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3.2 Exponential Vašiček SV model with price jumps . . . . . . . . . . 77

3.3 European Vanilla Option Pricing . . . . . . . . . . . . . . . . . . 82

3.3.1 General Pricing Formulas . . . . . . . . . . . . . . . . . . 82

3.3.2 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . 84

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Appendix: Derivation of equations (3.11), (3.12). . . . . . . . . . 87

4 Path integral approach to the pricing of timer options with the

Duru-Kleinert transformation 89

4.1 General pricing formula of timer options . . . . . . . . . . . . . . 91

4.1.1 Model description . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.2 Pricing of perpetual timer options . . . . . . . . . . . . . . 92

4.1.3 Pricing of finite time-horizon timer options . . . . . . . . . 97

4.2 Propagators for the 3/2 and the Heston model . . . . . . . . . . . 99

4.2.1 The 3/2 model and the Morse potential . . . . . . . . . . . 99

4.2.2 The Heston model and the Kratzer potential . . . . . . . . 104

4.3 Pricing results and discussion . . . . . . . . . . . . . . . . . . . . 109

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

iv



CONTENTS

5 Applications of path integration over conditioned paths 113

5.1 Continuous arithmetic and harmonic Asian option under the Black-

Scholes model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Options on realized variance . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Realized variance in the Heston model with variance jumps 120

5.2.2 Realized variance in the 3/2 model with deterministic mean-

reverting level . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.3 Pricing derivative options on realized variance . . . . . . . 127

5.3 VIX futures and options under the 3/2 model . . . . . . . . . . . 129

5.3.1 Expectation value of the realized variance . . . . . . . . . 130

5.4 Dosimetry in an environment with fluctuating radioactivity . . . . 131

5.4.1 Poisson distributions . . . . . . . . . . . . . . . . . . . . . 133

5.4.2 Basic n-dependent Poisson distribution . . . . . . . . . . . 135

5.4.3 Time changed n-dependent Poisson distribution . . . . . . 137

5.4.4 The limit NTot → ∞ . . . . . . . . . . . . . . . . . . . . . 139

5.4.5 The maximum exposure time formulas . . . . . . . . . . . 140

5.4.6 Fluctuating v(t)-process . . . . . . . . . . . . . . . . . . . 141

5.4.6.1 The log-normal process for v(t) . . . . . . . . . . 141

5.4.6.2 The CIR jump-diffusion process for v(t) . . . . . 143

5.4.7 Results and discussion . . . . . . . . . . . . . . . . . . . . 143

6 COS and PDE approaches to the pricing of some common exotic

options under the HCIR model 149

6.1 The joint propagators of the HCIR model . . . . . . . . . . . . . 151

6.2 European vanilla options . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Discrete Arithmetic Asian options . . . . . . . . . . . . . . . . . . 157

6.4 Bermudan options . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.5 American and discrete barrier options . . . . . . . . . . . . . . . . 165

6.6 An ADI scheme for American put options . . . . . . . . . . . . . 166

6.7 A short discussion about the computing time . . . . . . . . . . . . 172

v



CONTENTS

7 Determining and benchmarking the implied risk-neutral asset

price densities from option prices 175

7.1 Review of existing approaches . . . . . . . . . . . . . . . . . . . . 178

7.1.1 Implied volatility surface (IVS) approach . . . . . . . . . . 179

7.1.2 Double log-normal (DLN) approach . . . . . . . . . . . . . 179

7.2 Rational interval interpolation (RII) approach . . . . . . . . . . . 180

7.3 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3.1 Simulated data and market models . . . . . . . . . . . . . 183

7.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . 187

7.4 Application to market data . . . . . . . . . . . . . . . . . . . . . 190

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.6.1 The simultaneous call-put RII method . . . . . . . . . . . 197

7.6.2 Ensuring continuous differentiability . . . . . . . . . . . . 198

8 Conclusions 201

References 211

vi



1

Introduction

Uncertainty is the dominant feature of the financial markets. Due to its random

nature, trying to predict future prices of individual financial instruments makes

little sense. One way to cope with financial risks and uncertainties is to construct

optimal portfolios of different instruments based on the idea of diversification.

Alternatively, one can introduce so called financial derivatives (the name empha-

sizes that their prices are derived from the prices of some underlying financial

instruments). While some financial derivatives are fairly simple, others are quite

complicated and require considerable mathematical background. The excellent

power of financial derivatives to hedge risks has led to their widespread use and

trade, both for hedging and for speculating. As a result, the size of the deriva-

tives market has exploded from 3 trillion dollars in 1988 over 26 trillion dollars in

1995 to 439 trillion dollars in 2009. As such, it overtook the world GDP in goods

and services, which stands at 63 trillion dollars. Also the complexity of financial

derivatives has increased, as ever more specialized products are in demand.

Physics covers a wide range of phenomena, and it aims to connect the things

observable to humans to root causes and then relate these causes together to gen-

erate general rules for these complex systems. Naturally, applying sophisticated

methods from physics to the study of financial complex system is a significant

attempt. In the present dissertation I show how to model the time evolution of

financial derivatives in order to capture their empirical features, and based on

these realistic models I focus on derivative pricing as well as risk management by

using modern physical approaches.
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1. INTRODUCTION

In this very first chapter, I would like to start by giving three introductory

parts intended to open the world of financial derivatives to non-specialist audi-

ences. Part 1.1 provides an introduction to a variety of common financial deriva-

tives and the market in which they trade. It also explores how these instruments

appeared and their functions. In this chapter, some fundamentals of determining

the price of derivatives are gradually introduced. Part 1.2 describes the famous

Black-Scholes option pricing model, the Black-Scholes implied volatility and the

model’s limits. Part 1.3 concentrates on how to beyond the Black-Scholes model

to meet the facts of the market by introducing stochastic volatility, jumps and

their combinations. Part 1.4 turns to an overview of the pricing techniques. In

particular, we will take a glance at the path integral approach. And finally, the

key contributions of this thesis are listed after these introductory parts, together

with an outline of this thesis, in part 1.5.

1.1 A tour of financial derivatives and markets

1.1.1 Forward and futures contracts

Recall that derivatives are financial instruments whose values are dependent on

values of other assets, called underlying assets. Two of the simplest examples of

derivatives are forward contracts and future contracts. A forward contract, and

also a future contract, is a commitment by two parties to engage in a transaction,

in which one party, the buyer, often called the ”long”, agrees to buy from the

other party, the seller, often called the ”short” 1, an underlying asset or other

derivative at a future date with the price established at the start of the contract.

For example, Alice may sign a contract that she will buy from Bob one tonne of

copper for 8000 dollars exactly one year from now. This is a forward contract - if

it were traded in a standardized form at an exchange, it would be called a futures

contract.

Committing to the future purchase or sale of an asset at an agreed − upon

price, thus eliminating the uncertainty of future price fluctuation is the funda-

1Here words long and short are used not as adjectives but as nouns, which is a convention

in the derivatives industry.
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1.1 A tour of financial derivatives and markets

mental motivation of these two contracts. A very important aspect of them is

that neither party pays any money at the start, while at later dates the buyer,

the long, benefits from price increases, and the seller, the short, benefits from

price decreases.

As an example, suppose an European subsidiary of Apple expects to send it

¤100 million in six months. When Apple receives the euros, it will then convert

them to US dollars. In fact, Apple is effectively in a long-euro and short-dollar

position, that is, it will have to sell euros and to buy dollars. Entering into a

currency forward contract is especially useful in this situation, because it enables

Apple to lock in the ¤/$ exchange rate at which it will sell euros and buy dollars

in six months, thus protecting against a decrease in that exchange rate. For

example, Apple goes to a bank and asks for a quote on a currency forward for

¤100 million in six months. The bank quotes a rate of $1.35. Now let us say

that six months later, the spot rate for euros is $1.3. Apple is very pleased that

it locked in a rate of $1.35. It delivers the ¤100 million and receives $135 million

at the pre-specified rate of $1.35 rather than $1.3. This simplified example is a

currency forward hedge. A hedge is an investment position designed to offset

potential losses, in our case a short-euro and long-dollar position to offset its

original long-euro and short-dollar position.

Various types of forward and future contracts exist according to the under-

lying asset groups on which these contracts are created. For instance, besides

on currency, they can be on equity (individual stocks, stock portfolios, stock in-

dices), on bond and interest rate (individual bonds, bond portfolios, forward rate

agreements), and on fixed-income, etc. There is an extra group for futures con-

tracts called commodity futures, which covers traditional agricultural, metal and

petroleum products.

One may wonder how the bank in the previous example deals with the risk it

takes from Apple. Typically, the bank does not want to hold this exposure, but

rather lays it off by transacting with other parties. Thus, the bank is a wholesaler

of risk - buying it, selling it, and trying to earn a profit off the spread between its

buying price and selling price. By using its technical expertise, its vast network of

contacts, and its access to critical financial market information, the bank provides

a more efficient means for end users, like Apple.

3



1. INTRODUCTION

When a forward or future contract expires, the two parties long and short

can either engage in delivery of the asset, or settle the net cash equivalent, called

the cash settlement. The possibility exists, however, that one party might wish

to terminate the contract prior to expiration. That party can then create a

new forward or future contract expiring at the same date as the original contract,

taking the opposite position instead. It is apparent that that party has no further

exposure to the price fluctuation.

There is always another possibility that one party could default. For exam-

ple, in the aforementioned transition between Apple and the bank, suppose that

perhaps because of bankruptcy or insolvency, the bank cannot come up with the

$135 million, so Apple would purchase the US dollar in the open market at the

prevailing spot rate $1.3, that is $130 million. The loss $5 million can be viewed

as the credit risk Apple faces. Not surprisingly, this amount is just the market

value of the contract at the point of expiration when the spot rate is $1.3. There

are various methods of managing the credit risk. One particular method is called

marking to market, i.e. Apple and the bank may agree in advance that they set-

tle up the amount owed and restructure the contract so that it remains in force

but with an updated price at whatever dates they feel are appropriate before the

expiration of their contract. Marking to market avoids one party from becoming

too deeply indebted to pay the other.

Forward contracts and swaps, which can be viewed as a series of forward

contracts, are sometimes marked to market to mitigate credit risk, while the fu-

tures contracts are marked to market every day. Forward contracts are private

created, over-the-counter customized instruments that carry credit risk. They are

not created in any specific location but rather initiated between any two parties

who wish to enter into such a contract. Though subjected to default risk, for-

ward contracts offer the advantage of customization, the tailoring of a contract’s

terms, with target expiry dates, specific underlying assets and risks that parties

involved, specifically large corporations and institutions, wish to reduce or take 1.

In contrast, futures contracts are publicly traded, exchange-listed standardized

instruments that effectively have no credit risk. They are created on organized

1Some one may want risk because of the potential profits achieved by using their expertise

in measuring the actual risk relative to the one perceived by the market.
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1.1 A tour of financial derivatives and markets

trading facilities referred to as futures exchanges. In addition, futures contracts

are standardized, meaning that it is the exchange, rather than the individual par-

ties, that sets the terms and conditions, which makes a secondary market trading

the preciously created contracts possible. Moreover, each futures exchange has a

division or subsidiary called a clearinghouse that performs the specific responsi-

bilities of paying and collecting daily gains and losses, thus guaranteeing the two

parties against credit losses.

Both forwards and futures play a similar role: they provide price discovery

and risk management, make the markets for the underlying assets more efficient,

and permit trading at low transaction costs. These characteristics are also as-

sociated with other derivative markets. There are a variety of strategies and

applications using forward and futures contracts. For a more thorough discussion

about forwards and futures I refer to (1, 2).

I conclude this subsection with a question on our aforementioned currency

forward contract - what if the exchange rate had risen, say the spot rate for euros

is $1.5 at expiry date? Apple would still have had to deliver ¤100 million and

receive $135 million, rather than $150 million if it turns to the open market. This

is due to the fact that Apple has the obligation, not the right, to buy dollars

and sell euros in six months at a fixed exchange rate agreed, without paying cash

at the start. To obtain such a right, in contrast to agreeing to an obligation, one

must pay money at the initial time. These instruments, called options, are the

subject of the next subsection.

1.1.2 Options

Now we turn to options. An option is a financial derivative contract that provides

one party the right to buy or sell an underlying asset or other derivative at a pre-

specified price, called the exercise price, strike price, striking price or strike, by

a certain future time, called the expiration date. The party holding the right is

the option buyer, called the option holder or the ”long”; the party granting the

right is the option seller, called the option writer or the ”short”. There are two

types of options, a call, an option granting the right to buy the underlying, and

5



1. INTRODUCTION

a put1, an option granting the right to sell the underlying. This right to buy or

sell is held by the ”long”. Taking the right but not the obligation to buy or sell

an underlying asset at a fixed price in the future requires a cash payment from

the ”long” to the ”short” up front. This amount of money is commonly referred

to as the option price, also called the option premium or just the premium.

Yet options can be privately created, over-the-counter, customized instruments

that are subject to credit risk, just as forward contracts. Unlike the credit risk in

forward contracts which is bilateral, meaning that the long assumes the risk of the

short defaulting, and the short assumes the risk of the long defaulting, the credit

risk in an option is unilateral - only the long who pays the premium up front

faces credit risk. However, there is a large market for publicly traded, exchange-

listed, standardized options, for which credit risk is essentially eliminated by the

clearinghouse.

Almost anything with a random outcome can have an option on it. Identified

by the nature of the underlying, options can be categorized as financial options

(on stock, index, bond, interest rate, currency, etc.), options on futures, commod-

ity options, and other types of options (on such underlying assets as electricity,

various sources of energy, and even weather, etc.).

The use of the right to buy or sell the underlying by the long is referred to as

exercise or exercising the option. There are two primary exercise styles associated

with options. One type of option that can be exercised only on its expiration day

is called a European option. The other type which can be exercised on any

day through the expiration day is generally called an American option2.

An important concept in the study of options is the notion of an option’s

moneyness, which can be classified into three groups, namely in-the-money, out-

of-the-money, and at-the-money. In-the-money options are those in which ex-

ercising the option would produce a net cash inflow. Thus, calls are in-the-money

1The derivatives industry often uses nouns, verbs, adjectives, and adverbs as parts of speech

different from their usual meaning (2). Just as long and short are used as nouns, here the words

call and put denote other things than the corresponding verbs.
2These terms have nothing to do with Europe or America. There is no definitive history to

explain how they came into use, and both types of options are found in Europe and America.
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1.1 A tour of financial derivatives and markets
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Figure 1.1: The option values at expiration (payoffs) as a function of the under-

lying price at expiration. The upper row panels represent the payoffs for the the

long (option holder), the lower row panels for the short (option seller), for both

European and American calls and puts. The strike price K is assumed to be 100.

when the value of the underlying exceeds the strike price, whereas puts are in-the-

money when the value of the strike price exceeds the underlying price. Conversely,

when calls and puts are out-of-the-money, the long does not have the obligation

to exercise the option. An option is called at-the-money when the underlying

are exactly the same as the strike price.

An option’s value at expiration is called its payoff. Denote the price of the

underlying at time 0 (today) and time T (expiration) by S0 and ST , the strike

price by K, the price of European call and put by c and p, the price of American

call and put by C and P , respectively. Obviously, only those options that are

in-the-money would be exercised, the others simply expire. Therefore, the payoff

of a call option is either the difference between the underlying price and the strike

price or zero, whichever is greater: max (ST −K, 0); the payoff of a put option is

worth either the difference between the strike price and the underlying price or

zero, whichever is greater: max (K − ST , 0). Note that at expiration, a European

7
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1. INTRODUCTION

option and an American option have the same payoff because they are equivalent

instruments at that point. Figure 1.1 illustrates the payoffs as a function of ST .

Obviously, the shorts are the negative of the longs.

To obtain the option’s value at present time from this payoff, which is a

random value due to the uncertainty of the underlying price at expiration date,

we should take its expectation value, and then discount this future value to the

present value. This is due to the common knowledge and wisdom that when

depositing a certain amount of money in a bank account, everybody expects that

the amount grows as time goes by. The fact that receiving a given amount of

money tomorrow is not equivalent to receiving exactly the same amount today

leads to the European option’s prices:

c = PV {E [max (ST −K, 0)]} , (1.1)

p = PV {E [max (K − ST , 0)]} . (1.2)

Here I used the notation PV (an abbreviation of present value) as discounting

the future value to the present value, and E as the expectation value. For the

American option’s price, we need to take the possibility of optimal early-exercise

into account.

Without more information about the underlying, we cannot derive the ac-

curate prices for options. However, we can already have some general results

that are underlying and model independent. First of all, early exercise is

not mandatory, the right to exercise early could never hurt the option holder

but rather grants the long more flexibility, so intuitively, the prices of American

options must be no less than the prices of European options:

C ≥ c, P ≥ p. (1.3)

A call is a means of buying the underlying, so the value of a call can not exceed

the current value of the underlying:

c ≤ S0, C ≤ S0. (1.4)

To see the maximum value for a put, we simply consider its best possible outcome

for the long. The best outcome is that the underlying goes to a value of zero,

8



1.1 A tour of financial derivatives and markets

then the put holder could sell it for K. For an American put, the holder could

sell it immediately, whereas for a European put the holder would have to wait

until expiration:

p ≤ PV {K} , P ≤ K. (1.5)

The minimum value for a European call can be obtained by applying Jensen’s

inequality to the convex function in expression (1.1):

c = PV {E [max (ST −K, 0)]} ≥ PV {max (E [ST ]−K, 0)}
= max (S0 − PV {K} , 0) . (1.6)

This result is not surprising. Consider, for example, a European call for less than

S0 − PV {K}, one can buy the call at the start for c, exercise it at expiration,

paying K, and sell the underlying for ST , which gains a net present value of

S0 − PV {K} − c. This value is positive and one assumes no risk, representing

an arbitrage opportunity. Arbitrage opportunities appear when it is possible

to make a profit in excess of the risk-free rate of return without bearing risk.

Once such an arbitrage opportunity appears, a few people would do the previous

transactions repeatedly to accumulate a profit. The increased demand in the call

option would lead to it becoming more expensive until no risk-less profit exists.

In general, when no-risk profit situations can occur, they will be taken advantage

of until they disappear. This is called ”arbitrage” and in general the reaction

time of the market to remove such no-risk profit opportunities is very fast. For

exchange, unequal exchange rates in different exchanges ”relax” back to an equal

exchange rate in a matter of minutes or less.

Similarly, from expression (1.2), we have the minimum values for a European

put:

p ≥ max (PV {K} − S0, 0) . (1.7)

Incorporating the possibility of early-exercise into previous considerations, we

have the lower bounds for American call and put:

C ≥ max (S0 − PV {K} , 0) , P ≥ max (K − S0, 0) . (1.8)

We can already conclude that the price of an option relies on at least four

factors, namely, the strike price, the interest rate for discounting, the volatility

9



1. INTRODUCTION

of the underlying and the time to maturity. Now consider the effects of these

four factors by keeping all identical except one variable. Intuitively, the higher

the strike price, the lower the value of a call and the higher the price of a put

when fixing the other factors to be the same. When interest rates are higher,

the call option holders save more money by not paying for the underlying until

a later date; the put option holders, however, lose more interest while waiting to

sell the underlying, i.e. higher opportunity cost of waiting. Therefore, the higher

the interest rate, the higher the call option price and the lower the put option

price. We will see in a later chapter that the interest rate does not have a very

strong effect on option prices except when the underlying is a bond or the interest

rate itself. Yet volatility has an extremely strong effect on the option price since

it magnifies both the degree of out-of-the-money which does not contribute the

option price and the degree of in-the-money which increases the option prices.

So higher volatility increases both call and put option prices. For the effect of

a difference in time to expiration, we see that when the shorter-term call with

expiration date T1 expires, the European call is worth max (ST1 −K, 0) at T1, but

expression (1.6) tells us that the longer-term European call with expiration date

T2 > T1 is worth at least max (ST1 − PV {K} , 0)1 at T1, which is at least as greater

as the previous amount. Thus, the longer-term European call is worth at least

the value of the shorter-term European call. This also holds for an American call

as can be seen by doing a similar analysis. The additional time is also beneficial

to the holder of an American put option because an American put option can

always be exercised; there is no penalty for waiting. However, in contrast to a

European call holder who earns additional interest on the money by paying out

the exercise price later, the European put holder loses interest on the money

because of additional time. Analysis through expression (1.7) also supports the

result that the the longer-term European put can be either greater or less than

the value of the shorter-term European call, see in Table 1.1. Another way to

look into this problem is though expression (1.5), that shows that the maximum

European put price decreases as time goes by.

1Here the notation PV is used as discounting the future value at time T2 to the present

value at time T1.
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Table 1.1: The effect of a difference in time to expiration on option prices. Values

are compared at time T1 between the exact currently exercised one (at T1) and the

low bounds of the later exercised one (at T2 with T2 > T1), as given by expressions

(1.6), (1.7), and (1.8). The notation (X)+ denotes max (X, 0).

Option
Value at T1

Effect
exercise at T1 exercise at T2

Eur. call (ST1 −K)+ ≥ (ST1 − PV {K})+ longer T , no less c

Ame. call (ST1 −K)+ ≥ (ST1 − PV {K})+ longer T , no less C

Eur. put (K − ST1)+ ≥ (PV {K} − ST1)+ longer T , greater or less p

Ame. put (K − ST1)+ ≥ (K − ST1)+ longer T , no less P

Table 1.1 also helps us to understand the conditions under which early exercise

of an American option might occur. Since the longer the time to expiration,

the greater or the same prices for a European call and an American call, the

American call would not exercise early and its price equals the European call

price, except that there is an early exercise incentive. When the underlying makes

cash payments during the life of the option, early exercise can be worthwhile and

the American call price will be higher than the European call price. For instance,

if the underlying is a stock and pays a dividend, then exercise just before the

stock goes ex-dividend1 is a good choice. Nevertheless the early exercise is not

guaranteed beneficial unless the dividend is high enough. For puts, there is almost

always a sufficient reason to exercise early. Once the underlying is very low, the

American put holder would exercise immediately, which is not possible for a

European call holder. So the American put is almost always worth more then the

European put.

Now we move on to another interesting and important result for European op-

tions, called the put-call parity, which is nothing but a corollary of expressions

1After the declaration of a dividend by the stock issuer, the ex-dividend date is the the first

day from which the buyer of a stock has no right to receive the next dividend payment. So just

before the ex-dividend day is the last day that entitles the stock holder to receive the following

dividend payment.

11
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(1.1) and (1.2):

c− p = PV {E [max (ST −K, 0)]} − PV {E [max (K − ST , 0)]}
= PV {E [ST −K]} = S0 − PV {K} . (1.9)

By rearranging the four terms, we have, for instance:

c+ PV {K} = p+ S0, (1.10)

the left side of which constructs an option strategy referred to as a fiduciary call,

which is long a call and a risk-free bond that matures on the option expiration

day with its face value equal to the strike price of the call (we will discuss bonds

in the next subsection); the right side constructs a protective put, which is long

a put and the underlying. When one purchases a European call option, a smart

way to cover the cost of exercising a stock at expiration is to invest the present

value of the strike price in a risk-free interest bearing account if the person has

the spare cash available. This is the motivation of a fiduciary call. A protective

put is used as a hedge, a position invested in order to offset potential losses that

might be incurred from a companion investment in the underlying. Buying a put

protects one from a drop in the underlying price below the put’s strike price. If

the price of the underlying is above the strike price at expiration, the put expires

worthless, the buyer has lost only the premium he paid for the put.

The portfolio strategy of protective put is useful for Apple’s situation. In the

aforementioned currency forward contract, no cash payment is needed up front,

but Apple also assumes the substantial loss when the exchange rate for euros at

expiration is higher than the strike rate $1.35, i.e. Apple cannot sell euros in the

open market for more dollars. In contrast, options offer the feature that, if one is

willing to pay a cash fee (the option price) up front, one enjoys a unidirectional

payoff, i.e. not only is the uncertainty eliminated, but also the potential gain is

preserved. Thus, Apple can buy a European put on the USD/EUR exchange rate

with a strike rate $1.35. If the rate at expiration is greater than $1.35, say $1.5,

Apple would not exercise the put, and sell the euros in the open market at a rate

$1.5. In this case, Apple only loses the put option price payed up front, which is

relatively a small amount. This is an important characteristic of options called

12
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Figure 1.2: The payoffs of fiduciary call and protective put as a function of the

underlying price at expiration. The strike price K is assumed to be 100.

the leverage effect. If the rate at expiration is less than $1.35, say $1.3, Apple

could still exercise the put and buy the dollars from the option seller at a rate

$1.35.

Both a fiduciary call and a protective put will end up worth K or ST at

expiration, whichever is greater, as illustrated in Figure 1.2. Note that their

current values in the equation (1.10) are also equal. Does this imply that two

portfolios of securities with exactly the same payoffs in all situations must have the

same current price? The answer is yes, and it is one of the most essential principles

in derivative pricing, which will be described more in detail in later sections. Here,

we can still look into this problem from a perspective of an arbitrage opportunity.

Suppose that the fiduciary call is underpriced, or equivalently the protective put

is overpriced, e.g. the left-hand side of (1.10) is ¤105, while the right-hand side

is ¤106. Then we can sell the overpriced combination, the protective put, by

selling the put and selling short1 the underlying, which generates a cash inflow of

¤106. Meanwhile, we buy the underpriced combination, the fiduciary call, paying

out ¤105. These transactions net a cash inflow of ¤106 - ¤105 = ¤1. As seen

1Short selling is a practice of borrowing an underlying from a third party, selling it, and

buying an identical underlying back at a later date to return to that third party.

13

1_introduction/figures/t02.eps
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in Figure 1.2, the values of these two portfolios at expiration exactly offset each

other, so we receive ¤1 up front without bearing any risk nor paying anything out.

The position is perfectly hedged and represents an arbitrage profit. This arbitrage

opportunity disappears shortly once it is observed because other investors would

follow the same scheme to make profit leading to a higher fiduciary call price

and/or a lower protective put price. Of course, it is possible that transaction

costs might consume any profit, so the possibility of a small discrepancy from

put-call parity exists in the market.

In addition to the fiduciary call and the protective put, there are some other

common derivative positions used in the market to increase the benefit and to

reduce the risk, for example, the covered call, the straddle, the strangle, the risk

reversal, the butterfly spread, the calendar spread, etc. For more details of these

positions, I refer to (1). It is worth noting that our previous discussion of the

put-call parity is based on European options, the put-call parity using American

options is considerably more complicated. I would like not to explore it here but

refer to (1) and references therein. Besides the existence of transaction costs and

dividends mentioned above, there are commonly other cash flows on the under-

lying, for instance, stocks pay dividends, bonds pay interest, foreign currencies

pay interest, commodities have carrying costs, etc. These factors together make

the pricing of the derivatives more complicated. However, we are almost ready

to study the pricing of options, and even the pricing of derivatives, which is the

subject of the following sections.

I conclude this subsection with a discussion on the relationship between hedg-

ing and speculation, which are often thought of as opposites. Hedging is, as we

have seen before, shedding of price risk through the use of derivatives, with the

expectation that any risk exposure can be perfectly offset for a small fee (lever-

age). Speculation, on the other hand, is the taking on of financial risk that one

previously did not possess for the simple purpose of achieving profits through the

successful anticipation of which way prices will move. Speculators who expect

prices to rise will enter into long call positions, while those expecting they will

fall take long put positions. Speculators can be categorized by how they form

their expectations as fundamental traders, namely those relying on basic eco-

nomic conditions, or technical traders, namely those who base themselves on the

14
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analysis of price patterns and other market statistics. Speculators can also be

classified by how they trade as day traders, who begin and end the day with no

position in the market, or position traders, who hold positions over longer periods

of time, perhaps days or weeks. In practice, though hedgers and speculators have

different motivations for entering the derivatives markets, they are nevertheless

closely dependent on each other. One can image that if markets relied solely on

hedgers to trade in the market, a lack of liquidity would inevitably arise. It is

the speculators who strive to profit from information and provide an important

source of liquidity to the markets at the same time as hedgers seek to manage

their price risk. The hedging of fuel purchases by airlines based on expectations

that prices will rise is in fact somewhat a speculation because the airlines are

trying to make profits from predicting fuel prices, i.e. they hedge it when they

believe fuel price will rise and do not hedge it when they believe the price will

fall. Meanwhile, speculators also use derivatives as an effective tool to reduce the

overall risk of a portfolio, behaving just as hedgers. Therefore, in today’s mar-

kets, practically all ”hedgers” and ”speculators” can be viewed as risk managers

along the hedging-speculation continuum, see (3).

1.1.3 Bonds

One of the basic principles when we talk about finance is the time value of

money. The same amount of money at a future date is worth less than at

present. This is intuitively clear: do you prefer to receive ¤1.00 now, or ¤1.00

one year from now? To see how much more the current ¤1.00 is worth than the

future ¤1.00’s, consider placing it in a bank account that pays an interest rate

r per year. If the bank credits the interest once a year, the value of the account

at year-end will be ¤(1+r). If the bank credits interest semi-annually, one would

expects ¤
(
1 + r

2

)2
. What if the profit is accrued continuously? We know the

existence of this limit:

¤ lim
n→∞

(
1 +

r

n

)n
= ¤ er, (1.11)

where e is Euler’s number. If the bank account grows at each time t at a rate

r(t) instead of the previous constant r, then the bank account values ¤ e
∫ T
t

r(s)ds

at time T given its original principal amount ¤1 at the initial time t. This
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Figure 1.3: The historical LIBOR rates from January 2000 to December 2011.

instantaneous rate r(t) is usually referred to as instantaneous spot rate. In

real markets, this spot rate evolves stochastically as time goes by, as can been seen

in for example Figure 1.3 for the historical LIBOR rates. LIBOR is an acronym for

London InterBank Offered Rate, and it is a benchmark for finance all around the

world. Banks borrowing money for one day, one month, two months, six months,

one year, etc. pay interest to their lenders based on certain rates, and LIBOR is

the average interest rate charged when leading to other banks by leading banks

in London.

Depositing a certain amount of money in a bank account, everyone receives

a supposedly risk-free return. This assurance of risk-free return makes the bank

account a benchmark for financial investment. No surprisingly, no one would

make an investment that returns less than in a bank account.

A quick question is: what is the value at time t of one unit of currency

available at time T . This is actually the inverse problem of the bank account,

called the (stochastic) discount factor, which is given by: e−
∫ T
t

r(s)ds. If r(s) is

a stochastic variable, so is the discount factor. Otherwise, they are deterministic

variables.

A bond is a debt security, in which the authorized issuer (the borrower, or the
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debtor) owes the bondholder (the lender, or the creditor) a debt, and is obliged

to repay the principal, or called the face amount - the amount on which the

issuer pays interest, and the interest at a later date in any payment stream or

pattern that the parties agree to. In essence, a bond is a promise for a certain

sum of money in the future. As an example consider the Belgian government

issued bonds (staatsbon): the state offers to pay you ¤1217 five years from now,

and claims that this is worth ¤1000 now. The ¤1000 is the principal, hence

the 4% interest rate cited on the ”staatsbon”, which results in the additional

¤1000× ((1.04)5 − 1) = ¤217.

Various types of bonds exist in the market. According to the coupon rate

structures, there are (1) zero-coupon bonds: bonds that do not pay periodic

interest; (2) step-up notes: bonds have coupon rates that increase over time at a

specified rate; (3) deferred-coupon bonds: bonds pay the initial coupon deferred

for some period, and (4) floating-rate bonds: bonds carry coupons based on

a specified interest rate or index. According to the way the principal will be

repaid, there are (1) nonamortizing bonds: bonds only pay the entire par or face

value and interest at maturity time; (2) amortizing bonds: bonds make periodic

interest and principal payments over the life of the bonds.

There are some risks associated with investing in bonds. For example, (1)

reinvestment risk: when interest rates fall, some options embedded bonds allow

bond issuers to resort to other lower rate bonds, causing risks for bondholders to

reinvest these prepayments at the new lower rate; (2) credit risk: worse creditwor-

thiness, lower bond value, higher required yield; (3) liquidity risk: a decrease in a

security’s liquidity will decrease its price as the required yield will be higher; (4)

exchange-rate risk, a depreciation of the foreign currency’s value relative to the

domestic currency will reduce a domestic investor’s value who makes a foreign-

based investment; (5) sovereign risk, essentially the credit risk of a sovereign bond

issued by a country other than the investor’s home country; (6) unexpected in-

flation risk or purchasing-power risk and event risk, almost for every investment;

and of course (7) interest rate risk, i.e. when interest rate rise, bond values fall.

For more discussion about the bonds I refer to (4). Here I focus on the zero-

coupon bond, also called pure discount bond, since the repayment of principal

is only guaranteed at expiration, without any interest payed during the life of

17
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Figure 1.4: Daily U.S. treasury yield curves with maturities 1 month, 3 months,

6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 20 year and 30 years.

the bond. We know that the value at current time t of a principal of ¤1 at

maturity time T is e−
∫ T
t r(s)ds, which can be a stochastic variable. The price of

a zero-coupon bond is thus the expectation value of this value under a certain

probability measure: E
[
e−

∫ T
t

r(s)ds
]
.

In the previous subsection, we introduced the discount function PV to bring

the cash flow at time T back to the beginning of the investment’s life at time t.

Now we can write the second term of expression (1.10) in a general formula as:

PV {K} = E

[
e−
∫ T
t r(s)ds

]
K. (1.12)

Under some simple assumptions, the discounting factor reduces to e−r(T−t), or

even (1 + r)−(T−t). The circumstances under which such simpler assumptions

can be made depends on the impact of the interest rate on the target financial

instruments. As we mentioned before, for interest rate derivatives and bonds, the

interest rate is of substantial importance, so no simplification is appropriate.

We can find zero-coupon bond prices in the market. One spontaneous question

is: what is the equivalent continuously compounded rate of interest Y (t, T ) during

this time interval [t, T ] such that E
[
e−

∫ T
t r(s)ds

]
= e−Y (t,T )(T−t)? This equivalent
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rate is called the zero-coupon yield. This yield as a function of time to maturity,

i.e. T − t, constructs the so called yield curve, and it is used as a benchmark for

other debt in the market, such as mortgage rates or bank lending rates. Figure

1.4 shows the daily U.S. treasury yield curves with different maturities. These

curves can be also used to predict changes in economic growth.

1.1.4 Swaps

The Bank for International Settlements estimated the notional principal of the

global over-the-counter derivatives market value as of 30 June 2011 at $19518

billion. Of that amount, currency swaps account for $1227 billion, and interest

rate swaps represent $11864 billion, see (5). In the race to see which derivative

instrument is more popular, swaps have clearly won. A swap is an agreement

between two parties to exchange a series of future cash flows. Usually one party

makes payments that are floating, such as an interest rate, a currency rate, an

equity return, or a commodity price, while the other party either makes other

floating payments or makes fixed payments. Recall that it is acceptable to view

a swap as a series of forward contracts, cf. 1.1.1. One reason why interest rate

swaps have overwhelming success lie in the fact that interest rate swaps are simple

and can usually be justified as nothing more than variations of loans. Moreover,

given that risk often exists in a series, swaps are ideal instruments for managing

it, i.e. a package of risk management tools all rolled up into one, which is surely

over other instruments.

Let us now illustrate a plain vanilla swap, a simple interest rate swap, in

which one party pays a fixed rate and the other pays a floating rate, with both

sets of payments in the same currency. Suppose that on 1 January, Janssen

Pharmaceutica borrows ¤10 million for one year from a bank such as KBC bank.

The loan specifies that Janssen Pharmaceutica will pay the interest quarterly

for one year at the rate of LIBOR observed at the end of each quarter plus 25

basis points (0.25 percent). Janssen Pharmaceutica believes that it is getting a

good rate, but it fears a rise in interest rates and would prefer a fixed-rate loan.

By engaging in a swap, Janssen Pharmaceutica converts the floating-rate loan

to a fixed-rate loan. Suppose it approaches Goldman Sachs, a large investment
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bank, and requests a quote on a swap to pay a fixed rate and receive LIBOR,

with payments on the dates of its loan payments. If Goldman Sachs quotes a

fixed rate of 4 percent, then Janssen Pharmaceutica pays 4% to Goldman Sachs,

receives LIBOR from Goldman Sachs, and pays LIBOR plus 0.25% to KBC bank

on its loan. The net effect is that Janssen Pharmaceutica pays interest at a rate

about 4%+0.25%
4

= 1.06% fixed per quarter.

While interest rate swaps are important in the interest rate derivatives market,

credit default swaps (CDS) are the building blocks in the credit derivatives

market and represent about half of its volume. A CDS is a contract between two

parties to exchange the credit risk of a specific issuer. One party, the protection

buyer, pays a premium to the other party, the protection seller, to assume the risk

associated with a particular credit event. For example, I can buy protection from

you, so that if Dexia bank owes me ¤1000, you will pay me that ¤1000 in case

Dexia would go bankrupt in the meanwhile. Basically, this swap is an insurance

against bankruptcy of one of my debtors. Rather than selling or buying such

insurance, we can think about trading the right to buy or sell such insurance.

This is a swaption: an option to enter into a swap. Swaptions have a variety of

purposes, for instance, (1) swaptions are used by parties who anticipate the need

for a swap at a later date but would like to establish the fixed rate today, while

providing the flexibility to not engage in the swap later or engage in the swap at

a more favorable rate in the market; (2) swaptions are used by parties entering

into a swap to give them the flexibility to terminate the swap; (3) swaptions are

used by parties to speculate on interest rates. More introduction about these

instruments can be found in (2).

1.1.5 Historical charts

Our tour of financial derivatives and markets can already stop here. Of course

there are other types of payoff functions that are different from the vanilla options’

seen in subsection 1.1.2, leading to exotic derivatives. As I will analyse some

common exotic derivative in later chapters, I would like to skip them here. But

we should take a look at historical charts of underlying asset prices now since

options as well as other derivatives are built on those underlying assets.
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Figure 1.5: The left panels depict historical stock price of Apple Inc. (top), the

Euro and US dollar exchange rate (middle) and the S&P 500 Index value (bottom),

and their logreturns (dark green curves), over the last 5 years from January 2007 to

January 2012. The right panels are the corresponding probability density functions

of logreturns (square dots) as well as normal distribution fittings (red curves). The

observed probability density functions are clearly leptokurtic.

21

1_introduction/figures/t05b.eps
1_introduction/figures/t06b.eps
1_introduction/figures/t07b.eps


1. INTRODUCTION

Stock is the most basic financial security, and it represents a share of a corpo-

ration’s ownership. Indices are created in order to master the market trend, typi-

cally these indices represent a weighted package of representative stocks. Eugene

Farma devoloped the so called efficient market hypothesis into an academic

concept in the 1960s, see (6). A market is defined as efficient if it is comprised

of rational investors who strive to predict the future security prices and to max-

imize their profit, and all the important information is shared by the market. In

such an efficient market, the current security prices reflect all existing informa-

tion, and they will change only when new information comes out, so attempts to

outperform the market are inappropriate. Though there are controversies about

the efficient market hypothesis, it remains a basic principle for derivative pricing.

New information appears and influences the underlying assets randomly, thus no

one can predict the future price accurately, that is why we say the underlying

prices are stochastic.

The blue curves in Figure 1.5 depict the behavior of the stock of Apple Inc.

(top left), which is directly related to the earnings and dividends of Apple Inc,

the Euro and US dollar exchange rate (middle left), which is determined by the

market forces of supply and demand, and the S&P 500 Index value (bottom left),

an equity index which is considered a bellwether for the American economy, over

a representative 5-year period from January 1, 2007 to January 16, 2012. Denote

these daily prices as S(t). We can see that these underlying prices are quite

different from each other. Nevertheless, there are some features in common. All

of the prices are positive, and all evolve with apparent fluctuations and some

trends. These features can be approximately captured by a Brownian motion

with drift, called arithmetic Brownian motion.

It is well known that a Brownian motion with drift has independent incre-

ments with a normal distribution. Early in 1900, the French mathematician Louis

Bachelier was historically the first who proposed the use of arithmetic Brownian

motion (resulting in a normal distribution for the stock prices) to simulate stock

options in his PhD thesis (7). His model results in a normal distribution, hence

with non-zero probabilities for negative values, for the stock prices. Paul Samuel-

son introduced in 1965 a revised version of the Bachelier’s model, called the
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geometric Brownian motion, assuming that the return rates, instead of the

stock prices, follow an arithmetic Brownian motion (8).

For this purpose, people usually look into the (daily) logreturn x(t), defined

by:

x(t) = ln
S(t + 1day)

S(t)
. (1.13)

The daily logreturns corresponding to the displayed underlying prices are shown

by dark green curves in Figure 1.5 (left column). Now we can see the similarity

between them when ignoring their amplitudes. These logreturns are then binned

and plotted to build their probability density functions (dark green square dots

in Figure 1.5 right column). These densities show the probability distribution of

continuously compounded returns over one trading day. We can see that these

densities appear somewhat normal distributed, although they are more leptokur-

tic than the normal distribution. Their corresponding normal distribution fits

are also plotted in Figure 1.5 right column by red curves.

1.2 The Black-Scholes world

1.2.1 Black-Scholes formula

Inspired by Samuelson’s geometric Brownian motion and recognizing that under-

lying assets and options can be combined to construct a riskless portfolio, Fischer

Black and Myron Scholes developed in 1973 an analytical model that provides

a no-arbitrage value for options, see (9). In that paper, they proposed the well

known Black-Scholes partial differential equation, and derived analytical Euro-

pean call and put option pricing formulas. As expected, the stock price dynamics

in their model is described by a geometric Brownian motion with drift. However,

their model does not assume that the investors agree on the expected return rate

of the underlying, nor does it restrict the investors’ risk preferences and their es-

timates for current and future returns. More explicitly, the option price depends

on the risk-free interest rate. Robert Merton performed a rigorous analysis of the

Black-Scholes model analyzing its assumptions (10). Scholes and Merton received

the Nobel Prize in Economic Sciences in 1997; Black passed away in 1995.
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The assumptions underpinning the Black-Scholes model include: (1) the un-

derlying price follows a geometric log-normal diffusion process; (2) the risk-free

interest rate and the volatility of the underlying are known and constant; (3)

there are no taxes or transaction costs or cash flows on the underlying; (4) trades

can be made instantaneously and at any time; (5) short selling is allowed.

Consider an asset whose price starts off at a known value S0 and evolves over

time according to the following stochastic differential equation (SDE):

dS(t)

S(t)
= µdt+ σdW (t), (1.14)

where µ and σ are the known constants for the asset’s expected return and

volatility, and W (t) is a standard Brownian motion. The increment ∆W (t) =

W (t + ∆t) − W (t) is Gaussian with mean 0 and variance ∆t. Moments of

(∆W )2 include: (1) E
[
(∆W )2

]
= ∆t; (2) Var

[
(∆W )2

]
= 2 (∆t)2. When the

time increment ∆t → 0, the variance of (dW )2 will approach zero as 2 (dt)2,

much faster than its expectation, dt. We known that the variance of a con-

stant is zero, hence in the limit ∆t → 0 we have (dW (t))2 = dt. Therefore,

(dS(t))2 = µ2S2 (dt)2 + 2µσS2dtdW (t) + σ2S2dt+ · · · = σ2S2dt+O
(
(dt)

3
2

)
.

Now consider two European derivatives depending on this underlying asset,

denoted by f [S(t)] and g[S(t)], and a portfolio Π[S(t)] combining these two

derivatives, that is Π[S(t)] = c1f [S(t)] + c2g[S(t)]. Then to order dt we have:

dΠ =
∂Π

∂t
dt+

∂Π

∂S
dS +

1

2

∂2Π

∂S2
(dS(t))2 + · · ·

=

(
∂Π

∂t
+

1

2
σ2S2∂

2Π

∂S2
+ µS

∂Π

∂S

)
dt+ σS

∂Π

∂S
dW (t). (1.15)

The uncertainty comes from term dW (t). We can always make a portfolio such

that all the associated risks are hedged away, then according to the non-arbitrage

principle, the return of this portfolio is the constant risk-neutral interest rate r:

∂Π

∂S
= 0, (1.16)

dΠ =

(
∂Π

∂t
+

1

2
σ2S2∂

2Π

∂S2

)
dt = rΠdt, (1.17)
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1.2 The Black-Scholes world

that is:

c1
∂f

∂S
+ c2

∂g

∂S
= 0,

c1

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2
− rf

)
+ c2

(
∂g

∂t
+

1

2
σ2S2 ∂

2g

∂S2
− rg

)
= 0.

(1.18)

Collecting all f terms on the left-hand side and all g terms on the right-hand

side, we get

∂f
∂t

+ 1
2
σ2S2 ∂2f

∂S2 + µS ∂f
∂S

− rf

σS ∂f
∂S

=
∂g
∂t

+ 1
2
σ2S2 ∂2g

∂S2 + µS ∂g
∂S

− rg

σS ∂g
∂S

. (1.19)

Note that the first three terms in the numerators are the returns of f [S(t)] and

g[S(t)] if they bear a certain amount of risks corresponding to their volatilities

as expressed in the respective denominators, while rf and rg are their returns if

they do not bear any risk, respectively. Hence, both sides of expression (1.19) are

the expected return in excess of the risk-free interest rate per unit of risk they are

assuming. This quantity is used to value risk, called the market price of risk,

and is the same for all derivatives in the market. The underlying itself of course

obeys this market price of risk. Plugging S into expression (1.19) gives the value
µ−r
σ
. Therefore, for any derivatives f [S(t)] depending on the underlying, we have

the Black-Scholes partial differential equation (PDE):

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf. (1.20)

c1 and c2 can be solved from expression (1.18). They are not necessarily constant

as a function of S or time. In practice, they are kept constant between adjustments

during dynamic hedging. For example, if one holds a European call option, one

should sell a certain amount of the underlying in order to hedge the exposure, i.e.

Π = c − c2S(t). Expression (1.16) tells us how a construct a risk-free portfolio,

just like the Euler-Lagrange equation in analytical mechanics, from which we

have c2 = ∂c
∂S
. Thus Π[S(t)] = c − ∂c

∂S
S(t) is risk-free portfolio for every time t.

If S(t) rises (falls), ∂c
∂S

increases (decreases), one should sell (buy back) more of

the underlying. In such circumstances, one always sells the underlying at higher

prices and buys it at lower prices, so this dynamic hedging brings one profits. In

principle, the quantity of profits should be the price of replicating the portfolio.
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All derivatives should satisfy expression (1.20) in the Black-Scholes world,

from which we see that derivative prices depend on the risk-free interest rate r

rather than on the return of the underlying µ. As mentioned before, replication

is the basic idea of derivative pricing. To determine the value of derivatives,

one should construct a risk-free investment portfolio that depends on the under-

lying. Once the portfolio is risk-free, according to the non-arbitrage principle,

its return is fixed, i.e. the risk-neutral interest rate. Hence, no matter what

the underlying assets’ returns are, the returns of the risk-free portfolios are the

same. Consequently, we can surely assume that the return of the underlying is

the the risk-neutral interest rate since the derivative prices will be the same. The

Black-Scholes model is thus given by

dS(t) = rS(t)dt+ σS(t)dW (t). (1.21)

Modeling the underlying’s return by r instead of µ involves a change of measures,

i.e. from the physical measure P to the risk-neutral measure. The Black-Scholes

market is said to be complete. A market is complete if and only if there exists a

unique probability measure Q equivalent to P such that discounted assets are

martingales with respect to Q (11). A stochastic variable is called a martingale

if its expectation value is time-independent. More explicitly, for our stochastic

variable S(t) given in (1.21), the corresponding discount asset X(t) = e−rtS(t)

follows:

dX(t) = σX(t)dW (t). (1.22)

From this SDE we have E[X(t)] = X0 for all t, thus X(t) is a Q-martingale.

There is a one-to-one correspondence between arbitrage-free pricing rules and

equivalent martingale measure: in a market described by a probability measure

P on scenarios, any arbitrage-free linear pricing rule Π can be represented as

Πt = e−r(T−t)EQ [Payoff] , (1.23)

where Q is an equivalent martingale measure. Due to the fact that the Black-

Scholes market is complete, the unique equivalent measure is just the risk-

neutral measure Q. The argument including the expression (1.23) is thus called

the risk-neutral pricing theory (11). Note that the existence of an equivalent
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1.2 The Black-Scholes world

martingale measure leads to absence of arbitrage while its uniqueness is related

to market completeness. Unless otherwise stated, all the following probability

distribution functions and expectations in this thesis will be with respect to the

risk-neutral measure, and we drop the superscript Q in EQ.

Expression (1.20) is a parabolic equation encountered in mathematical physics.

It can be reduced to a heat equation by making some substitutions. Given dif-

ferent boundary conditions, i.e. the payoff functions for European call and put

options with strike price K and the time to maturity T , we can solve the equation

explicitly. The derivation of the Black-Scholes formula by means of a hedging ar-

gument that yields the PDE (1.20) and the solution of the PDE constitute the

PDE pricing method.

As we know, S(t) follows a geometric Brownian motion. More explicitly, from

(1.21) we have:

d lnS(t) =
1

S
dS(t)− 1

2S2
(dS(t))2 =

(
r − σ2

2

)
dt+ σdW (t), (1.24)

thus

ST = S0 e

(
r−σ2

2

)
T+σWT , (1.25)

whereWT is a normal distributed stochastic variable with zero mean and variance

T . Applying the risk-neutral pricing theory, we have the pricing formulas for

European call and put options:

cBS = e−rTE [max (ST −K, 0)]

= e−rT

[∫

ST>K

(
S0 e

(
r−σ2

2

)
T+σ

√
Tz −K

)
1√
2π

e−
z2

2 dz

]

= S0N(d1)− e−rTKN(d2), (1.26)

pBS = e−rTKN(−d2)− S0N(−d1), (1.27)

where

d1,2 =
ln (F/K)

σ
√
T

± σ
√
T

2
, (1.28)

N(·) is the cumulative normal distribution function: N(x) =
∫ x

−∞
1√
2π
e−

1
2
z2dz,

and F = S0 e
rT is the future price. These results are the same as the ones by the

PDE method, see (9). Especially, the term N(d2) represents the probability of
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1. INTRODUCTION

exercise of a call option, while the term N(−d2) is the probability of exercise of

a put option.

1.2.2 Implied volatility

Note that the Black-Scholes pricing formulas need two input variables, namely the

risk free interest rate and the volatility of the underlying under the risk-neutral

measure. There are some references for the risk free interest rate, for instance

the US treasury rate. Given the market European call option price cmark, we can

define the implied volatility for strike K and expiration T as the volatility σimp

that through the Black-Scholes formula generates the market price:

cmark (K, T ) = cBS (K, T, σimp(K, T )) . (1.29)

The solution of this equation is unique because cBS is strictly increasing in σ. If

Black-Scholes model is correct, then the implied volatility should be the same for

all strikes and expirations because this volatility uniquely describes the fluctua-

tion of the underlying and should be independent of call option prices. However,

this is in general not the case. Figure 1.6 illustrates the implied volatility for

S&P 500 Index call option prices of September 3, 2010 with different expirations.

We can see clearly that the implied volatility depends on both strike and time

to maturity. There curves are called the volatility smiles, which exist in all

derivative markets.

If the volatility of the underlying has a deterministic time dependence, denoted

by σd(t), then lnST is normal with mean (r − σ̄2/2)T and variance σ̄2T . Hence

the implied volatility is simply given by σ̄ =
(

1
T

∫ T

0
σd(t)dt

) 1
2
.

Now we assume the volatility is stochastic, denoted by σs(t). For this case, I

follow Lee (12) and Gatheral (13), who derived a general path-integral represen-

tation of implied volatility by exploiting the work of Dupire (14). For every time

t in [0, T ], the actual realized volatility is stochastic σs(t), and we assume that

there exists an equivalent deterministic function, denoted by σeff (t). If we can

find this equivalent deterministic time dependent volatility σeff(t), then we know

from the previous discussion that the implied volatility is
(

1
T

∫ T

0
σ2
eff (t)dt

) 1
2
.
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Figure 1.6: Implied volatility derived from S&P 500 Index call option prices of

September 3, 2010 with different time to maturities. S0 = 1103.7, r = 0.49%.

We then introduce two functions:

CBS (S(t), t) = e−r(T−t)E
[
(ST −K)+

∣∣S(t)
]
, (1.30)

σimp(t) =

(
1

T − t

∫ T

t

σ2
eff (u)du

)1
2

. (1.31)

Note that for every time step t, CBS (S(t), t) is conditional on S(t). Then

CBS (ST , T ) = E
[
(ST −K)+

∣∣ST

]
is the payoff function of a European call op-

tion given the value ST , and C
BS (S0, 0) = e−rTE

[
(ST −K)+

∣∣S0

]
is exactly the

European call option price. Moreover, σimp(0) =
(

1
T

∫ T

0
σ2
eff (t)dt

) 1
2
is exactly the

Black-Scholes implied volatility.

The value of a call option is given by the discounted expectation of the final

payoff under the risk-neutral measure:

cmark (K, T ) = E
[
e−rT (ST −K)+

]
= E

[
e−rTCBS (ST , T )

]
. (1.32)

Since CBS (St, t) is a smooth function of the random stock price S(t) and random
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volatility σs(t), we rewrite the previous equation as:

cmark (K, T ) = E
[
CBS (S0, 0)

]
+ E

[∫ T

0

d
(
e−rtCBS (S(t), t)

)]

= CBS (S0, 0) + E

[∫ T

0

e−rt
(
−rCBSdt

+
∂CBS

∂t
dt+

∂CBS

∂S(t)
dS(t) +

σ2
s (t)

2
S2(t)

∂2CBS

∂S2(t)
dt

)]
.(1.33)

Of course, CBS (S(t), t) satisfies the Black-Scholes equation by using the equiva-

lent deterministic time dependent volatility σeff (t):

∂CBS

∂t
+ rS(t)

∂CBS

∂S(t)
+
σ2
eff(t)

2
S2(t)

∂2CBS

∂S2(t)
− rCBS (S(t), t) = 0. (1.34)

Plugging (1.34) into (1.33), we have (note that E
[∫ T

0
h(t)dW (t)

]
= 0 for a non-

random function h(t))

cmark (K, T )− CBS (S0, 0) =

∫ T

0

e−rt E

[
1

2

(
σ2
s (t)− σ2

eff (t)
)
S2(t)

∂2CBS

∂S2(t)

]
dt.

(1.35)

This equation expresses the difference between the real call option price based on

actual realized volatility and the call option price based on estimated volatility.

In other words, trading a European call option is trading the volatility. That is

why European options are often quoted in terms of volatility. According to the

definition of implied volatility,CBS (S0, 0) is equal to the real call option price, so

the left-hand side of equation (1.35) equals zero, leading to the so-called equivalent

deterministic volatility σeff(t) for every time step t defined by:

E

[(
σ2
s (t)− σ2

eff(t)
)
S2(t)

∂2CBS

∂S2(t)

]
= 0. (1.36)

Denote the joint probability density function of the stochastic variables S and σs

that have values S(t) and σs(t) at time t given their initial values S0 and σs(0)

at time t = 0 as P
(
S(t), σs(t), t

∣∣S0, σs(0), 0
)
. The marginal probability density

function of S(t) is denoted as P
(
S(t), t

∣∣S0, 0
)
and is related to the joint prob-

ability density function by
∫∞
0
dσs(t)P

(
S(t), σs(t), t

∣∣S0, σs(0), 0
)
. The previous
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risk-neutral expectation can be rewritten as:

E

[(
σ2
s(t)− σ2

eff (t)
)
S2(t)

∂2CBS

∂S2(t)

]

=

∫ ∞

0

dS(t)

∫ ∞

0

dσs(t)P
(
S(t), σs(t), t

∣∣S0, σs(0), 0
) (
σ2
s (t)− σ2

eff(t)
)
S2(t)

∂2CBS

∂S2(t)

=

∫ ∞

0

dS(t)

∫ ∞

0

dσs(t)P
(
S(t), σs(t), t

∣∣S0, σs(0), 0
)
σ2
s(t)S

2(t)
∂2CBS

∂S2(t)

− σ2
eff (t)

∫ ∞

0

dS(t)P
(
S(t), t

∣∣S0, 0
)
S2(t)

∂2CBS

∂S2(t)

= 0, (1.37)

from which we obtain

σ2
eff (t) =

∫∞
0
dS(t)

∫∞
0
dσs(t)P

(
S(t), σs(t), t

∣∣S0, σs(0), 0
)
σ2
s (t)S

2(t)∂
2CBS

∂S2(t)∫∞
0
dS(t)P

(
S(t), t

∣∣S0, 0
)
S2(t)∂

2CBS

∂S2(t)

=

∫ ∞

0

dS(t)q (S(t))E
[
σ2
s(t)
∣∣S(t)

]
, (1.38)

where

q (S(t)) =
P
(
S(t), t

∣∣S0, 0
)
S2(t)∂

2CBS

∂S2(t)∫∞
0
dS(t)P

(
S(t), t

∣∣S0, 0
)
S2(t)∂

2CBS

∂S2(t)

, (1.39)

E
[
σ2
s (t)
∣∣S(t)

]
=

∫∞
0
dσ2

s(t)P
(
S(t), σs(t), t

∣∣S0, σs(0), 0
)
σ2
s(t)

P
(
S(t), t

∣∣S0, 0
) . (1.40)

The term q (S(t)) looks like a Brownian Bridge density for the underlying price:

P
(
S(t), t

∣∣S0, 0
)
has a delta function peak at S0 at time t = 0, and ∂2CBS

∂S2
T

has a

delta function peak at ST = K at expiration time t = T . Indeed, at expiration,

the Black-Scholes call option price is very close to max[ST −K, 0] which has zero

second derivative everywhere except at ST = K. The term E
[
σ2
s (t)
∣∣S(t)

]
is the

local variance depending on the value S(t). The Black-Scholes implied variance

is thus given by

σ2
impT =

∫ T

0

σ2
eff (t)dt. (1.41)

Brownnian Bridge density peaks on a line, which represents the most probable

path. We now have a very simple picture for the implied variance: it is approx-

imately the arithmetic average of the local variances over the option life along
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the most probable path for the underlying price from S0 at today time 0 to K at

expiration T .

1.3 Beyond the Black-Scholes model

1.3.1 Facts of the market

The existence of the volatility smile challenges the Black-Scholes model. The

fluctuation of the amplitude of logreturn indicates the volatility of the underlying

asset. We see from logreturns depicted in Figure 1.5 that large moves follow large

moves and small moves follow small moves. This feature is called volatility clus-

tering, which implies that volatility is auto-correlated, thus has a long memory.

Empirical studies agree that the autocorrelation function of the absolute value of

the price movements, which is similar to its volatility, decreases only slowly with

time, see for instance (15, 16, 17, 18, 19, 20). However, empirical studies show

that the price movement itself has a short memory property, i.e. in liquid markets

the logreturn is to a good approximation uncorrelated beyond a time scale of a

few tens of minutes, though on shorter time scales strong correlation effects are

observed, see for instance (21, 22, 23).

It is observed from the probability density functions of the logreturn in Figure

1.5 that these distributions are highly peaked and fat tailed relative to the normal

distribution. From the perspective of mathematics, high central peak and fat

tails is the feature of a mixture of distributions with different variances. In other

words, the volatility correlation induces positive excess kurtosis, a measure of the

peakedness of the logreturn over the Gaussian distribution. Several researchers

have examined the shape of the logreturn distribution, see for instance (24, 25,

26, 27, 28, 29, 30, 31). We also note from Figure 1.5 the negative skewness of

these logreturn distributions. This is explained by the fact that a decrease of

asset price is typically accompanied by an increase of volatility, a phenomenon

called the ’leverage’ effect. That is to say, it is the price-volatility correlation that

induces the skewness of the logreturn distribution. An account on this skewness

can be found in references (32, 33, 34).
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1.3 Beyond the Black-Scholes model

Since the volatility has long range correlations, the logreturn distributions of

different time scales varies slowly. One can in principle chose a time scale which

is long enough to measure some properties of the logreturn, but short compared

to the time scale over which the distribution of the logreturn is expected to vary.

Suppose for example that the distribution of logreturn over a small time scale t

is a Gaussian distribution of a variance, which is itself a random variable. The

averaged distribution of the logreturn over a long time scale T is apparent non-

Gaussian even if each individual distribution of the logreturn over small time

scale t is Gaussian. This is the original idea of the so called superstatistics in

econophysics, see (35, 36, 37). For example, in (35) the authors prefer a log-

normal distribution for the volatility.

The scaling characteristic of logreturn distributions is investigated. If the

log-return is independent and identically distributed (i.i.d.), then its distribution

corresponding to a time scale of nτ should be the nth convolution of the ele-

mentary distribution of a time scale τ . However, systematic deviations from this

simple rule are observed in empirical studies. This is due to the correlated volatil-

ity fluctuations (38, 39). The slow decay of the volatility correlation function,

together with the observed approximate log-normal distribution of the volatility,

leads to a ’multifractal-like’ behavior of the price variations, much as what is

observed in turbulent hydrodynamical flows. More details can be found in books

(40, 41, 42) and references therein.

From a mathematical point of view, the distributions of logreturn approach

the Gaussian limit, though slowly, as the time horizon becomes large. However,

the scale-free nature of the non-Gaussian logreturn distribution was observed

near the black Monday crash in October 1987. This scale invariance suggests

breaking of the law of large numbers and reflects persistent multiscale correlations

at criticality, with large fluctuations at a longer time scale, indicating propagation

of the heterogeneity and clustering of the local variances across scales (43). One

possible explanation of the black Monday crash might be that a highly clustered

behavior of traders was induced by large fluctuations at a short time scale (about

10 minutes), and rapidly grew through internal interactions in the stock market.

Such almost sudden large price fluctuations can only be modeled by jumps (11).
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1.3.2 Alternative models

It is clear that we need to alter the basic premises of the Black-Scholes theory.

There are several alternative models, which can be roughly classified into six

groups:

(I) Parametric local volatility model. Replacing geometric Brownian motion

with a different process was the earliest approach. Several other possibilities have

been considered, notably, (a) constant elasticity of variance (CEV) model (44, 45,

46); (b) displaced diffusion model (47); (c) hyperbolic diffusion (48, 49, 50, 51).

In general, these models do not match market prices exactly.

(II) Non-parametric local volatility model. Alternatively, several researchers

have considered processes with unknown local volatility to be calibrated to the

market via implied trees (52, 53) or in terms of the partial differential equation

method (54).

(III) Stochastic volatility (SV) model. The importance of a time-varying

volatility has been known for a long time (22, 55, 56, 57). Unlike local volatility

models that fit the smile, SV models assume realistic dynamics for the underlying

asset. They are useful because they explain in a self-consistent way why the

’volatility smile’ exists, i.e. Black-Scholes implied volatility in general depends

on the strike and the maturity time of the option. To start with I refer to some

books and review papers regarding this topic (13, 58, 59, 60, 61, 62, 63). In

the early days, a popular approach to model stochastic volatility was through

a Brownian motion subordinated to a random clock. This clock time, often

referred to as trading time, may be identified with the volume of trades or the

frequency of trading (64, 65, 66, 67, 68). The idea is that volatility varies as

trading activity fluctuates. Taylor is the first who suggests a model in discrete

time that results in volatility clustering (69). Nevertheless, the majority of SV

models are in continuous time. Pioneering authors on continuous SV models

are Vasicek, Johnson, Wiggins, Hull and Scott (70, 71, 72, 73, 74). In the 1990s,

Stein and Stein modeled the volatility by an Gaussian Ornstein-Uhlenbeck process

(Stein & Stein model) and derived analytic formulas for the option price (75);

Heston constructed an analytic European option pricing formula for his famous

Heston model (76). In that model, Heston made an popular assumption that the
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variance is driven by a square root process (77). The Stein & Stein model and

the Heston model are generalized by Duffie etc. to construct a so called affine

models (78, 79). More complicated SV models are proposed later on, and some

of them are interlinked with interest rate models; for more details I refer to (80).

The promise of being able to generate volatility smiles and logreturn skewness,

especially for long term calibration, makes SV models very popular. However,

they can not reproduce strong skews and smiles at short maturity (11, 13).

(IV) Add jumps. (a) Jump-diffusion based models. The idea is that events

which have a great impact on the underlying price occur infrequently. Apart from

these events, the price evolves as a regular diffusion. At unpredictable times,

relatively large up or down jumps are added to this regular diffusion. Merton

was the first to explore jump diffusion models. In 1976 he proposed to add a

Gaussian distributed jumps to the standard Black-Scholes dynamics (81). Other

jump distributions, such as exponential (82) and hyper-exponential (83) have

been popular as well. A review of affine jump-diffusion models can be found in

(84); (b) Lévy process based models. These models have infinitely many jumps

in every time interval. Infinitely many small jumps work like a Brownian process.

Consequently, it is not necessary to add a Brownian motion component to these

models when infinitely many jumps exist (85). Lévy models without diffusion

component but only possessing a finite activity (86), however, are said not to lead

to realistic price dynamics (11). In general, Lévy models are supposed to model

the underlying price at all relevant time scales well (85, 87). An intuitive approach

to built a Lévy process is via a time changed Brownian motion. This random time

is interpreted as a business time (88) just as the trading time mentioned before.

Two infinite activity models built in this way are the variance gamma (VG) model

(89, 90, 91, 92) and the normal inverse Gaussian (NIG) model (93, 94, 95). A

second way to construct a Lévy model is to model it as a tempered stable process

(96, 97). The well known CGMY model (85, 98) belongs to this class. More

details about other truncated Lévy processes can be found in (99, 100). The

third approach to construct a Lévy model is by specifying the probability density

function of the increments directly. A well known model belonging to this class

is the generalized hyperbolic (GH) model (101, 102, 103, 104, 105, 106). This

model coves a wide variety of shapes. With chosen special parameter values, the
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Figure 1.7: Samples of log-returns following a pure Brownian process (left panel),

a stochastic volatility (SV) model (middle panel), and a stochastic volatility jump

diffusion (SVJD) model (right panel), respectively.

GH model can reduce to the NIG model, the VG and the normal distribution.

Recently, there are some papers about the time changed Lévy processes, see for

instance (107, 108). The following are three excellent books, among others, about

the application of Lévy process in finance: (11, 109, 110).

(V) Regime switching. Regime switching models have been less popular, see

for instance (111) and references therein.

(VI) Various combinations of the above. Each of the models considered above

has its own attractions as well as drawbacks. Hence several researchers tried to

build combined models. Among others, popular models include: (1) the SV and

stochastic interest rate model (112, 113, 114, 115); (2) the SV jump diffusion

(SVJD) model (116, 117, 118, 119, 120, 121, 122). The need for such models

is particularly strong in some markets where several exotics are liquid and can

be used for calibration purposes. Figure 1.7 illustrates samples of log-returns

under different models. No special parameter values are chosen. Comparing

these samples with the real time evolution of log-returns shown in left panels of

Figure 1.5, we see that the Brownian motion can not replicate the real log-returns

well, the SV model performs well, and the SVJD model performs better.
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1.4 A glance at the path integral approach

As seen before, a basic idea to solving the pricing problem of financial derivatives

is through solving the partial differential equations, which forms the original

mathematical method called the PDE approach. It is well known that in quantum

mechanics the Schrödinger equation is commonly used to describe the quantum

system. Solving a Schrödinger equation for a quantum system is analogous to

solving a partial differential equation for the price of a financial derivative. Both

the evolution of underlying assets’ prices and the motion of microscopic particles

are unpredictable. This shared uncertainty motivates the use of methods from

theoretical physics for various financial derivative products, see for instance (41,

100, 123, 124) and references therein. Among them, the path integral method

from quantum mechanics is most promising, among others, see (115, 125, 126,

127). This method is originally developed to calculate the probability amplitude

of a particle evolving from an initial quantum state to a final quantum state

directly without solving the Schrödinger equation. The application of the path

integral approach to the pricing of financial derivatives inherits this superiority,

i.e. one can derive the probability density functions of the underlying assets,

and thus the derivatives’ prices directly without solving the partial differential

equation.

In this section, I will briefly introduce the path integral approach and show

its equivalence to the PDE method. More details about the path integral method

are given in the next chapter 2.2, and its applications to finance will be shown in

chapters 3 to 6.

After the matrix mechanics, an algebraic formulation of quantum mechanics,

created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925 (128, 129,

130), as well as the wave mechanics, a partial differential equation formulation

or a local description of quantum mechanics, created by Erwin Schrödinger in

1926 (131, 132), Richard Feynman proposed a third theoretical formulation of

quantum mechanics, called the path integral in 1942 (133, 134, 135, 136), which

is a global description of quantum mechanics. Heisenberg’s matrix mechanics is

a quantum correspondence of classical mechanics under the canonical formula-

tion by replacing the classical Poisson bracket by a quantum commutator, and
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Schrödinger’s wave mechanics is closely related to the Hamilton-Jacobi equation

in classical mechanics. Therefore, both of them have something to do with the

classical Hamiltonian. However, Feynman’s path integral involves the classical

Lagrangian through the classical action. Path integration has shown its superior-

ity in field quantization. Another merit of path integration lies in the fact that it

can treat the time-dependent and time-independent problems in one framework.

Furthermore, path integrals depict the relation between quantum mechanics and

classical mechanics more vividly, and enable people to have a deeper understand-

ing of some fundamental rules of classical mechanics, such as the principle of least

action.

Nevertheless, these three formulations are equivalent to each other. By the

Stone-von Neumann theorem, the Heisenberg picture and the Schrödinger picture

are proved to be unitarily equivalent (137). We will prove briefly the equivalence

of the formulations of Schrödinger and Feynman in the following context. For

simplicity, we only consider the one dimensional case.

In Schrödinger’s formulation, the quantum state of a particle is described by

its wave function. For instance, we use ψ(x, t) to characterize the probability

amplitude of a one dimensional particle that appears in point x at time t. In

fact, people are not interested in the history of that particle, because all past in-

formation are included in ψ(x, t). Given the wave function ψ(x, t) at time t, then

according to Schrödinger’s equation (see the following context), one knows all the

states of that particle at any later time. In contrast, the essence of path inte-

gration is to construct the propagator which includes all the information of the

quantum system under consideration. The propagator, denoted byK (x′′, t′′|x′, t′),
gives the probability amplitude that the particle is located in x′′ at time t′′ given

that it was in x′ at time t′, with t′′ ≥ t′. The relation between ψ and K is given

by:

ψ(x′′, t′′) =

∫
K (x′′, t′′|x′, t′)ψ(x′, t′)dx′. (1.42)

According to Feynman’s assumption, the propagator is given by

K (x′′, t′′|x′, t′) = C
∑

all paths

e
i
~
S[x(t)] = C

∑

all paths

e
i
~

∫ t′′
t′ L[x,ẋ,t]dt, (1.43)
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where S[x] is the classical action, L[x, ẋ, t] is the classical Lagrangian, ẋ is the

time derivative of the position coordinate, i.e. the velocity, i is the imaginary

unit, and ~ is the reduced Planck constant. All paths contribute to the propa-

gator with equal magnitude but varying phase according to S[x(t)]. Assume the

action corresponding to one path from x′ to x′′ is S and to an adjacent path is

S + δS. If these two paths are macro-distinguishable, i.e. δS ≫ ~, then their

contributions cancel because of destructive interference. Only the path which ex-

tremizes S[x(t)], i.e. δS = 0, enhances the whole transition amplitude by coherent

superposition. This is the quantum explanation of why macro-particles always

follow the path given by the principle of least action. Note that minimizing the

action functional δS = 0 involves the Euler-Lagrange equation. Recall that we

mentioned the Euler-Lagrange equation in the previous section 1.2.1, where it is

used to hedge the risk, thus to eliminate the arbitrage. Therefore the absence of

arbitrage plays a fundamental role in finance similar to the least action principle

in classical physics.

Return to the equation (1.43), which should be written as a functional integral

due to the fact the all paths are changed continuously:

K (x′′, t′′|x′, t′) =
∫

Dx(t) e i
~

∫ t′′
t′ L[x,ẋ,t]dt. (1.44)

Here
∫
Dx(t) represents the integral over all possible continuous paths between

two fixed endpoints x′ and x′′. Feynman proposed a simple calculation scheme

for this path integral via polygonal paths, writing the path integral as a limit

of multi-dimensional Riemann integrals. A rigorous mathematical proof of this

scheme can be found in (138, 139, 140).

Assume that the particle with mass m evolves in a potential V (x, t), then its

classical Lagrangian is:

L [x(t), ẋ(t), t] =
1

2
mẋ2 − V (x, t). (1.45)

Now consider the case that t′′−t′ = ε → 0+. According to Feynman’s assumption,

the propagator can be expressed as:

K (x′′, t′ + ε|x′, t′) = C e
iε
~
L
[
x′+x′′

2
,x

′′−x′
ε

,t′
]

. (1.46)
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Therefore, expression (1.42) becomes (let η = x′ − x′′):

ψ(x′′, t′ + ε) = C

∫ ∞

−∞
e

i
~

[
mη2

2ε
−εV (x′′+ η

2
,t)
]

ψ(x′′ + η, t′)dη. (1.47)

Note that term e
imη2

2~ε oscillates dramatically as ε → 0, so the main contribution

of the previous integral comes from the domain where η ≈ 0. Seeing ε and η as

infinitesimally small and taking the Taylor expansion of the previous equation

with respect to η, we have:

ψ(x′′, t′) + ε
∂ψ

∂t′
= C

∫ ∞

−∞
e

imη2

2~ε

[
1− iǫ

~
V (x′′, t′)

]

×
[
ψ(x′′, t′) + η

∂ψ

∂x′′
+ η2

∂2ψ

∂(x′′)2
+ · · ·

]
dη, (1.48)

which yields

C =

(∫ ∞

−∞
e

imη2

2~ε dη

)−1

=

√
m

2πi~ε
, (1.49)

ψ(x′′, t′) + ε
∂ψ

∂t′
= ψ(x′′, t′)− iε

~
ψ(x′′, t′) +

i~ε

2m

∂2

∂(x′′)2
ψ(x′′, t′). (1.50)

The second equation is the Schrödinger equation (in one dimension):

i~
∂

∂t
ψ (x, t) =

(
− ~2

2m

∂2

∂x2
+ V

)
ψ (x, t) . (1.51)

Thus we proved the equivalence between the Feynman path integral formulation

and the Schrödinger equation.

As to the financial derivatives’ pricing methods, besides the PDE method (by

solving the partial differential equation analytically or numerically) and the path

integral method (by calculating the probability density function), there are other

methods such as the Monte Carlo simulations (141). We use differential equations

when we model continuous processes. But if the processes are modeled discretely,

then difference equations will be used. Moreover, when the model is complicated,

the partial differential equation can be extended to a partial integro-differential

equation. Even within the PDE method, in order to achieve high numerical

efficiency, technically there are various ways including the Fast Fourier transform
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(92), the generalized Fourier transform (79), the Laplace transform (142), the

Fourier-Cosine expansion (143) and so on. I will not introduce them in detail

here. In chapter 6, the method based on the Fourier-Cosine expansion, called the

COS method (143), as well as a PDE method, call the finite difference method

will be studied.

1.5 My contribution and the thesis’ outline

Applying the path integral technique to the pricing of financial derivatives is the

main goal of this thesis. How the path integral framework performs as an efficient

alternative to the PDE method is first explained in chapter 2, including how to

extract the Lagrangian from a stochastic differential equation, how to use the

time slicing method to calculate the path integral (as well as its drawbacks), and

how to improve it with the Duru-Kleinert time-space transformation. Besides

this part, chapter 2 also provides other mathematical preliminaries that will be

used in this thesis.

As far as I know, before the publication of our paper (144), path integral

methods for the pricing of financial options in the literature are mostly based

on models that can be recast in terms of a Fokker-Planck differential equation,

i.e. neglect jumps and only describe drift and diffusion. I present in chapter 3,

based on the article (144), a method to adapt formulas for both the path integral

propagators and the option prices themselves, so that jump processes are taken

into account in conjunction with the usual drift and diffusion terms. Therefore,

the probability density function for a general stochastic volatility model with

jumps can be calculated by the path integral now. This can be applied directed

to the pricing of European vanilla options.

The price of a European vanilla option is quoted in the market by the implied

volatility. However, the level of implied volatility often higher than the realized

volatility in order to reflect the uncertainty of future market fluctuations. The

fact that higher implied volatility gives higher European vanilla option price led

to the development of the timer option. The principle of the timer option is

remarkably simple: instead of fixing the maturity and letting the volatility float,

the total realized volatility is fixed, and the expiry time is left floating. That
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is, the timer option can be viewed as a European option with random maturity,

determined as the first time when the prespecified variance budget is exhausted.

There are some benefits of introducing timer options. First of all, the holders

of timer options only pay the realized variances, so no extra costs are payed

for higher implied volatilities as with the European vanilla options. Secondly, it

allows the pricing of call and put options whose implied volatilities are difficult

to quote. Thirdly, the timer options will be terminated sooner or later according

to the market realized variance, a feature that can be utilized to optimize the

market timing. In chapter 4, the Duru-Kleinert method is applied to the pricing

of timer options under general stochastic volatility models, based on our paper

(145).

Chapter 5 is a collection of more applications of path integration over condi-

tioned paths, an approach we already used in chapter 4. In particular, I derive

closed-form pricing formulas for the continuous arithmetic and harmonic Asian

option under the Black-Scholes model, for the variance options under Heston and

3/2 stochastic volatility with jump models, and for the VIX options under the

3/2 model. Asian options are path-dependent, i.e. its payoff function contains

an average of the price of the underlying asset during the lifetime of the option.

Consequently, their prices are normally not influenced so much by a single un-

certain asset price at the expiry time (except for the floating Asian option that

depends on the asset price at maturity). To price Asian options, first the set of all

paths needs to be partitioned in subsets containing paths with the same average.

Within each set, the option can be calculated just like a path-independent option.

Then the results need to be averaged over the different partitions. This exam-

ple well demonstrates the path integration over conditioned paths. The variance

options as well as VIX futures and options are based on the calculation of the

probability density function of the realized variance, which is defined as an inte-

gration of the stochastic variance. So the path integration over conditioned paths

still performs distinctively for them. The last section of chapter 5 is retained for

a topic outside of finance. It is related to radioactive decay. In that section, we

investigate the radioactive dosimetry problem in an environment with fluctuat-

ing radioactivity. Fluctuating radioactivity is modeled by Poisson processes with
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stochastic intensity. The closed-form probability density functions of the maxi-

mum allowed exposure time for one receiving a predetermined dosimetry under

six different models are obtained. All results shown in this chapter are part of

(as yet unpublished) internal work notes.

So chapters 3 to 5 (and part of chapter 2) are exploring the path integral in

finance. A method based on the Fourier Cosine expansion called the COS method

(143) exhibited excellent performances recently in the pricing of both vanilla and

some exotic options, especially under the Lévy process and for some options un-

der the Heston model. This method relies on the availability of the characteristic

function. Since the path integral technique allows to derive the probability den-

sity function, sometimes in a transformed form, efficiently for stochastic volatility

jump-diffusion models, a combination of these two methods makes sense. I also

note that the computational complexity for some exotic options is almost the

same as that for vanilla options by using the finite difference method, so I also

look into the finite difference method. These three methods are applied in chap-

ter 6 to the pricing of some exotic options under the Heston stochastic volatility

with uncorrelated Cox-Ingersoll-Ross stochastic interest rate. Reference values

from literature or from Monte Carlo simulations are used, confirming our formu-

las. Nevertheless, the pricing of exotic options for three dimensional dynamics

remains time consuming if we use the COS method directly. More effective imple-

mentations of the COS method and the finite difference method are the subject

of further research.

Chapter 7 is devoted to the inverse problem of option pricing. We investi-

gate how to extract the risk-neutral implied density of the underlying asset from

observed market option prices. The option prices are only available for discrete

sets of strikes in the real market, and moreover these prices contain errors. These

two problems are tackled by our newly introduced rational interval interpolation

method. This is a global and nonlinear method, and can retrieve the risk-neutral

implied density thoroughly and quickly. We first use simulated option prices to

demonstrate that our method outperforms some other common methods in the

literature. We then look into real market data, and plug the risk-neutral implied

density obtained by our method into the general European vanilla option pric-

ing formulas to replicate the option prices, called the implied option prices. We
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checked that these implied option prices are mostly between the bid and ask inter-

vals of the real market call and put options, confirming our method. Our method

is efficient and robust, and the achieved risk-neutral implied density is promising

to further applications, such as model calibration. This chapter is based on our

newly submitted article (146).

Finally, a summary of this thesis as well as a list of my publications are given

in chapter 8.
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2

Mathematical preliminaries

2.1 Stochastic processes, the Itô theorem and

the Kolmogolov equations

Figure 1.5 illustrates typical time series of real market underlying assets, from

which we can identify that these underlying assets evolve probabilistically in

time, so they can be mathematically described as stochastic processes. For a

stochastic process X(t), we can measure values x0, x1, x2, ..., xn at times t0,

t1, t2, ... tn, and we assume that a set of joint probability densities exists

P (xn, tn; xn−1, tn−1; ...; x0, t0) which describes the process completely. We also

define conditional probability densities (0 ≤ j − 1 < n):

P (xn, tn; ...; xj, tj |xj−1, tj−1; ...; x0, t0) =
P (xn, tn; ...; xj, tj ; ...; x0, t0)

P (xj−1, tj−1; ...; x1, t1; x0, t0)
. (2.1)

One type of stochastic processes is called the Markov process, in which knowl-

edge of only the present determines the future. This process is preferred for

financial modeling because of the fact that under the efficient market hypothesis

only the current information contributes to future prices.

In a Markov process, the conditional probability is determined entirely by the

knowledge of the most recent condition:

P (xn, tn; ...; xj, tj |xj−1, tj−1; ...; x0, t0) = P (xn, tn; ...; xj, tj |xj−1, tj−1) . (2.2)
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From this Markov assumption, we have (t0 < t1 < t2):

P (x2, t2|x0, t0) =

∫
dx1P (x2, t2|x1, t1; x0, t0)P (x1, t1|x0, t0)

=

∫
dx1P (x2, t2|x1, t1)P (x1, t1|x0, t0) , (2.3)

which is the Chapman-Kolmogorov equation, see (147).

A general Markov process Y (t) is introduced to model the time evolution of

financial underlying assets by the following stochastic differential equation (SDE):

dY (t) = A (Y (t−), t) dt+B (Y (t−), t) dW (t) + j (Y (t−), J, t) dN(t), (2.4)

where the right terms represent the drift, diffusion and jumps processes respec-

tively, Y (t−) stands for the value of the process Y (t) just before the jump J

occurs, W (t) is a standard Wiener process (Brownian motion) and N(t) is a

Poisson process with stochastic intensity λ (Y (t), t). The processes W (t) and

N(t) are assumed to be independent. The random variable J with probability

density function (PDF) ̟(J) describes the magnitude of the jump when it oc-

curs, and j (Y (t−), J, t) maps the jump size to the post-jump value of Y (t), see

(79).

Note that dW (t) is of order
√
dt, dN(t) is of order dt, and recall that (dW (t))2 =

dt. The Taylor series expansion for any twice differentiable function F (Y (t), t)

to the order dt gives the so called Itô lemma:

dF (Y (t), t)

= Ft (Y (t−), t) dt+ FY (Y (t−), t) dY (t−) +
1

2
FY Y (Y (t−), t) (dY (t−))2

= (Ft (Y (t−), t) + A (Y (t−), t)FY (Y (t−), t)

+
1

2
B2 (Y (t−), t)FY Y (Y (t−), t)

)
dt+B (Y (t−), t)FY (Y (t−), t) dW (t)

+ [F (Y (t−) + j (Y (t−), J, t) , t)− F (Y (t−), t)] dN(t), (2.5)

where Ft, FY , FY Y stand for partial derivatives with respect to Y and t.

Denote the probability density of Y (t) by P (YT , T |Yt, t), then the expectation

value of F (YT , T ) is given by E [F (YT , T )] =
∫
F (YT , T )P (YT , T |Yt, t) dYT . Now
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differentiate this expectation with respect to T :

∂

∂T

∫
F (YT , T )P (YT , T |Yt, t) dYT

= lim
∆T→0

∫
dYT

F (YT , T +∆T )P (YT , T +∆T |Yt, t)− F (YT , T )P (YT , T |Yt, t)
∆T

= lim
∆T→0

1

∆T

{ ∫
dYTF (YT , T +∆T )

∫
P (YT , T +∆T |z, T )P (z, T |Yt, t) dz

−
∫
dzF (z, T )P (z, T |Yt, t)

}

=

∫
dzP (z, T |Yt, t) lim

∆T→0

1

∆T

∫
dYTP (YT , T +∆T |z, T )

× (F (YT , T +∆T )− F (z, T ))

=

∫
dzP (z, T |Yt, t)

1

dT
E [dF (z, T )]

=

∫
dzP (z, T |Yt, t)

{
A(z, T )Fz(z, T ) +

1
2
B2(z, T )Fzz(z, T )

+
∫
dJ̟(J) [F (z + j(z, J, T ), T )− F (z, T )]λ (z, T )

}

=

∫
dzF (z, T )





− ∂
∂z

(P (z, T |Yt, t)A(z, T )) + 1
2

∂2

∂z2
(P (z, T |Yt, t)A2(z, T ))

+
∫
dJ̟(J)λ(z − j(z, J, T ), T )P (z − j(z, J, T ), T |Yt, t)

−λ(z, T )P (z, T |Yt, t)



 .

Hence

∂P (YT , T |Yt, t)
∂T

= − ∂

∂YT
(P (YT , T |Yt, t)A(YT , T )) +

1

2

∂2

∂Y 2
T

(
P (YT , T |Yt, t)B2(YT , T )

)

+

∫
dJ̟(J)λ(YT − j(YT , J, T ), T )P (YT − j(YT , J, T ), T |Yt, t)

−λ(YT , T )P (YT , T |Yt, t) , (2.6)

which is called the Kolmogorov forward equation. Similarly we have the

Kolmogorov backward equation:

− ∂P (YT , T |Yt, t)
∂t

= A(Yt, t)
∂

∂Yt
P (YT , T |Yt, t) +

1

2
B2(Yt, t)

∂2

∂Y 2
t

P (YT , T |Yt, t)

+λ(Yt, t)

∫
dJ̟(J)P (YT , T |Yt + j(Yt, J, t), t)

−λ(Yt, t)P (YT , T |Yt, t) . (2.7)

The initial condition for both equations is

P (YT , t|Yt, t) = δ (YT − Yt) for all t. (2.8)
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In the case of the forward equation, we hold (Yt, t) fixed, and solutions exist for

T ≥ t, so that (2.8) is an initial condition for the forward equation. For the

backward equation, solutions exist for s ≤ t, so that (2.8) is a final condition in

this case. The forward and the backward equations are equivalent to each other.

The forward equation gives more directly the values of measurable quantities,

so it tends to be used more commonly in European option pricing and model

calibration. The backward equation is generally applied to option pricing with

some optional features, such as American options which can be exercised by the

holder at any time up to maturity time.

The mathematical definition of a continuous Markov process is through the

Lindeberg condition (147), which requires that for any ǫ > 0 we have

lim
∆t→0

1

∆t

∫

|x−x0|>ǫ

P (x, t+∆t|x0, t) dx = 0. (2.9)

This means that the probability for the final position x to be finitely different

from x0 goes to zero faster than ∆t, as ∆t goes to zero.

We know from the definition of the Poisson process that for any infinitesimally

small time step ∆t, there is a finite probability that the path will jump. For this

reason, the third term in (2.4) is known as the jump component. As to the second

term in (2.4), we note that the transition probability of Wiener process, denoted

by PW (xT , T |xt, t) satisfies the characteristic property lim
T−t→0

PW (xT , T |xt, t) →
δ (xT − xt). That is, after an infinitesimally small period of time the particle ap-

pears to be in the infinitesimally small vicinity of the initial point xt. Brownian

motions are thus continuous. On the other hand, recall that E
[
(∆W )2

]
= ∆t,

thus the shift during the period of time ∆t is of the order
√
E
[
(∆W )2

]
∼√

∆t and the speed of the Brownian particle at any moment of time is infi-

nite: lim
∆t→0

√
∆t
∆t

→ ∞. Therefore, Brownian motions are in reality suns over fully

’zigzag-like’ trajectories, which can be described more precisely in the framework

of fractal theory, corresponding to non-differentiable continuous functions.

If we assume the quantities λ (Y (t), t) to be zero, i.e. no jumps, the general

Markov process (2.4) reduces to a Langevin process:

dY (t) = A (Y (t), t) dt+B (Y (t), t) dW (t), (2.10)
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thus the Kolmogorov forward equation (2.6) becomes the so called Fokker-

Planck equation:

∂P (YT , T |Yt, t)
∂T

= − ∂

∂YT
(P (YT , T |Yt, t)A(YT , T ))

+
1

2

∂2

∂Y 2
T

(
P (YT , T |Yt, t)B2(YT , T )

)
. (2.11)

The previous results (2.5), (2.6), (2.7) and (2.11) are based on a one-dimensional

process Y (t), for the multi-dimensional case, we have to replace A by a drift vector

and B by a diffusion tensor, etc. Explicitly, the multi-dimensional Fokker-Planck

equation is:

∂P (Y, T |X, t)
∂T

= −
∑

i

∂

∂Yi
(P (Y, T |X, t)Ai(Y, T ))

+
1

2

∑

i,j

∂2

∂Yi∂Yj

(
P (Y, T |X, t)B2

ij(Y, T )
)
, (2.12)

where A(Y, T ) is the drift vector and the matrix B2(Y, T ) the diffusion matrix

for the multi-dimensional Langevin process.

Similarly, without jumps, the Kolmogorov backward equation (2.7) reduces

to:

∂P (YT , T |Yt, t)
∂t

+ A(Yt, t)
∂P (YT , T |Yt, t)

∂Yt
+

1

2
B2(Yt, t)

∂2P (YT , T |Yt, t)
∂Y 2

t

= 0.

(2.13)

Especially, for the Black-Scholes model (1.14), A = rS(t), B = σS(t), the tran-

sition probability density function of S is given by:

∂P (ST , T |St, t)

∂t
+ rS(t)

∂P (ST , T |S(t), t)
∂S(t)

+
1

2
r2S2(t)

∂2P (ST , T |S(t), t)
∂S2(t)

= 0.

(2.14)

Since the European call option price is expressed in the risk-neutral measure as

c = e−r(T−t)
∫∞
0
dST (ST −K)+ P (ST , T |St, t), we thus have:

∂c

∂t
+ rS(t)

∂c

∂S(t)
+

1

2
σ2S2(t)

∂2c

∂S2(t)
= rc, (2.15)

which coincides with the Black-Scholes partial differential equation (1.20).
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2.2 The path integral framework and probabil-

ity density functions

Every Fokker-Planck equation has a corresponding path integral, because the

Fokker-Planck equation is formally equivalent to the Schrödinger equation (with

imaginary time) and we have proved in Chapter 1 that the Schrödinger equation

is equivalent to the Feynman path integral.

As mentioned in section 1.4, the Feynman path integral originates from quan-

tum mechanics, where it is used to describe the probability amplitude of quantum

evolution between two fixed states, where each possible trajectory contributes a

different phase. The probability for an event is given by the modulus squared

of the probability amplitude. When using imaginary times, a Feynman path in-

tegral provides directly the transition probability density function between two

fixed points, rather than the probability amplitude. From now on, we will use

the ”imaginary time” Feynman path integral which gives the probability density

function, but for the sake of simplicity we will omit the ”imaginary time” and

refer to the probability density function as propagator.

In the Feynman path integral framework, the propagator is expressed as

P (YT , T |Yt, t) =
∫ (YT ,T )

(Yt,t)

DY (s) exp
{
−
∫ T

t

L
[
Y (s), Ẏ (s), s

]
ds

}
. (2.16)

Note that this expression is very similar to Feynman path integral expression in

quantum mechanics, see (1.44), but now in an ”imaginary time”. The Lagrangian

L
[
Y (s), Ẏ (s), s

]
for a general Langevin process (2.10) is given by (126, 148, 149):

L
[
Y (s), Ẏ (s), s

]
=

1

2B2 (Y (s), s)

[
Ẏ (s)− h (Y (s), s)

]2

+
B (Y (s), s)

2

∂

∂Y (s)

(
h (Y (s), s)

B (Y (s), s)

)
, (2.17)

where

h (Y (s), s) = A (Y (s), s)− B (Y (s), s)

2

∂B (Y (s), s)

∂Y (s)
. (2.18)

If B does not depend on Y (s) explicitly, then h (Y (s), s) = A (Y (s), s) and the

Lagrangian (2.17) reduces to:

L
[
Y (s), Ẏ (s), s

]
=

1

2B2 (s)

[
Ẏ (s)− A (Y (s), s)

]2
+

1

2

∂A (Y (s), s)

∂Y (s)
. (2.19)
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Note that Ẏ (s) is not well defined since Y (s) is continuous but nowhere differ-

entiable. But Ẏ (s) in (2.16) has a meaning as velocity because the discretization

rule is specified by the Wiener measure
∫ (YT ,T )

(Yt,t)
DY (s). More explicitly, plugging

(2.19) into (2.16), we see that the classical action S =
∫ T

t
L
[
Y (s), Ẏ (s), s

]
ds con-

tains a term
∫ T

t
A(Y (s),s)

B(s)
dW (s), which is a θ−stochastic integral. A θ−stochastic

integral is defined by

I(θ)(X) =

∫ T

t

X(s)θdW (s) = lim
n→∞

n−1∑

i=0

X(tθi ) (W (ti+1)−W (ti)) (2.20)

for any partition t = t0 < t1 < · · · < tn−1 < tn = T and with tθi equals to

tθi = ti + θ (ti+1 − ti) . (2.21)

In the path integral framework, we use the mid-point formulation, i.e. θ = 1
2
.

The θ-stochastic integral then reduces to a Stratonovich stochastic integral. The

advantage of Stratonovich stochastic integral is that if we introduce a function

φ(Y ) such that A(Y (s),s)
B2(s)

= dφ
dY

, then the classical chain rule is formally satisfied:

∫ T

t

A (Y (s), s)

B2(s)
Ẏ (s)ds =

∫ T

t

dφ

dY
dY = φ(YT )− φ(Yt), (2.22)

which is the same for all paths and depends only on the endpoints.

It is important to note that the result (2.22) is true only if we use the mid-

point formulation (Stratonovich prescription). If we use the left-point formulation

(θ = 0), which is the Itô prescription, then

dφ =
dφ

dY
dY +

B2

2

d2φ

dY 2
ds =

dφ

dY
dY +

1

2

∂A(Y (s), s)

∂Y (s)
ds (2.23)

according to Itô’s lemma, thus

∫ T

t

A (Y (s), s)

B2(s)
Ẏ (s)ds =

∫ T

t

dφ

dY
dY = φ(YT )− φ(Yt)−

1

2

∫ T

t

∂A(Y (s), s)

∂Y (s)
ds.

(2.24)

In fact, if we use the left-point formulation, the term 1
2
∂A(Y (s),s)

∂Y (s)
should be dropped

in (2.19), so the final classical action is the same in both the left-point and the mid-

point cases. In conclusion, the reason why we adopt the mid-point formulation

lies in the convenience of the classical chain rule of integral calculus.
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According to Feynman’s polygonal paths method, a procedure called time

slicing is implemented. With two end points Yt at initial time t and YT at time

T , we divide the time interval [t, T ] into N equal infinitesimal segments with

duration ε = T−t
N

→ 0. That is tj = t + jε for j = 0, 1, · · · , N , while t0 = t and

tN = T . The infinite-dimensional functional integral (2.16) is therefore computed

as the following limit (Yj = Y (tj), j = 0, 1, · · · , N):

P (YT , T |Yt, t) =

∫ (YT ,T )

(Yt,t)

DY (s) exp
{
−
∫ T

t

L
[
Y (s), Ẏ (s), s

]
ds

}

= C lim
N→∞

∫
dY1

∫
dY2 · · ·

∫
dYN−1

× exp

{
−ε

N∑

j=1

L
[
Yj + Yj−1

2
,
Yj − Yj−1

ε
,
tj + tj−1

2

]}
,(2.25)

where C is a proper normalization factor. For the value of C, we resort to

the infinitesimal propagator of process (2.10), which is known to be a normal

distribution when ε = tj − tj−1 → 0:

P
(
Ytj , tj|Ytj−1

, tj−1

)
=

1√
2πB2(Ytj−1

, tj−1)ε
e
− [

Ytj
−Ytj−1

−A(Ytj−1
,tj−1)ε]

2

2B2(Ytj−1
,tj−1)ε (2.26)

In addition, the Chapman-Kolmogorov equation (2.3) holds for the propagator:

P (YT , T |Yt, t) = lim
N→∞

∫
dY1

∫
dY2 · · ·

∫
dYN−1

N∏

j=1

P
(
Ytj , tj |Ytj−1

, tj−1

)
.

(2.27)

Inserting (2.26) into (2.27) and comparing it with (2.25), we have the Wiener

path integral measure for (2.16):

DY =
N−1∏

i=1

dYi

N∏

j=1

1√
2πB2 (Yj−1, tj−1) ε

. (2.28)

In the rest of this section, I will give some examples to illustrate how propagators

are derived by the path integral approach.
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2.2.1 Examples of path integral propagators

2.2.1.1 Propagator for the Black-Scholes model

The most simple example is for the Black-Scholes model (1.21). The substitution

x(t) = lnS(t) leads to a SDE for x(t) according to the Itô lemma (2.5):

dx(t) =

(
r − σ2

2

)
dt+ σdW (t). (2.29)

Since B = σ does not depends on x, the Lagrangian (2.19) becomes

L [x, ẋ, t] =
1

2σ2

[
ẋ−

(
r − σ2

2

)]2
. (2.30)

The transition probability that x(t) arrives in xT at time T given its initial posi-

tion x0 at time 0, denoted by P (xT , T |x0, 0), is given by the path integral (2.16):

P (xT , T |x0, 0) =

∫
Dx(t) e−

∫ T
0

1
2σ2

[
ẋ−
(
r−σ2

2

)]2
dt

= e

(
r−σ2

2

)
(xT−x0)

σ2 −
(
r−σ2

2

)2
T

2σ2

∫
Dx(t) e− 1

2σ2

∫ T
0 ẋ2dt. (2.31)

Applying (2.28) and (2.25), the previous expression can be written as the path

integral for a free particle with mass 1
σ2 :

∫
Dx(t) e− 1

2σ2

∫ T
0 ẋ2dt =

∫ N−1∏

i=1

dxi

N∏

j=1

1√
2πσ2ε

e−
(xj−xj−1)

2

2σ2ǫ

=
1√

2πσ2Nε
e−

(xN−x0)
2

2σ2Nε . (2.32)

Since Nε = T and xN = x(tN ) = x(T ) = xT , we finally get the well known result:

P (xT , T |x0, 0) = e

(
r−σ2

2

)
(xT−x0)

σ2 −
(
r−σ2

2

)2
T

2σ2
1√

2πσ2T
e−

(xT−x0)
2

2σ2T

=
1√

2πσ2T
exp

{
−(xT − x0 − (r − σ2/2) T )

2

2σ2T

}
. (2.33)

The propagator of S(t) is obtained by the relation that P (xT , T |x0, 0) dxT =

P (ST , T |S0, 0) dST :

P (ST , T |S0, 0) =
1√

2πσ2TST

exp

{
−(lnST − lnS0 − (r − σ2/2)T )

2

2σ2T

}
, (2.34)
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which is a log-normal distribution as expected. Inserting this propagator into

the risk-neutral pricing formula, we can quickly obtain the Black-Scholes option

prices through discounted expectation values with respect to P (ST , T |S0, 0). For

instance the European vanilla call option price with strike price K and time to

maturity T is given by

C(K, T ) = e−rTE [max (ST −K, 0)]

= e−rT

∫ ∞

K

(ST −K)P (ST , T |S0, 0) dST

= e−rT

∫ ∞

lnK

(exT −K)P (xT , T |x0, 0) dxT

= S0

∫ ∞

lnK−(x0+(r+σ2/2)T )

1√
2πσ2T

exp

{
− z2

2σ2T

}
dz

−K
∫ ∞

lnK−(x0+(r−σ2/2)T )

1√
2πσ2T

exp

{
− z2

2σ2T

}
dz

= S0N (d+)−KN (d−) , (2.35)

where N(·) is the cumulative normal distribution function and

d± =
ln (S0 exp {rT} /K)

σ
√
T

± 1

2
σ
√
T , (2.36)

in agreement with (1.26).

2.2.1.2 Propagator for the Cox-Ingersoll-Ross model

The Cox-Ingersoll-Ross (CIR) model is originally created for the interest rate r

(150). The dynamics of r in the CIR model is governed by the following SDE:

dr(t) = κ (θ − r(t)) dt+ σ
√
rdW (t). (2.37)

This SDE is the same as the one used in the Heston stochastic volatility model to

describe the time evolution of the volatility. Just as for the Black-Scholes model,

first a substitution is made such that the diffusion term of the new variable does

not depend on itself. Let z(t) =
√
r(t), the Itô lemma (2.5) tells us that

dz =

[
κθ − σ2/4

2z
− κ

2
z

]
dt+

σ

2
dW (t). (2.38)
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Its Lagrangian is then calculated, see (2.19):

L[z, ż, t] =
1

2
(
σ
2

)2
[
ż −

(
κθ − σ2/4

2z
− κ

2
z

)]2
+

1

2

(
−κθ − σ2/4

2z2
− κ

2

)

=
2

σ2
ż2 +

(κθ − σ2/4) (κθ − 3σ2/4)

2σ2z2
+

κ2

2σ2
z2

−2 (κθ − σ2/4)

σ2

ż

z
+

2κ

σ2
zż − κ2θ

σ2
. (2.39)

The propagator of z, denoted by P (zT , T |z0, 0) is expressed as, see (2.16):

P (zT , T |z0, 0) =

∫
Dz(t) e−

∫ T
0

L[z,ż,t]dt

=

(
zT
z0

) 2κθ
σ2 − 1

2

e−
κ
σ2 (z2T−z20−κθT)

×
∫

Dz(t) e
−
∫ T
0

[
2
σ2 ż

2+ κ2

2σ2 z
2+
(κθ−σ2/4)(κθ−3σ2/4)

2σ2
1
z2

]
dt

.(2.40)

Introducing new notations: a = σ2

4
, b = κ

2
, and λ = 2κθ

σ2 − 1, we arrive at the one

dimensional path integral for the radial harmonic oscillator:

PRHO =

∫
Dz(t) exp

{
−
∫ T

0

[
1

2a
ż2 +

b2

2a
z2 +

(
λ2 − 1

4

)
a

2

1

z2

]
dt

}
. (2.41)

The solution of this path integral is not trivial. The first step is time slicing, see

(2.28) and (2.25):

PRHO = lim
N→∞

∫
dz1 · · · dzN−1

(
1√
2πaε

)N N∏

j=1

e
−(

zj−zj−1)
2

2aε
− b2ε

4a (z
2
j+z2j−1)−

(λ2− 1
4)a

2zjzj−1
ε
.

(2.42)

Note that to first order in ∆z = zj − zj−1,
( zj+zj−1

2

)2
=

z2j+z2j−1

2
= zjzj−1 =

z2j−1 + zj−1∆z. In the limit of x going to infinity, the asymptotic approximation

holds for the modified Bessel function of the first kind:

Iν(x) =
1√
2πx

exp

{
x− ν2 − 1

4

2x

}(
1 +O

(
1

x2

))
. (2.43)

Since
zjzj−1

aε
→ ∞ as ε→ 0, to first order in ε we have

e
−(

λ2− 1
4)a

2zjzj−1
ε
= Iλ

(zjzj−1

aε

)√
2π
zjzj−1

aε
e−

zjzj−1
aε . (2.44)
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Thus

PRHO =
√
z0zT lim

N→∞

∫
z1dz1 · · · zN−1dzN−1

(
1

aε

)N

×
N∏

j=1

e
−(z2j+z2j−1)

(
1

2aε
+ b2ε

4a

)

Iλ

(zjzj−1

aε

)
. (2.45)

The substitutions α = 1
aε
, β = 1

aε
+ b2ε

2a
= α

(
1 + 1

2
b2ε2

)
lead to:

PRHO =
√
z0zT e

−β
2 (z

2
0+z2T ) lim

N→∞
αN

∫
dz1 · · · dzN−1z1 e

−βz21 · · · zN−1 e
−βz2j−1

×Iλ (αz1z0) Iλ (αz2z1) · · · Iλ (αzT zN−1) . (2.46)

By using the identity (Re[p] > 0,Re[ν] > −1), see 6.633-4 in (151):

∫ ∞

0

x e−px2

Iν(c1x)Iν(c2x)dx =
1

2p
e

c21+c22
4p Iν

(
c1c2
2p

)
, (2.47)

the integration over z1 becomes

∫ ∞

0

dz1z1 e
−βz21Iλ (αz1z0) Iλ (αz2z1) =

1

2γ1
e

T2
1 z20+α2z22

4γ1 Iλ

(
T1z0αz2
2γ1

)
, (2.48)

where

γ1 = β, T1 = α; (2.49)

and the integration over z2 becomes

∫ ∞

0

dz2z2 e
−
(
β− α2

4γ1

)
z22Iλ

(
αT1z0
2γ1

z2

)
Iλ (αz3z2) =

1

2γ2
e

T2
2 z20+α2z23

4γ2 Iλ

(
T2z0αz3
2γ2

)
,

(2.50)

where

γ2 = β − α2

4γ1
, T2 =

α2

2γ1
. (2.51)

Next, the integration over z3 yields

∫ ∞

0

dz3z3 e
−
(
β− α2

4γ2

)
z23Iλ

(
αT2z0
2γ2

z3

)
Iλ (αz4z3) =

1

2γ3
e

T2
3 z20+α2z24

4γ3 Iλ

(
T3z0αz4
2γ3

)
,

(2.52)

where

γ3 = β − α2

4γ2
, T3 =

α3

2γ12γ2
. (2.53)

56



2.2 The path integral framework and probability density functions

The successive integrations are performed in the same manner until the integra-

tion over zN−1. Putting these terms into expression (2.46) yields

PRHO =
√
z0zT exp

{
−β
2

(
z20 + z2T

)}
lim

N→∞
αN 1

2γ1

1

2γ2
· · · 1

2γN−1

exp

{
α2

4γN−1

z2T

}

× exp

{(
T 2
1

4γ1
+
T 2
2

4γ2
+ · · ·+ T 2

N−1

4γN−1

)
z20

}
Iλ

(
αTN−1

2γN−1
z0zT

)
, (2.54)

where the coefficients γ and T are given by:

γ1 = β, T1 = α, γk = β − α2

4γk−1
, Tk =

αk

2γ12γ2 · · · 2γk−1
, (k = 2, 3, · · · , N − 1).

(2.55)

Now these quantities can be determined, starting with the evaluation of γk. Since

γk = β− α2

4γk−1
, that is 2

α
γk =

2
α
β− 1

2
α
γk−1

, we can let Ck =
2
α
γk, then Ck+

1
Ck−1

= 2
α
β

for k = 2, 3, · · · , N − 1 while C1 = 2
α
β. Furthermore, let Ck = yk+1

yk
, then

yk+1+yk−1

yk
= 2

α
β = 2 + b2ε2. Arranging the terms we have

yk+1 − 2yk + yk−1

ε2
= b2yk, (2.56)

which in the limit ε→ 0 gives a differential equation ÿ− b2y = 0, where ÿ means

the second derivative with respect to time. For the boundary conditions for y,

we extend Ck to C0, then
1
C0

= 2
α
β − C1 = 0 = y0

y1
, so y0 = 0. The solution of y

is thus y(t) = d
2

(
ebt − e−bt

)
= d sinh(bt), with d being a constant. Therefore

yk = y(tk) = y(kε) = d sinh (bkε) , (2.57)

ẏk = db sinh(btk) = db sinh(bkε). (2.58)
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Consequently

lim
N→∞

αN 1

2γ1

1

2γ2
· · · 1

2γN−1
= lim

N→∞
α
y1
y2

y2
y3

· · · yN−1

yN

= lim
N→∞

1

aε

d sinh(bε)

d sinh (bNε)

=
b

a

1

sinh (bT )
; (2.59)

lim
N→∞

exp

{
−
(
β

2
− α2

4γN−1

)
z2T

}
= lim

N→∞
exp

{
−α
4

(
CN − 1

CN−1

)
z2T

}

= lim
N→∞

exp

{
− 1

2a

ẏN
yN
z2T

}

= exp

{
− b

2a
coth (bT ) z2T

}
; (2.60)

lim
N→∞

Iλ

(
αTN−1

2γN−1
z0zT

)
= lim

N→∞
Iλ

(
α
y1
y2

y2
y3

· · · yN−1

yN
z0zT

)

= Iλ

(
bz0zT

a sinh (bT )

)
. (2.61)

Similarly

lim
N→∞

exp

{
−
[
β

2
−
(
T 2
1

4γ1
+
T 2
2

4γ2
+ · · ·+ T 2

N−1

4γN−1

)]
z20

}

= lim
N→∞

exp

{
−
[
β

2
−

N−1∑

k=1

(αy1/yk)
2

2αyk+1/yk

]
z20

}

= lim
N→∞

exp

{
−
[
β

2
− αb2ε

2

N−1∑

k=1

ε

sinh (btk) sinh (btk+1)

]
z20

}

= lim
N→∞

exp

{
−
[
β

2
− αb2ε

2

∫ T

ε

dt

sinh2 (bt)

]
z20

}

= lim
N→∞

exp

{
−
[
β

2
+

b

2a
(coth (bT )− coth (bε))

]
z20

}

= exp

{
− b

2a
coth (bT ) z20

}
. (2.62)

58



2.2 The path integral framework and probability density functions

Plugging (2.59), (2.60), (2.61) and (2.62) into (2.46), we have finally for the path

integral of the radial harmonic oscillator:

∫
Dz(t) exp

{
−
∫ T

0

[
1

2a
ż2 +

b2

2a
z2 +

(
λ2 − 1

4

)
a

2

1

z2

]
dt

}

=

√
z0zT b

a sinh (bT )
exp

{
− b

2a
coth (bT )

(
z20 + z2T

)}
Iλ

(
bz0zT

a sinh (bT )

)
. (2.63)

Proceeding with the calculation of expression (2.40), we obtain the propagator of

the CIR model in the variable z =
√
r:

P (zT , T |z0, 0) =zλ+1
T z−λ

0 exp

{
− κ

σ2

[(
coth

κT

2
+ 1

)
z2T +

(
coth

κT

2
− 1

)
z20

]}

× exp

{
κ2θT

σ2

}
2κ

σ2 sinh κT
2

Iλ

(
2κz0zT

σ2 sinh κT
2

)
, (2.64)

where λ = 2κθ
σ2 − 1 as mentioned before. The propagator of r is then

P (rT , T |r0, 0) = r
λ
2
T r

−λ
2

0 exp

{
− κ

σ2

[(
coth

κT

2
+ 1

)
rT +

(
coth

κT

2
− 1

)
r0

]}

× exp

{
κ2θT

σ2

}
κ

σ2 sinh κT
2

Iλ

(
2κ

√
r0rT

σ2 sinh κT
2

)
. (2.65)

2.2.2 The Duru-Kleinert transformation

Feynman’s time-slicing procedure does not, however, directly work for one of the

most important system of quantum mechanics, the hydrogen atom. This is due to

the singularity of the Coulomb potential 1
r
at the origin. In 1972, M. J. Goovaerts

and J. T. Devreese performed a straightforward analytical calculation of the en-

ergy spectrum of the hydrogen atom entirely within Feynman’s path integral for-

malism by using a perturbation expansion of the Coulomb potential (152). Their

work developed calculation tools. In 1979, I. H. Duru and H. Kleinert derived

from the path integral the full Feynman propagator of the Coulomb potential

(153). They replaced the real time t by another path-dependent pseudo-time pa-

rameter τ such that the singularity is removed and a time-sliced approximation

exists. Furthermore, the path integral can be made harmonic by a coordinate
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transformation, thus being exactly integrable. This time transformation and co-

ordinate transformation is an important tool to solve many path integrals and

is called generically the Duru-Kleinert transformation, for details see Kleinert’s

book (100).

In this subsection I first demonstrate the main idea of this transformation,

then propagators for the Kratzer potential, Morse potential and Liouville poten-

tial are treated as examples.

Consider a path integral for a particle evolving in a general potential V (x)

with constant mass m during the time domain t ∈ [0, T ]:

x(T )=xT∫

x(0)=x0

Dx(t) exp
{
−
∫ T

0

(m
2
ẋ2 + V (x)

)
dt

}
, (2.66)

where ẋ = dx
dt

and m
2
ẋ2 denote the particle’s kinetic energy. Now introduce a

path-dependent pseudo-time parameter τ and a new coordinate variable q(τ):

τ(t) =

∫ t

0

1

f(x(s))
ds, (2.67)

x(t) = F (q(τ)), (2.68)

with suitable real, positive functions f and F . Furthermore, we assume

f = (F ′)
2
. (2.69)

where F ′ = dF
dq

is the first derivative of F with respect to q, and similarly F ′′ and

F ′′′ are the second and the third derivative of F with respect to q respectively

as we will need later. Since f is positive, we can denote the domain of τ by

[τ(0), τ(T )] = [0, τb]. Apparently τ is path dependent; it is determined by the

following constraint: ∫ τb

0

f [F (q(τ))] = T. (2.70)

Of course f and F should be such that for all possible paths, a unique solution

τb > 0 exists for the previous equation.

Let ε = T
N

be the lattice constant when doing the time slicing for x, and

ǫj = τj − τj−1 to be the jth lattice interval for q. While ε is constant, ǫj varies
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from time to time; they are related by the following equation:

ǫj =
ε

F ′(qj)F ′(qj−1)
. (2.71)

Therefore

(
1

2πε

)N
2

N−1∏

j=1

dxj = (F ′(q0)F
′(qb))

− 1
2

N∏

j=1

(
1

2πǫj

) 1
2
N−1∏

j=1

(
1

F ′(qj)
dxj

)

= (f(x0)f(xT ))
− 1

4

N∏

j=1

(
1

2πǫj

) 1
2
N−1∏

j=1

dqj. (2.72)

To transform the original coordinates x into the new coordinates q, we use the

midpoint prescription expansion method. It means that one has to expand any

dynamical quantity of F (q) which is defined on the points qj and qj−1 of the

jth interval in the midpoints q̄j =
qj+qj−1

2
up to order O

(
(qj − qj−1)

3 = (∆qj)
3).

Consequently

xj − xj−1 = F (qj)− F (qj−1)

= F

(
q̄j +

∆qj
2

)
− F

(
q̄j −

∆qj
2

)

= F ′ (q̄j)∆qj +
1

24
F ′′′ (q̄j) (∆qj)

3 ; (2.73)

(xj − xj−1)
2 = (F ′ (q̄j)∆qj)

2
+

1

12
F ′ (q̄j)F

′′′ (q̄j) (∆qj)
4 , (2.74)

and similarly

ε = ǫjF
′(qj)F

′(qj−1)

= ǫjF
′
(
q̄j +

∆qj
2

)
F ′
(
q̄j −

∆qj
2

)

= ǫj (F
′(q̄j))

2

[
1 +

(
F ′′′(q̄j)

F ′(q̄j)
−
(
F ′′(q̄j)

F ′(q̄j)

)2
)(

∆qj
2

)2
]
. (2.75)

Therefore

(xj − xj−1)
2

ε
=

(∆qj)
2

ǫj

[
1 +

(
−1

6

F ′′′(q̄j)

F ′(q̄j)
+

1

4

(
F ′′(q̄j)

F ′(q̄j)

)2
)
(∆qj)

2

]

=
(qj − qj−1)

2

ǫj
+

(∆qj)
4

12ǫj

(
3

(
F ′′(q̄j)

F ′(q̄j)

)2

− 2
F ′′′(q̄j)

F ′(q̄j)

)
.(2.76)
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The term (∆qj)
4 cannot be neglected here. The importance of such a term has

already been stressed by Feynman in his basic paper (134), see also (154, 155)

and references therein.

Plugging expressions (2.72) and (2.76) into (2.66), we then have, conditional

on τb, the following formula:

x(T )=xT∫

x(0)=x0

Dx(t) exp
{
−
∫ T

0

(m
2
ẋ2 + V (x)

)
dt

}

=
( m

2πε

)N
2

N−1∏

j=1

dxj

N∏

j=1

exp

{
−m (xj − xj−1)

2

2ε
− V

(
xj + xj−1

2

)
ε

}

= (f(x0)f(xT ))
− 1

4

N−1∏

j=1

dqj

N∏

j=1

[(
m

2πǫj

) 1
2

exp

{
−m (qj − qj−1)

2

2ǫj

−m (∆qj)
4

24ǫj

(
3

(
F ′′(q̄j)

F ′(q̄j)

)2

− 2
F ′′′(q̄j)

F ′(q̄j)

)
− V (q̄j) ǫjF

′(qj)F
′(qj−1)

}]

.
= (f(x0)f(xT ))

− 1
4

N−1∏

j=1

dqj

N∏

j=1

[(
m

2πǫj

) 1
2

exp

{
−m (qj − qj−1)

2

2ǫj

− ǫj
8m

(
3

(
F ′′(q̄j)

F ′(q̄j)

)2

− 2
F ′′′(q̄j)

F ′(q̄j)

)
− V (q̄j) ǫjF

′(qj)F
′(qj−1)

}]
, (2.77)

where the symbol
.
= denotes equivalence as far as use in the path integral is

concerned (156). For more clear derivation about this equivalence I refer to

books (155) and (100).

Recall that expression (2.77) holds conditional on τb. In order to incorporate

the constraint on τ , see (2.70), we insert the following identity into the path

integral (2.77)

[f(x0)f(xT )]
1
2

∫ ∞

0

dτb δ

(∫ τb

0

f [F (q(τ))]dτ − T

)

= [f(x0)f(xT )]
1
2

∫ ΦR+i∞

ΦR−i∞

dΦ

2πi
eΦT

∫ ∞

0

dτb e
−Φ

∫ τb
0 f [F (q(τ))]dτ (2.78)

where Φ is a complex number with real part ΦR and imaginary part ΦI .
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Finally we arrive at the full formula under the Duru-Kleinert transformation:

x(T )=xT∫

x(0)=x0

Dx(t) exp
{
−
∫ T

0

(m
2
ẋ2 + V (x)

)
dt

}

= (F ′(qa)F
′(qb))

1
2

∫ ∞

−∞

dΦI

2π
eΦT

∫ ∞

0

dτb

q(τb)=qb∫

q(0)=qa

Dq(τ)

× exp

{
−
∫ τb

0

[m
2
q̇2 + [V (q) + Φ] (F ′(q))

2
+ Veff

]
dτ

}
, (2.79)

where q̇ = dq
dτ
, and the additional effective potential term due to the transforma-

tion, denoted by Veff , is given by

Veff =
1

8m

[
3

(
F ′′(q)

F ′(q)

)2

− 2
F ′′′(q)

F ′(q)

]
. (2.80)

This effective potential is caused by time slicing effects and it has the form of a

Schwartz-derivative. The coordinate variables x and q are related by expression

(2.68), i.e. x = F (q), thus x0 = F (qa), xT = F (qb). The time variables t and τ

are related by expressions (2.67) and (2.69), i.e. dt = f(x(t))dτ = (F ′[q(τ)])2dτ .

This transformation formula will be used to find a number of path integrals.

The following are three examples.

2.2.2.1 Path integral for the Kratzer potential

A typical example of a path integral solved via the Duru-Kleinert method is the

path integral for the Kratzer potential, given by:

PKRA (xT , T |x0, 0) =
∫

Dx(t) exp
{
−
∫ T

0

(
1

2
ẋ2 +

λ2 − 1
4

2x2
− β

x

)
dt

}
, (2.81)

where λ and β are constants. This potential V (x) =
λ2− 1

4

2x2 −β
x
involves a singularity

1
x
, hence it does not lead to a time-sliced propagator of the Feynman type. The

barrier is removed via a coordinate transformation with

x = F (q) = q2, (2.82)
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and a pseudotime τ satisfying

dt = (F ′(q))2dτ = 4q2dτ. (2.83)

Applying the Duru-Kleinert transformation formula (2.79), we have

x(T )=xT∫

x(0)=x0

Dx(t) exp
{
−
∫ T

0

(
1

2
ẋ2 +

λ2 − 1
4

2x2
− β

x

)
dt

}

= 2 (qaqb)
1
2

∫ ∞

−∞

dΦI

2π
eΦT

∫ ∞

0

dτb exp {4βτb}

×
q(τb)=qb∫

q(0)=qa

Dq(τ) exp
{
−
∫ τb

0

[
q̇2

2
+

(2λ)2 − 1
4

2q2
+ 4Φq2

]
dτ

}
. (2.84)

The remaining path integral is the one for the radial harmonic oscillator. By

using expression (2.63), we obtain the final path integral for the Kratzer potential(
ω =

√
8Φ
)
:

∫
Dx(t) exp

{
−
∫ T

0

(
1

2
ẋ2 +

λ2 − 1
4

2x2
− β

x

)
dt

}

= 2
√
x0xT

∫ ∞

−∞

dΦI

2π
exp {ΦT}

∫ ∞

0

dτb exp {4βτb}

× ω

sinh (ωτb)
exp

{
−ω
2
coth (ωτb) (x0 + xT )

}
I2λ

(
ω
√
x0xT

sinh (ωτb)

)
. (2.85)

2.2.2.2 Path integral for the Morse potential

The path integral for Morse potential reads

PMor (xT , T |x0, 0) =
∫

Dx(t) exp
{
−
∫ T

0

[
m

2
ẋ2 +

V 2
0

2m

(
e2x − 2α ex

)]
dt

}
,

(2.86)

where V0, α, and m are constants. This potential does not involve a singularity

term, but no solution is known via direct time-slicing. Introducing new variables

q and τ with

x = F (q) = ln q2, (2.87)

dt = (F ′(q))
2
dτ =

4

q2
dτ, (2.88)
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and applying the Duru-Kleinert transformation formula (2.79) again, we similarly

have

x(T )=xT∫

x(0)=x0

Dx(t) exp
{
−
∫ T

0

[
m

2
ẋ2 +

V 2
0

2m

(
e2x − 2α ex

)]
dt

}

= 2

(
1

qaqb

) 1
2
∫ ∞

−∞

dΦI

2π
eΦT

∫ ∞

0

dτb exp

{
4V 2

0 α

m
τb

}

×
q(τb)=qb∫

q(0)=qa

Dq(τ) exp
{
−
∫ τb

0

[
m

2
q̇2 +

2V 2
0

m
q2 +

(
4Φ− 1

8m

)
1

q2

]
dτ

}
. (2.89)

Let ξ = 2V0

m
τb, and with the help of (2.63), the propagator of Morse potential is

finally obtained:
∫

Dx(t) exp
{
−
∫ T

0

[
m

2
ẋ2 +

V 2
0

2m

(
e2x − 2α ex

)]
dt

}

=

∫ ∞

−∞

dΦI

2π
exp {ΦT}

∫ ∞

0

dξ exp {2αV0ξ}

× 2m

sinh ξ
exp {−V0 coth ξ (ex0 + exT )} I2√2mΦ

(
2V0e

x0+xT
2

sinh ξ

)
. (2.90)

2.2.2.3 Path integral for the Liouville potential

In the limit α = 0, the path integral for Morse potential reduces to the one for

the Liouville potential:
∫

Dx(t) exp
{
−
∫ T

0

[
m

2
ẋ2 +

V 2
0

2m
e2x
]
dt

}

=

∫ ∞

−∞

dΦI

2π
eΦT

∫ ∞

0

dξ
2m

sinh ξ
e−V0 coth ξ(ex0+exT )I2

√
2mΦ

(
2V0e

x0+xT
2

sinh ξ

)
. (2.91)

Substituting η = 1
sinh ξ

gives

∫ ∞

0

dξ
1

sinh ξ
e−V0 coth ξ(ex0+exT ) I2

√
2mΦ

(
2V0e

x0+xT
2

sinh ξ

)

=

∫ ∞

0

dη√
1 + η2

e−V0(ex0+exT )
√

1+η2I2
√
2mΦ

(
2V0e

x0+xT
2 η

)

= I√2mΦ (V0 e
x<) K√

2mΦ (V0 e
x>) , (2.92)
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where Iν(·) and Kν(·) are the modified Bessel function of the first and the second

kind, respectively, and x>(x<) is the larger (smaller) of two variables x0 and xT .

Since
∫ ∞

0

dl

l
e−(e

2x0+e2xT )l−
V 2
0
4l I√2mΦ

(
2 ex0+xT l

)
= 2I√2mΦ (V0 e

x<) K√
2mΦ (V0 e

x>)

(2.93)

one obtains
∫

Dx(t) exp
{
−
∫ T

0

[
m

2
ẋ2 +

V 2
0

2m
e2x
]
dt

}

=

∫ ∞

−∞

dΦI

2π
eΦTm

∫ ∞

0

dl

l
e−(e

2x0+e2xT )l−
V 2
0
4l I√2mΦ

(
2 ex0+xT l

)
. (2.94)

Expression (2.94) is equivalent to (2.91). But the term including V0 appears only

once in (2.94).

Note that the transformation rule of the measure is

Dy(t) =
∣∣∣∣
∂y

∂x

∣∣∣∣
−1

x,T

Dx(t). (2.95)

Thus for y(t) = 2x(t), we have

∫
Dy(t) exp

{
−
∫ T

0

[
m

2
ẏ2 +

V 2
0

2m
ey
]
dt

}

=
1

2

∫
Dx(t) exp

{
−
∫ T

0

[
4m

2
ẋ2 +

4V 2
0

2(4m)
e2x
]
dt

}

=

∫ ∞

−∞

dΦI

2π
eΦT2m

∫ ∞

0

dl

l
e−(ey0+eyT )l−V 2

0
l I2

√
2mΦ

(
2 e

y0+yT
2 l
)
. (2.96)

2.3 Lévy processes and characteristic functions

In this section, I follow (109). The characteristic function φX of a distribution

of a random variable X with probability density function P(x) is defined as:

φX(u) = E [exp {iux}] =
∫ ∞

−∞
eiuxP(x)dx. (2.97)

It is easy to see from the definition that φ(0) = 1 and |φ(u)| ≤ 1, for all u ∈ R. An

important fact is that the characteristic function always exists and is continuous.
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Moreover, φ determines the probability density function P(x) uniquely. The

moments of X can also easily be derived from φ. Suppose X has a kth moment,

then

E
[
xk
]
= i−k d

kφ(u)

duk

∣∣∣∣
u=0

. (2.98)

If X and Y are two independent random variables with characteristic function

φX and φY , respectively, then the characteristic function of X + Y is given by

φX+Y (u) = φX(u)φY (u). That is, characteristic functions take convolutions into

multiplications. If for every positive integer n, φ(u) is also the nth power of a

characteristic function, we say that the distribution is infinitely divisible.

The definition and some properties of Lévy process are given as follows, see

(109). We can define for every such infinitely divisible distribution a stochastic

process, X = {Xt, t ≥ 0}, called a Lévy process, which starts at zero and has

independent and identical stationary increments such that the distribution of an

increment over [s, s+ t], s, t ≥ 0, i.e. Xt+s −Xs, has (φ(u))
t as its characteristic

function (the increments are ”i.i.d.”, independent and identically distributed).

The cumulant characteristic function ψ(u) = lnφ(u) is often called the char-

acteristic exponent, which satisfies the following Lévy-Khintchine formula:

ψ(u) = iγu− 1

2
σ2u2 +

∫ ∞

−∞

(
eiux − 1− iuxΘ (1− |x|)

)
ν(dx), (2.99)

where γ ∈ R, σ2 ≥ 0, Θ(·) is the Heaviside step function and ν is a measure on

R− 0 with ∫ ∞

−∞
inf
{
1, x2

}
ν(dx) <∞. (2.100)

We say that our infinitely divisible distribution has a triplet of Lévy characteristics

[γ, σ2, ν(dx)]. The measure ν is called the Lévy measure of X . We see from

the Lévy-Khintchine formula that, in general, a Lévy process consists of three

independent parts: a linear deterministic part, a Brownian part and a pure jump

part. The Lévy measure ν(dx) specifies how the jumps occur.

2.3.1 Examples of Lévy processes

In this subsection I list a number of popular Lévy processes that appear in our

later chapters.
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2.3.1.1 The Poisson process

Besides the Brownian motion, the homogeneous Poisson process with with con-

stant intensity λ > 0 is the simplest Lévy process we can think of. It is based on

the Poisson(λ) distribution, which lives on the nonnegative integers {0, 1, 2, · · · }
with the probability density function at point j as:

PPoisson(x = j) = exp {−λ} λ
j

j!
. (2.101)

Thus its characteristic function is given by:

φPoisson(u) =

∞∑

j=0

exp {−λ} λ
j

j!
exp {iuj} = exp {λ (exp {iu} − 1)} . (2.102)

Since the Poisson(λ) distribution is infinitely divisible, we can define a Poisson

process N = {Nt, t ≥ 0} with intensity parameter λ > 0, which starts at zero

and has independent and stationary increments, and where the increment over a

time interval of length s > 0 follows a Poisson(λs) distribution.

2.3.1.2 The compound Poisson process

Suppose N = {Nt, t ≥ 0} is a Poisson process with intensity parameter λ > 0

and that Zk, k = 1, 2, · · · is an i.i.d. sequence of random variables independent

of N with probability density function ̟(z) and characteristic function φZ(u).

Then we say that

Xt =

Nt∑

k=1

Zk, t ≥ 0, (2.103)

is a compound Poisson process. The value of the process at time t, Xt, is the sum

of Nt random numbers Zk. This is the case in the jump diffusion model, where

the number of infrequent price jumps within a time interval is modeled following

a Poisson process with the jump amplitudes being random variables following a

specific distribution. The ordinary Poisson process corresponds to the case where
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2.3 Lévy processes and characteristic functions

Zk = 1, k = 1, 2, · · · . The characteristic function of Xt is given by:

E [exp {iuXt}] = E

[
exp

{
iu

Nt∑

k=1

Zk

}]
=

∞∑

j=0

exp {−λt} (λt)j

j!
(φZ(u))

j

= exp {λt (φZ(u)− 1)}

= exp

{
λt

∫ ∞

−∞

(
eiuz − 1

)
̟(z)dz

}
. (2.104)

2.3.1.3 The CGMY process

The CGMY(C,G,M, Y ) distribution is a four-parameter distribution, with char-

acteristic function, see (85):

φCGMY (u;C,G,M, Y ) = exp
{
CΓ(−Y )

(
(M − iu)Y −MY + (G+ iu)Y −GY

)}
,

(2.105)

where Γ(·) is a gamma function. The CGMY distribution is infinitely divisible,

so we can define the CGMY Lévy process

X(CGMY) =
{
X

(CGMY)
t , t ≥ 0

}
(2.106)

as the process that starts at zero and has independent and stationary distributed

increments, and in which the increment over a time interval of length t follows a

CGMY(tC,G,M, Y ) distribution.

2.3.2 Market incompleteness and the equivalent Martin-

gale measure

These more sophisticated infinitely divisible distributed Lévy processes give rise

to the Lévy market model for risky assets as

S(t) = S0 exp {Xt} . (2.107)

The logreturn ln S(t+s)
S(t)

of such a model follows the distribution of increment of

length s of the Lévy process X .

Recall that in the Black-Scholes world, both the properties of absence of

arbitrage and of market completeness are satisfied. However, studies show that

given a complete market model, the addition of even a small jump risk destroys
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market completeness (11). Thus, in models with jumps, market completeness

is an exception rather than the rule. Except when X is a Poisson process or a

Brownian motion, the Lévy market model is an incomplete model (109).

The market completeness is related to the uniqueness of the equivalent mar-

tingale measures. So in the Lévy market there are many different equivalent

martingale measures to choose. We focus on two ways to find an equivalent

martingale measure.

2.3.2.1 The Esscher transform

Let P (x) be the probability density function of Xt under the original physi-

cal measure P. Following (157, 158) for some real number θ ∈ R such that∫∞
−∞ eθxP (x)dx <∞, we can define a new density

P (θ)(x) =
eθxP (x)∫∞

−∞ eθxP (x)dx
. (2.108)

We then choose θ such that the discounted price process is a martingale, i.e.

E(θ)
[
e−rtS(t)

]
= S0 e

−rt E(θ) [ext ] = S0 e
−rt

∫ ∞

−∞

eθxtP (xt)∫∞
−∞ eθyP (y)dy

dxt

= S0 e
−rt E

P
[
e(θ+1)xt

]

EP [e(θ)xt]
= S0 e

−rt

(
φP (−i(θ + 1))

φP (−iθ)

)t

= S0, (2.109)

where φP = EP
[
eiuX1

]
is the characteristic function of X1 under the physical

measure P. Then from (2.109) we have

exp {r} =
φP (−i(θ + 1))

φP (−iθ) . (2.110)

The solution of this equation, say θ∗ gives us the Esscher transform martingale

measure through the density function P (θ∗)(x). Under this new measure, the

discount price process is a martingale, leading to an arbitrage-free pricing.

2.3.2.2 The mean-correcting martingale measure

Another way to obtain an equivalent martingale measure Q is by mean correcting

the exponential of a Lévy process. Assume we add an independent drift term ̺
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2.3 Lévy processes and characteristic functions

into the original non-drift price model, then the mean corrected characteristic

function of X1 becomes φmc(u) = φP(u) eiu̺. Now we choose the ̺ parameter in

an appropriate way such that the discounted price process becomes a martingale.

That is:

Emc
[
e−rtS(t)

]
= S0 e

−rt Emc [ext ] = S0 e
−rt (φmc(−i))t

= S0 e
−rt
(
φP(−i) e̺

)t
= S0, (2.111)

from which we have

̺ = r − lnφP(−i). (2.112)

Therefore under the mean-correcting martingale measure, the characteristic func-

tion of X1 becomes

φmc(u) = φP(u) eiu̺ = eiur
φP(u)

(φP(−i))iu
. (2.113)

Especially, for the model including a compound Poisson process, see (2.104),

we have the mean correcting drift parameter

̺ = r − λ

∫ ∞

−∞
(ez − 1)̟(z)dz. (2.114)
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3

Path integral approach to the

European option pricing under

the SV jump diffusion models

This chapter is based on the article (144), which is joint work with

Damiaan Lemmens and Jacques Tempère.

As seen in the previous chapter, path integral techniques for the pricing of

financial options are mostly based on models that can be recast in terms of a

Fokker-Planck differential equation (2.11) and that, consequently, neglect jumps

and only describe drift and diffusion. We present in this chapter a method to

adapt formulas for both the path integral propagators and the option prices them-

selves, so that jump processes are taken into account in conjunction with the usual

drift and diffusion terms. In particular, we focus on stochastic volatility (SV)

models, such as the exponential Vašiček model, and extend the pricing formulas

and propagator of this model to incorporate jump diffusion with a given jump size

distribution. This model is of importance to include non-Gaussian fluctuations

beyond the Black-Scholes model, and moreover yields a log-normal distribution

of the volatilities, in agreement with results from superstatistical analysis.

More explicitly, in this chapter we will present a method that makes it possible

to extend the Fourier space propagator of a general SV model to the Fourier space

propagator of that SV model where an arbitrary jump process has been added to

73



3. PATH INTEGRAL APPROACH TO THE EUROPEAN OPTION
PRICING UNDER THE SV JUMP DIFFUSION MODELS

the asset price dynamics. Thereby we contribute to the existing work on Fourier

transform methods applied to option pricing. For example in (84) jump diffusions

are treated and prices for some exotic options are obtained. In (159) the Heston

model is extended with a jump process for the asset price. In (122) the Heston

model is extended with arbitrary jump processes in both the asset price and the

volatility process. As an application, we investigate a model where we assume

that the stochastic volatility follows an exponential Vašiček model (15, 160).

To the best of our knowledge, for this model no closed form formulas for the

propagator or the vanilla option price exist yet. Making use of path integral

methods (100, 115, 123, 124) we derive approximative closed form formulas for

the propagator and for vanilla option prices for this model. Using Monte Carlo

(MC) simulations we specify parameter ranges for which the approximation is

valid. Using the above mentioned method we extend the propagator of this model

to the propagator of this model including jumps in the asset price which leads

also to closed form pricing formulas in this extended model. These last results

are checked with MC simulations.

This chapter is organized as follows. In section 3.1 we present the method

for extending the propagator of a general SV model to the propagator of that

model with jumps in the asset price. In section 3.2, we present an approximative

propagator for jump diffusion models where the volatility is assumed to follow

an exponential Vašiček model. Section 3.3 is devoted to European vanilla option

pricing, as well as comparisons with MC simulations. In this section we also give

parameter ranges for the approximation made in the exponential Vašiček model

to be valid. And finally a conclusion is given in section 3.4.

3.1 General Propagator Formulas

3.1.1 Arbitrary SV models

We assume that the asset price process S(t) follows the Black-Scholes stochastic

differential equation (SDE):

dS(t) = rS(t)dt+ σ(t)S(t)dW1(t), (3.1)
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3.1 General Propagator Formulas

in which r is the constant interest rate and the volatility σ(t) is behaving stochas-

tically over time, following an arbitrary stochastic process:

dσ(t) = A(t, σ(t))dt+B(t, σ(t))dW2(t). (3.2)

Here and in the rest of the chapter Wj = {Wj(t), t ≥ 0} (j = 1, 2) are two

correlated Wiener processes such that Cov[ dW1(t) dW2(t) ] = ρ dt. Equation

(3.1) is commonly expressed as a function of the logreturn x(t) = lnS(t), which

leads to a new SDE:

dx(t) =

(
r − 1

2
σ2(t)

)
dt+ σ(t)dW1(t). (3.3)

To deal with the pricing problem, we need to solve for the propagator of the

joint dynamics of x(t) and σ(t). The propagator, denoted by P(xT , σT , T | x0, σ0, 0),
describes the probability that x has the value xT and σ has the value σT at a

later time T given the initial values x0 and σ0 respectively at time 0. It satisfies

the following Fokker-Planck equation, see (2.12):

∂P
∂T

=
∂

∂xT

[
−(r − 1

2
σ2
T )P

]
+

1

2

∂2

∂x2T

[
σ2
TP
]
+

∂

∂σT
[−A(T, σT )P]

+
1

2

∂2

∂σ2
T

[
B2(T, σT )P

]
+ ρ

∂2

∂xT ∂σT
[σTB(T, σT )P] , (3.4)

with initial condition

P(xT , σT , 0| x0, σ0, 0) = δ(xT − x0) δ(σT − σ0). (3.5)

3.1.2 SV jump diffusion models

A general SV jump diffusion model is obtained by adding an arbitrary jump

process into the asset price process (see for instance (117)). That is, equation

(3.1) becomes

dS(t) = µS(t)dt+ σ(t)S(t)dW1(t) +
(
eJ − 1

)
S(t)dN(t), (3.6)

where N = {N(t), t ≥ 0} is an independent Poisson process with intensity pa-

rameter λ > 0, i.e. E[N(t) ] = λ t. The random variable J with probability

density ̟(J) describes the magnitude of the jump when it occurs.
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Here the risk-neutral drift µ = r−λmj is no longer the constant interest rate

r, rather it is adjusted by a compensator term λmj, with mj the expectation

value of eJ − 1:

mj = E
[
eJ − 1

]
=

∫ ∞

−∞
(eJ − 1)̟(J)dJ, (3.7)

so that the asset price process constitutes a martingale under the risk-neutral

measure, see expression (2.114). And the logreturn x(t) follows a new SDE:

dx(t) =

(
r − λmj − 1

2
σ2(t)

)
dt+ σ(t)dW1(t) + JdN(t). (3.8)

Given the same arbitrary SV process (3.2), the new propagator of this model,

denoted by PJ (xT , σT , T |x0, σ0, 0), satisfies the new Kolmogorov forward equa-

tion, see (2.6) or (147):

∂PJ

∂T
=

∂

∂xT

[
−
(
r − λmj − 1

2
σ2
T

)
PJ

]
+

1

2

∂2

∂x2T

[
σ2
TPJ

]
+

∂

∂σT
[−A(T, σT )PJ ]

+
1

2

∂2

∂σ2
T

[
B2(T, σT )PJ

]
+ ρ

∂2

∂xT ∂σT
[σTB(T, σT )PJ ]

+λ

∫ +∞

−∞
[PJ (xT − J)− PJ(xT )]̟(J)dJ. (3.9)

If we write the propagator of the arbitrary SV model as a Fourier integral:

P(xT , σT , T |x0, σ0, 0) =
∫ ∞

−∞

dp

2π
eip(xT−x0)F (σT , σ0, r, p, T ), (3.10)

then the propagator of arbitrary SV jump diffusion models can be written as

PJ (xT , σT , T |x0, σ0, 0) =
∫ ∞

−∞

dp

2π
eip(xT−x0)F (σT , σ0, r, p, T ) e

U(p,T ), (3.11)

where

U(p, T ) = λT

∫ ∞

−∞

[
e−ipJ − 1 + ip

(
eJ − 1

)]
̟(J)dJ. (3.12)

The proof of this statement is given in the Appendix 3.5. Note the relation

between propagators (3.10) and (3.11). The only difference between them is the

factor eU(p,T ).

If this is applied to the propagator of the Heston model (115), the propagator

of the Heston model with jumps is obtained. This propagator is similar as the one
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derived in Ref. (122). Furthermore the above described method can be combined

with the method described in Ref. (115) for finding the propagator of a model

including both SV and stochastic interest rate. In particular extending the result

of Ref. (115) for the Heston model with stochastic interest rate to include jumps

again only involves multiplying the propagator with eU(p,T ) as in (3.11). In the

next section, as an example of the method of this section the volatility of the

asset price will be assumed to follow an exponential Vašiček model.

3.2 Exponential Vašiček SV model with price

jumps

The Heston model assumes that the squared volatility follows a CIR process

which has a gamma distribution as stationary distribution. This assumption

should be compared with market data. Attempts to reconstruct the stationary

probability distribution of volatility from the time series data (among others,

see Refs. (15, 35, 160)) generally agree that the central part of the stationary

volatility distribution is better described by a log-normal distribution.

Reference (110) finds that due to the different structure in path-behavior be-

tween different models, the resulting exotic prices can vary significantly. So an

investigation into an alternative model which fits market data better is meaning-

ful. Furthermore the model will serve here both to demonstrate the use of path

integral methods in finance and to illustrate the method of section 3.1.

When σ(t) is assumed to be an exponential Vašiček process (used for example

by Chesney and Scott (161)), this results in the following two SDEs

dS(t) = rS(t) dt+ σ(t)S dW1(t), (3.13)

dσ(t) = σ(t)

(
β [ā− ln σ(t)] +

1

2
γ2
)
dt+ γσ(t)dW2(t). (3.14)

This model has a log-normal stationary volatility distribution and we will denote

it by the LN model, the propagator for this model will be denoted by PLN . In

this model ln σ(t) is a mean reverting process, with β the spring constant of the

force that attracts the logarithm of asset volatility to its mean reversion level ā.

Again γ is the volatility of the asset volatility. As far as we know, there is no
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closed form option pricing formula for this model. In this section, we will give an

approximation for the propagator of this model. In the next section we will give

an approximation for the vanilla option price and determine a parameter range

for which the approximation is good. The derivation starts with the following

substitutions:

y(t) = x(t)− ρ

γ
ez(t) − rt, (3.15)

z(t) = ln σ(t), (3.16)

where x(t) is defined as before. This leads to two uncorrelated equations:

dy =

[
−1

2
e2z − ρ

(
β(ā− z)

γ
+
γ

2

)
ez
]
dt+ ez

√
1− ρ2dW3(t), (3.17)

dz = β (ā− z) dt+ γdW4(t), (3.18)

where W3 and W4 are two uncorrelated Wiener processes. Since these equations

are uncorrelated, the propagator PLN(yT , zT | y0, z0) is given by the following path

integral

PLN(yT , zT | y0, z0) =
∫

Dz
(∫

Dye−
∫ T
0 L[ẏ,y,z,t]dt

)
e−

∫ T
0 L[ż,z,t]dt, (3.19)

where the Lagrangians are given by:

L[ẏ, y, z, t] =

[
ẏ + 1

2
e2z + ρ

(
β(ā−z)

γ
+ γ

2

)
ez
]2

2(1− ρ2) e2z
, (3.20)

L[ż, z, t] =
[ż − β (ā− z)]2

2γ2
− β

2
. (3.21)

The first step in the evaluation of (3.19) is the integration over all y paths.

Because the action is quadratic in y, this path integration can be done analytically

and yields

PLN (yT , zT | y0, z0) =

∫
Dz e−

∫ T
0 L[ż,z,t]dt 1√

2π(1− ρ2)
∫ T

0
e2zdt

× e
− [

yT−y0+
1
2

∫T
0 e2zdt+ρ

∫T
0 (β(ā−z)

γ +
γ
2 )ezdt]

2

2(1−ρ2)
∫T
0 e2zdt . (3.22)

78
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Note that the probability to arrive in (yT , zT ) only depends on the average value

of the volatility along the path z(t), in agreement with Ref. (161). With the help

of a Fourier transform, we rewrite the preceding expression as follows

PLN (yT , zT | y0, z0) =
∫ +∞

−∞

dp

2π
eip(yT−y0)

∫
Dz e−

∫ T
0

L[ż,z,t]dt

× exp

{
−(1− ρ2)p2 − ip

2

∫ T

0

e2zdt+ ipρ

∫ T

0

(
β(ā− z)

γ
+
γ

2

)
ezdt

}
. (3.23)

If ζ(t) = z(t) − ā, then ζ(t) is close to zero because z(t) is a mean reverting

process with mean reversion level ā, This motivates the approximation eζ ≈ 1 +

ζ+ ζ2

2
. This type of approximation is akin to expanding the path integral around

the saddle point up to second order in the fluctuations, as in the Nozieres-Schmitt-

Rink formalism (162) extended to path-integration by Sa de Melo, Randeria and

Engelbrecht (163). Now we can work out the remaining path integral in (3.23)

∫
Dz e−

∫ T
0

[
L[ż,z,t]+ (1−ρ2)p2−ip

2
e2z−ipρ(β(ā−z)

γ
+ γ

2 ) e
z

]
dt

≈
∫

Dζ e−
∫ T
0

{
[ζ̇+βζ]2

2γ2
−β

2
+A

2
e2ζ+Bβζ eζ−Bγ2

2
eζ
}
dt

= e

ω

[

(

ζT +
γ2M

ω2

)2
−
(

ζ0+
γ2M

ω2

)2
]

−β(ζ2T −ζ20)
2γ2

+

[
β−ω−A+Bγ2

2
+ γ2M2

2ω2

]
T

×
√

ω

πγ2(1− e−2ωT )
e
−

ω

[(

ζT +
γ2M

ω2

)

−
(

ζ0+
γ2M

ω2

)

e−ωT
]2

γ2(1−e−2ωT ) , (3.24)

where

A =
[
(1− ρ2)p2 − ip

]
e2ā, (3.25)

B = ipρ
1

γ
eā, (3.26)

ω =

√
β2 + 2γ2

(
A+Bβ − Bγ2

4

)
, (3.27)

M = A+Bβ − Bγ2

2
. (3.28)

We see that also the integral over the final value ζT can be done, yielding the
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Figure 3.1: Propagator P(xT |x0, ζ0) as a function of xT −x0. The full curves are

our analytical results, while the symbols represent Monte Carlo simulations. T =

0.25y, ρ = 0 (crosses). T = 1y, ρ = -0.5 (circles). T = 5y, ρ = 0.5 (triangles). For

the other parameters the following values are used for the three figures: β = 5, ā =

−1.6, γ = 0.5, r = 0.015.

marginal probability distribution:

PLN (xT |x0, ζ0) =
∫ +∞

−∞

dp

2π
eip[xT−x0−rT ]+B(eζ0−1)

× e

βζ20−ω

(

ζ0+
γ2M

ω2

)2

2γ2
+

[
β−ω−A+Bγ2

2
+ γ2M2

2ω2

]
T e

Ξ

γ2[2ω+(β−ω+Bγ2)(1−e−2ωT )]

√
1 + 1−e−2ωT

2ω
[β − ω +Bγ2]

, (3.29)

where

Ξ = ω

[
2Bγ2N + ω(N − γ2M

ω2
)2 − (β +Bγ2)N2

]

+(1− e−2ωT )

[
B2γ4

2
− Bγ4M

ω
+

(β +Bγ2)γ4M2

2ω3

]
, (3.30)

N =
γ2M

ω2
− (ζ0 +

γ2M

ω2
)e−ωT . (3.31)
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3.2 Exponential Vašiček SV model with price jumps

This approximative propagator was checked with MC simulations because of

the lack of a closed form solution in literature. Figure 3.1 shows the propagators

as a function of xT − x0, i.e., ln
ST

S0
. The full curves come from expression (3.29),

while the marked ones are MC simulation results, with time to maturity ranging

from three months to five years, and correlation coefficients 0, −0.5 and 0.5

respectively. Here and in the rest of this chapter we will set σ0 equal to the long

time average of the volatility:

σ0 = lim
t→∞

E [σ(t)] = exp

{
ā+

γ2

4β

}
, (3.32)

which seems a reasonable choice. For these MC simulations 5,000,000 sample

paths are used.

It is seen that our analytical results fit the MC simulations quite well. Actu-

ally, using the parameters of Figure 3.1, and putting expression (3.29) for those

three cases into the left hand side of the Kolmogorov backward equation, see

(2.7):

− ∂P
∂T

+

[
r − 1

2
e2(ζ0+ā)

]
∂P
∂x0

+
1

2
e2(ζ0+ā)∂

2P
∂x20

−βζ0
∂P
∂ζ0

+
1

2
γ2
∂2P
∂ζ20

+ ρ eζ0+āγ
∂2P
∂x0ζ0

= 0, (3.33)

we find that, for different xT values, the absolute deviations are all in the order of

10−7 or even smaller. In section 3.3.2 we come back to the discussion concerning

the goodness of our approximation. According to the discussion of Section 3.1,

an extension of this model to the one with price jumps is straightforward: the

new marginal probability distribution is:

PLNJ (xT |0, ζ0) =

∫ +∞

−∞

dp

2π
eip[xT−x0−rT ]+B(eζ0−1)

×e
βζ20−ω

(

ζ0+
γ2M

ω2

)2

2γ2
+

[
β−ω−A+Bγ2

2
+ γ2M2

2ω2

]
T

× e
Ξ

γ2[2ω+(β−ω+Bγ2)(1−e−2ωT )]

√
1 + 1−e−2ωT

2ω
[β − ω +Bγ2]

×eλT
∫+∞
−∞ [e−ipJ−1+ip(eJ−1)]̟(J)dJ , (3.34)

where the same notations as in Eq.(3.29) are used.
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3.3 European Vanilla Option Pricing

3.3.1 General Pricing Formulas

If we denote the general marginal propagator by

P(xT |x0, σ0) =
∫ ∞

−∞

dp

2π
eip(xT−x0−rT )F (p, T ) eU(p,T ), (3.35)

then the option pricing formula of a vanilla call option C with expiration date T

and strike price K is given by the discounted expectation value of the payoff:

C = e−rT

∫ ∞

−∞
max (exT −K, 0) P(xT |x0, σ0)dxT

=
G(0)
2

+ i

∫ ∞

−∞

dp

2π

e
ip
(
ln K

S0
−rT

)

G(p)
p

, (3.36)

where

G(p) = S0F (p+ i, T ) eU(p+i,T ) −K e−rTF (p, T ) eU(p,T ). (3.37)

Here we have followed the derivation outlined in reference (164). In particular

for the LN model F (p, T ) equals:

F (p, T ) = e

βζ20−ω

(

ζ0+
γ2M

ω2

)2

2γ2
+

[
β−ω−A+Bγ2

2
+ γ2M2

2ω2

]
T

×e
B(eζ0−1)+ Ξ

γ2[2ω+(β−ω+Bγ2)(1−e−2ωT )]

√
1 + 1−e−2ωT

2ω
[β − ω +Bγ2]

. (3.38)

At this stage one needs to specify the probability density function for the

jump sizes. Merton (81) and Kou (82) proposed a normal distributed jump

size, denoted by ̟M(J), and a asymmetric double exponential distributed one,

denoted by ̟K(J), respectively:

̟M(J) =
1√
2πδ2

e−
(J−ν)2

2δ2 , (3.39)

̟K(J) = p+
1

η+
e
− 1

η+
J
Θ (J) + p−

1

η−
e

1
η−

J
Θ (−J) . (3.40)

For the Merton model ν is the mean jump size and δ is the standard deviation

of the jump size. For Kou’s model 0 < η+ < 1, η− > 0 are means of positive and
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negative jumps respectively. p+ and p− represent the probabilities of positive and

negative jumps, p+ > 0, p− > 0, p++ p− = 1 and Θ is the Heaviside function.

According to expression (3.12), it is easy to derive their corresponding U(p, T )’s:

UM(p, T ) = λT
[
e−ipν− 1

2
δ2p2 − 1 + ip

(
eν+

1
2
δ2 − 1

)]
, (3.41)

UK(p, T ) = λT

[
p+

1 + ipη+
+

p−
1− ipη−

− 1 + ip

(
p+

1− η+
+

p−
1 + η−

− 1

)]
.

(3.42)

Using expression (3.38) and results (3.41), (3.42) in formulas (3.36), (3.37)

allows to find the price of the vanilla call option for the exponential Vašiček

stochastic volatility with price jumps model.
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Figure 3.2: Comparison of propagators of Kou’s jump diffusion model (Upper red

curves), the LN SV model (Bottom red curves) and the corresponding Gaussian

distributions with the same mean and variance (Green curves). Time to maturity

is 1/250 year, 1 year and 5 years respectively from left panels to right panels.

Parameter values used here are: r = 0.15, λ = 10, p+ = 0.3, p− = 0.7, η+ = 0.02,

η− = 0.04, ā = −1.6, γ = 0.5, σ0 = 0.2, ρ = −0.5.

As mentioned in chapter 1, jumps make it possible to reproduce strong skews

and smiles for the implied volatility surface at short maturities while stochastic

volatility provides for the calibration of the term structure, especially for long-

term smiles (11, 13). Figure 3.2 illustrates these effects. Only a combination of

the SV and jumps can calibrate the whole implied volatility surface well.
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PRICING UNDER THE SV JUMP DIFFUSION MODELS

3.3.2 Monte Carlo simulations

To test our analytical pricing formula for the LN model, we focus on the param-

eters that most strongly influence the approximation. To satisfy the assumption

that quadratic fluctuations around the mean reversion level ā capture the behav-

ior of the volatility well, the mean reversion speed β and the volatility γ of asset

volatility are crucial. The substitution τ = γ2t transforms expression (3.18) into

dz(τ) =
β

γ2
[ā− z(τ)] dτ + dW4(τ), (3.43)

showing that it is actually the parameter c = β
γ2 which determines whether the

approximation will be good. For bigger c values the approximation z (t) ≈ ā will

be better.

As the correlation parameter ρ controls the skewness of spot returns, we will

also consider the typical negative and positive skewed cases by taking values −0.5,

0 and 0.5 for this parameter. On the other hand, the constant interest rate r and

the mean reversion level ā do not influence the accuracy of the result a lot, and we

just assume them to be constant values: r = 0.015 and ā = −1.6 ≈ ln 0.2. These

two parameters seem to be quite reasonable for the present European options.

To get an idea of what is a reasonable range for c, and since calibration values

for the LN model are not available, we took calibration values from the literature

(76, 165) for the Heston model and fitted our model to the volatility distribution

of the Heston model with those parameters. For (76) we obtained c ≈ 7 and for

(165) c ≈ 18. Therefore in Table 4.1 we used values for β and γ such that c

ranges from 4.08 up to 25. We calculated prices for S0 = 100 and K = 90, 100

and 110.

The comparison of our analytical solution with the MC solution for a Euro-

pean call option in the LN model as shown in Table 4.1 suggests that for the

above mentioned parameter values the relative errors are less than 3% and most

of the time even less than 1%, which is acceptable when we take the typical

bid-ask spread for European options into account. Here each MC simulation

runs 20,000,000 times. For the basic LN model we can conclude that we found

an approximation valid up to 3% for parameter values c > 7 (We only checked
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3.3 European Vanilla Option Pricing

Table 3.1: Comparison of our approximative analytic pricing result and the MC simulation value for the LN model.

Parameter values

Relative error

K ρ γ β MC value(a) Approx.(b) (b - a)/a (%)

90 -0.5 1.2 7 15.3947 15.2533 -0.9185

8 15.2979 15.1731 -0.8166

10 15.1630 15.0588 -0.6869

0.8 5 15.1079 14.9995 -0.7180

6 15.0307 14.9337 -0.6475

7 14.9776 14.8855 -0.6151

0 0.7 2 15.2486 15.1982 -0.3307

3 15.0259 15.0024 -0.1564

4 14.9190 14.8992 -0.1328

0.5 1 15.2061 15.1576 -0.3187

2 14.9030 14.8882 -0.0996

3 14.7951 14.7865 -0.0577

0.5 0.3 1 14.6051 14.5035 -0.6953

1.5 14.5524 14.4815 -0.4872

2 14.5354 14.4775 -0.3986

0.2 0.5 14.6015 14.5398 -0.4192

0.75 14.5609 14.5098 -0.3519

1 14.5332 14.4981 -0.2418

100 -0.5 1.2 7 9.4541 9.2862 -1.7762

8 9.3720 9.2197 -1.6253

10 9.2599 9.1274 -1.4310

0.8 5 9.1537 9.0346 -1.3006

6 9.0950 8.9869 -1.1886

7 9.0557 8.9534 -1.1291

0 0.7 2 9.5394 9.4975 -0.4395

3 9.2906 9.2704 -0.2174

4 9.1682 9.1513 -0.1840

0.5 1 9.4915 9.4493 -0.4480

2 9.1445 9.1328 -0.1285

3 9.0235 9.0155 -0.0887

0.5 0.3 1 9.0168 8.9081 -1.2051

1.5 8.9302 8.8522 -0.8737

2 8.8886 8.8246 -0.7195

0.2 0.5 8.9655 8.9023 -0.7048

0.75 8.9039 8.8509 -0.5955

1 8.8628 8.8247 -0.4295

110 -0.5 1.2 7 5.2749 5.1365 -2.6237

8 5.2209 5.0916 -2.4758

10 5.1507 5.0335 -2.2756

0.8 5 5.0170 4.9219 -1.8947

6 4.9877 4.8986 -1.7862

7 4.9709 4.8849 -1.7307

0 0.7 2 5.6480 5.5989 -0.8694

3 5.3942 5.3705 -0.4394

4 5.2684 5.2503 -0.3429

0.5 1 5.5967 5.5510 -0.8173

2 5.2475 5.2343 -0.2519

3 5.1253 5.1160 -0.1821

0.5 0.3 1 5.3151 5.2095 -1.9860

1.5 5.2048 5.1289 -1.4589

2 5.1427 5.0812 -1.1966

0.2 0.5 5.2170 5.1576 -1.1380

0.75 5.1449 5.0954 -0.9620

1 5.0960 5.0595 -0.7163

For the remaining parameters the values S0 = 100, r = 0.015, ā = −1.6 and T = 1 are used here.
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values of c < 25, but for bigger c the approximation will only become better),

−0.5 < ρ < 0.5, T < 1 and 0.9 < K/S0 < 1.1.

Finally we consider the vanilla call option pricing in LN model combined with

Merton’s and Kou’s jumps, respectively. Since the jump process is independent

from the approximation we made, we do not investigate the goodness of our

approximation as thoroughly as in the basic LN model (assuming that, if it is

good there it will be good here). Figure 3.3 illustrates our analytical results

(curves) and the MC simulations (crosses), as well as the relative errors in percent.

Each MC simulation runs 300,000,000 times. These results suggest that the

approximation error is typically less than 2%. And due to the fact that whenever

the degree of moneyness (the ratio of the strike price K to the initial asset price

S0) is relatively high, the average bid-ask spread tends to be relatively high for

call options (166), our analytical results can serve as an easy way to get a quick

estimate that is normally accurate enough for many practical applications.
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Figure 3.3: The upper figures show European call option prices in the LN model

(left), the LN model with Merton’s jump (middle) and the LN model with Kou’s

jump (right). The red curves are our analytical results and the black crosses are

the Monte Carlo simulations. The corresponding lower figures give the relative

deviations of our analytical results from the MC simulations in the unit of percent.

Parameter values S0 = 100, r = 0.015, T = 1, β = 5, ā = −1.6, γ = 0.5, ρ = −0.5,

λ = 10, ν = −0.01, δ = 0.03, p+ = 0.3, p− = 0.7, η+ = 0.02, η− = 0.04 are used

here.
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3.4 Conclusion

3.4 Conclusion

We presented a method which makes it possible to extend the propagator for a

general SV model to the propagator of that SV model extended with an arbitrary

jump process in the asset price evolution. This procedure, applied to the Heston

model, leads to similar results as those obtained in reference (122), which gives

us confidence in the present treatment. The stationary volatility distribution

of the Heston model, however, does not correspond to the observed log-normal

distribution (15, 35, 160) in the market. The exponential Vašiček model does have

the log-normal distribution as its stationary distribution. Therefore we used this

model for the volatility to illustrate the method presented in section 3.1. For

this model no closed form pricing formulas for the propagator or vanilla option

prices exist. We first derive approximative formulas for the propagator and vanilla

option prices for this model without jumps, using path integral methods. This

result was checked with a Monte Carlo simulation, providing a parameter range

for which the approximation is valid. We specified a parameter range for which

our pricing formulas are accurate to within 3%. They become more accurate in

the limit β
γ2 >> 1 where β is the mean reversion rate and γ is the volatility of

the volatility. Finally we extended this result to the case where the asset price

evolution contains jumps.

3.5 Appendix: Derivation of equations (3.11),

(3.12).

The proof starts by assuming that a solution for PJ (xT , σT , T |x0, σ0, 0) of the

form (3.11) exists. Below we show that this assumption indeed leads to a solution,

which in turn justifies the assumption.

Since
∫ +∞
−∞

dp
2π
eip(xT−x0) ∂F (σT ,σ0,r,p,T )

∂T
equals the right hand side of equation (3.4)
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and the derivative operators ∂
∂xT

and ∂
∂σT

have no effect on eU(p,T ), it follows that:

∂

∂xT

[
−
(
r − 1

2
σ2
T

)
PJ

]
+

1

2

∂2

∂x2T

[
σ2
TPJ

]
+

∂

∂σT
[−A(T, σT )PJ ]

+
1

2

∂2

∂σ2
T

[
B2(T, σT )PJ

]
+ ρ

∂2

∂xT ∂σT
[σTB(T, σT )PJ ]

=

∫ +∞

−∞

dp

2π
eip(xT−x0)

∂F (σT , σ0, r, p, T )

∂T
eU(p,T ). (3.44)

Adding the term λmj ∂
∂xT

PJ , which is given by

λ

∫ +∞

−∞

dp

2π
ip eip(xT−x0)F (σT , σ0, r, p, T ) e

U(p,T )

∫ +∞

−∞
(eJ − 1)̟(J)dJ, (3.45)

as well as the term λ
∫ +∞
−∞ [PJ(xT − J)− PJ(xT )]̟(J)dJ , which is given by

λ

∫ +∞

−∞

dp

2π
eip(xT−x0)F (σT , σ0, r, p, T ) e

U(p,T )

∫ +∞

−∞

(
e−ipJ − 1

)
̟(J)dJ, (3.46)

the right hand side of Eq.(3.9) is expressed as

∫ +∞

−∞

dp

2π
eip(xT−x0)

∂F

∂T
eU(p,T )

+

∫ +∞

−∞

dp

2π
eip(xT−x0)F eU(p,T )λ

∫ +∞

−∞

[
e−ipJ − 1 + ip(eJ − 1)

]
̟(J)dJ. (3.47)

This, of course should equal the left hand side of Eq.(3.9), which is given by

∫ +∞

−∞

dp

2π
eip(xT−x0)

∂F

∂T
eU(p,T ) +

∫ +∞

−∞

dp

2π
eip(xT−x0)F

∂eU(p,T )

∂T
. (3.48)

Expression (3.47) equals (3.48) when

∂U(p, T )

∂T
= λ

∫ +∞

−∞

[
e−ipJ − 1 + ip

(
eJ − 1

)]
̟(J)dJ, (3.49)

from which the result (3.12) for U(p, T ) follows.
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4

Path integral approach to the

pricing of timer options with the

Duru-Kleinert transformation

This chapter is based on the article (145), which is joint work with

Damiaan Lemmens and Jacques Tempère.

In this chapter, the Duru-Kleinert transformation method, see section 2.2.2,

is performed to price timer options under the stochastic volatility (SV) models.

Timer options, first introduced for sale by Société Générale Corporate and

Investment Banking (SG CIB) in 2007 (167, 168), are relatively new products in

the equity volatility market. The basic principle of this option is similar to the

European vanilla option, with the key distinction being the uncertain expiration

date. Rather than a fixed maturity time that is set at inception for the vanilla

option, the expiry date of the timer option is a stopping time equals to the time

needed for the realized variance of the underlying asset to reach a pre-specified

level.

Stopping times, sometimes formulated as first passage or hitting times, have

applications in various research fields. Traditional applications of stopping times

in physics are for example the situation where internal fluctuations induce the

current of an electric circuit to attain a critical value (169, 170) and Kramer’s
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problem (171, 172). Recent applications of stopping times can be found in neu-

roscience, where a neuron emits a signal when its membrane voltage exceeds a

certain threshold (173, 174, 175); in the research field of quantum hitting times

of Markov chains and hitting times of quantum random walks (176, 177); and in

econophysics (178, 179). For an introduction to first passage problems and an

overview of possible applications see (180, 181).

When the expiration date is only determined by a stopping time that can

theoretically become infinite the option is called a perpetual timer option. Ac-

cording to Hawkins and Krol (182), it is usual practice to specify a maximum

expiry for the timer option, at which point the option expires in the same manner

as vanilla options, to prevent excessively long maturity times. These options are

called finite time-horizon timer options.

Timer options were first proposed in literature by Neuberger (183) as ”mileage”

options in 1990. In the middle 1990s, Bick emphasized the application of dynamic

trading strategies with timer options to portfolio insurance as well as to hedg-

ing strategies (184). Recently, after timer options were traded in the market,

the amount of research concerning the pricing of perpetual timer options has in-

creased. Li studied the pricing and hedging under the Heston SV model (185).

Bernard and Cui proposed a fast and accurate almost-exact simulation method in

general SV models (186). Saunders developed an asymptotic approximation un-

der fast mean-reverting SV models (187). We contribute to the existing literature

by presenting analytical pricing results for both perpetual and finite time-horizon

timer options for a general stochastic process. These general results are then ap-

plied to determine explicit closed-form formulas for the 3/2 (188) and the Heston

(76) SV model. Especially for timer options it is relevant to investigate different

SV models, since the price of these options is particularly sensitive to the behavior

of the volatility.

We derive these results in the path integral framework. To derive our general

results we will rely on the Duru-Kleinert space-time substitution method used by

Duru and Kleinert to treat the hydrogen atom with path integrals (100, 153, 189),

and explained in more detail in the chapter on mathematical preliminaries, section

2.2.2. This method has recently been used in finance by Decamps and De Schep-

per to derive asymptotic formulas for Black-Scholes implied volatilities (190).
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4.1 General pricing formula of timer options

The Duru-Kleinert space-time substitution approach serves here to translate the

original stochastic processes to new ones behaving in a stochastic time horizon.

Under this new time horizon, the random expiry time is expressed as a functional

of the transformed SV. Then a method related to variational perturbation theory

(100, 191) is applied to derive the joint propagator of the transformed SV process

and the stopping time process in the new time horizon. Based on these transition

probability density functions, we arrive at the pricing formulas for the perpetual

timer option. In addition, we obtain pricing formulas for the finite time-horizon

timer option by deriving the joint propagator of the log-return and the realized

variance process.

For SV processes, we start by emphasizing the 3/2 SV model (188, 192, 193)

not only in view of its analytical tractability but also because of the support

from empirical evidence (194, 195, 196). The results for this model are obtained

by making a connection with the Morse potential. Next we treat the Heston

SV model (76) by relating it to the Kratzer potential. This leads to closed-

form pricing formulas for perpetual and finite time-horizon timer options for

both models. The result for the perpetual timer option under the Heston model

corresponds to the one found by Li (185), confirming our approach.

This chapter is organized as follows. In section 4.1 we present general pricing

formulas for perpetual and finite time-horizon timer call options under general

SV models. Section 5.4.6 is devoted to deriving closed-form formulas for the 3/2

and the Heston SV model. In section 4.3 the closed-form formulas are compared

with Monte Carlo simulations and some properties of timer options are discussed.

And finally a conclusion is given in section 4.4.

4.1 General pricing formula of timer options

4.1.1 Model description

For conciseness of representation, in this chapter we only consider option pricing

in a risk-neutral world. Moreover we assume that the initial time of the option is

the current time t = 0 because the generalization to the case of a forward-start

option is straightforward.

91
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Let {S(t)} denote the underlying asset price process following a Black-Scholes

type stochastic differential equation (SDE), with a variance v(t), which is stochas-

tic variable itself. Conventionally, the time evolution of S(t) is represented in

terms of the log-return x(t) = ln S(t)
S0

, with S0 = S(0). The realization of a

stochastic process Z at a special time s will be denoted by Zs, and we will use

this notation throughout this chapter. After the transformation to the log-return,

the system is governed by the SDEs:

dx(t) =

(
r − v(t)

2

)
dt+

√
v(t)

(√
1− ρ2dW1(t) + ρdW2(t)

)
, (4.1)

dv(t) = α(v)dt+ β(v)dW2(t), (4.2)

where r is the constant risk-neutral interest rate, W1(t) and W2(t) are two inde-

pendent Wiener processes, ρ ∈ [−1, 1] is the correlation coefficient between x(t)

and its variance v(t).

Now we introduce the notion of the realized variance, which is a princi-

pal ingredient of timer options. In practice the realized variance is given by
N∑

n=1

(
xtn − xtn−1

)2
, where the set of evaluation times tn are for example daily clos-

ing times. In the literature (see (122, 185)), the realized variance of the underlying

asset during a time period [0, T ], denoted by IT , is usually approximated by:

IT =

∫ T

0

v(t)dt. (4.3)

Also in this chapter equation (4.3) will be used as the definition of the realized

variance. Figure 4.1 shows samples of the time evolution of underlying asset

processes S(t) (top row), their corresponding variance processes v(t) (middle

row) and realized variances (bottom row). The left column is for perpetual timer

options, while the right column is for finite time-horizon timer options (right

column) with the maximum expiration time being 1.5. The pre-specified variance

budget is assumed to be 0.875.

4.1.2 Pricing of perpetual timer options

The price of a perpetual timer call option with strike price K can be expressed

as the expectation of the discounted payoff:

CPerp = E
[
e−rTB max (S0 e

xTB −K, 0)
]
. (4.4)
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Figure 4.1: Samples of the time evolution of underlying asset processes S(t)

(top row), their corresponding variance processes v(t) (middle row) and realized

variances (bottom row). The left column is for perpetual timer options, while

the right column is for finite time-horizon timer options (right column) with the

maximum expiration time being 1.5. The pre-specified variance budget is assumed

to be 0.875.

This expression is similar to the one for the vanilla call option, except for the

uncertain expiry time TB, which is the stopping time defined as

TB = inf

{
u > 0;

∫ u

0

v(t)dt = B
}
. (4.5)

Here B = σ2
0T0 is the pre-specified variance budget with T0 the expected invest-

ment horizon and σ0 the forecasted volatility of the underlying asset during that

period.

The dependence on the implicitly defined expiry time TB is inconvenient. We

will now apply the Duru-Kleinert transformation method of quantum mechanics
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(100), see also section 2.2.2, to construct variables in function of which TB is

explicitly given. Define a time substitution τ(t) such that

τ(t) =

∫ t

0

v(s)ds, (4.6)

we will refer to τ as the pseudotime, following (100). The inverse function theorem

gives us that
dτ−1(t)

dt
=

1

v(τ−1(t))
, (4.7)

from which it follows that τ−1(t) is given by:

τ−1(t) =

∫ t

0

1

v(τ−1(s))
ds. (4.8)

Denote v(τ−1(t)) by V (t) and x(τ−1(t)) by X(t), which follow new SDEs:

dV (t) =
α (V )

V
dt+

β (V )√
V
dW2, (4.9)

dX(t) =

(
r

V
− 1

2

)
dt+

(√
1− ρ2dW1 + ρdW2

)
. (4.10)

Given the timer call variance budget

B =

∫ TB

0

v(t)dt = τ(TB), (4.11)

we obtain the explicit expression for the stopping time as

TB = τ−1(B) =
∫ B

0

1

v(τ−1(t))
dt =

∫ B

0

1

V (t)
dt. (4.12)

Note that (x(t), v(t)) = (X(τ(t)), V (τ(t))) , so as (x(t), v(t)) evolves in the period

[0, TB], (X(t), V (t)) evolves in [τ(0), τ(TB)], that is [0,B]. Therefore [0,B] is now
a fixed horizon in pseudotime, and not only do the processes X , V and T evolve

during that period, but also expression (4.4) can be written as

CPerp = E
[
e−rTB max

(
S0 e

XB −K, 0
)]
. (4.13)

Hence, it is intuitive to study the joint transition probability density function

of the dynamics of (X, T ). However, as T depends on V , we turn to the joint

propagator of the dynamics of (X, V, T ).
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4.1 General pricing formula of timer options

The substitutions

z(t) =

∫ √
V

β (V )
dV (t), (4.14)

y(t) =X(t)− ρz(t), (4.15)

help change the correlated dynamics of (X, V ) into two independent processes

following

dy(t) =

[
r

V (z)
− 1

2
− ρA (z)

]
dt+

√
1− ρ2dW1, (4.16)

dz(t) =A (z) dt+ dW2, (4.17)

where

A (z(t)) =
α(V )

β(V )
√
V

+
1

2

d

dV

( √
V

β(V )

)
β2(V )

V
(4.18)

is a function of z(t) because V (t) is expressed in terms of z(t) according to

expression (4.14).

To determine the price of the timer option, the propagator P (yB, zB, TB | y0, z0, 0)
is needed. This propagator describes the joint probability that y has the value yB,

z has the value zB and the stopping time has the value TB at a later pseudotime

B given their initial value y0, z0 and 0 at pseudotime 0. Since the processes y and

z are uncorrelated, the Lagrangian corresponding to their joint evolution can be

written as L[ẏ, y, z] + L[ż, z] with:

L[ẏ, y, z] =

[
ẏ −

(
r

V (z)
− 1

2
− ρA (z)

)]2

2 (1− ρ2)
, (4.19)

L[ż, z] =1

2
[ż −A (z)]2 +

1

2

∂

∂z
A (z) , (4.20)

Using the path integral framework, the joint propagator P (yB, zB, TB | y0, z0, 0)
can be determined by:

P (yB, zB, TB | y0, z0, 0) =
∫

Dy
∫

Dzδ
(
TB −

∫ B

0

1

V (z)
dt

)
e−

∫ B
0
(L[ż,z]+L[ẏ,y,z])dt,

(4.21)

where δ(·) is the delta function. It serves here to select these paths of V , expressed
in terms of z, such that

∫ B
0

1
V (t)

dt equals TB.
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To proceed we introduce the Fourier transform of the delta function. Further-

more since the path integral corresponding to the y variable is quadratic it can

be solved analytically. After performing this path integral, we can return to the

original XB variable. Expression (4.21) then becomes:

P (XB, zB, TB | y0, z0, 0) =
∫ ∞

−∞

dp

2π
eipTB

∫
Dz e−

∫ B
0 (L[ż,z]+ip 1

V (z))dt e
− [XB−Υ(z)]2

2(1−ρ2)B

√
2π (1− ρ2)B

,

(4.22)

where

Υ (z) = ρ

(
zB − z0 −

∫ B

0

A (z(t)) dt

)
+ rTB − B

2
. (4.23)

In order to add the z dependent term Υ (z) to the Lagrangian of the z path

integral one can introduce another Fourier integral, and P (XB, zB, TB | y0, z0, 0)
then becomes:

P (XB, zB, TB | y0, z0, 0) =

∫ ∞

−∞

dl

2π
ei lXB−

(1−ρ2)B
2

l2
∫ ∞

−∞

dp

2π
eipTB

×
∫

Dz(t) e−
∫ B
0 [L[z,ż]+ip 1

V (z)
+ilΥ(z)]dt. (4.24)

Whether our approach will lead to closed-form pricing formulas for timer options

will depend on the Lagrangian L[z, ż]+ip 1
V (z)

+ilΥ (z). More precisely this means

that A (z(t)) and Υ (z) should be sufficiently well behaved in terms of z. For the

two examples illustrated in this chapter, the functions α(V (t)) and β(V (t)) are

as such that Υ (z) is only a function of zB and TB, denoted by Υ (zB, TB). Then

it is not necessary to introduce the Fourier transform of expression (4.24) and we

can proceed with expression (4.22). Now the price of a perpetual timer option

which is given by

CPerp =

∫
dXB

∫
dzB

∫
dTB P (XB, zB, TB | y0, z0, 0)

[
e−rTB max

(
S0 e

XB −K, 0
)]
,

(4.25)

can be written as:

CPerp =

∫ ∞

0

dTB

∫ ∞

−∞
dzBP (zB, TB | z0, 0) C̄ (zB, TB) , (4.26)
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4.1 General pricing formula of timer options

with C̄ (zB, TB) being the prices conditional on z:

C̄ (zB, TB) =

∫ ∞

−∞
dXB

e
− [XB−Υ(zB,TB)]

2

2(1−ρ2)B

√
2π (1− ρ2)B

[
e−rTB max

(
S0 e

XB −K, 0
)]

= S0 e
Υ(zB,TB)−rTB+ (1−ρ2)B

2 N (d+)−K e−rTBN (d−), (4.27)

where N (·) is the cumulative distribution for the normal random variable and

d+ =
ln S0

K
+ (1− ρ2)B +Υ (zB, TB)√

(1− ρ2)B
, (4.28)

d− =
ln S0

K
+Υ (zB, TB)√
(1− ρ2)B

, (4.29)

and P (zB, TB | z0, 0) is given by

P (zB, TB|z0, 0) =
∫ ∞

−∞

dp

2π
eipTB

∫
Dze−

∫ B
0 (L[z,ż]+

ip
V (z))dt. (4.30)

Note that expression (4.27) is a Black-Scholes-Merton type pricing formula for

perpetual timer options. To determine the price of a perpetual timer option for

a particular model one needs to evaluate Υ (zB, TB) in order to obtain C̄ (zB, TB).

Furthermore if we also have the analytical expression for the joint propaga-

tor P (zB, TB | z0, 0), formula (4.26) demonstrates that the closed-form perpetual

timer option pricing formula can be derived through two trivial integrals.

4.1.3 Pricing of finite time-horizon timer options

In this subsection we consider the pricing of finite time-horizon timer option.

Let the maximum expiry time to be T , then the price of a finite time-horizon

timer option, denoted by CF ini, of strike price K can be expressed as a sum of

two contributions:

CF ini = C1 + C2, (4.31)

where

C1 =
∫ T

0

dTB

∫ ∞

−∞
dzBP (zB, TB | z0, 0) C̄ (zB, TB) (4.32)
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is the contribution from paths that exhausted their variance budget before time

T , and

C2 = e−rT

∫ ∞

−∞
(S0 e

xT −K)+ PB (xT |x0 ) dxT (4.33)

is the contribution from paths that reach the preset finite time horizon. Note the

integration range of TB in C1, which is truncated by the maximum expiry time T .

Denote the joint propagator of the log-return and the realized variance as

P (xT , IT | x0, 0), then

PB (xT | x0) =
∫ B

0

P (xT , IT | x0, 0) dIT . (4.34)

Note PB (xT | x0) is not the propagator of x that should be used for the European

vanilla option, which represents the probability that x has the value xT at later

time T given the initial values x0 at time 0. Instead PB (xT | x0) in C2 is the

propagator of x which is also conditioned on the fact that the realized variance

budget of each path has not been exhausted before the maximum expiry time T .

Furthermore, if PB (xT | x0) can be written as a Fourier integral:

PB (xT | x0) =
∫ ∞

−∞

dl

2π
eil(xT−rT )F(l), (4.35)

then by following the derivation outlined in (164), we can rewrite C2 explicitly,

and thus the pricing formula of finite time-horizon Timer option as

CF ini =

∫ T

0

dTB

∫ ∞

−∞
dzBP (zB, TB | z0, 0) C̄ (zB, TB)

+
G(0)
2

+ i

∫ ∞

−∞

dl

2π

e
il
(
ln K

S0
−rT

)

G(l)
l

, (4.36)

where

G(l) = S0F(l + i)−K e−rTF(l). (4.37)

The integration of PB (xT | x0) over all possible xT ’s gives F(0), which is the

”survival probability” describing the probability that the finite time-horizon timer

option is executed at the maximum expiry time T . This survival probability can

also be determined by
∫∞
T
dTB

∫
dzBP (zB, TB | z0, 0), from which it is clear that
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this probability is independent from the evolution of x, thus does not depend on

the correlation coefficient ρ.

For the finite time-horizon timer option, besides the evaluation of propagator

P (zB, TB | z0, 0) as for the perpetual timer option, we must also calculate the

propagator P (xT , IT | x0, 0) to derive the formula of F(l).

4.2 Propagators for the 3/2 and the Heston model

In this section we focus on the derivations of joint propagators P (zB, TB | z0, 0) and
P (xT , IT | x0, 0). These are used in section 4.3 in conjunction with expressions

(4.26) and (4.36) from the previous section to price perpetual and finite time-

horizon timer options, respectively. Note that P (zB, TB | z0, 0) is evaluated in

the pseudotime horizon and P (xT , IT | x0, 0) in the original time horizon. The

3/2 and the Heston model are chosen both from mathematical and empirical

considerations.

As mentioned in the previous section, it is convenient to choose models such

that
∫ B
0
A (z(t)) dt is a function of zB and TB. In addition, from the perspective

of mathematics, the total Lagrangian in expression (4.30):

LTot[ż, z] = L[ż, z] + ip

V (z)
(4.38)

written in terms of z and ż should be sufficiently well behaved to achieve a closed-

form solution with the path integral.

Furthermore there is substantial empirical evidence supporting the stochastic

differential equation underlying the 3/2 model. The Heston model, on the other

hand, is important because it is a standard model for the financial industry.

4.2.1 The 3/2 model and the Morse potential

The model dynamics of the 3/2 SV model (188) are given by:

dx(t) =

(
r − v(t)

2

)
dt+

√
v(t)

(√
1− ρ2dW1(t) + ρdW2(t)

)
, (4.39)

dv(t) = κv(t) (θ − v(t)) dt+ ǫv3/2(t)dW2(t). (4.40)
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More properties of this model will be discussed in section 5.2.2. Relating this

model to the general SV model used in (4.2), we have

α (V ) =κV (θ − V ) , (4.41)

β (V ) =ǫV 3/2. (4.42)

For calculation convenience, we multiply z(t) defined in expression (4.14) by a

factor −ǫ to obtain

z(t) = − lnV (t). (4.43)

Thus, according to equations (4.12), (4.18) and (4.23), we have

TB =

∫ B

0

ez(t)dt, (4.44)

∫ B

0

A (z(t)) dt =
κθ

ǫ
TB −

(κ
ǫ
+
ǫ

2

)
B (4.45)

Υ (zB, TB) = −ρ
ǫ
(zB + ln v0) + rTB − B

2
− ρ

(
κθ

ǫ
TB −

(κ
ǫ
+
ǫ

2

)
B
)
, (4.46)

Therefore the total Lagrangian is

LTot[ż, z] =
1

2ǫ2
ż2 +

κ2θ2

2ǫ2
e2z −

(
κ2θ

ǫ2
+ κθ − ip

)
ez

+
κθ

ǫ2
ez ż −

(
κ

ǫ2
+

1

2

)
ż +

(κ+ ǫ2/2)
2

2ǫ2
. (4.47)

Note that the last three terms of LTot[z, ż] are trivial, and can be integrated

directly, more precisely
∫ B
0
ez żdt = ezB − ez0 and

∫ B
0
żdt = zB − z0. Plugging this

total Lagrangian into expression (4.30), we have

P (zB, TB | z0, 0) =
∫ ∞

−∞

dp

2π
eipTB

∫
Dz(t) e−

∫ B
0

LTot[ż,z]dt

= exp

{
−κθ
ǫ2

(ezB − ez0) +

(
κ

ǫ2
+

1

2

)
(zB − z0)−

(κ + ǫ2/2)
2 B

2ǫ2

}

×
∫ ∞

−∞

dp

2π
eipTB

∫
Dz(t) e−

∫ B
0

[
ż2

2ǫ2
+κ2θ2

2ǫ2
e2z−

(
κ2θ
ǫ2

+κθ−ip
)
ez
]
dt
. (4.48)

The remaining nontrivial terms of LTot[ż, z] reveal that z(t) is subjected to

a Morse potential. By making use of the path integral for the Morse potential
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(155), derived in chapter 2, see expression (2.90),the joint propagator becomes

P (zB, TB | z0, 0) =
κθ

ǫ2 sinh κθTB
2

e−
κθ
ǫ2

(ezB−ez0)+( κ
ǫ2

+ 1
2)(zB−z0)

× e−(
κ
ǫ2

+ 1
2)

2 ǫ2

2
B+( κ

ǫ2
+1)κθTB−κθ

ǫ2
(ezB+ez0) coth

κθTB
2

×
∫ ∞

0

dΦI

π
Re

[
eΦB I

2
√

2
ǫ2

Φ

(
2κθ
ǫ2
e

zB+z0
2

sinh κθTB
2

)]
, (4.49)

with I. (·) the modified Bessel function of the first kind.

Plugging expressions (4.46) and (4.49) into formula (4.26) yields the closed-

form pricing formula for the perpetual timer call options under the 3/2 model.

The integral over all possible zB can be done analytically, which leads to the

marginal propagator for the stopping time TB:

P (TB | 0) =
κθ

ǫ2

(
1 + coth

κθTB
2

)
e−(

κ
ǫ2

+ 1
2)

2 ǫ2

2
B
∫ ∞

0

dΦI

π
Re

[
eΦB

(N
v0

)M

×
Γ
(
2
√

2
ǫ2
Φ−M

)

Γ
(
2
√

2
ǫ2
Φ + 1

) 1F1

(
M+ 1; 2

√
2

ǫ2
Φ+ 1; −N

v0

)
 , (4.50)

where Γ (·) is the Euler gamma function, 1F1 (·; ·; ·) is the confluent hypergeo-

metric function, and

N (TB) =
κθ

ǫ2

(
coth

κθTB
2

− 1

)
, (4.51)

M (Φ) =

√
2

ǫ2
Φ−

(
κ

ǫ2
+

1

2

)
. (4.52)

Having obtained the results for the z-process (related to the variance, ex-

pression (4.40)), we next investigate the corresponding x-process (related to the

underlying asset, expression (4.39)). We move on to the calculation of the prop-

agator P (xT , IT | x0, 0) by performing the following substitutions

χ(t) = x− ρ

ǫ
(ln v − κθt)− rt, (4.53)

ζ(t) = v−
1
2 , (4.54)
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which lead to two uncorrelated processes:

dχ(t) =

(
−1

2
+
ρκ

ǫ
+
ρ ǫ

2

)
vdt+

√
v
√

1− ρ2dW1(t), (4.55)

dζ(t) =

[
−κθ

2
ζ +

(
κ

2
+

3

8
ǫ2
)

1

ζ

]
dt− ǫ

2
dW2(t), (4.56)

and thus the corresponding Lagrangians:

L[χ̇, χ, v] =

[
χ̇−

(
−1

2
+ ρκ

ǫ
+ ρ ǫ

2

)
v
]2

2v (1− ρ2)
, (4.57)

L[ζ̇, ζ ] = L1[ζ ] + L2[ζ ], (4.58)

where

L1[ζ, ζ̇] =
2

ǫ2

[
ζ̇2 +

κ2θ2

4
ζ2
]
+

(2κ/ǫ2 + 1)
2 − 1/4

8/ǫ2
1

ζ2
, (4.59)

L2[ζ, ζ̇] =
2κθ

ǫ2
ζζ̇ −

(
2κ

ǫ2
+

3

2

)
ζ̇

ζ
−
(
κ2θ

ǫ2
+ κθ

)
. (4.60)

Since χ is independent from ζ , the probability that χ goes to χT , ζ goes to ζT

and the realized variance reaches IT at a later time T given the original positions

χ0, ζ0 and I0 = 0 at the initial time 0 is

P(χT , ζT , IT |χ0, ζ0, 0)

=

∫
Dζ(t) δ

(
IT −

∫ T

0

v(t) dt

)
e−

∫ T
0

L[ζ̇,ζ]dt
∫

Dχ(t) e−
∫ T
0

L[χ̇,χ,v]dt

=

(
ζT
ζ0

) 2κ
ǫ2

+ 3
2

e
−κθ

ǫ2
(ζ2T−ζ20 )+

(
κ2θ
ǫ2

+κθ
)
T
∫ ∞

−∞

dp

2π
eip IT

∫ ∞

−∞

dl

2π
eil[xT+ ρκθ

ǫ
T−rT ]

(
ζT
ζ0

)2il ρ
ǫ

×
∫

Dζ(t) e
−
∫ T
0

[
L1[ζ̇,ζ]+

il(− 1
2+

ρκ
ǫ +

ρǫ
2 )+(1−ρ2)l2/2+ ip

ζ2

]
dt

, (4.61)

where the remaining path integral over Dζ(t) of the radial harmonic oscillator

potential (154) is given by:

2κθ
√
ζT ζ0

ǫ2 sinh(κθT
2
)
e−

κθ
ǫ2
(ζ2T+ζ20) coth(κθT2 ) Iλ

(
2κθ ζT ζ0

ǫ2 sinh(κθT
2
)

)
, (4.62)
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see expression (2.63), with

λ =

((
2κ

ǫ2
+ 1

)2

+
8

ǫ2

[
il

(
−1

2
+
ρκ

ǫ
+
ρǫ

2

)
+

(1− ρ2)l2

2
+ ip

]) 1
2

. (4.63)
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Figure 4.2: This figure shows several aspects of the time evolution of variables

relevant for timer options under the 3/2 SV model. Panel (a) shows several simu-

lated variance paths up to the point where the realized variance reached B. Panel
(c) shows corresponding log-return paths. The inset of panel (a) shows the proba-

bility distribution of the stopping time TB. The inset of panel (c) shows the density
PB (xT |x0) determined by expression (4.34). Panel (b) shows the joint probabil-

ity distribution of the variance and the stopping time P (vTB ,TB|v0, 0). Panel (d)

shows the joint probability distribution of the log-return and the realized vari-

ance P (xT , IT |0, 0). The parameters used here are: v0 = (0.295)2, κ = 22.84, θ =

(0.4669)2 , ǫ = 8.56,B = v0, r = 0.015, ρ = −0.5, T = 1.5.
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Integrating over ζT leads to P (χT , IT |χ0, 0):

P (χT , IT |χ0, 0) =

∫ ∞

0

P(χT , ζT , IT |χ0, ζ0, 0) dζT

=

∫ ∞

−∞

dp

2π
eip IT

∫ +∞

−∞

dl

2π
eil(xT−rT )

(
2

ǫ2N

)M

×Γ(λ + 1−M)

Γ(λ+ 1)
1F1

(
M ;λ + 1;− 2

ǫ2N

)
, (4.64)

where

M =
λ

2
− κ

ǫ2
− 1

2
− il

ρ

ǫ
, (4.65)

N =
2 sinh(κθT

2
)

κθ
e

κθT
2 v0. (4.66)

Expression (4.64) agrees with expression (73) in (196).

According to (4.34), we have for the 3/2 model

PB (xT , T |x0, 0) =
∫ +∞

−∞

dl

2π
eil(xT−rT )F(l), (4.67)

where

F(l) = −i
∫ ∞

−∞

dp

2π

eipB − 1

p

(
2

ǫ2N

)M
Γ(λ+ 1−M)

Γ(λ+ 1)
1F1

(
M ;λ + 1;− 2

ǫ2N

)
.

(4.68)

The closed-form pricing formula for the finite time-horizon timer call options

is derived by substituting (4.67) and (4.68) in expression (4.36).

4.2.2 The Heston model and the Kratzer potential

For Heston SV model (76), the model dynamics are written as:

dx(t) =

(
r − v(t)

2

)
dt+

√
v(t)

(√
1− ρ2dW1(t) + ρdW2(t)

)
, (4.69)

dv(t) = κ (θ − v) dt+ σ
√
vdW2(t). (4.70)

To relate this model to the general SV model (4.2), α (V ) and β (V ) are given by

α(V ) = κ (θ − V ) , (4.71)

β(V ) = σ
√
V . (4.72)
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From equation (4.14), we have the relation between z(t) and V (t):

z(t) =
1

σ
V (t). (4.73)

thus the stopping time TB is a functional of z(t):

TB =
1

σ

∫ B

0

1

z(t)
dt. (4.74)

Plugging equations (4.70) and (4.2) into definition (4.18) gives

∫ B

0

A (z(t)) dt =
κθ

σ
TB − κ

σ
B, (4.75)

therefore (written in original variable v0)

Υ (zB, TB) =ρ

(
zB − v0

σ
− κθ

σ
TB +

κ

σ
B
)
+ rTB − B

2
, (4.76)

LTot[ż, z] =
1

2
ż2 +

λ2 − 1
4

2z2
−
(
λ + 1

2

)
µ− ip

σ

z
−
(
λ+

1

2

)
ż

z
+ µż +

1

2
µ2, (4.77)

where

λ =
κθ

σ2
− 1

2
, µ =

κ

σ
. (4.78)

The nontrivial terms of the total Lagrangian LTot[ż, z] manifest that z(t) is sub-

jected to a Kratzer potential. With the help of the path integral for Kratzer

potential (155), derived in chapter 2, see expression (2.85), we obtain the joint

propagator as:

P (zB, TB | z0, 0) =

∫
Dz(t) δ

(
TB − 1

σ

∫ B

0

1

z(t)
dt

)
e−

∫ B
0 L[z,ż]dt

=

(
zB
z0

)λ+ 1
2

e−µ(zB−z0)− 1
2
µ2B
∫ ∞

−∞

dp

2π
eipTB

×
∫

Dz(t) e
−
∫ B
0

[
1
2
ż2+

λ2− 1
4

2z2
−(

λ+1
2)µ− ip

σ

z

]
dt

=
σ

2

zλ+1
B
zλ0

e−µ(zB−z0)− 1
2
µ2B+(λ+ 1

2)µσTB
∫ ∞

0

dΦI

π

×Re




eΦB e
−
√
2Φ(zB+z0) coth

(√
Φ
2
σTB

)

× 2
√
2Φ

sinh
(√

Φ
2
σTB

) I2λ

(
2
√
2Φ

√
zBz0

sinh
(√

Φ
2
σTB

)

)

 . (4.79)
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Again, plugging the expressions (4.76) and (4.79) into formula (4.26) yields the

closed-form pricing formula for the perpetual timer call options under the Heston

model. Expression (4.79) has a clear meaning as joint transition probability

density function which illustrates the conciseness of physics; path integration

allows to derive expression (4.79) without applying any previous results of Bessel

processes as done in (185).

Li (185) computed the risk-neutral expected maturity in expression (5.2) by

doing two numerical integrals. Actually, we can derive the marginal propagator

of the stopping time TB by integrating over all possible zB as follows

P (TB | 0)

=

∫ ∞

0

P (zB, TB | z0, 0) dzB

=σ e−
1
2
µ2B+(λ+ 1

2)µσTB
∫ ∞

0

dΦI

π
Re




exp

{
ΦB +

(µ2−2Φ) z0
µ+

√
2Φ coth

(√
Φ
2
σTB

)
}

×




√
2Φ

sinh

(√
Φ
2 σTB

)




2λ+1

(
µ+

√
2Φ coth

(√
Φ
2
σTB

))2λ+2

×


2λ+ 1 +




√
2Φ

sinh

(√
Φ
2 σTB

)




2

z0

µ+
√
2Φ coth

(√
Φ
2
σTB

)







.

(4.80)

For the calculation of P (xT , IT |0, 0), we follow the derivation in (115). Substitu-

tions

χ(t) = x− ρ

σ
(v − κθt)− rt, (4.81)

ζ(t) =
√
v, (4.82)

give two uncorrelated processes:

dχ(t) =

(
ρκ

σ
− 1

2

)
v dt+

√
v
√

1− ρ2dW1(t), (4.83)

dζ(t) =

[
κθ − σ2

4

2ζ
− κ

2
ζ

]
dt+

σ

2
dW2(t). (4.84)
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4.2 Propagators for the 3/2 and the Heston model

The corresponding Lagrangians are:

L [χ̇, χ, v] =
1

2v (1− ρ2)

[
χ̇−

(
ρκ

σ
− 1

2

)
v

]2
, (4.85)

L[ζ̇ , ζ ] = L1[ζ̇ , ζ ] + L2[ζ̇ , ζ ], (4.86)

where

L1

[
ζ̇ , ζ
]

=
2

σ2
ζ̇2 +

(κθ − σ2

4
)(κθ − 3σ2

4
)

2 σ2ζ2
+

κ2

2σ2
ζ2, (4.87)

L2

[
ζ̇ , ζ
]

= −
(
2κθ

σ2
− 1

2

)
ζ̇

ζ
+

2κ

σ2
ζζ̇ − κ2θ

σ2
. (4.88)

Since χ is independent from ζ , we similarly have the joint propagator of the

dynamics of χ, ζ and I:

P(χT , ζT , IT |χ0, ζ0, 0)

=

∫
Dζ(t) δ

(
IT −

∫ T

0

v(t) dt

)
e−

∫ T
0 L[ζ̇,ζ]dt

∫
Dχ(t) e−

∫ T
0 L[χ̇,χ,v]dt

=

(
ζT
ζ0

) 2κθ
σ2 − 1

2

e−
κ
σ2 (ζ

2
T−ζ20 )+

κ2θ
σ2 T

∫ ∞

−∞

dp

2π
eip IT

∫ +∞

−∞

dl

2π
eil[xT+ ρκθ

σ
T−rT ] e−il ρ

σ(ζ2T−ζ20)

×
∫

Dζ(t) e
−
∫ T
0

[
L1[ζ̇,ζ]+

(
il( ρκ

σ
− 1

2)+
(1−ρ2)l2

2
+ip

)
ζ2

]
dt

, (4.89)

where the path integral for the radial harmonic oscillator potential is given by

expression (2.63):

4ω
√
ζT ζ0

σ2 sinh(ωT )
e−

2ω
σ2 (ζ2T+ζ20) coth(ωT ) I 2κθ

σ2 −1

(
4ω ζT ζ0

σ2 sinh(ωT )

)
, (4.90)

where

ω =
σ

2

√
κ2

σ2
+ (1− ρ2) l2 + il

(
2ρκ

σ
− 1

)
+ 2ip. (4.91)

Integrating over ζT leads to P (χT , IT |χ0, 0):

P (χT , IT |χ0, 0) =

∫ ∞

0

P(xT , ζT , IT | x0, ζ0, 0) dζT

= e
κ
σ2 v0+

κ2θ
σ2 T

∫ ∞

−∞

dp

2π
eip IT

∫ ∞

−∞

dl

2π
eil(xT−rT ) eil

ρ
σ
(κθT+v0)

×N 2κθ
σ2 e

− 2ω(cosh(ωT )−N)

σ2 sinh(ωT )
v0 , (4.92)
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Figure 4.3: This figure is similar to Figure 4.2, but now for the Heston SV model.

The parameters used here are: v0 = 0.087, κ = 2, θ = 0.09, σ = 0.375,B = v0, r =

0.015, ρ = −0.5, T = 1.5.

where

N =

(
cosh(ωT ) +

κ+ ilρσ

2ω
sinh(ωT )

)−1

. (4.93)

Note the similarity of expression (4.92) with the result obtained in (193).

According to (4.34), we have for the Heston model

PB (xT | x0) =
∫ +∞

−∞

dl

2π
eil(xT−rT )F(l), (4.94)

where

F(l) = −i e κ
σ2 v0+

κ2θ
σ2 T

∫ ∞

−∞

dp

2π

eipB − 1

p
eil

ρ
σ
(κθT+v0)N

2κθ
σ2 e

− 2ω(cosh(ωT )−N)

σ2 sinh(ω2T )
v0
, (4.95)

with which we obtain the closed-form pricing formula for the finite time-horizon

timer call options according to formula (4.36).
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4.3 Pricing results and discussion

4.3 Pricing results and discussion

In the previous sections explicit formulas concerning timer options are derived

for the 3/2 and the Heston model. The analytical tractability of these formulas

is demonstrated by Figures 4.2 and 4.3 and Tables 4.1 and 4.2. Figure 4.2 as well

as Table 4.1 are devoted to the 3/2 model and Figure 4.3 as well as Table 4.2

to the Heston model. For the 3/2 model the parameters are based on reference

(193), where they are calibrated on market prices of S&P500 European options

to guarantee the relevance of these parameters. The parameters for the Heston

model were chosen such that the two models are comparable.

The two tables compare timer option prices calculated with the formulas of

the previous sections with prices obtained by Monte Carlo simulations. Results

for both the perpetual and the finite time horizon timer option are presented

for several strikes and correlation values. For all the Monte Carlo simulations

presented here, we used 20 million samples and 3200 time steps per year. During

the simulation for the Heston model, to avoid the negative values for variance, we

set these to zero if we encounter negative values. The relative errors between the

exact and the simulated prices are always less than 0.1%, and the exact prices

are always within the corresponding simulated values’ 95% confidence intervals,

i.e. [mean - 1.96 standard error, mean + 1.96 standard error], confirming our

formulas. More discussions about the Monte Carlo simulation techniques related

to the 3/2 and the Heston stochastic models can be found, among other, in

references (197, 198, 199).

Although the prices of the timer option presented in these tables vary only

slightly as a function of the correlation coefficient ρ, the timer option does have

different features for different correlation values. This can be seen in Figures 4.2

and 4.3. Panel (a) shows possible realizations of the variance up to the point where

the realized variance reached B. Panel (c) shows the corresponding log-returns. In
these figures we used a negative correlation. As a consequence, paths with a low

log-return are more likely to have a high volatility and the corresponding option

will probably be exercised sooner than an option with a high log-return. This

behavior is also seen in the inset of panel (c). This inset shows the density given

by formula (4.34) when the maximum expiry time T reached 1.5. Recall that this
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Table 4.1: Comparison of the analytical and the Monte Carlo simulation values,

indicated by MC with standard errors given in parentheses, for both perpetual

(CPerp) and finite time-horizon (CF ini) timer call option prices under the 3/2 model.

The columns indicated by RE show the relative errors (in %) between the analytical

and simulated prices. Parameters used here are: v0 = (0.295)2, κ = 22.84, θ =

(0.4669)2 , ǫ = 8.56,B = v0, r = 0.015, T = 1.5.

K ρ
CPerp CFini

Analytic MC RE(%) Analytic MC RE(%)

- 0.5 17.8064 17.8128 (0.0076) -0.0359 17.6813 17.6790 (0.0073) 0.0130

90 0 17.7046 17.7129 (0.0075) -0.0469 17.5385 17.5510 (0.0075) -0.0712

0.5 17.5839 17.5853 (0.0075) -0.0080 17.4260 17.4301 (0.0074) -0.0235

- 0.5 12.5780 12.5784 (0.0067) -0.0032 12.4089 12.3998 (0.0064) 0.0734

100 0 12.4619 12.4683 (0.0066) -0.0513 12.2780 12.2890 (0.0065) -0.0895

0.5 12.3300 12.3231 (0.0065) 0.0560 12.2104 12.2032 (0.0065) 0.0590

- 0.5 8.6518 8.6414 (0.0058) 0.0486 8.4381 8.4301 (0.0054) 0.0949

110 0 8.5339 8.5388 (0.0056) -0.0574 8.3531 8.3611 (0.0055) -0.0957

0.5 8.4026 8.3943 (0.0056) 0.0989 8.3229 8.3153 (0.0055) 0.0914

Table 4.2: This table is similar to Table 4.1, but now for the Heston SV model.

Parameters used here are: v0 = 0.087, κ = 2, θ = 0.09, σ = 0.375,B = v0, r =

0.015, ρ = −0.5, T = 1.5.

K ρ
CPerp CFini

Analytic MC RE(%) Analytic MC RE(%)

- 0.5 17.8095 17.7948 (0.0107) 0.0826 17.6914 17.6851 (0.0071) 0.0356

90 0 17.7249 17.7232 (0.0105) 0.0096 17.5351 17.5330 (0.0074) 0.0120

0.5 17.6263 17.6146 (0.0105) 0.0664 17.4627 17.4680 (0.0074) -0.0303

- 0.5 12.5789 12.5668 (0.0094) 0.0963 12.4034 12.4010 (0.0062) 0.0194

100 0 12.4772 12.4763 (0.0092) 0.0072 12.2675 12.2678 (0.0065) -0.0024

0.5 12.3691 12.3586 (0.0092) 0.0842 12.2426 12.2464 (0.0065) -0.0310

- 0.5 8.6515 8.6412 (0.0080) 0.1192 8.4206 8.4218 (0.0053) -0.0142

110 0 8.5449 8.5446 (0.0078) 0.0035 8.3393 8.3405 (0.0055) -0.0144

0.5 8.4393 8.4317 (0.0078) 0.0890 8.3522 8.3542 (0.0055) -0.0239

is the distribution of log-returns whose realized variance has not yet reached B.
Due to the negative correlation, paths with a low log-return are more likely to

have reached B and will therefore less likely contribute to this distribution than

paths with a high log-return. Therefore this distribution is clearly shifted to the

right. Panel (d) shows the joint density of the log-return xT and the realized

variance IT when T equals 1.5 and also illustrates this behavior.
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4.4 Conclusion

Tables 4.1 and 4.2 illustrate that the prices for timer options are quite similar

for the two SV models. Nevertheless there are important differences between the

two models concerning timer options. This is illustrated by the upper panels

of Figures 4.2 and 4.3. As already mentioned, panel (a) shows several possible

time evolutions of the variance. The inset of this panel shows the probability

distribution of the stopping time TB. Panel (b) shows the joint density of the

variance and the stopping time, which is useful for an intuitive understanding of

the time evolution of the underlying processes. The explicit form of this density

is not included in the text because it is not needed to calculate prices and because

it can easily be derived from expression (4.30). For the 3/2 model, the probability

that the variance reaches large values is larger than for the Heston model, while

the probability that the variance reaches very small values is smaller than for the

Heston model. Therefore the probability that the timer option will be exercised

very fast is larger for the 3/2 model than for the Heston model. On the other

hand for the Heston model there is a larger probability than for the 3/2 model

that the timer option will only be exercised after a long time.

4.4 Conclusion

In this chapter we present a method to price both the perpetual and the finite

time-horizon timer option for a general SV model. Pricing of such options is

related to first passage time problems in that the stopping time for the option

is determined by a boundary on a cumulative stochastic process. The method

proposed here is based on the Duru-Kleinert time transformation and the path

integral framework. Furthermore we discuss the conditions a SV model has to

satisfy in order to be able to derive closed-form pricing formulas. These general

results are then applied to derive closed-form formulas for the Heston and the 3/2

SV model. For the 3/2 model this involves the solution of the Morse potential,

for the Heston model the Kratzer potential needs to be solved. Finally, our

closed-form pricing formulas are shown to be computationally tractable and are

validated by Monte Carlo simulation.
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5

Applications of path integration

over conditioned paths

In expression (4.21), we have used an important technique in the path integral

framework. More specifically, denote the propagator for a stochastic process z(t)

of the terminal state zT at expiration T conditional on the initial state z0 at time

t = 0 by P (zT , T |z0, 0), that is:

P (zT , T |z0, 0) =
∫

Dz(t) e−
∫ T
0

L[ż,z]dt, (5.1)

where L[ż, z] is its Lagrangian. We then define a function by

I(t) =

∫ t

0

f (z(t′)) dt′, (5.2)

where f (z(t)) is a function of z(t). One interesting question is how to compute

the joint propagator P (zT , IT , T |z0, I0, 0) of the joint dynamics (z(t), I(t))?

The key step to treat the joint propagator P (zT , IT , T |z0, I0, 0) within the path

integral framework is to partition all pathes of z(t) evolving from z0 at time t = 0

to zT at time T into (infinite) many subsets such that the quantity
∫ T

0
f (z(t′)) dt′

achieved in each subset equals the same value IT . Finally summing over all these

possible subsets, we have the joint propagator. This technique was proposed by

Feynman and Kleinert to reduce many complex path integrals to simple ordinary

ones (191), and later was extended to a systematic and uniformly convergent

variational perturbation theory in quantum mechanics (100, 200). Recently it
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was applied to the pricing of geometric Asian option under the Black-Scholes

model (125, 201), and of course also to the pricing of timer options (145). The

path integral representation of the joint propagator is given by:

P (zT , IT , T |z0, I0, 0) =
∫

Dz(t)δ
(
IT −

∫ T

0

f (z(t)) dt

)
e−
∫ T
0

L[ż,z,t]dt. (5.3)

where δ(·) is the delta function. Effectively, this propagator represents a sum

over only those paths that satisfy a certain condition, and as such they appear in

many problems related to exotic, path-dependent options. In this chapter, we will

explore several of these applications, as well as an application outside of finance,

relating to radioactive decay. These results are part of (unpublished) internal

work notes, some of which are being prepared as manuscripts for publication.

5.1 Continuous arithmetic and harmonic Asian

option under the Black-Scholes model

A quick application of the preceding technique is the pricing of Asian options

under the Black-Scholes model. Asian options are path-dependent, in that the

payoff function contains a (geometric, harmonic or arithmetic) average of the

price of the underlying asset during the lifetime of the option. Thus, even for

paths that end up in at the same final value, the option payoff can be different

if a different route is taken. To price such options, the set of all paths needs to

be partitioned in subsets containing paths with the same average. Within each

set, the option can be calculated just like a path-independent option. The results

then need to be averaged over the different partitions. As an example we will

look at Asian arithmetic and harmonic call options. The pricing of geometric

Asian options is relatively easier than the other two.

In the risk-neutral world, the call option prices of a continuous arithmetic and

harmonic Asian option under the Black-Scholes model, with risk-neutral interest

rate r, time to maturity T and strike priceK, denoted by CA (K, T ) and CH (K, T )
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respectively, are given by:

CA (K, T ) = e−rT

∫ ∞

0

max

(
1

T
AT −K, 0

)
P (AT , T |A0, 0) dAT , (5.4)

CH (K, T ) = e−rT

∫ ∞

0

max (HTT −K, 0)P (HT , T |H0, 0) dHT , (5.5)

where

A(t) =

∫ t

0

S(t′)dt′, A0 = A(0), AT = A(T ), (5.6)

H(t) =
1∫ t

0
1

S(t′)dt
′
, H0 = H(0), HT = H(T ), (5.7)

dS(t) = rS(t)dt+ σS(t)dW (t), (5.8)

and P (AT , T |A0, 0) and P (HT , T |H0, 0) are the propagator of A(t) and H(t) re-

spectively. Let us derive the propagator P (AT , T |A0, 0) first. As usual, we make

a substitution x(t) = lnS(t) for calculation convenience, thus S(t) = ex(t) and

AT =
∫ T

0
ex(t)dt. Therefore P (AT , T |A0, 0) can be expressed as a marginal prop-

agator of the joint propagator, say P (xT , AT , T |x0, A0, 0), for the joint dynamics

(x(t), A(t)). Now we can apply the technique mentioned at the beginning of this

chapter. The stochastic differential equation and the Lagrangian of x(t) are given

by:

dx(t) =

(
r − σ2

2

)
dt+ σdW (t), (5.9)

L [ẋ, x] =
1

2σ2

[
ẋ−

(
r − σ2

2

)]2
. (5.10)

Thus the joint propagator of the joint dynamics (x(t), A(t)) can be expressed as:

P (xT , AT , T |x0, A0, 0) =

∫
Dx(t)δ

(
AT −

∫ T

0

ex(t)dt

)
e−

∫ T
0

L[ẋ,x]dt

= exp

{
−(r − σ2/2)

2

2σ2
T +

(
r

σ2
− 1

2

)
(xT − x0)

}

×
∫ ∞

−∞

dp

2π
eipAT

∫
Dx(t) exp

{
−
∫ T

0

[
ẋ2

2σ2
+ ip ex(t)

]
dt

}
. (5.11)
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The remaining path integral is the one for Liouville potential, see (2.96):
∫ ∞

−∞

dp

2π
eipAT

∫
Dx(t) exp

{
−
∫ T

0

[
ẋ2

2σ2
+ ip ex(t)

]
dt

}

=

∫ ∞

−∞

dp

2π
eipAT

2

σ2

∫ ∞

−∞

dΦI

2π
eΦT

∫ ∞

0

dl

l
e−(ex0+exT )l−ip 2

σ2l I
2
√

2
σ2Φ

(
2 e

x0+xT
2 l

)

=

∫ ∞

−∞

dΦI

2π
eΦT 2

σ2AT
e
− 2

σ2AT
(ex0+exT )

I
2
√

2
σ2Φ

(
4 e

x0+xT
2

σ2AT

)
. (5.12)

with I·(·) the modified Bessel function of the first kind. Therefore, we obtain the

joint propagator:

P (xT , AT , T |x0, A0, 0) = e−

(

r−σ2

2

)2

2σ2 T+( r
σ2− 1

2)(xT−x0)

∫ ∞

0

dΦI

π

× Re

[
eΦT 2

σ2AT
e
− 2

σ2AT
(ex0+exT )

I
2
√

2
σ2Φ

(
4 e

x0+xT
2

σ2AT

)]
,

(5.13)

With the help of the identity that (Re (α + ν) > 0)
∫ ∞

0

xα−1 e−px2

Iν (cx) dx

= 2−ν−1cνp−(α+ν)/2Γ ((α+ ν)/2)

Γ (ν + 1)
e

c2

4p
1F1

(
ν − α

2
+ 1; ν + 1;− c2

4p

)
, (5.14)

the integral over xT can be done analytically, leading to the marginal propagator

P (AT , T |A0, 0):

P (AT , T |A0, 0) =

∫ ∞

−∞
P (xT , AT , T |x0, A0, 0) dxT

=
1

S0
e−

(

r−σ2

2

)2

2σ2 T

∫ ∞

0

dΦI

π
Re

[
eΦT

(
2S0

σ2AT

)M
Γ (N −M)

Γ (N )

× 1F1

(
M;N ;− 2S0

σ2AT

)]
, (5.15)

where Γ(·) is the Euler gamma function, 1F1 (·; ·; ·) is the confluent hypergeometric

function and

M (Φ) =

√
2

σ2
Φ−

(
r

σ2
− 1

2

)
+ 1, (5.16)

N (Φ) = 2

√
2

σ2
Φ + 1, (5.17)
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5.1 Continuous arithmetic and harmonic Asian option under the
Black-Scholes model
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Figure 5.1: This figure shows the joint propagator P (xT , AT , T |x0, A0, 0) (left),

see (5.13), as well as the marginal propagator P (AT , T |A0, 0) (right), see (5.15).

The parameter values used here are S0 = 100, r = 2.25%, σ = 0.36, T = 1.

with the restriction of the real part of variable Φ:

ΦR >
σ2

2

(
κ

σ2
+

1

2

)2

. (5.18)

This propagator is shown in Figure 5.1, and with it the call option price can now

be straightforwardly calculated from expression (5.4).

Now we move on to the calculation of P (HT , T |H0, 0). The idea is to introduce

a new variable

Y (t) =
1

H(t)
=

∫ t

0

1

S(u)
du, (5.19)

then the propagator of Y (t), denoted by P (YT , T |Y0, 0), is related to the propa-

gator of H(t) by the following expression:

P (HT , T |H0, 0) =

∣∣∣∣
dY (t)

dH(t)

∣∣∣∣
t=T

P (YT , T |Y0, 0) =
1

H2
T

P (YT , T |Y0, 0)
∣∣∣
HT

. (5.20)

So we only need to investigate the propagator P (YT , T |Y0, 0). Let y(t) = − lnS(t)

= −x(t), then

YT =

∫ T

0

ey(t)dt, (5.21)

dy(t) = −dx(t) = −
(
r − σ2/2

)
dt− σdW (t). (5.22)
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Figure 5.2: The left panel gives the comparison of P (HT , T |H0, 0) for the har-

monic Asian option, see (5.25), and P (AT , T |A0, 0) for the arithmetic Asian op-

tion, see (5.15). The right panel shows that our analytical harmonic Asian call

option prices fit the Monte Carlo results well. The parameter values used here are

S0 = 100, r = 2.25%, σ = 0.2, T = 1.

Comparing (5.22) with (5.9), we see that P (YT , T |Y0, 0) can easily be obtained

by changing the signs of the terms
(
r − σ2

2

)
and σ in expression (5.15):

P (YT , T |Y0, 0) = S0 e
−

(

r−σ2

2

)2

2σ2 T

∫ ∞

0

dΦI

π
Re

[
eΦT

(
2

S0σ2YT

)M2 Γ (N −M2)

Γ (N )

× 1F1

(
M2;N ;− 2

S0σ2YT

)]
, (5.23)

where

M2 (Φ) =

√
2

σ2
Φ +

(
r

σ2
− 1

2

)
+ 1. (5.24)

Therefore

P (HT , T |H0, 0) =
S0

H2
T

e−

(

r−σ2

2

)2

2σ2 T

∫ ∞

0

dΦI

π
Re

[
eΦT

(
2HT

S0σ2

)M2 Γ (N −M2)

Γ (N )

× 1F1

(
M2;N ;− 2HT

S0σ2

)]
. (5.25)

The left panel of Figure 5.2 compares P (HT , T |H0, 0) with P (AT , T |A0, 0).

The distinction between them is due to the fact that the harmonic average value

of a set of positive variables is not larger than their arithmetic average.
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5.2 Options on realized variance

Plugging expressions (5.15) and (5.25) into (5.4) and (5.5), we have their

corresponding Asian option prices respectively. As an example, the right panel of

Figure 5.2 confirms our analytical continuous harmonic Asian call option prices.

5.2 Options on realized variance

The options we considered thusfar have a payoff that depends on the value of

the underlying asset. However, options can be constructed with a payoff that

depends on the realized variance of the underlying asset. To price such options,

we again need the joint propagator (5.3), which sometimes can be simplified to

a propagator for the realized variance only (rather than the propagator for the

asset value only). In this section we consider these options on realized variance,

starting from a stochastic volatility model with jumps.

The joint dynamics of the underlying asset price S(t) (expressed in its logre-

turn x(t) = ln S(t)
S0

) and its stochastic variance are generally assumed to evolve

under the risk-neutral pricing measure as follows:

dx(t) =

(
r − v(t)

2

)
dt+

√
v
(√

1− ρ2dW1(t) + ρdW2(t)
)
+ JsdN(t), (5.26)

dv(t) = α (v(t)) + β (v(t)) dW2(t) + JvdN(t), (5.27)

where r is the constant interest rate,W1(t) andW2(t) are two independent Wiener

processes, ρ ∈ [−1, 1] is the correlation coefficient between x(t) and its variance

v(t). N(t) is an independent Poisson process with constant intensity λ. We

assume that the amplitudes of return jump Js and variance jump Jv have respec-

tively normal and exponential distribution:

̟(Js) =
1√
2πν2

e−
(Js−µ)2

2ν2 , (5.28)

̟(Jv) =
1

η
e−

1
η
Jv

, (5.29)

where µ is mean and ν is volatility of return jump Js and η is mean of variance

jump Jv.

This model is very similar to the one described in last chapter 4.1.1 except

for the jumps. The realized variance of the underlying asset during a time period
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[0, T ] under this model with price jumps is approximatively represented as, see

(122, 185):

IT =

∫ T

0

v(t)dt+
∑

(Js
k)

2 , (5.30)

where (Js
k)

2 is the squared realization of k − th jump Js
k that occurred at jump

time tk. Alternatively, the realized variance can be depicted by its stochastic

differential equation (SDE):

dI(t) = v(t)dt+ (Js)2 dN(t). (5.31)

The pricing formulas of the options on realized variance rely on the propaga-

tor of the realized variance, which is denoted by PJs (IT , T |I0, 0). In order the

derive PJs (IT , T |I0, 0) under the SDE (5.31), we first derive the propagator of the

realized variance without price jumps, denoted by P (IT , T |I0, 0). When Js = 0,

IT reduces to
∫ T

0
v(t)dt, which is the case we solved in the previous chapter.

5.2.1 Realized variance in the Heston model with variance

jumps

For the Heston SV model (76) with variance jumps, the model dynamics is written

as:

dv(t) = κ (θ − v(t)) dt+ σ
√
v(t)dW2(t) + JvdN(t). (5.32)

When Js = Jv = 0, we already have the joint propagator of the joint dynamics

(x(t), I(t)), see expression (4.92):

P (xT , IT , T |x0, I0, 0) = e
κ
σ2 v0+

κ2θ
σ2 T

∫ ∞

−∞

dp

2π
eip (IT−I0)

∫ ∞

−∞

dl

2π
eil(xT−rT ) eil

ρ
σ
(κθT+v0)

×N
2κθ
σ2 e

− 2ω(cosh(ωT )−N)

σ2 sinh(ωT )
v0 , (5.33)

where

ω =
σ

2

√
κ2

σ2
+ (1− ρ2) l2 + il

(
2ρκ

σ
− 1

)
+ 2ip, (5.34)

N =

(
cosh(ωT ) +

κ + ilρσ

2ω
sinh(ωT )

)−1

. (5.35)
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Of course, I(t) does not depend on the process x(t), so we do not need to

calculate the joint propagator of (x(t), I(t)): it is trivial from (5.33) to get the

marginal propagator of I(t),

P (IT , T |I0, 0) =
∫ ∞

−∞

dp

2π
eip(IT−I0)

exp
{

κ2θ
σ2 T −

(
2ip

κ+2ω2 coth(ω2T )

)
v0

}

(
cosh(ω2T ) +

κ
2ω2

sinh(ω2T )
) 2κθ

σ2

, (5.36)

where

ω2 =
1

2

√
κ2 + 2ipσ2. (5.37)

Now consider the model with price jumps and variance jumps. The propa-

gator of the realized variance PJs (IT , T |I0, 0) satisfies the Kolmogorov backward

equation:

∂PJs

∂T
= κ(θ − v0)

∂PJs

∂v0
+

1

2
σ2v0

∂2PJs

∂v20
+ v0

∂PJs

∂I0

+ λ

∫ ∞

0

∫ ∞

−∞

[
PJs(v0 + Jv, I0 + (Js)2)− PJs(v0, I0)

]
̟(Js)̟(Jv)dJsdJv.

(5.38)

Given the propagator P (IT , T |I0, 0) for the model without jumps, which sat-

isfies the previous Kolmogorov backward equation provided λ = 0, we thus write

the propagator PJs (IT , T |I0, 0) for the model with jumps in a similar way:

PJs(IT , T |I0, 0) =
∫ ∞

−∞

dp

2π
eip(IT−I0)

exp
{

κ2θ
σ2 T −

(
2ip

κ+2ω2 coth(ω2T )

)
v0

}

[
sinh(ω2T )

(
κ

2ω2
+ coth(ω2T )

)] 2κθ
σ2

× eU(p,T ),

(5.39)

where U(p, T ) can be calculated as:

∂U(p, T )

∂T
= λ

∫ ∞

0

∫ ∞

−∞

[
e−ip(Js)2 e

−
(

2ip
κ+2ω2 coth(ω2T )

)
Jv

− 1

]
̟(Js)̟(Jv)dJsdJv.

(5.40)

By using the jump size distributions (5.28) and (5.29), and taking the boundary

condition U(p, 0) = 0 into account, we finally obtain

U(p, T ) = λ
e
− ipµ2

1+2ipν2

√
1 + 2ipν2

−2η ln
[
2ipη+κ
2ω2

sinh(ω2T ) + cosh(ω2T )
]
+ (σ2 − ηκ) T

σ2 − 2ηκ− 2ipη2

− λT. (5.41)

121



5. APPLICATIONS OF PATH INTEGRATION OVER
CONDITIONED PATHS

Substituting (5.41) into (5.39), we obtain the final propagator for the realized

variance under the Heston model with jumps in asset price and variance, which

is the same as the result obtained in reference (122), confirming our derivation.

5.2.2 Realized variance in the 3/2 model with determin-

istic mean-reverting level

The model dynamics of the 3/2 stochastic volatility model (188) with determin-

istic mean-reverting level reads:

dv(t) = κv(t) (θ(t)− v(t)) dt + ǫv3/2(t)dW2(t)

= v(t)
[
κ (θ(t)− v(t)) dt+ ǫ

√
v(t)dW2(t)

]
. (5.42)

This model is the same as the one given in (4.40) except that the mean-reverting

level θ(t) is now a time dependent deterministic variable.

Inspection of equation (5.42) shows that this 3/2 model, in contrast to the

Heston model, has a proportional structure, i.e. the mean reversion and the

diffusion coefficient all depend on the current level of v(t). The proportional

structure of this model also exists in the exponential Vašiček model, see (3.14).

Note that when v(t) increases, its diffusion coefficient increases nonlinearly, so

some of the large values of v(t) can be captured by the diffusion part instead

of the jump part. This makes it possible to drop the variance jumps in these

models. Moreover, the larger the v(t), the larger the effect of the mean reversion

is. Thus these models are able to produce ”spikes” rather than jumps, which is

consistent with some underlying assets dynamics, such as the time evolution of

a foreign exchange. So these models are capable of describing some underlying

assets directly. The deterministic function of time θ(t) makes model (5.42) even

more flexible.

To derive the propagator of the realized variance PJs (IT , T |I0, 0) for the model

(5.42), we start by the derivation of a related joint propagator without price jumps

Js. The substitution

z(t) = (v(t))−1/2 , (5.43)
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leads to the SDE for z(t) and thus its Lagrangian:

dz(t) =

[
−κθ(t)

2
z +

(
κ

2
+

3

8
ǫ2
)

1

z

]
dt− ǫ

2
dW2(t), (5.44)

L[ż, z] =
2

ǫ2
[
ż2 + (κ θ(t)/2)2 z2

]
+

(2κ/ǫ2 + 1)
2 − 1/4

(8/ǫ2) z2

+
2κθ(t)

ǫ2
zż −

(
2κ

ǫ2
+

3

2

)
ż

z
−
(
κ2θ(t)

ǫ2
+ κθ(t)

)
. (5.45)

Denote the joint propagator of the joint dynamics (z(t), I(t)) without price jumps

by P (zT , IT , T |z0, I0, 0). Applying the technique described at the beginning of

this chapter, we have:

P (zT , IT , T |z0, I0, 0)

=

∫
Dz(t) δ

(
IT −

∫ T

0

1

z2(t)
dt

)
e−

∫ T
0 L[ż,z]dt

=

(
zT
z0

) 2κ
ǫ2

+ 3
2

e−
κ
ǫ2

(θT z2T−θ0z20) eκ(
κ
ǫ2

+1)
∫ T
0 θ(t)dt

∫ ∞

−∞

dp

2π
eip(IT−I0)

×
∫

Dz(t) e
−
∫ T
0


 2

ǫ2

[
ż2+

(
κ2θ2(t)

4
−κ

2
θ̇(t)

)
z2
]
+


(

2κ
ǫ2

+1)
2
− 1

4

8/ǫ2
+ip


 1

z2


dt
. (5.46)

Make the substitutions

ω2(t) =
κ2θ2(t)

2
− κ

2
θ̇(t), (5.47)

χ =

√(
2κ

ǫ2
+ 1

)2

+ ip
8

ǫ2
, (5.48)

then the rest propagator becomes

∫
Dz(t) exp

{
−
∫ T

0

[
2

ǫ2
(
ż2 + ω2(t)z2

)
+
χ2 − 1

4

8/ǫ2
1

z2

]
dt

}
. (5.49)

This is the path integral of a time-dependent radial harmonic oscillator. Solution

of this path integral can be found, for instance, in (155):

(5.49) =
4
√
z0zT

ǫ2 ζ(T )
exp

{
− 2

ǫ2

(
ξ(T )

ζ(T )
z20 +

ζ̇(T )

ζ(T )
z2T

)}
Iχ

(
4z0zT
ǫ2 ζ(T )

)
. (5.50)
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The quantities ζ(T ) and ξ(T ), respectively, are determined by the differential

equations:

ζ̈ − ω2(t)ζ = 0, ζ(0) = 0, ζ̇(0) = 1, (5.51)

ξ̈ − ω2(t)ξ = 0, ξ(0) = 1, ξ̇(0) = 0. (5.52)

To find the solutions of ζ and ξ, we consider the general differential equation

Ϋ(t) = ω2(t)Υ(t) =

[
κ2θ2(t)

2
− κ

2
θ̇(t)

]
Υ(t). (5.53)

Assume

Υ̇(t) = −κ
2
θ(t)Υ(t) + f(t), (5.54)

then

Ϋ(t) =

[
κ2θ2(t)

2
− κ

2
θ̇(t)

]
Υ(t) +

d

dt
f(t)− κ

2
θ(t)f(t), (5.55)

from which we see that equation (5.53) can be satisfied with (5.54) if the function

f(t) satisfies
d

dt
f(t)− κ

2
θ(t)f(t) = 0, (5.56)

hence

f(t) = c1 e
∫ t
0

κ
2
θ(u)du. (5.57)

Now that

Υ̇(t) = −κ
2
θ(t)Υ(t) + c1 e

∫ t
0

κ
2
θ(u)du, (5.58)

the general solution of differential equation (5.53) is

Υ(t) = e−
∫ t
0

κ
2
θ(u)du

[
c1

∫ t

0

e
∫ s
0
κθ(u)duds+ c2

]
. (5.59)

Given the boundary conditions of ζ and ξ, see (5.51) and (5.52), respectively, we

find the their solutions as follows:

ζ(t) = e−
∫ t
0

κ
2
θ(u)du

∫ t

0

e
∫ s
0 κθ(u)duds, (5.60)

ξ(t) = e−
∫ t
0

κ
2
θ(u)du

[
κθ0
2

∫ t

0

e
∫ s
0
κθ(u)duds+ 1

]
. (5.61)
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So (θ(t) 99K θ)

ζ(T ) = e−
∫ T
0

κ
2
θ(u)du

∫ T

0
e
∫ s
0
κθ(u)duds 99K

2
κθ

sinh κθT
2
,

ξ(T )
ζ(T )

= κθ0
2

+ 1∫ T
0

e
∫ s
0 κθ(u)duds

99K
κθ
2
coth κθT

2
,

ζ̇(T )
ζ(T )

= −κθT
2

+ e
∫T
0 κθ(u)du

∫ T
0

e
∫ s
0 kθ(u)duds

99K
κθ
2
coth κθT

2
.

(5.62)

Especially, when θ(t) = θ, that is ω(t) = ω = κθ
2
, we obtain our earlier result for

the propagator of the normal radial harmonic oscillator

∫
Dz(t) e−

∫ T
0

[
2
ǫ2
(ż2+ω2z2)+

χ2− 1
4

8/ǫ2
1
z2

]
dt

=
4ω

√
zT z0

ǫ2 sinh(ωT )
e−

2ω
ǫ2
(z2T+z20) coth(ωT ) Iχ

(
4ωzT z0

ǫ2 sinh(ωT )

)
. (5.63)

Note the relation that

Ξ(0, T ) =

∫ T

0

e
∫ s
0
κθ(u)duds (5.64)

= ζ(T ) e
∫ T
0

κ
2
θ(u)du =

(
ξ(T )

ζ(T )
− κθ0

2

)−1

= ζ2(T )

(
ζ̇(T )

ζ(T )
+
κθT
2

)
,

which is useful for further calculation.

Now we have the joint propagator P (zT , IT , T |z0, I0, 0), (5.46). Integrating it

over zT yields the propagator of the realized variance for model (5.42) without

price jumps:

P (IT , T |I0, 0) =

∫ ∞

0

P (zT , IT , T |z0, I0, 0) dzT

=

∫ ∞

−∞

dp

2π
eip(IT−I0)

Γ
(
χ+ 1− M̃

)

Γ (χ+ 1)

(
2

ǫ2Ξ(0, T ) v0

)M̃

× 1F1

(
M̃ ;χ+ 1;− 2

ǫ2Ξ(0, T ) v0

)
, (5.65)

where

M̃ =
χ

2
− κ

ǫ2
− 1

2
. (5.66)

The propagator of the realized variance for model model (5.42) with price jumps

Js, following (5.28), can be obtained by using a similar procedure shown in section

125



5. APPLICATIONS OF PATH INTEGRATION OVER
CONDITIONED PATHS

(5.2.1), which is:

PJs (IT , T |I0, 0) =

∫ ∞

−∞

dp

2π
eip(IT−I0)

Γ
(
χ+ 1− M̃

)

Γ (χ+ 1)

(
2

ǫ2Ξ(0, T ) v0

)M̃

× 1F1

(
M̃ ;χ+ 1;− 2

ǫ2Ξ(0, T ) v0

)
exp {U (p, T )} , (5.67)

where

U(p, T ) = λT


 e

− ipµ2

1+2ipν2

√
1 + 2ipν2

− 1


 . (5.68)

Figure 5.3 illustrates the propagators of (5.67) and (5.65), and they are confirmed

by Monte Carlo simulation results.
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Figure 5.3: Propagators of the realized variance of the 3/2 model with price

jumps from expression (5.67) (the red curve), and the one without price jumps

from expression (5.65) (the pink dashed line). They fit their corresponding Monte

Carlo (MC) simulations well. The parameter values used here are v0 = 0.2452,

κ = 22.84, θ = 0.46692, ǫ = 8.56, T = 1, λ = 10, µ = −0.01, ν = 0.03.
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5.2 Options on realized variance

5.2.3 Pricing derivative options on realized variance

Rewrite the previous two propagators of the realized variance PJs (It2 , t2|It1 , t1),
t2 > t1, given in expressions (5.39) and (5.67), in a general form

PJs (It2 , t2|It1 , t1) =
∫ ∞

−∞

dp

2π
eip(It2−It1)F (p, vt1 , t1, t2) , (5.69)

where F (p, vt1 , t1, t2) is given by, for instance for the 3/2 model:

F (p, vt1 , t1, t2) =
Γ
(
χ+ 1− M̃

)

Γ (χ+ 1)

(
2

ǫ2Ξ(t1, t2) vt1

)M̃

× 1F1

(
M̃ ;χ+ 1;− 2

ǫ2Ξ(t1, t2) vt1

)
exp {U (p, t2 − t1)} . (5.70)

Then under the risk-neutral measure, we can compute option prices by calculating

its expected payoff (I0 = 0):

Price = e−rT

∫ ∞

0

PJs (IT , T |I0, 0) Payoff (IT − I0) dIT

= e−rT

∫ ∞

−∞

dp

2π
F (p, v0, 0, T )

∫ ∞

0

dIT e
ipIT Payoff (IT ) . (5.71)

In practice, a small imaginary part of p is sometimes necessary. For example, a

swap on the realized variance with the payoff IT −K:

∫ ∞

0

dIT e
ipIT (IT −K) = −1 + ipK

p2
. (5.72)

A call option on the realized variance with the payoff (IT −K)+:

∫ ∞

0

dIT e
ipIT (IT −K)+ = −e

ipK

p2
, (5.73)

and so on. The option pricing formulas are then given straightforwardly.

The options discussed above are all current-start options, which means that

the option life is from current time t = 0 to a maturity time T . For forward-start

options on the realized variance, whose life is between two future times tF and T ,

with 0 < tF < T , the value of v(t) at the option’s initial time tF , vtF , is unknown.

So a propagator of v(t), say P (vtF , tF |v0, 0), will be applied to eliminate this
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uncertainty. We know the computation of P (zT , T |z0, 0) is even easier than the

one of P (zT , IT , T |z0, I0, 0), that is for the 3/2 model (5.42):

P (zT , T |z0, 0) =

∫
Dz(t) e−

∫ T
0 L[ż,z]dt

=

(
zT
z0

) 2κ
ǫ2

+ 3
2

e
−

κ(θT z2T−θ0z
2
0)

ǫ2
+
(

κ2

ǫ2
+κ
) ∫ T

0
θ(t)dt

×4
√
z0zT

ǫ2ζ(T )
e
− 2

ǫ2

(
ξ(T )
ζ(T )

z20+
ζ̇(T )
ζ(T )

z2T

)

I 2κ
ǫ2

+1

(
4z0zT
ǫ2ζ(T )

)
, (5.74)

therefore the propagator of v(t) is

P (vtF , tF |v0, 0) =

∣∣∣∣
dz

dv

∣∣∣∣
tF

P (ztF , tF |z0, 0) =
z3tF
2

P (ztF , tF |z0, 0)

=

(
Ξ(0, tF )

ζ(tF )

) 2κ
ǫ2

+2

v
κ
ǫ2

+ 1
2

0 e
− 2

ǫ2Ξ(0,tF )
1
v0 v

−( κ
ǫ2

+ 5
2)

tF
e
− 2Ξ(0,tF )

ǫ2ζ2(tF )
1

vT

× 2

ǫ2ζ(tF )
I 2κ

ǫ2
+1

(
4

ǫ2ζ(tF )

1√
v0vtF

)
. (5.75)

The stationary distribution of the 3/2 model can be calculated:

lim
T→∞

P (vT , T |v0, 0) =

(
2κθT
ǫ2

) 2κ
ǫ2

+2

Γ
(
2κ
ǫ2

+ 2
) v−(

2κ
ǫ2

+3)
T e

− 2κθT
ǫ2

1
vT

=
αβ

Γ (β) vβ+1
T

exp

{
− α

vT

}
, (5.76)

where α = 2κθT
ǫ2

, β = 2κ
ǫ2
+2. Expression (5.76) tells us that the stationary density

of the 3/2 stochastic volatility model follows an inverse gamma distribution. This

distribution gives a very good fit for the probability density of the high frequency

volatility proxy for the S&P500 index (41).

Now under the risk-neutral measure, the forward-start option prices on the

realized variance are expressed as:

Price = e−rTE

[∫ ∞

ItF

PJs (IT , T |ItF , tF ) Payoff (IT − ItF ) dIT

]

= e−rTE

[∫ ∞

−∞

dp

2π
F (p, vtF , tF , T )

∫ ∞

0

dI eipI Payoff (I)
]

= e−rT

∫ ∞

0

dvtFP (vtF , tF |v0, 0)
∫ ∞

−∞

dp

2π
F (p, vtF , tF , T )

∫ ∞

0

dI eipI Payoff (I) .
(5.77)
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5.3 VIX futures and options under the 3/2 model

The VIX stands for Chicago Board Options Exchange (CBOE) Volatility Index, a

popular measure of the implied volatility of S&P500 index options with maturity

30 days. It represents the market’s expectation of the annualized volatility of the

S&P500 index over the next 30 day period, and it is often referred to as the fear

index or the fear gauge.

The VIX is calculated and disseminated in real-time by the CBOE. More

details on the VIX calculation can be found in the VIX white paper (CBOE

2009). Here, we model the VIX by assuming that the variance of returns on the

S&P500 index is driven by dynamics (5.42). According to the market convention,

the VIX is scaled by the factor of 100, which is omitted here for brevity.

The spot value of the VIX at current time t0 with variance v0, denoted by

X(t0), measures the square root of the expected annualized realized variance for

S&P500 index options with tenor τT = 30
365

:

X(t0) =

√
E

[
1

τT
(It0+τT − It0)

]

=

(
1

τT

∫ ∞

−∞

dp

2π
F (p, v0, t0, t0 + τT )

∫ ∞

0

dI eipI I
) 1

2

=

(
− 1

τT

∫ ∞

−∞

dp

2π
F (p, v0, t0, t0 + τT )

1

p2

) 1
2

, (5.78)

where F (p, v0, t0, t0+τT ) is given in (5.70). The futures value of the VIX, denoted

by X(t0, tF ), tF > t0, is the expectation of the VIX at time tF :

X(t0, tF ) = E

[√
E

[
1

τT
(ItF+τT − ItF )

∣∣∣∣ vtF
]]

= E

[(
− 1

τT

∫ ∞

−∞

dp

2π
F (p, vtF , tF , tF + τT )

1

p2

) 1
2

]

=

∫ ∞

0

dvtFP (vtF , tF |v0, 0)
(
− 1

τT

∫ ∞

−∞

dp

2π
F (p, vtF , tF , tF + τT )

1

p2

) 1
2

.

(5.79)
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The forward-start option value on the VIX spot value X(tF ) at a future time tF

is:

Price = e−r(tF−t0)E [Payoff (X(tF ))]

= e−r(tF−t0)E

[
Payoff

(√
E

[
1

τT
(ItF+τT − ItF )

])]

= e−r(tF−t0)

∫ ∞

0

dvtFP (vtF , tF |v0, 0)

×Payoff

(√
− 1

τT

∫ ∞

−∞

dp

2π
F (p, vtF , tF , tF + τT )

1

p2

)
. (5.80)

We see that the futures is a special option with payoff:

Payoff (E) = E . (5.81)

Also note that no discounting is applied for time [tF , tF + τT ] because the payoff

occurs at time tF .

5.3.1 Expectation value of the realized variance

We already have the pricing formula for the froward-start options on the VIX, see

expression (5.80), based on the computation of the realized variance’s expectation

value:

E [ItF+τT − ItF ] = −
∫ ∞

−∞

dp

2π
F (p, vtF , tF , tF + τT )

1

p2
. (5.82)

Actually, there is another way to calculate this value, i.e. (̟(Js) is given in

(5.28))

E [ItF+τT − ItF ] = E

[∫ tF+τT

tF

v(t)dt+

∫ tF+τT

tF

(Js)2dN(t)

]

=

∫ tF+τT

tF

E [v(t)] dt+ λ

∫ tF+τT

tF

dt

∫ ∞

−∞
(Js)2̟(Js)dJs

=

∫ tF+τT

tF

E [v(t)] dt+ λ
(
µ2 + ν2

)
τT . (5.83)
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Given the propagator of v(t), see expression (5.75), we have:

E [v(t)] =

∫ ∞

0

v(t)P (vt, t|vtF , tF ) dv(t)

=
2
ǫ2

2κ
ǫ2

+ 1

d
dt
Ξ(tF , t)

Ξ(tF , t)
1F1

(
1;

2κ

ǫ2
+ 2; − 2

ǫ2Ξ(tF , t)

1

vtF

)
. (5.84)

Then it is not difficult to obtain:

E[vT ] →





2
ǫ2

2κ
ǫ2

+1
1∫ T

0
e
∫ s
0 κθ(u)duds

(−1)( 2κ
ǫ2

+1)
(−1) 2

ǫ2
∫T
0 e

∫ s
0 κθ(u)du

ds

1
v0

→ v0, as T → t0;

2
ǫ2

2κ
ǫ2

+1
e
∫T
0 κθ(u)du κθT

e
∫T
0 κθ(u)du

→ θT

1+ ǫ2

2κ

, as T → ∞,

from which we see that the expectation value of v(t) at large time is determined

by θ(t). By using (5.84), we then have:

∫ tF+τT

tF

E [v(t)] dt

=

∫ tF+τT

tF

2
ǫ2

2κ
ǫ2

+ 1

d
dt
Ξ(tF , t)

Ξ(tF , t)
1F1

(
1;

2κ

ǫ2
+ 2; − 2

ǫ2Ξ(tF , t)

1

vtF

)
dt

=
2
ǫ2

2κ
ǫ2

+ 1

∫ Ξ(tF ,tF+τT )vtF

0

1

Λ
1F1

(
1;

2κ

ǫ2
+ 2; − 2

ǫ2Λ

)
dΛ. (5.85)

In short, an alternative expression for (5.82) is

E [ItF+τT − ItF ] =
2

2κ+ ǫ2

∫ Ξ(tF ,tF+τT )vtF

0

1

Λ
1F1

(
1;

2κ

ǫ2
+ 2; − 2

ǫ2Λ

)
dΛ

+λ
(
µ2 + ν2

)
τT . (5.86)

Expression (5.86) is equivalent to but numerically simpler than equation (5.82).

5.4 Dosimetry in an environment with fluctuat-

ing radioactivity

This section is based on the joint work with Jacques Tempère and

Maarten Baeten. Jacques Tempère is the initiator.
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The disaster of Japanese Fukushima nuclear plant prompts people to be con-

cerned about the dangers of radiation exposure. Indeed, radiation and radioac-

tivity, though harmless at normal levels, are ubiquitous. Apart from the radi-

ation hormesis, a controversial hypothesis, which states that radiation exposure

comparable to and just above the natural background level of radiation is not

harmful but beneficial (202, 203, 204), it is reported that an increase in the risk

of tumor induction proportionate to the radiation dose is consistent with develop-

ing knowledge (205). Both these two radiation dose-risk relationships stimulate

our research on the stopping time problems, such as the radioactive dosimetry

problem. That is finding the probability distribution for the times when having

received a predetermined total dose, under different circumstances.

We know from basic radioactivity theory that the number of radioactive de-

cays in a given time interval can be very-well described by a Poisson distribution.

However, this is only the case when the time of observation is much smaller than

the half-life time of the isotopes. Otherwise, some corrections need to be made

(206). Moreover, when residing in a natural environment, Nero et al. (207)

proposed that indoor radon levels could be modeled well with a log-normal dis-

tribution. Ever since, much progress has been made in the field of radon mapping

in many countries, see for instance (208, 209, 210, 211, 212). Other probability

distributions have also been considered, for instance Janssen et al. modeled radon

measurements with the gamma distribution (213, 214). For exposure to radia-

tion leaked from a nuclear plant, it was found that the distribution of radioactive

particles over Europe after the Chernobyl disaster could be fairly well modeled

by a stochastic process where the particles, starting from Kiev, underwent a Lévy

flight (with drift) rather than Brownian motion through the atmosphere (215).

So the number of radioactive decays that one subjected to, can varies from a

Poisson distribution in one case to a Lévy distribution in another case as one is

traveling across contaminated land.

To capture these crucial empirical features of radioactive decays, i. e. ex-

ponentially decay with random fluctuations and occasional jumps, we model the

complicated Poisson process by incorporating an arbitrary stochastic process into

the basic Poisson intensity variable. In particular, we focus on the log-normal

model and the Cox-Ingersoll-Ross (CIR) jump-diffusion model. The log-normal
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stochastic process gives a stationary log-normal distribution, while the CIR pro-

cess gives a stationary gamma distribution (216). These two models will let us in

agreement with literature findings (207, 213). The probability density of stopping

times can be derived by taking the derivative of the cumulative distribution func-

tion, which is the death probability that in a time span, at least a given number of

decays will have occurred. Therefore, the solution of the stopping time problem

relies on the transition probability density of the number of decays.

The notion of stopping time in the context of radioactive decay is analogous

to the notion of the expiry date of a timer option in the financial market, where

the expiry date equals the time needed for the realized variance of the underlying

asset to reach a prespecified level, see (145, 167) and references therein. This

analogy inspires us to apply the techniques used in previous chapter.

5.4.1 Poisson distributions

We first investigate a Poisson process for radioactive decay, with an intensity

parameter λn,t that depends both on the time t and on the number of decays n(t),

for example because the concentrations of radionuclides vary as a function of time.

To start with, we assume that λn,t represents the probability that a radioactive

decay has occurred in the time window [t, t+∆t] with ∆t infinitesimal.

We want to calculate the probability that in a (macroscopic) given time span

T , n decays have occurred. This can be written as a transition probability,

starting with n0 decays at time t = t0 and ending up with n decays at time

t0+T . We denote this transition probability by P (n0, t0 → n, t0 + T ). With this

notation, we can define λn,t as

P (n, t→ n + 1, t+∆t) = λn,t∆t. (5.87)

If the time ∆t is short enough (indeed it is infinitesimal), not more than one

decay will have occurred so that

P (n, t→ n, t +∆t) = 1− λn,t∆t. (5.88)

We can write the transition probability from t0 to t +∆t as a transition up to t

and then a transition from t to t+∆t. Since in the short time span ∆t there can
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be either one or zero decays, but nothing else, we find

P (n0, t0 → n, t+∆t)

= P (n0, t0 → n, t)P (n, t→ n, t+∆t)

+P (n0, t0 → n− 1, t)P (n− 1, t→ n, t+∆t)

= (1− λn,t∆t)P (n0, t0 → n, t) + λn−1,t∆tP (n0, t0 → n− 1, t) , (5.89)

from which

∂P (n0, t0 → n, t)

∂t
= −λn,tP (n0, t0 → n, t) + λn−1,tP (n0, t0 → n− 1, t) . (5.90)

The number of decays between t0 and t is a Poisson stochastic variable. The

number of decays as a function of time, is the Poisson stochastic process. We

want to find the time TB it takes, starting at t0 , to get a dose of B decays. This

time will by necessity also be a stochastic variable. So, to be precise, we want to

find the probability density function f (TB) associated with TB.

We can start by looking at the cumulative distribution function F (TB) for

TB. This is the probability that in a time span TB (still staring at t0), at least B
decays will have occurred, in other words

F (TB) =

NTot∑

j=B
P (n0, t0 → n0 + j, t0 + TB) . (5.91)

We can also find this through its complement

F (TB) = 1−
B−1∑

j=0

P (n0, t0 → n0 + j, t0 + TB) . (5.92)

Taking the derivative of F (TB) yields the final stopping time distribution, i.e.

the probability density function of the maximum exposure time:

f (TB) =
dF (TB)

dTB
. (5.93)

Note that this final formula of stopping time relies in the probability distri-

bution P (n0, t0 → n0 + j, t), which depends on the Poisson intensity parameter

λn,t. Hence, we will focus on the modeling of λn,t in the remaining of this section.
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5.4.2 Basic n-dependent Poisson distribution

Here we assume that λn,t depends on time by the number of decays n(t). This

assumption is essential if we have a finite stock of NTot radionuclides and wait a

long time. Indeed, one expects

λn,t = λ0 (NTot − n(t)) . (5.94)

Note that usually Ntot is deemed large enough so that λn,t is assumed constant.

This cannot hold for small amounts of randomly released radioactivity, as in the

case of radon concentrations in mountainous regions. As time grows, n(t) grows,

and at some point it can no longer be neglected with respect to NTot.

Since n(t) ≤ NTot, we define the generating function of P (n0, t0 → n, t) as

G (n0, t0; s, t) =

NTot∑

n=n0

sn−n0 P (n0, t0 → n, t) =

NTot−n0∑

j=0

sj P (n0, t0 → n0 + j, t) .

(5.95)

Plugging (5.95) into (5.90) gives

∂G (n0, t0; s, t)

∂t
=

NTot∑

n=n0

sn−n0
∂P (n0, t0 → n, t)

∂t

= −
NTot∑

n=n0

sn−n0λn,tP (n0, t0 → n, t) + s

NTot−1∑

n=n0

sn−n0λn,tP (n0, t0 → n, t). (5.96)

Considering our basic model λn,t = λ0 (NTot − n(t)), which yields

NTot∑

n=n0

sn−n0 λn,tP (n0, t0 → n, t)

= λ0NTot

NTot∑

n=n0

sn−n0 P (n0, t0 → n, t)− λ0

NTot∑

n=n0

sn−n0 nP (n0, t0 → n, t)

= λ0NTotG (n0, t0; s, t)− λ0

(
s
∂G (n0, t0; s, t)

∂s
+ n0G (n0, t0; s, t)

)
, (5.97)

and also noting that

λNTot,t = 0, (5.98)
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we have

∂G (n0, t0; s, t)

∂t
= λ0 (NTot − n0) (s− 1)G (n0, t0; s, t)

−λ0s(s− 1)
∂G (n0, t0; s, t)

∂s
, (5.99)

with boundary conditions:

G (n0, t0; s, t0) = 1, G (n0, t0; 1, t) = 1. (5.100)

The solution of this equation is

G (n0, t0; s, t) =
(
s− (s− 1) e−λ0(t−t0)

)NTot−n0

=e−λ0(t−t0)(NTot−n0)
[
1 +

(
eλ0(t−t0) − 1

)
s
]NTot−n0

=e−λ0(t−t0)(NTot−n0)

NTot−n0∑

j=0

(
NTot − n0

j

)(
eλ0(t−t0) − 1

)j
sj, (5.101)

where
(·
·
)
is the binomial coefficient. Comparing this result with expression (5.95),

we obtain

P (n0, t0 → n0 + j, t) = e−λ0(t−t0)(NTot−n0)

(
NTot − n0

j

)(
eλ0(t−t0) − 1

)j
. (5.102)

Straightforwardly, we have the mean and variance of the number of decays as

follows:

Et0,t(j) =
∂G (n0, t0; s, t)

∂s

∣∣∣
s=1

=
(
1− e−λ0(t−t0)

)
(NTot − n0), (5.103)

Vart0,t(j) =
∂2G (n0, t0; s, t)

∂s2

∣∣∣
s=1

+
∂G (n0, t0; s, t)

∂s

∣∣∣
s=1

−
(
∂G (n0, t0; s, t)

∂s

∣∣∣
s=1

)2

= e−λ0(t−t0)
(
1− e−λ0(t−t0)

)
(NTot − n0). (5.104)

Note that the variance (5.104) first expands then converges to zero as time t goes.

Plugging expression (5.102) into (5.92), we get

F (TB) =

(
NTot − n0

B

)(
eλ0TB − 1

)B
2F1

(
B, 1 +NTot − n0; B + 1; 1− eλ0 TB

)
,

(5.105)

where 2F1 (·, ·; ·; ·) is the hypergeometric function.

Finally the probability density function of the stopping time is obtained by

taking the derivative of the previous cumulative distribution function, see (5.93):

f(TB) = λ0B
(
NTot − n0

B

)(
eλ0TB − 1

)B−1
e−λ0 TB(NTot−n0). (5.106)
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5.4.3 Time changed n-dependent Poisson distribution

Now we extend the previous Poisson intensity model (5.94) to a more general one

that incorporates an arbitrary stochastic process v(t):

λn,t = λ0 (NTot − n(t)) v(t). (5.107)

Due to the flexibility of the stochastic process v(t), given a feasible process v(t),

this model enables us to capture the empirical features of the radioactive decays.

In particular for the aforementioned case of radon concentrations in mountainous

regions, the release of radon is a stochastic process where empirical indications

are that it follows a distribution with non-Gaussian tails. Using the formalism

developed in this thesis, we are in a unique position to investigate dosimetry in

such an environment with fluctuating activity.

In order to find the transition probability function of decays under this model,

we apply the Duru-Kleinert method of quantum mechanics by defining a pseudo-

time τ(t) such that

τ(t) =

∫ t

0

v(s)ds. (5.108)

The inverse function theorem tells that

dτ−1(t)

dt
=

1

v (τ−1(t))
. (5.109)

Denote n (τ−1(t)) by Ñ(t), then

λÑ(t),t dt = λn(τ−1(t)),τ−1(t) dτ
−1(t), (5.110)

from which it follows

λÑ(t),t = λ0
(
NTot − n

(
τ−1(t)

))
v
(
τ−1(t)

) dτ−1(t)

dt

= λ0

(
NTot − Ñ(t)

)
. (5.111)

Consequently, Ñ(t) is nothing but a basic n-dependent Poisson intensity pro-

cess as described in subsection 5.4.2. In respect that n(t) = Ñ (τ(t)), therefore

n(t) is actually a time changed n-dependent Poisson intensity process. As the

process n(t) evolves in the real time period [t0, t0 + T ], the new process Ñ(t)
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evolves in [τ(t0), τ (t0 + T )]. Notably, while [t0, t0 + T ] is a fixed time period,

[τ(t0), τ (t0 + T )] is now an uncertain horizon in pseudotime.

In short, we reduce the time changed model’s problem to the one under the

basic Poisson intensity process, which we have solved in subsection 5.4.2, at the

expense that the time horizon is now random in pseudotime. We can link this

work with our work on timer options (145), presented in the previous chapter,

where we fixed the uncertain expiration date at the cost of introducing more

complicated processes.

Keeping the uncertainty of the pseudotime horizon in mind, we can, condition-

ing on τ(t), obtain the transition probability function of the number of decays

under the Ñ(t) process straightforwardly, see expression (5.102) and also note

that Ñ(τ(t0)) = n(t0) = n0:

P
(
Ñ(τ(t0)), τ(t0) → Ñ(τ(t0)) + j, τ(t)

)

= e−λ0(τ(t)−τ(t0))(NTot−n0)

(
NTot − n0

j

)(
eλ0(τ(t)−τ(t0)) − 1

)j
. (5.112)

Denote the transition probability density function of the random variable τ(t) by

P (τ(t), t|τ(t0), t0). The probability density function of n(t) can be written as:

P (n0, t0 → n0 + j, t)

=

∫ ∞

τ(t0)

e−λ0(τ(t)−τ(t0))(NTot−n0)

(
NTot − n0

j

)(
eλ0(τ(t)−τ(t0)) − 1

)j

×P (τ(t), t|τ(t0), t0) dτ(t). (5.113)

Then the cumulative distribution function defined in expression (5.92) is given

by

F (TB) =

(
NTot − n0

B

)∫ ∞

τ(t0)

dτ(t)P (τ(t), t|τ(t0), t0)
(
eλ0(τ(t)−τ(t0)) − 1

)B

× 2F1

(
B, 1 +NTot − n0; B + 1; 1− eλ0 (τ(t)−τ(t0))

) ∣∣∣
t=t0+TB

. (5.114)

We thus arrive at the probability density function of the stopping time f (TB):

f(TB) =

(
NTot − n0

B

)
d

dTB

∫ ∞

τ(t0)

dτ(t)P (τ(t), t|τ(t0), t0)
(
eλ0(τ(t)−τ(t0)) − 1

)B

× 2F1

(
B, 1 +NTot − n0; B + 1; 1− eλ0 (τ(t)−τ(t0))

) ∣∣∣
t=t0+TB

. (5.115)
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5.4.4 The limit NTot → ∞
As a special case, one sometimes simply assume that the stock of radionuclides is

infinite. Mathematically, we would express (NTot − n(t)) → ∞ and λ0 → 0 such

that λ0NTot is finite. Denote the finite constant λ0NTot by λ, then the binomial

distribution expressed in (5.102) for the basic Poisson distribution converges to

the well known Poisson distribution:

P (n0, t0 → n0 + j, t) → e−λ0(t−t0)NTot
(NTot)

j

j!
(λ0 (t− t0))

j

= e−λ(t−t0)
(λ (t− t0))

j

j!
, (5.116)

in agreement with reference (217). Moreover, the variance of the number of decays

(5.104) reduces to Vart0,t(j) = λ (t− t0), which only diverges as time t goes. This

describes a never exhausted source of radionuclides, in contrast with the case in

(5.104), where a finite undecayed source is considered.

Still in the limit NTot → ∞, the radioactivity can have a stochastic component

modulating this background. The model (5.107) for the time-changed Poisson

distribution now reduces to

λn,t = λ0 (NTot − n(t)) v(t) → λ0NTotv(t) = λv(t). (5.117)

Under this simplified model, the cumulative distribution function (5.114) becomes

F (TB) →
(NTot)

B

Γ (B + 1)

∫ ∞

τ(t0)

dτ(t)P (τ(t), t|τ(t0), t0) (λ0 (τ(t)− τ(t0)))
B

× 1F1 (B; B + 1; −λ0 (τ(t)− τ(t0))NTot)
∣∣∣
t=t0+TB

= 1−
∫ ∞

τ(t0)

dτ(t)P (τ(t), t|τ(t0), t0)
Γ (B, λ (τ(t)− τ(t0)))

Γ (B)
∣∣∣
t=t0+TB

,

(5.118)

where 1F1 (·; ·; ·) is the confluent hypergeometric function, Γ (·) is the gamma

function. Thus the probability density function of the stopping time is:

f(TB) = − 1

Γ (B)
d

dTB

∫ ∞

τ(t0)

Γ (B, λ (τ(t)− τ(t0))) P (τ(t), t|τ(t0), t0) dτ(t)
∣∣∣
t=t0+TB

,

(5.119)

where Γ (·, ·) is the upper incomplete gamma function.
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5.4.5 The maximum exposure time formulas

It is worth noting that if v(t) evolves in a deterministic way, then the transition

probability density function of τ(t) defined in expression (5.108) reduces to a

delta function:

P (τ(t), t|τ(t0), t0) = δ

(
τ(t)− τ(t0)−

∫ t

t0

v(s)ds

)
. (5.120)

Therefore, for the time changed n-dependent model (5.107), the transition prob-

ability function of the stopping time (5.115) becomes:

f(TB) =

(
NTot − n0

B

)
d

dTB

[(
eλ0

∫ t0+TB
t0

v(s)ds − 1
)B

× 2F1

(
B, 1 +NTot − n0; B + 1; 1− eλ0

∫ t0+TB
t0

v(s)ds
)]

=

(
NTot − n0

B

)
B λ0 v(t0 + TB) exp

{
−λ0(NTot − n0)

∫ t0+TB

t0

v(s)ds

}

×
(
exp

{
λ0

∫ t0+TB

t0

v(s)ds

}
− 1

)B−1

. (5.121)

And for the n-independent model (5.117), the stopping time density function

(5.119) becomes

f(TB) = λ
1

Γ (B)v(t0 + TB) exp

{
−λ
∫ t0+TB

t0

v(s)ds

}(
λ

∫ t0+TB

t0

v(s)ds

)B−1

.

(5.122)

Especially, when v(t) = 1, i.e. in the most simple model λn,t = λ, the stopping

time density can even be simplified as:

f(TB) = λ
(λTB)

B−1

Γ(B) e−λTB ; (5.123)

while in the basic n-dependent model (5.94), the distribution of maximum expo-

sure time, as mentioned before, is given by (5.106).

When v(t) is behaving stochastically over time, we have to find the explicit

P (τ(t), t|τ(t0), t0)’s under different stochastic v(t) processes in order to obtain the

final probability distributions of stopping time, see formulas (5.115) and (5.119).

Table 5.1 summarizes these maximum exposure time distributions. This is

the main contribution of this section.
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Table 5.1: Summary of the distributions of the maximum exposure time f (TB)

under different Poisson intensity models.

n-independent (5.117): n-dependent (5.107):

λn,t = λv(t) λn,t = λ0 (NTot − n(t)) v(t)

v(t) = 1 (5.123) (5.106)

deterministic v(t) (5.122) (5.121)

stochastic v(t) (5.119) (5.115)

5.4.6 Fluctuating v(t)-process

Since τ(t) =
∫ t

0
v(s)ds, the derivation of the transition probability function of τ(t)

is analogous to the solution of an arithmetic Asian option when v(t) represents

an underlying asset process (218, 219), or it is analogous to the calculation of the

density function of the realized variance for variance options when v(t) represents

the variance process of an underlying asset process (122).

5.4.6.1 The log-normal process for v(t)

The first model we use for the v(t)-process is the log-normal model:

dv(t) = −κv(t)dt + σv(t)dW (t), (5.124)

where W (t) is a Wiener process. This model is similar to the Black-Scholes

model, but with negative drift coefficient. Rather than a positive expectation

of the underlying’s evolving trend, the Poisson intensity of the radioactivity is

expected to decay as time goes. We can apply the result (5.15) directly if we

replace r in that case to −κ , which gives the propagator of τ(t) (ex(t0) = vt0):

P (τ(t), t|τ(t0), t0) =
1

vt0
exp

{
−
(
κ +

σ2

2

)2
(t− t0)

2σ2

}∫ ∞

0

dΦI

π
Re
[
eΦ(t−t0)

×
(

2 vt0
σ2 (τ(t)− τ(t0))

)M
Γ (N −M)

Γ (N )
1F1

(
M;N ;− 2 vt0

σ2 (τ(t)− τ(t0))

)]
.

(5.125)

where

M (Φ) =

√
2

σ2
Φ +

κ

σ2
+

3

2
, N (Φ) = 2

√
2

σ2
Φ+ 1. (5.126)
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So for the time changed n-dependent model (5.107), with v(t) being a log-normal

process, the transition probability function of the stopping time can be obtained

by plugging the previous formula into expression (5.115):

f(TB) =

(
NTot − n0

B

)∫ ∞

0

dY
(
eλ0 Y − 1

)B
2F1

(
B, 1 +NTot − n0;B + 1; 1− eλ0 Y

)

× 1

vt0

∫ ∞

0

dΦI

π
Re

[(
Φ− (κ + σ2/2)

2

2σ2

)
exp

{(
Φ− (κ + σ2/2)

2

2σ2

)
TB

}

×
(
2 vt0
σ2Y

)M
Γ (N −M)

Γ (N )
1F1

(
M;N ;−2 vt0

σ2Y

)]
. (5.127)

As for the n-independent model (5.117), the stopping time density function is

given by rewriting expression (5.119):

f(TB) = − 1

vt0

∫ ∞

0

dY
Γ (B, λY )

Γ (B)

∫ ∞

0

dΦI

π
Re

[(
Φ− (κ+ σ2/2)

2

2σ2

)(
2 vt0
σ2Y

)M

× exp

{(
Φ− (κ + σ2/2)

2

2σ2

)
TB

}
Γ (N −M)

Γ (N )
1F1

(
M;N ;−2 vt0

σ2Y

)]
. (5.128)
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Figure 5.4: Sample v(t)-processes. The two gray curves are the expectation

values of v(t), i.e. ELN [v(t)], see (5.134), and ECIRJ [v(t)], see (5.135), respectively.

Parameter values are chosen to make these two expectation values close to each

other: κ = 0.1, σ = 0.1, κv = 0.3, θv = 0.25, σv = 0.1, γ = 2, η = 0.05, vt0 = 1.
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5.4.6.2 The CIR jump-diffusion process for v(t)

The second model we investigate is the CIR jump-diffusion model, defined by:

dv(t) = κv (θv − v(t)) dt+ σv
√
v(t)dW (t) + JvdN(t), (5.129)

where N(t) is an independent Poisson process with intensity parameter γ > 0.

We assume the jump density of Jv is given by (5.29): ̟(Jv) = 1
η
exp

{
− 1

η
Jv
}

with η as the mean of the positive jumps. We then can use (5.39) directly (Js = 0)

to obtain the propagator of τ(t), that is:

P (τ(t), t|τ(t0), t0) =
∫ ∞

−∞

dp

2π
eip(τ(t)−τ(t0))

exp
{

κ2
vθv
σ2
v
T −

(
2ip

κv+2ωv coth(ωvT )

)
vt0

}

[
sinh(ωvT )

(
κv

2ωv
+ coth(ωvT )

)] 2κvθv
σ2
v

× γ



−2η ln

[
2ipη+κv

2ωv
sinh(ωvT ) + cosh(ωvT )

]
+ (σ2

v − ηκv)T

σ2
v − 2ηκv − 2ipη2

− T


 , (5.130)

where

T = t− t0, ωv =
1

2

√
κ2v + 2ipσ2

v . (5.131)

Inserting (5.130) into (5.119) and (5.115), we have the target distributions of the

stopping times for the CIR jump-diffusion v(t)-process.

5.4.7 Results and discussion

We now introduce a deterministic v(t)-process as

v(t) = vt0 exp {−t/T } = vt0 exp {−κt} . (5.132)

From which we can interpret T as the decay time. The previous expression would

follow from

dv(t) = −T −1v(t)dt = −κv(t)dt. (5.133)

Here we let κ = 1/T . Compare (5.133) with (5.124) and we see that the deter-

ministic v(t)-process is just the deterministic part of the stochastic log-normal

v(t)-process. Moreover, the deterministic v(t) (5.132) has the same value as the

143



5. APPLICATIONS OF PATH INTEGRATION OVER
CONDITIONED PATHS

maximum possible paths of the log-normal v-process. Actually the expectation

value of v(t) of the log-normal process (5.124) is

ELN [v(t)] = E

[
e−κt

(
vt0 +

∫ t

t0

eκuσv(u)dW (u)

)]
= vt0 exp {−κt} . (5.134)

A background ’supply’ of radioactive nuclei is modeled by a Wiener process in the

log-normal model. This is also the case in the CIR jump-diffusion model (5.129).

Furthermore, in the later model, the occasional release of a radioactive material

is modeled by the jump process. We can also calculate the expectation value of

v(t) under the CIR jump-diffusion model:

ECIRJ [v(t)] = E

[
e−κt

(
vt0 +

∫ t

t0

eκvu
(
(κvθv + γJv) du+ σv

√
v(u)dW (u)

))]

= e−κt

(
vt0 +

∫ t

t0

eκvu (κvθv + γη) du

)

=

(
θv +

γη

κv

)
+

(
vt0 −

(
θv +

γη

κv

))
exp {−κvt} . (5.135)

Unlike ELN [v(t)] that decreases exponentially from vt0 to zero as time goes,

ECIRJ [v(t)] will decrease exponentially from vt0 when vt0 >
(
θv +

γη
κv

)
, and the

asymptotic value is θv +
γη
κv
. This long-term level is positive, but it is not a prob-

lem if the model for λn,t is n-dependent, since Ntot−n(t) trends zero given a very

long time. Note also that both ELN [v(t)] and ECIRJ [v(t)] do not dependent on

their diffusion coefficients σ and σv, respectively.

Figure 5.4 illustrates some samples of both the log-normal and CIR jump-

diffusion v(t)-processes. The two solid gray curves are the expectation values

ELN [v(t)], which equals the deterministic v(t)-process, and ECIRJ [v(t)]. Parame-

ter values are chosen such that these two expectation values are close to each other

during the time region t−t0 ∈ [0, 2]. One can image that given feasible parameter

values, these stochastic v(t)-processes will hopefully make the description of λn,t

more accurate. The left panel of Figure 5.5 represents P (τ(1), 1|τ(0), 0) under

the deterministic, the log-normal and the CIR jump-diffusion v(t)-processes, see

(5.120), (5.125) and (5.130) respectively. Since the expectation values of v(t) are

given close to each other, the expectation values of τ(1)−τ(0) =
∫ 1

0
v(t)dt are also

close to each other for these three cases, which can be seen from the left panel of
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Figure 5.5: The left panel represents the propagators of τ(t) for the deterministic

(Det.), the log-normal (LN), and the CIR jump-diffusion (CIRJ) v(t)-processes at

time t = 1. The right panel shows the corresponding stopping time distributions

for the n-independent and n-dependent models. The same parameter values are

used as in Figure 5.4, and λ0 = 0.2, NTot − n0 = 300, λ = λ0 (NTot − n0) = 60,

B = 60.

Figure 5.5. The P (τ(1), 1|τ(0), 0) for deterministic v(t) is a delta function, with

a zero variance. The variance of the log-normal case is determined by σ, and the

CIR jump-diffusion case is determined by σv as well as jump parameters, which

also make its P (τ(1), 1|τ(0), 0) strongly negative skewed due to positive jumps.

The right panel of Figure 5.5 shows the distributions of the maximum exposure

time under these 3 (three v(t)-processes) times 2 (n-independent and -dependent)

models. If we focus on the three n-independent results, we see that similar expec-

tation values of v(t) lead to similar expected maximum exposure time, and the

more fluctuating the v(t)-process, the larger the variance of the density of τ(t),

thus the wider the range of the maximum exposure time. In other words, the

fluctuation of the radioactive decay strengths the possibility of both very short

and very long maximum exposure time. The parameter values chosen in Figure

5.5 are such that λ0 (NTot − n(t)) equals λ only at the initial time t = t0. At

later times, λ0 (NTot − n(t)) < λ, that is why the expected maximum exposure

times for the n-dependent models are larger than those for the n-independent

models, but their results for three different v(t)-processes are similar. Neverthe-

less, these three results for n-dependent models in the right panel of Figure 5.5

are not a simple parallel shift of the results for the n-independent models, their
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shapes are also widened. This can be explained by the fact that comparing to

a constant λ, the effect of a time changing λ0 (NTot − n(t)) to λn,t is similar to

the effect of jumps, both of which widens the variance of λn,t, thus lengthen the

allowed exposure time. The importance of n-dependent model also lies in the

binomial distribution, which rules out the possibility of decaying more number of

radionuclides than that available at t = t0.

Next we exam the effects of different parameters on the allowed exposure time.

For ease of presentation, we consider here the n-independent models. Figure 5.6

demonstrates their effects. The default parameter values are those used in Figure

5.4. We then increase one parameter value in each case while keeping the others

to be the same. As seen before, κ in the log-normal process has a meaning of the

inverse of the decay time T , so an increase of the value of κ makes the expected

allowed exposure time longer than the default one. The parameter κv in the

CIR jump-diffusion has a similar effect. The parameters σ and σv determine

the fluctuation, but have nothing to do with the mean, of their processes. So

larger values of σ and σv do not change the expected maximum exposure time,

but mainly widen the range of allowed exposure time. The parameters θv, γ

and η dominant both the speed of approaching the long-term level of ECIRJ [v(t)]

and the long-term level itself, see expression (5.135). An increase of these three

parameter values keeps the values of v(t) in a high level, thus shorten the allowed

exposure time.
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Figure 5.6: The upper panels represent the propagators of τ(t) for the log-normal

v(t)-processes at time t = 1 (left), and the corresponding stopping time distribu-

tions for the n-independent models (right). The bottom panels are those for the

CIR jump-diffusion v(t)-processes. The default parameter values are the same as

those used in Figure 5.4. For others, only one parameter value is changed in each

case.
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5. APPLICATIONS OF PATH INTEGRATION OVER
CONDITIONED PATHS
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6

COS and PDE approaches to the

pricing of some common exotic

options under the HCIR model

In this chapter, I price some common exotic options, namely the discretely-

monitored arithmetic Asian option, the Bermudan option (discrete barrier option

as a special case) and the American option, under the Heston stochastic volatility

(76) with uncorrelated Cox-Ingersoll-Ross (150) stochastic interest rate model. I

will call it the HCIR model for short. As mentioned in Chapter 1, models with

stochastic interest rate processes are essential for interest rate sensitive deriva-

tives. In the HCIR model, the uncertainty stemming from interest rate is taken

into account. However, the stochastic interest rate process is assumed to be un-

correlated with both the underlying asset and the volatility process, which fits

the model in the class of affine diffusion processes (84) and a closed-form prop-

agator as well as the characteristic function are available, see (115, 220). The

analytical tractability of this model allows us to get efficient pricing formulas.

For the hybrid Heston model with correlated stochastic interest rates, as far as

I know, no analytical formula exists in literature, whereas approximate solutions

for these models can be found, among others, in (221, 222, 223, 224).

The closed-form joint propagator of the HCIR model is the basis of the deriva-

tion of exotic option pricing formulas in this chapter. I derive this propaga-

tor in the framework of path integral, following Lemmens (115). These three-
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dimensional pricing problems are then treated by a generalization of the COS

method developed by Oosterlee and co-workers (143, 225, 226, 227, 228). Zhang

and Oosterlee recently proposed a pricing method based on the COS method for

both the European-style discrete geometric and arithmetic Asian options under

Lévy processes (227), which can be seen as an efficient alternative to our paper on

pricing up and low bounds for discrete arithmetic Asian options under Lévy mod-

els (229). Efficient pricing formulas for Bermudan and discrete barrier options by

COS method are developed by Fang and Oosterlee under both the exponential

Lévy aset price models (225) and the Heston model (226). The price of American

options are obtained in (225) by applying a Richardson extrapolation (230) on

the prices of a few Bermudan options with small early-exercise dates. Another

pricing approach based on the finite difference method can be found in (231). In

that paper, Haentjens, In’t Hout and Volders priced American put option in the

Heston model by combining the Ikonen-Toivanen splitting approach (232, 233)

with alternating direction implicit (ADI) schemes (234). Recently, ADI finite dif-

ference schemes for the Heston-Hull-White model was investigated by Haentjens

and In’t Hout for both the European vanilla call options and the up-and-out call

barrier options (224).

This chapter is based on part of my work notes. I will study both the COS

method and the FD method for exotic options under the HCIR model. Neverthe-

less, neither error analysis for the application of the COS method nor the testing

of the stability of the FD method performed in this chapter is given. For the

European vanilla options, not surprisingly, the COS method performs outstand-

ing. For the discrete arithmetic Asian options, I focus on the COS method and

the results are checked by Monte-Carlo simulations. For the Bermudan options,

results from the COS method and FD method are compared. For the American

put options, I focus on the FD method, and compare the performances of the

Ikonen-Toivanen splitting approach and the Richardson extrapolation approach.

The chapter is organized as follows. In section 6.1, we derive the joint propa-

gator of our model by the path integral approach. In section 6.2, the COS method

is introduced, and the European vanilla option pricing formula is obtained as an

quick example. Section 6.3 is devoted to the pricing of the discretely-monitored

arithmetic Asian option. Discretely-monitored Bermudan options are priced in

150



6.1 The joint propagators of the HCIR model

section 6.4, which is followed by the discussion of the pricing problems of bar-

rier and American options in section 6.5. In section 6.6, a ADI finite difference

scheme is introduced, and the numerical results of American put options with

the Ikonen-Toivanen splitting as well as the Richardson extrapolation are shown.

Section 6.7 gives a short discussion about the reason why it is time consuming to

solve three-dimensional pricing problems by using the COS method directly.

6.1 The joint propagators of the HCIR model

In this section, following the derivation outlined in (115), we express the essential

propagators in the path integral treatment. The HCIR model is specified by the

following system of SDEs:

dS(t) = r(t)S(t)dt+
√
v(t)S(t)dW1(t), (6.1)

dv(t) = κ (θ − v(t)) dt+ σ
√
v(t)

(
ρdW1(t) +

√
1− ρ2dW2(t)

)
, (6.2)

dr(t) = κr (θr − r(t)) dt+ σr
√
r(t)dW3(t), (6.3)

where S(t) represents the underlying asset process with its variance v(t) and

the risk free interest rate r(t), both of which evolve stochastically over time.

Wi(t) {i = 1, 2, 3} are independent Brownian processes. Other parameters in this

model are constants. Especially, the parameter ρ ∈ [−1, 1] is the correlation

coefficient. The substitutions (with c being a constant)

x(t) = lnS(t) + c, (6.4)

y(t) = x(t)− ρ

σ
(v(t)− κθt) , (6.5)

z(t) =
√
v(t), (6.6)

ζ(t) =
√
r(t), (6.7)

lead to three new independent processes as follows:

dy =

[
ζ2 +

(
ρκ

σ
− 1

2

)
z2
]
dt+ z

√
1− ρ2dW1(t), (6.8)

dz =

[
κθ − σ2/4

2z
− κ

2
z

]
dt+

σ

2
dW2(t), (6.9)

dζ =

[
κrθr − σ2

r/4

2r
− κr

2
ζ

]
dt+

σr
2
dW3(t). (6.10)
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Their Lagrangians are then calculated according to (2.19):

L[ẏ, z, ζ ] =
[ẏ − (ζ2 + (ρκ/σ − 1/2) z2)]

2

2 (1− ρ2) z2
, (6.11)

L[ż, z] =
2

σ2
ż2 − 2 (κθ − σ2/4)

σ2

ż

z
+

2κ

σ2
zż

+
(κθ − σ2/4) (κθ − 3σ2/4)

2σ2z2
+

κ2

2σ2
z2 − κ2θ

σ2
, (6.12)

L[ζ̇ , ζ ] =
2

σ2
r

ζ̇2 − 2 (κrθr − σ2
r/4)

σ2
r

ζ̇

ζ
+

2κr
σ2
r

ζζ̇

+
(κrθr − σ2

r/4) (κrθr − 3σ2
r/4)

2σ2
rζ

2
+

κ2r
2σ2

r

ζ2 − κ2rθr
σ2
r

. (6.13)

The joint propagator of these three independent processes (y, z, ζ) for y = yT ,

z = zT , ζ = ζT at time t = T given the initial values y0, z0 and ζ0 at time t = 0

is denoted by P (yT , zT , ζT |y0, z0, ζ0), and can be written in the path integral

treatment as:

P (yT , zT , ζT |y0, z0, ζ0)

=

∫
Dy(t)

∫
Dz(t)

∫
Dζ(t) exp

{
−
∫ T

0

(
L[ẏ, z, ζ ] + L[ż, z] + L[ζ̇, ζ ]

)
dt

}
.

(6.14)

This joint propagator is normalized, which means that

∫ ∞

−∞

∫ ∞

0

∫ ∞

0

P (yT , zT , ζT |y0, z0, ζ0) dzTdζTdyT = 1. (6.15)

However, for risk-neutral option pricing, the discount factor e−
∫ T
0

r(t)dt = e−
∫ T
0

ζ2(t)dt

has to be taken into account. Consequently, we focus on the derivation of the so

called modified joint propagator:

P̄ (yT , zT , ζT |y0, z0, ζ0) =
∫

Dy(t)
∫

Dz(t)
∫

Dζ(t)

× exp

{
−
∫ T

0

(
L[ẏ, z, ζ ] + L[ż, z] + L[ζ̇ , ζ ] + ζ2(t)

)
dt

}
. (6.16)
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6.1 The joint propagators of the HCIR model

Direct calculation yields the following expression:

P̄ (yT , zT , ζT |y0, z0, ζ0)

=

(
zT
z0

) 2κθ
σ2 − 1

2

e−
κ
σ2 (z2T−z20−κθT)

(
ζT
ζ0

) 2κrθr
σ2
r

− 1
2

e
− κr

σ2
r
(ζ2T−ζ20−κrθrT)

×
∫ ∞

−∞

dl

2π
e−il(xT−x0) eil

ρ
σ(z

2
T−z20−κθT)

× 4ω
√
zT z0

σ2 sinh (ωT )
e−

2ω coth(ωT )

σ2 (z2T+z20) I 2κθ
σ2 −1

(
4ωz0zT

σ2 sinh (ωT )

)

× 4ωr

√
ζT ζ0

σ2
r sinh (ωrT )

e
− 2ωr coth(ωrT )

σ2
r

(ζ2T+ζ20) I 2κrθr
σ2
r

−1

(
4ωrζ0ζT

σ2
r sinh (ωrT )

)
, (6.17)

where

ω(l) =
σ

2

√(κ
σ
− ilρ

)2
+ l (l + i), (6.18)

ωr(l) =
σr
2

√(
κr
σr

)2

+ 2 (1− il), (6.19)

Note that the original propagator P (yT , zT , ζT |y0, z0, ζ0) has the same formula

as the risk-neutral propagator P̄ (yT , zT , ζT |y0, z0, ζ0) except for the term ωr(l),

which in the original joint propagator would be:

ωr(l) =

√
σ2
r

2

(
κ2r
2σ2

r

− il

)
=
σr
2

√(
κr
σr

)2

− 2il. (6.20)

Expression (6.17) is expressed in the original variable x rather than in y, we can

write the modified propagator P̄ (yT , zT , ζT |y0, z0, ζ0) as P̄ (xT , zT , ζT |x0, z0, ζ0).
Furthermore, we write the expression (6.17) in the form of a Fourier transform:

P̄ (xT , zT , ζT |x0, z0, ζ0) =
∫ ∞

−∞

dl

2π
e−il(xT−x0)Φ(l, T, zT , ζT |z0, ζ0), (6.21)

where Φ(l, T, zT , ζT |z0, ζ0) represents the characteristic function of xT given zT

and ζT as final points, and z0 and ζ0 as initial points over the time interval [0, T ],

that is Φ(l, T, zT , ζT |z0, ζ0) = E
[
eil(xT−x0)|zT , ζT , z0, ζ0

]
.
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The integrals over zT and ζT can be done analytically, leading to the modified

marginal propagator of x:

P̄ (xT |x0, z0, ζ0)

=

∫ ∞

0

dzT

∫ ∞

0

dζT P̄ (xT , zT , ζT |x0, z0, ζ0)

=

∫ ∞

−∞

dl

2π
e−il(xT−x0) e(

κ
σ2−il ρ

σ)(v0+κθT )H
2κθ
σ2 e

2ω
σ2 ( N

sinh(ωT )
−coth (ωT ))v0

×e
κr
σ2
r
(r0+κrθrT )

H
2κrθr
σ2
r

r e
2ωr
σ2
r
( Nr
sinh(ωrT )

−coth (ωrT ))r0
, (6.22)

where

H(l) =

(
cosh (ωT ) +

κ− ilρσ

2ω
sinh (ωT )

)−1

, (6.23)

Hr(l) =

(
cosh (ωrT ) +

κr
2ωr

sinh (ωrT )

)−1

. (6.24)

Expression (6.22) can be written as

P̄ (xT |x0, z0, ζ0) =
∫ ∞

−∞

dl

2π
e−il(xT−x0) φ(l, T |z0, ζ0), (6.25)

then φ(l, T |z0, ζ0) is the characteristic function of xT given initial values z0 and

ζ0 over the time interval [0, T ], that is φ(l, T |z0, ζ0) = E
[
eil(xT−x0)|z0, ζ0

]
.

6.2 European vanilla options

In this section, we derive the European vanilla put option pricing formula under

the HCIR model as an illustration of the COS method originally introduced by

Fang and Oosterlee (143).

Define the transition probability density function a random variable x by

P (x|F), where F is the set of conditional variables, and the corresponding con-

ditional characteristic function by

ChF (u|F) = E
[
eiu(x−x0)

]
=

∫ ∞

−∞
eiu(x−x0)P (x|F) dx, (6.26)

where x0 is the value of x at initial time.
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The COS method is based on Fourier cosine series expansions. One starts by

truncating the integration range of the probability density function P (x|F) from

[−∞,∞] to a feasible range [a, b] without loosing accuracy. One then recovers

this probability density by a Fourier cosine series expansion (L = b− a):

P (x|F) =

∞∑′

n=0

Pn (F) cos

(
nπ

x− a

L

)
, (6.27)

where
∑′

indicates that the first element in the summation is multiplied by one-

half. The essence of the COS method lies in the insight that the Fourier cosine

coefficients Pn can be accurately retrieved from the corresponding characteristic

function ChF (u|F). More explicitly,

Pn (F) =
2

L

∫ b

a

P (x|F) cos

(
nπ

x− a

L

)
dx

≈ 2

L

∫ ∞

−∞
P (x|F) cos

(
nπ

x− a

L

)
dx

=
2

L

∫ ∞

−∞
P (x|F) Re

{
einπ

x−a
L

}
dx

=
2

L
Re

{∫ ∞

−∞
P (x|F) einπ

x−x0
L einπ

x0−a
L dx

}

=
2

L
Re
{
ChF

( nπ
L

∣∣∣F
)
einπ

x0−a
L

}
. (6.28)

Substituting Pn in (6.28) into (6.27) and truncating the series by a feasible fi-

nite number of terms, say N terms, one obtains a semi-analytic formula which

accurately approximates the probability density:

P(x|F) ≈ 2

L

N−1∑′

n=0

Re

[
ChF

( nπ
L

∣∣∣F
)
exp

{
inπ

x0 − a

L

}]
cos

(
nπ

x− a

L

)
.

(6.29)

Note that the probability density function of variable x is now decomposed into

a linear combination of cosine functions, where x is treated separately from other

variables F . The strength of the method is precisely this factorization: the

expected payoff will often be an integral over x involving the cosine factor and

often analytically calculatable for any given n. This can be demonstrated with

European vanilla options.
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Table 6.1: European vanilla put option prices. The rows closed-form are from

reference (223), whereas the rows COS are from expression (6.30). Parameter

values used here are the same as those used in Table 3 of reference (223): S0 = 100,

r0 = 0.04, θ = 0.02, κr = 0.3, θr = 0.04, σr = 0.1. Parameters for COS method

are: a = −1.5, b = 1.5, N = 128.

Method
K = 90 K = 100 K = 110

T = 1
12

T = 1
4

T = 1
2

T = 1
12

T = 1
4

T = 1
2

T = 1
12

T = 1
4

T = 1
2

v0 = 0.01, κ = 1.5, σ = 0.15, ρ = 0.1

closed-form 0.0001 0.0335 0.1965 1.0160 1.6492 2.2254 9.6358 9.0701 8.6410

COS 0.0001 0.0335 0.1965 1.0160 1.6492 2.2254 9.6358 9.0701 8.6410

v0 = 0.04, κ = 0.75, σ = 0.3, ρ = 0.1

closed-form 0.0603 0.5205 1.1439 2.1009 3.3156 4.1999 9.7904 10.0156 10.3200

COS 0.0603 0.5205 1.1439 2.1009 3.3156 4.1999 9.7904 10.0156 10.3200

v0 = 0.04, κ = 1.5, σ = 0.3, ρ = 0.1

closed-form 0.0577 0.4849 1.0383 2.0844 3.2441 4.0467 9.7850 9.9594 10.1657

COS 0.0577 0.4849 1.0383 2.0844 3.2441 4.0467 9.7850 9.9594 10.1657

v0 = 0.04, κ = 1.5, σ = 0.15, ρ = −0.5

closed-form 0.0767 0.5903 1.2490 2.0998 3.3147 4.2085 9.7405 9.8073 9.9877

COS 0.0767 0.5903 1.2490 2.0998 3.3147 4.2085 9.7405 9.8073 9.9877

Denoting the European vanilla put option with strike price K and time to

maturity T by PEur (K), and applying the COS method, we have the risk-neutral

pricing formula (x(t) = lnS(t)/K):

PEur (K) =E

[
e−

∫ T
0 r(t)dtmax {K − ST , 0}

]

≈
∫ 0

a

(K −K exT ) P̄ (xT |x0, z0, ζ0) dxT

≈
∫ 0

a

dxTK (1− exT )

× 2

L

N−1∑′

n=0

Re
{
φ
(nπ
L
, T |z0, ζ0

)
einπ

x0−a

L

}
cos

(
nπ

xT − a

L

)

=
2

L
K

N−1∑′

n=0

[ψn (a, 0)− χn (a, 0)]Re
{
φ
(nπ
L
, T |z0, ζ0

)
einπ

x0−a
L

}
,

(6.30)
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where

ψn(c, d) =

∫ d

c

cos

(
nπ

y − a

L

)
dy

=

{ [
sin
(
nπ d−a

L

)
− sin

(
nπ c−a

L

)]
L
nπ

for n 6= 0,
d− c for n = 0.

(6.31)

and

χn(c, d) =

∫ d

c

ey cos

(
nπ

y − a

L

)
dy

=
1

1 +
(
nπ
L

)2
[
cos
(
nπ d−a

L

)
ed − cos

(
nπ c−a

L

)
ec

+nπ
L
sin
(
nπ d−a

L

)
ed − nπ

L
sin
(
nπ c−a

L

)
ec

]
. (6.32)

By using the same parameter values as those used in Table 3 of reference (223),

we calculated our pricing formula (6.30) by choosing a = −1.5, b = 1.5, N = 128.

In Table 6.1, results from (6.30) are presented in rows COS, while those given

in (223) are presented in rows closed-form. We see that they are exactly the

same. MATLAB 7.10.0 is used, and the average CPU time cost for every case

(with three different strike prices) is about 0.005 second in my computer. For the

closed-form calculations, the average CPU time is about 0.1 second.

6.3 Discrete Arithmetic Asian options

ForM equally spaced monitoring dates at times {tm, tm < tm+1|m = 0, 1, · · · ,M}
with tM = T and ∆t = tm+1 − tm, the price of an discrete arithmetic Asian put

option with a fixed strike price K, denoted by PAsi (K), is expressed as

PAsi (K) = E

[
e−

∫ T
0 r(t)dtmax

{
K − 1

M + 1

M∑

j=0

Sj , 0

}]
. (6.33)

where Sm = S(tm). The dependence of the term
∑M

j=0 Sj on the whole set of

monitoring dates is inconvenient, so a set of variables to split this term into M

related parts is introduced, see (227) and references therein:

Y0 = 0, Yj = ln
SM+1−j

SM−j
+ ln

(
1 + eYj−1

)
for j = 1, 2, · · · ,M. (6.34)
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More explicitly

Y1 = ln
SM

SM−1

Y2 = ln
SM−1

SM−2

+ ln
SM + SM−1

SM−1

= ln
SM + SM−1

SM−2

...

YM = ln
SM + SM−1 + · · ·+ S1

S0
. (6.35)

Therefore,
∑M

j=0 Sj = S0

(
1 + eYM

)
and

PAsi (K) = E

[
e−

∫ T
0

r(t)dtmax

{
K − S0

M + 1

(
1 + eYM

)
, 0

}]

=

∫ ∞

−∞

(
K − S0

M + 1

(
1 + eYM

))

+

P̄ (YM) dYM

≈ 2

L

N−1∑′

n=0

[(
K − S0

M + 1

)
ψn (a, y

∗)− S0

M + 1
χn (a, y

∗)

]

×Re
{
ϕYM

(nπ
L

∣∣∣z0, ζ0
)
e−inπ a

L

}
, (6.36)

where P̄ (YM) is the propagator of YM when taking the discount factor e−
∫ T
0

r(t)dt

into account with ϕYM
as its (modified) characteristic function. [a, b] is the feasible

truncated integration region for all Yj (j = 1, 2, · · · ,M) with L = b−a, and y∗ =
ln
(

M+1
S0

K − 1
)
. Let xm = lnSm = lnS(tm). We now focus on the derivation of

ϕYj
for j = 1, 2, · · · ,M . We first look at the (modified) characteristic function of

Y1 = xM − xM−1:

ϕY1 (u|zM−1, ζM−1) =

∫ ∞

−∞
eiuY1 P̄ (Y1) dY1

= E

[
e
−
∫ tM
tM−1

r(t)dt
eiu(xM−xM−1)

]

=

∫ ∞

0

dzM

∫ ∞

0

dζM

∫ ∞

−∞
d (xM − xM−1) e

iu(xM−xM−1)

×P̄ (xM , zM , ζM |xM−1, zM−1, ζM−1)

=

∫ ∞

0

dzM

∫ ∞

0

dζM Φ (u,∆t, zM , ζM |zM−1, ζM−1)

= φ (u,∆t|zM−1, ζM−1) . (6.37)
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Then the (modified) characteristic function of Y2 = xM−1 − xM−2 + ln
(
1 + eY1

)

is given by:

ϕY2 (u|zM−2, ζM−2)

=

∫ ∞

−∞
eiuY2 P̄ (Y2) dY2

= E

[
e
−
∫ tM
tM−2

r(t)dt
eiuY2

]

= E

[
e
−
∫ tM−1
tM−2

r(t)dt
eiu(xM−1−xM−2) e

−
∫ tM
tM−1

r(t)dt (
1 + eY1

)iu
]

=

∫ ∞

0

dzM−1

∫ ∞

0

dζM−1

∫ ∞

−∞
d (xM−1 − xM−2) e

iu(xM−1−xM−2)

×P̄ (xM−1, zM−1, ζM−1|xM−2, zM−2, ζM−2)

×
∫ ∞

−∞

(
1 + eY1

)iu P̄ (Y1) dY1

≈
∫ ∞

0

dzM−1

∫ ∞

0

dζM−1Φ (u,∆t, zM−1, ζM−1|zM−2, ζM−2)

∫ ∞

−∞

(
1 + eY1

)iu

×
N−1∑′

n=0

2

L
Re
{
ϕY1

(nπ
L

∣∣∣zM−1, ζM−1

)
e−inπ a

L

}
cos

(
nπ

Y1 − a

L

)
dY1

=

∫ ∞

0

dzM−1

∫ ∞

0

dζM−1Φ (u,∆t, zM−1, ζM−1|zM−2, ζM−2)

× 2

L

N−1∑′

n=0

Re
{
ϕY1

(nπ
L

∣∣∣zM−1, ζM−1

)
e−inπ a

L

}
M (u, n) , (6.38)

where M (u, n) is defined by:

M (u, n) =

∫ ∞

−∞

(
1 + eX

)iu
cos

(
nπ

X − a

L

)
dX. (6.39)

We apply the J-point Gauss-Legendre quadrature integration rule to the outer

integrals with respect to zm and ζm (m = M − 1,M − 2, · · · , 1) in this chapter.

Then we can rewrite expression (6.38) as:

ϕY2 (u|zM−2, ζM−2) =
2

L

Jz−1∑

jz=0

wjz

Jζ−1∑

jζ=0

wjζΦ
(
u,∆t, zjz , ζjζ |zM−2, ζM−2

)

×
N−1∑′

n=0

Re
{
ϕY1

(nπ
L

∣∣∣zjz , ζjζ
)
e−inπ a

L

}
M (u, n) , (6.40)
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where the wjz and wjζ are the weights of the quadrature nodes zjz and ζjζ , re-

spectively. Moreover, for Y3 = xM−2 − xM−3 + ln
(
1 + eY2

)
, we similarly have:

ϕY3 (u|zM−3, ζM−3)

=

∫ ∞

−∞
eiuY3 P̄ (Y3) dY3

= E

[
e
−
∫ tM
tM−3

r(t)dt
eiuY3

]

= E

[
e
−
∫ tM−2
tM−3

r(t)dt
eiu(xM−2−xM−3) e

−
∫ tM
tM−2

r(t)dt (
1 + eY2

)iu
]

=

∫ ∞

0

dzM−2

∫ ∞

0

dζM−2

∫ ∞

−∞
d (xM−2 − xM−3) e

iu(xM−2−xM−3)

×P̄ (xM−2, zM−2, ζM−2|xM−3, zM−3, ζM−3)

×
∫ ∞

−∞

(
1 + eY2

)iu P̄ (Y2) dY2

≈
∫ ∞

0

dzM−2

∫ ∞

0

dζM−2Φ (u,∆t, zM−2, ζM−2|zM−3, ζM−3)

∫ ∞

−∞

(
1 + eY2

)iu

×
N−1∑′

n=0

2

L
Re
{
ϕY2

(nπ
L

∣∣∣zM−2, ζM−2

)
e−inπ a

L

}
cos

(
nπ

Y2 − a

L

)
dY2

=
2

L

Jz−1∑

jz=0

wjz

Jζ−1∑

jζ=0

wjζΦ
(
u,∆t, zjz , ζjζ |zM−3, ζM−3

)

×
N−1∑′

n=0

Re
{
ϕY2

(nπ
L

∣∣∣zjz , ζjζ
)
e−inπ a

L

}
M (u, n) , (6.41)

Deriving ϕYj
(u|zM−j, ζM−j) from ϕYj−1

(u|zM−j+1, ζM−j+1) for j = 2, 3, · · · ,M
iteratively, we finally obtain the (modified) characteristic function of YM :

ϕYM
(u|z0, ζ0) =

∫ ∞

−∞
eiuYM P̄ (YM) dYM

=
2

L

Jz−1∑

jz=0

wjz

Jζ−1∑

jζ=0

wjζΦ
(
u,∆t, zjz , ζjζ |z0, ζ0

)

×
N−1∑′

n=0

Re
{
ϕYM−1

(nπ
L

∣∣∣zjz , ζjζ
)
e−inπ a

L

}
M (u, n) .(6.42)

Plugging expression (6.42) into pricing formula (6.36) yields the discrete arith-

metic Asian put option prices. Table 6.2 compares results from (6.36) in rows
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Table 6.2: Pricing results for discrete arithmetic Asian put options. The rows

“MC” are Monte-Carlo simulations, the rows “COS” are results from expression

(6.36), and the rows RE represent their relative errors in %. Parameter values used

here are from Table 3 of reference (223): S0 = 100, r0 = 0.04, θ = 0.02, κr = 0.3,

θr = 0.04, σr = 0.1, v0 = 0.01, κ = 1.5, σ = 0.15, ρ = 0.1, T = 1/12.

Method K = 90 K = 95 K = 100 K = 105 K = 110

MC 0.0000 0.0001 0.5357 4.8180 9.8003

M = 2 COS 0.0000 0.0001 0.5362 4.8220 9.8082

RE 0% 0% 0.09% 0.08% 0.08%

MC 0.0000 0.0002 0.5580 4.8183 9.8003

M = 4 COS 0.0000 0.0002 0.5583 4.8204 9.8044

RE 0% 0% 0.05% 0.04% 0.04%

MC 0.0000 0.0003 0.5762 4.8186 9.8003

M = 10 COS 0.0000 0.0003 0.5763 4.8196 9.8020

RE 0% 0% 0.02% 0.02% 0.02%

MC 0.0000 0.0004 0.5858 4.8189 9.8003

M = 30 COS 0.0000 0.0004 0.5860 4.8194 9.8012

RE 0% 0% 0.03% 0.01% 0.01%

indicated by “COS” with Monte Carlo simulations given in rows “MC”. Monte

Carlo simulations run 15 000 000 times with 240 time steps for time to maturity

T = 1/12 year. I choose a domain [a, b] = [−0.5, 5] for all Yj, and N = 380 terms

are calculated for the COS approximation. An integration domain [0, 0.35] with

J = 180 points is used for both z and ζ as applying the Gauss-Legendre integra-

tion. It may seem that these values are not sufficiently wide or large, but they are

chosen such that the implementation in MATLAB does not cause my computer to

run out of memory. In addition, I use the asymptotic formula (2.43) for the mod-

ified Bessel function of the first kind I·(·) that appears in Φ
(
u,∆t, zjz , ζjζ |z0, ζ0

)

in MATLAB, since I·(·) becomes extremely large as ∆t = T/M becomes small.

The relative errors defined as 100(COS - MC)/MC (in %) are also shown in

Table 6.2. All absolute relative errors are less than 0.1%, confirming our pric-

ing formula (6.36). We see that the larger the monitoring date M , the better

the performance of the approximation (2.43). However, the COS method with

Gauss-Legendre quadrature integration is time consuming for the discretely mon-

itored arithmetic Asian option under the HCIR model. The typical CPU time

cost in my computer is about 20 minutes for the case M = 30.
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6.4 Bermudan options

A Bermudan option is an option where the option holder has the right to exercise

at multiple pre-specified discrete exercise dates over the option’s lifetime. This

is between a European option, which allows to exercise at a single expiry data,

and an American option, which allows to exercise at any time. The holder of a

Bermudan option receives the payoff when he/she exercises the option. Between

two consecutive exercise dates, the valuation process can be regarded as that for

a European option, which is priced by using the risk-neutral valuation formula.

For M equally spaced early-exercise dates {tm, tm−1 < tm |m = 1, · · · ,M}
with tM = T , ∆t = tm+1 − tm, and t0 being the initial time, the Bermudan

put option pricing formula with strike price K and maturity time T , denoted by

PBer (xm, zm, ζm, tm), is given by (xm = ln (Sm/K) = ln (S(tm)/K)):




g (xm, tm) for m =M ;
max [c (xm, zm, ζm, tm) , g (xm, tm)] for m = 1, 2, · · · ,M − 1;
c (xm, zm, ζm, tm) for m = 0,

(6.43)

where g (xm, tm) is the payoff function at time tm:

g (xm, tm) = max (K − Stm , 0) = Kmax (1− exm , 0) , (6.44)

and c (xm, zm, ζm, tm) is called the continuation value at time tm (225, 226), which

is the expectation value of the option at time tm if the option is exercised at the

next early-exercise time tm+1:

c (xm, zm, ζm, tm)

=E

[
e−

∫ tm+1
tm

r(t)dt
C (xm+1, zm+1, ζm+1, tm+1)

]

=

∫ ∞

−∞
dxm+1

∫ ∞

0

dzm+1

∫ ∞

0

dζm+1 PBer (xm+1, zm+1, ζm+1, tm+1)

× P̄ (xm+1, zm+1, ζm+1|xm, zm, ζm)

=

∫ ∞

−∞
dxm+1

∫ ∞

0

dzm+1

∫ ∞

0

dζm+1 PBer (xm+1, zm+1, ζm+1, tm+1)

×
N−1∑′

n=0

2

L
Re
{
Φ
(nπ
L
,∆t, zm+1, ζm+1

∣∣∣zm, ζm
)
einπ

xm−a
L

}
cos

(
nπ

xm+1 − a

L

)
.

(6.45)
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Applying the J-point Gauss-Legendre quadrature integration rule, we can rewrite

this formula as:

c (xm, zm, ζm, tm)

≈
Jz−1∑

jz=0

wjz

Jζ−1∑

jζ=0

wjζ

N−1∑′

n=0

Re
{
Φ
(nπ
L
,∆t, zjz , ζjζ

∣∣∣zm, ζm
)
einπ

xm−a
L

}
Vn,jz,jζ (tm+1)

=

N−1∑′

n=0

Re
{
βn (zm, ζm, tm) e

inπ xm−a
L

}
, (6.46)

where

Vn,jz,jζ (tm+1) =
2

L

∫ b

a

dxm+1PBer

(
xm+1, zjz , ζjζ , tm+1

)
cos

(
nπ

xm+1 − a

L

)
,

(6.47)

βn (zm, ζm, tm) =

Jz−1∑

jz=0

wjz

Jζ−1∑

jζ=0

wjζΦ
(nπ
L
,∆t, zjz , ζjζ

∣∣∣zm, ζm
)
Vn,jz,jζ (tm+1) .

(6.48)

Given the expressions (6.44) and (6.46), one can now determine the early-exercise

points at every time tm (m =M−1,M−2, · · · , 1) rapidly by solving the following

equation with an efficient root finding procedure, for instance, Newton’s method:

c
(
xm, zjz , ζjζ , tm

)
− g (xm, tm) = 0, (6.49)

for jz = 0, 1, · · · , Jz − 1 and jζ = 0, 1, · · · , Jζ − 1. When the early-exercise points

x∗
(
zjz , ζjζ , tm

)
have been determined, procedure (6.43) can be used to compute

the Bermudan call option price. More specifically:

• At tM :

PBer (xM , zM , ζM , tM) = g (xM , tM) ; (6.50)

• At tm (m =M − 1,M − 2, · · · , 2, 1):

PBer (xm, zm, ζm, tm) =

{
g (xm, tm) for xm ∈ [a, x∗

(
zjz , ζjζ , tm

)
];

c (xm, zm, ζm, tm) for xm ∈ [x∗
(
zjz , ζjζ , tm

)
, b];
(6.51)

• At t0:

PBer (x0, z0, ζ0, t0) = c (x0, z0, ζ0, t0) . (6.52)
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With the procedure above and expression (6.46), we can compute recursively

PBer (x0, z0, ζ0, t0) from PBer (xM , zM , ζM , tM), backwards in time. Another more

efficient way is to recover the cosine series of PBer, i.e. Vn, for each time point

using backward recursion, and only at time t0 we apply (6.46) to reconstruct

PBer (x0, z0, ζ0, t0). At tM , one can derive an analytic expression for Vn,jz,jζ (tM)

by using (6.47):

Vn,jz,jζ (tM) = Gn(0, b), (6.53)

where

Gn(l, u) =
2

L

∫ u

l

Kmax (1− ey, 0) cos

(
nπ

y − a

L

)
dy

=
2

L
K [ψn (min (l, 0) ,min (u, 0))− χn (min (l, 0) ,min (u, 0))] . (6.54)

At tM−1, by inserting Vn,jz,jζ (tM) into (6.48), we obtain βn
(
zjz , ζjζ , tM−1

)
for

jz = 0, 1, · · · , Jz − 1 and jζ = 0, 1, · · · , Jζ − 1, thus c (xM−1, zM−1, ζM−1, tM−1)

with (6.46). We then solve c (xM−1, zM−1, ζM−1, tM−1) − g(xM−1, tM−1) = 0 by

Newton’s method to derive the early-exercise point x∗
(
zjz , ζjζ , tM−1

)
. Then we

split the integral in (6.47) into two parts (for jz = 0, 1, · · · , Jz − 1 and jζ =

0, 1, · · · , Jζ − 1):

Vk,jz,jζ (tM−1) =
2

L

∫ b

a

dxM−1PBer

(
xM−1, zjz , ζjζ , tM−1

)
cos

(
kπ
xM−1 − a

L

)
,

= Ck,jz,jζ

(
x∗
(
zjz , ζjζ , tM−1

)
, b, tM−1

)
+Gk

(
a, x∗

(
zjz , ζjζ , tM−1

))
,

(6.55)

where

Ck,jz,jζ (l, u, tM−1) =
2

L

∫ u

l

PBer

(
y, zjz , ζjζ , tM−1

)
cos

(
kπ
y − a

L

)
dy

=
2

L

∫ u

l

N−1∑′

n=0

Re
{
βn
(
zjz , ζjζ , tM−1

)
einπ

y−a
L

}
cos

(
kπ
y − a

L

)
dy

=Re

{
N−1∑′

n=0

Mk,n (l, u) βn
(
zjz , ζjζ , tM−1

)
}
, (6.56)

with

Mk,n (l, u) =
2

L

∫ u

l

einπ
y−a
L cos

(
kπ
y − a

L

)
dy. (6.57)
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6.5 American and discrete barrier options

Table 6.3: Bermudan put option prices PBer(M) with M early-exercise dates

and American put option prices PAme(d) defined in expression (6.58). The rows

“FD” and “COS” are prices by using the finite difference method and the COS

method, respectively. The same parameter values are used here as those in Table

6.2. The reference value of the American put option price is 9.9950, cited from

(223). The relative errors are indicated by RE.

Method
PBer(M) PAme(d)

M = 2 M = 4 M = 8 M = 16 M = 32 d = 1 RE d = 2 RE

COS 9.8203 9.9094 9.9542 9.9771 9.9873 10.0005 0.055% 9.9961 0.011%

FD 9.8172 9.9084 9.9542 9.9771 9.9885 10.0000 0.050% 9.9998 0.048%

The same computational procedure is repeated, backwards in time, until

Vk,jz,jζ (t1) is recovered, which is then inserted into (6.48) and (6.46) to get the

final option price PBer (x0, z0, ζ0, t0) = c (x0, z0, ζ0, t0). Note that at t0, instead

of computing a matrix [N × jz × jζ ], we only consider an array [N × 1] for

βn (z0, ζ0, t1). And the initial value of asset price S0 only appears at the final

time step t0. The row indicated by “COS” in Table 6.3 represents Bermudan put

option prices by using the COS method (middle column). There are no reference

values in the literature for these cases, so I check these results with those by using

the finite difference method, in the row FD middle column. I will introduce the

finite difference method in section 6.6. Comparing values in the middle column

of Table 6.3, we see that results from these two methods are very close to each

other.

6.5 American and discrete barrier options

The prices of American options can be obtained by applying a Richardson extrap-

olation on the prices of a few Bermudan options with small monitoring dates. Let

PBer(M) being the value of a Bermudan option with M early exercise dates, the

approximated value of the American option is given by the following four-point

Richardson extrapolation scheme (230):

PAme(d) =
1

21

[
64PBer

(
2d+3

)
− 56PBer

(
2d+2

)
+ 14PBer

(
2d+1

)
− PBer

(
2d
)]
.

(6.58)
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The row COS in Table 6.3 represents Bermudan put option prices by using the

COS method as well as two corresponding American put option prices from (6.58).

I choose a domain [a, b] = [−1.5, 1.5] for x, a domain [0, 0.5] for both z and ζ , and

N = 128. Larger d values give more accurate American option prices through

the Richardson extrapolation (6.58). Relative errors illustrated in Table 6.3 are

less than 0.1%, confirming our Bermudan option pricing formula. However, the

COS method with Gauss-Legendre quadrature integration is time consuming for

Bermudan and American put options under the HCIR model. Numerical results

show that American call option prices are the same as European call option prices,

which coincides with the conclusion in Table 1.1.

For discretely-monitored barrier options, the pricing procedure of the pre-

ceding section for Bermudan options can be applied directly. It is even easier

for barrier options, no matter whether they have a fixed barrier level or with a

floating one, as the barrier level is known in advance, and does not need to be

determined inside the recursion loop. Also inside the recursion loop, no early-

exercise scenarios exist, so Vk,jz,jζ = Ck,jz,jζ .

6.6 An ADI scheme for American put options

This section is devoted to the finite difference (FD) method with an alternating

direction implicit (ADI) time discretization scheme, called the modified Craig-

Sneyd (MCS) scheme (234), for pricing American put options in the HCIR model.

The FD method for option pricing starts from the Kolmogorov backward

equation 2.7 for the risk-neutral option price with some initial and boundary

conditions. Let u(s, v, r, t) be the risk-neutral put option price under the HCIR

model if at time T − t the asset price, its variance as well as the interest rate

are equal to s, v and r, respectively. Then u(t) satisfies the following partial

differential equation (PDE):

∂u

∂t
= rs

∂u

∂s
+ κ (θ − v)

∂u

∂v
+ κr (θr − r)

∂u

∂r

+
1

2
s2v

∂2u

∂s2
+

1

2
σ2v

∂2u

∂v2
+

1

2
σ2
rr
∂2u

∂r2
+ ρσsv

∂2u

∂s∂v
− ru, (6.59)
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for s > 0, v > 0, r > 0 and 0 < t ≤ T . In numerical practice, a bounded spatial

domain [0, Smax] × [0, Vmax] × [−Rmax, Rmax] is chosen with fixed values Smax,

Vmax and Rmax taken sufficiently large. The PDE (6.59) is then complemented

by the initial and boundary conditions:

u (s, v, r, 0) = max (K − s, 0) , (6.60)

u(0, v, r, t) = K, (6.61)

∂u

∂s
(Smax, v, r, t) = 0, (6.62)

∂u

∂v
(s, Vmax, r, t) = 0, (6.63)

∂u

∂r
(s, v,±Rmax, t) = 0. (6.64)

Condition (6.60) states the payoff function. Condition (6.61) to (6.63) have al-

ready been used in the literature for the put option pricing under the Heston

model, see for instance (231, 233). Note that I have extended the domain of r to

[−Rmax, Rmax] rather than on [0, Rmax] in order to treat the case when the Feller

condition for the Cox-Ingersoll-Ross model, i.e. 2κrθr > σ2
r , is not satisfied and

to apply the condition (6.64) as performed in (224).

For the numerical solution of the put option pricing problems mentioned be-

fore, the PDE (6.59) is first semidiscretized on a nonuniform Cartesian spatial

grid. With integers m1, m2, m3 ≥ 1 and parameters d1, d2, d3, d4 > 0, the

meshes 0 = s0 < s1 < · · · < sm1 = Smax, 0 = v0 < v1 < · · · < vm2 = Vmax and

−Rmax = r0 < r1 < · · · < rm3 = Rmax are defined by (224, 234, 235):

si = K + d1 sinh
(
sinh−1 (−K/d1) + i∆ξ

)
, (6.65)

vj = d2 sinh (j∆η) , (6.66)

rj = d4 + d3 sinh
(
sinh−1 ((−Rmax − d4)/d3) + k∆ϑ

)
, (6.67)

for 0 ≤ i ≤ m1, 0 ≤ j ≤ m2 and 0 ≤ k ≤ m3, and with

∆ξ =
1

m1

[
sinh−1 ((Smax −K)/d1)− sinh−1(−K/d1)

]
, (6.68)

∆η =
1

m2
sinh−1 (Vmax/d2) , (6.69)

∆ϑ =
1

m3

[
sinh−1 ((Rmax − d4)/d3)− sinh−1 ((−Rmax − d4)/d3)

]
. (6.70)
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The parameter d1, d2 and d3 control the fraction of mesh points si that lie in the

neighborhood of the strike K, the fraction of points vj that lie near v0 and the

fraction of points rk that lie near a given interest rate level r = d4, respectively.

In this section I set Smax = 10K, Vmax = 5, Rmax = 1, d1 = K/5, d2 = Vmax/500,

d3 = Rmax/400 and d4 = θr. In view of the Dirichlet condition (6.61), the relevant

set of grid points is thus

G = {(si, vj, rk) : 1 ≤ i ≤ m1, 0 ≤ j ≤ m2, 0 ≤ k ≤ m3} . (6.71)

As an illustration, Figure 6.1 displays the typical mesh grids defined by (6.65),

(6.66) and (6.67) with m1 = 120, m2 = m3 = 60, K = 100, θr = 0.04.

To approximate the first and second derivatives of u in (6.59), I employ the

following well-known FD formulas (ci = xi − xi−1):

u′(xi) ≈
c2iu(xi−2)− (ci−1 + ci)

2 u(xi−1) + ci−1 (ci−1 + 2ci)u(xi)

ci−1ci (ci−1 + ci)
, (6.72)

u′(xi) ≈
−c2i+1u(xi−1) +

(
c2i+1 − c2i

)
u(xi) + c2iu(xi+1)

cici+1 (ci + ci+1)
, (6.73)

u′(xi) ≈
−ci+2 (2ci+1 + ci+2) u(xi) + (ci+1 + ci+2)

2 u(xi+1)− c2i+1u(xi−2)

ci+1ci+2 (ci+1 + ci+2)
, (6.74)

u′′(xi) ≈
2ci+1u(xi−1)− 2 (ci + ci+1) u(xi) + 2ciu(xi+1)

cici+1 (ci + ci+1)
. (6.75)

The discretization of the mixed derivative term ∂2u
∂s∂v

in (6.59) can be obtained by

applying (6.73) successively in the s- and v-directions. In view of conditions

(6.62) to (6.64), we have u (xm1+1, vj , rk) ≈ u (xm1 , vj , rk), u (xi, vm2+1, rk) ≈
u (xi, vm2 , rk), u (xi, vj , r−1) ≈ u (xi, vj, r0) and u (xi, vj, rm3+1) ≈ u (xi, vj, rm3)

where sm1+1 = 2sm1 − sm1−1, vm2+1 = 2vm2 − vm2−1, r−1 = 2r0 − r1 and

rm3+1 = 2rm3 −rm3−1 are virtual points. These virtual points are introduced such

that central schemes (6.73) and (6.75) can be used for ui,j,k defined in (6.71),

except in the region v = 0 and v > θ. At v = 0, the derivative ∂u/∂v is approx-

imated using the upwind scheme (6.74), and all terms in the v−direction vanish

at v = 0 because the factor v occurring in (6.59). In the region v > θ the upwind

scheme (6.72) is applied in order to avoid spurious oscillations in the FD solution

when σ is close to zero (234).
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Figure 6.1: Sample meshes for s, v and r with m1 = 120, m2 = m3 = 60,

K = 100, θr = 0.04.

The FD discretization described above of the initial-boundary put option pric-

ing problem (6.59)-(6.64) for the HCIR model yields an initial value problem for

a large system of ordinary differential equations:

U ′(t) = AU(t) + g, (0 ≤ t ≤ T ) , U(0) = U0. (6.76)

Here A is a given m×m-matrix and g, U0 are given m-vectors with m = m1(m2+

1)(m3 + 1). The vector U0 is directly obtained from the initial condition (6.60).

For each given t > 0, the solution vector U(t) to (6.76) approximates the exact

solution values u(s, v, r, t) of (6.59)-(6.64) at the spatial grid points (s, v, r) ∈ G.
An effective numerical time-discretization method for the spatially discretized

HCIR problem (6.76) is the modified Craig-Sneyd (MCS) scheme (231, 234, 236).

MCS is a splitting scheme of the alternating direction implicit (ADI) type. In

line with the ADI idea, the matrix A is decomposed into four simpler matrices:

A = A0 + A1 + A2 + A3, (6.77)

where the matrices A0, A1, A2, A3 represent the part of A that stem from the FD

discretization of the mixed derivative term, and all spatial derivatives in the s-,
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v- and r- directions in (6.59), respectively. The ru term in (6.59) is distributed

evenly over A1, A2 and A3.

Let θ̂ > 0 be a given real parameter, ∆t = T/N̂ with integer N̂ ≥ 1 be

a given time step, and let temporal grid points be given by tn = n∆t for n =

0, 1, 2, · · · , N̂ . Then approximations Un ≈ U(tn) can be generated successively in

a one-step manner for n = 1, 2, · · · , N̂ by the MCS scheme:





Y0 =

{
for PBer : Un−1 +∆t (AUn−1 + g) ,
for PAme : Un−1 +∆t (AUn−1 + g) + ∆tλn−1,

Yj = Yj−1 + θ̂∆tAj (Yj − Un−1) (j = 1, 2, 3),

Ŷ0 = Y0 + θ̂∆tA0 (Y3 − Un−1) ,

Ỹ0 = Ŷ0 +
(

1
2
− θ̂
)
∆tA (Y3 − Un−1) ,

Ỹj = Ỹj−1 + θ̂∆tAj

(
Ỹj − Un−1

)
(j = 1, 2, 3),

Un =





for PBer :

{
max

(
Ỹ3, U0

)
at monitoring dates,

Ỹ3 at other dates,

for PAme :





max
(
Ỹ3 −∆tλn−1, U0

)
,

λn = max
(
λn−1 +

(
U0 − Ỹ3

)
/∆t, 0

)
.

(6.78)

Here we have used the splitting approach of Ikonen-Toivanen (232, 233) for the

pricing of American option, where the auxiliary vector λn is used with λ0 the zero

vector. Except for the monitoring dates, the MCS scheme for the pricing of the

Bermudan option is the same as the one for the European vanilla option.

Note that in (6.78), the terms Y0, Ŷ0 and Ỹ0 are expressed explicitly. Never-

theless, solutions of the implicitly expressed terms Yj and Ỹj involve the matrices(
I − θ̂∆tAj

)
for j = 1, 2, 3, where I denotes the m ×m identity matrix. Since

Aj ’s are time independent, one can compute a LU factorization of the matrices(
I − θ̂∆tAj

)
’s once.

Now we have two methods for pricing American put options. One is the

approach of Ikonen-Toivanen mentioned in (6.78). We denote this method as

FD-IT. The other one is by using the four-point Richardson extrapolation scheme

mentioned in previous section. That is, four Bermudan put option prices with

early-exercise dates M = 2d, 2d+1, 2d+2, 2d+3 are first calculated following (6.78),

then used in (6.58). We denote this method as FD-Ex. The row FD in Table 6.3

already illustrated this method. More numerical results for these two methods
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Table 6.4: American put option prices. The rows Ref. represent the reference

values from Table 3 in (223). The rows FD-IT (FD-Ex) are values by using the

FD method with Ikonen-Toivanen splitting (four-point Richardson extrapolation

scheme with d = 2, see (6.58)), and the rows RE-IT (RE-Ex) are their relative

errors with respect to the reference values Ref. The same parameter values are

used as in Table 6.1.

Method
K = 90 K = 100 K = 110

T = 1
12

T = 1
4

T = 1
2

T = 1
12

T = 1
4

T = 1
2

T = 1
12

T = 1
4

T = 1
2

v0 = 0.01, κ = 1.5, σ = 0.15, ρ = 0.1

Ref. 0.0001 0.0346 0.2040 1.0438 1.7379 2.3951 9.9950 9.9823 9.9796

FD-IT 0.0002 0.0348 0.2031 1.0340 1.7399 2.3977 10.0000 10.0000 10.0000

RE-IT 100% 0.58% -0.44% -0.94% 0.12% 0.11% 0.05% 0.18% 0.20%

FD-Ex 0.0002 0.0344 0.2034 1.0492 1.7374 2.3950 9.9998 10.0003 9.9964

RE-Ex 100% -0.58% -0.29% 0.52% -0.03% -0.004% 0.05% 0.18% 0.17%

v0 = 0.04, κ = 0.75, σ = 0.3, ρ = 0.1

Ref. 0.0619 0.5303 1.1824 2.1306 3.4173 4.4249 10.0386 10.4271 11.0224

FD-IT 0.0612 0.5298 1.1827 2.1210 3.4140 4.4332 10.0159 10.4337 11.0480

RE-IT -1.13% -0.09% 0.03% -0.45% -0.10% 0.19% -0.23% 0.06% 0.23%

FD-Ex 0.0622 0.5290 1.1832 2.1289 3.4126 4.4312 10.0167 10.4312 11.0488

RE-Ex 0.48% -0.25% 0.07% -0.08% -0.14% 0.14% -0.22% 0.04% 0.24%

v0 = 0.04, κ = 1.5, σ = 0.3, ρ = 0.1

Ref. 0.0592 0.4950 1.0752 2.1138 3.3478 4.2732 10.0372 10.3825 10.8964

FD-IT 0.0585 0.4940 1.0757 2.1048 3.3441 4.2792 10.0140 10.3919 10.9211

RE-IT -1.18% -0.20% 0.05% -0.43% -0.11% 0.14% -0.23% 0.09% 0.23%

FD-Ex 0.0595 0.4932 1.0762 2.1128 3.3427 4.2771 10.0150 10.3893 10.9218

RE-Ex 0.51% -0.36% 0.09% -0.05% -0.15% 0.09% -0.22% 0.07% 0.23%

v0 = 0.04, κ = 1.5, σ = 0.15, ρ = −0.5

Ref. 0.0787 0.6012 1.2896 2.1277 3.4089 4.4103 10.0198 10.2512 10.6988

FD-IT 0.0777 0.5994 1.2855 2.1183 3.4019 4.4072 10.0010 10.2563 10.7189

RE-IT -1.27% -0.30% -0.32% -0.44% -0.21% -0.07% -0.19% 0.05% 0.19%

FD-Ex 0.0787 0.5986 1.2861 2.1261 3.4008 4.4059 10.0022 10.2528 10.7211

RE-Ex 0% -0.43% -0.27% -0.08% -0.24% -0.10% -0.18% 0.02% 0.21%

are shown in Table 6.4. The parameter values used here are the same as those

in Table 6.1. The reference values of the American put options are from Table

3 in (223). Here I choose d = 2, m1 = 170, m2 = m3 = 80, N̂ = 32, θ̂ =

max
{

1
3
, 2
13
(2|ρ|+ 1)

}
. Relative errors with respect to reference values are also

calculated. We see that most of the absolute relative errors are less than 1%.

MATLAB are used with sparse matrix. The CPU time per time step is about

171



6. COS AND PDE APPROACHES TO THE PRICING OF SOME
COMMON EXOTIC OPTIONS UNDER THE HCIR MODEL

0.35 second for both methods. That is about 60 (240) seconds for every value of

method FD-IT (FD-Ex) in Table 6.4. Since the COS method for large M = 32 is

time consuming, I did not compute the American put option by using the COS

method for every case here, but with only one example shown in Table 6.3.

6.7 A short discussion about the computing time

As mentioned before, Fang and Oosterlee efficiently priced the Bermudan options

under the Heston SV model by using the COS method plus Gauss-Legendre

rule in (226). When the Feller condition for the Heston model is satisfied, the

time cost for Bermudan options reported in their paper is about 8 seconds for

30 monitoring dates. For the HCIR model used in this chapter, the parameter

values are chosen such that the Feller conditions for both the stochastic volatility

and stochastic interest rate processes are satisfied. The Heston model is a two

dimensional model, whereas the HCIR model has a third stochastic interest rate

process, and I used about 200 points for this extra process while applying the

Gauss-Legendre integration. Therefore the implement time for Bermudan options

for 30 monitoring dates under the HCIR model is roughly about 1600 seconds,

which is close to 30 minutes reported in this chapter. Of course maybe my

MATLAB code is not efficient, and there is a large space to optimize it.

The characteristic function Φ (u,∆t, zm+1, ζm+1|zm, ζm) defined in expressions

(6.17) through (6.21) involves two modified Bessel functions of the first kind I· (·),
both of which have a complex argument. Moreover, the characteristic function

changes at each time step as the values of z and ζ at the endpoints of each

interval change. Clearly, the hardest and numerically most time consuming part

of option pricing is the evaluation of Φ (u,∆t, zm+1, ζm+1|zm, ζm), particularly the

two modified Bessel functions of the first kind, at each time step for values of u,

zm+1 and ζm+1.

If we consider a two dimensional stochastic model rather than a three dimen-

sional one, then the pricing procedure would be much faster. Furthermore, if we

use a model whose characteristic function does not involve special functions, such

as the modified Bessel function, for example the Lévy model, then the pricing

procedure would be extremely fast, in the order of milli-seconds. So it is the
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complexity of model that matters the computing time, and the COS method is

among the most efficient method for option pricing.

For the pricing of exotic options under complex models, a combination of the

COS method and other methods is meaningful. For instance, a hybrid of the

COS method and the parallel computing technique on Graphics Process Units is

worth trying. As reported in (237), at each time step, the COS algorithm can be

decomposed into two steps, i.e. computations on each element of a vector which

can be parallelized and the summation of vector elements. We can image that

splitting a vector and performing the summation in parallel would shorten the

computing time dramatically.
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7

Determining and benchmarking

the implied risk-neutral asset

price densities from option prices

This chapter is based on the article (146), which is joint work with

Oliver Salazar Celis, Damiaan Lemmens, Jacques Tempère and Annie

Cuyt. Damiaan Lemmens is the initiator and the contributor of the

calculations related to the DLN and the IVS methods in this article.

The interpolation techniques were developed @ CANT and we apply

it here to option pricing.

Stochastic models for option pricing implicitly assume a risk-neutral under-

lying asset price probability distribution. In order to calibrate these models as

well as to identify limitations of these models, a comparison to the experimen-

tally realized asset price probability distribution is required. In this context, the

empirical asset price probability distribution is reconstructed from the time se-

ries data (40). The asset prices (or returns) at different time steps are collected,

binned, and theoretical probability distributions are fitted and compared to this

data. This approach has obvious limitations related to non-ergodicity (100): for

many purposes the probability distribution function at a given time is needed,

and this cannot be extracted from realized values drawn at different times when

the probability distribution function itself can change in time.
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This limitation can be overcome by implying the risk-neutral probability den-

sities from option prices. We will use the acronym RND (the risk-neutral prob-

ability density function of the underlying asset price) henceforth. In this frame-

work, a set of option prices (determined e.g. for different values of the strike K)

at a given time are related to the RND at that given time. This is in essence

the inverse problem to the option pricing problem. In that problem, when we

calculate e.g. European vanilla options for a range of strikes K with a certain

maturity T , we determine the RND for a certain model such as Black-Scholes or

Heston, and once the RND is found, the option price can be calculated as the

expected value of its future payoff discounted back to the present with a discount

rate being the risk-neutral interest rate. Now, we observe option prices for strike

K with maturity T , and from this we derive the P (ST ) that the empirical set of

market participants generated to produce these prices.

There exist a variety of approaches on extracting the RND in literature that

can be followed. One can assume a functional form for the underlying distribution

and determine its parameters doing a least squares fit to the observed prices. A

popular choice for this functional form is a combination of log-normals (238, 239,

240, 241). We refer to this method as the “double log-normal” (DLN) method.

Another approach is to use the relation first put forth in (242) that the implied

RND can be obtained by taking the second derivative of the option price with

respect to the strike price. A popular method based on this approach consists in

constructing a smoothed volatility surface to calculate the second derivative (243,

244, 245). We refer to this method as the “implied volatility surface” (IVS)

method. For a more thorough discussion of the possible methods to infer the

implied density we refer to (246, 247, 248, 249, 250, 251, 252).

The main goal of the present chapter is to introduce a new global and nonlinear

method to determine the implied RND. Such global approximations assume one

functional form for the option prices, and the RND is thus related to the second

derivative of that option price with respect to the strike price. Its (possibly

nonlinear) parameters are usually determined from discrete observed bid and ask

option prices. Our new method is designed to tackle the two main problems that

arise in determining option implied densities. These problems are (1) that there

are only option prices for discrete sets of strikes, and (2) that these prices contain

176



errors (e.g. due to the bid-ask spread, there is an ‘error bar’ on the price of

any given option). Such errors can cause unrealistic density approximations. We

refer to our new method as the “Rational Interval Interpolation” (RII) method.

This method overcomes the aforementioned drawbacks and takes into account

the nature of the data.

Before the RII method is applied to real market data, we first compare it to

the DLN and IVS methods using simulated data with added noise to show its

superiority to them. Only a small part of the literature uses simulated data to

test the performance of the methods used to derive the implied RND. In (252)

simulated data are used to study the influence of the incomplete set of strikes and

the presence of a bid-ask spread. In (239) the ability of the DLN and IVS meth-

ods to recover a distribution simulated with Heston’s stochastic volatility model

is investigated. However, an essential advantage of using the simulated data is

that we precisely know the exact probability density function, which guarantees a

comparison of the methods in a controlled environment. Here, we extend the test

used in (239) to compare the proposed method to the DLN and IVS methods.

More specifically, we use simulated data based on three known probability distri-

bution functions, and add noise. This provides a better benchmark, and allows to

accurately determine the robustness and accuracy of the methods. The probabil-

ity distribution functions that we use for this benchmarking are the Black-Scholes

density, the Heston density and the CGMY model density. This choice allows to

probe the influence of specific market characteristics such as stochastic volatility

and jumps on the various methods for option implied densities.

Then we look at real data, and apply our procedure to estimate the implied

densities for the S&P 500 index options. A large part of the literature (for a

typical example, see (246)) uses market data to test the performance of methods

for the option implied density. In (247), the robustness of the DLN and IVS

methods is investigated by comparing the implied densities obtained from real

option prices to those obtained by adding a small error to these market prices.

In (253), the S&P 500 index option quotes that are too deep in or out of the

money are eliminated while the rest are smoothed using cubic spline interpola-

tion when applying the IVS method. This implied risk-neutral density is then

completed with tails drawn from a Generalized Extreme Value distribution. Here,
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as mentioned before, we propose to use global nonlinear approximations for both

the implied RND and the implied put and call option prices based on this single

implied RND in a straightforward way rather than using spline-based methods.

This chapter is structured as follows. In section 7.1 we review existing meth-

ods to extract the RND for the asset returns from the option price data, focusing

on the DLN approach and the IVS approach. In section 7.2 we present our novel

RII method to determine the implied RND. In section 7.3 we discuss how the

simulated data are generated, and we present our benchmark, compare and dis-

cuss the results from the aforementioned three approaches. Section 7.4 is devoted

to the application of our RII method to real data. And finally, a conclusion is

drawn in Section 7.5.

7.1 Review of existing approaches

Suppose that at a certain time t = T the asset price ST has a conditional RND

P (ST , T |S0), where the condition stipulates the initial value S0 of the asset at

time t = 0. Since the payoff of a plain vanilla European call option with strike

K and maturity T is max [ST −K, 0], the price C of this call option can be

calculated as

C (S0, K, T ) = e−rT

∫ ∞

K

(ST −K)P (ST , T |S0)dST , (7.1)

where e−rT is a discount factor with interest rate r. Differentiating this formula

twice with respect to K we get

∂2C(S0, K, T )

∂K2

∣∣∣∣
K=ST

= e−rT ∂

∂K

(
−
∫ ∞

K

P (ST , T |S0)dST

)∣∣∣∣
K=ST

= e−rTP (ST , T |S0) . (7.2)

The implied probability distribution is then straightforwardly given by (242)

P (ST , T |S0) = erT
∂2C (S0, K, T )

∂K2

∣∣∣∣
K=ST

. (7.3)

As already mentioned there are some problems to bring this theoretical relation

into practice, such as the fact that only a discrete set of strikes is available. Also,

the market mechanism of bidding and asking results in a “measurement error”

or uncertainty on the observed option prices, through the bid-ask spread.
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7.1.1 Implied volatility surface (IVS) approach

A popular approach to cope with these problems is the one based on smoothing

the volatility smile (243, 244, 245). For this method, option prices are first

transformed to a certain volatility curve. As mentioned in section (1.2.2), in

a Black-Scholes setting, one can convert the option prices C (S0, K, T ) into an

implied volatility surface σ (S0, K, T ). This implied volatility surface is then

smoothed with a cubic spline, and the smoothed surface is mapped back onto

a smoothed option price function. This smoothed option price function allows

for taking a second derivative and determining the (discounted) RND through

expression (7.3).

7.1.2 Double log-normal (DLN) approach

Another commonly used approach is the DLN approach (238, 239, 240, 241). In

this framework, one assumes that the RND of ST is given by a double log-normal

distribution:

P (ST ) =
b

STσ1
√
2πT

exp

{
− 1

2σ2
1T

[
ln (ST /S0)−

(
m1 −

σ2
1

2

)
T

]}

+
1− b

STσ2
√
2πT

exp

{
− 1

2σ2
2T

[
ln (ST/S0)−

(
m2 −

σ2
2

2

)
T

]}
.(7.4)

In this expression, the fitting parameters m1, m2 are drifts, the fitting parameters

σ1, σ2 are volatilities and the final fitting parameter b determines the relative

contribution of the two log-normal densities. The price of a European vanilla call

option is then given by

C (S0, K, T ) = be−rT
[
em1TS0N(d

(1)
+ )−KN(d

(2)
− )
]

+ (1− b) e−rT
[
em1TS0N(d

(1)
+ )−KN(d

(2)
− )
]
, (7.5)

with

d
(j)
± =

1

σj
√
T
ln

(
S0

K
+

(
mj ±

σ2
j

2

)
T

)
. (7.6)

The parametersm1, m2, σ1, σ2, b and r in (7.5) are then determined by minimizing

the least squares distance to the observed market prices. Since this method

requires six nonlinear parameters to be determined, it can easily strand in a local

minimum and thus is prone to yield unreliable results.
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7.2 Rational interval interpolation (RII) approach

The basic problem statement of RII starts from the following. Instead of an

observed option price point value C̃i, it is assumed that an interval [ci, ci] is given

at each (distinct) strike Ki (i = 0, . . . , n). The bounds ci < ci are typically

obtained from the market mechanism of bidding and asking, as illustrated in

section 7.4.

We then look for an irreducible rational function rℓ,m(K) = pℓ(K)/qm(K)

consisting of a numerator polynomial pℓ(K) of degree at most ℓ and a denominator

polynomial qm(K) of degree at most m, with ℓ+m≪ n and such that the interval

interpolation conditions

rℓ,m(Ki) ∈ [ci, ci] ⇔ ci ≤ rℓ,m(Ki) ≤ ci, i = 0, . . . , n (7.7)

are satisfied. Provided that qm(Ki) > 0, it is detailed in (254) that the coefficients

of rℓ,m(K) have to satisfy the linear inequalities

{
−ciqm(Ki) + pℓ(Ki) ≤ 0

ciqm(Ki)− pℓ(Ki) ≤ 0
, i = 0, . . . , n. (7.8)

Our goal is not merely to approximate option prices, but also to derive an

approximation from it for the (discounted) RND using the relation (7.3), i.e.

by differentiating an approximation rℓ,m(K) for the option price twice with re-

spect to K. The advantage of using a rational approximation rℓ,m(K) is the fact

that it is infinitely differentiable and its second derivative can easily be written

down explicitly. However, by definition, derivatives are quite sensitive to small

oscillations of the underlying function. Artificial oscillations typically appear in

approximations constructed from data subject to (heavy) noise. This may result

in inaccurate and unrealistic density approximations. Fortunately, the theoretical

prices of European vanilla call options are known to be convex decreasing func-

tions of K. Hence, in order to guide the approximations towards more realistic

shapes, we add the following (discrete) conditions for the first and the second

derivative.

First, it is not difficult to see that the theoretical price of a European vanilla

call option is monotonically decreasing with respect to the strike K and the value
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of its derivative is bounded between −e−rT and 0. After all, it can be shown

that (242)
∂C

∂K
(K) = −e−rT (1− CDF(K)) , (7.9)

where CDF(K) is the cumulative distribution function corresponding to the un-

derlying PDF. Therefore we add the conditions at the locations Ki that

−e−rT ≤ r′ℓ,m(Ki) ≤ 0, i = 0, . . . , n. (7.10)

Here r′ℓ,m(K) denotes the first derivative of rℓ,m(K) with respect to K.

It is convenient to write

r′ℓ,m(K) =
p′ℓ(K)− rℓ,m(K) q′m(K)

qm(K)
, (7.11)

and provided that both qm(Ki) > 0 and (7.7) are satisfied, (7.10) is also satisfied

if 



p′ℓ(Ki)− ci q
′
m(Ki) ≤ 0

p′ℓ(Ki)− ci q
′
m(Ki) ≤ 0

−e−rT qm(Ki)− p′ℓ(Ki) + ci q
′
m(Ki) ≤ 0

−e−rT qm(Ki)− p′ℓ(Ki) + ci q
′
m(Ki) ≤ 0

, i = 0, . . . , n. (7.12)

Second, because a CDF is monotonically increasing with respect to its random

variable, the first (partial) derivative of the theoretical European call option price

is also monotonically increasing with respect to K. Hence convexity of rℓ,m(K)

– thus positivity of its second derivative r′′ℓ,m(K) – is required for it to imply a

realistic PDF. The nonnegativity of the RND is also a natural constraint from

the perspective of finance. Therefore we also add the discrete conditions

0 ≤ r′′ℓ,m(Ki), i = 0, . . . , n. (7.13)

For this purpose, it is convenient to write

r′′ℓ,m(K) =
p′′ℓ (K)− rℓ,m(K) q′′m(K)− 2 r′ℓ,m(K) q′m(K)

qm(K)
. (7.14)

Provided that (7.7), (7.10) and qm(Ki) > 0 hold, (7.13) is satisfied if




−p′′ℓ (Ki) + ci q
′′
m(Ki)− 2 e−rT q′m(Ki) ≤ 0

−p′′ℓ (Ki) + ci q
′′
m(Ki) ≤ 0

−p′′ℓ (Ki) + ci q
′′
m(Ki)− 2 e−rT q′m(Ki) ≤ 0

−p′′ℓ (Ki) + ci q
′′
m(Ki) ≤ 0

, i = 0, . . . , n. (7.15)
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Although the conditions (7.10) and (7.13) are merely imposed on a discrete set

and therefore do not prevent violations in between given strikes, they seem to

work very well in practice (255). Moreover, it can be shown that when discrete

conditions are imposed at sufficiently many locations, the condition is implied

in between all locations (256). Unfortunately, the theoretical number of discrete

conditions needed for this implication to hold is often too high to be of practical

use. Guaranteeing a rational approximation with a nonnegative second derivative

on the entire real line is out of scope here, but the interested reader is referred to

(257).

For fixed ℓ andm, the problem that remains, is to obtain nonzero values for the

coefficients of rℓ,m(K) such that the homogeneous linear inequalities (7.8), (7.12)

and (7.15) are satisfied. How this can be done is discussed next. Let pℓ(K) and

qm(K) be polynomials of the form

pℓ(K) =
ℓ∑

i=0

αiK
i, qm(K) =

m∑

i=0

βiK
i, (7.16)

denote the corresponding vector of coefficients by

c = (α0, . . . , αℓ, β0, . . . , βm)
T ∈ Rℓ+m+2 (7.17)

and denote by A the (10n + 10) × (ℓ + m + 2) constraint matrix implied by

the inequalities (7.8), (7.12) and (7.15). In order to obtain a nontrivial vector

c 6= 0 which strictly satisfies the component-wise inequalities Ac ≤ 0, we propose

the computation of a Chebyshev direction (254) of the corresponding unbounded

polyhedral cone (258). This requires solving the strictly convex quadratic pro-

gramming (QP) problem:

arg min
c∈Rℓ+m+2

(‖c‖2)2

subject to Ajc ≤ −δ ‖Aj‖2 , j = 1, . . . , 10n+ 10.

Here δ > 0 is an arbitrary positive constant, Aj denotes the j-th row of the

matrix A and ‖ · ‖2 is the Euclidean norm. For a discussion on the geometrical

interpretation of this QP formulation we refer to (254). Note that the involved

optimization has – provided that a solution exists – a unique global minimum.

The freely available MATLAB interface qpas (259) can for instance be used,
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which efficiently handles thousands of constraints. To improve the numerical

conditioning of the optimization problem, it is advised to rescale the given strikes

Ki to the interval [−1, 1] and to use orthogonal polynomials (e.g. Chebyshev

polynomials) as basis functions rather than the monomials.

Concerning the values of ℓ and m, we remark the following. The total model

complexity is determined by the total number of coefficients, i.e. ℓ+m+ 2. For

a fixed model complexity of ℓ +m + 2, nothing prevents us to choose arbitrary

combinations of ℓ and m, like in (254). However, for rℓ,m(K) to have a slant

asymptote resembling the linearity of option prices when K becomes small, the

choice ℓ = m + 1 is more natural. This way, one can even fix the slope of the

asymptote to −e−rT . Hence we only consider ℓ = m+1 and solve the QP problem

above for increasing values of m = 0, 1, 2, . . . until a solution is found.

7.3 Benchmark

7.3.1 Simulated data and market models

Rather than using market data directly, with an essentially still uncertain RND,

we use simulated data based on known RND first, and then add noise. This

allows us to accurately test and benchmark the different approaches to imply a

probability density function from noisy data.

Three different models of the market are used to test the existing methods

(DLN and IVS), and the RII method proposed in this chapter. The first model

to simulate market data is of course the Black-Scholes model (9), characterized

by expression (1.21) for the asset price. We choose as risk-neutral interest rate

r = 0.05, volatility σ = 0.2 and the initial asset price S0 = 925. The same

parameter values for r and S0 are used for the next two models.

The second model is the Heston model (76), characterized by two coupled

stochastic differential equations
{
dS(t) = rS(t)dt+

√
v(t)S(t)dW1(t)

dv(t) = κ(θ − v(t))dt+ σv
√
v(t)dW2(t)

, (7.18)

with dW1 and dW2 two Gaussian processes. The parameters for the Heston model

are chosen so that the resulting distribution lies close to a log-normal distribution:
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the mean reversion rate is κ = 2, the mean reversion level is θ = 0.04 and the

volatility is σv = 0.1. The correlation ρ = 〈dW1dW2〉 is chosen to be ρ = 0.5,

and the variance at inception (at time t = 0) is set to v0 = 0.0437. The second

equation determines the stochastic nature of the volatility, and was originally

introduced to incorporate the long memory of the volatility observed in realized

time series. This model is used to check whether a relative small deviation from

the log-normal model already influences the performance of the methods. That is

why we use previous mentioned parameter values such that the Feller condition

of the Heston model, i.e. 2κθ > σ2
v , is already satisfied.

The third model is the CGMY model (85), which is chosen to obtain fat tails

in the asset price distribution. Its characteristic exponent is given in expression

(2.105). In the mean-correcting martingale measure (109), see section (2.3.2.2),

the new characteristic exponent

f̂(ω) = f(ω) + iω (r − f(−i)) (7.19)

is used, such that the asset price discounted by the bank account is a martingale:

E[e−rTST ] = S0 e
−rTE[exT ] = S0 e

f̂(−i)T−rT = S0. We choose parameter values

C = 0.0244, G = 0.0765, M = 7.5515, Y = 1.2945. The corresponding distri-

bution differs substantially from the log-normal distribution as can be seen in

Figure 7.1. Nevertheless the parameter values for this model are realistic since

they are obtained by calibrating a set of European call options on the S&P500

index (109).

The Black-Scholes, Heston and CGMY models of the market belong to three

very different classes, and capture different aspects of the market. With each

of these market models, we first analytically generate European vanilla option

prices for various strikes Ki and time to maturities Ti. In total 56 distinct strikes

are chosen at equidistant locations in the interval (including the endpoints) with

mid-point equal to the forward value and radius equal to 4 times the standard

deviation of the underlying PDF. At a single maturity time, such a number of

strikes is typical. Figure 7.1 already followed this setup. Then noise is added

to the corresponding exact option prices Ci and we let loose the option implied

density methods (DLN, IVS and RII) to see how well they perform in retrieving

the original, known probability density function of the Black-Scholes, Heston and
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Figure 7.1: Illustration of the different distributions used to test the DLN, the

IVS and the RII method. From left to right, time ranges from 0.0384 to 0.5 to 1.5

year. The full red curve represents the log-normal distribution, the green dots the

Heston distribution and the blue crosses the CGMY distribution.

CGMY models, respectively. This allows us to learn how different aspects of the

market (Lévy nature, stochastic volatility, etc.) and the durations influence the

performance of the option implied density methods.

An important step in the benchmarking process, is the addition of noise to

the exact option prices. The prices plus noise should be similar to market data.

Different choices can be made for replicating option market data. One can choose

to work with last trade data. The benefit of doing this is that there is one realistic

price per strike. The downside is that data for different strikes can originate from

trades at different times, and theoretically when comparing prices originating

from different times one should discount them all to the same time. Another

possibility is to use bid-ask price data, and have a vector of prices which is

relevant at the same time. The problem there is that people can state unrealistic

high ask prices, ask prices at which there will never be traded. The same can

be said about bid prices. In the following we try to replicate last trade data.

There are many assets for which options are traded actively enough for last trade

data to be useful. We construct the noise in such a way that it replicates the

fact that the noise of financial data is smallest around the forward value F and

largest in the tails. Here F = S0e
rT for all three above mentioned models and the

values T = 0.0384, T = 0.5 and T = 1.5 (year) are chosen. Hence F = 926.78,

F = 948.42 and F = 997.04 respectively. To determine where the tails start we
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Figure 7.2: This figure represents a sample set of the relative errors for different

values of η and time to maturity T in years. In the left panel η = 1, T = 0.0384,

in the middle one η = 10, T = 0.5, and in the right one η = 100, T = 1.5. The

relative errors increase as the value of η grows (independent of T ).

use the standard deviation s. For each option price a relative error is chosen from

a uniform distribution on an interval [−β, β] where β is determined by

β(K) = η

(
0.00025

|F −K|
s

+ 0.0001

)
. (7.20)

If the control parameter η is 1, then the relative error ranges from 0.0001 per unit

in the center to 0.0011 per unit in the tails (four standard deviations away from

the center). If η is 100, then the relative error ranges from 0.01 per unit in the

center to 0.11 per unit in the tails. Figure 7.2 illustrates the typical behavior of

the relative errors.

For the RII method, intervals [ci, ci] = [Ci (1− δi), Ci (1 + ǫi)] are constructed

for each of the strikes Ki (i = 0, . . . , 55). Like before, Ci denotes the analytically

obtained option price value at strike Ki. The relative errors ǫi = δi > 0 are

chosen according to (7.20). Hence the widths of the intervals mimic the typical

behavior of uncertainty in observed financial data: small for strikes close to the

forward value and increasingly larger for strikes away from the forward value. In

practice, the exact values Ci are unknown and only observed values C̃i are given.

But intervals [ci, ci] = [C̃i (1 − δi), C̃i (1 + ǫi)] with δi and ǫi large enough can

always be chosen such that Ci ∈ [ci, ci].

186

8_ImpliedDensity/figures/RelativeErrorj.eps


7.3 Benchmark

7.3.2 Results and discussion

The obtained RII implied RNDs for different maturity times and values of the

control parameter η for the three market models are illustrated in Figure 7.3.

The performance of the different methods is summarized in Table 7.1. In this

table a method which renders a better implied distribution has more plus signs,

if the implied distribution is unacceptable a minus sign is assigned to it. We

discriminate between good and bad fits in the following way. If di are the data

points from the original distribution and d′i are the data points of the implied

distribution then we calculate a normalized average error ne:

ne =
1

N max (di)

∑

i

|di − d′i| . (7.21)

Absolute errors are used instead of relative errors because we want to concentrate

on the center of the distribution. To be able to compare the average errors of

different implied distributions the average error is divided by the maximum value

of the original distribution. For example if ne = 1 then, on average, the absolute

error in each point is as large as the maximum value of the distribution, and

the corresponding implied distribution is obviously worthless. If the implied

distribution is zero in every data point then ne lies close to 0.5. When ne ≤ 0.1

the implied distribution starts to look like the original distribution, and we assign

a − sign to the distributions for which ne > 0.1. If 0.02 ≤ ne ≤ 0.1 a + sign

is assigned to the implied density, when 0.004 ≤ ne ≤ 0.02 a ++ sign and when

ne ≤ 0.004 a + + + sign.

Analyzing Figure 7.3 and Table 7.1 leads to the following conclusions regard-

ing the three tested methods. First, it is apparent that only our newly introduced

RII method delivers satisfactory PDF approximations for each scenario. Second,

the DLN method is unstable due to the six-dimensional nonlinear optimization

problem involved. It is very often in the literature assumed that the interest rate

can be determined by other means (bond and future prices). One parameter is

then eliminated and the minimization routine becomes much more stable. Al-

though the RII method also relies on a many parameter function, it does not

suffer from such effects because the involved optimization is convex. Third, the

DLN method, entirely as expected, is least flexible concerning the reproduction
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Table 7.1: Summary of the performances of the different methods to derive the

implied RNDs. The double log-normal method is abbreviated by DLN, the method

based on smoothing the volatility surface by IVS, and the method based on rational

interval interpolation by RII. A better implied distribution has more plus signs, if

the implied distribution is unacceptable a minus sign is assigned.

η T
Black Scholes Heston CGMY

DLN IVS RII DLN IVS RII DLN IVS RII

0.038 ++ ++ +++ ++ ++ +++ + ++ +++

1 0.5 − ++ +++ + ++ +++ − ++ +++

1.5 − ++ +++ + ++ +++ − ++ +++

0.038 + + + + ++ + + ++ + + ++

10 0.5 − + +++ + − +++ − + ++

1.5 + + + + +++ ++ − +++ − + ++

0.038 ++ − ++ + − ++ − − ++

100 0.5 + − ++ − − ++ − − ++

1.5 − − ++ + − ++ − − ++

of PDF’s differing substantially from the log-normal one. The IVS method on

the other hand, seems to be flexible as far as it concerns handling data coming

from models differing from the log-normal one. Nevertheless also for this method,

the data can be from a model with a PDF which is too far from the log-normal

one to be tractable. Like the DLN method, also the IVS method might benefit

from knowledge of the interest rate. Forth, it is seen that the IVS method is

particularly sensitive to random errors, while the RII method is the most robust

method in the presence of such errors.

Regarding the results of our RII method, we can say the following. First,

for each market model and each time to maturity T , the deviation between the

RII implied density and the original PDF understandably becomes larger as the

value of the error control parameter η grows. Second, almost for each η and T ,

the performance of the RII method decays with increasing skewness and kurtosis

of the underlying PDF. However, the final results are always satisfactory. Third,

for each market model and each η, the values of the error criteria parameter

ne are fairly similar for different time to maturities. Hence the maturity time

T of the option hardly influences the performance of the method. Fourth, for

each RII implied density, it is seen that the left tail approximation can be worse

than the right tail approximation. This is mainly due to the fact that relative
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Figure 7.3: This figure illustrates the RII implied RNDs for the Black-Scholes

data, the Heston data and the CGMY data, respectively, from top to bottom.

From left to right, the time to maturity T takes the value 0.0384, 0.5 and 1.5. In

each panel, the full gray line is the exact PDF, while the green squares, the blue

circles and the red triangles are the RII implied density approximations from the

scenarios with control parameter η = 1, 10 and 100, respectively. The complexity

of the rational function rℓ,m(K), as well as the value ne from (7.21) are shown for

each scenario.

errors on large option prices (for small strikes) result in much larger absolute

deviations than on small option prices (for large strikes). However, for small
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relative deviations (i.e. η = 1) the RII method always performs outstanding.

The benchmark leads us to conclude that the commonly used DLN and IVS

methods may lack reliability in a market that behaves more Heston-like or that

has CGMY characteristics, and that the RII method outlined here is currently

the most promising technique for implying RNDs from real option price data.

Notably, though the simulated data are dependent on some special models, our

RII method is model independent.

7.4 Application to market data

Now that it is demonstrated from simulated data that our RII implied density

method produces reliable results, we are ready to apply the technique to real

market data. We extract the implied RNDs from the daily closing bid and ask

prices for Standard and Poor’s 500 (S&P 500) Index options.

Unlike with simulated data, we now have no exact original density to bench-

mark, neither do we have the risk-neutral interest rate r to discount the expected

value to current time. By contrast, we have bid and ask prices from the market,

which are quoted for all traded strikes no matter whether transactions occur or

not. In (253), the average of bid and ask is taken as the best available measure of

the option price. We use bid and ask prices directly to define the interval data for

our RII method. In addition, we use bids and asks as a criterium to measure the

goodness of the computed implied RND in the following way. If [ci, ci] is the bid

and ask interval at strike price Ki and ImpliedPrice(Ki) is the implied European

vanilla option price derived from the implied RND for that strike, then we define

the relative position (RP) of this implied option price as:

RP (Ki) =
ImpliedPrice(Ki)− ci

ci − ci
. (7.22)

If RP (Ki) equals 0.5, then the implied price is exactly in the middle between bid

and ask at strike price Ki. We call the implied density good if RP (Ki) lies in

between 0 (at the bid price) and 1 (at the ask price). The further the distance

between the value RP (Ki) and the interval [0, 1], the worse the achieved implied

RND.
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Another difference between real data and the previously considered simulated

data is the availability of put option prices. Our RII method can be applied

directly to derive an implied density from the put option prices after taking a few

minor modifications into account, as we show next. Analogous to the price of a

European vanilla call option, the price of a European vanilla put option is given

by the basic pricing formula

P (S0, K, T ) = e−rT

∫ K

0

(K − ST )P (ST , T |S0)dST . (7.23)

Because the theoretical price of a European vanilla put option is also convex, but

now monotonically increasing with respect to the strike K, the inequalities (7.10)

for calls are replaced by

0 ≤ r′ℓ,m(Ki) ≤ e−rT , i = 0, . . . , n. (7.24)

Consequently, the linear inequalities (7.12) are replaced by





−p′ℓ(Ki) + ci q
′
m(Ki) ≤ 0

−p′ℓ(Ki) + ci q
′
m(Ki) ≤ 0

e−rT qm(Ki) + p′ℓ(Ki)− ci q
′
m(Ki) ≤ 0

e−rT qm(Ki) + p′ℓ(Ki)− ci q
′
m(Ki) ≤ 0

, i = 0, . . . , n. (7.25)

The goal of this section is to find a single implied RND and verify whether it

reproduces feasible implied call and put option prices, i.e. the ImpliedPrice from

the basic pricing formulas (7.1) and (7.23). A good implied RND reproduces

implied option prices that are within the given bids and asks. We start with a

detailed description of one example to explain the improved procedure of our RII

method. Other examples, following the same reasoning, are given at the end of

this section.

For data, we take the S&P 500 index call option prices as well as the put

option prices of January 5th, 2005 with maturity time on March 18th, 2005 (72

days). This is the same data as used in (253), see Table 1 of that paper. In total

there are 22 strike prices for calls ranging between 1050 and 1500, and 35 strike

prices for puts ranging between 500 and 1350. The S&P 500 index closing level is

1183.74, the interest rate is 2.69%, and the dividend yield is 1.7%. As mentioned

191



7. DETERMINING AND BENCHMARKING THE IMPLIED
RISK-NEUTRAL ASSET PRICE DENSITIES FROM OPTION
PRICES

500 1000 1500
0

20

40

60

80

100

120

140

160

K

S&P 500 Index Options Prices, Jan. 5, 2005

 

 
put bids
put asks
call bids
call asks

1000 1100 1200 1300 1400
−200

−150

−100

−50

0

50

100

150

K

Linear approximation of "C(K) − P(K)"

 

 
C(K) − P(K)
Linear approxation

F

F

Figure 7.4: Left, the bid and ask call and put price intervals from the S&P

500 index options of January 5th, 2005 with maturity date on March 18th, 2005.

Right, obtaining the forward value F and the discount factor e−rT from the best

linear ℓ1-norm approximation of C − P , with circles the data and line the linear

approximation. The vertical blue dashed line indicates the location of the forward

price F .

before, bid and ask prices from both puts and calls are used to define the interval

data. These data intervals are shown in Figure 7.4 (left).

As demonstrated in (253), on average, option traders expect a risk-neutral

return which is 21 basis points below the risk-neutral interest rate (using The

London Interbank Offered Rate as a proxy for that rate). For this reason we do

not use the interest rate 2.69% as mentioned above. Instead, to determine the

value of the discount factor e−rT , we rely on the put-call parity

C(S0, K, T )− P (S0, K, T ) = e−rT (F −K), (7.26)

where the forward price F is the expected price of ST . The forward price F

together with the discount factor e−rT are obtained from a linear approximation

of the values C̃i − P̃i as a function of common strike prices Ki. Here we obtain

them from a best linear ℓ1-norm approximation, using the midpoints of the given

intervals as data values, i.e. C̃i and P̃i. Such an ℓ1-approximation is least sensitive

to outliers (for more details we refer to (258, Section 6.1)). The results of this

approximation are shown in Figure 7.4 (right). We find F = 1182.9 and e−rT =
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0.9948. Since T = 72/365, we have the option traders’ expected risk-neutralized

return r = 2.64%, which is a realistic value. Though the value F is slightly

smaller than the index closing level 1183.74, it is still realistic due to the large

uncertainty of that single last trade price.

Given the value of the discount factor above, we apply the RII method to

both the call price interval data and the put price interval data. We obtain two

rational approximations rcall5,4 (K) and rput5,4 (K). Note that, in general, the obtained

numerator and denominator degrees need not be the same for puts and calls. The

two resulting implied densities are shown in Figure 7.5 (left). We find that these

two implied RNDs differ too much to be reliable. Our goal is to obtain a single

implied RND, suitable for both call price data and put price data.

For this purpose, first, we note that we can bring both curves rcall and rput

in better agreement by forcing the denominator polynomials to be the same,

and the degrees of the numerator polynomials to be equal. The details of this

procedure are outlined in Appendix A. Basically, the coefficients of both rational

approximations are obtained from a single QP problem, which combines the QP

problem of the RII method for call with the QP problem of the RII method for

put into one. This is a simultaneous call-put RII method.

The idea behind the next step is that we use the call curve in the region

where call prices are most reliable, and the put curve in the region where put

prices are most reliable, and then glue the two curves together at an intermediate

value. For this intermediate value, we take the forward price F, at which point

the European vanilla call option price coincides with the European vanilla put

option price. Since most trading occurs for at-the-money and out-of-the-money

contracts, we take the prices for these contracts to be more reliable. Put options

are out-of-the-money when K < F , whereas for call options this is K > F . Then,

we can propose to use the implied density curve rput(K) for K < F and rcall(K)

for K > F . This choice is supported by practice: the CBOE also calculates the

VIX index by combining only out-of-the-money call and put contracts. Another

motivation for this choice is that from the basic pricing formulas (7.1) and (7.23)

we know that for both the calls and puts, the option prices for all strikes are

dominated by the out-of-the-money probability density functions. Moreover, we
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Figure 7.5: The purple crosses represent the implied RND derived from put

option prices, the dark green plus signs represent the one from call option prices,

and the red dots are the piecewise RNDs with basic RII method for the left panel,

and final improved RII method for the middle panel. The right panel illustrates

the relative positions of implied option prices, see expression (7.22). The vertical

blue dashed line indicates the location of forward price F .

already obtain F from the determination of the discount factor. The results of

this procedure are shown in Figure 7.5 (left).

The remaining drawback of this procedure is that the implied density curve

is in general not continuously differentiable at the value where we have stitched

together rcall and rput. Within the RII formalism, this can be easily overcome

by introducing some additional equations and inequalities that express the con-

ditions of continuous differentiability at F . In Appendix B, the details of this

improvement on the formalism are explained. The results for the (normalized)

implied RND and for the relative positions (7.22) are shown in Figure 7.5 (middle

and right). Almost all the implied prices calculated from the implied RND are

within their bid and ask intervals, from which we conclude with confidence that

the continuously differentiable implied RND derived from our final improved RII

method, combining all available information from call and put prices into the best

of both worlds, reliably represents the single implied RND we are looking for.

Finally, to illustrate the robustness of our RII method, we consider some ad-

ditional S&P 500 index options. We arbitrarily choose the date of September 3rd,
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Figure 7.6: The top panel illustrates the single continuously differentiable implied

RNDs derived from S&P 500 index option prices of September 3rd, 2010 with

different maturity times by using our final improved RII method. The bottom

panel represents their corresponding relative positions, defined in expression (7.22),

for both European vanilla put option prices and call option prices with different

maturity dates.

2010, then extract the single continuously differentiable implied RNDs from the

closing bid and ask prices with maturity times ranging from 2 weeks to around 3

months, that is, with the maturity dates on September 18th, 2010 (15 days), Oc-

tober 16th, 2010 (43 days), November 20th, 2010 (78 days) and December 18th,

2010 (106 days). The obtained implied RNDs as well as their corresponding rela-
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tive positions for both implied European vanilla put option prices and call option

prices are shown in Figure 7.6. The worst result is in the scenario with 15 days to

maturity. The probability density function of such short maturity contracts are

often badly behaved because of the price effects from trading strategies related

to contract expiration and rollover of hedge positions into later expirations (253).

Even for this worst case, the relative positions are mostly within their bid and

ask intervals, i.e. between [0, 1] in Figure 7.6 (bottom). For other cases, results

are better.

7.5 Conclusions

A rational interval interpolation (RII) method is presented to imply the risk-

neutral probability density function of the underlying asset price (RND) from

the observed option price as a function of the strike. This RII method is com-

pared with existing techniques, in particular the commonly used implied volatility

surface (IVS) approach and the double log-normal (DLN) approach. For this pur-

pose, a benchmark is developed that evaluates how well a given method retrieves

a RND from noisy option prices. This allows to assess the RII, IVS and DLN

approaches in different settings. A method may be good at retrieving the Black-

Scholes RND, but fail to obtain the correct RND in the case of a CGMY or

Heston world. Since we know that realistic RND significantly differ from the

Black-Scholes result, this is a concern that should be addressed when comparing

methods.

We find that for any setting, the RII method presented here is more robust to

increasing noise levels on the option prices than both the DLN and IVS method.

Moreover, in contrast to the DLN and IVS method, the RII method retains the

ability to retrieve the correct RND in the more realistic test cases of the Heston

and CGMY model. The RII method is also better suited for working with longer

maturity options, a property that may be related to its ability to recover distri-

butions with fat tails. The only region where significant discrepancies between

the option implied RND and the test RND can be found is for option prices well

in-the-money: this tail of the distribution can be overestimated when the noise

on the option price becomes large.
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In order to overcome this difficulty when applying the method to real market

data, we rely on both European vanilla call and put options, with different num-

bers of available strike prices, combining the complementary out-of-the-money

regions where these contracts give reliable results. This results in a single, con-

tinuously differentiable implied RND compatible with both call and put option

price intervals. For market data, the exact analytic expression for the underlying

distribution is unknown and cannot be used to check the RII result, so we use

the relative position of the result within the bid and ask interval as an indicator

of the quality of the results. The method and techniques outlined here allow to

determine the implied RNDs that are model-independent and do not suffer from

time-dependent effects in historical data. This opens the way to study the role

of the scale-free characteristics of these densities near critical points.

7.6 Appendix

7.6.1 The simultaneous call-put RII method

Of the same underlying, we assume to be given n1+1 call intervals [ci, ci] at strike

locations Kcall
i (i = 0, · · · , n1) and n2 + 1 put intervals [p

i
, pi] at strike locations

Kput
i (i = 0, · · · , n2). Denote the common call-put denominator polynomial of

degree m by

qm(K) =

m∑

i=0

βiK
i. (7.27)

We are looking for two rational functions rcallℓ1,m
(K) = pcallℓ1

(K)/qm(K) and rputℓ2,m
(K)

= pputℓ2
(K)/qm(K) with respective numerator polynomials

pcallℓ1
(K) =

ℓ1∑

i=0

α
(1)
i Ki, pcallℓ2

(K) =
ℓ2∑

i=0

α
(2)
i Ki, (7.28)
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for which the following conditions are satisfied:




ci ≤ rcallℓ1,m
(Kcall

i ) ≤ ci, i = 0, . . . , n1,

p
i
≤ rputℓ2,m

(Kput
i ) ≤ pi, i = 0, . . . , n2,

−e−rT ≤ r′ callℓ1,m
(Kcall

i ) ≤ 0, i = 0, . . . , n1,

0 ≤ r′ putℓ2,m
(Kput

i ) ≤ e−rT , i = 0, . . . , n2,

0 ≤ r′′ callℓ1,m (Kcall
i ), i = 0, . . . , n1,

0 ≤ r′′ putℓ2,m
(Kput

i ), i = 0, . . . , n2.

(7.29)

Denote the vector of combined coefficients by

c = (α
(1)
0 , · · · , α(1)

ℓ1
, α

(2)
0 , · · · , α(2)

ℓ2
, β0, · · · , βm)T ∈ Rℓ1+ℓ2+m+3 (7.30)

and denote by A the (10n1 + 10n2 + 20) × (ℓ1 + ℓ2 +m + 3) constraint matrix

composed of the linear inequalities ensuring (7.29). Note that this matrix has

many zero entries. A nontrivial vector c 6= 0 which strictly satisfies the compo-

nent wise inequalities Ac ≤ 0, can then be obtained in a similar way as before.

Hence by solving the strictly convex quadratic programming (QP) problem:

arg min
c∈Rℓ1+ℓ2+m+3

(‖c‖2)2

subject to Ajc ≤ −δ ‖Aj‖2 , j = 1, . . . , 10n1 + 10n2 + 20.
(7.31)

A natural choice for ℓ1 and ℓ2 is

ℓ1 = ℓ2 = m+ 1. (7.32)

7.6.2 Ensuring continuous differentiability

At the location of the forward value F , we add to the simultaneous call-put RII

method that the piecewise implied density derived from rcallℓ1,m
(K) = pcallℓ1

(K)/qm(K)

and rputℓ2,m
(K) = pputℓ2

(K)/qm(K) is continuously differentiable at K = F . So we

require {
r′′ callℓ1,m

(F ) = r′′ putℓ2,m
(F ),

r′′′ callℓ1,m (F ) = r′′′ putℓ2,m
(F ).

(7.33)

Without any further consideration, these conditions are essentially nonlinear

equations in the unknown coefficients. However, we show how (7.33) can be
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satisfied by the following linear conditions. Basically, the rational approxima-

tions rcallℓ1,m
(K) and rputℓ2,m

(K) need to share some additional theoretical relations

that exist between C(S0, K, T ) and P (S0, K, T ) at K = F .

First, it is known that at-the-money (hence when K = F ) is the only status

where the price of a call option and a put option are the same. Therefore we

impose that

rcallℓ1,m
(F ) = rputℓ2,m

(F ). (7.34)

Provided that qm(F ) 6= 0, one readily obtains that (7.34) implies

pcallℓ1
(F )− pputℓ2

(F ) = 0. (7.35)

Without loss of generality, we put

qm(F ) > 0. (7.36)

At this point it is worth emphasizing that, when ci < ci and if the linear inequal-

ities {
−ciqm

(
Kcall

i

)
+ pcallℓ1

(
Kcall

i

)
≤ 0

ciqm
(
Kcall

i

)
− pcallℓ1

(
Kcall

i

)
≤ 0

, i = 0, . . . , n. (7.37)

are strictly satisfied, then it follows that qm
(
Kcall

i

)
> 0. A similar reasoning holds

of course for qm
(
Kput

i

)
. As a consequence, the denominator qm(K) obtained

from solving the proposed QP problem(s) always satisfies qm
(
Kcall

i

)
> 0 and

qm
(
Kput

i

)
> 0 by construction. Because the forward value F may not belong to

either the given Kcall
i or the given Kput

i , a nonzero condition such as (7.36) needs

to be added for (7.35) to imply (7.34).

Second, from the put–call parity (7.26) follows

∂P (S0, K, T )

∂K
= e−rT +

∂C(S0, K, T )

∂K
. (7.38)

Therefore we also impose that

r′ putℓ1,m
(F ) = e−rT + r′ callℓ2,m(F ). (7.39)

Given that qm(F ) > 0 and rcallℓ1,m
(F ) = rputℓ2,m

(F ), (7.39) is satisfied if and only if

p′putℓ2
(F )− p′ callℓ1

(F )− e−rT qm(F ) = 0. (7.40)
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Combining all the above, it is not difficult to find that (7.33) is satisfied if the

linear inequality (7.36), the linear equalities (7.35), (7.40) and

p′′ putℓ2
(F )− p′′ callℓ1

(F )− 2e−rT q′m(F ) = 0, (7.41)

p′′′ putℓ2
(F )− p′′′ callℓ1 (F )− 3e−rT q′′m(F ) = 0, (7.42)

are satisfied. The converse is also true after (re)normalizing such that qm(F ) > 0.

Following a similar reasoning, even higher orders of smoothness can be imposed

if desired.

200



8

Conclusions

In this thesis, I investigated the pricing of financial derivatives and its inverse

problem, deriving the probability density for the underlying asset from the ob-

served prices of financial derivatives. Although the Balck-Scholes model is very

simple, it already captures two most important things that are of concern to

investors and speculators, namely the interest rate and the volatility. The inter-

est rate determines the expected risk-neutral return of an investment, whereas

the volatility measures its risk. Trading financial derivatives seems similar to

exchanging cash flows, but in essence it is more accurate to describe it as trad-

ing the return or trading the risk. This is of course a simplified picture: some

instriments trade both risk and return, and/or some other items of interest to

investors. In view of the trading of returns, available financial instruments in-

clude interest rate derivatives, foreign exchange derivatives, and so called fixed

income products (because the returns of these products are actually fixed at the

beginning), etc. In view of the trading of volatility, there are variance options,

timer options, VIX options, etc.

In order to describe the important financial parameters accurately, such as the

interest rate and the underlying asset’s volatility, researchers found in empirical

studies that the Black-Scholes model is insufficient, and a host of more compli-

cated models were established. Models with more free degrees are supposed to

provide a more accurate description of the market. However, what characterizes a

good model and makes it popular amongst practitioners, is not only its capability

to capture the important features of the market, but also its numerical efficiency.
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Succesful models must be able to produce fast and robust pricing formulas and

allow for efficient calibration. As argued in this thesis, including diffusion and

jumps (mainly through the Lévy process and Poisson jumps) is of importance

for realistic models. Also the correlation between the underlying asset and its

volatility is indispensable. Both jumps and stochastic volatility complicate pric-

ing efficiency. Path integrals offer a new point of view to the formulation of these

models and their pricing formulae, providing new closed form expressions for the

prices and allowing for new types of estimators.

In this thesis, I have contributed to the path-integral formulation in the fol-

lowing ways:

• I have shown in chapter 3 (and reported in reference (144)) how the path-

integral propagator for a model that does not include jumps can be extended

straightforwardly so as to include jumps. The derivative prices obtained

with the models, extended to include jumps, were compared our own Monte-

Carlo simulations, and the technique was used in subsequent chapters every

time jump-diffusion models were involved.

• I have applied in chapter 4 the path-integral Duru-Kleinert transformation

to change from real time to time as measured by volatility (where the ‘clock’

ticks faster as volatility is higher). This is of particular use to trade timer

options, and I have derived pricing formulae for timer options in different

models. This was reported in reference (145). It also led to a “spin-off”

result in the field of radioactive dosimetry, for which a publication is in

preparation. As future prospects, this method opens up new avenues to

study models that interpret stochastic volatility through a Brownian motion

subordinated to a random clock.

• Very often path-dependent derivatives (such as Asian options) can be inter-

preted as partitioning the set of all paths, and offering a payoff that differs

from partition to partition. Path integration over conditioned paths, the

subject of chapter 5, is in essence a method to take the sum over all paths

in a given partition. Some of this work was the subject of reference (229).

Then, the full path integral can be rewritten as a sum over all partitions,
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so that the payoff can be straightforwardly taken into account. I developed

and applied this technique to various Asian options, options on realized

variance, VIX options and the dosimetry application mentioned earlier.

To enhance the numerical efficiency of the results, we have been inspired by

the COS method (143). This method looks promising for the calculation of the

propagators or the pricing formulas obtained in chapters 3-5, and I explore its

use as well as the use of finite difference methods in chapter 6. We find that

for some of the applications studied earlier, the COS method indeed allows a

substantial increase in computing efficiency, and there is merit in combining these

techniques. As a prospect for future research, we note that the implementation

on a Graphics Processing Unit (237) is an appealing direction. It will hopefully

speed up the numerical calculation efficiency, which is particularly important for

high dimensional problems.

The final part of the thesis, in chapter 7, explores the possibility to derive

the underlying probability density for the asset, given the prices, observed in the

market, for options built on that asset. This work has been submitted for pub-

lication (reference (146)). There exist inversion formulae, but they suffer from

noise and from inherent assumptions of the model (such as lognormality). We

introduce our own technique, the rational interval interpolation, and compare it

with some existing methods, finding that it is fast and robust. After benchmark-

ing the technique, using simulated market data that emphasizes characteristics

such as fat tails, we show the applicability of the technique to real market data.

In conclusion, I have presented several new techniques and pricing formulas

based on path integration in this thesis. This was done for a variety of models. We

also investigate the inverse problem, getting ‘experimental observations’ of model

characteristics from the observed option prices. This is necessary to justify the

use of a certain model. I believe this leads to a new starting point, from which

we are ready to do more significant researches on financial derivatives and other

related subjects.
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Samenvatting

In deze thesis wordt in essentie het prijzen van financiële instrumenten (opties en

andere derivaten) bestudeerd. Ook bestudeer ik het inverse probleem dat er in

bestaat om uit de prijzen die in de markt worden waargenomen de kansverdelingen

van de onderliggende goederen te reconstrueren. Het belangrijkste instrument

dat ik hierbij gebruik en verder ontwikkel is de padintegraalmethode. Deze laat

toe om, gegeven een stochastisch model, de verwachte opbrengst te schrijven

als een gewogen som over mogelijke geschiedenissen. Hiermee kunnen ook pad-

afhankelijke contracten accuraat geprijsd worden op een natuurlijke manier.

Het eenvoudigste model is het Black-Scholes model. Ondanks de eenvoud er-

van bevat het (voor speculanten alsook investeerders) reeds de twee belangrijkste

aspecten van de markt, namelijk de interestvoet en de volatiliteit. De interestvoet

bepaalt de risiconeutrale opbrengst van een investering, terwijl de volatiliteit een

maat is voor het risico ervan. Het verhandelen van financiële derivaten lijkt

gelijkaardig aan het uitwisselen van cash flows, maar mijns inziens is het juis-

ter om het te beschrijven als het verhandelen van opbrengst of het verhandelen

van risico. Dit is natuurlijk een sterk vereenvoudigde opdeling, en gemengde

produkten zijn mogelijk. Om opbrengst (return) te verhandelen wordt onder-

meer gebruik gemaakt van interestvoet derivaten, foreign exchange derivaten,

zogenaamde ‘fixed income’ produkten, enz. Om risico te verhandelen worden

ondermeer variance opties, timer opties, VIX opties,... gebruikt.

Bij de studie van de belangrijkste financiële parameters (zoals interestvoet en

volatiliteit) werd al snel duidelijk dat het Black-Scholes model (het ‘standaard-

model’ van de financiële derivaten) ontoereikend is. Vele nieuwe stochastische
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modellen werden vooropgesteld, met bijkomende vrijheidsgraden om het mark-

tgedrag beter te vatten. Opdat een model succesvol is bij financiëel analysten,

traders en andere gebruikers, is de capaciteit om het marktgedrag goed te beschri-

jven niet de enige belangrijke factor: ook de computationele efficiëntie is belan-

grijk. Succesvolle modellen moeten tot snelle en robuuste prijsformules leiden,

waarvan de parameters efficiënt gecalibreerd kunnen worden. In deze thesis stellen

we dat het combineren van diffusie (voor de volatiliteit) en sprongen (via Lévy

processen en Poisson verdeelde sprongen) van belang zijn om de essentiële karak-

teristieken van de markt goed te beschrijven. Ook de correlatie tussen het proces

van het onderliggend goed en het proces van de volatiliteit is onontbeerlijk. Maar,

zowel stochastische volatiliteit als sprongen bemoeilijken het prijzen van opties:

het gebrek aan analytische prijzingsformules maakt het prijzen numeriek min-

der efficiënt. Deze thesis stelt dat padintegralen een nieuwe invalshoek bieden

voor de beschrijving van stochastische modellen, een invalshoek die in vele con-

crete gevallen leidt tot nieuwe uitdrukkingen voor optieprijzen en andere relevante

verwachtingswaarden. Dit heb ik in mijn thesis op de volgende concrete derivaten

en modellen toegepast:

• In hoofdstuk 3 toon ik hoe de padintegraalpropagator met sprongen kan

geconstrueerd worden uit de kennis van de propagator voor het gelijkaardig

model, maar zonder sprongen. Met deze nieuwe propagator worden op-

tieprijsformules uitgewerkt, en geverifieerd met Monte-Carlo simulaties.

• In hoofdstuk 4 pas ik een methode uit de kwantum-padintegraaltheorie toe

om timer opties te prijzen. De methode die hier vanuit de kwantumfys-

ica naar de wereld van financiële instrumenten wordt overgebracht is de

Duru-Kleinert transformatie. Deze transformatie laat toe om over te gaan

van de echte tijd naar een tijd waarbij de klok sneller tikt naarmate de

volatiliteit hoger is. In deze relatieve tijd kunnen prijsformules voor timer-

opties eenvoudig uitgewerkt worden. Dit deel van het werk leidde ook tot

een terugkoppeling naar de kwantumfysica: het prijzen van timer opties

blijkt analoog aan het zoeken van een maximale blootstellingstijd in een

omgeving met fluctuerende radioactiviteit. In het algemeen kunnen met
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de techniek uit hoofdstuk 4 nieuwe modellen worden beschreven waarin de

stochastische volatiliteit gesubordineerd is aan een random klok.

• In hoofdstuk 5 toon ik aan dat vele pad-afhankelijke derivaten (zoals Azi-

atische opties) in de padintegraalbeschrijving behandeld kunnen worden

door de ruimte van de paden te partitioneren, waarbij alle paden binnen

eenzelfde partitie ook dezelfde payoff hebben. Padintegratie over gecondi-

tioneerde paden laat toe om alle paden binnen een dergelijke partitie te som-

meren. De uiteindelijke prijsformule en/of propagator wordt dan gevonden

als een som over de partities. Deze techniek ontwikkel ik voor verschillende

Aziatische opties, opties op gerealiseerde variantie, VIX opties en de eerder

vermelde toepassing op radioactieve dosimetrie.

In het laatste deel van de thesis wordt het inverse prijzingsprobleem onder-

zocht. Bij de grote verscheidenheid aan modellen kan men zich terecht de vraag

stellen waarom een bepaald model beter zou zijn dan een ander, gegeven de

waargenomen prijzen in de markt. Verschillende modellen voorspellen verschil-

lende waarschijnlijkheidsdichtheden voor de verdeling van de prijs van een on-

derliggend goed op een bepaalde tijd, maar uiteindelijk wordt op elk ogenblik

slechts één prijs gerealiseerd. Hoe kunnen we dan toch uit het ‘experiment’ de

waarschijnlijkheidsdichtheid distilleren? Het idee hierachter is dat, hoewel het

onderliggend goed een bepaalde prijs heeft op een welbepaald ogenblik, er op

datzelfde ogenblik ook een schare aan opties op datzelfde onderliggend goed ver-

handeld worden: opties met verschillende strike-prijs, call-opties en put-opties,

... De verzameling van deze produkten geeft evenzeer informatie over hoe de

markt de waarschijnlijkheidsdichtheid voor de prijzen inschat. Er bestaan reeds

een aantal methodes om de waarschijnlijkheidsdichtheid van de prijs van het on-

derliggende te reconstrueren, maar die zijn gevoelig voor ruis en zijn gebaseerd op

een onderliggend model dat verondersteld wordt. Hier introduceren we onze eigen

techniek, de rationele interval interpolatie toegepast op optieprijzen. We vergeli-

jken deze techniek met de bestaande methodes en besluiten dat onze techniek

robuuster is dan de meest courante methodes. Bovendien is de techniek model-

onafhankelijk. We passen ten slotte de techniek toe op de echte marktdata.
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Kortom, in deze thesis heb ik verschillende nieuwe technieken ontwikkeld –

veelal gebaseerd op padintegralen– en prijsformules afgeleid voor een verschei-

denheid aan modellen en contracten. Hierbij wordt duidelijk dat de padinte-

graalmethode een veelbelovende techniek is voor de financiële analyse. Ook heb

ik het inverse probleem onderzocht om uit de waargenomen prijzen informatie

te bekomen over de onderliggende kansverdelingen (die natuurlijk gelinkt zijn

aan de padintegraalpropagatoren). Het potentieel van de padintegralen, getoond

in deze thesis, zal mijns inziens blijven leiden tot een beter begrip, niet enkel

van bestaande financiële produkten, maar ook van de eigenlijke werking van de

financiële markten.
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Physica A: Statistical Mechanics and its Applications, 389(22):5193-5207,

2010.

• Lingzhi Liang, Damiaan Lemmens, Jacques Tempère, Path integral ap-

proach to the pricing of timer options with the Duru-Kleinert time trans-

formation, Physical Review E, 83(5):056112, 2011.

• Lingzhi Liang, Oliver Salazar Celis, Damiaan Lemmens, Jacques Tempère,

Annie Cuyt, Determining and benchmarking the implied risk-neutral asset

price distributions from option prices, submitted, 2012.

209



8. CONCLUSIONS

210



References

[1] John C. Hull. Options, Futures and Other Derivatives. Prentice Hall, 7

edition, 2009. 5, 14

[2] CFA Institute. Derivatives and portfolio management, 6 of CFA program

curriculum Level II 2012. Pearson, 2012. 5, 6, 20

[3] Greg Kuserk. Financial derivatives: pricing and risk management, chap-

ter 3, pages 69–81. Kolb series in finance. John Wiley & Sons, 2010. 15

[4] CFA Institute. Equity and fixed income, 5 of CFA program curriculum

Level I 2011. Pearson, 2011. 17

[5] Monetary and Economic Department. OTC derivatives market

activity in the first half of 2011. Technical report, Bank for Interna-

tional Settlements, November 2011. 19

[6] Eugene F. Fama. The Behavior of Stock-Market Prices. The Jour-

nal of Business, 38(1):34–105, 1965. 22
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