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Antwerpen,
19 mei 2016





Jury

Prof. dr. Pierre Van Mechelen (chairman)
Particle Physics group, University of Antwerp

Prof. dr. Dirk Lamoen (secretary)
Electron Microscopy for Materials Science, University of Antwerp

Prof. dr. Georg Bruun
Department of Physics and Astronomy, Aarhus University

Prof. dr. Axel Pelster
Theory of Condensed Matter and Many Body Systems, Technische Universität Kaiserslautern

Prof. dr. Michiel Wouters
Theory of Quantum systems and Complex Systems, University of Antwerp

Prof. dr. Jacques Tempere (promotor)
Theory of Quantum systems and Complex Systems, University of Antwerp

This work is supported financially by the Research Foundation - Flanders (FWO) in the form of a
PhD fellowship.

i



ii



Contents

Preface vii

I Background 1

1 History of itinerant ferromagnetism 3

1.1 What is ferromagnetism? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Exchange interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Heisenberg or localized ferromagnetism . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Itinerant or non-localized ferromagnetism . . . . . . . . . . . . . . . . . . . . . 6

1.3 Itinerant ferromagnetism in metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Itinerant ferromagnetism in ultracold atomic gases 9

2.1 What are ultracold atomic gases? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Experimental tunability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Atom number and spin-imbalance . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Optical lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The experimental quest for itinerant ferromagetism . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Stoner criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Experimental signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Interpretation of the experimental results . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Future outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Path-integral formalism 27

3.1 Principle of stationary action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Systems with N degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Classical field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The path-integral formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Statistical physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Path-integral field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Bosonic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Fermionic fields and Grassmann algebra . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Partition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

II Contact interactions 33

4 The saddle-point thermodynamic grand potential 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 The Hubbard-Stratonovich transformation . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



iv CONTENTS

4.2.2 Construction of the transformation . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Fourier transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Saddle-point approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 The number equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Stoner criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.1 Temperature zero limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2 Solving the saddle-point equations . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.3 Grand-canonical vs. canonical ensemble . . . . . . . . . . . . . . . . . . . . . . 43

5 Stability analysis of the saddle points 47
5.1 Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

III General interaction potentials 49

6 The saddle-point thermodynamic grand potential 51
6.1 Defining a new action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 The Hubbard-Stratonovich transformation . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Fourier transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4 Saddle-point approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Exchange interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5.1 Analysis of the Hubbard-Stratonovich transformation . . . . . . . . . . . . . . 55
6.5.2 Modified interaction potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Stability analysis of the saddle points 61
7.1 Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Stability analysis for itinerant ferromagnetism in 3D . . . . . . . . . . . . . . . . . . . 62

7.2.1 Stability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2.2 Itot and z as a function of β and P . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2.3 Existence conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2.4 Stability-existence phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Discussion of implicit assumptions and approximations 73
8.1 The choice of the action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 The choice of the density fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3 The choice of the ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.4 The choice of the channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.5 The choice of the basis: position vs. momentum space . . . . . . . . . . . . . . . . . . 77

IV Conclusion 81

9 Conclusion 83

Publications 85

A Saddle-point grand potential in momentum space 87
A.1 The Hubbard-Stratonovich transformation . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Fermionic path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 Saddle-point approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Nederlandstalige samenvatting 91



Acknowledgments

My promotor, Prof. dr. Jacques Tempere, always says that a PhD is a journey through the desert. I
certainly did experience it that way and I would like to thank all the people who helped me throughout
that journey.

My first and foremost thanks goes to my promotor Jacques. He helped me grow up from a student
into an independent researcher. In order to do so, I really needed the freedom to repeatedly fail and
learn from my mistakes. He gave me that freedom, and so much more than that. My non-conformal
way of thinking frequently took him out of his own comfort zone and we often had to search together
how to tackle a particular problem, but he was always there whenever I needed his support and advice.
I would like to thank him for being the great supervisor that he is, and for always going the extra
mile for his students.

My second thanks goes to Prof. dr. Carlos A.R. Sá de Melo, who was the supervisor of my student
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Preface

Itinerant ferromagnetism is spontaneous polarization of non-localized (itinerant or “wandering”) par-
ticles, i.e. ferromagnetism in a gas. Although it has already been predicted in a free electron gas
by F. Bloch in 1929, it has proven to be notoriously hard to find experimentally. Due to the recent
successes of ultracold atomic gases as a quantum simulator for condensed matter systems and their
experimental tunability, this experimental system has been suggested as a model system for the real-
ization of pure itinerant ferromagnetism. In 2009, experimentalists from the Ketterle group at MIT
have been able to reach the strongly interacting regime where itinerant ferromagnetism was predicted
to occur. However, the experimental instability towards molecular pairing prevented the formation of
any equilibrium state (including the itinerant ferromagnetic state).

On the theoretical side, itinerant ferromagnetism is very hard to model due to the strong interac-
tions and correlations involved. In order to understand why it could not yet be observed in ultracold
atomic gases, the current theoretical models have to be updated and improved. That is the main
goal of this doctoral dissertation: to improve the theoretical description of itinerant ferromagnetism
in the context of ultracold atomic gases. In order to meet this goal, I went back to the basic theory of
itinerant ferromagnetism in the path-integral formalism. In particular, I studied how the direct and
exchange interactions are treated in the Hartree channel of the path-integral formalism and how this
treatment can be improved.

First, I identified an important stability issue in the conventional description of the interactions in
the saddle-point approximation for contact interactions. In order to understand this stability issue,
I extended the current formalism to general interaction potentials and demonstrated that the Pauli
exclusion principle is not necessarily observed in the saddle-point approximation. In order to solve this
problem, I proposed to enforce the Pauli exclusion principle using a modified interaction potential.
Afterwards, I applied this new method to the example of itinerant ferromagnetism in 3D. The results
suggest that dynamical stability is an important factor to take into account when studying itinerant
ferromagnetism, as it greatly constrains the itinerant ferromagnetic region in the phase diagram.
Finally, I demonstrated that the new method is not exact: the Pauli exclusion principle is not the
same as an interaction potential and both behave differently under a Fourier transform.

Overview

This dissertation consists of three large parts and a conclusion:

• Part I - Background: In the first part of this dissertation, the necessary background for the
remainder of this dissertation will be given.

– Chapter 1 - History of itinerant ferromagnetism: A brief introduction to itinerant
ferromagnetism in the context of condensed matter systems.

– Chapter 2 - Itinerant ferromagnetism in ultracold atomic gases: An introduction
to ultracold atomic gases and itinerant ferromagnetism in the context of ultracold atomic
gases. A detailed description of recent experiments on itinerant ferromagnetism is given
and the research presented in this dissertation is situated in the literature.

– Chapter 3 - Path-integral formalism: The path-integral formalism is introduced, with
a focus on path-integral field theory. The concepts introduced in this chapter are important
for understanding the theoretical description presented in the subsequent chapters.

vii
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• Part II - Contact interactions: In the second part, contact interactions are treated in the
Hartree channel of the path-integral formalism.

– Chapter 4 - The saddle-point thermodynamic grand potential: In this chapter
the basic description for a two-component Fermi gas with contact interactions will be con-
structed, with a particular focus on the treatment of the interactions. The thermodynamic
grand potential will be calculated in the saddle-point approximation, which is equivalent
to a mean-field approximation. At temperature zero, the Stoner criterion for itinerant fer-
romagnetism is rederived in order to demonstrate the equivalency with other theoretical
treatments.

– Chapter 5 - Stability analysis of the saddle points: Here I demonstrate that all
saddle points of the thermodynamic grand potential are unstable to density (quantum)
fluctuations. This implies that the treatment presented in chapter 4 does not provide a
valid description of the physics of the system.

• Part III - General interaction potentials: In the third part, general interaction potentials
are treated in the Hartree channel of the path-integral formalism.

– Chapter 6 - The saddle-point thermodynamic grand potential: In this chapter, I
extend the description presented in chapter 4 for contact interactions to general interaction
potentials. In order to include the Pauli exclusion principle in the saddle-point approxima-
tion, I introduced a new modified interaction potential.

– Chapter 7 - Stability analysis of the saddle points: A stability analysis of the
saddle points of the thermodynamic potential is performed, resulting in a phase diagram for
itinerant ferromagnetism in 3D. The stability requirement greatly constrains the itinerant
ferromagnetic region in the phase diagram.

– Chapter 8 - Discussion of implicit assumptions and approximations: The implicit
assumptions and approximations made in the previous chapters are discussed. It is shown
that the new method is not exact, as the enforcement of the Pauli exclusion principle using
a modified interaction potential is not conserved under a Fourier transform. A preliminary
analysis in the momentum basis (instead of the position basis) can be found in Appendix
A - Saddle-point grand potential in momentum space.

• Part IV - Conclusion:

– Chapter 9 - Conclusion: A general summary of the conclusions of this dissertation.
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Background
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Chapter 1

History of itinerant ferromagnetism

In this chapter, I will give a brief overview of the history of itinerant ferromagnetism in the context of
condensed matter systems. First, I will explain how ferromagnetism arises from the collective behavior
of electrons in condensed matter systems (Sec. 1.1). Next, I will explain the two main theoretical
paradigms for ferromagnetism: Heisenberg (or localized) ferromagnetism (Sec. 1.2.1) and itinerant (or
non-localized) ferromagnetism (Sec. 1.2.2), with emphasis on the theory of itinerant models. Finally,
the occurrence of itinerant ferromagnetism in condensed matter systems will be discussed (Sec. 1.3).

1.1 What is ferromagnetism?

Ferromagnetism is spontaneous magnetization or polarization. Starting with their first use as compass
needles in the 12th century in China, ferromagnetic materials have invaded our lives with applications
ranging from the magnets on people’s refrigerators to the hard disks of our computers. Historically
they have been studied even longer than that, but the key ingredients for a macroscopic theory of ferro-
magnetism have only been discovered in the past two centuries: Maxwell’s theory of electromagnetism
and quantum mechanics.

Ferromagnetism in condensed matter systems arises from the electrons in the atoms that make
up a particular material. In classical electromagnetism, the magnetic moment µ associated with a
current I along a loop of infinitesimally small area dS is given by dµ = IdS (fig. 1.1 (a)). For a loop
of finite size, the contributions from neighboring infinitesimal current loops cancel each other and only
the contribution of the current running around the perimeter of the surface remains,

µ = I

∫
dS (1.1)

(see fig. 1.1 (b)). In a similar way, the angular momentum L associated with the motion of an electron
around its atomic nucleus gives rise to a magnetic dipole moment µ = γL with γ the gyromagnetic
ratio. The magnetic dipole moment of an atom is then given by the sum of the contributions of the elec-
trons. If a net magnetic dipole moment remains, the atom behaves as a tiny magnet. Ferromagnetism
occurs when the atoms spontaneously align their magnetic dipole moments. However classically, no
net magnetization can remain in a solid, as the contributions of the bulk and edge currents cancel each
other (Bohr-van Leeuwen theorem, fig. 1.2). Furthermore, the dipole-dipole interactions are much too
weak to overcome the thermal fluctuations above ∼ 1 K, while ferromagnetism is known to occur at
temperatures up to 1000 K.

These problems are solved when taking into account the spin of the electrons. Its classical analog
is the angular momentum associated with the rotation of the electrons around their axis. However,
as electrons are elementary particles which are considered to be infinitesimally small, there are a
multitude of problems with this analogy and it is better to consider the spin as an inherent quantum-
mechanical property. The electron spin is 1/2 and the associated spin states are called spin-up (+1/2
or ↑) and spin-down (−1/2 or ↓). In quantum mechanics, there are two important classes of particles,
depending on their spin:

3



4 CHAPTER 1. HISTORY OF ITINERANT FERROMAGNETISM

Figure 1.1: (a) A current I along an infinitesimally small loop with area dS gives rise to a magnetic
moment dµ = IdS. (b) For a loop of finite size, only the contribution of the current running around the
perimeter of the surface remains, as the contributions of neighboring infinitesimal current loops cancel
each other. Image source: Stephen Blundell, Magnetism in Condensed Matter (Oxford University
Press, New York, 2012).

Figure 1.2: An illustration of the classical Bohr-van Leeuwen theorem. Electrons in a magnetic field
rotate in cyclotron orbits in the bulk of the system. Along the edge, the electrons move in “skipping
orbits” due to scattering at the surface. The net current due to the bulk cyclotron orbits is exactly
canceled by the edge current due to the skipping orbits, so classically there is no net magnetization of
the material. Image source: Stephen Blundell, Magnetism in Condensed Matter (Oxford University
Press, New York, 2012).
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• Bosons: Particles with integer spin (e.g. photons). If you exchange two identical bosons, their
quantum-mechanical state remains the same. We can also say that their quantum states are
symmetric. Because of this symmetry, bosons are allowed to occupy the same quantum state.
As an example, in a perfect laser all photons occupy the same quantum state.

• Fermions: Particles with half-integer spin (e.g. electrons). If you exchange two identical fermions,
their quantum-mechanical state does not remain the same: a minus sign appears in front of the
two-particle state. We can also say their quantum states are antisymmetric. Because of this
antisymmetry, fermions are not allowed to occupy the same quantum state. This property is
called the Pauli exclusion principle.

Each spatial quantum state can be occupied by up to two electrons: one for each spin state. The
interaction energy of an electron at position r1 in the electric field of an electron at position r2 is
determined by the Coulomb potential

VC (r1 − r2) =
e2

4πε0

1

|r1 − r2|
, (1.2)

where ε0 is the vacuum permittivity and e the electric charge. The Coulomb potential between two
electrons is repulsive. The closer the electrons are to each other, the stronger the repulsion. On average,
two electrons of opposite spin states are able to come closer to each other than two electrons of the
same spin state. This effectively screens a part of the Coulomb interactions and reduces the interaction
energy between electrons of the same spin state. The repulsion is strongest between two electrons of
opposite spin states with the same spatial quantum state. The difference in interaction energy between
particles of opposite and particles of the same spin states is called the exchange energy. The exchange
energy can cause spontaneous polarization or alignment of the electron spins in a material. This is a
purely quantum-mechanical effect, arising from the fermionic symmetry properties of the electrons.

The energy cost of polarization is mainly caused by the fact that a given number of electrons have
to be loaded into higher kinetic energy levels (or spatial quantum states) if they have the same spin
state. In order for materials to become ferromagnetic, the exchange interactions have to be sufficiently
strong with respect to the kinetic energy difference. Because of this energy cost, only a limited number
of the electrons in a material take part in the collective polarization. Furthermore, thermal excitations
will cause fluctuations of the electron spin states and destroy the spin alignment, so ferromagnetism
can only occur up to a maximum temperature (the Curie temperature). Depending on the material,
other forces (e.g. dipole-dipole interactions) may also counteract the polarizing effect of the exchange
interactions.

For a more complete overview of magnetism in condensed matter systems, the reader is referred
to ref. [1].

1.2 Exchange interactions

There are two main paradigms for describing the exchange interactions in ferromagnets. The first is
Heisenberg or localized ferromagnetism [2], where the electrons are assumed to be confined to their
respective atoms. The second paradigm for ferromagnetism is itinerant or non-localized ferromag-
netism [3]. Itinerant literally means “wandering”, so itinerant ferromagnetism means ferromagnetism
of particles which are freely moving with respect to each other (i.e. in a gas). Next, I will discuss both
types of ferromagnetism.

1.2.1 Heisenberg or localized ferromagnetism

If the electrons are assumed to be confined to their respective atoms, the distribution of the electrons
over the energy levels of each atom can be studied. At low temperatures, the electrons will completely
fill the lowest energy shells and only the upper occupied shell may remain partially filled. In order to
avoid double occupation of the same spatial quantum state (the situation where the Coulomb repulsion
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is strongest), the electrons in the partially filled shell will aim to align their spin states. This effect is
called the Hund-rule coupling and it gives rise to a local dipole moment of each atom.

In the Heisenberg model, a local dipole moment is associated with each atom (localized in a lattice)
and these local dipole moments are allowed to interact with each other. In most cases, the nearest-
neighbor interactions are dominant and other interactions are neglected. In that case, the Heisenberg
model corresponds to the mathematical Ising model with Hamiltonian

Ĥ = −
∑
〈i,j〉

JijŜiŜj , (1.3)

where the notation 〈i, j〉 denotes that the sum is taken over neighboring lattice sites i and j, with Jij
the interaction parameter and Ŝi the spin operator of lattice site i. Many different physical effects
can come into play when determining the values of Jij . An overview of the most important effects
(e.g. dipole-dipole interactions, exchange, superexchange, double exchange) is given in ref. [1]. The
interactions favor spin alignment (or ferromagnetism) if Jij > 0. In first order perturbation theory,
Jij is given by the exchange integral

Jij =

∫
ψ∗i (r1)ψ∗j (r2)Hintψj (r1)ψi (r2) dr1dr2, (1.4)

with Hint the Hamiltionian of the interactions between the electrons.
The Heisenberg model works reasonably well for electrically insulating materials, as in that case

the electrons can be assumed to be confined to their respective atoms. However, in metals not all
of the electrons are confined to their atoms and the use of local moments may not always be valid.
Especially in d-band transition metals such as iron, nickel and cobalt, the Heisenberg model fails to
predict the non-integer magnetic moment per atom and the large specific heat capacity [4].

1.2.2 Itinerant or non-localized ferromagnetism

Itinerant ferromagnetism was first suggested by F. Bloch in 1929 [3], when he showed that the exchange
interactions between conduction electrons could also cause ferromagnetism. To support his statement,
he treated the conduction electrons as a free electron gas with single-particle wave functions

ψk,l,m (x, y, z) =
1
3
√
L

exp

[
2πi

L
(kx+ ly +mz)

]
. (1.5)

Here (x, y, z) are the 3D position coordinates, (k, l,m) the three quantum numbers denoting the
number of nodes of the wave function in each direction and L the length of the cubic sample. Each
(k, l,m)-state can contain up to two electrons: one for each spin state. The kinetic energy of the
electron gas is given by

Efree =

N∑
i=1

Eki,li,mi (1.6)

Ek,l,m =
1

2me

(
h

L

)2 (
k2 + l2 +m2

)
, (1.7)

where N is the number of conduction electrons, (ki, li,mi) the quantum state of the i-th electron, h
the Planck constant and me the electron mass. The interaction energy is given by

Eint = ECoulomb −
∑

spin r ‖ spin s

Jrs, (1.8)

where ECoulomb is the electrostatic interaction between the charges of the electrons. The second term
in (1.8) represents the exchange energy, so the sum over the electrons r and s is only taken over
electrons with parallel spins. The exchange energy Jrs between electrons r and s is given by

Jrs =
e2

4πε0

∫
dr1dr2

{
ψr (r1)ψs (r2) [ψr (r2)ψs (r1)]∗

|r1 − r2|

}
. (1.9)
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F. Bloch explicitly calculated Jrs and found

Jk,l,m;k′,l′,m′ =
e2

4π2ε0

[
(k − k′)2 + (l − l′)2 + (m−m′)2

]
L

. (1.10)

He also calculated the number of different microconfigurations of identical electrons which corresponds
to a given macroconfiguration. Each macroconfiguration is characterized by the total number of
electrons 2N , the number 2Ns of singly-occupied (k, l,m)-states (so there are 2N − 2Ns doubly-
occupied sites which contain two electrons of opposite spin states) and the total magnetization M =
µB (N↑ −N↓) = µB∆N/2, with Nσ the number of electrons in spin state σ and µB the Bohr magneton.
At zero temperature and under the assumption that all electrons in singly-occupied states have the
same spin state (Ns = ∆N), the total energy of the system up to first order in perturbation theory,
with the free electron gas as the unperturbed state, is given by

E (∆N) =
4π

5

1

2me

(
h

L

)2( 3

4π

)5/3 [
(N + ∆N)5/3 + (N −∆N)5/3

]
−
(

3

4π

)4/3 e2

2ε0L

[
(N + ∆N)4/3 + (N −∆N)4/3

]
. (1.11)

The first term is the kinetic energy, while the second term is the interaction energy. Only the ex-
change part of the interaction remains, as the direct Coulomb interaction was exactly canceled by
a homogeneous positive background in the limit N → +∞ (Jellium model). Polarization causes an
increase in the kinetic energy, but a decrease in the exchange energy. In this model it is energetically
advantageous to polarize if

a =
L

3
√

2N
≥ 0.9

(
3

8π

)1/3 2πε0

me

(
h

e

)2

≈ 0.6× 10−7 cm . (1.12)

For one conduction electron per atom, a is the lattice constant.
Bloch’s analysis for free electrons is a proof of principle. It was later expanded to include the

effects of a periodic lattice potential and temperature by E. C. Stoner in the 1930’s [5, 6]. The main
effect of a periodic potential is that it modifies the distribution of states into a series of energy bands.
That is why itinerant models are also called band models.

1.3 Itinerant ferromagnetism in metals

Itinerant ferromagnetism requires moving electrons, so it can only occur in conductive materials.
Furthermore, a very flat conduction band is required in order to reduce the kinetic energy cost of
polarization. The main example of such materials are d-band transition metals (e.g. iron, nickel and
cobalt) [4]. In those materials, itinerant models have succeeded in explaining the non-integer magnetic
moment per atom and the large specific heat capacity. However, the temperature dependence of their
magnetization and their magnetic susceptibilities are better described by the Heisenberg model of
local moments.

In pure itinerant models, the ferromagnetic-to-paramagnetic phase transition occurs through a
uniform shrinking of the magnetic moments in the material. In the Heisenberg model, this phase
transition is realized by a directional disorder of the local moment caused by thermal fluctuations
(see fig. 1.3). In d-band transition metals, electron correlations and electron spin density fluctuations
are responsible for the ferromagnetic-to-paramagnetic phase transition and these effects are better
described by the interaction of local moments. Since the acknowledgment of this problem in the 1950’s,
hybrid models have been developed which capture both localized and non-localized ferromagnetic
behaviors. An overview of those models is given in the review paper [4]. Despite the major progress
in our understanding of d-band transition metals, the construction of a hybrid model that captures
their full ferromagnetic behavior remains an open problem in solid state physics.

In condensed matter systems, itinerant ferromagnetism always occurs together with localized fer-
romagnetism. So far, pure itinerant ferromagnetism has never been observed. This has impeded
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Figure 1.3: In the Heisenberg model (with Jij > 0), at temperature zero all local moments are
aligned with each other (upper panel). As the temperature increases, thermal fluctuations will cause
directional disorder of the local moments and a decrease of the total magnetization (lower panel).

verification of itinerant models. This verification is especially important since the strong interactions
and correlations involved are very challenging theoretically. Almost all theoretical models have to rely
on approximations and it is still unclear to what extent those approximations are valid. In fact, it is
still debated whether a free electron gas (with a uniform positive background) can become itinerant
ferromagnetic at all without auxiliary conditions (e.g. coupling to a periodic potential, coupling to
lattice vibrations, presence of Heisenberg ferromagnetism, ...). Only for certain lattice models with
specific band fillings has itinerant ferromagnetism been rigorously proven to occur [7, 8].

In order to solve these theoretical questions, researchers have started looking for itinerant ferro-
magnetism in other experimental systems. The first was liquid 3He, where some models predicted
itinerant ferromagnetism at high pressure (for low temperatures). However, liquid 3He solidifies long
before it gets close to the itinerant ferromagnetic phase transition [9]. Ultracold atomic gases are the
next promising system for verification of pure itinerant ferromagnetic models [10–15]. The quest for
itinerant ferromagnetism in ultracold atomic gases will be discussed in the next chapter.



Chapter 2

Itinerant ferromagnetism in ultracold
atomic gases

In this chapter I will give a general introduction to the field of ultracold atomic gases (Sec. 2.1) and
its most important experimental tools (Sec. 2.2). Next, the quest for the experimental realization
of itinerant ferromagnetism in ultracold atomic gases will be discussed (Sec. 2.3). First the Stoner
criterion for the occurrence of itinerant ferromagnetism is derived (Sec. 2.3.1). Then the experimental
results will be compared to the expected experimental signatures (Sec. 2.3.2) and their interpretation
will be discussed (Sec. 2.3.3). The current consensus is that itinerant ferromagnetism has not yet been
realized experimentally in ultracold atomic gases. Finally, the future outlook will be discussed and the
research presented in this dissertation will be situated in the recent literature (Sec. 2.3.4).

2.1 What are ultracold atomic gases?

In quantum mechanics, a particle with mass m corresponds to a wave packet, the size of which
is given by the de Broglie wavelength λdB =

√
2π~2/mkBT (fig. 2.1), where kB is the Boltzmann

constant and T the temperature. When cooling down atoms, their λdB increases. In experiments with
ultracold atoms, atoms are cooled down to such low temperatures that λdB becomes of the order of
the interparticle distance, or nλ3

dB ≈ 1 with n the particle density of the gas. The criterion nλ3
dB & 1

defines the ultracold regime. In this regime, the wave packets of the atoms overlap and quantum
effects are enhanced.

Figure 2.1: Classically, a gas is described as a group of freely moving particles. In quantum mechanics,
these particles can be represented by wave packets.

Obviously, reaching the ultracold regime is experimentally challenging. In order to prevent solid-
ification, the gases are kept very dilute, lowering the required temperature even further to the order
of µK or 100 nK. Special cooling techniques were developed in order to reach these temperatures, e.g.

9
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laser cooling (Nobel prize 1997) and evaporation cooling. Furthermore, no physical container is able to
hold the gas, as atoms colliding with the walls of the container would immediately evaporate. Instead,
optical and magnetic traps (usually harmonic traps) are used to keep the gas contained during the
experiment. However, the rewards are great: quantum effects become macroscopic and can be studied
in unprecedented detail. This effect is most obvious for bosonic atoms (e.g. 87Rb, 23Na and 7Li).

When nλ3
dB ≈ 1 for bosons, most bosons will acquire the same phase and occupy the same single-

particle ground state. This macroscopic occupation of the ground state is called a Bose-Einstein
condensate or BEC (Nobel prize 2001, fig. 2.2). When two BEC’s collide, an interference pattern
appears, confirming the quantum-mechanical nature of this special phase of matter (fig. 2.3). A BEC
is also superfluid: it flows without friction and is irrotational. It can only rotate if a “hole” or vortex
is made in the BEC. This causes quantization of the circulation around a vortex in a BEC (fig. 2.4).

Figure 2.2: When bosons are cooled down, their wave packets will start to overlap and most of
the particles will gather in the ground state. Eventually, this ground state occupation will become
macroscopic. Image adapted from the MIT Ketterle group website.

Figure 2.3: When two Bose-Einstein condensates are allowed to expand and overlap with each other,
interference fringes appear. This is an important confirmation of the quantum-mechanical nature of
this state. Image source: MIT Ketterle group website.

Fermionic atoms (e.g. 40K and 6Li) are not allowed to occupy the same quantum state, so in
principle they cannot form a BEC. However, in a two-component Fermi gas, where the components
are called (pseudo)spin-up and (pseudo)spin-down, pairs of up and down fermions can be formed.
These pairs effectively behave themselves as bosons and are allowed to Bose-condense [16–25].
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Figure 2.4: When a BEC is stirred, an increasing number of vortices are created. At large rotation
frequencies, the vortices form an Abrikosov lattice.

2.1.1 Interactions

The alkali atoms are easiest to use (and magnetically trapped) experimentally, although more recently
isotopes of earth alkali elements and lanthanides have also been used in ultracold gas experiments.
For the alkali atoms, the interactions between the atoms are best described by a short-range Van
der Waals potential. In dilute gases at low temperatures, spherical s-wave scattering dominates and
scattering into higher order partial waves is negligible. Because of the short range of the interactions
and the dominance of the s-wave scattering, the interactions between two atoms at positions x1 and
x2 are often approximated by a contact potential:

Vcontact (x2 − x1) = gδ (x2 − x1) (2.1)

with δ (∆x) the Dirac delta function. The parameter g is determined by requiring that the contact
potential has the same s-wave scattering length as as the true interaction potential. In 3D,

g =
4π~2as
m

(2.2)

with m the mass of the atoms. Because s-wave scattering between fermions of the same (pseudo)spin

state is forbidden by the Pauli principle, only the s-wave scattering length a↑↓s between up and down
atoms is relevant in most ultracold Fermi gas experiments. The effect of the interactions is then fully
described by the dimensionless parameter a↑↓s kF , with kF =

3
√

3π2n the Fermi wavenumber.
The contact potential approximation is valid if the range of the interaction potential is smaller

than the relevant length scales of the problem. In dilute ultracold atomic gases, there are several
important length scales:

• The size L of the experimental system. In this dissertation, we will assume that the size of the
system is much larger than all other relevant length scales.

• The de Broglie wavelength λdB =
√

2π~2/mkBT , which is a measure of the width of the atomic
wave packet.

• The average distance d between the atoms.

• The range R of the interaction potential.

Ultracold implies λdB > d and dilute implies d & R, so generally L > λdB > d & R and the contact
potential approximation can be used for most dilute ultracold Fermi gases.
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2.2 Experimental tunability

Since the achievement of Bose-Einstein condensation, many other physical phenomena have been
probed in ultracold atomic gases. This has been enabled by the great experimental tunability of
ultracold atoms. Here I will discuss the most important experimental tools which are responsible
for this tunability, with a focus on the two-component Fermi gases which are important for itinerant
ferromagnetism. A more complete overview of ultracold atomic gases is given in the following recent
theoretical [26] and experimental [27] review papers.

2.2.1 Atom number and spin-imbalance

The possible quantum states of an atom are determined by a complex interaction between the orbital
angular momentum L of the electrons, the spin S of the electrons and the nuclear spin I. The total
angular momentum of the atom is given by F = L + S + I. The different total angular momentum
states of an atom are called hyperfine states. They are labeled as |F,mF >, with F = |F| and mF ∈
{−F,−F + 1, . . . , F − 1, F} related to the orientation of the total angular momentum vector F.

In experiments with ultracold atomic gases, it is possible to accurately control the number of atoms
in each hyperfine state. In order to study a two-component Fermi gas, atoms are usually prepared in
the two lowest energy hyperfine states, often an |F,mF = −F > and an |F,mF = −F + 1 > state. In
the remainder of this dissertation, where the internal structure of the atoms is not important, those
two components will be denoted as (pseudo)spin-up (↑) and (pseudo)spin-down (↓). The number of
atoms in each of the hyperfine states determines the spin-imbalance ∆N = N↑ −N↓, where Nσ is the
number of atoms with (pseudo)spin state σ.

Due to angular momentum conservation, the number of atoms in each hyperfine state is conserved
in two-body collisions between atoms of the |F,mF = −F > and |F,mF = −F + 1 > states. Atoms
in higher momentum states can only be created through higher order collisions with three or more
particles, but at low temperatures those are unlikely to occur. That is why in ultracold two-component
atomic Fermi gases, one can often assume that the number of atoms in each hyperfine state is conserved
for the duration of the experiment.

2.2.2 Feshbach resonances

Across a Feshbach resonance, the scattering length can be tuned by changing the magnetic field B
applied to the system. A Feshbach resonance occurs when a bound state in a closed scattering channel
has an energy close to that in an open scattering channel (fig. 2.5). Near the Feshbach resonance,
the normal free particle states and the molecular bound state are mixed, which has a strong influence
on the scattering length between the particles. The resulting value of the scattering length depends
on the energy difference ∆E between the bound state and the incident energy of the open scattering
channel. If the molecular state has a different magnetic moment than the free particles, this energy
difference can be tuned by changing the magnetic field B applied to the system, ∆E = δµ (B −B0)
with δµ the difference in magnetic moments. The resulting scattering length is then given by

a ≈ abg
(

1− ∆

B −B0

)
, (2.3)

where abg is the background scattering length (or scattering length far from the resonance) and ∆ is
the width of the resonance (fig. 2.6).

On the repulsive side of the Feshbach resonance (a > 0), the molecular state has a lower energy
than the scattering states in the open channel. Near the Feshbach resonance, inelastic collisions
producing these molecules are resonantly enhanced. This has multiple implications for experiments
with ultracold atoms. First, the molecular binding energy

Eb =
~2

2µa2
, (2.4)

where µ is the reduced mass of the atoms, is released in the form of kinetic energy when molecules
form. This binding energy is sufficiently large to allow the atoms to escape the trapping potential.
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Figure 2.5: The interaction potentials of an open and a closed scattering channel as a function of
the distance between the atoms. The closed scattering channel contains many different bound states.
When one of those bound states has an energy close to that in an open scattering channel, a Feshbach
resonance occurs. Image source: I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

Figure 2.6: (a) The scattering length a and (b) the molecular energy E as a function of the magnetic
field B near a magnetically tuned Feshbach resonance at B = B0. ∆ is the width of the Feshbach
resonance and Eb = −E the molecular binding energy. Image source: C. Chin, R. Grimm, P. Julienne,
and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
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This causes an increased atom loss rate near the Feshbach resonance. Depending on the isotopes used
in the experiments, the dominant channel for decay to the molecular state is mediated by two-body
and/or three-body collisions. The increased two-and three-body loss rate near the Feshbach resonance
greatly reduces the lifetime of experiments near a Feshbach resonance, especially on the repulsive side.

The main experimental features of a Feshbach resonance are shown in fig. 2.7 for a BEC of 23Na:
an increased atom loss rate and a divergence of the (s-wave) scattering length [28]. A more detailed
theoretical analysis and an overview of the experimentally most relevant Feshbach resonances is given
in [29]. Most of them are s-wave resonances, but more recently also p-wave Feshbach resonances
(where the p-wave scattering length diverges) are being explored in experiments.

Figure 2.7: The most important experimental features of a Feshbach resonance as observed in a Bose-
Einstein condensate of 23Na atoms: (a) the increased atom loss and (b) the divergence of the scattering
length. Image source: S. Inouye et al., Nature 392, 151154 (1998).

The tunability of the scattering length has allowed study of many important physical phenomena,
including the BCS-BEC crossover of superfluid pairing in ultracold two-component Fermi gases [18–
25] (fig. 2.8). For weak attractive interactions, the pairs are very tightly bound and form a Bose-
Einstein condensate. For weak repulsive interactions, the pairs are very large and their behavior
is best described by the BCS (Bardeen-Cooper-Schrieffer) model which was originally developed to
describe superconductivity (or superfluid pairing of electrons). By tuning the interactions over a
Feshbach resonance in ultracold atomic gases, the crossover between both models could be studied.
This clearly demonstrated that the BEC and BCS models for superfluidity in two-component Fermi
gases are two sides of the same coin.

The regime in which the scattering length diverges is called the unitarity limit. Note that, as you
can clearly see in fig. 2.8, nothing catastrophic happens at unitarity. It is only the divergence of a
theoretical parameter which is used to describe the interactions, not of the interaction energy.

2.2.3 Optical lattices

When two laser beams of the same wavelength λ are aimed at each other, a standing wave of wavelength
λ/2 is created in between the two lasers (fig. 2.9). This standing wave induces a small dipole moment
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Figure 2.8: Phase diagram of fermionic pairing in a two-component Fermi gas as a function of the
inverse s-wave scattering length 1/as between spin-up and spin-down particles (in units of the Fermi
wavenumber kF ) and the temperature T (in units of the Fermi temperature TF ). Tpair is the critical
temperature below which fermionic pair formation occurs, while Tc is the critical temperature for Bose-
Einstein condensation of the fermion pairs. By tuning as over a Feshbach resonance, the BCS-BEC
crossover can be studied. Image source: C. A. R. Sá de Melo, Phys. Today 61, 45 (2008).

in the atoms which are trapped between the lasers. The standing wave acts as a periodic potential on
the atoms through interaction with the induced dipole moment of the atoms. This periodic potential
is called an optical lattice in the context of ultracold atomic gases [30–33].

Figure 2.9: When two laser beams with the same wavelength are aimed at each other, a standing wave
is created between them. This standing wave acts as a periodic potential on the atoms and is called
an optical lattice. Image source: I. Bloch, Nature 453, 1016 (2008).

If the lattice depth is very large, a series of 2D “pancakes” is created and the dimensionality of the
system is effectively reduced. By adding extra pairs of laser beams in perpendicular directions, the
dimensionality can be further reduced to 1D tubes or an artificial crystal of 0D lattice sites (fig. 2.10).
By combining pairs of laser beams along different angles, different lattice geometries can be created
(e.g. triangular lattices).

2.2.4 Quantum simulation

To summarize, in ultracold atomic gases the geometry, dimensionality, particle numbers per spin
state and interaction strengths can all be accurately controlled. This tunability has created enormous
experimental possibilities. The purity of the system allows us to check the predictions of many-body
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Figure 2.10: By adding pairs of laser beams in perpendicular directions, the dimensionality of the
system can be reduced. Image source: I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,
885 (2008).

theories with unprecedented accuracy, hence ultracold atomic gases are also known as a quantum
simulator [34] for many-body theories. Consequently, it has also been suggested that ultracold atomic
gases could be used to “quantum simulate” itinerant ferromagnetism [10–15]. The tunability of the
interaction strength and the possibility to exclude the presence of a crystal lattice may give us a
chance to observe pure itinerant ferromagnetism in ultracold atomic gases, something which has so far
proven impossible in conventional materials. In the next section, a mean-field toy model will be used
to explain the main expected experimental features of the normal-to-itinerant-ferromagnetic phase
transition.

2.3 The experimental quest for itinerant ferromagetism

In 2009, experimentalists at MIT were able to probe the strongly interacting regime where itiner-
ant ferromagnetism is expected and they reported its observation [35]. Although they observed all
expected experimental features of the normal-to-itinerant-ferromagnetic phase transition, with the ex-
ception of magnetic domains, it was later proven that they did not observe itinerant ferromagnetism.
The instability of the repulsive branch of the Feshbach resonance to molecular pairing prevented the
formation of any equilibrium state, including the itinerant ferromagnetic state [36].

In this section I will first derive the Stoner criterion for itinerant ferromagnetism using a mean-field
theoretical toy model. Next, I will discuss the expected experimental signatures and the results of
recent experiments. Finally, I will give an overview of the most recent proposals for the realization of
the itinerant ferromagnetic state in ultracold atomic gases.

2.3.1 Stoner criterion

In order to understand the physics of the normal-to-itinerant-ferromagnetic phase transition, the free
energy of a homogeneous spin-1/2 Fermi gas can be studied as a function of the polarization P = δn/n
(here n = n↑ + n↓ is the total particle density and δn = n↑ − n↓ the particle density difference). As
an approximation to the short-ranged Van der Waals interactions, contact interactions will be used.
Within this approximation, no net interactions between particles of equal spin states remain, as their
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direct and exchange contributions exactly cancel each other. This implies that it is sufficient to only
describe the (direct) interactions between particles of different spin states, whereas for electrons the
exchange interactions have to be treated explicitly. Despite the fact that only direct interactions have
to be treated, also in the Stoner model itinerant ferromagnetism is caused by the exchange interactions.
This is illustrated in fig. 2.11.

Figure 2.11: If the (contact) interaction potential of the Stoner model is assumed to be spin-
independent, the physics of the Bloch and Stoner model is very similar. In both cases, the total
direct interactions are independent of the polarization and the exchange interactions are responsible
for the energy gained by polarizing. However, due to different compensation mechanisms (canceling
the terms circled in black) the final expressions for the interaction energy are very different in both
models. In the Stoner model, only the direct interactions between particles of different spin states
have to be studied, while in Bloch’s model only the exchange interactions remain.

In units of ~ = 1, the atomic mass m = 1/2, the Boltzmann constant kB = 1 and the Fermi
wavevector kF = 1, the mean-field free energy F per unit volume V of this system is given by [35]

F (P )

V
=

2

9π3
askF

(
1− P 2

)
+

1

10π2

[
(1 + P )5/3 + (1− P )5/3

]
, (2.5)

with as the s-wave scattering length for collisions between particles of different spin states. The effect
of the contact interactions is fully captured by the dimensionless parameter askF , which is the ratio
between the two most important length scales in the system. The total particle density n is fixed
to n = 1/3π2 due to the choice of the length unit kF =

3
√

3π2n, therefore the free energy (2.5) only
depends on askF and P .

The first term in (2.5), the interaction energy, is a parabola with an extremum in P = 0. This
extremum is a minimum if askF < 0 and a maximum if askF > 0. The second term in (2.5), the
free-particle energy or kinetic energy, has one minimum in P = 0.

If askF < 0, both terms are minimal in P = 0 and the free energy has only one minimum in
P = 0. If askF > 0, the two terms will compete: the interaction term favors spin-polarization, while
the kinetic energy favors the unpolarized state with P = 0.

The extrema of the free energy can be calculated using its first derivative:

0 =
1

V

∂F

∂P
= − 4

9π3
askFP +

1

6π2

[
(1 + P )2/3 − (1− P )2/3

]
, (2.6)

with the exception of the extrema at the borders |P | = 1 of the allowed values of the polarization.
Note that P = 0 is always a solution of eq. (2.6). The extremum at P = 0 is a minimum if

0 ≤ 1

V

∂2F

∂P 2

∣∣∣∣
P=0

= − 4

9π3
askF +

2

9π2
⇔ askF ≤

π

2
. (2.7)

This means we expect partially and fully polarized minima of the free energy and thus polarization
for

askF >
π

2
≈ 1.571. (2.8)
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This is called the Stoner criterion for itinerant ferromagnetism. Improved theoretical models find
different critical values of askF , but they are all of the order of one. Second order models in as predict
askF > 1.054 [14].

A plot of the mean-field free energy (2.5) as a function of the polarization for different values
of askF can be found in fig. 2.12. Full polarization is expected for askF ≥ 2−7/33π ≈ 1.87. The
continuous behavior of the order parameter P as a function of askF (fig. 2.13) signifies that the
normal-to-itinerant-ferromagnetic phase transition is of second order in the Stoner model.

Figure 2.12: The free energy F (P ) as a function of the polarization for several different values of
the dimensionless interaction parameter askF , relative to the free energy F0 at askF = 0 and P = 0.
Depending on the value of askF , the minima of the free energy will be unpolarized (P = 0), partially
polarized (0 < |P | < 1) or fully polarized (|P | = 1). If askF ≥ π/2, the polarization of the minima
will increase as a function of askF until they become fully polarized at askF = 2−7/33π.

Figure 2.13: The polarization P as a function of the dimensionless interaction parameter askF . If
askF ≥ π/2, the polarization will increase as a function of askF until full polarization is reached at
askF = 2−7/33π.

2.3.2 Experimental signatures

In a true spin-1/2 system, the expectation value of the spin can be represented by a “spin vector”
of fixed length. The number of atoms per spin state is not fixed and polarization occurs through
alignment of the spin vectors of the particles. In contrast, in ultracold atomic gases there is no true spin
state and the number of atoms in each pseudospin state is fixed. This has important implications for



2.3. THE EXPERIMENTAL QUEST FOR ITINERANT FERROMAGETISM 19

itinerant ferromagnetism: polarization in ultracold atomic gases can only occur through the formation
of magnetic domains, i.e. spatial separation of the atoms in each pseudospin state. The difference
between both cases is illustrated in fig. 2.14.

Figure 2.14: In a true spin-1/2 system, polarization occurs through alignment of the spins of the
particles (above). In ultracold atomic gases, the number of particles in each pseudospin state is fixed
and polarization necessarily occurs through magnetic domain formation (below).

In the 2009 experiment by the Ketterle group at MIT [35], an equal mixture of approximately
6.5 × 105 6Li atoms in the lowest two hyperfine states was prepared at B = 590G on the weakly
interacting repulsive side of the Feshbach resonance. Next, the magnetic field was increased towards
the Feshbach resonance at B = 834G, providing an opportunity to study the strongly interacting
regime. The temperature during the experiment varied between T/TF = 0.12 and T/TF = 0.6 with
the Fermi temperature TF ≈ 1.4µK for this specific experimental system.

There are four expected experimental signatures of the normal-to-itinerant-ferromagnetic phase
transition:

1. The suppression of elastic and inelastic collisions, and thus a decreased three-body loss rate: Due
to the Pauli exclusion principle and the short range of the interaction potential, atoms of the
same spin state are close to non-interacting. This causes suppression of the elastic and inelastic
collisions in the itinerant ferromagnetic state. Near the Feshbach resonance, inelastic three-body
collisions are the dominant decay channel from atoms to molecules. Furthermore, they cause
production of atoms which can escape the trapping potential. Monitoring the atom loss rate
and the molecular fraction of the gas is a way of measuring the rate of the inelastic three-body
collisions.

2. A minimum in the kinetic energy : As the magnetic field is increased, the interaction strength
will increase and cause expansion of the unpolarized gas in the trap. This expansion lowers the
particle density n and the Fermi energy EF = ~2k2

F /2m, and thus the kinetic energy. When
the gas starts to polarize, the kinetic energy will rapidly increase due to the larger local particle
density per spin state. This causes a minimum in the kinetic energy near the phase transition.

3. A maximum in the cloud size: The pressure of the gas is given by

p =
2

3

Ekin
V

+
Eint
V

. (2.9)

where Ekin is the kinetic energy and Eint is the interaction energy. Polarization causes the
interaction energy to (almost) disappear, while the kinetic energy is increased by a factor 22/3
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(for full polarization). At constant volume, polarization would result in a decrease of the pressure
of the system. As the experimental system is kept at constant pressure, the volume of the gas
has to decrease after the phase transition to the itinerant ferromagnetic state.

4. Magnetic domain formation

In the experiment, the first three experimental signatures were observed. The atom loss rate,
the kinetic energy and the chemical potential µ (related to the cloud size σz along the z-direction
through µ = 1

2mω
2
zσ

2
z with ωz the frequency of the harmonic trap along the z-direction) are shown in

fig. 2.15, fig. 2.16 and fig. 2.17, respectively. Consequently in [35], the observation of the normal-to-
itinerant-ferromagnetic phase transition was reported. However, the experimental results suggested
the onset of itinerant ferromagnetism at askF = 1.9 ± 0.2, which is significantly higher than the
value askF = π/2 predicted by the Stoner criterion and the value askF = 1.054 predicted by second-
order calculations [14]. Furthermore, without the observation of magnetic domains, the nature of the
observed phase transition could not be confirmed. A large discussion in the literature ensued, which
will be discussed in the next section.

Figure 2.15: The atom loss rate observed during the experiment as a function of the interaction
parameter askF for different temperatures T/TF : 0.55 (triangles, dashed line), 0.22 (open circles,
dotted line) and 0.12 (closed circles, solid line). The curves are guides to the eye. In the gray shaded
region, the maximum of the atom loss rate at T/TF = 0.12 suggests the onset of the normal-to-
itinerant-ferromagnetic phase transition. Image source: G.-B. Jo et al., Science 325, 1521 (2009).

2.3.3 Interpretation of the experimental results

From the start, it was clear that the experimental results could not correspond to itinerant ferro-
magnetism in equilibrium [37]. Some researchers suggested physical effects which could delay the
onset of the normal-to-itinerant-ferromagnetic phase transition to higher values of askF [38,39]. How-
ever, it was shown that, without the observation of magnetic domains, the experimental observations
could also be explained by the formation of a strongly short-range correlated state (without itinerant
ferromagnetism) [40]. The atom loss rate could even be reproduced in a theoretical model without
itinerant ferromagnetism [41]. Next, the stability of the itinerant ferromagnetic state was consid-
ered: first against a single spin-flip [42] and next against Feshbach molecular pairing [43]. The results
suggested that molecular pairing would occur slightly faster than magnetic domain formation.

Clearly, a follow-up experiment was needed to establish whether the itinerant ferromagnetic state
was realized in the experiment. First the spin-drag coefficient [44] and next the magnetic susceptibility
(determined from spin correlations) [45] were suggested as a way to characterize the observed phase
transition.

In 2011, the Ketterle group at MIT repeated their experiment with a significantly higher imaging
resolution (both spatial and temporal) [36]. They measured the spin correlations by speckle imaging.
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Figure 2.16: The measured kinetic energy for different values of the interaction parameter askF and the
temperature T/TF . In the gray shaded region, the kinetic energy minimum at T/TF = 0.12 suggests
the observation of the normal-to-itinerant-ferromagnetic phase transition. Image source: G.-B. Jo et
al., Science 325, 1521 (2009).
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Figure 2.17: The chemical potential µ for different values of the interaction parameter askF and the
temperature T/TF . The chemical potential was determined from experimental measurements of the
cloud size σz along the z-direction using µ = 1

2mω
2
zσ

2
z , with m the atomic mass and ωz the harmonic

trap frequency along the z-direction. In the gray shaded region, the maximum of the chemical potential
(and thus the volume) of the gas at T/TF = 0.12 suggests the observation of the normal-to-itinerant-
ferromagnetic phase transition. Image source: G.-B. Jo et al., Science 325, 1521 (2009).
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This measurement was based on the fact that for an appropriate choice of the laser frequency, the
local refractive index varies as a function of the local polarization of the gas. Spin fluctuations cause
spatial fluctuations in the local refractive index, which affect the phase pattern imprinted on the light
passing through the gas. After propagation, those phase fluctuations are transformed into amplitude
fluctuations. The measured amplitude fluctuations are then used as a measure for the spin fluctuations.

Near the normal-to-itinerant-ferromagnetic phase transition, a large increase in the spin fluctu-
ations is expected. In the experiment, no such increase of the spin fluctuations was observed (fig.
2.18). Furthermore, it was established that the physics of the system is dominated by the formation
of Feshbach molecules. The fast molecular pairing prevented the formation of any equilibrium state,
including the itinerant ferromagnetic state. Even if tiny magnetic domains should be formed, the
faster molecular pairing would take over the magnetic domain formation and prevent their growth.
This seriously decreases the prospects for realizing the short-ranged Stoner model in ultracold atomic
gases.

Figure 2.18: The spin fluctuations (a) as a function of the magnetic field, and (b) at the Feshbach
resonance as a function of the hold time in the trap, relative to the spin fluctuations measured at
527G. The spin fluctuations show only a limited increase, while a much larger increase is expected at
the normal-to-itinerant-ferromagnetic phase transition. Image source: C. Sanner et al., Phys. Rev.
Lett. 106, 010402 (2011).

2.3.4 Future outlook

The experiment in 2011 [36] by the Ketterle group closed one discussion, but it also opened up
the next one: are there other ways to realize itinerant ferromagnetism in ultracold atomic gases?
How do we suppress the molecular pairing? How do we increase our theoretical understanding of
itinerant ferromagnetism? Can we lower the critical value of askF in the Stoner criterion? Here I will
give an overview of the most recent research proposals for the realization and study of the itinerant
ferromagnetic state in ultracold atomic gases. A more general overview can be found in the review
article [46].

The most important proposals aim to reduce the molecular pairing and the atom loss rate near
the Feshbach resonance:

• Narrow Feshbach resonances [36]: At a narrow Feshbach resonance, the Feshbach molecules have
a dominant closed channel character and less overlap with the atoms from the open channel. This
makes decay from the metastable atomic branch to the molecular branch less likely. However,
the range of the interactions is longer near a narrow Feshbach resonance, precluding realization
of the short-ranged Stoner model.

• Mass imbalance [47]: Mass imbalance can be introduced by using a mixture of two different
isotopes or elements instead of two hyperfine states of the same isotope. Mass imbalanced pairs
are harder to form, so mass imbalance is expected to reduce the molecular pairing rate. The
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mixture may consist of two fermionic atom species (e.g. 40K and 6Li [48]), or one fermionic and
one bosonic atom species (e.g. 40K and 87Rb [49]). In the latter case, the particle numbers and
interaction strengths have to be tuned in such a way that (almost) all bosons are tightly bound
to a fermionic atom. The Bose-Fermi pair acts as a (composite) fermion and can be considered
as the second fermionic component. Mass imbalance is currently the most promising proposal
for the realization of the itinerant ferromagnetic state, so there have been several theoretical
studies of the associated phase diagram [50–53].

• Reduced dimensions (especially 1D): A (quasi-)1D two-component Fermi gas has been exper-
imentally realized recently [54]. Three-body collisions are suppressed in 1D [55], so this is a
promising system for the experimental realization of itinerant ferromagnetism. However, fully
polarized itinerant ferromagnetism cannot be the ground state in 1D under certain symmetry
conditions [56, 57]. A small symmetry breaking field could be used to circumvent this problem
and enable realization of the itinerant ferromagnetic state [58].

• Optical lattices: Optical lattices (especially 3D optical lattices) limit the mobility of the atoms
and therefore also the collision rate and atom loss rate. There have been several proposals for
the realization of itinerant ferromagnetism in lattice models [59–65]. However, ferromagnetism
realized in optical lattices may not be purely itinerant.

Other proposals are aimed at avoiding the Feshbach resonance, e.g. by lowering the value of askF
where the normal-to-itinerant-ferromagnetic phase transition is expected to occur:

• Dipolar interactions: Recently, ultracold dipolar Fermi gases have been experimentally realized.
The dipole interaction is achieved by using dipolar molecules (e.g. KRb [66]) or atoms with
large magnetic moments (e.g. 161Dy [67] or 167Er [68]). With dipolar interactions, the Fesh-
bach resonance may be avoided alltogether. It would be interesting to study whether itinerant
ferromagnetism can be realized in dipolar atomic gases [69–71].

• Spin-orbit coupling : Spin-orbit coupling couples the spin state and momentum of the atoms,
favoring alignment of the momentum and spin states of the atoms. One study suggested that
the change in the dispersion relation caused by spin-orbit coupling may lower the critical value
of askF required to find itinerant ferromagnetism [72]. However, other studies suggest that the
alignment of the spin state with the momentum would impede the formation of magnetic domains
[73,74]. So far in experiments with ultracold atomic gases, only equal Rashba-Dresselhaus spin-
orbit coupling has been realized [75–77], where the momentum and spin state are coupled along
one direction. At the moment, experiments with other types of spin-orbit coupling still suffer
from heating problems.

A third possibility is to avoid the competition between the magnetic domain formation and the
molecular pairing, by preparing the gas in the fully polarized state:

• Demagnetization experiment : In this experiment two spin-polarized Fermi gases with opposite
spins are prepared and brought into contact with each other. By studying the spin diffusion
time as a function of the interaction strength one can probe itinerant ferromagnetism. In the
ferromagnetic state, the spins should not diffuse and the domain boundary should be long-
lived. Even if this state is metastable, the thermalization time can offer information on the
metastability barrier [78].

The final trend is a return to the basic theory of itinerant ferromagnetism. As itinerant ferromag-
netism is so notoriously hard to find experimentally, there are doubts about the existence and stability
of the itinerant ferromagnetic state. By improving the basics, researchers are hoping to resolve these
doubts. The research presented in this dissertation falls into this category:

• Few fermion systems: It is possible to exactly calculate the ground state of systems with a
given small number of fermions. Furthermore, few fermion systems have also become accessible
experimentally [79]. This can be used to test the validity of the current models for itinerant
ferromagnetism [80–82].
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• Dynamical stability of itinerant ferromagnetism: Dynamical stability is stability against density
and polarization changes. A dynamical instability of itinerant ferromagnetism may explain why
it is so notoriously hard to find experimentally. Studies of this topic are limited [42, 46, 57, 83].
In this dissertation, the dynamical stability of the itinerant ferromagnetic state is studied.

The goal of this dissertation is to improve the theoretical description of itinerant ferromagnetism
in a homogeneous two-component ultracold atomic Fermi gas using the path-integral formalism. This
formalism is introduced in the next chapter.
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Chapter 3

Path-integral formalism

In this chapter, the theoretical toolbox that will be used in the remainder of this dissertation will
be introduced. The basics of the path-integral formalism will be explained, with a focus on the field
theoretical formulation. For more details about the path-integral formalism and its applications, the
reader is referred to [84–87].

3.1 Principle of stationary action

The path-integral formalism was originally formulated by Richard P. Feynman as an answer to the
question of how to extend the classical principle of stationary action (also called the principle of least
action) to quantum mechanics [84]. That is why the principle of stationary action is introduced first.

3.1.1 Systems with N degrees of freedom

The aim of both classical and quantum mechanics is to predict the time evolution of the system,
starting from knowledge of the state of the system at a given point in time. In classical mechanics, the
state of a system with N degrees of freedom is represented by the 2N generalized coordinates qi and
q̇i = dqi/dt (i = 1, 2, . . . , N and N ∈ N). During the time evolution from time t0 to time t1, the system
will follow a certain path (qi (t)) in configuration space. The action S of each path in configuration
space is given by

S =

t1∫
t0

L (qi (t) , q̇i (t)) dt, (3.1)

where the function L (qi, q̇i) is called the Lagrangian. The Lagrangian of the system is defined as the
difference between the kinetic energy and the potential energy V of the system:

L (qi, q̇i) =
N∑
i=1

mi

2
q̇2
i − V (q1,q2, . . . , qN ) , (3.2)

where mi is the mass associated with the ith generalized coordinate. There are many possible paths
in configuration space, but in classical mechanics only one path is actually realized: the classical path.
This path is determined from the principle of stationary action: δS = 0. This variation of the action
is taken over all possible paths of the system in configuration space during the time evolution (with
appropriate boundary conditions).

The principle of stationary action can be used to derive the Euler-Lagrange equations of motion,

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
. (3.3)

This is a set of N equations, one for each (qi, q̇i)-pair. The solution to these equations is the classical
path.
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3.1.2 Classical field theory

The principle of stationary action can be extended to continuous fields φ (x, t), which have an infinite
number of degrees of freedom. This formulation is especially useful in the context of special relativity
and electromagnetism. That is why in the field-theoretical formulation

S =

∫
L (φ, ∂µφ) d4x (3.4)

of the action the four-vector notation is used: µ = 0, 1, 2, 3 with µ = 0 indicating the time coordinate
and µ = 1, 2, 3 indicating the spatial coordinates. The calligraphic L (φ, ∂µφ) represents the Lagrangian
density, which is related to the Lagrangian L through integration over the spatial coordinates:

L =

∫
Ldx. (3.5)

The principle of stationary action δS = 0 remains the same, but now the variation of the action is
taken over all possible configurations of the field φ (with the appropriate boundary conditions). The
resulting field equations are given by

∂L (φ, ∂µφ)

∂φ
− ∂µ

[
∂L (φ, ∂µφ)

∂ (∂µφ)

]
= 0. (3.6)

3.2 The path-integral formalism

In classical mechanics, only one path in configuration space is realized: the classical path (with
δS = 0). However, in the path-integral formulation of quantum mechanics all paths in configuration
space contribute and interfere with each other. This results in a probability distribution to find a
particle at a given time and position.

In the path-integral formalism, only two postulates are needed. For a single particle in a one-
dimensional system (1D), represented by position coordinate x, they were originally formulated by R.
P. Feynman as [84]

1. If an ideal measurement is performed to determine whether a particle has a path lying in a region
of space time, then the probability that the result will be affirmative is the absolute square of a
sum of complex contributions, one from each path in the region.

2. The paths contribute equally in magnitude, but the phase of their contribution is the classical
action S in units of ~; i.e., the time integral of the Lagrangian taken along the path.

The probability amplitude of the particle to propagate from position xa at time ta to position xb
at time tb is given by the propagator

K (xb, tb;xa, ta) =

xb,tb∫
xa,ta

D [x] exp

{
iS [x (t)]

~

}
. (3.7)

Here,
∫
D [x] represents the sum over all possible paths. Using the time-slicing method [85], the path

integral can be rewritten as
xb,tb∫

xa,ta

D [x] =
∏

t∈]ta,tb[

+∞∫
−∞

dxt. (3.8)

This is a sum over all possible values of the coordinates xt at each time t ∈ ]ta, tb[. The complex
quantum-mechanical wave function ψ (x, t), which is defined in such a way that |ψ (x, t)|2 is the
probability to find the particle in position x at time t, must obey the following integral equation:

ψ (xb, tb) =

∫
K (xb, tb;xa, ta)ψ (xa, ta) dxa. (3.9)
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If the action in (3.7) is chosen to be equal to the classical action (3.1), (3.9) becomes the integral
representation of the Schrödinger equation. The path-integral formulation of quantum mechanics is
fully equivalent with the Schrödinger and Heisenberg pictures.

If |δS| is large with respect to ~, i.e. if small changes in the path induce large changes in the
action, the phase factor exp {iS [x (t)] /~} changes rapidly and nearby paths will cancel each other’s
contributions to the path integral due to destructive interference. Paths where the action is stationary
(δS = 0) will experience the least destructive interference, so the largest contribution to the path
integral is given by these classical paths. This links the path-integral formalism with the principle of
stationary action in classical mechanics.

Feynman’s original postulates for a single particle in 1D can easily be extended to multiple particles
and higher-dimensional systems.

3.2.1 Statistical physics

Consider a system that consists of a single particle which is in thermal equilibrium with a bath of
temperature T . In the path-integral formalism, it can be shown that the partition function of this
system is given by

Z =

∫
dxK (x,−i~β|x, 0) , (3.10)

with K the propagator as defined in eq. (3.7) and β = 1/kBT the inverse temperature of the system
[85]. The partition function is a very important quantity in statistical physics, as it can be used to
derive many other important statistical quantities, e.g. the free energy F (T, V ) = −kBT ln (Z) (with
V the volume) and the internal energy U (S, V ) = kBT

2∂ [ln (Z)] /∂T (with S the entropy).

Note that the time coordinate −i~β is imaginary, so eq. (3.10) assumes that the propagator has
been analytically extended into the imaginary time plane. In order to avoid working explicitly with
imaginary numbers, the imaginary time coordinate τ = it is used. In this notation, the action

S [x] =

−i~β∫
0

dt

{
m [ẋ (t)]2

2
− V [x (t)]

}
(3.11)

is replaced by the Euclidean action

SE [x] =

~β∫
0

dτ

{
m [ẋ (τ)]2

2
+ V [x (τ)]

}
(3.12)

and the partition sum is given by

Z =

∫
Dx exp

{
−SE [x (τ)]

~

}
(3.13)

with ∫
Dx =

∏
τ∈[0,~β]

+∞∫
−∞

d [x (τ)] . (3.14)

In contrast with eq. (3.8), in statistical physics the path integral (3.14) is also taken over the
boundary values. Furthermore, there is an important sign difference between the Euclidean (3.12)
and the normal (3.11) action. Note that the conversion between both notations is more complicated
if there is also a vector potential involved, as this changes the kinetic energy part.

Just as Feynman’s original postulates, these path-integral statistical physics expressions for a single
particle in 1D can be extended to multiple particles and higher-dimensional systems.
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3.3 Path-integral field theory

For very large particle numbers or if the number of particles in the system is not conserved, it is easier
to use fields in order to describe the state of the system. For this purpose, quantum field theory was
developed. In this context, the sum over all paths becomes a sum over all possible configurations of
the fields. This is also called a functional integral.

3.3.1 Bosonic fields

Bosons are represented by complex scalar fields φx,t. As an example, we can consider a “simpleverse”,
where there are only 5 possible values for the time and position coordinates (thus 25 possible (x, t)
coordinates). In fig. 3.1, three possible configurations of a real field are shown. A sum over all
configurations of the real field φ in the simpleverse is given by∫

Dφ =

5∏
i=1

5∏
j=1

∫
d [φ (xi, tj)] (3.15)

with φ (xi, tj) ∈ R. For a complex bosonic field, it is necessary to sum over both the real and imaginary
parts. This is commonly written as a path integral over the complex field φ and its complex conjugate
φ̄: ∫

Dφ̄
∫
Dφ =

5∏
i=1

5∏
j=1

{∫
d
[
φ̄ (xi, tj)

] ∫
d [φ (xi, tj)]

}
(3.16)

with φ̄ (xi, tj) , φ (xi, tj) ∈ C. This expression can be extended to other spaces than the simpleverse:∫
Dφ̄
∫
Dφ =

∏
x,t

∫
dφ̄x,t

∫
dφx,t, (3.17)

where the product is taken over all possible values of x and t.

Figure 3.1: Three possible configurations of the bosonic field φ (x, t) with x, t ∈ {1, 2, 3, 4, 5} in the
simpleverse.

3.3.2 Fermionic fields and Grassmann algebra

A path integral over all possible configurations of a fermionic field ψ is defined in a similar way as for
the bosonic systems, ∫

Dψ̄
∫
Dψ =

∏
x,t

∫
dψ̄x,t

∫
dψx,t. (3.18)
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However, the values of the fermionic fields at each position x and time t are no longer given by complex
numbers, but by Grassmann numbers.

Grassmann numbers have very special algebraic properties. Especially the antisymmetry of a
product of Grassmann numbers η1 and η2 is important,

η1η2 = −η2η1, (3.19)

as this enables automatic inclusion of the fermionic antisymmetry property [88, 89]. Due to the
antisymmetry, a product of two identical Grassmann variables is zero: η2

1 = 0. This in turn implies
that any function of N Grassmann variables can be exactly Taylor expanded into a function that is
linear in each of the N Grassmann variables.

Grassmann integrals (also called Berezin integrals [90]) have some peculiar properties. They are
defined as ∫

dη = 0 and

∫
dηη = 1. (3.20)

Integrals of other functions can be easily calculated using the exact linear Taylor expansion:∫
dηf (η) =

∫
dη {f (0) + [∂ηf (0)] η} = ∂ηf (0) . (3.21)

For the path-integral formalism, the Gaussian Grassmann integral has special importance. It is given
by ∫

dη̄

∫
dη exp (−aηη̄) =

∫
dη̄

∫
dη (1− aη̄η)

=

∫
dη̄

[
aη̄

(∫
dηη

)]
=

∫
dη̄ (aη̄) = a. (3.22)

Note that interchanging dη and η̄ causes the corresponding term to change sign.

3.3.3 Partition function

In the context of itinerant ferromagnetism in ultracold atomic gases, it is important to study the
statistical properties of a (pseudo)spin-1/2 Fermi gas. These can be derived from the partition function,
given by

Z =

 ∏
σ=↑,↓

∫
Dψ̄σ

∫
Dψσ

 exp
(
−SE

[
ψ̄σ, ψσ

])
(3.23)

with SE
[
ψ̄σ, ψσ

]
the Euclidean action of the system. The statistical quantity most relevant to the

remainder of this dissertation is the thermodynamic grand potential per unit volume, defined as

Ω (β, µ↑, µ↓) = − 1

βV
lnZ, (3.24)

because the ground state of the system that will be considered in the subsequent chapters can be
found by minimizing Ω (β, µ↑, µ↓). In eq. (3.24), µ↑ and µ↓ are the chemical potentials associated with
particles of the respective spin states mentioned in the subscript.

If the Euclidean action is quadratic in the fermionic fields, the fermionic path integral in (3.23)
can be performed exactly:

∫
Dψ̄

∫
Dψ exp

− N∑
j,j′=1

ψ̄jAjj′ψj′

 = detA. (3.25)
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A free, non-interacting gas of neutral fermions is one of the few systems whose partition sum can be
calculated exactly, as its Euclidean action (in units ~ = 1 and 2m = 1) is given by the quadratic
expression

SE
[
ψ̄σ, ψσ

]
=
∑
σ=↑,↓

β∫
0

dτ

∫
V

dxψ̄σ,x,τ

(
∂

∂τ
−∇2

x − µσ
)
ψσ,x,τ (3.26)

with τ = it the imaginary time, β = 1/kBT the inverse temperature, V the volume and µσ the
chemical potential of spin state σ. Despite the limited number of systems where the path integral in
(3.23) can be performed analytically, the path-integral formalism has become an important tool in
quantum field theory [91].

In the remainder of this dissertation, only the Euclidean action will be used, so this will no longer
be explicitly specified.
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Chapter 4

The saddle-point thermodynamic
grand potential

The formalism presented in this chapter was published as:

E. Vermeyen and J. Tempere, Contact Potential Instability in the Path-Integral description of
Itinerant Ferromagnetism, Journal of Low Temperature Physics 179, 175-185 (2015).

4.1 Introduction

In this chapter, the thermodynamic grand potential of a free, uniform spin-1/2 Fermi gas with contact
potential interactions will be derived in the saddle-point approximation with density fields. The
thermodynamic grand potential was introduced in Sec. 3.3.3. It is related to the partition sum as
follows: Ω (β, µ↑, µ↓) = − ln (Z) /βV , with β = 1/kBT the inverse temperature and V the volume. In
the path-integral formalism, the partition sum of a spin-1/2 Fermi gas is given by

Z =

 ∏
σ=↑,↓

∫
Dψ̄σ

∫
Dψσ

 exp
(
−S

[
ψ̄σ, ψσ

])
. (4.1)

The action S
[
ψ̄σ, ψσ

]
depends on the system that is studied. In this chapter, the following action for

a spin-1/2 Fermi gas with contact interactions and without an external interaction potential will be
used (in units ~ = 1, 2m = 1, kB = 1 and kF = 1):

S
[
ψ̄σ, ψσ

]
=
∑
σ=↑,↓

β∫
0

dτ

∫
V

dxψ̄σ,x,τ

(
∂

∂τ
−∇2

x − µσ
)
ψσ,x,τ

+ g

β∫
0

dτ

∫
V

dxψ̄↑,x,τ ψ̄↓,x,τψ↓,x,τψ↑,x,τ , (4.2)

with τ = it the imaginary time and x the position vector. The first term in eq. (4.2) is the free-
particle energy, where ∇2

x is related to the kinetic energy and the chemical potentials µσ are used to
fix the particle numbers. The second term in eq. (4.2) is the interaction energy, with g the interaction
strength. In 3D, g is related to the s-wave scattering length as by eq. (2.2), or g = 8πaskF in the
chosen units.

Because the interaction energy is of fourth order in the fermionic fields, the functional integral
(4.1) with the action from eq. (4.2) can not be calculated exactly. The main theoretical challenge
is to find the best way to convert the interaction term into terms which are of second order in the
fermionic fields. The tool which is used to perform this conversion is called the Hubbard-Stratonovich
transformation.
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4.2 The Hubbard-Stratonovich transformation

4.2.1 Definition

In the Hubbard-Stratonovich transformation, a bosonic auxiliary field is introduced which acts as a
mediator for the interactions. The transformation is based on an algebraic property of a path integral
over the bosonic fields, which we choose to call A and B:

ZAB =

∫
DA

∫
DB exp

c β∫
0

dτ

∫
V

dxAx,τBx,τ

 , (4.3)

with c, Ax,τ , Bx,τ ∈ C. As we sum over all possible configurations of the bosonic fields A and B, ZAB
remains unchanged after shifting the fields A and B by the reference fields A0 and B0,

ZAB =

∫
DA

∫
DB exp

c β∫
0

dτ

∫
V

dx
(
Ax,τ −A0

x,τ

) (
Bx,τ −B0

x,τ

) . (4.4)

The factor that contains the product of the reference fields can then be isolated,

exp

−c β∫
0

dτ

∫
V

dxA0
x,τB

0
x,τ


=

1

ZAB

∫
DA

∫
DB exp

c β∫
0

dτ

∫
V

dx
(
Ax,τBx,τ −Ax,τB

0
x,τ −A0

x,τBx,τ

) . (4.5)

If the reference fields are chosen in such a way that the left-hand side of eq. (4.5) becomes equal to
the interaction term in the fermionic partition sum from eqs. (4.1) and (4.2),

exp

−c β∫
0

dτ

∫
V

dxA0
x,τB

0
x,τ

 = exp

−g β∫
0

dτ

∫
V

dxψ̄↑,x,τ ψ̄↓,x,τψ↓,x,τψ↑,x,τ

 , (4.6)

eq. (4.5) can be used to convert the interaction term into terms of second order in the fermionic fields.

In this transformation, pairs of fermionic fields are treated as a complex bosonic field, even though
in a strict mathematical sense these are products of Grassmann numbers. This issue will be dealt
with in more detail in chapter 6. There are three possible ways to pair the four fermionic fields in the
interaction term [92]:

1. Bogoliubov: ψ̄↑,x,τ ψ̄↓,x,τ and ψ↓,x,τψ↑,x,τ ,

2. Hartree: ψ̄↑,x,τψ↑,x,τ and ψ̄↓,x,τψ↓,x,τ ,

3. Fock: ψ̄↑,x,τψ↓,x,τ and ψ̄↓,x,τψ↑,x,τ .

The Bogoliubov channel corresponds to superfluid pairing and has been used successfully to de-
scribe the BCS-BEC crossover [25,93]. The Hartree channel corresponds to density-density interactions
and the Fock channel represents spin-flip interactions. In the remainder of this dissertation the Hartree
channel will be used, as density-density interactions are most suitable to describe the interactions in
the normal, paramagnetic and ferromagnetic phases [89, 94, 95].
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4.2.2 Construction of the transformation

After the choice of the channel, it is still necessary to construct the transformation itself using the
complex bosonic density fields ρ↑ and ρ↓ and their conjugate counterparts ρ̄↑ and ρ̄↓. In eq. (4.5), only
two bosonic fields were used. To introduce four bosonic fields, we will need two transformations.

Both transformations are constructed from the definitions{
ρ0
↑,x,τ = ρ̄0

↑,x,τ = ψ̄↑,x,τψ↑,x,τ
ρ0
↓,x,τ = ρ̄0

↓,x,τ = ψ̄↓,x,τψ↓,x,τ
(4.7)

of the reference fields.
In the first transformation, Ax,τ = ρ̄↓,x,τ , Bx,τ = ρ↑,x,τ and c = g/2 are chosen in eq. (4.5). The

resulting transformation is given by

exp

−g
2

β∫
0

dτ

∫
V

dxψ̄↓,x,τψ↓,x,τ ψ̄↑,x,τψ↑,x,τ

 (4.8)

=
1

Zρ,1

∫
Dρ̄↓

∫
Dρ↑ exp

g
2

β∫
0

dτ

∫
V

dx
(
−ρ̄↓,x,τ ψ̄↑,x,τψ↑,x,τ + ρ̄↓,x,τρ↑,x,τ − ψ̄↓,x,τψ↓,x,τρ↑,x,τ

) .

The second transformation is constructed using the choice Ax,τ = ρ̄↑,x,τ , Bx,τ = ρ↓,x,τ and c = g/2 in
eq. (4.5),

exp

−g
2

β∫
0

dτ

∫
V

dxψ̄↑,x,τψ↑,x,τ ψ̄↓,x,τψ↓,x,τ

 (4.9)

=
1

Zρ,2

∫
Dρ̄↑

∫
Dρ↓ exp

g
2

β∫
0

dτ

∫
V

dx
(
−ρ̄↑,x,τ ψ̄↓,x,τψ↓,x,τ + ρ̄↑,x,τρ↓,x,τ − ψ̄↑,x,τψ↑,x,τρ↓,x,τ

) .

Using the antisymmetry of a product of Grassmann variables,

ψ̄↑,x,τ ψ̄↓,x,τψ↓,x,τψ↑,x,τ = ψ̄↓,x,τψ↓,x,τ ψ̄↑,x,τψ↑,x,τ = ψ̄↑,x,τψ↑,x,τ ψ̄↓,x,τψ↓,x,τ , (4.10)

so (4.8) and (4.9) can be used to construct the Hubbard-Stratonovich transformation that will be used
in the remainder of this chapter:

exp

−g β∫
0

dτ

∫
V

dxψ̄↑,x,τ ψ̄↓,x,τψ↓,x,τψ↑,x,τ


=

1

Zρ,1Zρ,2

∫
Dρ̄↑

∫
Dρ↑

∫
Dρ̄↓

∫
Dρ↓ exp

g β∫
0

dτ

∫
V

dx

(
ρ̄↑,x,τρ↓,x,τ + ρ̄↓,x,τρ↑,x,τ

2

−
ρ̄↑,x,τ + ρ↑,x,τ

2
ψ̄↓,x,τψ↓,x,τ −

ρ̄↓,x,τ + ρ↓,x,τ
2

ψ̄↑,x,τψ↑,x,τ

)]
. (4.11)

For symmetry reasons, the transformations in eqs. (4.8) and (4.9) contribute equally to eq. (4.11).
Both transformations are each other’s complex conjugate and they can be viewed as two directions of
the same interaction process (fig. 4.1).

Because the reference fields of the bosonic fields are equal to the reference fields of their conjugated
counterparts, it is also possible to construct a transformation with real density fields ρ↑ and ρ↓:

exp

−g β∫
0

dτ

∫
V

dxψ̄↑,x,τ ψ̄↓,x,τψ↓,x,τψ↑,x,τ

 (4.12)

=
1

Zρ

∫
Dρ↑

∫
Dρ↓ exp

g β∫
0

dτ

∫
V

dx
(
ρ↑,x,τρ↓,x,τ − ρ↑,x,τ ψ̄↓,x,τψ↓,x,τ − ρ↓,x,τ ψ̄↑,x,τψ↑,x,τ

) .
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Figure 4.1: A diagrammatic representation of the two Hubbard-Stratonovich transformations in eqs.
(4.8) and (4.9). Both transformations are complementary, as they can be viewed as opposite directions
of the same interaction process.

In the saddle-point approximation, this transformation is equivalent to the transformation in eq. (4.11).
In this chapter, the full transformation with complex fields will be used in order to demonstrate this
equivalency. In part II, we will immediately use real density fields in the Hubbard-Stratonovich
transformation.

As a side note, it is also possible to rewrite eq. (4.11) using the notation ρ = (ρ↑ + ρ↓) /2 and
φ = (ρ↑ − ρ↓) /2 for the average and half density difference fields. This notation is often used in the
literature [96].

4.2.3 Result

After the Hubbard-Stratonovich transformation in eq. (4.11), the partition sum is given by

Z =

 ∏
σ=↑,↓

∫
Dψ̄σ

∫
Dψσ

∫
Dρ̄σ

∫
Dρσ

 exp
(
−Seff

[
ψ̄σ, ψσ, ρ̄σ, ρσ

])
, (4.13)

where we defined a new effective action Seff
[
ψ̄σ, ψσ, ρ̄σ, ρσ

]
given by

Seff
[
ψ̄σ, ψσ, ρ̄σ, ρσ

]
=
∑
σ=↑,↓

β∫
0

dτ

∫
V

dx

[
ψ̄σ,x,τ

(
∂

∂τ
−∇2

x − µσ
)
ψσ,x,τ

+g
ρ̄−σ,x,τ + ρ−σ,x,τ

2
ψ̄σ,x,τψσ,x,τ −

g

2
ρ̄σ,x,τρ−σ,x,τ

]
. (4.14)

The proportionality factors Zρ,1 and Zρ,2 from the Hubbard-Stratonovich transformation (4.11) will
only show up as a shift in the zero point of the thermodynamic grand potential. They were left out
in eqs. (4.13) and (4.14), as they were used to define a new energy reference.

4.3 Fourier transformation

The fermionic path integral in eq. (4.13) can not yet be performed due to the remaining derivatives
in the effective action (4.14). In order to remove these derivatives, eq. (4.14) is Fourier transformed.
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The Fourier transformation of the fermionic and bosonic fields is defined as
ψσ,x,τ =

1√
βV

∑
k,n

exp (ik · x− iωnτ)ψσ,k,n

ψ̄σ,x,τ =
1√
βV

∑
k,n

exp (−ik · x + iωnτ) ψ̄σ,k,n
(4.15)


ρσ,x,τ =

1√
βV

∑
q,m

exp (iq · x− iΩmτ) ρσ,q,m

ρ̄σ,x,τ =
1√
βV

∑
q,m

exp (−iq · x + iΩmτ) ρ̄σ,q,m
(4.16)

with ωn = (2n+ 1)π/β (n ∈ Z) the fermionic and Ωm = 2πm/β (m ∈ Z) the bosonic Matsubara
frequencies. Furthermore, the following representations of the Dirac delta function will be used:

δ (k) =
1

V

∫
V

dx exp (±ik · x) , (4.17)

δm =
1

β

β∫
0

dτ exp (±iΩmτ) . (4.18)

The first term of the effective action (4.14), the free-particle part, Fourier transforms as

∑
σ=↑,↓

β∫
0

dτ

∫
V

dxψ̄σ,x,τ

(
∂

∂τ
−∇2

x − µσ
)
ψσ,x,τ

=
∑
σ=↑,↓

∑
k,n

∑
k′,n′

1

βV

β∫
0

dτ

∫
V

dx

[
exp (−ik · x + iωnτ) ψ̄σ,k,n

(
∂

∂τ
−∇2

x − µσ
)

× exp
(
ik′ · x− iωn′τ

)
ψσ,k′,n′

]

=
∑
σ=↑,↓

∑
k,n

∑
k′,n′

 1

β

β∫
0

dτ exp [i (ωn − ωn′) τ ]


 1

V

∫
V

dx exp
[
−i
(
k− k′

)
· x
]

× ψ̄σ,k,n
[
−iωn′ +

(
k′
)2 − µσ]ψσ,k′,n′

=
∑
σ=↑,↓

∑
k,n

∑
k′,n′

ψ̄σ,k,n
(
−iωn + k2 − µσ

)
δ∆nδ (∆k)ψσ,k′,n′ . (4.19)

with ∆k = k − k′ and ∆n = n − n′. Fourier transforming the interaction terms in (4.14) is similar.
In the four-vector notation k = (k, ωn) and q = (q,Ωm), the resulting Fourier transformed effective
action is given by

Seff
[
ψ̄σ, ψσ, ρ̄σ, ρσ

]
=
∑
σ=↑,↓

∑
k,k′

ψ̄σ,k,n
[
−G−1

σ

(
k, k′

)]
ψσ,k′,n′ −

g

2

∑
q

ρ̄σ,qρ−σ,q

 . (4.20)

with the inverse Green’s function defined as

−G−1
σ

(
k, k′

)
=
(
−iωn + k2 − µσ

)
δ (∆k) + g

ρ̄−σ,−∆k + ρ−σ,∆k

2
√
βV

. (4.21)

After the Fourier transformation of the effective action, the standard formula (3.25) for a Gaussian
fermionic path integral can be used to carry out the fermionic path integral. The resulting expression
for the partition sum is given by

Z =

 ∏
σ=↑,↓

∫
Dρ̄σ

∫
Dρσ

 exp

∑
σ=↑,↓

(
g

2

∑
q

ρ̄σ,qρ−σ,q + Tr
{

ln
[
−G−1

σ

(
k, k′

)]}) . (4.22)
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The term Tr
{

ln
[
−G−1

σ (k, k′)
]}

is problematic. Due to the contributions of the bosonic density fields
in eq. (4.21), −G−1

σ is a highly non-diagonal infinitely large matrix in k-space. Diagonalizing that
matrix in order to take the logarithm is not feasible, so the remaining bosonic path integral cannot be
performed exactly. In order to overcome this problem, the saddle-point approximation will be used
next.

4.4 Saddle-point approximation

In the saddle-point approximation, the main contribution to the path integral over bosonic fields is
assumed to come from a configuration where the field is constant:{

ρσ,q =
√
βV δ (q) ρσ

ρ̄σ,q =
√
βV δ (q) ρ∗σ

(4.23)

and only the combination of values (ρ↑, ρ↓) that extremizes (preferably minimizes) the thermodynamic
grand potential will be counted in the path integral. In this approximation, the inverse Green’s function
matrix becomes diagonal in k-space,

−G−1
σ

(
k, k′

)
=
(
−iωn + k2 − µσ + gRe [ρ−σ]

)
δ (∆k) (4.24)

and the resulting partition sum is given by

Z = exp

∑
σ=↑,↓

[
g

2
βV ρ∗σρ−σ +

∑
k

ln
(
−iωn + k2 − µσ + gRe [ρ−σ]

)] (4.25)

Using the definition in eq. (3.24) of the thermodynamic grand potential per unit volume, we find

Ωsp (β, µ↑, µ↓; ρ↑, ρ↓) = −gρR↑ ρR↓ − gρI↑ρI↓ −
∑
σ=↑,↓

1

βV

∑
k

ln
(
−iωn + k2 − µσ + gρR−σ

)
, (4.26)

with ρRσ = Re [ρσ] and ρIσ = Im [ρσ]. The imaginary parts of ρ↑ and ρ↓ only occur in the second term
of (4.26) as a shift in Ωsp, so we can choose ρI↑ = ρI↓ = 0. This shows that it would have been possible
to use the Hubbard-Stratonovich transformation with real bosonic density fields from Sec. 4.2.2. The
real parts of ρ↑ and ρ↓ still have to be determined using the saddle-point equations

∂Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂ρRσ

∣∣∣∣∣∣
β,µ↑,µ↓;ρ

R
−σ

= 0. (4.27)

The remaining Matsubara sum in (4.26) was performed using contour integration and the residue
theorem. The result was also checked numerically. After taking the continuum limit of the remaining
sum over k in (4.26), we find

Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓
)

= −gρR↑ ρR↓ + Ωsp,0

(
β, µ′↑, µ

′
↓
)

(4.28)

Ωsp,0

(
β, µ′↑, µ

′
↓
)

= −
∑
σ=↑,↓

∫
dDk

(2π)D

(
1

β
ln
{

1 + exp
[
β
(
k2 − µ′σ

)]}
− k2 + µ′σ

)
(4.29)

in D dimensions. Ωsp,0

(
β, µ′↑, µ

′
↓

)
has the same form as the non-interacting free-particle energy, but

with a shift in the chemical potentials due to the interactions. The new effective chemical potentials
are defined as

µ′σ = µσ − gρR−σ. (4.30)

To summarize, we find in the saddle-point approximation that the contact interactions cause
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1. an extra term in Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
, the interaction energy −gρR↑ ρR↓ , and

2. a shift −gρR−σ of the effective chemical potential.

The saddle-point equations have to be solved for each value of the thermodynamic variables β, µ↑
and µ↓. The resulting thermodynamic grand potential after determining the values of ρR↑ and ρR↓ will
from now on be called Ωsp (β, µ↑, µ↓).

4.4.1 The number equations

The particle number densities are determined by the number equations

nσ = −
∂Ωsp (β, µ↑, µ↓)

∂µσ

∣∣∣∣
β,µ−σ

. (4.31)

The saddle-point equations need to be solved together with the number equations, as the choice of kF
as a unit implies that the total particle density n = n↑ + n↓ is given by n = k3

F /3π
2 = 1/3π2.

The number equations (4.31) can be rewritten as a function of Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
,

nσ =−
∂Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂µσ

∣∣∣∣∣∣
β,µ−σ ;ρR↑ ,ρ

R
↓

−
∂Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂ρR↑

∣∣∣∣∣∣
β,µ↑,µ↓;ρ

R
↓

∂ρR↑
∂µσ

∣∣∣∣∣
β,µ−σ

−
∂Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂ρR↓

∣∣∣∣∣∣
β,µ↑,µ↓;ρ

R
↑

∂ρR↓
∂µσ

∣∣∣∣∣
β,µ−σ

. (4.32)

For solutions to the saddle-point equations (4.27), this simplifies to

nσ = −
∂Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂µσ

∣∣∣∣∣∣
β,µ−σ ;ρR↑ ,ρ

R
↓

= −
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′σ

∣∣∣∣∣∣
β,µ′−σ

. (4.33)

This expression can in turn be used to rewrite the saddle-point equations (4.27) after taking the first

derivatives of Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
(given by eqs. (4.28), (4.29) and (4.30)) to ρR↑ and ρR↓ ,

0 =
∂Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂ρR↑

∣∣∣∣∣∣
β,µ↑,µ↓;ρ

R
↓

= −gρR↓ +
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↓

∣∣∣∣∣∣
β,µ′↑

∂µ′↓
∂ρ↑

∣∣∣∣∣
β,µ↑,µ↓;ρ

R
↓

= −gρR↓ + gn↓ (4.34)

⇔ ρR↓ = n↓. (4.35)

In a similar way, the other saddle-point equation becomes ρR↑ = n↑. This validates the interpretation

of ρR↑ and ρR↓ as density fields.

4.5 Stoner criterion

It is still necessary to check whether the saddle-point thermodynamic grand potential (4.28) can be
used to study itinerant ferromagnetism. As the saddle-point approximation is equivalent to a mean-
field approximation, at temperature zero in 3D we should be able to recover the Stoner criterion and
the mean-field Stoner model from Sec. 2.3.1. As itinerant ferromagnetism is spontaneous polarization,
the assumption µ↑ = µ↓ = µ is necessary to exclude polarization induced by chemical potential
differences.

In the remainder of this section, the saddle-point thermodynamic grand potential will be calculated
and studied for the case T = 0 (β → +∞) and µ↑ = µ↓ = µ in 3D.
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4.5.1 Temperature zero limit

In the temperature zero limit (β → +∞), expression (4.29) for the free-particle energy is greatly
simplified,

lim
β→+∞

Ωsp,0

(
β, µ′↑, µ

′
↓
)

= −
∑
σ=↑,↓

∫
d3k

(2π)3

[
lim

β→+∞

(
1

β
ln
{

1 + exp
[
β
(
k2 − µ′σ

)]})
− k2 + µ′σ

]

= −
∑
σ=↑,↓

+∞∫
0

dk

2π2
k2
(
k2 − µ′σ

) [
Θ
(
k2 − µ′σ

)
− 1
]

= −
∑
σ=↑,↓

Θ
(
µ′σ
) √[µσ ]+∫

0

dk

2π2

(
−k2 + µ′σ

)
= −

∑
σ=↑,↓

[µ′σ]
5/2
+

15π2
, (4.36)

where the new notation [x]+ = max [x, 0] was introduced. The saddle-point thermodynamic grand
potential is then given by

ΩT=0
sp

(
µ↑, µ↓; ρ

R
↑ , ρ

R
↓
)

= lim
β→+∞

Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓
)

= −gρR↑ ρR↓ −

[
µ′↑

]5/2

+
+
[
µ′↓

]5/2

+

15π2
. (4.37)

4.5.2 Solving the saddle-point equations

Instead of solving the saddle-point equations for each value of the chemical potentials, it is easier
to start from given particle number densities n↑ and n↓. In that case we know the solutions to the
saddle-point equations, as they are given by ρσ = nσ. What remains is to calculate the values of the
chemical potentials which correspond to this particular solution to the saddle-point equations.

First, the effective chemical potentials are calculated from the number equations (4.33),

nσ =
[µ′σ]

3/2
+

6π2
⇔
[
µ′σ
]
+

=
(
6π2nσ

)2/3
. (4.38)

If n↑ 6= 0 and n↓ 6= 0, i.e. for unpolarized and partially polarized saddle points, µ′σ =
(
6π2nσ

)2/3
.

For a given polarization P = (n↑ − n↓) / (n↑ + n↓) with n = 1/3π2 by the choice of kF = 1 as a unit,
this implies 

n↑ =
(1 + P )

6π2

n↓ =
(1− P )

6π2

⇒

{
µ′↑ = (1 + P )2/3

µ′↓ = (1− P )2/3 . (4.39)

ΩT=0
sp is then given by

ΩT=0
sp (P ) = − 2

9π3
askF

(
1− P 2

)
− (1 + P )5/3 + (1− P )5/3

15π2
, (4.40)

where g = 8πaskF was used. Note that in order to recover the free energy per unit volume (2.5) from
the Stoner model (Sec. 2.3.1), eq. (4.40) still needs to be converted from the grand-canonical to the
canonical ensemble.

Finally, the chemical potentials can be derived from the definition (4.30) of the effective chemical
potentials,

µ↑ = (1 + P )2/3 +
4

3π
askF (1− P ) (4.41)

µ↓ = (1− P )2/3 +
4

3π
askF (1 + P ) (4.42)
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The requirement µ↑ = µ↓ results in an equation for the value of the interaction parameter askF where
solutions with polarization P to the saddle-point equations occur:

8P

3π
askF = (1 + P )2/3 − (1− P )2/3 . (4.43)

The unpolarized solution (P = 0) to this equation always exists. For the partially polarized solutions,

askF =
3π

8

(1 + P )2/3 − (1− P )2/3

P
. (4.44)

The onset of the polarization can be found using a Taylor expansion of the numerator,

askF ≈
3π

8

1 + 2
3P − 1 + 2

3P

P
=
π

2
. (4.45)

This is equal to the Stoner criterion (2.8) for the onset of itinerant ferromagnetism.

In the fully polarized case, n↑ = 0 or n↓ = 0 and there is an indeterminacy in eq. (4.38): if n↑ = 0
(or n↓ = 0), any negative value of µ′↑ (or µ′↓ respectively) is a valid solution of eq. (4.38). For positive
full polarization (P = 1 and n↓ = 0), this modifies eq. (4.42) to

µ↓ <
8

3π
askF (4.46)

and the condition (4.44) to askF > 2−7/33π. For negative full polarization (P = −1 and n↑ = 0),
a similar modification of eq. (4.41) results in the same condition askF > 2−7/33π. The onset of full
polarization occurs at askF = 2−7/33π.

4.5.3 Grand-canonical vs. canonical ensemble

The saddle-point thermodynamic grand potential per unit volume ΩT=0
sp (P ) is shown in fig. 4.2 as a

function of 1/askF . It is hard to compare results with different polarization at the same value of askF as
they correspond to different chemical potentials, but the general conclusion is clear: polarization (and
thus also itinerant ferromagnetism) is not favored in the grand canonical ensemble. This conclusion
remains when comparing partially and fully polarized solutions to the saddle-point equations with the
unpolarized solution at the same values of the chemical potentials.

In the canonical ensemble, where we keep both the number of spin-up and spin-down particles
fixed, the saddle-point free energy per unit volume F T=0

sp (n↑, n↓) = ΩT=0
sp (µ↑, µ↓) + µ↑n↑ + µ↓n↓ has

to be minimized instead of the thermodynamic grand potential ΩT=0
sp (µ↑, µ↓). F

T=0
sp (n↑, n↓) is given

by

F T=0
sp (P ) =

2

9π3
askF

(
1− P 2

)
+

(1 + P )5/3 + (1− P )5/3

10π2
(4.47)

if n = 1/3π2. Note that only values of P for which an extremum of ΩT=0
sp exists are allowed. These

can be determined through eq. (4.43) for partial and full polarization, and through the condition
askF > 2−7/33π for full polarization. F T=0

sp (P ) is shown in fig. 4.3 as a function of 1/askF . Eq. (4.47)
is equal to the mean-field free energy in eq. (2.5). Furthermore, the solutions to the saddle-point
equations correspond to the extrema (or saddle-points) of F T=0

sp (P ).

We find a strange paradox. Spontaneous polarization and thus itinerant ferromagnetism is ener-
getically favorable for strong repulsive interactions in the canonical ensemble, but in that ensemble
the particle number densities are not allowed to change. In the grand-canonical ensemble the parti-
cle number densities are allowed to change, but in that ensemble itinerant ferromagnetism is never
energetically favorable.

A possible solution to this paradox is the use of a hybrid ensemble, in which the total number
of particles is kept fixed, but not the number of particles in individual spin components. In this
ensemble, the free energy depends on the total density n = n↑−n↓ = 1/3π2 and ζ = (µ↑ − µ↓) /2 = 0.
The free energy associated with this ensemble can be defined as FT=0

sp (n, ζ) = ΩT=0
sp (µ↑, µ↓) + µn =
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Figure 4.2: The saddle-point thermodynamic grand potential ΩT=0
sp in the temperature zero limit as a

function of 1/askF . The blue dashed line corresponds to unpolarized saddle points, the green line to
partially polarized saddle points and the red line to fully polarized saddle points. Polarization is not
energetically favored in the grand canonical ensemble.

F T=0
sp (n↑, n↓)− ζδn with µ = (µ↑ + µ↓) /2 the average chemical potential and δn = n↑ + n↓ = P/3π2

the density difference. By rewriting FT=0
sp

(
n = 1/3π2, ζ = 0

)
as a function of the polarization, we find

FT=0
sp (P ) =

2

9π3
askF

(
1− P 2

)
+

(1 + P )2/3 (2− P ) + (1− P )2/3 (2 + P )

15π2
, (4.48)

where again only values of P for which a corresponding extremum of ΩT=0
sp exists are allowed. In the

hybrid ensemble with n = 1/3π2 and ζ = 0, polarization is only energetically favorable if π/2 < askF <
3π
(
2− 2−1/3

)
/5 (see fig. 4.4). If the interaction strength askF is increased, polarization will become

energetically favorable once the Stoner criterion askF > π/2 is met, but the unpolarized state becomes
energetically favorable again if the interactions become too strong (askF > 3π

(
2− 2−1/3

)
/5).

In conclusion, the region where itinerant ferromagnetism may occur strongly depends on the en-
semble which is used to describe the system. The polarization of the saddle points as a function of
askF remains the same for each ensemble. Unpolarized saddle points exist for all values of askF .
Partially polarized saddle points exist for π/2 < askF < 2−7/33π, with the relation between askF and
P given by eq. (4.44), and fully polarized saddle points exist for askF ≥ 2−7/33π. However, the energy
associated with each saddle point and the energy difference between the polarized and unpolarized
saddle points strongly depends on the ensemble used. In the next chapter, it will be verified whether
the extrema of the thermodynamic grand potential correspond to a physical (or metastable) state of
the system.



4.5. STONER CRITERION 45

Figure 4.3: The saddle-point free energy F T=0
sp in the temperature zero limit as a function of 1/askF .

The blue dashed line corresponds to unpolarized saddle points, the green line to partially polarized
saddle points and the red line to fully polarized saddle points. Polarization is energetically favored in
the canonical ensemble provided the Stoner criterion askF > π/2 is met.

Figure 4.4: The (hybrid) saddle-point free energy FT=0
sp in the temperature zero limit as a function

of 1/askF . The blue dashed line corresponds to unpolarized saddle points, the green line to partially
polarized saddle points and the red line to fully polarized saddle points. In the hybrid ensemble with
constant total density n = 1/3π2 and constant half chemical potential difference ζ = 0, polarization is
energetically favorable provided π/2 < askF < 3π

(
2− 2−1/3

)
/5. This condition is stricter than the

Stoner criterion askF > π/2.
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Chapter 5

Stability analysis of the saddle points

The results obtained in this chapter were published as:
E. Vermeyen and J. Tempere, Contact Potential Instability in the Path-Integral description of

Itinerant Ferromagnetism, Journal of Low Temperature Physics 179, 175-185 (2015).

5.1 Hessian matrix

The solutions to the saddle-point equations (4.27) (hereafter often called saddle points) can be minima,

maxima or saddle points of the thermodynamic grand potential Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
as a function

of the density fields ρR↑ and ρR↓ . However, only the minima can correspond to a physical (metastable)
state of the system, as only the minima are stable against density (quantum) fluctuations.

The nature of a saddle point can be determined by studying the Hessian matrix H of the second

derivatives of Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
,

H =



∂2Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
(
∂ρR↑

)2

∣∣∣∣∣∣∣
β,µ↑,µ↓;ρ

R
↓

∂2Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂ρR↑ ∂ρ

R
↓

∣∣∣∣∣∣
β,µ↑,µ↓

∂2Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂ρR↓ ∂ρ

R
↑

∣∣∣∣∣∣
β,µ↑,µ↓

∂2Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
(
∂ρR↓

)2

∣∣∣∣∣∣∣
β,µ↑,µ↓;ρ

R
↑


. (5.1)

If both eigenvalues of the Hessian are positive for a given solution to the saddle-point equations, this
solution is a minimum and stable against density fluctuations. Both eigenvalues are positive if the
trace and determinant of the Hessian are both positive.

In order to calculate the Hessian matrix, the first and second derivatives of the saddle-point free-

particle energy Ωsp,0

(
β, µ′↑, µ

′
↓

)
with respect to the effective chemical potentials µ′↑ and µ′↓ will be

calculated. The Hessian will then be expressed as a function of these derivatives, which greatly
simplifies the subsequent stability analysis.

The first derivatives of eq. (4.29) with respect to µ′↑ and µ′↓ are given by

∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′σ

∣∣∣∣∣∣
β,µ′−σ

=

∫
dDk

(2π)D

{
exp

[
β
(
k2 − µ′σ

)]
1 + exp [β (k2 − µ′σ)]

+ 1

}
. (5.2)

Next, the second derivatives of eq. (4.29) with respect to µ′↑ and µ′↓ are given by

∂2Ωsp,0

(
β, µ′↑, µ

′
↓

)
(∂µ′σ)2

∣∣∣∣∣∣
β,µ′−σ

= −Iσ
(
β, µ′σ

)
and

∂2Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↑∂µ

′
↓

∣∣∣∣∣∣
β

= 0, (5.3)
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where the function Iσ (β, µ′σ) is defined as

Iσ
(
β, µ′σ

)
=
β

2

∫
dDk

(2π)D

{
1

1 + cosh [β (k2 − µ′σ)]

}
. (5.4)

As the hyperbolic cosine is a positive function, Iσ (β, µ′σ) is a positive function, regardless of the values
of β, µ′↑ and µ′↓.

Using eq. (4.28) and the definition of the effective chemical potential (4.30), the first and second

derivatives of Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
to ρR↑ and ρR↓ can be rewritten as a function of first and second

derivatives of Ωsp,0

(
β, µ′↑, µ

′
↓

)
to µ′↑ and µ′↓. Starting with the first derivatives,

∂Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂ρR↑

∣∣∣∣∣∣
β,µ↑,µ↓;ρ

R
↓

= −gρR↓ +
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↓

∣∣∣∣∣∣
β,µ′↑

∂µ′↓

∂ρR↑

= −gρR↓ − g
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↓

∣∣∣∣∣∣
β,µ′↑

, (5.5)

∂Ωsp

(
β, µ↑, µ↓; ρ

R
↑ , ρ

R
↓

)
∂ρR↓

∣∣∣∣∣∣
β,µ↑,µ↓;ρ

R
↑

= −gρR↑ − g
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↑

∣∣∣∣∣∣
β,µ′↓

, (5.6)

the Hessian matrix of the second derivatives then becomes

H =

−g2I↓

(
β, µ′↓

)
−g

−g −g2I↑

(
β, µ′↑

) . (5.7)

Since I↓

(
β, µ′↓

)
and I↑

(
β, µ′↑

)
are positive, the trace of the Hessian

TrH = −g2
[
I↓
(
β, µ′↓

)
+ I↑

(
β, µ′↑

)]
(5.8)

is always negative and the Hessian always has at least one negative eigenvalue.
This result implies that none of the solutions to the saddle-point equations are stable against density

fluctuations. However, the meaning of this instability is still unclear at this point, especially since it was
derived for contact interactions. Is this instability caused by the use of the contact pseudopotential,
which is not the real interaction potential? Or does it have other implications, e.g. an instability of
the itinerant ferromagnetic state for contact interactions? What is the cause of this instability?

In order to solve these questions, in the next part the saddle-point thermodynamic grand potential
for a general interaction potential will be calculated and studied.



Part III

General interaction potentials
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Chapter 6

The saddle-point thermodynamic
grand potential

The formalism presented in this chapter has been submitted for publication as:

E. Vermeyen, C. A. R. Sá de Melo and J. Tempere, Exchange interactions in the
Hubbard-Stratonovich transformation for the stability analysis of itinerant ferromagnetism,

ArXiv:1511.05402 [cond-mat.quant-gas] (2015).

6.1 Defining a new action

The thermodynamic grand potential can again be calculated from the partition sum, given in the
path-integral formalism by eq. (4.1). The action S plays a central role in the calculation of the
partition sum. In the previous part, a free spin-1/2 Fermi gas with contact interactions was studied.
The action of this system, given by eq. (4.2), consisted of a free-particle part and an interaction part.
When defining a new action for a free spin-1/2 Fermi gas with a general interaction potential, only
the interaction part has to be changed: the free-particle part remains the same.

In the previous part about contact interactions, we had the luxury that only the interactions
between particles of different spin states remained. This is a good approximation for most experiments
with dilute ultracold atomic gases, as the range of the potential is usually smaller than the other
relevant length scales in the experiment (as discussed in Sec. 2.1.1). There are two reasons to deviate
from the contact potential approximation. First, the Pauli exclusion principle forbids two particles
of the same spin state to be in the same quantum state. This effectively prevents two particles to
come too close to each other. The exchange interactions introduce another length scale (an exclusion
length) which may be smaller than the range of the potential. Consequently, it is not certain whether
the contact potential approximation remains valid when the exchange interactions become important.

Second, in recent years other interaction potentials have become available in ultracold atomic gases.
The most notable examples are dipolar interactions [66–71] and p-wave Feshbach resonances [29].
Dipolar interactions have a longer range than the typical Van der Waals interactions and furthermore
they affect particles of both spin states. P-wave Feshbach resonances enhance scattering into the
lowest partial wave for interactions between two particles of the same spin state. Scattering between
particles of the same spin state cannot be described by a contact pseudopotential, as this potential is
completely screened by the Pauli exclusion principle.

In order to cover these different examples, we will consider three interaction potentials gσ1σ2 (x− x′)
with σ1, σ2 =↑, ↓ for interactions between a particle of spin state σ1 at position x and a particle of
spin state σ2 at position x′, under the assumption g↑↓ (∆x) = g↓↑ (∆x). For symmetry reasons, we
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will also assume gσ1σ2 (∆x) = gσ1σ2 (−∆x). The resulting action is then given by

S
[
ψ̄σ, ψσ

]
=
∑
σ=↑,↓

β∫
0

dτ

∫
V

dxψ̄σ,x,τ

(
∂

∂τ
−∇2

x − µσ
)
ψσ,x,τ (6.1)

+
∑

σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2
ψ̄σ1,x,τ ψ̄σ2,x′,τψσ2,x′,τψσ1,x,τ .

The factor 1/2 in the interaction term avoids double-counting.

In order to calculate the thermodynamic grand potential, we will essentially have to go through
the same steps as in chapter 4: first the Hubbard-Stratonovich transformation, then a Fourier trans-
formation of the action in order to perform the fermionic path integral, and finally the saddle-point
approximation of the bosonic path integral. However, the change of the interaction term will compli-
cate most expressions. Furthermore, after the derivation it will be illustrated that a correction has to
be applied in order to recover the exchange interactions.

6.2 The Hubbard-Stratonovich transformation

Analogous to the derivation of the Hubbard-Stratonovich transformation in Sec. 4.2, the transfor-
mation is constructed by shifting the real bosonic auxiliary fields ρ↑ and ρ↓ by the reference fields
ρ0
↑,x,τ = ψ̄↑,x,τψ↑,x,τ and ρ0

↓,x,τ = ψ̄↓,x,τψ↓,x,τ in the path integral

Zρ =

∫
Dρ↑

∫
Dρ↓ exp

 ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2
ρσ1,x,τρσ2,x′,τ


=

∫
Dρ↑

∫
Dρ↓ exp

 ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2

×
(
ρσ1,x,τ − ρ0

σ1,x,τ

) (
ρσ2,x′,τ − ρ0

σ2,x′,τ

) . (6.2)

The resulting transformation is given by

exp

− ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2
ψ̄σ1,x,τ ψ̄σ2,x′,τψσ2,x′,τψσ1,x,τ


= exp

− ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2
ψ̄σ1,x,τψσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ


=

1

Zρ

∫
Dρ↑

∫
Dρ↓ exp

 ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2

×
(
ρσ1,x,τρσ2,x′,τ − ρσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ − ψ̄σ1,x,τψσ1,x,τρσ2,x′,τ

) . (6.3)

After the Hubbard-Stratonovich transformation, the partition sum is given by eq. (4.13), with a
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new effective action given by

Seff
[
ψ̄σ, ψσ, ρ̄σ, ρσ

]
=
∑
σ=↑,↓

β∫
0

dτ

∫
V

dx

[
ψ̄σ,x,τ

(
∂

∂τ
−∇2

x − µσ
)
ψσ,x,τ (6.4)

−
∑

σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′gσ1σ2
(
x− x′

) (ρσ1,x,τρσ2,x′,τ
2

− ψ̄σ1,x,τψσ1,x,τρσ2,x′,τ
) .

The proportionality factor Zρ can be set to one by an appropriate choice of the new zero point of the
thermodynamic grand potential, so it no longer has to be written explicitly.

6.3 Fourier transformation

Next, the effective action (6.4) is Fourier transformed. The Fourier transformed fermionic and bosonic
fields were defined in eqs. (4.15) and (4.16) of Sec. 4.3. However, as the bosonic fields are now real,
ρ∗σ,q,m = ρσ,−q,−m. Furthermore, the interaction potential has to be Fourier transformed explicitly,

gσ1σ2 (∆x) =
1√
V

∑
Q

exp (iQ ·∆x) gσ1σ2 (Q) . (6.5)

The Fourier transformed free-particle part of the action has already been calculated in eq. (4.19),
so only the interaction part needs to be Fourier transformed. The resulting effective action is given in
the four-vector notation by

Seff
[
ψ̄σ, ψσ, ρ̄σ, ρσ

]
=
∑
σ1=↑,↓

∑
k,k′

ψ̄σ1,k
[
−G−1

σ1

(
k, k′

)]
ψσ1,k′ −

√
V

2

∑
σ2=↑,↓

∑
q

gσ1σ2 (q) ρσ1,−qρσ2,q

 , (6.6)

with the inverse Green’s function defined as

−G−1
σ1

(
k, k′

)
=
(
−iωn + k2 − µσ1

)
δ (∆k) +

1√
β

∑
σ2=↑,↓

gσ1σ2 (∆k) ρσ2,∆k. (6.7)

After performing the fermionic path integral, the partition sum becomes

Z =

 ∏
σ=↑,↓

∫
Dρ̄σ

∫
Dρσ

 exp

 ∑
σ1=↑,↓

√V
2

∑
σ2=↑,↓

∑
q

gσ1σ2 (q) ρσ1,−qρσ2,q

+ Tr
{

ln
[
−G−1

σ1

(
k, k′

)]} . (6.8)

The remaining bosonic path integral cannot be performed exactly and has to be approximated.

6.4 Saddle-point approximation

In the saddle-point approximation, the main contribution to the path integral over bosonic fields is
assumed to come from a configuration where the field is constant: ρσ,q =

√
βV δ (q) ρσ with ρσ a real

number. Due to homogeneity it is justified to assume that the saddle-point field is constant. Using
the definition from eq. (3.24), the saddle-point thermodynamic grand potential is then given by

Ωsp (β, µ↑, µ↓; ρ↑, ρ↓) = −1

2

∑
σ1,σ2=↑,↓

gσ1σ2ρσ1ρσ2 + Ωsp,0

(
β, µ′↑, µ

′
↓
)

. (6.9)
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with Ωsp,0

(
β, µ′↑, µ

′
↓

)
the free-particle energy as defined in eq. (4.29), the new interaction parameters

gσ1σ2 =
√
V gσ1σ2 (q = 0) =

∫
V
d (∆x) gσ1σ2 (∆x) (6.10)

equal to the interaction potential integrated over the whole volume and

µ′σ1 = µσ1 −
∑
σ2=↑,↓

gσ1σ2ρσ2 (6.11)

the effective chemical potential of spin state σ1.
We find similar results as for the contact potential (Sec. 4.4):

1. an extra term in Ωsp (β, µ↑, µ↓; ρ↑, ρ↓), namely the interaction energy −1
2

∑
σ1,σ2

gσ1σ2ρσ1ρσ2 , and

2. a shift −
∑

σ2
gσ1σ2ρσ2 of the effective chemical potential µ′σ1 .

Remarkably, in the saddle-point approximation only three parameters are necessary to describe the
effect of a general interaction potential: g↑↑, g↓↓ and g↑↓ = g↓↑. In the first Born approximation in 3D,
g↑↓ = 8πaskF .

The values of ρ↑ and ρ↓ still need to be determined by solving the saddle-point equations

∂Ωsp (β, µ↑, µ↓; ρ↑, ρ↓)

∂ρσ

∣∣∣∣
β,µ↑,µ↓;ρ−σ

= 0. (6.12)

Because of the choice of kF = 1 as a unit, they need to be solved together with the number equation
for n = n↑ + n↓, with

nσ = −
∂Ωsp (β, µ↑, µ↓)

∂µσ

∣∣∣∣
β,µ−σ

. (6.13)

Through a similar derivation as in Sec. 4.4.1 for contact interactions, it can be shown that the saddle-
point equations are equivalent to ρσ = nσ.

6.5 Exchange interactions

As a verification of the results, it is important to check whether we can recover the results for contact
interactions from Sec. 4.4. In order to do so, the interaction potential is chosen as

gσ1σ2 (∆x) = gδ (∆x) (6.14)

with g ∈ R and ∆x the Dirac delta function. In this particular case, the interaction parameters gσ1σ2
are given by

gσ1σ2 =

∫
V
d (∆x) gσ1σ2 (∆x) = g

∫
V
d (∆x) δ (∆x) = g (6.15)

and eq. (6.9) becomes

Ωsp (β, µ↑, µ↓; ρ↑, ρ↓) = −1

2

∑
σ1,σ2=↑,↓

gρσ1ρσ2 + Ωsp,0

(
β, µ′↑, µ

′
↓
)

(6.16)

with the effective chemical potential given by

µ′σ1 = µσ1 −
∑
σ2=↑,↓

gρσ2 . (6.17)

There is a problem with this result. Due to the Pauli exclusion principle, which forbids two particles to
occupy the same quantum state, contact interactions between two particles of the same spin state are
forbidden. However in eqs. (6.16) and (6.17), the contact interactions between particles of the same
spin state do contribute to the thermodynamic grand potential. In many theoretical derivations, the
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interactions between particles of the same spin state are split into two contributions: the direct and the
exchange part. The direct interactions are the interactions that the particles would experience without
taking into account the Pauli exclusion principle. The exchange part is defined as the correction that
is needed in order to obtain the true interaction energy after taking into account the Pauli exclusion
principle. For contact interactions, the direct and exchange contributions are equal and cancel each
other completely. In the saddle-point thermodynamic grand potential that was derived in this chapter,
only the direct interactions are taken into account and the exchange part has disappeared. Next, it is
interesting to investigate where and why the exchange interactions disappeared.

6.5.1 Analysis of the Hubbard-Stratonovich transformation

The key to understanding how the exchange interactions disappeared lies in the Hubbard-Stratonovich
transformation, given by eq. (6.3) and repeated here:

exp

− ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2
ψ̄σ1,x,τ ψ̄σ2,x′,τψσ2,x′,τψσ1,x,τ


=

1

Zρ

∫
Dρ↑

∫
Dρ↓ exp

 ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2

×
(
ρσ1,x,τρσ2,x′,τ − ρσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ − ψ̄σ1,x,τψσ1,x,τρσ2,x′,τ

) . (6.18)

In the first line of eq. (6.18), the Pauli exclusion principle is automatically included due to the antisym-
metry of the Grassmann fields and as a result interactions with σ1 = σ2 and x = x′ do not contribute
to the path integral over the fermionic fields. However, in the last two lines of eq. (6.18) there is
no similar mechanism to ensure the Pauli principle is observed, therefore interactions with σ1 = σ2

and x = x′ do contribute to the path integral over the fermionic fields. Is this Hubbard-Stratnovich
transformation still exact? The answer is yes: the “forbidden terms” with σ1 = σ2 and x = x′ cancel
each other when the full path integral over the bosonic field is performed.

The recovery of the exchange interactions in the bosonic path integral can be understood as
a transfer of symmetry properties. The antisymmetry properties of a pair of fermionic particles
disappear when this pair is treated as a true boson. However, the information contained in those
symmetry properties cannot simply disappear: it is transformed into symmetry properties of the
integrand of the bosonic path integral. These symmetry properties will ensure observance of the Pauli
exclusion principle, as will be demonstrated using two simplified examples.

First simplified example

Here, a proof of principle will be provided using complex (or real) numbers and Grassmann numbers
instead of bosonic and fermionic fields. The symmetry properties which lead to observance of the
Pauli exclusion principle in the right hand side of eq. (6.18) are best demonstrated using the integral

C1 =

∫
C

dz exp (−zz̄ + ψ1ψ2z + z̄ψ3ψ4) , (6.19)

with z a complex number and ψ1, ψ2, ψ3 and ψ4 Grassmann numbers. As each function of Grassmann
numbers can be Taylor expanded into a linear function,

C1 =

∫
C

dz exp (−zz̄) (1 + ψ1ψ2z + z̄ψ3ψ4 + zz̄ψ1ψ2ψ3ψ4) . (6.20)
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Next, the complex integral can be transformed into two real integrals using z = x+ iy and z̄ = x− iy
with x, y ∈ R,

C1 =

+∞∫
−∞

dx

+∞∫
−∞

dy exp
(
−x2 − y2

) [
1 + ψ1ψ2 (x+ iy) + (x− iy)ψ3ψ4 +

(
x2 + y2

)
ψ1ψ2ψ3ψ4

]

=

 +∞∫
−∞

exp
(
−x2

)
dx

 +∞∫
−∞

exp
(
−y2

)
dy


+ (ψ1ψ2 + ψ3ψ4)

 +∞∫
−∞

x exp
(
−x2

)
dx

 +∞∫
−∞

exp
(
−y2

)
dy


+i (ψ1ψ2 − ψ3ψ4)

 +∞∫
−∞

exp
(
−x2

)
dx

 +∞∫
−∞

y exp
(
−y2

)
dy


+ψ1ψ2ψ3ψ4


 +∞∫
−∞

x2 exp
(
−x2

)
dx

 +∞∫
−∞

exp
(
−y2

)
dy


+

 +∞∫
−∞

exp
(
−x2

)
dx

 +∞∫
−∞

y2 exp
(
−y2

)
dy

 . (6.21)

Using
+∞∫
−∞

exp
(
−x2

)
dx =

√
π, (6.22)

+∞∫
−∞

x exp
(
−x2

)
dx = 0, and (6.23)

+∞∫
−∞

x2 exp
(
−x2

)
dx =

√
π

2
, (6.24)

the following result is obtained:

C1 = π (1 + ψ1ψ2ψ3ψ4) = π exp (ψ1ψ2ψ3ψ4) . (6.25)

The terms where the Pauli exclusion principle could have been violated if two of the Grassmann
numbers ψ1, ψ2, ψ3 and ψ4 are equal vanished due to the antisymmetry of the integrands x exp

(
−x2

)
and y exp

(
−y2

)
in eq. (6.21). This implies that the standard Hubbard-Stratonovich transformation

is exact,

exp (ψ1ψ2ψ3ψ4) =
1

π

∫
C

dz exp (−zz̄ + ψ1ψ2z + z̄ψ3ψ4) . (6.26)

Second simplified example

A simplified example which is closer to the Hubbard-Stratonovich transformation (6.18) with the real
fields ρ↑ and ρ↓ is given by

C2 =

+∞∫
−∞

dx

+∞∫
−∞

dy exp (−xy + ψ1ψ2x+ yψ3ψ4)

=

+∞∫
−∞

dx

+∞∫
−∞

dy exp (−xy) (1 + ψ1ψ2x+ yψ3ψ4 + xyψ1ψ2ψ3ψ4) . (6.27)
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Similar symmetry arguments will cause the terms with integrand x exp (−xy) and y exp (−xy) to
vanish, but it is harder to see as it is impossible to decouple the integrals in this notation. They can
be decoupled by transforming the coordinates to ρ = (x+ y) /2 and φ = (x− y) /2,

C2 =− 2

+∞∫
−∞

dρ

+∞∫
−∞

dφ exp
(
−ρ2 + φ2

) [
1 + ψ1ψ2 (ρ+ φ) + (ρ− φ)ψ3ψ4 +

(
ρ2 − φ2

)
ψ1ψ2ψ3ψ4

]

=− 2

 +∞∫
−∞

exp
(
−ρ2

)
dρ

 +∞∫
−∞

exp
(
φ2
)
dφ


−2 (ψ1ψ2 + ψ3ψ4)

 +∞∫
−∞

ρ exp
(
−ρ2

)
dρ

 +∞∫
−∞

exp
(
φ2
)
dφ


−2 (ψ1ψ2 − ψ3ψ4)

 +∞∫
−∞

exp
(
−ρ2

)
dρ

 +∞∫
−∞

φ exp
(
φ2
)
dφ


−2ψ1ψ2ψ3ψ4


 +∞∫
−∞

ρ2 exp
(
−ρ2

)
dρ

 +∞∫
−∞

exp
(
φ2
)
dφ


−

 +∞∫
−∞

exp
(
−ρ2

)
dρ

 +∞∫
−∞

φ2 exp
(
φ2
)
dφ

 . (6.28)

Note that
+∞∫
−∞

exp
(
φ2
)
dφ = +∞. (6.29)

Because of the antisymmetry of the integrand

+∞∫
−∞

φ exp
(
φ2
)
dφ = 0, (6.30)

and with partial integration it can be shown that

+∞∫
−∞

φ2 exp
(
φ2
)
dφ = −1

2

+∞∫
−∞

exp
(
φ2
)
dφ. (6.31)

Finally, it is found that

C2 = −2
√
π

 +∞∫
−∞

exp
(
φ2
)
dφ

 (1 + ψ1ψ2ψ3ψ4)

= −2
√
π

 +∞∫
−∞

exp
(
φ2
)
dφ

 exp (ψ1ψ2ψ3ψ4) . (6.32)

This confirms that

exp (ψ1ψ2ψ3ψ4) =

+∞∫
−∞

dx
+∞∫
−∞

dy exp (−xy + ψ1ψ2x+ yψ3ψ4)

+∞∫
−∞

dx
+∞∫
−∞

dy exp (−xy)

. (6.33)

In conclusion, the Hubbard-Stratonovich transformation (6.18) is exact.
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6.5.2 Modified interaction potential

The Pauli exclusion principle is taken into account exactly if the full path integral over the bosonic
field is taken, but this is no longer the case when the bosonic path integral is approximated. In many
approximations, only a select number of terms in the bosonic path integral are taken into account. This
may inadvertently lead to a violation of the Pauli exclusion principle, especially in the saddle-point
approximation.

This violation can easily be demonstrated in the simplified examples from Sec. 6.5.1. If a non-
zero value is obtained for the integral (6.23) due to approximations, the interaction terms that are
forbidden by the Pauli exclusion principle no longer disappear in eqs. (6.21) and (6.28).

As the exchange interactions are crucial to a correct description of itinerant ferromagnetism, it is
important to ensure that the Pauli exclusion principle is observed regardless of the approximation to
the bosonic path integral. In order to do this, I propose a new method, where the Pauli exclusion
principle is explicitly enforced through a modification of the interaction potential:

g̃σ1σ2 (∆x) = gσ1σ2 (∆x) [1− δσ1,σ2δ1 (∆x)] , (6.34)

with g̃σ1σ2 (∆x) the new modified interaction potential, gσ1σ2 (∆x) the true interaction potential,
δσ1,σ2 the Kronecker delta and

δ1 (∆x) =

{
1 ∆x = 0
0 ∆x 6= 0

. (6.35)

This form ensures that terms with σ1 = σ2 and x = x′ do not contribute to the bosonic path integral
in eq. (6.3).

An important side note is the fact that the delta function that excludes terms with x = x′ only
has height one. It is not a Dirac delta function with infinite height. This choice only makes sense
in a countable basis of the Hilbert space, whereas the position basis is an uncountable set. However,
physical bases are always countable and the position basis is an unphysical limit which is often used
to ease calculations. In order to compensate for the fact that the position basis is an unphysical limit,
it is also possible to define the modified interaction potential as

g̃σ1σ2 (∆x) = gσ1σ2 (∆x) [1− δσ1,σ2fσ1 (∆x)] , (6.36)

where the screening function fσ1 (∆x) is the fraction of the interaction potential that is screened by
the Pauli exclusion principle at a distance ∆x between two particles of spin state σ1. This definition
of the modified interaction potential will be used in the remainder of this dissertation, as it is a more
general form of eq. (6.34).

The modified interaction potential can be introduced in the Hubbard-Stratonovich transformation
by replacing gσ1σ2 (∆x) with g̃σ1σ2 (∆x) in the right-hand side of eq. (6.18),

exp

− ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2
ψ̄σ1,x,τ ψ̄σ2,x′,τψσ2,x′,τψσ1,x,τ


=

1

Zρ
Dρ↑

∫
Dρ↓ exp

 ∑
σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
g̃σ1σ2 (x− x′)

2

(
ρσ1,x,τρσ2,x′,τ

−ρσ1,x,τ ψ̄σ2,x′,τψσ2,x′,τ − ψ̄σ1,x,τψσ1,x,τρσ2,x′,τ
) . (6.37)

Even though g̃↑↓ (∆x) = g̃↓↑ (∆x) = g↑↓ (∆x) = g↓↑ (∆x), the notation g̃σ1σ2 is used for notational
ease.
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6.5.3 Result

After the modified Hubbard-Stratonovich transformation, the saddle-point thermodynamic grand po-
tential can then be derived by replacing gσ1σ2 (∆x) with g̃σ1σ2 (∆x) in the remainder of the calculation
(Sec. 6.2, 6.3 and 6.4). The result is given by

Ωsp (β, µ↑, µ↓; ρ↑, ρ↓) = −1

2

∑
σ1,σ2=↑,↓

g̃σ1σ2ρσ1ρσ2 + Ωsp,0

(
β, µ′↑, µ

′
↓
)

, (6.38)

µ′σ1 = µσ1 −
∑
σ2=↑,↓

g̃σ1σ2ρσ2 , (6.39)

where the new modified interaction parameters are given by

g̃σ1σ2 =
√
V g̃σ1σ2 (q = 0) =

∫
V
d (∆x) g̃σ1σ2 (∆x) . (6.40)

Using the exact definition (6.34) for the modified interaction potential, the modified interaction pa-
rameters for the contact interaction potential (6.14) are given by

g̃σ1σ2 = g

∫
V
d (∆x) δ (∆x) [1− δσ1,σ2δ1 (∆x)] = g [1− δσ1,σ2 ] . (6.41)

This implies that g̃↑↑ = g̃↓↓ = 0, so contact interactions between particles of equal spin states no longer
contribute to the saddle-point thermodynamic grand potential. In the saddle-point approximation,
the correction term introduced in the modified interaction potential corresponds to the exchange in-
teractions. Using the modified interaction potential, the results from chapter 4 for contact interactions
are fully recovered.
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Chapter 7

Stability analysis of the saddle points

The results obtained in this chapter have been submitted for publication as:

E. Vermeyen, C. A. R. Sá de Melo and J. Tempere, Exchange interactions in the
Hubbard-Stratonovich transformation for the stability analysis of itinerant ferromagnetism,

ArXiv:1511.05402 [cond-mat.quant-gas] (2015).

7.1 Hessian matrix

In chapter 5, it was shown for contact interactions that all saddle points of the saddle-point thermo-
dynamic grand potential are unstable to density fluctuations. In order to understand the contact-
potential instability, in this chapter a similar stability analysis of the saddle points will be performed
for a general interaction potential.

The stability is studied by studying the Hessian matrix of the second derivatives of the saddle-point
thermodynamic grand potential in the saddle points,

H =


∂2Ωsp (β, µ↑, µ↓; ρ↑, ρ↓)

(∂ρ↑)
2

∣∣∣∣∣
β,µ↑,µ↓;ρ↓

∂2Ωsp (β, µ↑, µ↓; ρ↑, ρ↓)

∂ρ↑∂ρ↓

∣∣∣∣
β,µ↑,µ↓

∂2Ωsp (β, µ↑, µ↓; ρ↑, ρ↓)

∂ρ↓∂ρ↑

∣∣∣∣
β,µ↑,µ↓

∂2Ωsp (β, µ↑, µ↓; ρ↑, ρ↓)

(∂ρ↓)
2

∣∣∣∣∣
β,µ↑,µ↓;ρ↑

 . (7.1)

The first derivatives of eq. (6.38) to ρ↑ and ρ↓ are given by

∂Ωsp (β, µ↑, µ↓; ρ↑, ρ↓)

∂ρ↑

∣∣∣∣
β,µ↑,µ↓;ρ↓

= −g̃↑↓ρ↓ − g̃↑↑ρ↑ +
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↑

∣∣∣∣∣∣
β,µ′↓

∂µ′↑
∂ρ↑

+
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↓

∣∣∣∣∣∣
β,µ′↓

∂µ′↓
∂ρ↑

= −g̃↑↓ρ↓ − g̃↑↑ρ↑ − g̃↑↑
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↑

∣∣∣∣∣∣
β,µ′↓

− g̃↑↓
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↓

∣∣∣∣∣∣
β,µ′↓

, (7.2)

∂Ωsp (β, µ↑, µ↓; ρ↑, ρ↓)

∂ρ↓

∣∣∣∣
β,µ↑,µ↓;ρ↑

= −g̃↑↓ρ↑ − g̃↓↓ρ↓ − g̃↑↓
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↑

∣∣∣∣∣∣
β,µ′↓

− g̃↓↓
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′↓

∣∣∣∣∣∣
β,µ′↓

. (7.3)
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Using eq. (5.3) for the second derivatives of Ωsp,0

(
β, µ′↑, µ

′
↓

)
to µ′↑ and µ′↓, it can be shown that the

Hessian matrix is equal to

H =

 −g̃↑↑ − g̃2
↑↑I↑

(
β, µ′↑

)
− g̃2
↑↓I↓

(
β, µ′↓

)
−g̃↑↓ − g̃↑↓

[
g̃↑↑I↑

(
β, µ′↑

)
+ g̃↓↓I↓

(
β, µ′↓

)]
−g̃↑↓ − g̃↑↓

[
g̃↑↑I↑

(
β, µ′↑

)
+ g̃↓↓I↓

(
β, µ′↓

)]
−g̃↓↓ − g̃2

↑↓I↑

(
β, µ′↑

)
− g̃2
↓↓I↓

(
β, µ′↓

) 
= −

(
g̃↑↑ g̃↑↓
g̃↑↓ g̃↓↓

)
−
(

g̃2
↑↑ g̃↑↓g̃↑↑

g̃↑↓g̃↑↑ g̃2
↑↓

)
I↑
(
β, µ′↑

)
−
(

g̃2
↑↓ g̃↑↓g̃↓↓

g̃↑↓g̃↓↓ g̃2
↓↓

)
I↓
(
β, µ′↓

)
(7.4)

with I↑

(
β, µ′↑

)
and I↓

(
β, µ′↓

)
given by eq. (5.4).

A solution to the saddle-point equations is stable if its Hessian matrix has two positive eigenvalues,
which is equivalent to requiring that the trace and determinant of its Hessian are both positive.

From the structure of eq. (7.4) and the fact that I↑

(
β, µ′↑

)
and I↓

(
β, µ′↓

)
are positive functions, it is

immediately clear that the Hessian can never have two positive eigenvalues if all interaction constants
are positive. In contrast to the contact-potential instability, for a general interaction potential it
cannot be proven that all saddle points are unstable to density fluctuations. Next, it is interesting to
investigate under which conditions stable saddle points may occur.

7.2 Stability analysis for itinerant ferromagnetism in 3D

In this section the stability analysis will be performed in the context of itinerant ferromagnetism
in 3D. To study whether the gas can spontaneously polarize through exchange interactions, it is
important to exclude other sources of polarization: chemical potential differences and interaction
parameter differences. For that reason, only the case µ↑ = µ↓ and g̃↑↑ = g̃↓↓ = g̃eq (the index eq
signifies interactions between particles of equal spin states) will be studied. In that case, the trace
and determinant of the Hessian (7.4) are given by

TrH = −2g̃eq −
(
g̃2
eq + g̃2

↑↓
)
Itot

(
β, µ′↑, µ

′
↓
)

and (7.5)

detH =
(
g̃2
eq − g̃2

↑↓
)1 + g̃eqItot

(
β, µ′↑, µ

′
↓
)

+
(
g̃2
eq − g̃2

↑↓
) z (β, µ′↑, µ′↓) I2

tot

(
β, µ′↑, µ

′
↓

)
4

 , (7.6)

where we introduced the new parameters

Itot
(
β, µ′↑, µ

′
↓
)

= I↑
(
β, µ′↑

)
+ I↓

(
β, µ′↓

)
(7.7)

and

z
(
β, µ′↑, µ

′
↓
)

=
4I↑

(
β, µ′↑

)
I↓

(
β, µ′↓

)
I2
tot

(
β, µ′↑, µ

′
↓

) ∈ [0, 1] . (7.8)

First, stability conditions as a function of g̃eq and g̃↑↓ will be derived for given values of Itot and

z. Next, Itot

(
β, µ′↑, µ

′
↓

)
and z

(
β, µ′↑, µ

′
↓

)
will be calculated as a function of the inverse temperature

β and the polarization P . Afterwards, the existence conditions of the saddle points will be derived
from the definition of the effective chemical potential. Finally, these results will be combined into a
stability phase diagram as a function of g̃eq and g̃↑↓.

7.2.1 Stability conditions

Here the stability conditions TrH > 0 and detH > 0 will be studied for given values of Itot and z.
Itot can be removed from the expressions for the trace (7.5) and determinant (7.6) of the Hessian by
rescaling the interaction parameters to Geq = Itotg̃eq and G↑↓ = Itotg̃↑↓,

TrH = − 1

Itot

(
2Geq +G2

eq +G2
↑↓
)

, and (7.9)
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detH =
1

I2
tot

(
G2
eq −G2

↑↓
) [

1 +Geq +
z

4

(
G2
eq −G2

↑↓
)]

. (7.10)

The stability condition TrH > 0 now no longer depends explicitly on Itot and z. It can be rewritten
as (Geq + 1)2 + G2

↑↓ < 1. (Geq + 1)2 + G2
↑↓ = 1 is the equation of a circle with radius 1 and centre

(G↑↓, Geq) = (0,−1). TrH is positive within that circle. Note that this implies that we can only find
stable saddle points for Geq < 0.

The stability condition detH > 0 still depends on the parameter z ∈ [0, 1]. If z = 0, it simplifies

to
(
G2
eq −G2

↑↓

)
(1 +Geq) > 0. This inequality holds true if both factors are either positive or negative

at the same time, so if |Geq| > |G↑↓| and Geq > −1, or if |Geq| < |G↑↓| and Geq < −1. The stability
conditions for z = 0 were drawn in fig. 7.1. The regions where detH > 0 and TrH > 0 only overlap
each other for −1 < Geq < − |G↑↓|. This is the stability condition at z = 0.

Figure 7.1: The stability conditions for z = 0 as a function of the rescaled interaction parameters
G↑↓ = Itotg̃↑↓ and Geq = Itotg̃eq. Within the black circle, TrH > 0. At the blue lines, the first factor(
G2
eq −G2

↑↓

)
of the determinant is zero. At the red line, the second factor (1 +Geq) of the determinant

is zero. In the left picture, the regions where
(
G2
eq −G2

↑↓

)
> 0 and (1 +Geq) > 0 are shaded (in blue

and red respectively). In the right picture, the regions where
(
G2
eq −G2

↑↓

)
< 0 and (1 +Geq) < 0

are shaded (in blue and red respectively). Where both shaded regions overlap within the black circle,
saddle points with z = 0 are stable. In the left picture, this occurs for −1 < Geq < − |G↑↓|. There is
no stability region remaining in the right picture.

If z 6= 0, the determinant can be rewritten as

detH =
2

zI2
tot

(
G2
eq −G2

↑↓
) [
Geq +

2

z
−
√

4 (1− z)
z2

+G2
↑↓

]

×

[
Geq +

2

z
+

√
4 (1− z)

z2
+G2

↑↓

]
. (7.11)

The last two factors are two branches of a hyperbola with centre (G↑↓, Geq) = (0,−2/z). They intersect
the Geq-axis at

Geq =
2

z

(
−1±

√
1− z

)
(7.12)

As z ∈ ]0, 1], −2/z < −2 and the lower branch of the hyperbola always intersects the Geq-axis below
the region where TrH > 0. Consequently, stable saddle points cannot occur in the region where the
third factor of eq. (7.11) is negative. The upper branch intersects the Geq-axis between −1 and −2,
so it always passes through the circular region where TrH > 0.
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There are again two cases, depending on the sign of the factor
(
G2
eq −G2

↑↓

)
in the determinant.

If
(
G2
eq −G2

↑↓

)
> 0⇔ |Geq| > |G↑↓|, detH > 0 also implies

Geq > −
2

z
+

√
4 (1− z)

z2
+G2

↑↓ or Geq < −
2

z
−
√

4 (1− z)
z2

+G2
↑↓. (7.13)

As we already excluded the occurrence of stable saddle points below the lower branch of the hyperbola,
stable saddle points can only occur above the upper branch of the hyperbola.

If
(
G2
eq −G2

↑↓

)
< 0⇔ |Geq| < |G↑↓|, detH > 0 also implies

−2

z
−
√

4 (1− z)
z2

+G2
↑↓ < Geq < −

2

z
+

√
4 (1− z)

z2
+G2

↑↓ (7.14)

and stable saddle points can only occur between the two branches of the hyperbola.

Figure 7.2: The stability conditions for z = 0.9 as a function of the rescaled interaction pa-
rameters G↑↓ = Itotg̃↑↓ and Geq = Itotg̃eq. Within the black circle, TrH > 0. At the blue

lines, the first factor
(
G2
eq −G2

↑↓

)
of the determinant is zero. At the red lines, the second fac-

tor
[
1 +Geq + z

4

(
G2
eq −G2

↑↓

)]
of the determinant is zero. In the left picture, the regions where(

G2
eq −G2

↑↓

)
> 0 and

[
1 +Geq + z

4

(
G2
eq −G2

↑↓

)]
> 0 are shaded (in blue and red, respectively). In

the right picture, the regions where
(
G2
eq −G2

↑↓

)
< 0 and

[
1 +Geq + z

4

(
G2
eq −G2

↑↓

)]
< 0 are shaded

(in blue and red, respectively). Where both shaded regions overlap within the black circle, saddle

points with z = 0.9 are stable. In the left picture, this occurs for −2
z +
√

4(1−z)
z2

+G2
↑↓ < Geq < − |G↑↓|.

There is no stability region remaining in the right picture.

As an example, the stability conditions were drawn for z = 0.9 in fig. 7.2. By combining the
stability conditions derived from detH > 0 and TrH > 0, finally the stability condition

−2

z
+

√
4 (1− z)

z2
+G2

↑↓ < Geq < − |G↑↓| (7.15)

is obtained. In the limit z → 0 of this expression, the stability condition −1 < Geq < − |G↑↓| is
recovered. In the limit z → 1, the two branches of the hyperbolas become two straight lines which
intersect each other at (G↑↓, Geq) = (0,−2/z), resulting in the stability conditions −2+ |G↑↓| < Geq <
− |G↑↓| (fig. 7.3). The stability regions were drawn for different values of z in fig. 7.4. As z goes from
0 to 1, the relative stability region grows from a triangle to a square.
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Figure 7.3: The stability conditions for z = 1 as a function of the rescaled interaction pa-
rameters G↑↓ = Itotg̃↑↓ and Geq = Itotg̃eq. Within the black circle, TrH > 0. At the blue

lines, the first factor
(
G2
eq −G2

↑↓

)
of the determinant is zero. At the red lines, the second fac-

tor
[
1 +Geq + 1

4

(
G2
eq −G2

↑↓

)]
of the determinant is zero. In the left picture, the regions where(

G2
eq −G2

↑↓

)
> 0 and (Geq + 2− |G↑↓|) > 0 are shaded (in blue and red, respectively). In the right

picture, the regions where
(
G2
eq −G2

↑↓

)
< 0 and (Geq + 2− |G↑↓|) < 0 are shaded (in blue and red,

respectively). Where both shaded regions overlap within the black circle, saddle points with z = 1
are stable. In the left picture, this occurs for −2 + |G↑↓| < Geq < − |G↑↓|. There is no stability region
remaining in the right picture.

Figure 7.4: The upper (black dashed line) and lower (colored full lines) boundaries of the stability
regions as a function of the rescaled interaction parameters G↑↓ = Itotg̃↑↓ and Geq = Itotg̃eq for different
values of z. As z goes from 0 to 1, the relative stability region grows from a triangle to a square.



66 CHAPTER 7. STABILITY ANALYSIS OF THE SADDLE POINTS

7.2.2 Itot and z as a function of β and P

The stability condition (7.15) still depends on the functions Itot

(
β, µ′↑, µ

′
↓

)
and z

(
β, µ′↑, µ

′
↓

)
. Similarly

to the derivation in Sec. 4.5, it is convenient to start from a given solution of the saddle-point equations
and work backwards to the conditions for which this solution exists. As kF = 1 already fixes the total
density n = n↑+n↓ to n = 1/3π2, we start from a given polarization P at a given temperature β. For
symmetry reasons, it is sufficient to consider only P > 0. From eqs. (4.33) and (5.2), n↑ and n↓ can
be expressed in terms of the effective chemical potentials,

nσ = −
∂Ωsp,0

(
β, µ′↑, µ

′
↓

)
∂µ′σ

∣∣∣∣∣∣
β,µ′−σ

=

∫
d3k

(2π)3

{
1

1 + exp [β (k2 − µ′σ)]

}
. (7.16)

Using

n↑ =
(1 + P )

6π2
and n↓ =

(1− P )

6π2
, (7.17)

eq. (7.16) can be solved numerically to find µ′↑ and µ′↓ for given values of β and P . Next, Itot

(
β, µ′↑, µ

′
↓

)
and z

(
β, µ′↑, µ

′
↓

)
can be calculated. Both Itot and z are monotonously decreasing functions of the

polarization |P | and the temperature T = 1/β (fig. 7.5 and 7.6).

Figure 7.5: Itot as a function of the polarization P for T = 0 (β → +∞ limit, black solid line), β = 10
(blue dashed line), β = 3.5 (purple dot-dashed line) and β = 1 (red dotted line). Itot is a monotonously
decreasing function of the polarization |P | and the temperature T = 1/β.

7.2.3 Existence conditions

By determining Itot and z, the stability conditions (7.15) can be calculated as a function of the
interaction parameters g̃↑↓ and g̃eq for any given value of β and P . However, it is still unclear whether
saddle points with that polarization P actually exist in the corresponding stability region. A saddle
point with a given polarization can exist at given values of the interaction parameters (g̃↑↓, g̃eq) if a
value µ = µ↑ = µ↓ of the chemical potential exists which satisfies the equations that define the effective
chemical potentials (6.39).

There are three separate cases which need to be considered: unpolarized saddle points (UP, P = 0),
partially polarized saddle points (PP, 0 < |P | < 1) and fully polarized saddle points (FP, |P | = 1).
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Figure 7.6: z as a function of the polarization P for T = 0 (β → +∞ limit, black solid line), β = 10
(blue dashed line), β = 3.5 (purple dot-dashed line) and β = 1 (red dotted line). z is a monotonously
decreasing function of the polarization |P | and the temperature T = 1/β. z = 1 at P = 0 and z = 0
at |P | = 1.

Unpolarized saddle points

For the unpolarized saddle points, ρ↑ = ρ↓ = n/2 = 1/6π2 and µ′↑ = µ′↓ = µ′, so eq. (6.39) becomes

µ′ = µ−
(g̃↑↓ + g̃eq)

6π2
. (7.18)

It is always possible to find a value of µ which satisfies this equation, therefore unpolarized saddle
points exist for all values of β and (g̃↑↓, g̃eq).

As z = 1 for P = 0, the unpolarized stability condition is given by

− 2

Itot
+ g̃↑↓ < g̃eq < − |g̃↑↓| . (7.19)

This is a square in the (g̃↑↓, g̃eq)-plane (fig. 7.4) with diagonals of length 2/Itot.

If I0
tot is defined as the value of Itot for P = 0, it is given by

I0
tot = β

∫
d3k

(2π)3

{
1

1 + cosh [β (k2 − µ′)]

}
(7.20)

with µ′ determined by

1

3π2
=

∫
d3k

(2π)3

{
1

1 + exp [β (k2 − µ′)]

}
. (7.21)

In the high-temperature limit (β → 0 and T → +∞), I0
tot = 0. In the zero-temperature limit

(β → +∞), µ′ = 1 and I0
tot = 1/2π2. I0

tot is a monotonously increasing function of β (fig. 7.7). As

the area of the unpolarized stability region is directly proportional to 1/
(
I0
tot

)2
, this implies that the

unpolarized stability region increases as a function of temperature. In the high-temperature limit, it
becomes infinitely large.
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Figure 7.7: The value I0
tot of Itot for the unpolarized saddle points as a function of the inverse tem-

perature β. The gray dashed line is the zero-temperature limit I0
tot = 1/2π2.

Partially polarized saddle points

For the partially polarized saddle points, eq. (6.39) becomes
µ′↑ = µ− g̃eq

(1 + P )

6π2
− g̃↑↓

(1− P )

6π2

µ′↓ = µ− g̃↑↓
(1 + P )

6π2
− g̃eq

(1− P )

6π2

(7.22)

⇔ ζ ′ =
µ′↑ − µ′↓

2
= (−g̃eq + g̃↑↓)

P

6π2
, (7.23)

where we defined ζ ′ as half the effective chemical potential difference. This existence condition can be
rewritten as g̃eq = g̃↑↓ − 6π2ζ ′/P , or

Geq = G↑↓ −
6π2ζ ′Itot

P
. (7.24)

The second term can be rewritten as twice the ratio χdiff/χtot between the differential susceptibility

χdiff =
∂ (δn)

∂ζ ′

∣∣∣∣
β,µ′

= Itot (7.25)

and the total susceptibility

χtot =
δn

ζ ′
=

P

3π2ζ ′
, (7.26)

defined in analogy to the magnetic susceptibilities (with δn instead of the magnetization M and ζ ′

instead of the magnetic field B).
Eq. (7.24) represents a straight line in the (G↑↓, Geq)-plane, which intersects the stability region

given by eq. (7.15) (fig. 7.4) if 0 < χdiff/χtot < 1. In fig. 7.8, the ratio χdiff/χtot is studied as a func-
tion of the polarization for different values of β. At T = 0 (β → +∞), χdiff/χtot is a monotonously
decreasing function of the polarization. However, for finite values of the inverse temperature β,
χdiff/χtot becomes infinitely large in the fully polarized limit. This is an important qualitative differ-
ence between the zero and non-zero temperatures: fully polarized saddle points can only be stable in
the zero-temperature limit.
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Figure 7.8: The ratio χdiff/χtot between the differential and the total susceptibility as a function of
the polarization P for T = 0 (β → +∞ limit, black solid line), β = 10 (blue dashed line), β = 3.5
(purple dot-dashed line) and β = 1 (red dotted line). The straight line Geq = G↑↓ − χdiff/χtot where
the partially polarized saddle points exist only intersects the stability region if 0 < χdiff/χtot < 1.

Figure 7.9: The maximum value Pmax of the polarization P for which (fully or partially) polarized
saddle points can be stable as a function of temperature T (in units of the Fermi temperature TF ).
For P ≤ Pmax, χdiff/χtot ≤ 1 and for P > Pmax, χdiff/χtot > 1. Polarized saddle points can only be
stable for T . 0.583.
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At P = 0, χdiff/χtot equals 1 and for low temperatures (high but finite β) it reaches a minimum
as a function of P before increasing towards the fully polarized limit. At those temperatures, par-
tially polarized solutions can exist and be stable up to a certain maximum polarization Pmax, where
χdiff/χtot reaches 1. If the temperature becomes too high (β too low), χdiff/χtot is a monotonously
increasing function of the polarization and none of the partially polarized saddle points are stable.
Pmax is shown as a function of the temperature T in fig. 7.9. The minimum value of β where partially
polarized saddle points can be stable may be estimated by studying χdiff/χtot for a very low value of
the polarization. Using P = 10−4, βmin . 1.715 (or equivalently Tmax = 1/βmin & 0.583) is found.

For 0 < P < 1, z ∈ ]0, 1[ and the stability condition is given by eq. (7.15).

Fully polarized saddle points

Full polarization is a special case. Fully polarized saddle points only exist at temperature zero, as
nσ = 0 in (7.16) can only be realized in the limit µ′σ → +∞ at finite values of the inverse temperature
β. The fact that fully polarized saddle points only exist at temperature zero is a second very important
qualitative difference between zero and non-zero temperatures.

At zero temperature, the number equations are given by eq. (4.38). If P = 1, n↑ = ρ↑ = 1/3π2

and n↓ = ρ↓ = 0, so µ′↑ = 22/3 and µ′↓ ≤ 0. These values can be used in eq. (6.39) to find
22/3 = µ′↑ = µ− g̃eq

3π2

0 ≥ µ′↓ = µ−
g̃↑↓
3π2

(7.27)

⇒ g̃eq ≤ g̃↑↓ − 3π222/3 (7.28)

⇔ Geq ≤ G↑↓ − 3π222/3Itot. (7.29)

This is the existence condition for the fully polarized saddle points at T = 0. The same existence
condition is found when starting from P = −1.

At |P | = 1, z = 0 and the fully polarized stability condition is given by

− 1

Itot
< g̃eq < − |g̃↑↓| . (7.30)

This is a triangle in the (g̃↑↓, g̃eq)-plane (fig. 7.4).
In the zero-temperature limit at full polarization, µ′ = 2/3 and Itot = 1/

(
25/3π2

)
, so at T = 0 the

fully polarized saddle points exist and are stable in the triangular region where

−25/3π2 < g̃eq < min
[
− |g̃↑↓| ,−3π222/3

]
. (7.31)

7.2.4 Stability-existence phase diagram

By combining the stability and existence conditions from Sec. 7.2.1 and 7.2.3 with the calculated
values of Itot and z as a function of β and P from Sec. 7.2.2, phase diagrams can be constructed (fig.
7.10).

There are several conclusions that can be drawn from the phase diagrams in fig. 7.10.

1. As was already mentioned in Sec. 7.2.3, the area of the unpolarized stability region increases as
a function of temperature. In the high-temperature limit, it becomes infinitely large.

2. Fully polarized saddle points only exist at temperature zero (as discussed in Sec. 7.2.3). However,
at low temperatures there is still a sizable region with almost full polarization.

3. The partially and fully polarized existence-stability regions shrink and become less polarized as
the temperature increases, until they are absorbed by the growing unpolarized stability region
at βmin . 1.715 (see Sec. 7.2.3). The maximum polarization that can be stable decreases with
temperature (see fig. 7.9).
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Figure 7.10: The stability-existence phase diagrams as a function of the interaction parameters g̃↑↓
and g̃eq for T = 0 (β → +∞), β = 10, β = 3.5 and β = 1. The blue diagonally shaded region
corresponds to the unpolarized stability-existence region, the colored region to the partially polarized
stability-existence region (where the hue depends on the polarization P ) and the green horizontally
and vertically shaded region to the fully polarized stability-existence region. Stable fully polarized
saddle points only occur at T = 0. As the temperature increases (or β decreases), the polarized saddle
points get less polarized and are absorbed by the growing unpolarized stability region. The current
formalism does not allow to investigate what happens outside of the dashed and colored regions.
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4. If the interactions become too strong, all saddle points become unstable to density fluctuations.
This significantly reduces the area where the itinerant ferromagnetic partially and fully polarized
phases are expected.

As the interaction parameter g↑↓ is related to the experimentally relevant interaction parameter

a↑↓s kF by g↑↓ = 8πa↑↓s kF in the first Born approximation (with 8π ≈ 25), a↑↓s kF is of order one in the
itinerant ferromagnetic regions of the phase diagrams in fig. 7.10. This is in agreement with the zero-
temperature mean-field Stoner criterion a↑↓s kF = π/2 and the second-order prediction a↑↓s kF = 1.054
[14] at the normal-to-itinerant-ferromagnetic phase transition, which are based on a simple energy
argument (Sec. 2.3.1).

The extra requirement of stability against density fluctuations adds an upper limit to the range of
values of a↑↓s kF where itinerant ferromagnetism may occur. Furthermore, the remaining interactions
g̃eq between particles of the same spin states after the screening by the exchange interactions play
an important role in the stability of the gas. As the interactions at short distances are screened,
an interaction potential which is sufficiently, but not too strongly attractive at mid-to-long ranges
between particles of equal spin states is required. For itinerant ferromagnetism to occur, a precarious
equilibrium has to be observed: strong density fluctuations and thus strong interactions are necessary
in order to create magnetic domains, but the magnetic domains are also destroyed if the density
fluctuations become too strong.

In most experiments with ultracold atomic gases, almost no interactions remain between particles
of equal spin states, so g̃eq can be assumed to be very small (|g̃eq| << 1). In that case, the phase
diagrams in fig. 7.10 predict that the itinerant ferromagnetic state cannot be stable. This may help
explain why the Stoner instability (of the normal state to magnetic domain formation) is dominated
by the instability of the Feshbach resonance (to molecule formation) in the experiments [35, 36]. An
important caveat to this conclusion is that it is as yet unclear to what extent the instabilities found
in the grand-canonical ensemble may be extended to the experimental system, where the particle
numbers are fixed. This issue will be discussed in Sec. 8.3.

The model constructed and discussed in chapter 6 and 7 is not valid outside of the stability
regions, so it cannot predict what occurs there. Possible phases include superfluid pairing, phase
separation, non-uniform phases (e.g. density waves in dipolar gases [97]) and crystallization. The
itinerant ferromagnetic region in the phase diagram may be extended by phase separation and non-
uniform itinerant ferromagnetic phases. However, other physical effects that have not been included in
the description may also reduce the normal and itinerant ferromagnetic regions in the phase diagram.
This is what occurs in liquid 3He, where the itinerant ferromagnetic region in the phase diagram
disappears when including crystallization [9]. For itinerant ferromagnetism, it appears there is a large
risk of modeling bias: a model created to describe itinerant ferromagnetism will predict itinerant
ferromagnetism to occur in a certain part of the phase diagram, but a more general model may not
find itinerant ferromagnetism at all. However, it is very challenging to include more than one physical
effect in a physically correct way.

As a final remark, for stable saddle points the results can be improved by including the effects of
small fluctuations around the saddle point. This is not possible for unstable saddle points, so fig. 7.10
also serves as a diagnostic tool for the feasibility of corrections beyond the saddle-point approximation.
Due to time constraints, these calculations were not attempted in this dissertation.



Chapter 8

Discussion of implicit assumptions and
approximations

When creating a theoretical model of a physical system, an equilibrium between two conflicting in-
terests has to be sought. On one hand, one wants to include as many physical effects as possible in
order to better describe the system. On the other hand, one wants to include the least amount of
extraneous physical effects possible in order to ease the calculations.

During the course of my doctoral research, in each conceptual step in the calculations I learned
more about the assumptions and approximations that are included in the model I was using and
whether those assumptions and approximations are valid. Many assumptions are made implicitly, so
it is not always clear at first sight that there is an assumption. In this chapter, I will discuss the most
important of these implicit assumptions and approximations.

8.1 The choice of the action

When the action used in the model has been chosen, many implicit assumptions have already been
made. As the action for contact interactions is only a particular form of the action for general
interaction potentials, only the action for general interaction potentials will be discussed. It is given
by eq. (6.1),

S
[
ψ̄σ, ψσ

]
=
∑
σ=↑,↓

β∫
0

dτ

∫
V

dxψ̄σ,x,τ

(
∂

∂τ
−∇2

x − µσ
)
ψσ,x,τ

+
∑

σ1,σ2=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2 (x− x′)

2
ψ̄σ1,x,τ ψ̄σ2,x′,τψσ2,x′,τψσ1,x,τ . (8.1)

The main assumptions made in the choice of the action are related to the choice of the interaction
term:

• The interaction potentials are time-independent. Furthermore, they only depend on the distance
between the particles.

• The interactions are instantaneous: all fermionic fields in eq. (8.1) have the same imaginary time
index τ .

• The two interacting particles remain in the same positions x and x′ during the (instantaneous)
interaction. In Fourier space, this corresponds to total momentum conservation during the
interaction.

• Only elastic interactions between two particles are taken into account. Collisions of more than
two particles and inelastic collisions have been neglected. This is not a good approximation

73
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to the situation in the most recent experiments, as inelastic two-and three-body collisions have
been shown to become important [36]. However, as discussed in Sec. 2.3.4, researchers are still
looking for a way to reduce the three-body collision rate in order to recreate the theoretical
Stoner model (which only takes into account elastic two-body collisions).

• Even for interactions between two particles, four particular interaction processes have been
selected. For instantaneous interactions, the full interaction term would be given by

∑
σ1,σ2,σ3,σ4=↑,↓

β∫
0

dτ

∫
V

dx

∫
V

dx′
gσ1σ2σ3σ4 (x− x′)

2
ψ̄σ1,x,τ ψ̄σ2,x′,τψσ3,x′,τψσ4,x,τ . (8.2)

In order to select the four interaction processes in eq. (8.1), conservation of total angular mo-
mentum (or total spin) during the interaction was used. This is a reasonable approximation for
elastic collisions between two particles.

Furthermore, by calculating the partition sum and minimizing the thermodynamic grand potential
the ground state of the system is sought. With this approach only equilibrium states of the system
can be studied. Experimentalists are trying to extend the lifetimes of the experiments on the repulsive
branch of the Feshbach resonance in order to study equilibrium states of the system, but so far the
experimental system could not be considered to be in equilibrium [36]. If itinerant ferromagnetism is
created with dipolar interactions [69–71], the match between theory and experiments may be closer as
dipolar interactions do not suffer from the instability to molecular pairing near a Feshbach resonance.

The final assumption is that all particles have equal mass. As recent proposals for the reduction
of the three-body loss rate in experiments include the use of mass imbalance [47–53], it would be
interesting to extend the results of chapter 6 and 7 to mass-imbalanced systems.

8.2 The choice of the density fluctuations

As explained in chapters 5 and 7, the Hessian matrix of the saddle-point thermodynamic grand
potential was used in order to study the stability of the saddle points against density fluctuations.
This way, only uniform perturbations of the density were considered. However, there are many other
possible density fluctuations, as the value of the bosonic field can be perturbed in each value of the
position coordinate separately (see fig. 8.1).

Figure 8.1: Two possible density fluctuations in a hypothetical system with only 5 different values of
the position coordinate. In a general density fluctuation, the density is perturbed in each value of the
position coordinate separately (left). In this dissertation, only uniform perturbations of the density
were considered (right).

A saddle point is stable against density fluctuations if it is stable against all possible density
fluctuations. Conversely, it only takes an instability against one possible fluctuation to drive the
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state out of equilibrium. The inclusion of other types of density fluctuations can only reduce the
stability regions in the phase diagrams (fig. 7.10). The limitation to uniform density fluctuation thus
implies the assumption that this is the dominant mode of instability. This seems to be a reasonable
approximation, as large parts of the phase diagram turned out to be unstable to uniform density
fluctuations.

Within the saddle-point approximation, only uniform density fluctuations can be considered. In
order to study other types of density fluctuations, the contribution of these density fluctuations to the
thermodynamic grand potential needs to be calculated. This is a tedious and challenging task. That
is the reason why these types of fluctuations have not been considered here. In order to improve our
results it would be interesting to calculate these fluctuation contributions in the areas of the phase
diagram that are stable to uniform density fluctuations.

8.3 The choice of the ensemble

There are several very important differences between the theoretical calculations in part II and III on
one hand, and the experiments on the other hand. These are shown in table 8.1.

Experiments Theory

Fixed particle numbers nσ Fixed chemical potentials µσ
Canonical ensemble Grand canonical ensemble
Trapping potential (usually harmonic) No external (trapping) potential
Non-uniform gas Uniform gas

Table 8.1: The main differences between the experiments in ultracold atomic gases and the theoretical
calculations presented in this dissertation.

This essentially comes down to the difference between the two important ensembles which have
been used in this thesis: the grand-canonical ensemble (energy and particle numbers fluctuate) and
the canonical ensemble (particle numbers are conserved, but the energy of the system fluctuates).
How do we match the results of the simplified grand-canonical theoretical calculations to the more
complicated canonical experimental conditions? There are two possible solutions to this conundrum.

The first solution is to adapt the theory to the experiment. In the saddle-point approximation,
transition from the grand-canonical ensemble to the canonical ensemble occurs by transitioning to the
free energy F (β, n↑, n↓) = Ω (β, µ↑, µ↓) + µ↑n↑ + µ↓n↓. The trapping potential could be included by
adapting the action. However, path-integral calculations tend to become cumbersome very quickly
when adding extra complications to the action. Furthermore, there is a loss of generality when adapting
to a particular experimental system.

The second solution is the use of the Local Density Approximation (LDA). If the density is suffi-
ciently slowly varying in space with respect to the other relevant length scales in the experiment, the
gas can be considered as locally uniform. The gas is then assumed to consist of a series of small uniform
compartments, characterized by local thermodynamic variables. Furthermore, each compartment is
allowed to exchange energy and particles with a “bath” that consists of the other compartments. In
this situation, the gas is locally described by the grand-canonical ensemble. If LDA is valid, the results
obtained in the path-integral formalism for a uniform gas without an external potential in the grand
canonical ensemble can be used to predict the local phase of the gas in the experiments.

LDA provides a powerful argument for extending the instability of itinerant ferromagnetism in
large parts of the grand-canonical phase diagram to the experimental system. However, it is not clear
whether the same instability mechanisms apply in the canonical ensemble. In the grand-canonical
ensemble, density fluctuations can also be realized through the creation and annihilation of particles,
while the density fluctuations in the canonical ensemble are limited to density shifts. Further research is
needed in order to clarify the link between the phase diagram in fig. 7.10 and the experiments. Given
the fact that itinerant ferromagnetism has proven to be notoriously elusive in experiments despite
the great number of solid theoretical predictions, it is likely that at least some of the instability
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mechanisms of itinerant ferromagnetism will persist in the experimental system. This would provide
a natural explanation for the discrepancy between theory and experiments.

For a general interaction potential, great care has to be taken when applying LDA, as the range
of the interactions is also an important length scale. The approach discussed in chapters 6 and 7
is only valid when it is possible to average the interactions in space, especially in the saddle-point
approximation. When the interactions between particles at large distances have an important effect,
density differences over that length scale may significantly influence the phase of the system. LDA
is only applicable when the range of the interactions is sufficiently small with respect to the length
scales of the density variations. This is a potentially important limit to the applicability of the results
obtained in chapter 7 for itinerant ferromagnetism.

LDA also fails when the number of particles becomes very small, but in that case also the theoretical
assumption that the gas is uniform is no longer valid.

8.4 The choice of the channel

When constructing a Hubbard-Stratonovich transformation, there are three possible ways or channels
to pair the four fermionic fields in the interaction term of the action (8.1) [92]:

1. Bogoliubov: ψ̄σ1,x,τ ψ̄σ2,x′,τ and ψσ1,x,τψσ2,x′,τ

2. Hartree: ψ̄σ1,x,τψσ1,x,τ and ψ̄σ2,x′,τψσ2,x′,τ

3. Fock: ψ̄σ1,x,τψσ2,x′,τ and ψ̄σ2,x′,τψσ1,x,τ

The Hubbard-Stratonovich transformation is exact, as it is derived from an algebraic property of
a bosonic path integral (as discussed in Sec. 4.2 and Sec. 6.2). However, the bosonic path integral
cannot be calculated exactly for a general case. In most approximations, the interaction part of the
action is expanded in terms of the bosonic field and its derivatives with respect to time and position.
This approximation is only valid when the considered pairings of the fermionic fields dominate the
physics of the system. Consequently, the choice of the channel determines the physics that is included
after approximating the bosonic path integral.

The Bogoliubov channel is most suitable for describing superfluid pairing [25], while the Hartree
channel is most suitable for describing the (density-density) interactions in the normal and itinerant
ferromagnetic state [94,95]. The Fock channel is a special case.

For interactions between particles with opposite spin states, the Fock channel is often used in
combination with the Hartree channel. The expectation value of the spin at each position can be
expressed as a vector with a fixed length. In that view, the Hartree channel is used to describe the
magnetization along the z-axis (or the population of the up and down spin states) and the Fock channel
is used to describe the magnetization in the plane perpendicular to the z-axis. When combining the
Hartree and Fock channels, the Hubbard-Stratonovich transformation can be rewritten in terms of a
bosonic field ρ (corresponding to the total density) and a bosonic vector field φ (corresponding to the
expectation value of the spin) [94–96]. In a true spin-1/2 Fermi gas (e.g. a free electron gas), this is
a useful description. However, in ultracold atomic gases σ1 and σ2 are only pseudospin states: ↑ and
↓ are used as a label for the two different components of the gas. Furthermore, the number of atoms
in each pseudospin state can usually be considered to be fixed for the duration of the experiment.
Consequently, in the context of ultracold atomic gases polarization along the perpendicular plane is
not as relevant as for electrons in a material.

For particles of the same spin state, the Hartree and Fock channels both describe the same density-
density interactions between particles of the same spin state. This clearly shows that the names Hartree
and Fock are used differently here than in the usual Hartree-Fock treatment. In that treatment, the
Hartree contribution corresponds to the direct interactions and the Fock contribution to the exchange
interactions. In this dissertation, Hartree and Fock are used to denote two different channels of
the Hubbard-Stratonovich transformation, which initially contain the same information (before the
approximation of the bosonic path integral). The Hartree and Fock channel contain both direct and



8.5. THE CHOICE OF THE BASIS: POSITION VS. MOMENTUM SPACE 77

exchange interactions. Coincidentally, without the modified interaction potential the Hartree channel
does correspond to the direct interactions in the saddle-point approximation. However, the Fock
channel does not correspond to the exchange contribution in the saddle-point approximation and it
suffers from the same potential loss of the exchange interactions when approximating the bosonic path
integral.

In conclusion, in the context of ultracold atomic gases the Bogoliubov and Hartree channels are
most relevant, although the Fock channel could be used to further improve the description of the
interactions between particles of different spin states. In this dissertation on itinerant ferromagnetism
only the Hartree channel was studied. However, it is known that superfluid pairing also plays a
very important role, as it will compete with magnetic domain formation. In the future, it would be
interesting to combine the Hartree and Bogoliubov channels.

Because all channels initially contain the same physical information, it is a very difficult and
dangerous undertaking to combine more than one channel. Great care has to be taken to avoid
double counting when approximating the bosonic path integrals. That is the main reason why this
combination of channels has not been attempted here.

8.5 The choice of the basis: position vs. momentum space

In Sec. 6.2, I proposed a new method to enforce the Pauli exclusion principle explicitly through a
modification of the interaction potential. The Hubbard-Stratonovich transformation with this new
modified interaction potential remains exact, and the modified interaction potential ensures that also
in the saddle-point approximation the exchange is properly taken into account. The final question
that remains is the following: is this new method exact or approximate?

Intuitively, the answer would be that it is exact, as the Hubbard-Stratonovich transformation
is exact and the parts of the interaction potential that are modified only affect parts of the action
that are excluded by the exchange interactions. However, in reality it is not exact: the exchange
interactions cannot be described by an interaction potential. This is related to the fact that both
behave differently under a Fourier transform. In order to demonstrate this fact, I will define a second
modified interaction potential in the momentum basis and compare the results to the original results
obtained in the position basis (see chapter 6 and 7).

Using definitions (4.15) and (6.5) for the Fourier transformed fermionic fields and interaction
potentials, the original action (6.1) can be rewritten in the momentum basis as

S
[
ψ̄σ, ψσ

]
=
∑
σ=↑,↓

∑
k

ψ̄σ,k
(
−iωn + k2 − µσ

)
ψσ,k

+
1

2

1

β
√
V

∑
k,k′,Q

∑
σ1,σ2=↑,↓

gσ1σ2 (Q) ψ̄σ1,kψσ1,k−Qψ̄σ2,k′ψσ2,k′+Q (8.3)

with k = (k, ωn), k′ = (k′, ωn′) and Q = (Q,Ωm). The antisymmetry properties of the Grassmann
numbers exclude terms where the two incoming or outgoing fermions are in the same quantum state:

1. k = k′, and

2. k −Q = k′ +Q⇔ Q = (k − k′) /2.

Note that interaction terms with k′ = k and Q = 0 are excluded by both conditions. In order to
enforce the Pauli exclusion principle, a new modified interaction potential g′σ1σ2 (Q) has to be defined
in a similar way as in eq. (6.34) for the transformation in position space:

g′σ1σ2
(
Q, k, k′

)
= gσ1σ2 (Q)

{
1− δσ1,σ2

[
δ1

(
k − k′

)
+ δ1

(
Q− k − k′

2

)
−δ1

(
k − k′

)
δ1

(
Q− k − k′

2

)]}
. (8.4)
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Next, the behavior of the modified interaction term under an inverse Fourier transform will be
studied. The inverse Fourier transform is defined as


ψσ,k,n =

1√
βV

β∫
0

dτ

∫
V

dx exp (−ik · x + iωnτ)ψσ,x,τ

ψ̄σ,k,n =
1√
βV

β∫
0

dτ

∫
V

dx exp (ik · x− iωnτ) ψ̄σ,x,τ

, (8.5)

gσ1σ2 (Q) =
1√
V

∫
V

d (∆x) exp (−iQ ·∆x) gσ1σ2 (∆x) . (8.6)

The modified interaction term can be split into four parts according to the four terms of the
modified interaction potential (8.4),
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Each term is inverse Fourier transformed separately and the result is given by
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The first term is the original interaction term in position space,
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but there is a series of extra terms that was not present in the original interaction term:
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]
gσ1σ2 (∆x) ψ̄σ1,x1,τ1ψσ1,x2,τ2ψ̄σ2,x3,τ3ψσ2,x4,τ4 . (8.11)

Each additional delta function (or restriction) in momentum space results in a reduction in the number
of delta functions (so in an extra degree of freedom) in the corresponding term in position space. This
is because a delta function Fourier transforms into a constant function, instead of into another delta
function.

A peculiar property of the Grassmann algebra is the fact that a restriction imposed by the Pauli
exclusion principle in position space Fourier transforms into a restriction imposed by the Pauli exclu-
sion principle in momentum space and vice versa. For real and complex functions (e.g. interaction
potentials), a restriction in position space Fourier transforms into an extra freedom in momentum
space and vice versa.

The results of this reasoning imply that the use of a modified interaction potential instead of
the real interaction potential affects the physics of the system, even when only terms affected by the
exchange interactions in position or momentum space are excluded. The only true way forward in the
implementation of the exchange interactions is the treatment of the full fourth order interaction term.
However, the fact that the full fermionic path integral cannot (yet) be performed exactly remains a
problem. Another possibility for improving the results is to search for an approximation of the bosonic
path integral where all “forbidden terms” that are taken into account cancel each other.

At this moment, the use of a modified interaction potential is the best solution available for
including the exchange interactions when approximating the bosonic path integral after the Hubbard-
Stratonovich transformation for a general interaction potential. Even though it is not exact, it is still
possible that this treatment is a reasonably good approximation to the physics of the system. This
can only be revealed by comparison with future experimental results.

The agreement between theory and experiment may depend on the basis used in the analysis.
In position space, particles are regarded as perfectly localized. In momentum space, particles are
regarded as unlocalized waves. As the de Broglie wavelength λdB is relatively large in experiments
with ultracold atomic gases, it may be more accurate to consider the particles as waves in momentum
space. A starting point for such an analysis is given in appendix A.
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Chapter 9

Conclusion

The goal of this dissertation was to improve the theoretical description of itinerant ferromagnetism in
the context of ultracold atomic gases. This goal was met in several steps.

In part II, itinerant ferromagnetism is studied in a two-component or (pseudo)spin-1/2 Fermi gas
with contact interactions.

In chapter 4, the thermodynamic grand potential of a two-component Fermi gas with contact
interactions was calculated in the saddle-point approximation of the path-integral formalism. Central
to this description is the Hubbard-Stratonovich transformation, which is used to convert the fourth-
order interaction term into terms of second order in the fermionic fields, at the cost of introducing
an extra path integral over an auxiliary bosonic field. The choice of this bosonic field determines the
physics included in the saddle-point approximation. In order to describe itinerant ferromagnetism, the
Hartree channel was chosen and two density fields (one for each component) were introduced in the
transformation. In the saddle-point approximation, the bosonic fields are assumed to be constant and
their value is determined by extremizing the thermodynamic grand potential. Finally, it was shown
in the zero-temperature limit that the results of the mean-field Stoner model are recovered.

In chapter 5, it was shown that none of the solutions to the saddle-point equations are minima
of the thermodynamic grand potential, meaning that they are unstable to small density fluctuations.
However, the meaning of this instability was still unclear.

In part III, itinerant ferromagnetism is studied in a two-component or (pseudo)spin-1/2 Fermi
gas with a general form of the interaction potentials.

In chapter 6, the thermodynamic grand potential of a two-component Fermi gas with general in-
teraction potentials was calculated in the saddle-point approximation of the path-integral formalism.
Three different interaction potentials were used: one for interactions between two particles of opposite
(pseudo)spin states and two for interactions between particles of the same (pseudo)spin state. In anal-
ogy to the calculation for contact interactions in chapter 4, two density fields (one for each component)
were used to construct a Hubbard-Stratonovich transformation for the interaction terms. Before the
transformation, the Pauli exclusion principle is automatically included in the symmetry properties of
the product of four Grassmann variables. I showed that after the transformation, terms forbidden by
the Pauli principle do contribute to the bosonic path integral. The Pauli exclusion principle remains
valid due to the fact that these “forbidden terms” cancel each other when taking the full bosonic path
integral. However, the bosonic path integral cannot be calculated exactly for a general case and it is no
longer guaranteed that the Pauli exclusion principle will be included when the bosonic path integral is
approximated. In order to ensure that the “forbidden” terms do not contribute to the approximated
bosonic path integral, I proposed to explicitly enforce the Pauli exclusion principle through a modifi-
cation of the interaction potential. In the saddle-point approximation, only three relevant interaction
parameters remain: one for each interaction potential, each one equal to the corresponding modified
interaction potential integrated over the volume.

In chapter 7, a stability analysis of the solutions to the saddle-point equations was performed
in the example most relevant to itinerant ferromagnetism: equal chemical potentials and equal intra-
component interaction potentials in 3D. When the interactions become too strong, all saddle points
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become unstable to density fluctuations. This strongly limits the itinerant ferromagnetic region in
the phase diagram. Furthermore, mid-to-long ranged net attractive intracomponent interactions are
needed in order to dynamically stabilize the gas.

In chapter 8, implicit assumptions and approximations made in the choice of the action, the
choice of the density fluctuations, the choice of the ensemble, the choice of the channel in the Hubbard-
Stratonovich transformation and the choice of the basis (e.g. the position or momentum basis) were
discussed, with special attention to the implications for the validity of the results from chapters 6
and 7. The main result is that the newly proposed method for implementing the Pauli exclusion
principle in the Hubbard-Stratonovich transformation is not exact, as an interaction potential does
not Fourier transform in the same way as a product of fermionic Grassmann fields. The use of the
modified interaction potential still has to be validated by comparison with future experiments.

To summarize, there are four important results of this dissertation:

1. When approximating the bosonic path integral after the Hubbard-Stratonovich transformation,
it is no longer guaranteed that the Pauli exclusion principle is correctly included.

2. A new approximate method was proposed, in order to enforce the Pauli exclusion principle
explicitly through a modification of the interaction potential.

3. The results obtained with this new method in the saddle-point approximation suggest that
stability against density fluctuations is an important factor to take into account when studying
itinerant ferromagnetism, as it greatly limits the itinerant ferromagnetic region in the phase
diagram. This may help explain why itinerant ferromagnetism is so notoriously hard to find
experimentally.

4. The use of a modified interaction potential is not an exact implementation of the Pauli exclusion
principle.

Furthermore, in the conditions where itinerant ferromagnetism is expected to occur (strong repul-
sive intercomponent interactions at low temperatures) many different physical effects compete (e.g.
magnetic domain formation, superfluid pairing, crystallization,...), which makes itinerant ferromag-
netism very sensitive to modeling bias. That is why the model proposed in this dissertation is by
no means final, but only a first step in the creation of better models for itinerant ferromagnetism in
particular and the exchange interactions in general.
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Appendix A

Saddle-point grand potential in
momentum space

A.1 The Hubbard-Stratonovich transformation

Expressed in the momentum basis, the action (6.1) is given by eq. (8.3),

S
[
ψ̄σ, ψσ

]
=
∑
σ=↑,↓

∑
k

ψ̄σ,k
(
−iωn + k2 − µσ

)
ψσ,k

+
1

2

1

β
√
V

∑
σ1,σ2=↑,↓

∑
k,k′,Q

gσ1σ2 (Q) ψ̄σ1,kψσ1,k−Qψ̄σ2,k′ψσ2,k′+Q. (A.1)

In the momentum basis, a Hubbard-Stratonovich transformation can be constructed in the Hartree
channel using ψ̄σ1,kψσ1,k−Q and ψ̄σ2,k′ψσ2,k′+Q as reference fields (in analogy to the construction of the
Hubbard-Stratonovich transformation in the position basis in Sec. 4.2 and Sec. 6.2). Because these
reference fields are not equal to their complex conjugates, it is no longer possible to use real (instead
of complex) bosonic fields. The resulting transformation is given by

exp

−1

2

1

β
√
V

∑
k,k′,Q

∑
σ1,σ2=↑,↓

gσ1σ2 (Q) ψ̄σ1,kψσ1,k−Qψ̄σ2,k′ψσ2,k′+Q


=

1

Zρ

(∏
σ

∫
Dρ̄σ

∫
Dρσ

)
exp

 1

β
√
V

∑
σ1,σ2=↑,↓

∑
k,k′,Q

g′σ1σ2 (Q, k, k′)

4

×
{
ρ̄σ1 (k −Q, k) ρσ2

(
k′, k′ +Q

)
+ ρσ1 (k, k −Q) ρ̄σ2

(
k′ +Q, k′

)
− [ρ̄σ1 (k −Q, k) ρσ1 (k, k −Q)] ψ̄σ2,k′ψσ2,k′+Q

−ψ̄σ1,kψσ1,k−Q
[
ρ̄σ2
(
k′ +Q, k′

)
+ ρσ2

(
k′, k′ +Q

)]} , (A.2)

where g′σ1σ2 (Q, k, k′) is the modified interaction potential as defined in eq. (8.4),

g′σ1σ2
(
Q, k, k′

)
= gσ1σ2 (Q)

{
1− δσ1,σ2

[
δ1

(
k − k′

)
+ δ1

(
Q− k − k′

2

)
−δ1

(
k − k′

)
δ1

(
Q− k − k′

2

)]}
. (A.3)

In contrast to position space where only one position coordinate suffices, two momentum coordinates
remain in the definition of ρ↑ and ρ↓ in momentum space. Due to this fact, the bosonic fields ρ↑, ρ̄↑,
ρ↓ and ρ̄↓ from eq. (A.2) can no longer be interpreted as density fields. They are closer related to first
order correlation functions, which express the likelihood of a particle to propagate from one state to
another.
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A.2 Fermionic path integral

After the Hubbard-Stratonovich transformation, the partition sum can be rewritten in terms of an
effective action,

Z =

 ∏
σ=↑,↓

∫
Dψ̄σ

∫
Dψσ

∫
Dρ̄σ

∫
Dρσ

 exp
(
−Seff

[
ψ̄σ, ψσ, ρ̄σ, ρσ

])
, (A.4)
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[
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4
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(
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)
+

1

β
√
V

∑
σ1,σ2=↑,↓

∑
k,k′,Q

g′σ1σ2 (Q, k, k′)

4
[ρ̄σ1 (k −Q, k) + ρσ1 (k, k −Q)] ψ̄σ2,k′ψσ2,k′+Q

+
1

β
√
V

∑
σ1,σ2=↑,↓

∑
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g′σ1σ2 (Q, k, k′)

4
ψ̄σ1,kψσ1,k−Q

[
ρ̄σ2
(
k′ +Q, k′

)
+ ρσ2

(
k′, k′ +Q

)]
. (A.5)

In order to perform the fermionic path integral, the effective action still needs to be rewritten. The
second term of (A.5) can be shown to be equal to the third term using σ1 ↔ σ2, k ↔ k′, Q → −Q
and g′σ1σ2 (−Q, k, k′) = g′σ1σ2 (Q, k, k′). With the same coordinate transformation, it can be shown
that the fourth term of (A.5) is equal to the fifth term. Finally, all terms can be rewritten using the
coordinate transformation k1 = k, k2 = k −Q and k3 = k′. The effective action is then given by

Seff
[
ψ̄σ, ψσ, ρ̄σ, ρσ

]
=
∑
σ1=↑,↓

∑
k1,k2

ψ̄σ1,k1
[
−G−1

σ1 (k1, k2)
]
ψσ1,k2 (A.6)
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δ (∆k) (A.7)
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After performing the fermionic path integral, the partition sum becomes

Z =
∏
σ=↑,↓

(∫
Dρ̄σ

∫
Dρσ

)
exp
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σ1=↑,↓

Tr
k1,k2
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2
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 . (A.8)

A.3 Saddle-point approximation

The bosonic path integral in eq. (A.8) has to be approximated. In this case, I choose a saddle-point
approximation within the assumption that only interactions with ∆k = Q = 0 contribute,{

ρ̄σ (k, k′) = βV δk,k′ρ
∗
σ (k)

ρσ (k, k′) = βV δk,k′ρσ (k)
. (A.9)
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This is a reasonable approximation in ultracold atomic gases, where interactions with low momentum
exchange are dominant. Note that the function ρσ (k) is not equal to the Fourier transformed density
function in position space from chapter 6. Here, ρσ (k) corresponds to a density in momentum space.
After the saddle-point approximation, the thermodynamic grand potential is given by

Ωsp [β, µ↑, µ↓; ρ↑ (k) , ρ↓ (k)]

= −
∑

σ1,σ2=↑,↓

∑
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2
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− 1
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√
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 , (A.10)

g′σ1σ2 (0, k1, k3) = gσ1σ2 (0) [1− δσ1,σ2δ1 (k1 − k3)] . (A.11)

This can be rewritten using gσ1σ2=
√
V gσ1σ2 (0) and the fact that the total particle density ρσ of spin

state σ is given by

ρσ =
∑
k

ρσ (k) =
∑
k

ρ∗σ (k) =
∑
k

Re [ρσ (k)] . (A.12)

The result is given by
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(A.13)

with the effective chemical potential

µ′σ1 = µσ1 −
∑
σ2=↑,↓

gσ1σ2ρσ2 (A.14)

defined in a similar way as in eq. (6.39). The imaginary parts of ρσ (k) are isolated in a separate term
of Ωsp [β, µ↑, µ↓; ρ↑ (k) , ρ↓ (k)], so they can be removed by shifting the zero point of the thermodynamic
grand potential. If we rename Re [ρσ (k)] to ρσ (k), which are now real instead of complex functions
of k,

Ωsp [β, µ↑, µ↓; ρ↑ (k) , ρ↓ (k)] = −1
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ln
[
−iωn + k2 + gσ1σ1ρσ1 (k)− µ′σ1

]
. (A.15)

The saddle-point thermodynamic grand potential Ωsp (β, µ↑, µ↓) can then be found by solving the
saddle-point equations

∂Ωsp [β, µ↑, µ↓; ρ↑ (k) , ρ↓ (k)]

∂ρσ (k′)

∣∣∣∣
β,µ↑,µ↓;ρσ(k) with k 6=k′,ρ−σ(k)

= 0. (A.16)

This is an infinite set of equations, with one equation for each value of k′ per spin state σ. All these
equations have to be solved self-consistently and together with the number equation for the total
density n = n↑ + n↓, with

nσ = −
∂Ωsp (β, µ↑, µ↓)

∂µσ

∣∣∣∣
β,µ−σ

. (A.17)
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There are many similarities between the saddle-point thermodynamic grand potential (6.38) in
position space and (A.15) in momentum space, but also several important differences. The terms with
ρσ are identical in both expressions, apart from the fact that the interaction constants in eq. (A.15)
are related to the true interaction potential, while the interaction constants in eq. (6.38) are related to
the modified interaction potential in position space. Instead, in eq. (A.15) the exchange contributions
appear as an extra term

1

2

∑
σ=↑,↓

gσσ

[∑
k

ρ2
σ (k)

]
(A.18)

in the interaction energy and a modification gσ1σ1ρσ1 (k) of the dispersion relation.
Due to the remaining k-dependence in ρ↑ (k) and ρ↓ (k), it becomes much harder to solve the

saddle-point equations in momentum space than in position space (let alone study the stability of
the saddle points). That is why this calculation has not been attempted in this dissertation, but it
remains an interesting future research avenue.
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Achtergrond

Itinerant ferromagnetisme is spontane polarisatie van niet-gelokaliseerde deeltjes, oftewel ferromag-
netisme in een gas. In een spin-1/2 Fermi gas wordt het verwacht bij sterk repulsieve interacties
tussen de deeltjes. Het Pauli uitsluitingsprincipe van de kwantummechanica stelt dat twee fermionen
zich niet in dezelfde toestand kunnen bevinden. Door dit uitsluitingsprincipe kunnen deeltjes met
dezelfde spintoestand “minder dicht” bij elkaar komen dan deeltjes met tegengestelde spintoestand.
Indien de interacties op korte dracht repulsief zijn, is de interactie energie het laagst als alle deeltjes
zich in dezelfde spintoestand bevinden. Dit kost echter kinetische energie, omdat dezelfde fermio-
nen door het uitsluitingsprincipe in een spin-gepolariseerd gas in hogere energietoestanden gestapeld
moeten worden dan in een ongepolariseerd gas. Indien de repulsieve interacties voldoende sterk zijn,
treedt spontane polarisatie of itinerant ferromagnetisme op.

Itinerant ferromagnetisme werd voor het eerst voorgesteld door F. Bloch, die in 1929 aantoonde
dat een vrij elektronengas (met homogene positieve achtergrond) bij grote dichtheden itinerant fer-
romagnetisch kan worden. Sindsdien is uitgebreid gezocht naar deze toestand, maar het blijkt on-
verwacht moeilijk om deze toestand experimenteel te realiseren. Itinerant ferromagnetisme komt voor
in bepaalde ferromagnetische materialen waarvan de conductieband vlak genoeg is om de elektro-
nen erin als vrij te beschouwen (bv. d-band transitiemetalen zoals ijzer, nikkel en kobalt). In deze
materialen zijn er echter ook sterke aanwijzingen voor ferromagnetisme van gelokaliseerde elektronen.

Aangezien itinerant ferromagnetisme voor zover bekend niet in pure vorm voorkomt in de context
van vastestoffysica, wordt er nu gezocht of deze toestand in andere systemen gerealiseerd kan worden.
Ultrakoude atomaire gassen werden voorgesteld als een potentieel systeem voor de experimentele
realisatie van itinerant ferromagnetisme. Ultrakoud betekent dat de atomen zodanig zijn afgekoeld
dat hun de Broglie golflengte vergelijkbaar wordt met de interatomaire afstand. In dit regime worden
kwantum effecten macroscopisch. De typische temperaturen waarbij de experimenten plaatsvinden
zijn van de orde van µK of 100 nK. Bij deze temperaturen moet het gas in een magnetische of optische
val gevangen worden gehouden, omdat het drastisch zou opwarmen bij het raken van een wand.

Ultrakoude atomaire gassen hebben een aantal grote voordelen. Ze zijn experimenteel zeer goed te
controleren: het aantal deeltjes per (pseudo)spintoestand, de geometrie van de opsluitingspotentiaal
en de interactiesterkte kunnen nauwkeurig aangepast worden. In de context van itinerant ferro-
magnetisme zijn dat zeer belangrijke factoren. Ten eerste kan de aanwezigheid van een onderliggende
periodische potentiaal uitgesloten worden, wat onmogelijk is in een conventionele vaste stof met kristal-
rooster. Ten tweede kan de interactiesterkte via Feshbach resonanties gewijzigd worden door de sterkte
van een extern aangelegd homogeen magnetisch veld aan te passen. Hierdoor kan itinerant ferromag-
netisme als functie van de interactiesterkte bestudeerd worden.

De aanpasbaarheid van de interacties heeft echter één groot nadeel: de repulsieve tak van de Fesh-
bach resonantie is instabiel. Bij sterk repulsieve interacties worden drie-deeltjes interacties resonant
versterkt. Deze interacties produceren diatomaire moleculen die uit de val kunnen ontsnappen, wat
de levensduur van het experiment sterk beperkt.

In 2009 werden de sterke repulsieve interacties waarbij itinerant ferromagnetisme wordt verwacht
voor het eerst experimenteel gerealiseerd door de onderzoeksgroep van Wolfgang Ketterle aan MIT
(Cambridge, VS). Er werd echter geen itinerant ferromagnetisme gevonden: moleculaire paring dom-
ineerde het experiment en zorgde ervoor dat er geen evenwichtstoestand gevormd kon worden. Dit
voorkwam dus ook de vorming van magnetische domeinen.
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Het feit dat itinerant ferromagnetisme tot nu toe nog niet experimenteel gerealiseerd werd is een
belangrijke indicatie dat de theorie ervan verbeterd moet worden. Dat is dan ook de inspiratie en
het doel van deze doctoraatsthesis: het verbeteren van de beschrijving van itinerant ferromagnetisme
in de context van ultrakoude quantum gassen. Dit is een heel uitdagende opdracht, omdat itinerant
ferromagnetisme gepaard gaat met sterke interacties en correlaties die zeer moeilijk theoretisch te
beschrijven zijn.

Om dit probleem aan te pakken, ben ik terug gegaan naar de basistheorie van itinerant ferromag-
netisme in het padintegraalformalisme. Meer specifiek heb ik bestudeerd hoe de interacties worden
behandeld in de padintegraalbeschrijving van itinerant ferromagnetisme en hoe deze behandeling van
de interacties verbeterd kan worden.

Contact interacties

In het eerste deel van mijn doctoraatsonderzoek heb ik gekeken naar de behandeling van contact
interacties. Door de koude temperaturen is enkel de s-golf verstrooiingslengte tussen deeltjes met
een verschillende (pseudo)spin toestand belangrijk in de meeste experimenten met ultrakoude gassen.
Aangezien de dracht van de interatomaire (Van der Waals) interacties in ultrakoude gassen veel korter
is dan de andere relevante lengteschalen in het experiment, is het vaak een goede aanname om de in-
teratomaire potentiaal te beschrijven als een contact potentiaal met dezelfde s-golf verstrooiingslengte.

In hoofdstuk 4 heb ik de (groot-canonische) vrije energie van het gas in de zadelpuntsbenadering
berekend. Om deze vrije energie te berekenen werd eerst de groot-canonische toestandssom van het
gas bepaald, die in het padintegraal formalisme gelijk is aan een gewogen som over alle mogelijke con-
figuraties van de fermionische velden. De gewichtsfactor is gerelateerd aan de klassieke actie van elke
specifieke veldconfiguratie. De interactie term in de actie is van vierde orde in de fermionische velden,
maar we kunnen enkel fermionische padintegralen met een actie van tweede orde in de fermionische
velden exact uitrekenen. Om dit probleem te omzeilen, wordt de Hubbard-Stratonovich transformatie
gebruikt.

De Hubbard-Stratonovich transformatie zet de vierde orde interactie term om in termen van tweede
orde in de fermionische velden. De prijs die we hiervoor betalen is het invoeren van een extra padin-
tegraal over een bosonisch hulpveld, dat als drager van de interacties optreedt. Na de transformatie
kan de fermionische padintegraal exact uitgerekend worden. De bosonische padintegraal moet daarna
echter nog benaderd worden. In deze thesis hebben we gekozen voor de zadelpuntsbenadering, waarbij
we aanemen dat het bosonisch veld een constante waarde heeft. Deze waarde wordt bepaald door het
zoeken van extrema (bij voorkeur minima) van de zadelpunt vrije energie.

Er zijn verschillende manieren om het bosonische veld in te voegen, die telkens na benadering
een andere betekenis of interpretatie aan het bosonische veld geven. Om itinerant ferromagnetisme
te beschrijven werd gebruik gemaakt van bosonische dichtheidsvelden (ook wel het Hartree kanaal
genoemd). Dit resulteert in een extra interactieterm in de zadelpunt vrije energie en een verschui-
ving van de effectieve chemische potentiaal. Vervolgens werd aangetoond dat dit bij temperatuur nul
leidt tot het gekende Stoner criterium askF > π/2 voor itinerant ferromagnetisme (met as de s-golf
verstrooiingslengte en kF de Fermi golfvector).

Tot slot heb ik in hoofdstuk 5 aangetoond dat geen van de extrema van de zadelpunt vrije energie
minima zijn. Dit betekent dat deze extrema instabiel zijn t.o.v. dichtheidsfluctuaties en dat ze dus
niet corresponderen met een metastabiele toestand van het gas. Het was echter nog onduidelijk wat
deze instabiliteit betekent: is itinerant ferromagnetisme niet stabiel in een spin-1/2 Fermi gas met
contact interacties? Of is er iets anders aan de hand? Is het gebruik van contact interacties wel een
goede aanname bij het bestuderen van itinerant ferromagnetisme? Om deze vragen te beantwoorden
heb ik het gebruikte formalisme in het volgende onderdeel van deze thesis uitgebreid naar algemene
interactiepotentialen. Dit is extra relevant in het licht van de nieuwe interactiepotentialen die mo-
menteel experimenteel verkend worden in ultrakoude gassen: dipool interacties en p-golf Feshbach
resonanties.
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Algemene interactiepotentialen

In hoofdstuk 6 werd het formalisme uit hoofdstuk 4 uitgebreid naar algemene interactiepotentialen.
In de praktijk betekent dit dat er drie interactiepotentialen nodig zijn: één voor interacties tussen
deeltjes van verschillende (pseudo)spintoestanden en twee voor interacties tussen deeltjes van dezelfde
(pseudo)spintoestand (één per spintoestand). Bij het opstellen van de Hubbard-Stratonovich trans-
formatie ontdekte ik dat het Pauli uitsluitingsprincipe niet meer in elke afzonderlijke term van de
bosonische padintegraal voldaan is. Zolang de volledige bosonische padintegraal wordt genomen is er
geen probleem, omdat de termen die geassocieerd zijn met interacties die verboden zijn door het Pauli
uitsluitingsprincipe elkaar opheffen. Zodra de bosonische padintegraal benaderd wordt is het echter
niet meer zeker dat het Pauli uitsluitingsprincipe nog voldaan is. Dit is een groot probleem bij het
bestuderen van itinerant ferromagnetisme, waar het correct meenemen van het Pauli uitsluitingsprin-
cipe essentieel is.

Om dit probleem op te lossen heb ik voorgesteld om de verboden termen artificieel uit te sluiten
van de sommatie over de bosonische veldconfiguraties door het invoegen van een gemodificeerde in-
teractiepotentiaal. Vervolgens heb ik deze methode gebruikt om de vrije energie te berekenen in de
zadelpuntsbenadering. Analoog aan de resultaten in hoofdstuk 4, zorgden de interacties in het Hartree
kanaal voor een extra interactieterm in de zadelpunt vrije energie en een verschuiving van de effectieve
chemische potentiaal.

In de zadelpuntsbenadering zijn er slechts drie parameters nodig om het effect van de interacties
te beschrijven: één per interactiepotentiaal. Voor interacties tussen deeltjes van verschillende spintoe-
standen is deze parameter gelijk aan de corresponderende interactiepotentiaal gëıntegreerd over het
volledige volume. Voor interacties tussen deeltjes van dezelfde spintoestand is deze parameter gelijk
aan de corresponderende gemodificeerde interactiepotentiaal gëıntegreerd over het volledige volume.
Deze parameters houden dus rekening met de uitsluiting van bepaalde interacties tussen deeltjes van
dezelfde spintoestand.

In hoofdstuk 7 werden de stabiliteit en de polarisatie van de extrema van de zadelpunt vrije energie
geanalyseerd in de context van itinerant ferromagnetisme in 3D. Om polarisatie door andere oorzaken
uit te sluiten, werden de twee interactieparameters voor interacties tussen deeltjes met dezelfde spin-
toestand gelijk gekozen. Verder werd ook de chemische potentiaal van de twee spintoestanden gelijk
gekozen. Dit resulteerde in een aantal fasediagrammen bij verschillende temperaturen die als functie
van de interactieparameters weergeven waar extrema met een bepaalde polarisatie stabiel zijn. Hieruit
konden verschillende conclusies getrokken worden:

• Als de interacties te sterk zijn of als de effectieve interacties tussen deeltjes van dezelfde spin-
toestand repulsief zijn, worden dichtheidsfluctuaties belangrijk en zijn geen van de extrema van
de zadelpunt vrije energie stabiel. In dat regime is de opgestelde beschrijving dus geen geldige
beschrijving en daarom kunnen we binnen dit formalisme ook geen uitspraken doen over wat er
daar gebeurt.

• Volledig gepolariseerde extrema kunnen enkel stabiel zijn bij temperatuur nul. Bij lage tempe-
ratuur is er echter nog altijd een vergelijkbaar gebied met bijna-volledige polarisatie.

• Als de temperatuur toeneemt, wordt het stabiliteitsgebied voor ongepolariseerde extrema groter.
De stabiele gepolariseerde extrema worden met toenemende temperatuur steeds minder gepo-
lariseerd, tot ze worden opgeslokt door het groeiende ongepolariseerde gebied. De maximale
polarisatie van de stabiele toestanden neemt af als functie van de temperatuur.

• De stabiliteitsgebieden voor gedeeltelijk en volledig gepolariseerde extrema is kleiner dan ver-
wacht aan de hand van het Stoner criterium. Het Stoner criterium gaat enkel uit van de vraag
of de gepolariseerde toestand een lagere energie heeft dan de ongepolariseerde toestand, wat
leidt tot een ondergrens op de interactieparameters. De eis dat de itinerant ferromagnetische
toestand ook dynamisch stabiel moet zijn zorgt voor een bovengrens op de interactieparameters.
De interactieparameter tussen deeltjes van gelijke spintoestanden is bovendien essentieel voor de
stabiliteit van de toestand.
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In hoofdstuk 8 werd bekeken welke impliciete aannames en benaderingen er gemaakt werden in
de voorgaande hoofdstukken, en in hoeverre deze geldig zijn. De belangrijkste conclusie is dat het
gebruik van de gemodificeerde interactiepotentiaal niet exact is, omdat restricties opgelegd via een
interactiepotentiaal in de positiebasis Fourier transformeren in extra vrijheden in de reciproke ruimte.
Een eigenaardige eigenschap van de fermionische velden en het Pauli uitsluitingsprincipe is het feit dat
restricties opgesteld in de positiebasis Fourier transformeren in equivalente restricties in de reciproke
ruimte en omgekeerd. Het Pauli uitsluitingsprincipe is dus niet gelijk aan of equivalent met een
interactiepotentiaal!

In hoofdstuk 6 werden de restricties in de gemodificeerde interactiepotentiaal opgelegd in de positie
basis. In appendix A wordt de zadelpunt vrije energie afgeleid met de equivalente restricties in de
reciproke ruimte. Aangezien de de Broglie golflengte van de atomen in ultrakoude gassen relatief groot
is, is het mogelijk dat een analyse met vlakke golven in de reciproke ruimte een preciezere voorspelling
oplevert voor de situatie in ultrakoude gassen. De prijs die we hiervoor betalen is dat we niet meer
met gewone deeltjesdichtheden kunnen werken. Dit compliceert de minimalisatie en interpretatie van
de zadelpunt vrije energie. Daarom werd deze analyse niet verder uitgewerkt tot fasediagrammen.

Conclusie

In deze doctoraatsthesis wordt een nieuwe methode voorgesteld om het Pauli uitsluitingsbeginsel ex-
pliciet mee te nemen in de Hubbard-Stratonovich transformatie en de daarop volgende benaderingen
binnen het padintegraal formalisme. Deze methode werd toegepast om de stabiliteit van itinerant
ferromagnetisme in 3D te bestuderen. Stabiliteit tegen dichtheidsfluctuaties is een belangrijke factor
om in rekening te brengen bij het bestuderen van itinerant ferromagnetisme. Sterk repulsieve interac-
ties tussen deeltjes van verschillende spintoestanden zijn noodzakelijk om itinerant ferromagnetische
domeinen te vormen, maar bij te sterke interacties wordt deze toestand instabiel tegen dichtheidsfluc-
tuaties. Dit beperkt het gebied waar itinerant ferromagnetisme verwacht wordt in het fasediagram als
functie van temperatuur en interactieparameters.

Als finale opmerking zou ik willen meegeven dat itinerant ferromagnetisme zeer gevoelig is voor
“modeling bias”: indien men een model opstelt voor itinerant ferromagnetisme zal men de effecten
meenemen die zorgen voor itinerant ferromagnetisme, maar vaak andere effecten weglaten die itine-
rant ferromagnetisme tegenwerken. In het sterk interagerend regime waar itinerant ferromagnetisme
verwacht wordt treden veel verschillende effecten met elkaar in competitie. In de context van ultra-
koude gassen is superflüıde paarvorming het belangrijkste. De methode voorgesteld in deze docto-
raatsthesis is dus geen eindpunt, maar een tussenstap in de creatie van geavanceerdere modellen die
hier rekening mee houden.
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