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Abstract

Polaritons are quasiparticles that rise from a strong coupling between photons and a dipole excitation in

matter. When a quantum well is placed inside a planar microcavity, this strong coupling occurs between

the incident light and the quantum well excitons, giving rise to a two-dimensional gas of polaritons.

Thanks to their photonic component, these polaritons have a small effective mass, whereas the excitonic

component mediates interactions.

Since polaritons are unstable particles because the photons can escape from the microcavity, a constant

injection of coherent photons is necessary to balance the losses. Therefore a polariton gas is inherently

a non-equilibrium system, which involves a wide variety of interesting new physics. Since polaritons are

excited coherently in the systems that are studied in this work, they form a coherent quantum fluid that

can be regarded as a non-equilibrium Bose-Einstein condensate. In this work we will study polariton fluids

that have two spin components. The main goal is to generalize and unify the already established theories

for, on one side, single-spin polariton fluids, and on the other, two-spin Bose-Einstein condensates, which

will also be the two fundamental theories on which we base this work. As such the generalized physics for

describing a two-spin non-equilibrium quantum fluid will be examined in the view of these two, already

profoundly studied systems.

First of all we will generalize the concept of Bose-Einstein condensation for non-equilibrium systems and

derive the appropriate wave equation, the non-equilibrium Gross-Pitaevskii equation, to start our work

from. From there on the spectrum of excitations of the binary polariton fluid will be examined, as well

as its superfluid properties and the drag force exerted when flowing along a defect. During this progress

we will take the limit back to the equivalent results of both the one-spin polariton fluid and the two-spin

Bose-Einstein condensate, in order to understand how this generalization comes into play.

One of the main results that will be presented, is a phase diagram for excitation spectra that allows us

to move from one of the limiting cases to the other continuously in parameter space, hence providing a

full generalized theory in which the two earlier established limits can be recovered.

The other main result is the occurance of an exotic negative drag force under certain conditions. This

means that in these circumstances the polariton fluid is driven forward, rather than slowed down when

passing a defect.
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Nederlandstalige samenvatting

In dit werk zal de niet-evenwichtsfysica van binaire polaritonflüıda bestudeerd en geanalyseerd worden.

Polaritonen zijn quasideeltjes die ontstaan uit een coherente superpositie tussen fotonen en een dipo-

laire excitatie in materie. Specifiek zullen wij ons toelichten of tweedimensionale microcaviteiten waarin

exciton-polaritonen geëxciteerd worden door een laser. Op deze manier ontstaat een tweedimensionaal

gas van polaritonendeeltjes met merkwaardige eigenschappen. Zo verkrijgen de deeltjes een kleine effec-

tieve massa door hun fotonische component, wat een typisch gevolg is van de opsluiting van fotonen in

een microcaviteit, maar daarnaast ontstaan ook effectieve interacties door hun materiecomponent, het

exciton. Hierdoor is een polaritongas in zekere zin fysisch equivalent aan een gas van interagerende foto-

nen, wat ongekend is onder normale omstandigheden. Vandaar wordt volop onderzoek gedaan naar deze

systemen, met als uiteindelijk doel om deze niet-lineaire optische eigenschappen ten volle te benutten en

te implementeren in allerhande optische toestellen, zoals bijvoorbeeld polaritonlasers of optische schake-

laars.

Vanwege de coherente excitatie door een laser, vormen de polaritonen een coherent gas van deeltjes dat

vele eigenschappen heeft van een Bose-Einstein condensaat. Paradoxaal genoeg zijn het juist de niet-

evenwichtseigenschappen die een heel gamma aan nieuwe, bijzonder interessante fysica opleveren, maar

tevens een herziening vereisen van de welbekende fenomenen die gepaard gaan met Bose-Einstein conden-

satie in koude atomen (macroscopische bezetting toestand, superflüıditeit...). Vandaar zal een uitvoerige

uiteenzetting voorzien worden waarin uitgelegd wordt hoe deze fenomenen geplaatst en begrepen moeten

worden in de context van niet-evenwichtsfysica.

Dit werk concentreert zich rond de studie van de fysica van binaire polaritonflüıda; zijnde polaritonsys-

temen met een extra spinvrijheidsgraad. Als dusdanig zal worden onderzocht hoe deze vrijheidsgraad de

niet-evenwichtsfysica bëınvloedt en welke interessante effecten dit met zich meebrengt. De rode draad

doorheen het werk is de unificatie van twee reeds uitvoerig in de literatuur beschreven fysische systemen:

het één-spin-polaritoncondensaat en het binaire Bose-Einsteincondensaat. Het eerste bevat alle essentiële

ingrediënten om niet-evenwichtskwantumvloeistoffen te beschrijven, terwijl het laatste de nodige fysica

bevat voor een kwantumflüıdum met spinvrijheidsgraadsgraad. Het hoofddoel van deze thesis is dus om

de niet-evenwichtseigenschappen en de spinvrijheidsgraad samen te voegen en een brug te slaan tussen

beide, tot op heden afzonderlijke onderwerpen.

Het eerste deel van het werk bestaat uit de afleiding en uitgebreide toelichting van de centrale vergelijk-

ing in dit werk: de niet-evenwichts-Gross-Pitaevskii-vergelijking met spinvrijheidsgraad. Vanaf daar zal

in het volgende hoofdstuk het excitatiespectrum afgeleid en besproken worden. Het centrale resultaat

hiervan is een fasediagram in functie van twee fundamentele dimensieloze parameters, één kwantificeert

de spinvrijheidsgraad en de andere geeft een maat voor het niet-evenwicht, waarop de verschillende

berekende excitatiespectra zijn geclassificeerd. Via deze weergave is het duidelijk dat zowel de spin-

als de niet-evenwichtseigenschappen gëıncorporeerd zijn in een algemene theorie en dat, bovenal, beide

bovengenoemde limieten duidelijk teruggevonden kunnen worden.

Vanuit dit resultaat zal dan in het laatste hoofdstuk de verstrooiingsfysica van het flüıdum onderzocht

worden. Hiertoe zullen eerst de golfachtige dichtheidsprofielen van de vloeistof als gevolg van verstrooiing

aan een defect berekend en besproken worden, waarna superflüıde eigenschappen en de wrijvingskracht

aan bod komen. Als meest opmerkelijke resultaat uit dit deel noteren we dat onder bepaalde omstandighe-

den de wrijvingskracht negatief kan worden. Hieruit blijkt dus dat in deze omstandigheden de kwan-

tumvloeistof voortgestuwd wordt wanneer het langs een defect passeert. Bijgevolg wordt er dus geen

energie gedissipeerd door wrijving, zoals we gewoon zijn, maar blijkt er een mechanisme in te treden dat

energie absorbeert uit de omgeving. Het zal blijken dat dit exotisch fenomeen rechtstreeks gerelateerd is

aan de niet-evenwichtseigenschappen van de vloeistof.



iv

Dit werk is het resultaat van zowel een onderzoeksstage aan de Universidad Autónoma de Madrid (UAM)

als rechtstreeks thesiswerk verricht aan de Universiteit van Antwerpen (UA). Daar de strikte scheiding

tussen beide is uitgevaagd doorheen de tijd, omvat dit verslag een samenvatting van de belangrijkste

resultaten die gedurende het volledig onderzoek bekomen werden. Gelieve er dus rekening mee te houden

dat dit werk in principe telt voor 42 ECTS (30 voor de masterthesis en 12 voor de onderzoeksstage),

waavan er 12 reeds beoordeeld zijn aan de UAM op basis van een tussentijds verslag.

Omwille van praktische redenen is de thesis dan ook geschreven in het Engels, dit om de communicatie

te vergemakkelijken en de transparantie naar beide partijen toe te verhogen.



Contents

1 Polaritons in Microcavities 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Polariton Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Photons in Microcavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Microcavity Exciton-polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Polariton Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Coupling to a Reservoir and Pumping . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Polaritons as Quantum Fluids of Light 19

2.1 Polariton Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Coherence by the Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Laser Detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Mean Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 The Gross-Pitaevskii equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Validity of the Mean-field Approximation . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Steady State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Quasiparticle Excitations 29

3.1 Bogoliubov Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 The Bogoliubov Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 The Quasiparticle Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Excitations in the Binary Polariton Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Bogoliubov Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 The Equilibrium Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 General Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 The Non-equilibrium Spectrum of the Binary Fluid 35

4.1 Independent Dimensionless Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Diffusive Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Inner Square Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Outer Square Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.3 Boundary Surfaces in Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 The Different Types of Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



5 Scattering from a Defect 47

5.1 The Condensate’s Spatial Density Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 The Defect Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.2 Single-spin Condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.3 Density Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Superfluidity of a Polariton Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 The Landau Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Supercritical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Cherenkov Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 Calculation of the Drag Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Phenomology of a Flowing Polariton Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusions 67



2 CONTENTS



Chapter 1

Polaritons in Microcavities

1.1 Introduction

Polaritons are quasiparticles resulting from strong coupling between light and a dipole excitation in mat-

ter. Originally they were predicted theoretically by Hopfield in [1] and by Pekar [?]. The origin of this

excitation might come from various physical properties of a material, but the most common are couplings

to phonons, plasmons or excitons. The physics of the resulting system is similar for all these types of

excitations. Apart from the presence of a strong coupling, polariton systems give rise to a number of

non-linear optical effects, that make them particularly interesting for implementation in many optical

devices. Known and thoroughly investigated examples include, among others, the construction of optical

switches, parametrical amplification of light and promising new laser devices. The particular interest of

polariton systems lies in the fact that they introduce an effective coupling between photons themselves,

an effect which is extremely weak in vacuum. Next to that, the photons acquire an effective mass and

are therefore subject to a completely different type of physics, opening up a new world in the context

of optics. In this work we will concentrate specifically on semiconducter exciton-polariton systems and

present them in the context of microcavity physics.

Excitons are bound hydrogen-like states of an electron-hole pair in a semiconductor that can be cre-

ated by absorption of a photon. Typically these states are metastable because the electron-hole pair

recombines again by emitting a photon with a frequency related to the binding energy of the exciton. As

this photon can excite another exciton with a certain cross-section, and so on, this process results in the

creation of a new system of effective quasiparticles, known as exciton-polaritons, that are a manifestation

of a quantum mechanical superposition of a photon and an exciton state.

In an ideal system where the photons are perfectly locked up in a cavity, this would give rise to a sta-

ble interacting system of polaritons, in which the interactions are governed by the excitonic component,

whereas the photonic component induces the usual optical effects of light. In this way, such a system can

be regarded as, and is in a certain sense physically equivalent to, a system of interacting photons. In real-

ity however, such systems are always subject to a continuous loss rate of photons, since it is impossible to

construct perfect mirrors to lock them up perfectly. Therefore the system should be pumped continuously

by a photon source to make up for this, resulting in an inherent non-equilibrium system. The apparent

drawback of the necessity to form a non-equilibrium system, actually turns out to involve a large number

of fascinating properties, that are far from accessible in equilibrium systems. These effects lie in the realm

of non-equilibrium quantum fluids and will be presented and explained thoroughly throughout this work.

They represent the most interesting part of polariton systems, and moreover open up a whole gamma of

unique physics.

3
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Figure 1.1: A schematic image of a polariton microcavity. An electron-hole pair is combined by absorbing

a photon and decays again by emitting one. Picture taken form [10]

1.2 The Polariton Model

In this section, an introductory summary on exciton-polariton physics will be outlined, based on [9],

[10], [11]. In order to present a complete and comprehensive approach, we will consecutively go through

excitons in semiconductors, microcavity physics of confined light and eventually the combination of these

two to present polaritons.

1.2.1 Photons in Microcavities

In order to create polaritons, the excitons should interact with a light mode to obtain the necessary

strong coupling. A microcavity will be used to confine photons and realize this, whereas the provided

light source is a laser.

Structure of a Microcavity

The microcavities used to design polariton systems are semiconductor microcavities, constructed from

distributed Bragg reflectors. In reality, we usually deal with two-dimensional planar devices, in which

polaritons are confined in the direction perpendicular to the plane. There are also examples of 0D (quan-

tum dots) and 1D systems, but in this work we will only focus on planar semiconductor microcavities.

The microcavity itself consists of alternating layers of materials with different refractive index, optimized

to confine photons inside the cavity and exciting excitons. The two Bragg reflectors consist of a number

of quarter wavelength thick layers, with a varying refractive index. In this way, a standing wave pattern

is created inside the microcavity, in order to maximize the radiation intensity. As the Bragg reflectors

are not perfect mirrors, there is always a certain loss rate of photons and a pumping on the sample by a

laser is needed to balance this. Furthermore the mirrors are usually designed with a wedge, meaning that

the distance between the mirrors varies in space. In this way the resonance frequency of the standing

wave, ω0, is space-dependent and in a certain region this frequency corresponds to the exciting energy of

the exciton, realizing optimal coupling. At the antinodes of the standing wave, planar quantum wells are

placed in which the excitons are confined, so that the coupling between the incident radiation and the

excitons is maximized in these planes. The materials that are used to excite excitons are usually III-V

materials, such as GaAs or AlGaAs [11]. The first realizations of microcavity polaritons were performed

in 1992 and are presented in [3]. See figure 1.1 for a schematic representation of a typical microcavity.
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Energy of the Confined Photons

By changing the angle of incidence of the laser beam with respect to the planar microcavity, the in-plane

momentum of the photons can be adapted, because this is directly related to their momentum projected

on the cavity plane. The momentum of photons inside a cavity is thus quantized in the direction perpen-

dicular to the plane, whereas the parallel component is not.

For a cavity with length w and a refractive index n the energy of confined photons with in-plane momen-

tum k can then be written as:

ω(k) =
c

n

√
k2 +

(
2πN

w

)2

≈ ω0 +
k2

2m
(1.1)

Where we defined the effective photon pseudomass m = 2πnN
cw and N as the index of the transverse mode

of the photons inside the cavity.

Notice that by considering a two-dimensional system, it follows naturally that the photons should obtain

an effective mass. This is an important feature which will come into play again when setting up the

general polariton theory. Notice that we have set ~ = 1, as will be done throughout the whole work.

As in typical systems m/M ∼ 10−4, one usually considers the exciton energy as a dispersionless constant

with respect to the photon energy, and therefore εk ≈ ε0 = εex−εb. Furthermore, we define the detuning

δ as the gap between the photon and exciton energy for zero momentum, i.e δ = ω0 − ε0.

The Photon Spin

Out of fundamental quantum field theory, it follows that photons can have two linearly independent

polarization states and that they have to be oriented perpendicular to the motion of the photon, as a

consequence of gauge redundancy.

Formally every photon can thus be represented in spin space as:

|Ψ〉 ≡ αx |Ψx〉+ αy |Ψy〉

With |αx|2 + |αy|2 = 1 to normalize the state.

The two spin states |Ψx,y〉 represent in the semiclassical view a photon oscillating in x- or y-direction,

when its motion is along the z-direction. In our case, for a laser beam incident on a planar microcavity, we

can rotate this basis in such a way that one of these directions corresponds to oscillations parallel to the

plane and the other to perpendicular oscillations. As is common in optics, these two states are referred

to as the transverse electric (TE) and the transverse magnetic (TM) state, originating from whether the

electric or the magnetic field is oscillating transversal to the plane. When the laser beam is positioned

perpendicular to the plane, these states are clearly degenerate, since both the magnetic and the electric

field are then oriented parallel to the plane.

We can rotate this linear basis to obtain a different one, given by:

|Ψ+〉 ≡
|Ψx〉+ i |Ψy〉√

2

|Ψ−〉 ≡
|Ψx〉 − i |Ψy〉√

2

These eigenkets now represent the circularly polarized states of the photon.

For the purposes of this work, it will soon become clear that this basis is the most representative to

do calculations. The coherent photons coming from the laser beam will therefore be represented as a

coherent superposition of a so-called spin-up and spin-down component.
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The Photon Field

We have argued that two independent quantum numbers are of importance and should be incorporated

in a theory of the photons, the spin and the in-plane momentum k. All these quantum states should be

included in a Hamiltonian representing the energy of a photon field:

Ĥcav =

∫
d2k

(2π)2

∑
σ=+,−

ω(k)ψ̂†k,σψ̂k,σ (1.2)

Where the quantum operators ψ̂†k,σ and ψ̂k,σ respectively represent the operators creating and anihilating

a photon with momentum k and spin σ inside the cavity.

As the photons are bosonic particles, they should satisfy the bosonic commutation relations:[
ψ̂k,σ, ψ̂

†
k′,σ′

]
= (2π)2δk,k′δσ,σ′[

ψ̂k,σ, ψ̂k′,σ′

]
=

[
ψ̂†k,σ, ψ̂

†
k′,σ′

]
= 0

Notice that we implicitely assumed the photon energy to be degenerate, since the same energy is associated

with each of the two possible spin states. In reality this might not be entirely correct, since the reflectance

of the Bragg mirrors is in general different for the TE and TM linear polarization states. However, we

will neglect the spin-dependent frequency shift during this work for the sake of simplicity. Actually the

TE and TM eigenstates determine the mass basis, in which the free photons are diagonal, whereas the

interactions are diagonal in the spin basis. This is analog to the standard model where a rotation via

the so-called CKM matrix is needed to transform fermions from their mass basis to the basis of the weak

interactions.

The TE/TM splitting can be observed experimentally in the emitted polariton spectra, but the effect

can also be reduced by the design of the Bragg mirrors. [21]

1.2.2 Excitons

Excitons are quasiparticles that arise from bound electron-hole pairs in semiconductors. An excited

electron with sufficient energy hops from the valence band to the conduction band and is free to start

moving inside the lattice. Because of the missing electron, a positively charged hole remains in the lattice

and this can be considered as a positively charged particle that is free to propagate as well. Both the

electron and the hole have their specific energy-momentum relation, depending on the specific topology

of the atoms building up the lattice, and this is known as the electronic band structure of a solid.

Instead of hopping from the valence band completely to the conduction band, a number of intermediate

metastable energy levels can exist that correspond to the formation of bound electron-hole pairs. In

this case the excited electron and the hole bind by the attractive Coulomb interaction to a new quasi-

particle that is known as an exciton. Thanks to the dipolar transition, excitons couple to light. By

confining excitons in quantum wells, the binding energy can be increased so that the excitons can be

considered as polarized bosonic particles, as their internal fermionic structure can be neglected within

good approximation at sufficiently low densities.

The binding length of the exciton is larger than the typical lattice constant in semiconductors. This

justifies the approximation of considering the excitons as independent quasiparticles, since quantum

lattice effects are averaged out over the typical length scales that are dealt with. Furthermore this large

length scale corresponds to momenta close to the center of the Brillouin zone, where the dispersion of

the electron and hole are quadratic within good approximation.
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Band Energy

Excitons are considered as independent massive quasiparticles propagating in the solid. For small mo-

menta the energy relation of these particles is therefore the usual quadratic relation:

εk = εex − εb +
k2

2M
(1.3)

εex is the energy of the exciton level and εb the intrinsic binding energy of the exciton through the

Coulomb interaction.

In analogy with the hydrogen atom, which also originates from the Coulomb interaction, the energy levels

are given by:

εb,n =

(
µ

ε2m0

)
ER
n2

With µ the reduced electron band mass, m0 electron rest mass and ε the dielectric permittivity.

Here we encounter the importance of considering the lattice as a smooth background, as this permits us

to describe exciton physics in a medium with an altered permittivity ε to make up for all lattice effects.

Since in general ε � ε0, the permittivity of the vacuum, the binding energy in an exciton is typically

much smaller than in a hydrogen atom, as well resulting in a larger Bohr radius. In GaAs we find that

ε/ε0 ≈ 10, thus leading to factor 102 difference in binding energy and 10 in bohr radius with respect to

a hydrogen atom.

The resulting zero-point energy ω0 is the difference between the exciton band energy level εex and the

binding energy εb; this result is important, as it will come into play again when coupling the excitons to

light.

Furthermore the excitons acquire an effective mass M , which is the sum of the electron and the hole

band mass.

Angular Momentum and Spin

The spin of an exciton as a composite particle depends on the represention of the product of the groups

describing the spin space of the electron and the hole, their angular momenta inside the cristal and the

angular momentum of the electron-hole pair.

We consider a GaAs lattice grown in the (100) direction, for which the relevant planar symmetry is given

by D2. For these types of cristals the lower conduction band is s-like and therefore the contributing an-

gular momentum coming from the electron is only determined by its spin: Je = Se = 1/2 and je = ±1/2.

The upper valence band has Jh = 3/2 and splits up for small momenta into a heavy- and a light-hole

band, respectively with jhh = ±3/2 and jlh = ±1/2. Since the typical energy splitting of these two bands

is larger than the binding energy of the exciton, only the heavy hole will significantly contribute to the

formation of excitons. [7]

The angular momentum of the bound electron-hole pair depends on its orbital quantum state, in analogy

with the hydrogen atom: 1s, 2s, 2p . . . . We will assume excitons with maximum binding energy, as this

is the lowest energy state, which are in the 1s orbital with L = 0.

The spin space of the considered excitons is then given by the different product spaces of
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2

〉
⊗
∣∣∣∣32 ,+3

2

〉
≡

∣∣∣2,+2
〉

∣∣∣∣12 ,−1

2

〉
⊗
∣∣∣∣32 ,+3

2

〉
≡ 1

2

∣∣∣2,+1
〉

+

√
3

2

∣∣∣1,+1
〉

∣∣∣∣12 ,+1

2

〉
⊗
∣∣∣∣32 ,−3

2

〉
≡ 1

2

∣∣∣2,−1
〉
−
√

3

2

∣∣∣1,−1
〉

∣∣∣∣12 ,−1

2

〉
⊗
∣∣∣3
2
,−3

2

〉
≡

∣∣∣2,−2
〉

In order to achieve a polariton condensate, a strong coupling with the incident light should be realized.

Since light only has the |1,+1〉 ≡ |+〉 and the |1,−1〉 ≡ |−〉 spin states, a coupling can only exist with

excitons having either of these two spins. As a consequence of this, excitons with angular momentum

J = 2 states are also called dark excitons, since they do not couple to photons. Therefore the excitons

that we consider for the purposes of our work, will only be the ones having sex = ±1 and we will neglect

contributions coming from the other spin states.

Interactions

We have already argued that within good approximation the excitons can be considered as composite

particles by neglecting their internal structure. The next step is to determine how effective interactions

are mediated via these particles. Obviously the interaction between two excitons with the same spin state

is different from the interaction between two with opposite spins.

• Two excitons in the same spin are indistinguishable and due to their quantum nature the interaction

potential is given by the sum of the direct and the exchange interaction: V = Vdir + Vexch. Since

the particles are not electrically charged, only higher orders of the direct interaction will contribute.

The main contribution to the interaction potential is therefore given by the exchange interaction,

which is a consequence of the two-particle wave function being symmetric under the exchange of the

two particles. Since excitons are bosonic particles, this results in an repulsive interaction between

excitons with the same spin.

• Two excitons with opposite spin have a different quantum number and are therefore not indistin-

guishable. The main contribution to the interactions will now come from the dipole moment of

the excitons. Therefore the interaction between two opposite-spin excitons is attractive and usually

about one order of magnitude smaller than the one between two equal-spin particles.

It is important to stress out the fundamental difference between the interactions of two equal-spin and

two opposite-spin excitons, as it will be one of the keypoints throughout this work.

Because of the attractive interaction between two opposite-spin excitons, an energy minimum will be

present in the potential. This is important since it implicates the existence of bound exciton pairs with

opposite spin, the so-called biexcitons. When the kinetic energy of the excitons is nearing the binding

energy of these bound states, a resonance will occur that changes the nature of the interaction, known as

a Feshbach resonance. More specifically, this resonance affects the interaction strength between the two

particles and is therefore of great practical importance, since it allows us to tune the interaction parame-

ter. However, since during this process metastable bound states with a finite lifetime are formed, also an

imaginary part is contributing to the interaction potential that should be taken into account. Actually

this imaginary contribution implicates that there is a certain loss rate of excitons, due the formation of
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molecular-like bound states.

Experiments to verify and measure this tuning possibility have been carried out in Lausanne recently,

but the data are still being analysed at this moment.

The Exciton Field

After pointing out all necessary ingredients that should be included in a theory describing the dynamics

of excitons, it is time to start constructing an appropriate field theory from an electron-hole Hamiltonian

that will be coupled to an effective exciton Hamiltonian.

We will start from the free electron-hole Hamiltonian:

Ĥ0 =
∑

σ=±1/2

∑
k

εc(k)ĉ†k,σ ĉk,σ +
∑

σ=±3/2

∑
k

εh(k)v̂†k,σ v̂k,σ (1.4)

The operator ĉ†k,σ creates an electron in the conduction band with spin σ and band energy εc(k) and

v̂†k,σ creates a heavy hole with spin σ in the valence band with band energy εh(k). Remember that we

are constructing an effecctive field theory that only takes into account physically relevant parameters.

That is why we start here with neglecting the light hole contributions: we argued that their influence is

negligible.

The next thing to do is to add interactions between electrons and holes:

Ĥint =
1

2

∑
k,k′

∑
q

Vcoul(q)

(∑
spins

ĉ†k′+q,σ′ ĉ
†
k−q,σ ĉk′,σ′ ĉk,σ

+
∑
spins

v̂†k′+q,σ′ v̂
†
k−q,σ v̂k′,σ′ v̂k,σ

−2
∑
spins

v̂†k′+q,σ′ ĉ
†
k−q,σ v̂k′,σ′ ĉk,σ

)

The three different terms describe respectively the e− − e−, the h− h and the e− − h interactions. The

former two are repulsive, whereas the latter is attractive.

The Coulomb interaction strength is given by:

Vcoul(q) =
e2

2ε |q|

The next step is to introduce bosonic particles that are composed of an electron and a hole, orbiting

around each other:

â†k,+ =
∑
q

f(q)ĉ†k+q,−1/2v̂k−q,+3/2

â†k,− =
∑
q

f(q)ĉ†k+q,+1/2v̂k−q,−3/2

It is easily seen that these operators satisfy the bosonic commutation relations:[
â†k ,̂
†
k′

]
= [âk, âk′ ] = 0[

âk ,̂
†
k′

]
= δk,k′

The next step is to transform the original fermmionic Hamiltonian to the new bosonic basis, which

can be achieved via a so-called Usui transformation. The complete derivation of this process rather

long and technical and is beyond the scope of this work. We refer the interested reader to [17] for a
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detailed explanation. After a diagonalization procedure of the bosonic Hamiltonian obtained after the

Usui transform, the Hamiltonian in the exciton basis is established.

The free Hamiltonian is then given by

Ĥ0 =
∑
σ=±

∑
k

(
εkD̂

†
k,σD̂k,σ

)
, (1.5)

with the correct energy dispersion εk, given by (1.3).

And the interaction Hamiltonian

Ĥint =
1

2

∑
k,k′

∑
q

(
V1(q)

∑
σ=±

(
D̂†k′+q,σD̂

†
k−q,σD̂k′,σD̂k,σ

)
− 2V2(q)D̂†k′+q,−D̂

†
k−q,+D̂k′,−D̂k,+

)
(1.6)

The interaction functions in momentum space V1(q) and V2(q) can be derived out of this theory up to

any given order, but we prefer leaving them in this way for now, since we will approximate them later on

anyway.

Worth noticing though is that V1(q) describes a repulsive interaction for two excitons with the same spin,

whereas V2(q) denotes an attractive interaction for two particles with opposite spins. As we pointed out

earlier on mere intuitive grounds, it can be derived from the Usui theory that the first leading order of

V1(q) is determined by the exchange interaction, while V2(q) is a dipole-dipole interaction. Therefore

holds that |V1(q)| � |V2(q)| under normal circumstances. However, remember also that we mentioned

the existence of bound molecular-like states of two excitons with opposite spin, the biexcitons, which

allows us to tune V2(q) for energy scales close to these resonances. Under these circumstances it will

be possible to reach regimes in energy-momentum space where |V1(q)| ≈ |V2(q)| or where an effective

repulsive opposite-spin interaction takes place. Some complications arise as well, however, since in these

regimes bound states are formed, which corresponds to a net loss rate of particles.

1.2.3 Microcavity Exciton-polaritons

We have established two field theories describing both the microcavity photon field and the interacting

exciton gas. The next step is to introduce strong couplings between these two in order to construct new

effective fields that describe the polariton fields required for the continuing of this work.

Free Hamiltonian

The most straightforward fashion of setting up a polariton field theory is by introducing a coupling

between the photon and exciton field. In this way we describe effective interactions that allow a photon

to transform in an exciton and vice versa, correspondig to the operators D̂†ψ̂ and ψ̂†D̂ respectively. Due

to hermiticity these processes have to occur with the same transmission amplitude. Furthermore we

imply that the quantum numbers spin and momentum must be conserved.

Out of this considerations follows that the free Hamiltonian in its most general form can be written as:

Ĥ0 =
∑
k,σ

(
ψ̂†k,σ, D̂

†
k,σ

)( ωk Ω/2

Ω/2 εk

)(
ψ̂k,σ

D̂k,σ

)
(1.7)

Where we used ωk and εk, defined by (1.1) and (1.3), and defined Ω as the Rabi-splitting, the coupling

strength between the photon and the exciton.

The diagonalisation of the Hamiltonian and plugging in the original expressions for the energies, leads us

to the different energy levels of the polariton system:

E±k =
1

2

δ +
k2

2m
±

√(
δ − k2

2m

)2

+ Ω2

 (1.8)
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As is typical for quantum mechanical systems in the strong coupling regime, level repulsion occurs also in

a polariton system, resulting in the so-called upper (UP) and lower polariton (LP) branches, represented

by the E+
k and E−k energy levels respectively. The dispersion curves are shown in figure 1.2

To establish the desired polariton fields, one has to transform the free Hamiltonian to the basis in

which it is diagonal. This can be done by a rotation:(
ψ̂†k
D̂†k

)
=

(
cos θk − sin θk

sin θk cos θk

)(
Û†k
L̂†k

)
(1.9)

Where we defined Û†k and L̂†k as the creation operators of two new effective particle fields, representing

the upper and lower polariton branches. It can be easily checked that this diagonalises Ĥ0 if:

tan 2θk =
Ω

ωk − εk
(1.10)

The photon and exciton state have been transformed into two new composite particles, the polariton

states, and these particles will now mediate the interactions present in the system.

Apart from that, since the upper polariton branch is higher in energy than the lower one, its occupation

will be negligible, provided that both the effective temperature and the pumping frequency are smaller

than E+.

Adding Interactions

We have already derived the interactions between two excitons when setting up the exciton field the-

ory (1.6). In addition, the excitons also collide with the photons inside the cavity, corresponding to a

Hamiltonian:

Ĥex−ph = −1

2

∑
{σi}

∑
k,k′,q

U{σi} (q) D̂†k′−q,σ4
D̂†k+q,σ3

D̂k,σ2 ψ̂k′,σ1 + ψ̂†k′−q,σ4
D̂†k+q,σ3

D̂k,σ2D̂k′,σ1

Ĥex−ph describes interactions between two excitons with a momentum exchange q, but this time with a

decay of one of the excitons to a photon, or the other way around: the interaction of a photon and an

exciton resulting in two excitons, also with momentum exchange q. The explicit sum over all spin states

{σi} is carried out under the constraint that σ1 + σ2 = σ3 + σ4, that is, we assume that the total spin,

as well as the total momentum, are conserved quantum numbers in the exciton-photon gas.

After rotating the interaction Hamiltonians to the polariton basis, we derive an effective Hamiltonian

that describes an interacting gas of upper and lower polaritons. However, as we pointed out that for

low effective temperatures only the lower polariton branch will be significantly occupied, it turns out

satisfactory to start this work from an effective field theory that describes the kinematics of an interacting

lower-polariton gas. The resulting Hamiltonian that accomplishes this is obtained by transforming to the

polariton basis via (1.9) and omitting all terms containing upper-polariton fields:

ĤLP
0 =

∑
k,σ

ω(k)L̂†k,σL̂k,σ

ĤLP
int =

∑
k,k′,q

(
1

2

∑
σ=±

(
V eff

1 (q)L̂†k+q,σL̂
†
k′−q,σL̂k′,σL̂k,σ

)
− V eff

2 (q)L̂†k+q,−L̂
†
k′−q,+L̂k′,−L̂k,+

)

With ω(k) ≡ E−(k), the lower-polariton dispersion relation that is given by (1.8). The interaction

potentials V eff
1,2(q) can be parametrized in function of the former Vi(q) and Ui(q) describing exciton-exciton
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0

Momentum (k)

Exciton

Photon

Lower
Polariton

Energy

Upper 
Polariton

Figure 1.2: The dispersion relation of a polariton system. The original photon and exciton branches

have turned into an upper and lower polariton branch because of the strong coupling. A laser beam with

energy and momentum close to the lower polariton is used to coherently pump the system.
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and exciton-photon interactions. However, as we are working with the lower-polariton Hamiltonian as a

starting point for an effective field theory, it makes more sense to parametrize V eff
1,2(q) directly instead of

projecting out these parametrizations from the underlying photon and exciton field theories. The more

because they result in complicated functions of both the interaction parameters Ui and Vi, as well as

the rotation angle θk and are not really clarifying. We refer the interested reader to [11] where this is

elaborated for a one-spin component gas.

Do notice however that the equal-spin lower-polariton interaction is still repulsive and the opposite-spin

attractive, since we are still dealing with neutral bosonic particles. Also the composition of molecular-like

two opposite-spin-particle bound states is still present, offering us the resonances to tune the interaction

strength.

1.3 Polariton Dynamics

After establishing the full Hamiltonian for microcavity exciton-polaritons, the dynamics of the systems

can be calculated via the Heisenberg equations of motion. In this way, the time evolution of any operator

â can be obtained by calculating the commutator with the Hamiltonian of the system:

d

dt
â(t) = i

[
Ĥ, â(t)

]
(1.11)

Out of this equation the full dynamics of the polariton system will be derived, but first we need to extend

the Hamiltonian, since the microcavity Hamiltonian ĤLP only describes a part of the full polariton

system.

1.3.1 Coupling to a Reservoir and Pumping

At this stage we are still considering the polariton system as a closed energy-conserving system of in-

teracting particles, which cannot be a satisfactory theory for obvious reasons. We have to extend our

description with the necessary terms that describe the inherent non-equilibrium properties of a polariton

system. This can be achieved by discarding the energy conservation of the polariton system on itself,

and rather consider the polariton system as a subsystem of a larger energy-conserving system.

Extending the Hamiltonian

Polaritons are excited by incoming photons from a laser that propagate through the Bragg mirrors sur-

rounding the polariton microcavity. On the other hand, photons that are already inside the microcavity

can propagate their way through the Bragg mirrors as well. Due to energy conservation and the her-

miticity of the system, these two processes should have the same probability.

The photons coming from the laser outside the polariton cavity are represented by a photon bath, a

reservoir of photon modes to which the polaritons inside the cavity can couple.

As such the full Hamiltonian that describes energy-conserving system can be formulated as:

Ĥtot = ĤLP + ĤB + ĤC + ĤP , (1.12)

where ĤLP is the lower-polariton Hamiltonian (1.11).

So we have defined three additional Hamiltonians to describe the complete dynamics of the energy-

conserving system:

• ĤB is the Hamiltonian that describes the bath photons in the reservoir:

ĤB =
∑
σ=±

∑
q

ωqb̂
†
q,σ b̂q,σ
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The operators b̂†q,σ and b̂q,σ are respectively the creation and annihilation operators of a bath photon

with momentum q and spin σ. The operators satisfy the usual commutation relations for bosonic

operators, as outlined in section 1.2.1. The momentum q of the bath photons is their momentum

in three-dimensional space outside the microcavity. Therefore it is useful to write this momentum

as the sum of a momentum vector parallel to the plane k and a component perpendicular to the

plane qz: q = k + qzez.

• ĤC is the Hamiltonian that describes the coupling between the reservoir and the microcavity

polaritons:

ĤC = κ
∑
σ=±

∑
k,qz

(
b̂†k,qz,σL̂k,σ + L̂†k,σ b̂k,qz,σ

)
So reservoir photons only interact with polaritons that have the same in-plane momentum k and spin

σ. We therefore assume in-plane momentum and spin conservation by tunneling through the Bragg

mirrors. Furthermore we formulated the tunneling probability as neither spin- nor momentum-

dependent. Thus we neglected the TE/TM-splitting and possible direct momentum dependence of

the Bragg mirrors.

• ĤP is the Hamiltonian that describes the pumping of the polariton gas:

ĤP =
∑
σ=±

(
FσL̂kp,σe

−iωpt + F ∗σ L̂
†
kp,σ

eiωpt
)

(1.13)

The parameters F± determine the strength of the pumping power of the two spin components. They

parametrize all factors of influence: the intensity of the laser, the transmission of photons in the

microcavity and the coupling between the photons and the sample to excite excitons. Furthermore

we have that constraint that Itot = |F+|2 + |F−|2, so that the relative difference between the up

and down component can be tuned by polarizing the incident laser beam.

We assume the in-plane momentum kp and the laser frequency ωp to be fixed. Within good

approximation only polaritons with the laser momentum are injected in the microcavity. This

pumping regime is called coherent pumping, since it involves a direct quantum coherence of the

polaritons, imposed by the optical coherence of the laser beam.

Polariton systems can also be pumped incoherently. In this regime polaritons are injected at

an energy far above the lower-polariton dispersion curve. Scatterings will then thermalize these

particles to lower energy and momentum states, causing the original coherence to fade away.

1.3.2 Equations of Motion

Out of a physical system’s Hamiltonian the dynamics of the system can be calculated via the Heisen-

berg equations of motion (1.11). Because we have gathered a large number of energy terms for the

establishment of the full Hamiltonian (1.12), we will go through this step by step.

The Polariton System

We will start by calculating the time evolution of the interacting polariton gas in the microcavity sub-

system. To avoid an overload of notation we will do the derivation for a single-spin polariton fluid. The

general derivation however is completely analogous after adding a second spin component and a cross-

interaction term.

The bosonic Hamiltonian of interacting lower polaritons can be written as:

ĤLP =
∑
k

ωkL̂
†
kL̂k +

1

2

∑
k,k′,q

V (q)L̂†k′−qL̂
†
k+qL̂k′L̂k, (1.14)
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where we have used ωk as the lower-polariton energy (1.8) with momentum k and V (q) the amplitude

to exchange momentum q in a collision process.

We approximate that the dispersion relation is quadratic, i.e.:

ωk ≈
k2

2m

This approximation is valid for low-momentum states. Since we have a mixing of a photon and an exciton

state, the low-momentum spectrum of the lower polariton is mainly photonic and the higher part more

excitonic, with a smooth transition. For small momenta, we can then approximate this spectrum by the

photonic one, which is quadratic with an effective pseudomass m.

Since our ultimate goal is to describe the physics of the system in terms of fluid dynamics, it makes

sense to work towards a mathematical description in position space instead of momentum space.

We therefore define the operators:

Ψ̂(r) ≡ 1√
V

∑
k

L̂ke
ik·r

Ψ̂†(r) ≡ 1√
V

∑
k

L̂†ke
−ik·r

(1.15)

These are the operators respectively annihilating and creating a localized particle at position r.

Again we impose the bosonic commutation relations, but this time in position space:[
Ψ̂(r), Ψ̂(r′)

]
=
[
Ψ̂†(r), Ψ̂†(r′)

]
= 0[

Ψ̂(r), Ψ̂†(r′)
]

= δ (r− r′)

Substituting these in the Hamiltonian (1.14) then leads to its formulation in position space:

ĤLP =

∫
d2rΨ̂†(r)

(
− 1

2m
∇2

)
Ψ̂(r) +

1

2

∫
d2r

∫
d2r′Ψ̂†(r)Ψ̂†(r′)U(r− r′)Ψ̂(r′)Ψ̂(r) (1.16)

Now we are ready to calculate the dynamics of the microcavity subsystem by making use of the Heisenberg

equation of motion. Taking into account the commutating relations, we then derive:

i∂tΨ̂(r, t)

∣∣∣∣
cavity

=
[
Ψ̂(r, t), ĤLP

]
=

[
− 1

2m
∇2 +

∫
d2r′ Ψ̂†(r′, t)U(r− r′)Ψ̂(r, t)

]
Ψ̂(r, t)

As a further approximation, we can assume that there are only local interactions present in the system.

This picture is valid if the typical interaction length of U(r) is much shorter than the mean distance

between two particles. As a consequence, we can express U(r) as a so-called contact potential with

strength g:

U (r− r′) = gδ (r− r′) ,

yielding a simplified equation of motion for Ψ̂(r, t):

i∂tΨ̂(r, t)

∣∣∣∣
cavity

=

[
− 1

2m
∇2 + gΨ̂†(r, t)Ψ̂(r, t)

]
Ψ̂(r, t)

Generalizing the calculation for a binary fluid results in:

i∂tΨ̂±(r, t)

∣∣∣∣
cavity

=

[
− 1

2m
∇2 + α1Ψ̂†±(r, t)Ψ̂±(r, t) + α2Ψ̂†∓(r, t)Ψ̂∓(r, t)

]
Ψ̂±(r, t) (1.17)

Thus the equations of motion that describe the time evolution inside the microcavity are a coupled set

of two non-linear differential equations.
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Coupling with the Reservoir

Additional dynamics take place because of the coupling of the cavity to the photon reservoir. To solve

this, we apply the Heisenberg equations of motion, but now in the system described by the coupling

Hamiltonian ĤC . We start by calculating the time evolution of the polariton operator in momentum

space and perform the calculation for single-spin polaritons:

i∂tL̂k

∣∣∣∣
coupling

=
[
L̂k, ĤC

]
= κ

∑
qz

b̂k,qz (1.18)

So in order to solve this equation, the time evolution of the reservoir photons needs to be calculated as

well:

i∂tb̂k,qz =
[
b̂k,qz , ĤB + ĤSB

]
= ωk,qz b̂k,qz + κL̂k

Therefore we find two coupled differential equations to describe the time evolution of the reservoir photons

and the microcavity polaritons.

By integrating the latter expression we then find:

b̂k,qz (t) = b̂k,qz (0)e−iωk,qz t − iκ
∫ t

0

e−iωk,qz (t−t′)L̂k(t′)dt′ (1.19)

Theoretically we have to keep the initial value b̂(0), as it gives rise to quantum fluctuations. For now we

will neglect this term by imposing the initial values b̂k,qz (0) = 0, motivated by the fact that we will take

a classical limit later on in this work, in which quantum fluctuations are averaged out anyway. Notice

however that this is in general not allowed, because we cannot neglect the commutation relations of

this operator. The quantum theory that takes into account the full quantum nature of the problem is

described by the quantum Langevin equation, for which we refer the interested reader to [20].

Substituting the time evolution of the reservoir photon modes in the equation of motion of the polaritons

yields (1.18):

i∂tL̂k

∣∣∣∣
coupling

= −i
∑
qz

κ2

∫ t

0

e−iωk,qz (t−t′)L̂k(t′)dt′ (1.20)

From here on, two important appoximations have to made. First of all we assume that the system is

Markovian, so that there is no memory and all processes take place instantly.

This allows us to write

κ2
∑
qz

e−iωk,qz (t−t′) ≡ γk
2
δ(t− t′),

where we defined an instant coupling γk that averages over the couplings with all qz.

As a second approximation we assume that the couplings to the reservoir are frequency-independent.

Therefore we have that for all in-plane momenta holds γk ≡ γ, a simplification which is certainly valid

for the low momentum states that we consider.

Taking into account these simplifications, the approximated time evolution of the polariton operator in

the cavity-reservoir coupling system is given by:

i∂tL̂k

∣∣∣∣
coupling

= −iγ
2
L̂k (1.21)

Which we can easily solve:

L̂k(t) = L̂k(0) e−
γ
2 t

So we have derived that the coupling of the polariton system to a photon reservoir results in a net loss

rate of polariton particles. This is also what we expected out of physical considerations: the photons
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that couple to the excitons to form polaritons can escape through the Bragg mirrors.

The effect of this time evolution can be seen by calculating the time-dependent density operator expec-

tation value in a system with n polaritons in momentum state k:

〈n| L̂†k(t)L̂k(t) |n〉 = n e−γt (1.22)

As such, there is an exponential decay of the polariton density in the microcavity, with a decay rate

γ. The typical lifetime of the polaritons is then given by τ = 1/γ. In general microcavities the typical

lifetime of polaritons is of the order of picoseconds [11]. Transforming the polariton operators to position

space via (1.15) and adding again the spin quantum number, then yields the equation of motion:

∂tΨ̂±(r, t)

∣∣∣∣
coupling

= −γ
2

Ψ̂±(r, t) (1.23)

Notice that we also neglected any spin dependence in the decay rate through the Bragg mirrors. This is

also an approximation valid for low momentum states.

The Pump

The equation of motion resulting from the pumping Hamiltonian is found by calculating:

i∂tL̂k,±

∣∣∣∣
pump

=
[
L̂k,±, ĤP

]
= F±e

−iωpt δk,kp

Therefore by puming the polariton gas coherently with a laser, a constant rate of polaritons that take over

the laser momentum, energy and spin is injected in the cavity. This balances the previously introduced

losses because of photons escaping the microcavity. Notice that under normal circumstances this system

balances itself. Indeed, a growing polariton density inside the cavity, automatically results in an increased

particle decay rate (1.22).

This result can also be transformed to position space by (1.15) to obtain the equation of motion for the

operator Ψ̂:

i∂tΨ̂±(r, t)

∣∣∣∣
pump

= F±(r, t)e−i(ωpt−kp·r) (1.24)

In general the pump F± has a spatial density profile and a time-dependence, but for the purposes of our

work, we will approximate the laser beam as static and homogeneous: F±(r, t) ≡ F±.

The full dynamics of the polariton operator in position in space is then given by the sum of the dy-

namics of all considered subsystems. The final result are two non-linear coupled differential equations:

i∂tΨ̂±(r, t) =
[
L̂k,±, Ĥtot

]
=

[
− 1

2m
∇2 + α1Ψ̂†±(r, t)Ψ̂±(r, t) + α2Ψ̂†∓(r, t)Ψ̂∓(r, t)− iγ

2

]
Ψ̂±(r, t) + F±(r, t)e−i(ωpt−kp·r)
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Chapter 2

Polaritons as Quantum Fluids of

Light

Now we have presented how polaritons in microcavities can be described by using quantum field theory, it

is time to perform the necessary approximations in order to establish a solid toolbox to start calculations

from. Our ultimate goal will be to achieve a description of a polariton system in terms of fluid dynamics,

since we will show that under the right circumstances this approximation holds perfectly.

First we will clarify the concepts of condensation, starting by explaining shortly the well-known phe-

nomenon Bose-Einstein condensation (BEC), in order to generalize this concept for non-equilibrium

quantum systems.

2.1 Polariton Condensation

Due to the coherence properties of polariton systems, they can form condensates similar to Bose-Einstein

condensates of cold atoms. The direct relation between these two is a little tricky, since polariton sys-

tems are inherently out-of-equilibrium systems. BEC in cold gases involves a phase transition and is a

consequence of a spontaneous relaxation process, whereas the coherence in polariton systems is rather a

direct manifestation of the locking of the polariton phase to the phase of the incident laser beam.

2.1.1 Bose-Einstein Condensation

The simplest and, moreover, the most extensively studied system in which Bose-Einstein condensation

occurs is a non-interacting gas of bosonic particles. For this system, the Bose-Einstein distribution

function has the form:

nB(E) =
1

e
1

kBT
(E−µ) − 1

,

with T the temperature, µ the chemical potential and T the temperature.

This distribution represents the density of bosonic particles nB in a certain energy state E. It is clear that

this distribution diverges when E → µ. In these types of systems it can be shown that there is a finite

density at which the chemical potential becomes zero. Therefore when the temperature is decreased at

fixed density, or density increased at a fixed temperature, there is a point at which the chemical potential

reaches the bottom of the density of states. Now, it is clear that under these circumstances the Bose-

Einstein distribution diverges at E = 0. This critical point determines a phase transition to a condensed

state, in which there is a macroscopic occupation of the zero-energy state.

19
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In more general terms, Bose-Einstein condensation is defined as the appearance of a single particle state

with macroscopic occupation. Because of this, one is allowed to describe the condensate by a single

complex wavefunction Ψ that holds for all the particles in the system. Explicitely formulated, this means

that we can write for the many-particle wave function:

ψ (r1, . . . , rN ) ≡
N∏
i=1

Ψ(ri)

Actually the macroscopic occupation of a single particle state allows to replace the corresponding quan-

tum operator by its wave function, hence neglecting the non-commutativity of the field operators. This

approach is appropriate when the occupation of the state is much larger than one.

We have only provided a short summary of the basic principles of Bose-Einstein condensation, inspired

by the summary outlined in [9]. We would like to refer the interested reader to the excellent books [14]

and [15] for detailed explanations.

The reason why we have explained the basic ideas behind Bose-Einstein condensation, is to make a ground

for generalizing this concept in polariton fluids. Moreover, it will be shown that in the appropriate limit,

the stable-fuid fluid limit, a polariton system is physically equivalent to a Bose-Einstein, as will be out-

lined in the coming sections. From time to time we will take this limit to demonstrate that the already

established equivalent results for Bose-Einstein condensates can be recovered out of the more general

non-equilibrium physics that describes polariton systems.

2.1.2 Coherence by the Pump

Since polariton systems are inherently non-equilibrium systems due to a finite lifetime, the particle losses

should be balanced by a constant injection source in order to maintain a stable system. The Bragg

mirrors of the cavity are not perfect, and that is why a certain loss rate of photons is inevitable in the

experimental set-up. To balance this, a continuous source of photons should be provided to bring the

system in balance again. As will be outlined thoroughly during this work, the majority of fascinating

physics in polariton systems originates directly from this fundamental non-equilibrium and the experi-

mental possibility to tune the laser momentum and frequency. That is why we offer a detailed explanation

of how polariton systems are pumped and how this affects the properties of the polariton gas, based on

[10], [9]

In the coherent pumping regime the energy and in-plane momentum of the laserbeam is close to the

dispersion curve of the lower-polariton, as is shown in figure 1.2. In this way, a coherent fluid of polari-

tons can be excited, since they initially take over the momentum and energy from the incident light in

a resonant way. The result is a system of polaritons that can be approximated as a macroscopic fluid

of particles in the same quantum state, that is, with the same momentum, energy and spin distribution,

directly inherited from the laser beam.

Coherence Properties

Initially all excited polaritons take over the energy and in-plane momentum of the laser beam, realizing a

coherent condensate of polaritons with a strongly peaked energy-momentum distribution. However, due

to excitonic collisions and interactions with for example lattice phonons, the originally peaked energy-

momentum distribution will smoothen along the polariton dispersion curve. Therefore we will assume

that the typical polariton lifetime is short enough to neglect these thermalization effects and maintain

the necessary coherence. In this way the energy-momentum state corresponding to the laser beam will

be macroscopically occupied, so that the approximation of a single-state fluid is still valid within high
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Figure 2.1: (a) Due to the increasing interaction energy under pumping, an effective blueshift of the

polariton dispersion occurs. If the laser frequency is situated above the spectrum (positive detuning), the

dispersion is shifted closer to resonance with the laser beam, resulting in a Kerr bistability. If instead

the laser frequency is below the dispersion, the dispersion is pushed out of resonance. (b) At the magic

angle resonant scattering of the polaritons takes place: the laser beam is unstable and splits resonantly

in a low-momentum (signal) and a high-momentum beam (idler).

accuracy. The ansatz of dealing with a single-state fluid is one of the key assumptions during the

research presented in this work. The coherence of the fluid allows us to apply mean field theory as a

valid approximation, as will be pointed out later on.

Although we call the polariton fluid a condensate, there is a fundamental difference with an ordinary

Bose-Einstein condensate of cold atoms. The presence of a coherent phase in a BEC is a consequence of

spontaneous symmetry breaking, involving a second order phase transition, whereas the coherent phase

in a polariton fluid is directly imposed by the coherent laser beam.

2.1.3 Laser Detuning

The energy-momentum of the laser can be either above or beneath the polariton dispersion curve, corre-

sponding to either positive or negative detuning. Since the pumping of a polariton fluid naturally results

in an upward energy shift due to the increasing interaction energy, these two regimes show a fundamen-

tally different behaviour. During the intense pumping of a fluid with a positive detuning, the energy

blueshift pushes up the dispersion curve and brings it closer to resonance with the energy-momentum of

the laser. With sufficient laser intensity, the dispersion curve might cross the energy-momentum point of

the laser, leaving a fluid with negative detuning. Therefore pumping with positive laser detuning can be

unstable, depending on the laser-intensity. This phenomenon, known as the Kerr bistability, is shown in

figure 2.1(a) and will be clarified later on by means of mean field theory.

If the condensate is pumped with a negative detuning, the resonance becomes increasingly worse by the

blueshift, so that this pumping regime is always stable.

Parametric Scattering

A particularly interesting behaviour is observed when polaritons are injected close to the inflection point

of the dispersion curve. At this point a resonant scattering can take place that is both energy and
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momentum conserving. The polaritons that originally take over the energy and momentum of the laser

will scatter into into a low-momentum state, traditionally called the signal state, and a high momentum

state, the idler. In this way a pump positioned at this angle, sometimes called the magic angle, results

in three different polariton beams by stimulated scattering. The fluid with the pump wave-vector be-

comes unstable and polaritons are scattered into the signal and idler beam. This process is called optical

parametric oscillation (OPO). Notice that in order for this process to occur, a resonance between the

laser energy-momentum and the polariton energy is required. OPO can therefore only take place with

a positive laser detuning, as the energy blueshift brings the polariton curve closer to resonace with the

laser beam.

In addition, the OPO process can be strongly enhanced by placing a weak laser beam at zero momentum,

resulting in an amplification process known as optical parametrical amplification (OPA).

The original coherent phase of the polariton fluid gets lost by these stimulated scattering processes, as

the only requirement for the phases is that φidler + φsignal = 2φbeam. A graphical image of this process is

provvided in figure 2.1(b).

For the purposes of our work, we will assume the laser beam to be far from these resonant processes

in order to maintain a coherent phase in the condensate. This approximation is reasonable since we

assume small momenta, much smaller than the inflection point of the polariton dispersion. Thus within

good approximation a coherent single-state polariton fluid with a coherent phase can be considered.

Incoherent Pumping

Although not relevant in the following of this work, we shall provide a brief description of the prin-

ciples of non-resonant pumping, for the sake of completeness. In the incoherent pumping scheme the

momentum and energy of the incident light is far above the polariton dispersion curve. In this way, a

reservoir of polaritons is created that will gradually thermalize along the polariton dispersion curve by

collisions. Eventually this will result in the macroscopic occupation of the low momentum states and a

non-equilibrium condensate. The principal difference with coherent pumping is that there is no coherent

phase present in this condensate, since the earlier coherence fades away by the collisions.

During this relaxation process spontaneous coherence effects can occcur under the right circumstances,

such as long-range coherence effects and even Bose-Einstein condensation. [11]

2.2 Mean Field Theory

The full polariton quantum field theory established in the previous chapter turns out to be somehow

overloaded and impractical to perform realistic calculations of many-particle physics. Furthermore we

assume macroscopic coherent systems of many particles, so that we average out the quantum nature

of the single polaritons. The general physical formalism that averages the quantum effects from a field

theory in a rigorous way is called mean field theory.

2.2.1 The Gross-Pitaevskii equation

We have established a description of the full dynamics of a microcavity exciton-polariton system on the

level of quantum field theory in (1.25). The way this quantum mechanical description manifests itself on

a macroscopical scale is on the level of expectation values of operators. As such, we can calculate the

expectation value of the equation of motion of the polariton operator Ψ̂±. For this we will define:〈
Ψ̂±(r, t)

〉
≡ Ψ±(r, t), (2.1)
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where we have defined the wave function Ψ±(r, t) as the expectation value of field operator Ψ̂±(r, t) at

position r and time t.

By taking the expectation value of (1.25) on both sides, we can replace the field operator Ψ̂± every-

where by the wave function Ψ±, since taking the expectation value is a linear operation. The only terms

in which this is not possible, are the interaction terms, because they consist of products of operators. We

can solve this problem by stating that〈
Ψ̂†Ψ̂Ψ̂

〉
−→

〈
Ψ̂†
〉〈

Ψ̂
〉〈

Ψ̂
〉

(2.2)

which is called the mean-field approximation.

Thus after elaborating this operation, we derive the celebrated Gross-Pitaevskii equation that describes

the fluid dynamics of a binary polariton system:

i∂tΨ± =
(
ω(−i∇)− iγ

2
+ α1 |Ψ±|2 + α2 |Ψ∓|2

)
Ψ± + F±(t) (2.3)

Via this equation we have established a hydrodynamical description of a binary polariton fluid, that

includes interactions, pumping and decay. This result will be the starting point for the research performed

in this work

2.2.2 Internal Energy

The internal energy of the microcavity can be calculated as the expectation value of the microcavity

Hamiltonian ĤLP . Notice that the internal energy is not necessarily a conserved quantity under time-

evolution, since we are integrating over an open subsystem.

E ≡
〈
ĤLP

〉
=

〈∫
d2r Ψ̂†+(r, t)

[
− 1

2m
∇2 +

α1

2
Ψ̂†+(r, t)Ψ̂+(r, t) +

α2

2
Ψ̂†−(r, t)Ψ̂−(r, t)

]
Ψ̂+(r, t)

〉

+

〈(
+←→ −

)〉

By performing the mean-field approximation for the interaction terms, we then find:

E =

∫
d2r

[
Ψ∗+

(
− 1

2m
∇2

)
Ψ+ + Ψ∗−

(
− 1

2m
∇2

)
Ψ− +

α1

2

(
|Ψ+|4 + |Ψ−|4

)
+ α2 |Ψ+|2 |Ψ−|2

]
, (2.4)

where we have omitted the explicit writing down of the time- and space-dependence of the wavefunctions.

A lot of valuable information can be retrieved out of this expression. First of all we know that the operator

− 1
2m∇

2 is the kinetic energy operator and therefore has the dimensionality of an energy. By comparing

this to the internal energy, which is also has the dimensionality of an energy, we immediately get that

the two-dimensional wave function Ψ± has a dimension of an inverse length scale.

By studying the interaction terms it is then easy to derive that the interaction constants αi have the

dimensionality of an inverse mass. Therefore they can be formulated as αi ≡ 1
m α̃i, where the α̃i are now

dimensionless quantities expressed relative to the polariton mass.

When only considering the two interaction terms in the internal energy, we find that we can formulate
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Figure 2.2: A schematic image of the minimum-energy stable fluid phases of a polariton gas in function

of α1 and α2. The �-arrow denotes a circularly polarized spin fluid, meaning that there is only one spin

component. The l-arrow denotes a linearly polarized fluid, so the two fluids have a finite density. The

grey regions are unstable, since there the energy has no lower bound. The circles are the interaction

constants that have been measured in [13] and from which this picture is taken.

the interaction energy more suggestively as:

Eint =

∫
d2r

[
1

4
(α1 + α2)

(
|Ψ+|2 + |Ψ−|2

)2

+
1

4
(α1 − α2)

(
|Ψ+|2 − |Ψ−|2

)2
]

≡
∫
d2r

[
U1

2
|N |4 +

U2

2
|S|4

]

In this way we see clearly that an energy contribution is coming from interactions governed by the

fluid density |N |2 = |Ψ+|2 + |Ψ−|2 with a coupling U1 = 1
2 (α1 + α2), and a spin-related interaction

|S|2 =
∣∣∣|Ψ+|2 − |Ψ−|2

∣∣∣, with a coupling U2 = 1
2 (α1 − α2).

The interaction energy needs to be stable for small density fluctuations. Out of this we can get re-

strictions to limit the physical range of the interaction constants in a stable system:

α1 > 0

α2
1 > α2

2

The complete derivation of this is outllined in [15] for binary Bose-Einstein condensates, but is identical

for polariton systems. On figure 2.2 a schematic image is given of the minimal-energy configurations of

binary polariton fluids and the experimentally measured interaction constants.

2.2.3 Validity of the Mean-field Approximation
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Figure 2.3: A graphical image of the healing length of in condensate: The healing length is the typical

length scale necessary to recover the bulk condensate density.

When deriving the Gross-Pitaevskii equation, we were able to substitute the polariton field opera-

tor everywhere by its quantum expectation value, except in the interaction terms. Therefore the only

approximation that we have performed is situated on the level of interactions. Also the validity of this

approach needs to be verified by studying the physical regime of interactions in the considered system.

In order to acquire a quantitative measurement to determine the validity, we define the healing length of

the polariton condensate as the typical length scale it needs to recover to its bulk density in the presence

of a defect. For this we have to relate the two typical energy scales that are contained in the Gross-

Pitaevskii equation: the kinetic and the interaction energy.

By remembering that the (−i∇)-operator denotes a wave vector in momentum space, and thus an inverse

length scale ξ, we then find:
1

mξ2
= α1n±,

where n± = |Ψ±|2 is the bulk density of the condensate.

We then find for the healing length ξ±:

ξ± =

√
1

mα1n±
(2.5)

The mean-field approximation we performed in the interaction terms (2.2) is now valid for high polariton

densities, that is if:

n± =
〈

Ψ̂†±Ψ̂±

〉
� 1

L2

So if we divide the two-dimensional polariton system in a grid of squares with area L2, then we need

much more than one particle in this square to motivate the replacement of the polariton operator by a

wave function. This is just the requirement that we need many particles in order to average the quantum

fluctuations.

Substituting the healing length as the typical length scale of density fluctuations in the polariton fluid,

we then derive the condition n±ξ
2
± � 1, and this yields:

m |α1| � 1 or |α̃1| � 1 (2.6)

Where we have used the dimensionless coupling α̃1.

This condition is certainly satisfied for polariton systems because we have that |α̃1| ∼ 0.01 [25]. We
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Figure 2.4: The condensate density |ψ|2 as a function of the pumping power I. If ∆ <
√

3
2 γ (left)

this curve increases smoothly. The increase decreases for higher pumping values, because the system is

blueshifted out of resonance. On the other hand, if ∆ >
√

3
2 γ (right) a Kerr bistability takes place: The

blueshift brings the polariton curve in resonance with the laser, resulting in an unstable system. Two

stable solution can then be possible, either below or above this state, and a hysteresis curve is the result.

have done the verification by using the self-interaction parameter α1, as in stable systems we have that

|α1| > |α2| and we want to have an upper limit.

2.2.4 Steady State Solutions

The time-independent solution of the Gross-Pitaevskii equation can now be determined by substituting

a plane-wave ansatz for the fluid wavefunctions:

Ψ± = ψ± exp {i (kp · r− ωpt)} , (2.7)

where the phase of the fluid is now locked to, but not identical to the phase of the incoming pumping

laser.

In doing so, a set of two coupled non-linear equations has to be solved numerically, which in principle can

be done. For the purposes of our work however, we are at this stage not interested in the exact steady

state solutions. Basically we intend to describe the physics of the first order excitation spectrum and will

consider the steady state solutions ψ± as parameters of the system.

Some interesting physics is already contained in this zeroth-order solution. The best way to demon-

strate this is to consider a single-spin polariton fluid with Gross-Pitaevskii equation:

i∂tΨ =
(
ω(−i∇)− iγ

2
+ g |Ψ|2

)
Ψ + F (t) (2.8)

Now we can substitute the proposed steady-state ansatz in this equation and its complex conjugate,

yielding a system of two equations:

−F =
[
ω(−i∇)− ωp − iγ/2 + g |ψ|2

]
ψ

−F ∗ =
[
ω(−i∇)− ωp + iγ/2 + g |ψ|2

]
ψ∗

Multiplying these two then results in the relation between the laser intensity and the fluid density:

|I| =
[ (
g |ψ|2 −∆

)2

+
γ2

4

]
|ψ|2 , (2.9)
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where we defined the intensity |I| = |F |2 and the laser detuning ∆ = ωp − ω(−i∇).

Two fundamentally different regimes can be distinguished now, depending on the value of ∆. If ∆ ≤
√

3
2 γ,

there is a one-to-one correspondence between the intensity and the fluid density, yielding a smoothly

increasing curve.

When ∆ >
√

3
2 γ on the other hand, there can be up to three different density solutions for a given

intensity. This phenomenon is called a Kerr bistability. The reason for this has been explained earlier:

due to the increasing interaction energy there is an effective blueshift of the polariton dispersion curve.

With positive detuning there can be point where the polariton spectrum is shifted in resonance with the

laser beam, after which the spectrum is blueshifted above the laser beam, leaving two possible density

solutions.

The plots of the two different pumping regimes are shown in figure 2.4.
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Chapter 3

Quasiparticle Excitations

In the previous chapter, we have made a rather severe approximation by neglecting all quantum fluc-

tuations contributing to the physics of the system. A part of this lost information can be recovered by

considering fluctuations on the steady state solution. The theory that describes this was first developed

by Bogoliubov and it allows to describe the physics of the polariton fluid in terms of quasiparticle ex-

citations on top of the steady state solution. The energy spectrum of these excitations will be derived,

giving acces to a wide variety of interesting physics such as the density waves by scattering from a defect

and the possibility to give a definition of superfluidity.

3.1 Bogoliubov Theory

The basic principles of Bogoliubov theory will be outlined by considering a polariton fluid consisting of

one spin state. In this way the necessary insight can be gathered to obtain the solid basis to generalize

the theory eventually for two-spin non-equilibrium fluids. The approach we follow is inspired by [14] and

[12].

3.1.1 The Bogoliubov Excitations

In Bogoliubov theory a solution of the single-fluid Gross-Pitaevskii equation (2.8) is postulated, that

takes on the form:

Ψ(r, t) = ΨSS(r, t) + δψ(r, t) ≡ ei(kp·r−ωpt)
(
ψ +

∑
k

u(k)ei(k·r−ω(k)t) + v∗(k)e−i(k·r−ω(k)t)

)
(3.1)

So a solution is proposed that consists of the steady-state solution ΨSS , with a phase locked to the laser

beam, and two first-order perturbations u(k) and v(k). The perturbations are expressed in momentum

space, with momenta relative to the laser wave vector kp. In order not to double count momenta and

keep a one-to-one correspondence between momenta and coefficients u(k) and v(k), the sum over all

momenta k should be performed in only half of the reciprocal space. A good choice of reference frame

turns out to direct kp along the x-axis and restrict the sum over momenta to kx > 0 with respect to kp.

Therefore we have in the limit of an infinite-sized polariton sample:

1

V

∑
k

→
∫

dk

(2π)2
≡
∫ ∞

0

dkx
2π

∫ ∞
−∞

dky
2π
≡
∫ ∞

0

kdk

(2π)2

∫ π/2

−π/2
dθ (3.2)

In this frame of reference we can interprete the u(k)-functions as the coefficients describing waves prop-

agating upstream and v(k) as waves propagating downstream.

29
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The next step is to plug the Bogoliubov solution in the single-spin Gross-Pitaevskii equation (2.8) and its

complex conjugate equation. The zeroth-order terms in u(k) and v(k) satisfy the steady-state solutions

we have derived before. The new physics lies in the first-order contributions, which can be split up in

two groups: terms oscillating with e−i(ωt−k·r) and terms going with ei(ωt−k·r), which satisfy:∑
k

(
ω(k)− L(k)

)( u(k)

v(k)

)
e±i(ωt−k·r) = 0 (3.3)

We are interested in the Bogoliubov matrix L(k), since it contains the physics of the excitations:

L(k) =

(
−ωp +

(kp+k)2

2m − iγ2 + 2g |ψ|2 gψ2

−gψ∗2 ωp − (kp−k)2

2m − iγ2 − 2g |ψ|2

)
(3.4)

The equation should be satisfied for every value of k seperately, which only holds if the ω(k) correspond

to the eigenvalues of the Bogoliubov matrix L(k). Thus the eigenvalues of this matrix determine the

spectrum of the Bogoliubov excitations u(k) and v(k), which can be obtained by diagonalization:

ω±(k) = k · vp − i
γ

2
±
√
ε(k)

(
ε(k) + 2g |ψ|2

)
(3.5)

With:

ε(k) =
k2

2m
−∆p

∆p = ωp −

(
k2
p

2m
+ g |ψ|2

)
This is the spectrum that determines the dispersion relation of the quasiparticle excitations in the fluid.

The two different energy solutions correspond to a particle and a antiparticle branch, in analogy with

particle physics. In polariton literature it is more common to note these as the particle and the ghost

branch [24], but these are just different names for the same concepts. Out of the physical ground state,

the polariton fluid without density fluctuations, a particle can hop to the particle branch, leaving a hole

in the hole branch.

3.1.2 The Quasiparticle Spectrum

The non-equilibrium properties of the fluid allow some peculiar regimes in the dispersion relation of the

quasiparticle excitations that are worth investigating. The two parameters that determine the rate of

non-equilibrium in the fluid are γ, the decay rate of particles, and ∆p, the pump detuning. By choosing

the right values for these, we should recover the solutions for a fluid in equilibrium, equivalent to a

Bose-Einstein condensate. An equilibrium fluid has γ = 0, meaning that there are no particle decays. In

addition the oscillation frequency of the fluid is locked to the chemical energy µ instead of the pumping

frequency ωp.

The chemical potential is the energy necessary to add one particle to the fluid, which is in mean-field

theory the sum of the mean kinetic and interaction energy per particle in the fluid:

µ =
k2
p

2m
+ g |ψ|2 ,

so that it is readily seen that for an equilibrium fluid holds ∆p = 0.

Again the pump detuning offers us the possibility to explore physical areas that are accessible only in non-

equilibrium fluids. To show this we define the dimensionless reduced pump detuning ∆′ = ∆p/(g |ψ|2).

The spectrum can now be classified according to the reduced pump detuning and three different regimes

are distinguished, which are plotted on figure 3.1:
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Figure 3.1: The different type spectra of a single-spin polariton fluid with γ′ = 1. The upper two are

non-diffusive, left one with negative detuning ∆′ = −0.3, the right one with zero detuning ∆′ = 0. The

lower two are diffusive-like, the left with ∆′ = 1 and the right with ∆′ = 2.3. The right lines show the

tilted spectra for a pumping momentum in reduced units k′p = kp/

√
g |ψ|2 = 2.

• ∆′ ≤ 0: The only imaginary contribution in the spectrum is the polariton decay rate γ and this

comes as a global negative imaginary shift in the polariton spectrum. The spectrum is gapped at

k = 0 with an energy splitting of 2

√
|∆p|

(
|∆p|+ 2g |ψ|2

)
.

• 0 < ∆′ < 2: In a circular region around k = 0 there is now an additional imaginary energy shift in

the spectrum due to the negative argument of the root. The real parts of the two spectral branches

stick together in this region. Following the notation of [12] we call these types of spectra diffusive-

like. Notice that these spectra cannot occur in equilibrium systems, as a finite lifetime is necessary

to shift down the imaginary parts of the spectrum sufficiently, in order to maintain a global negative

imaginary energy spectrum, assuring a stable system. The Bogoliubov approximation does not hold

when Im (ω(k)) > 0 for some wave vector k, as this would correspond to an exponentially growing

excitation amplitude.

• ∆′ > 2: When ∆′ is increased further up to more than twice the interaction energy, a circular region

around k = 0 becomes real again. Instead a ring-shaped region for |k| > 0 becomes diffusive-like.
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3.2 Excitations in the Binary Polariton Fluid

Now that the principles of Bogoliubov theory have been outlined and the theory has been applied to

one-spin polariton fluids, we can generalize the established results for two-spin binary polariton fluids.

3.2.1 Bogoliubov Matrix

For both the spin components seperately we propose a Bogoliubov solution of the form:

Ψ±(r, t) = ei(kp·r−ωpt)

(
ψ± +

∑
k

u±(k)ei(k·r−ω(k)t) + v∗±(k)e−i(k·r−ω(k)t)

)
(3.6)

The phase of the total wavefunction is thus assumed to be locked again to zeroth order to the phase

of the incoming laser beam, as is expected for the steady state solution ψ. Instead of two Bogoliubov

coefficients, we now have a total of four.

The spectrum of the system can then be derived by substituting this assumption in the full binary Gross-

Pitaevskii equation 2.3, which describes the evolution of the system. Additionally, the solution must

also satisfy the complex conjugate of the GP equation. We furthermore assume the amplitudes of the

excitations to be small in comparison with the bulk wavefunction ψ, so that we only keep track of terms

up to first order in v(k) and u(k). After calculation, we again derive that the Bogoliubov modes have to

satisfy: ∑
k

(
L(k)− ω(k)

)
δψ(k)e±i(ωt−k·r) = 0, (3.7)

where we defined δψ(k) as the vector containing the Bogoliubov modes arranged as:

δψ±(k) =
(
u+(k) v+(k) u−(k) v−(k)

)T
Couplings between the four different Bogoliubov modes are now present, resulting in a 4× 4 Bogoliubov

matrix:

L(k) =

(
L++(k) L+−(k)

L−+(k) L−−(k)

)
, (3.8)

with:

L±±(k) =

(
−ωp + 1

2m (kp + k)
2 − iγ2 + 2α1 |ψ±|2 + α2 |ψ∓|2 α1 (ψ±)

2

−α1

(
ψ∗±
)2

ωp − 1
2m (kp − k)

2 − iγ2 − 2α1 |ψ±|2 − α2 |ψ∓|2

)

L+−(k) = α2

(
ψ∗+ψ− ψ+ψ−

−ψ∗+ψ∗− −ψ+ψ
∗
−

)

L−+(k) = α2

(
ψ+ψ

∗
− ψ+ψ−

−ψ∗+ψ∗− −ψ∗+ψ−

)
The eigenvalues of this matrix describe the spectrum of the quasiparticle excitations in the binary fluid.

Notice that in general we will derive four different branches instead of two, that is, if no degeneracy is

present in the spectrum.

3.2.2 The Equilibrium Limit

Before starting the diagonalisation process for the entire matrix, it appears useful to study the equilibrium

limit of this system, and check whether the results coincides with the known ones for a Bose-Einstein

condensate [4]. If we assume an equilibrium system, this is equivalent to considering a system whithout

any loss rate, nor any pumping term. As such, we are studying a system with a fixed number of particles.
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Basically this means that the general phase of the stationary state is no longer locked by the incident

pumping beam, but rather by the chemical potential µ±, fixing the number of particles.

A system which contains two spin fluids that are both populated, has the chemical potentials:

µ± = α1 |ψ±|2 + α2 |ψ∓|2 +
k2

0

2m
, (3.9)

where k0, the bulk momentum of the fluid, is introduced instead of the former kp. Notice that there is a

built-in symmetry for +←→ −, as is expected out of physical considerations.

In order to retrieve the spectrum from (3.8), one should substitute ωp → µ±, fixing the number of

particles, and γ → 0, assuring an infinite lifetime. One derives then a simplified matrices for L±±(k),

revealing an apparent symmetrical structure, whereas the other matrix elements in L(k) are not affected.

L±±(k)→

(
k2

2m + k · v + α1 |ψ±|2 α1 (ψ±)
2

−α1

(
ψ∗±
)2 − k2

2m + 1
mk · v − α1 |ψ±|2

)
(3.10)

Because of this internal symmetry, the spectrum of this matrix can be easily calculated by diagonalizing

it, and turns out to be the solution of following quadratic equation in
(
ω − 1

mk · v
)2

:

(
(ω − k · v)

2 − E2
+

)((
ω − 1

m
k · v

)2

− E2
−

)
− 4α2

2

(
k2

2m

)2

|ψ+|2 |ψ−|2 = 0 (3.11)

Where we defined:

E± =

√
k2

2m

(
k2

2m
+ α1 |ψ±|2

)
This time there are two particle and two hole branches in the spectrum of excitations, of which the

particle branches are given by:

ωp±(k) =

√
k2

2m
·

√
k2

2m
+ α1

(
|ψ+|2 + |ψ−|2

)
±
√
α2

1

(
|ψ+|2 − |ψ−|2

)2

+ 4α2
2 |ψ+|2 |ψ−|2 + k · v (3.12)

The hole branches ωh± carry a minus sign in front of the root.

To determine the qualitative behaviour of this spectrum, it is interesting to look at the dispersion curve

for small k and approximate to the first leading order:

ω± =

√
k2

2m
·

√
α1

(
|ψ+|2 + |ψ−|2

)
±
√
α2

1

(
|ψ+|2 − |ψ−|2

)2

+ 4α2
2 |ψ+|2 |ψ−|2 + k · v (3.13)

For the stable two-component fluid, one readily sees that the spectrum for small k is linear. Therefore,

there is no bandgap present between different branches of the spectrum and it is completely real-valued

for every k, provided that |α1| > |α2|.

3.2.3 General Solutions

The simplifications derived for the stable fluid are expected to complicate when taking into account the

finite lifetime of the polaritons and the adaptable phase of the incident laser beam, to which the phase of

the stationary state is locked. However, in the appropriate limits, one should always be able to recover

the equilibrium results derived in the previous section, and the familiar ones of a single-spin fluid.

It turns out that the complications that arise due to this generalization appear to be able to be absorbed

in redefinitions of the variables in (3.11), offering us a recognizable expression after diagonalization of

(3.8): (
ω̃2 − E2

+

) (
ω̃2 − E2

−
)
− 4α2

2ε−ε+ |ψ−|2 |ψ+|2 = 0, (3.14)
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where we defined the following functions:

ω̃ = ω +
i

2
γ − 1

m
k · v

∆± = ωp −

(
k2
p

2m
+ α1 |ψ±|2 + α2 |ψ∓|2

)

ε± =
k2

2m
−∆±

E± =

√
ε±

(
ε± + 2α1 |ψ±|2

)

Again we obtain four spectral branches as solutions of the quadratic equation, of which the two positive

particle-like solutions are given by:

ωp± =
1

m
k · v − i

2
γ +

√√√√E2
− + E2

+

2
±

√(
E2
− − E2

+

)2
4

+ 4α2
2ε−ε+ |ψ−|2 |ψ+|2, (3.15)

with also two ghost branches, obtained by flipping the sign of the root.

It is worthwile checking whether these expressions indeed converge to the already known results in the

corresponding limits before continuing:

• In the limit of the decoupled fluid, there is no interaction between the two spin components in the

fluid, and therefore the same results as a one component fluid should be found. In order to do

so, we should take the limit of α2 → 0 and |ψ+| = |ψ−|, and it is easily verified that we retrieve

expression (3.5).

• For a stable fluid with infinite lifetime polaritons, we can verify that this expression converges in

the limits γ → 0 and ωp → µ, with µ described by (3.9). It is easily verfied that in this limit

dispersion relation (3.12) holds, as this limit corresponds to ∆± → 0.

With (3.15) we eventually derived a continuum generalization between two particular cases; the two-

component infinite-lifetime polariton fluid, which can as well be considered as a two-component BEC, and

the one-component finite-lifetime polariton fluid. As such, it is interesting to determine the intermediate

behaviour of this system and discuss the continuous transition between these two limiting cases.



Chapter 4

The Non-equilibrium Spectrum of

the Binary Fluid

The dispersion relation for the quasiparticle excitations turns out to take different qualitative behaviours,

depending on regions in k-space where the spectrum becomes diffusive due to negative arguments of the

roots. We have had a glimpse on diffusive-like properties of single-spin fluids, where we derived that

the type of spectrum is determined by the ratio of the pump detuning ∆p to the interaction energy

g |ψ|2. In this chapter we will therefore first of all determine the set of relevant parameters that influence

the properties of the binary spectrum, so that we can eventually classify the types of spectra according

to specific values of these parameters. The ultimate goal of this chapter is to present a generalized

classification of spectra for a two-spin fluid and this forms one of the main parts of the research done for

this work.

4.1 Independent Dimensionless Parameters

In order to collect a set of fundamental dimensionless parameters, it is of course useful to begin from a

dimensionless equation, which can be done by a rescaling of ω → ω′ = ω/ (α1 |ψ+| |ψ−|). In doing so, one

fixes the scaling freedom and finds a dimensionless expression for the excitation spectrum, containing all

necessary information to start the classification. Notice that we used a rescaling that is also invariant

under +←→ −, in order to preserve the global symmetry present in the system.

One can define three independent dimensionless parameters:

Γ =
1

α1 |ψ+| |ψ−|

(
ωp −

k2
p

2m

)
(4.1)

c =
|ψ−|
|ψ+|

α =
α2

α1

And they allow us to write down a dimensionless expression for the excitation spectrum after the rescaling:

ω′± =
1

α1 |ψ+| |ψ−|

(
ω − 1

m
k · v +

i

2
γ

)

±

√√√√1

2

(
ε′+

(
ε′+ +

2

c

)
+ ε′−

(
ε′− + 2c

))
±

√
1

4

(
ε′+

(
ε′+ +

2

c

)
− ε′−

(
ε′− + 2c

))2

+ 4α2ε′+ε
′
−

35
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Where we defined the rescaled functions:

ε′± = z(k)−∆′± (4.2)

∆′+ = Γ−
(

1

c
+ αc

)
∆′− = Γ−

(α
c

+ c
)

And:

z(k) =
1

α1 |ψ+| |ψ−|
k2

2m

The parameters Γ, c and α determine the qualitative behaviour of the spectrum, as they show up in the

square roots in the dispersion and determine whether there are diffusive-like regions in k-space.

Notice that there is a conceptual difference between Γ and c on one side, and α on the other. Both

Γ and c are parameters directly related to the incoming laser beam, and therefore in principle tunable

in an experiment, whereas α is intrinsic to the physics of the polariton system itself. However, one

should take care assigning values to α, since they depend on a variety of different processes that can be

present. In the following we will assume that only scattering takes places in the system, but this is only

an approximation. Remember that the excitons can form bound states of opposite spin, the biexcitons,

resulting in a net loss rate of excitons. This effect will be neglected by assuming that the biexciton energy

is far above twice the laser frequency, and thus not of importance. If only elastic scattering takes place,

the system is energy conserving with respect to interactions and therefore the interaction parameters α1,2

need to be real-valued.

One approach could be to determine values for α out of earlier experiments or more detailed theories,

which can then be plugged into the equations, as to get a model with only Γ and c dependence. However,

on the other hand one might also determine α by making different models depending Γ and c and compare

with an experiment where ranges of Γ and c are scanned.

Either way, for the time being we keep α as a free, real-valued parameter and delay the assignment of

specific values to a later section.

4.2 Diffusive Regions

In what follows, we will only care about the analytical behaviour of the two square roots in the system,

since only they determine the properties of the spectral types in the system, and not the parameters γ

and v.

As there are two roots present in the expression describing the dispersion relation, it is obvious that two

different imaginary contributions might show up independently in the spectrum. We will deal with both

of them sequentially.

4.2.1 Inner Square Root

The imaginary parts showing up in the inner root contribute to both ω+ and ω− in the same way, but

will get an opposite sign. Regions in k-space with a diffusive spectrum only exist when the following

function becomes negative on its domain:

1

4

(
ε′+

(
ε′+ +

2

c

)
− ε′−

(
ε′− + 2c

))2

+ 4ε′+ε
′
−α

2 (4.3)

After working out this expression and rearranging the terms, we derive that it can be written as a

quadratic equation:

C2z(k)2 + C1z(k) + C0 (4.4)
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The coefficients of the polynomial can be written down in function of the dimensionless parameters ∆′±:

C2 =

(
1

c
− c+ ∆′− −∆′+

)2

+ 4α2

C1 =

(
1

c
− c+ ∆′− −∆′+

)(
∆′

2
+ −∆′

2
− + 2

(
c∆′− −

∆′+
c

))
− 4α2 (∆′+ + ∆′−)

C0 =
1

4

(
∆′

2
+ −∆′

2
− + 2

(
c∆′− −

∆′+
c

))2

+ 4α2∆′−∆′+

Since z(k) is a positive function in k and C2 > 0, expression (4.4) can only become negative if there is at

least one root present in the positive domain. The parametrical region where a diffusive spectrum occurs

is therefore bounded by the following curves:{
C2

1 = 4C0C2

C0 = 0
(4.5)

After some algebraic manipulations, the former can be expressed as:

(∆′− −∆′+)
2

+ 2

(
1

c
− c
)

(∆′− −∆′+)− 4
(
1− α2

)
= 0,

which is a quadratic equation in the variable ∆′− −∆′+.

4.2.2 Outer Square Root

Also in the the outer root complex contributions might show up, resulting in diffusive regions in the

spectrum that are similar to the ones demonstrated for single-polariton fluids. This will happen whenever

the following function becomes negative on its domain:

1

2

(
ε′+

(
ε′+ +

2

c

)
+ ε′−

(
ε′− + 2c

))
±

√
1

4

(
ε′+

(
ε′+ +

2

c

)
− ε′−

(
ε′− + 2c

))2

+ 4ε′+ε
′
−α

2 < 0

Whereas the imaginary contributions coming from the inner root were the same, but opposite in sign

for both ω− and ω+, this symmetry is clearly gone in this expression. There might be regions where ω+

is real, while ω− is diffusive, and in principle both should be considered separately. However, without

caring to much about the consequences for now, we can find the boundaries of parametrical regions where

qualitative changes appear by squaring this expression to get rid of the inner root.

After rearranging a little, we derive that this relation then can be written as:(
ε′+ε

′
−
) [
ε′+ε

′
− + 2

(
ε′−
c

+ cε′+

)
+ 4

(
1− α2

)]
= 0 (4.6)

Due to this factorization, the expression equals zero when:

• ε′± = z(k) − ∆′± = 0: This can only occur when the rescaled pumping detuning ∆′± > 0 and

therefore the two surfaces ∆′± = 0 determine a boundary where a qualitative change occur.

• ε′+ε′− + 2
(
ε′− + cε′+

)
+ 4c

(
1− α2

)
= 0: After rearranging the terms, we learn that this expression

can be written as a quadratic equation as well:

z(k)2 −
(

∆′+ + ∆′− − 2

(
1

c
+ c

))
z(k) + ∆′+∆′− − 2

(
∆′−
c

+ c∆′+

)
+ 4

(
1− α2

)
= 0 (4.7)

It is easily checked that this equation always has solutions, the question is when they are positive

and affect the spectrum. As can be easily deduced out of algebraic relations, the boundary in

parameter space is given by:

∆′+∆′− − 2

(
1

c
∆′− + c∆′+

)
+ 4

(
1− α2

)
= 0 (4.8)
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4.2.3 Boundary Surfaces in Parameter Space

Since the variables ∆′± are not really well-defined, in the sense that they are not independent from each

other, it is more useful to transform everything back to the original dimensionless variables Γ, c and α,

using relations (4.2). Eventually this will allow us to describe boundaries in this parameter space, with

different qualitative types of spectra.

After doing the transformation, we derive a number of two-dimensional surfaces in the three-dimensional

parameter space, separating volumes with different qualitative behaviour.

• The region where the inner square root is zero in the positive domain, is bounded by the surfaces:(
(2− α)

2 − 1
)(1

c
− c
)2

= 4
(
1− α2

)
(4.9)(

Γ

(
1

c
− c
)

(α− 2) +
1

2

(
α2 − 3

)(
c2 − 1

c2

))2

= −4α2

(
Γ−

(α
c

+ c
))(

Γ−
(

1

c
+ αc

))
Within these volumes in parameter space the second root is imaginary in a certain region in k-

space. For these momenta the real parts of ω+ and ω− are the same, resulting in a ’sticking’ of the

branches of the spectrum. The imaginary contributions however are opposite in sign.

• All the surfaces where a qualitative change occur due to a sign flip under the outer root, are given

by:

Γ =

(
1

c
+ αc

)
(4.10)

Γ =
(α
c

+ c
)

4α2 =
(

Γ− α

c
− 3c

)(
Γ− 3

c
− αc

)
By crossing one of these surfaces, there will be a flip in sign under the root for either ω+ or for

ω−, but not both at the same time in general. Physically this means the appearance of a region in

k-space where the real part of the spectrum is zero, and only an imaginary contribution is present,

so that the spectrum is completely diffusive for these momenta.

4.3 The Different Types of Spectra

Keeping in mind all the reasonings presented in the previous section, a total of six qualitatively different

spectral branches can occur, depending on the three dimensionless parameters Γ, c and α.

Due to diffusive regions showing up as a consequence of the outer square root, three different types of

spectral branches are possible, these are the same ones that have been discussed in section 3.1.2 and that

are shown in figure 3.1. Because we have now four branches, two of these three spectral branches can

appear in the spectrum. The three spectra that have at least one gapped mode are shown in figure 4.1

and the three that only have diffusive modes are shown in 4.2.

If there are additional diffusive regions caused by the inner square root, two spectral branches stick

together in a certain region in momentum space. The sticking is a result of avoided crossing and three

other spectral types can be distinguished. These spectra are plotted in figure 4.3.

4.4 Phase Diagram

As mentioned before, there is a conceptual difference between the dimensionless parameter α on one side

and Γ and c on the other. It is therefore convenient to assign a certain value to α, as this parameter is in
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Figure 4.1: The real (left) and imaginary (right) parts of the three spectra with a gapped mode. The

interaction strength is α = −0.1. The red (black) line are the ω+ (ω−) branches. The dotted lines are

the tilted spectrum for kp = 2
√
α1 |ψ+| |ψ−|.



40 CHAPTER 4. THE NON-EQUILIBRIUM SPECTRUM OF THE BINARY FLUID

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

R
e
(ω

)

k

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

k

Im
(ω

)

(a) c = 0.8 Γ = 2

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

R
e
(ω

)

k

−3 −2 −1 0 1 2 3
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

k

Im
(ω

)

(b) c = 0.7 Γ = 3
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Figure 4.2: The real (left) and imaginary (right) parts of the three spectra with a no gapped mode and

no sticking. The interaction strength is α = −0.1. Same color code as above.
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(a) c = 0.3 Γ = 3
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(b) c = 0.4 Γ = 4
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Figure 4.3: The real (left) and imaginary (right) parts of the three spectra with sticking of the ω+ and

ω− branches. The interaction strength is α = −0.1. There is an additional sticking that is caused by

the inner square root being imaginary. The diffusive contribution of this is too small to see on the scale

of the plot for the two lower figures, but they are situated inbetween the two bumps of the outer root.

Same color code as above.
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Figure 4.4: The measurements of α = α1/α2 as a function of the pump detuning for different pumping

powers P . [13]

principle determined by the physics of the system, and make a slice of the three-dimensional parameter

space for constant α. In this way, we can represent the qualitatively different spectra in a two-dimensional

phase diagram for the experimental adaptable parameters Γ and c, showing areas bounded by the curves

of section 4.2.3.

Recently experimental measurements have been done [13] to verify the actual value of the ratio of the

interaction constants α, of which the results are shown in figure 4.4. It is generally accepted now to ap-

proximate the parameter under normal conditions to α = −0.1, as is the average outcome of experiments.

We have provided a detailed phase diagram in figure 4.5 that visualises the different regions in parameter

space in which the earlier discussed spectral excitation types occur. On this figure different regions that

are bounded by a number of parametrical curves in (Γ, c)-space are shown. Each region corresponds to

a certain type of excitation spectrum, as is indicated by the schematic of the spectral type. ω+ and ω−

change indepently by crossing a region, which was also pointed out during the derivation of the curves.

The two red lines determine the region where the inner root becomes imaginary, resulting in the sticking

of the two dispersions ω± in a ring-shaped region in k-space.

In addition, the minimum width γ′ = γ/(α1 |ψ+| |ψ|) that is needed to have a physical spectrum is drawn.

This has been established by determining the minimal imaginary shift that is necessary to assure that all

imaginary parts in k-space are negative. This is necessary in order to have excitations that are damped

in time, and not exponentially increasing, because this is not physical.

The equilibrium point is the point where the two curves ∆± = 0 cross. In this point we have that the

laser frequency corresponds to the chemical potentials of both the up-spin and the down-spin fluid. The

point where a number of red and blue lines appear to join, is actually deceiving, since they do not cross

in reality. It can be show analytically that the mismatch is only of order α2 ∼ 0.01, making it impossible

to notice on the scale of this plot.

In figure 4.6 a number of additional phase diagrams are shown for α in the range from −1 to 1. In general

all contour lines that determine the diffusive regions move to higher Γ for higher α. If α ≥ 1 it can be

shown analytically that there are no solutions for the red contours, so that no sticking of the spectral

branches can take place.

On the phase diagram for α = 0 we can recover the results for a single-spin polariton fluid. The physics

of this system is contained in the subspace obtained by fixing c = 1. On this line the different spectral

types discussed in 3.1 can be found in function of Γ.

We have provided a generalization of two different limiting cases: the single-spin polariton fluid and

the two-spin BEC. By considering a set of three independent dimensionless parameters, we elaborated a
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mechanism that allows us to continuously move through parameter space from one limiting case to the

other. Thus we have presented a phase diagram in which these two limits can be identified as differ-

ent subspaces in a higher-dimensional parameter space that connects these formerly separated regions

continously.
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Figure 4.5: The full phase diagram in function of Γ and c, for α = −0.1. Blue lines are zeros from the

outer square root and red lines from the inner. A schematic image of the spectral type is given in each

area. The black lines represent the reduced minimum width, γ/ (α1 |ψ+| |ψ−|) that is needed to have a

stable system, the oscillations are a numerical error.
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Figure 4.6: Different phase diagrams for α in the range −1 to 1. For increasing α the lines are pushed

towards higher Γ-values.It can be shown analytically that there is no additional sticking of the branches

when α ≥ 1, hence the red lines disappear.
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Chapter 5

Scattering from a Defect

We have seen that a bulk velocity of the fluid, caused by the pumping wave vector kp results in a global

tilt of the excitation spectrum. When a defect is placed in the polariton fluid, this will affect the density

profile of the fluid. These effects will be studied in the following chapter. First of all the defect has to

be included in the Gross-Pitaevskii equation to start the necessary calculations. From there on we can

study the response of the flowing fluid to a static defect and look at the scattered waves. To conclude

this work, the drag force exerted by the defect on the fluid will be calculated and discussed in the context

of the previous results.

5.1 The Condensate’s Spatial Density Profile

Making use of perturbation theory the response of the condensate density profile can be calculated. For

this we will extend the Gross-Pitaevskii equation with a defect potential and study its response to a small

perturbation.

5.1.1 The Defect Response

In general when the fluid is affected by a certain potential an extra term has to be included in the

Gross-Pitaevskii equation:

i∂tΨ±(r, t) =
(
ω(−i∇)− iγ

2
+ α1 |Ψ±(r, t)|2 + α2 |Ψ∓(r, t)|2 + V±(r, t)

)
Ψ±(r, t) + F±(r, t), (5.1)

where the time- and spatial dependence of the fluid wave function is explicitly written down.

The defect potential we are interested in, is static in time and we assume a point-like defect:

V±(r) = g±δ(r) (5.2)

So the defect is represented by a Dirac-delta function with a coupling strength g±, that can be different

for the two spin components. Defect potentials are realized in laboratories by placing an additional small

laser beam on the polariton sample, which creates exctitons that are not in coherence with the bulk fluid,

in a small region in the plane. This can be approximated by a point-like defect if the size of the defect

is much smaller than the typical length scale of spatial density fluctuations.

We are now interested in studying the response of the fluid when flowing along such a point-like de-

fect. In order to do so, we assume the defect-fluid interaction to be small and take only into account

first order corrections to the steady state. The first order density fluctuations are constructed from the

47
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well-known Bogoliubov modes u(k) and v(k), as defined in (3.6). The defect potential can be expanded

in k-space:

V±(r) = g±
∑
k

(
e−ik·r + eik·r

)
Now we substitute the Bogoliubov ansatz and the defect potential in the Gross-Pitaevskii equation. To

derive the response equation, we only keep track of terms of first order in either u(k), v(k) or g±.

In this way a new system of linear equations is derived by gathering terms oscillating with the same

phase: ∑
k

(
L(k)− ω(k)

)
δψ(k)e±i(ωt−k·r) = −

∑
k

Ve∓ik·r, (5.3)

with:

V =

(
g+Ψ+ − g+Ψ∗+ g−Ψ− − g−Ψ∗−

)T
.

Since the defect potential is time-independent, we are looking for a static response that is energy-

conserving. Therefore we are looking for solutions with ω(k) = 0. Now the response of the Bogoliubov

modes can be related to the defect, so that for every wave vector k has to hold:

δψ(k) = −L−1(k)V (5.4)

Out of this equation the momentum distributions of the Bogoliubov modes u(k) and v(k) can be calculated

and transformed again to position space by substitution in (3.6). As such the first-order response of the

condensate density by scattering from a defect can be calculated. Notice that the defect potential comes

in as a driving term in the Bogoliubov equation.

5.1.2 Single-spin Condensates

Since the calculation of the Bogoliubov modes involves the inversion of the Bogoliubov matrix, the

complexity of finding exact analytical solutions increases rapidly with the dimensionality of the matrix.

For a binary fluid the response is determined by a 4× 4-matrix, of which the inverse in general leads to

dreadfully long expressions that are far from clarifying. We will therefore start by studying the response

of a single-spin fluid, for which analytical solutions can be found that are easy to grasp.

For a single-spin fluid the response equation simplifies to:(
u(k)

v(k)

)
=

(
−ωp +

(kp+k)2

2m − iγ2 + 2g |ψ|2 gψ2

−gψ∗2 ωp − (kp−k)2

2m − iγ2 − 2g |ψ|2

)−1(
−gV ψ
gV ψ

∗

)
(5.5)

And after evaluation we derive the expressions for the Bogoliubov modes in momentum space:

u(k) =
gV ψ

(
ε(k)− k · v + iγ/2

)
ε(k)

(
ε(k) + 2g |ψ|2

)
−
(
k · v − iγ/2

)2 = gV ψ
ε(k)− k · v + iγ/2

ω+(k) ω−(k)

v(k) =
gV ψ

∗
(
ε(k) + k · v − iγ/2

)
ε(k)

(
ε(k) + 2g |ψ|2

)
−
(
k · v − iγ/2

)2 = gV ψ
∗ ε(k) + k · v − iγ/2

ω+(k) ω−(k)

Remember that we defined these functions only for the interval kx > 0, when kx is lined parallel to

the pumping vector kp. Therefore when γ → 0 these functions are strongly peaked around the curve

ω−(k) = 0 because this corresponds to singularities inside the defined domain of the Bogoliubov modes.

With a non-zero decay rate γ these functions are smoothened and analytical. Also the value of the

pumping detuning ∆p will have a profound influence on the excitation momentum distribution.
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To find the spatial density distribution of the fluid, the Bogoliubov excitations have to be substituted in

the proposed Bogoliubov solution (3.1):

Ψ(r, t) = ei(kp·r−ωpt)

ψ +
∑

k,kx>0

[
u(k)e−ik·r + v∗(k)eik·r

]
≡ ei(kp·r−ωpt)

(
ψ +

∑
k

δψ(k)e−ik·r

)
,

where we defined the extended momentum distribution over the full k-space:

δψ(k) = u(k) Θ(kx > 0) + v∗(−k) Θ(kx < 0) (5.6)

Up to first order, the density profile of the wavefunction is then given by:

Ψ(r, t) ≈ |ψ|2 + 2 Im

(
ψ∗
∑
k

δψ(k)e−ik·r

)

5.1.3 Density Profiles

The Bogoliubov modes of a binary fluid can be evaluated by inverting the full Bogoliubov matrix nu-

merically. By filling up a grid in k-space with these numerical values, the momentum distribution can

be visualized. This grid can then be transformed to position space via a Fourier transform, showing the

condensate’s density profile by scattering from a defect.

5.2 Superfluidity of a Polariton Fluid

5.2.1 The Landau Criterion

The bulk velocity of a moving fluid leads to an additional energy term kp · r in the energy of the Bo-

goliubov excitations. This term comes as a global tilting of the spectral branches, as we have shown in

the chapter on the spectral branches. When the fluid velocity exceeds a certain velocity, the branches

can cross the zero-energy line at non-zero momentum. When this happens energy-conserving scattering

is possible and the defect will start to exert a drag force on the fluid.

The Critical Velocity

To define the critical velocity in a fluid, we consider a comoving frame to determine the energy. On top

of the condensate we consider a single excitation with momentum p. Therefore the energy of the fluid

can be written as:

E = E0 + ε(p) + p · v +
1

2
Mv2

E0 is the internal energy of the fluid, 1
2Mv2 the center of mass energy of a moving fluid with mass M .

The energy of an elementary excitation with momentum p on top of the moving fluid is the sum of its

band energy ε(p) and the dopler shift p · v, caused by considering a comoving frame.

The central argument is now that excitations will only occur when they are energetically favorable, that

is when the excitations carry a negative energy:

ε(p) + p · v < 0
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Out of this we can derive the celebrated Landau criterion, stating that any flow with a velocity v exceeding

a certain velocity vc is unstable and subject to a drag force because of the existence of elementary

excitations.

This critical velocity is determined as:

vc = min
p

ε(p)

p
(5.7)

This means that any BEC flowing along a defect with velocity v < vc will not have energy dissipation by

excitations, because this is not energetically favorable. The fluid can therefore flow frictionless without

exerting a drag force and is called a superfluid. If the fluid flows faster than the critical velocity, Bogoliubov

modes will get excited with a net drag force as result.

Stable fluids

The Landau criterion is rigorously defined when it comes to stable fluids, but is subject to interpretation

for non-equilibrium systems like polaritons. We will therefore start by studying the equilibrium limit

before generalizing.

For a single-spin fluid, the equilibrium limit is given by ∆p = γ = 0, yielding a band energy:

E(k) =

√
k2

2m

(
k2

2m
+ 2g |ψ|2

)
(5.8)

By applying the Landau criterion, we then find that [14]:

vc =

√
g |ψ|2

m
(5.9)

So we find that the critical velocity coincides with the speed of sound in the fluid.

Applying the Landau criterion to an equilibrium two-spin fluid then yields the critical velocity [4]:

vc =

√
1

2m

√
α1

(
|ψ+|2 + |ψ−|2

)
−
√
α2

1

(
|ψ+|2 − |ψ−|2

)2

+ 4α2
2 |ψ+|2 |ψ−|2 (5.10)

The reason why the critical velocity is so straightforwardly defined for equilibrium fluids, is the presence

of linear modes in the spectral branches. As such the Landau criterion can be conceptually visualized by

considering the slope of the dispersion for k → 0. The kinetic energy k · v is represented by a straight

line with slope v. The critical velocity is then determined by requiring that the minimum slope of the

line is the slope of the dispersion. This image is shown in figure 5.1.

Generalization For Non-equilibrium Fluids

The critical velocity in non-equilibrium fluids is somehow more difficult to interprete for two reasons.

First of all there is a finite lifetime of particles which gives an imaginary shift in the excitation spectrum.

Because of the fundamtental quantum mechanical uncertainty relation ∆E∆t ≥ ~/2, the excitations are

allowed to hop to states that are not energy conserving for a finite time. Therefore the defect will always

exert a certain drag force on the fluid because exitations are allowed to exist at any finite bulk velocity.

In addition the Landau criterion needs some reinterpretation because of the freedom of pumping frequency.

In an equilibrium fluid the equivalent property was locked to the chemical potential of the system, whereas

in an non-equilibrium fluid the pump detuning is an additional experimentally tunable parameter of the

system. Therefore new physical regimes are accessible that make it somehow difficult to define a critical

velocity.

In spectra with quadratic dispersions, thus without diffusive-like regions, it is still possible to give a
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notion to a critical velocity acccording to the Landau criterion. For a one-spin fluid we showed that these

correspond to systems with negative pump detuning ∆p < 0, whereas in binary fluids they correspond

to parameterical regions with two gapped spectra. In these systems we can make use of the familiar

graphical image to visualize the Landau criterion. The critical velocity is then determined by drawing

a line with slope vp, the bulk fluid momentum, and requiring that vc is the minimum velocity needed

to cross the band dispersion of the excitations. In general this zero-energy point at the critical velocity

is not at k = 0, as was the case for equilibrium fluids because of the presence of a linear mode. At the

critical velocity there will now be a discontinuous jump in the drag force, since modes are excited which

have k > 0. The graphical image of the critical velocity is shown in figure 5.1.

When the spectrum of excitations is diffusive-like the critical velocity is always zero according to the

Landau criterion. Indeed, there is always a zero-energy mode having k > 0. Therefore energy-conserving

excitations are allowed at any finite bulk velocity, resulting in a finite drag force.

5.3 Supercritical Flow

5.3.1 Cherenkov Radiation

In the stable-fluid limit we have shown that no energy-conserving scattering can take place when the fluid

velocity is below the critical velocity. Whenever this velocity is exceeded, however, energy-conserving

scattering of Bogoliubov modes appears as the stable solution, giving rise to a finite drag force. These

Bogoliubov waves are known as Cherenkov radiation, a physical phenomenon that occurs whenever parti-

cles exceed the local speed of sound in a medium. Famous examples include the sonic boom of an aircraft

crossing the barrier of sound or the blue light observed in nuclear reactors, caused by charged particles

moving faster than the speed of light in the medium.

Energy-conserving scattering takes place when one of the spectral branches of the excitations crosses

the zero-energy line, corresponding to the constraint ωi(k) = 0, where i denotes all branches. In k-space

we can draw contours of this constraint to visualize to which Bogoliubov modes scattering is possible for

a certain fluid velocity. In the case of a single-fluid Bose-Einstein condensate, we have dispersion (5.8).

The constraint E(p) = 0 yields after some analytical calculations:

p2
x = 2m2

−c2s + v2 −
p2
y

2m2
+

(c2s − v2 +
p2
y

2m2

)2

− 1

m2

(
c2sp

2
y +

p4
y

(2m)2

)1/2
 ,

in which the fluid velocity v is lined along the x-axis.

This relation is a closed curve in the (px, py)-plane and can be drawn for different fluid velocities v, as is

shown in figure 5.2.

When the behaviour of this curve for p→ 0 is studied, we find that:

px = ±
√

1

(v/cs)
2 − 1

py

So the curve is not analytic in the point p = 0, because a singularity causes a discontinuous cusp in the

curve.

Out of this we easily get that the curve makes a jump of an angle 2θ, with:

cos θ =
cs
v

(5.11)

Because of the cone-like shape, this is known as a Mach cone.



52 CHAPTER 5. SCATTERING FROM A DEFECT

0

v>v
c

v=v
c

v<v
c

Scattered Mode

Linear
Dispersion

(a) Linear Dispersion

0 k’

Gapped
Dispersion

v>v
c

v<v
c

v=v
c

Scattered
Modes

(b) Gapped Dispersion

Figure 5.1: Graphical image of the Landau criterion for a gapped and a linear dispersion of Bogoliubov

excitations. The dashed line is the velocity curve vk. For subcritical speeds, below the critical velocity vc,

no modes can be excited, since there is no crossing between dispersion and the velocity curve, and there

is a superfluid flow. For supercritical speeds Bogoliubov excitations appear at the momentum modes

where the two curves cross each other. For a gapped spectrum there is a finite momentum k′ at which

modes are excited when v = vc. This will result in a jump in the drag force.
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Figure 5.2: Closed zero-energy curves for different supercritical fluid velocities v in a Bose-Einstein

condensate with speed of sound cs = 1. There is a singularity in the curves for p→ 0, corresponding to

the Mach cone. Only scatterings to modes with angles inside the cone are possible.



5.3. SUPERCRITICAL FLOW 53

k y 0
k

x

(a) Gapped Mode

k y 0
k

x

(b) Linear Mode

k y 0
k

x

(c) Diffusive Mode, ∆ < 2g |ψ|2

k y 0
k

x

(d) Diffusive Mode, ∆ > 2g |ψ|2

Figure 5.3: The zero-energy curves for different spectral types in a supercritical flow along the x-axis. The

contours represent the momentum states to which energy-conserving scatterings are possible. For non-

diffusive modes the Mach cone is drawn, represented by the dashed lines: only scattering to momentum

states with angles inside the cone are possible. Momentum states outside the cone cannot get excited.

This Mach cone is not present for diffusive-like spectra and therefore scattering is allowed to all angles.

(a) Non-diffusive Mode (b) Diffusive-like Mode

Figure 5.4: The density profile of a non-diffusive (∆ = −0.7g |ψ|2) and a diffusive-like (∆ = g |ψ|2)

mode of a single-spin fluid with supercritical velocity 2cs and γ = 0.3g |ψ|2. In the non-diffusive fluid

scattering takes place only inside the Mach cone, resulting in v-shaped interference pattern because of

the missing angle of momenta. In the diffusive-like fluid scattering can take place at all angles, making

a more parabolic-like interference pattern.
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Figure 5.5: Scattering experiments of polariton fluids as carried out by [26] compared to the corresponding

calculated density profiles for a supercritical stream of kp = 0.521µm−1. The upper six images are the

experimental results with the Cerenkov profiles (up) and the momentum space images (down). The six

other images are the corresponding numerically calculated images. The pumping power increases from

left to right, thus resulting in a denser polariton fluid and a higher speed of sound. For a low density

(left) we are clearly in a supercritical regime, whereas the Cherenkov is more reduced in the right one,

meaning that the system flows at a velocity closer to the speed of sound. The wave pattern is more

parabolic like, implying that the spectrum is diffusive.
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Only scatterings to momentum states inside the Mach cone are possible, as there are no energy-

conserving solutions outside this cone. As a consequence the angular distribution of triggered Bogoliubov

modes has only contributions inside the Mach cone, and components with angles larger than θ are missing

in the fourier decomposition. It is easy to notice that a linear spectral branch corresponds to a Mach

cone for a supercritical flow. Indeed p = 0 is always a zero-energy solution and with a sufficient tilt in the

spectrum caused by the fluid velocity it can be readily seen that a cone-like shape appears as zero-energy

solution in momentum space.

For a gapped mode, having ∆p < 0, a notion of a critical velocity can still be defined. However, we

showed that if v → vc, energy-conserving scattering takes place at a non-zero momentum state, because

of a discontinuous transition between the sub- and supercritical flow. As such the Mach cone is now

shifted along the px-axis to higher momentum states.

For a diffusive-like spectral branch energy-conserving scattering of particles is possible at any finite fluid

velocity. The real part of the zero-energy curve in momentum space does not have a single singularity,

but rather a region along the py-axis for which holds E(p) = 0. Now the angular distribution of scattered

modes will look totally different than the distribution of a linear mode, because scattering is possible to

all angles. See figure 5.3 for schematic drawings of the different zero-energy curves. The finite lifetime

of polaritons makes it possible to scatter to energy states that are not necessarily energy-conserving. So

the strict constraint of scattering only to momentum states that are situated on the closed zero-energy

curves has to be weakened for non-equilibrium fluids. The momentum distribution of the fluid wave was

the solution of the response equation (5.4), which involves the inversion of the Bogoliubov matrix:

δψ(k) = −L−1V ≡ −Minor {L(k)}∏
i ωi(k)

V,

where we used that the inverse of every invertable matrix can be written as its minor matrix, which

is analytic in k, divided by its determinant, which is the product of its eigenvalues. Thus we see that

resonances occur when the ωi → 0 because the Bogoliubov matrix then becomes singular.

By inserting a finite particle lifetime, these resonances are shifted into the complex k-plane, so that the

singularities are blurred out. Therefore excitations can scatter to modes that are not necessarily energy-

conserving and a richer variety of momentum states is present in the Fourier decomposition, although the

distribution is still peaked around the curves ω(k) = 0. The width of this peak increases with increasing

γ, since excitations are then less restricted to scatter with energy conservation, due to a shorter lifetime.

Experimental results of images from a polariton scattering experiment [26] are shown in figure 5.5.

For binary fluids, we find that two branches instead of one can cross the zero-energy line indepen-

dently and make energy-conserving scattering possible. Therefore there can be up to two closed curves

in momentum space that determine the constraint ω± = 0.

5.3.2 Calculation of the Drag Force

After clarifying superfluidity by defining a critical velocity and generalizing this concept for non-equilibrium

fluids, a quantitative approach for calculating the drag force caused by a point-like defect will be derived.

We will start by calculating the drag force for a single-spin fluid, as this alows us to retrieve some

analytical results.

Drag Force on a Single-fluid Condensate

In general a force acting on the fluid is the result of the gradient of a certain potential function. Since

the fluid has a certain spatial density distribution, the full force acting on the fluid is the sum of all
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infinitesimal contributions. Therefore we can write the force acting on the bulk as an integral over space:

F = −
∫
dr |Ψ(r)|2∇V (r) (5.12)

By partially integrating this expression and substituting the defect potential gV δ(r), we derive:

F = −V (r) |ψ(r)|2 |r→∞ +

∫
drV (r)∇ |Ψ|2

= gV

∫
drδ(r)∇ |Ψ|2

= gV∇ |Ψ|2 |r=0

Now we substitute the Bogoliubov ansatz to solve the drag force in momentum space:

F = igV

∫
dk

(2π)2
k

[
ψ∗
(
u(k)− v∗(k)

)
+ ψ

(
v(k)− u∗(k)

)]
(5.13)

We have seen that the integration domain is restricted to the right half-plane in momentum space, as

we defined it in this way to make the Bogoliubov ansatz consistent. It turns out more convenient and

more practical to extend these integrals to the full momentum plane. This can be established by using

the extended momentum distribution δψ(k), as defined in (5.6).

F ≡ igV

∫
dk

(2π)2
k

[
ψ∗δψ(k) + ψδψ∗(−k)

]
= 2ig2

V |ψ|
2
∫

dk

(2π)2

k ε(k)

ω+(k)ω−(k)

Written in this form we see that the integrand has poles for ω(k)→ 0, which are the zero-energy curves

that we discussed earlier. With this it is clear that the strength of the drag force is governed by the

position of the poles in the complex k-plane.

Stable-Fluid Limit

For a stable fluid we have that γ → 0, causing a shift of the poles towards the real k-plane. Now the

poles of the integrand are determined by the closed zero-energy curves we discussed earlier on.

By elaborating the integrals over the full momentum plane, we find using polar coordinates:

F =
ig2
V |ψ|

2

2π2

∫ ∞
0

kdk

∫ 2π

0

dθ k cos θ
ε(k)

ω+(k, cos θ) ω−(k, cos θ)

≡ −2ig2
V |ψ|

2

π2

∫ ∞
0

dkk2ε(k)

∫ 1

0

zdz√
1− z2

· 1

ω+(k, z) ω−(k, z)

Since the integrandum is only a function of z = cos θ, we transformed to the integration measure dz =

− sin θdθ = −
√

1− z2dθ. Furthermore we noted that the integrand is even in z, causing an extra factor

2. Written in these coordinates, the energy of the excitations reduces to:

ω±(k, z) = kvz ±
√
ε(k)

(
ε(k) + 2g |ψ|2

)
(5.14)

With ε(k) = k2/(2m) for a stable fluid.

Since the poles are now shifted towards the real plane, we can use the Plemelj formula to evaluate

the angular integral. In general the theorem states that an integrand with poles appoximating the real

axis, can be written symbolically as:

lim
ε→0

1

x− iε
= P 1

x
+ iπδ(x)
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Where P denotes the principal value of the integrand and δ(x) is the Dirac delta distribution. Out of

symmetry reasons, it follows directly that the principal-value term cancels because the integrand is odd

under the transformation k → −k when γ → 0. This confirms the physical requirement to maintain a

real drag force, which we assumed explicitely in (5.12).

The only term contributing to the drag force is therefore the one containing the Dirac-delta distribution.

We start by solving the angular integral and noticing that the only pole inside the integration domain of

z is contained in ω−(k). Therefore the Dirac-delta yields:

δ(ω−(k)) =
1

kv
δ(z − z0)

With:

z0 =
1

vk

√
ε(k)

(
ε(k) + 2g |ψ|2

)
So here we have a mathematical constraint that states energy conservation, as only modes having ω−(k) =

0 contribute to the drag force.

Substituting all these in the integrand, we find:

F = −2ig2
V |ψ|

2

π2

∫ ∞
0

dkk2ε(k)

∫ 1

0

zdz√
1− z2

iπδ(z − z0)

vk ω+(k, z)

=
2g2
V |ψ|

2

πv

∫ ∞
0

dk
z0(k)√

1− z0(k)2
· k ε(k)

ω+(k, z0(k))
·Θ (k < kmax)

We find that there should be an upper integration boundary kmax to assure having a pole inside the

integration domain of z. This boundary is determined by requiring that z ≤ 1 in (5.14):

k ≤ kmax ≡ 2m

√
v2 − g |ψ|2

m
= 2m

√
v2 − c2s

Out of this we immediately derive that if v < cs, with cs the speed of sound, no solutions can be found

for kmax and the integral therefore equals exactly zero. Here we again encounter the Landau criterion.

Substuting all these and using ω−(k, z0) = 2kvz0(k), allows us to evaluate the drag force:

F =
g2
V |ψ|

2

πv2

∫ kmax

0

dk
ε(k)√

1− 1
2mv2

(
k2

2m + 2g |ψ|2
)

=
g2
V |ψ|

2

πv

∫ kmax

0

dk
k2√

k2
max − k2

=
g2
V |ψ|

2

πv
· π

4
k2
max ·Θ (kmax > 0)

= g2
V |ψ|

2
m2

(
v2 − c2s
v

)
Θ (v > cs)

This result has been derived first in [19] in the context of Bose-Einstein condensation and was used for

polariton systems in [12]. A plot of the drag force in function of the fluid velocity is given in figure 5.6.

General Calculation Methods

The analytical calculations performed for a stable single-spin polariton fluid are much more complicated

when adding either a finite lifetime, a pump detuning or a second spin component. The finite lifetime

results in complex poles and makes the use of the Plemelj formula to evaluate the integrals analytically

impossible. In theory it is still feasible to retrieve some semi-analytical results by using the more general
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Figure 5.6: The drag force of a Bose-Einstein condensate in function of the fluid velocity. Below the

critical velocity the fluid flows frictionless since no excitations are allowed. Above the critcal velocity

Bogoliubov excitations result in a net drag force.

residue theorem and choosing appropriate integration contours, but the complexity of calculations in-

creases rapidly. Also adding a non-zero pump detuning limits the possibilities for analytical calculations

a lot and causes severe complications.

The most dificult part to overcome, however, is adding the second spin component. For this the evalua-

tion of the inverse of a 4× 4-matrix is required and this obviously results in dreadfully long expressions.

Furthermore the integrand will now have two poles contributing instead of one, which makes the calcu-

lations even longer.

After several attempts to find analytical or semi-analytical results, it turned out more useful to start

elaborating a full numerical approach to solve the drag force in general polariton systems. For this we

start from (5.13) and extend the equation for a two-component fluid with potential V±(r) = g±δ(r):

F± = ig±

∫
dk

(2π)2
k

[
ψ∗
(
u±(k)− v∗±(k)

)
+ ψ

(
v±(k)− u∗±(k)

)]
= 2g±

∫
kdk

(2π)2
Im

[
ψ∗
(
u±(k)− v∗±(k)

)]
Now the integral can be discretized by choosing an appropriate grid in k-space and evaluate the integrand

on the grid points. The efficiency can be improved by taking into account the ky → −ky mirror symmetry

of the integrand, so that only half of the points has to be evaluated explicitely.

As such the expression to be evaluated numerically becomes:

F± =
g±

(2π)2LxLy
Im

[
ψ∗±

Nx∑
m=1

Ny∑
n=1

(
u± (kx,n, ky,m)− v∗± (kx,n, ky,m)

)]
, (5.15)
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where we used a lattice of points with kx = 0, Lx/(Nx − 1), . . . , Lx and analogously for ky.

The functions u±(k) can then be evaluated numerically by inverting the bogoliubov matrix L(k) at these

points and using the response equation (5.4).

This method works well in the case of smoothly varying integrands, as the sampled points then pro-

vide a good approximation of the Bogoliubov coefficients density profile. However in the limit of small

γ, these distributions are strongly peaked around the curves ωi(k) = 0 and this results in numerical

problems becuase large function values fall inbetween sampled grid points. It is clear that the number of

function evaluations scales with NxNy ∼ N2, so the total calculation time increases with the square of

the number of points in one grid dimension.

On the other hand we can estimate the necessary grid spacing in order to have an adequate sampling

of the integrand. The decay γ determines the width of the peaks in the Bogoliubov modes and it can

be easily verified that the grid spacing has to satisfy ∆k � √γm. For small γ this results in numerical

problems, since a large density of points is needed to evaluate the peaks correctly, leaving an abundancy

of points where the integrand is almost zero. Obviously this causes reduced performance and too long

calculation times.

These numerical problems can be reduced profoundly by sampling the grid points in a smarter way, a

technique called importance sampling. There are numerous methods to achieve this, but the general idea

is to center more points around the peaks and less in the regions where the integrand almost equals zero.

A simple method that we adapted here is to start by dividing the rectangular grid in a number of smaller

subgrids. We start by evaluating the integrand in the center of each subgrid to get a first approximation

of the function profile. According to calculated value at the center of the subgrid, we assign a certain

number of sampling points to the subgrid, the higher the absolute value of function value, the more points

we assign to the subgrid. All these points are then distributed randomly inside the subgrid and evaluated.

The mean of all these evaluations is an approximation for the mean function value at the subgrid. To

evaluate the full integral, formula (5.15) is applied with the calculated subgrid values.

5.4 Phenomology of a Flowing Polariton Fluid

The scattering physics of binary polariton fluids are now ready to be studied based on the established

results of the previous chapter. A wide variety of parameters that can be tuned are present in the model,

such as the dimensionless parameters Γ, c and α, the lifetime γ and the potential strengths g+ and g−.

As it is impossible - and it would be extremely tedious too - to provide a detailed explanation of all these

parameters independently, we have elected the most interesting and relevant results after an elaborate

and thorough research. In the coming section they are summarized and explained.

In the stable-fluid limit, there is no scattering possible to modes that are not energy conserving. Since we

have four spectral branches in our model, there are now two possible modes that can result in scattering

when crossing the zero-energy line. The critical velocity was defined according to the Landau criterion as

the minimal velocity necessary to have energy-conserving scatterings. At this velocity we saw a sudden

increase in the drag force curve due to the excitations that arise. Now, if at a higher velocity a second

branch crosses the zero-energy line, an additional sudden increase in the drag force should be visible.

This effect is shown in figure 5.7 for a polariton fluid with a gapped spectrum and a small width γ.

In general it is not possible to see this typical behaviour of the drag caused by the crossing of the two

branches consecutively. This is because a larger width allows a wider range of scattering modes, so that

this effect is blurred out. Furthermore we need a relatively large splitting between the two modes, which

can be obtained by increasing α. In a binary Bose-Einstein fluid we can define the speed of sound as
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cs =
√

α1

m

(∣∣ψ2
+

∣∣+
∣∣ψ2
−
∣∣), following the usual definition for single-spin flüıda: cs =

√
g |ψ|2 /m. In this

way we can normalize the examined fluid velocities in the plots that are shown.

Of great importance for the typical behaviour of the drag force, is the spectral type of the polariton

fluid. To demonstrate this, we have provided three schematic images at the end of this chapter in which

of the behaviour of the drag force is illustrated for different spectra: a double-gapped, a single-gapped

and a full diffusive dispersion. The interaction ratio used is α = −.1, so that the regimes can be situated

on the phase diagram 4.5. On these images, the curve in the upper square is the drag force exerted on

the up-spin component. Two red points are drawn on this curve: one is situated at a low velocity and

the other at a high. For these two velocities the corresponding Cherenkov wave profiles and momentum

funtions are calculated and shown with color scales. We provided condensate density profile: |ψ+|2+|ψ−|2

and a spin profile: |ψ+|2 − |ψ−|2. For the two diffusive spectra, we had to make sure that the spectrum

is physical by adapting the lifetime γ, thus shifting down all imaginary spectral contributions to negative

values.

For the gapped spectrum we see that there is a sudden jump in the drag force at the critical velocity,

rather than a smooth increase starting from zero, as we have shown for a linear branch (figure 5.6). This

was due to the excitation of modes having k > 0 at the critical velocity, as was illustrated in figure 5.1.

The Cherenkov waves that result in a supercritical flow are V-shaped because of the Mach cone. Based

on physical arguments we have explained that diffusive spectra should have a fundamentally different

behaviour than gapped or linear spectra. Indeed, there are excitations to modes that have k > 0 at any

finite fluid velocity in a diffusive spectrum, so that according to the Landau criterion the critical velocity

equals zero. This manifests itself in the drag force curve, because for these fluids we typically see an

almost linear behaviour. This is also due to the relatively large lifetimes that are necessary to have a

physical spectrum.

The Cherenkov waves in diffusive spectra have a more parabolic shape because there is no Mach cone

and scattering is not limited to a certain angle. In a double diffusive spectrum, we even see that there is

strong scattering to momentum states perpendicular to the motion of the fluid. On the images this scat-

tering even resembles a standing wave pattern, but is just an artefact of the numerical fourier transform.

Also in momentum space it can be seen that there are two peaks on the axis perpendicular to the fluid

velocity, which results in this strong scattering.

On figure 5.8 the effect of a finite lifetime on the drag force curve is demonstrated. Due to an in-

creasing width γ, scattering is allowed to a larger band of excitation modes, so that scattering is possible

at any finite fluid velocity. In a gapped mode there is still a notion of a critical velocity, in the sense

that there is a sudden jump in the drag force curve. For larger γ this jump gets flattened, eventually

resembling a smoothly increasing curve. This is because the peaks in the momentum profile, caused by

the zero-energy lines, get spread out for high γ, thus resulting in a smooth profile.

A most remarkable feature that we have noticed, is that the drag force can become negative under

certain conditions, as is for example shown in figure 5.8 for the diffusive spectrum. This is uttermost

strange, since it indicated that the fluid is driven forward rather than slowed down when flowing along a

defect. As such there is no energy dissipation caused by friction, but instead there should some mecha-

nism that extracts energy from a source and works as a sort of engine.

This exotic process takes place in both single-spin and binary fluids and is therefore qualitavely not de-

pendent on the spin degree of freedom. We have not found any description of this process in the literature

on single-spin polariton fluids, so we believe that we are the first ones to notice.

After some research, we found that the negative drag force only occurs for relatively high positive laser
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Figure 5.7: The drag force exerted on the positive fluid as a function of the fluid velocity for a double-

gapped dispersion, with γ′ = .1, α = 1, c = .1 and Γ = −1. There are two branches that cross the

zero-energy line consecutively, resulting in two sudden increases of the drag force. There were some

numerical issues when this curve was calculated that are due to the small width γ. Still it can be seen

that two different points at which the curve makes a sudden increase are present.
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detunings, so that it is directly related to the non-equilibrium properties. Furthermore it only takes place

for low velocities and it disappears when γ is increased, which is clearly visible on figure 5.8. Therefore

we note that this effect occurs when there is negative derivative of the drag force curve for kp −→ 0.

We can analytically expand the drag force of a single-spin fluid for small kp, starting from (5.13). Thus

we find a linear behaviour:

F ∼ γkp

∫ ∞

0

dk
k3
(
k2

2m −∆p

)
[ (

k2

2m −∆p

) (
k2

2m −∆p + 2g |ψ|2
)

+ γ2

4

]2

= γkp

∫ ∞

0

dk
k3
(
k2

2m −∆p

)
[
ω−(k)

∣∣∣
kp=0

ω+(k)
∣∣∣
kp=0

]2

Indeed, the only way the integrand can become negative is when ∆p >
k2

2m , so that a positive detuning

is necessary.

With a positve detuning, we found that additional imaginary contributions come into the spectral

branches. Therefore we required a sufficient width γ, in order to have all imaginary contributions below

zero. Imagine now the limiting case in which the imaginary bulb of a diffusive branch just touches the

zero-energy line in a point k0. This point k0 actually corresponds to a full circle of points for which we have

exactly that ω+(k0)
∣∣∣
kp=0

= 0, which results in a divergent integral for the drag force. Now if we have that

k20
2m <

√
2m∆, this divergence carries a negative sign and we have that limkp→0 F = −∞. We can easily

derive that for a single-spin fluid the maximum imaginary contribution comes at
k20
2m = ∆ − g |ψ|2 < ∆,

so that the drag force indeed diverges. This effect is shown in figure 5.9.

If there is no exact resonance, but the top of the imaginary spectrum is shifted slightly to a negative value,

the divergence disappears. Still the drag force is negative for small kp because of the large contribution

of the integral around k0. When γ is increased further, the imaginary spectrum gets shifted down further

and the resonance disappears completely, making a positive drag force again. This is illustrated in figure

5.8.

Now how can we understand physically what is happening? It seems that there is energy extracted out

of the positive laser detuning ∆p. Hence, a mechanism takes place that absorbs energy from the laser

beam and converts it into kinetic energy through the Bogoliubov excitations. As such we can consider

the excitation of Bogoliubov modes as a sort of engine that drives the fluid along the defect potential.
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Figure 5.8: The drag force curves with different widths γ, for a gapped and a diffusive spectrum. For a

gapped spectrum, the drag force exerted on the fluid increases with γ for subcritical speeds, whereas it

decreases for supercritical velocities. In a diffusive spectrum, yhe drag force can become negative for low
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Figure 5.9: The limiting case: the imaginary spectrum just touches the zero-energy line in a point k0,
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Chapter 6

Conclusions

In this work we have studied the physics of binary polariton fluids by combining the physics of single-spin

polariton fluids and binary Bose-Einstein condensates. First we have derived the full Gross-Pitaevskii

equation, which describes the polariton physics in terms of fluid dynamics. From there on we have derived

the spectrum of Bogoliubov excitations and classified the spectra according to three seperate dimensionless

parameters: Γ, the reduced energy difference between the pumping energy and the polariton dispersion,

c, the ratio of spin-up and spin-down densities, and α, the ratio of the self-interaction and the cross-

interaction.

Ultimately the scattering physics of a flowing polariton fluid has been examined by studying the excitation

properties of Bogoliubov modes. The notion of a critical velocity has been generalized in terms of

non-equilibrium fluids and different methods to calculate the drag force exerted on the fluid have been

presented.

A summary of the main results in this work:

• Via a phase diagram in function of the reduced parameters Γ and c the different excitation spectra

that can occur in a fluid can be classified in terms of parametrical regions. In this way, we have

presented a method that combines the physics of both a binary Bose-Einstein condensate and a

single-spin polariton fluid. We can move continuously through parameter space from one of the

limiting cases to the other.

• The effect of the excitation spectra on the behaviour of the drag force has been studied extensively.

Gapped and linear spectra give rise to a Mach cone and thus a V-shaped diffraction pattern, whereas

diffusive spectra allow scattering to all angles and have more parabolic-like diffraction patterns. This

manifests itself in the drag force: for gapped and linear spectra, there is a sudden increase in the

drag force at a critical velocity, whereas diffusive spectra have a rather smoothly increasing curve.

• The lifetime of the particles has a strong effect on the scattering physics. The shorter the lifetime,

the higher the bandwidth γ and the more the peaked momentum profiles get smoothened. This

was a consequence of the fact that scattering is allowed to non-energy conserving modes for a finite

particle lifetime. As a consequence of increasing lifetime, the drag force curve becomes smoother

and any discontinuities are flattened out.

• A negative drag force can occur with positive pump detuning. A mechanism has been presented

by which the system transfers energy from the positive detuning in the excitation of Bogoliubov

modes, so that the fluid is driven forward along the defect.

67
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