega & \text { for bosons } \\ \frac{1}{2} N^{2} \hbar \omega & \text { for fermions }\end{cases}
$$

- Chemical potential

$$
\begin{array}{rlr}
\mu_{N}(\beta) & =F_{N+1}(\beta)-F_{N}(\beta) \\
& =\frac{1}{\beta} \ln \left(1-\mathrm{e}^{-(N+1) \beta \hbar \omega}\right)+ \begin{cases}\frac{1}{2} \hbar \omega & \text { for bosons } \\
\left(N+\frac{1}{2}\right) \hbar \omega & \text { for fermions. }\end{cases}
\end{array}
$$

Exact results

- One-dimensional oscillators (3/3)

Chemical potential for 1D oscillators

Outline

- Motivation
- Free bosons and fermions in the canonical ensemble ... a long standing problem
- A projection operator for the dirty work
- Exact results
- Two-dimensional electron gas
- Conclusion and outlook

Two-dimensional electron gas

Free electrons on a (finite) sheet y

Single electron spectrum

$$
\begin{array}{r}
\epsilon_{\mathbf{k}}=\frac{\hbar^{2} k^{2}}{2 m} \\
\phi_{\mathbf{k}}(\mathbf{r})=\frac{\exp (\mathbf{i} \mathbf{k} \cdot \mathbf{r})}{\sqrt{L_{x} L_{y}}}
\end{array}
$$

Periodic boundary conditions $\Rightarrow \mathbf{k}=2 \pi\left(\frac{n_{x}}{L_{x}}, \frac{n_{y}}{L_{y}}\right), n_{x}, n_{y}=0, \pm 1, \pm 2, \ldots$
Areal concentration:

$$
n_{\mathrm{S}}=\frac{N}{L_{x} L_{y}}
$$

Two-dimensional electron gas

- Helmholtz free energy
$F_{N}=-k_{\mathrm{B}} T \ln Z_{N}$

Numerical instability for $N>520$.

Two-dimensional electron gas

- Chemical potential (1/2)

$$
\mu_{N}=F_{N+1}-F_{N}
$$

Two-dimensional electron gas

- Chemical potential (2/2)
$\mu_{N}=F_{N+1}-F_{N}$

GCE unreliable for $N<20$

Two-dimensional electron gas

- Application: n-channel MOS capacitor

Free bosons and fermions in the CE ...

- Recent publications
- Wim Magnus, Lucien Lemmens, Fons Brosens, "Quantum canonical ensemble: a projection operator approach", arXiv:1505.04923v2 [cond-mat.stat-mech] 22 Dec 2016.
- Wim Magnus, Lucien Lemmens, Fons Brosens, "Quantum canonical ensemble: A projection operator approach", Physica A 482, 1 - 13 (2017).

Two-dimensional electron gas

- Two caveats related to the GCE (1/2)

1. The GCE increases the numerical burden in device simulators

- Transcendental equation fixing the chemical potential μ for a given value of $\langle\hat{N}\rangle$ (or n_{S} for the MOSCAP):

$$
\langle\hat{\mathbf{N}}\rangle=\sum_{k} \frac{1}{1+\exp \left(\beta\left(\epsilon_{k}-\mu\right)\right)} \Rightarrow \mu=\mu(\langle\hat{\mathbf{N}}\rangle) .
$$

- No analytical solution available in general, i.e. for an arbitrary potential and several occupied subbands.
- The numerical solution is carried out in the outer loops of the Poisson-Schrödinger solver.

Two-dimensional electron gas

- Two caveats related to the GCE (2/2)

2. The GCE is unreliable for small values of $\langle\hat{N}\rangle$.

- The GCE variance $\sigma=\left\langle\hat{\mathrm{N}}^{2}\right\rangle-\langle\hat{\mathrm{N}}\rangle^{2}$ is negligible only if $\langle\hat{\mathrm{N}}\rangle \rightarrow \infty$. \uparrow
In an inversion layer covering a $100 \mathrm{~nm} \times 100 \mathrm{~nm}$ active area $n_{\text {S }}$ typically ranges between

$$
\begin{aligned}
& n_{\mathrm{S}}=10^{11} \mathrm{~cm}^{-2} \Rightarrow\langle\hat{\mathrm{~N}}\rangle=10 \\
& n_{\mathrm{S}}=10^{12} \mathrm{~cm}^{-2} \Rightarrow\langle\hat{\mathrm{~N}}\rangle=100
\end{aligned}
$$

i.e. $\langle\hat{N}\rangle$ doesn't exactly take large values ...

- "Threshold voltage" models rely on the transition area between $n_{\mathrm{S}} \approx 0$ and $n_{\mathrm{S}} \approx 10^{11} \mathrm{~cm}^{-2}$. i.e. the region where $\mu \rightarrow-\infty$.
\Rightarrow unreliable estimates for the subthreshold slope in nanodevices.

Outline

- Motivation
- Free bosons and fermions in the canonical ensemble ... a long standing problem
- A projection operator for the dirty work
- Exact results
- Two-dimensional electron gas
- Conclusion and outlook

Conclusion and outlook

+ The projector operator approach provides a tool to systematically investigate non-interacting fermions and bosons in the CE (incl. correlation functions).
+ All quantum systems containing a number of particles that can be considered fixed, can be accessed from the CE approach, e.g. nanostructures, quantum dots, quantum rings, SETs, superconducting, rings, BCS-like systems etc.
+ A by-product, μ_{N} needs not be extracted from a transcendental equation, as would be required for the GCE.
+ In practice, the calculation of Z_{N} and F_{N} is reduced to a numerical problem (angular integral, recursion relation).
- Attention needs to be paid to the numerical problems related to the evaluation of the angular or contour integrals, for "large" values of N.

