
Course notes for
Solid State Physics II

Prof. dr. Jacques Tempere

Universiteit Antwerpen
Faculteit Wetenschappen
Departement Fysica



Contents

1 Introduction 1
1.1 The Drude model of metals . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sommerfeld and the free electron gas . . . . . . . . . . . . . . . . 4
1.3 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Beyond the free electron gas . . . . . . . . . . . . . . . . . . . . . 7

2 Second Quantization 8
2.1 Basis kets for a many-particle system . . . . . . . . . . . . . . . . 8

2.1.1 Bose and Fermi statistics . . . . . . . . . . . . . . . . . . 10
2.1.2 Product and Orthonormality . . . . . . . . . . . . . . . . 11
2.1.3 Occupation number representation . . . . . . . . . . . . . 13

2.2 Creation- and annihilation operators . . . . . . . . . . . . . . . . 14
2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Effect on the basis kets . . . . . . . . . . . . . . . . . . . 15
2.2.3 Commutation relations . . . . . . . . . . . . . . . . . . . . 17

2.3 Second Quantized Hamiltonian . . . . . . . . . . . . . . . . . . . 18
2.3.1 One-body potentials . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Two-body potentials . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Full Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Field operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Electrons and Phonons 29
3.1 Electrons in metals . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 The interacting electron gas . . . . . . . . . . . . . . . . . 29
3.1.2 The Jellium-model for the background . . . . . . . . . . . 35

3.2 Perturbation theory for electron-electron interactions . . . . . . . 36
3.3 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Phonon Hamiltonian . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Electron-phonon interaction . . . . . . . . . . . . . . . . . 42
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 The Polaron problem . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Perturbation theory for electron-phonon interactions . . . 46
3.4.2 Variational analysis of electron-phonon interactions . . . . 48

i



CONTENTS ii

4 Green’s functions and Feynman diagrams 51
4.1 Green’s function: definition . . . . . . . . . . . . . . . . . . . . . 51
4.2 Non-interacting Green’s functions . . . . . . . . . . . . . . . . . . 53

4.2.1 The filled Fermi sphere . . . . . . . . . . . . . . . . . . . 53
4.2.2 Green’s function with field operators . . . . . . . . . . . . 55
4.2.3 Phonon Green’s function . . . . . . . . . . . . . . . . . . . 56
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Interpreting Green’s functions . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Advanced and retarded Green’s functions . . . . . . . . . 59
4.3.2 Spectral representation . . . . . . . . . . . . . . . . . . . 60
4.3.3 Green’s function as quasiparticle propagator . . . . . . . . 62

4.4 Tackling interactions adiabatically . . . . . . . . . . . . . . . . . 64
4.4.1 Time evolution operator . . . . . . . . . . . . . . . . . . . 64
4.4.2 Adiabatic activation and the Gell-Mann Low theorem . . 66

4.5 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Vacuum polarisation . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8 Green’s function in reciprocal space . . . . . . . . . . . . . . . . . 81
4.9 Diagrammatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.9.1 Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9.2 Generalization . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Dyson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Dielectric function and linear response 89
5.1 Remembering Maxwell in a medium . . . . . . . . . . . . . . . . 89

5.1.1 Polarization and magnetisation . . . . . . . . . . . . . . . 91
5.1.2 Dielectric function and permeability . . . . . . . . . . . . 91
5.1.3 Drude dielectric function . . . . . . . . . . . . . . . . . . 93

5.2 Longitudinal and transversal fields . . . . . . . . . . . . . . . . . 95
5.2.1 Helmholtz decomposition . . . . . . . . . . . . . . . . . . 95
5.2.2 Longitudinal from charges, transverse from current . . . . 96
5.2.3 A distinction to keep in mind . . . . . . . . . . . . . . . . 97

5.3 Kubo Response formalism . . . . . . . . . . . . . . . . . . . . . . 98
5.3.1 Linearized quantum Liouville equation . . . . . . . . . . . 99
5.3.2 Kubo formula . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Induced charge densities . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Density-density correlations . . . . . . . . . . . . . . . . . . . . . 106
5.6 Feynman diagrammatic approach . . . . . . . . . . . . . . . . . . 107

5.6.1 Coulomb propagator . . . . . . . . . . . . . . . . . . . . . 107
5.6.2 Polarization bubbles . . . . . . . . . . . . . . . . . . . . . 108
5.6.3 RPA versus first order perturbation . . . . . . . . . . . . 109

5.7 Lindhard dielectric function . . . . . . . . . . . . . . . . . . . . . 110
5.7.1 Real part of the polarization bubble amplitude . . . . . . 111
5.7.2 Imaginary part of the polarization bubble amplitude . . . 112
5.7.3 Refinements in the dielectric function . . . . . . . . . . . 113

5.8 Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



CONTENTS iii

5.8.1 Structure factor . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8.2 Collective mode . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Superconductivity 123
6.1 Properties of superconductors . . . . . . . . . . . . . . . . . . . . 123
6.2 Clues for a microscopic theory . . . . . . . . . . . . . . . . . . . . 126
6.3 Cooper’s intuition . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Bardeen-Cooper-Schrieffer (BCS) theory . . . . . . . . . . . . . . 128

6.4.1 BCS model . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4.2 BCS ground state . . . . . . . . . . . . . . . . . . . . . . 130
6.4.3 Bogoliubov transformation . . . . . . . . . . . . . . . . . 131
6.4.4 Variational calculation and gap equation . . . . . . . . . . 132

6.5 Interpretation of the BCS state . . . . . . . . . . . . . . . . . . . 139
6.5.1 Excited states and band gap . . . . . . . . . . . . . . . . 139
6.5.2 Density of states and resistivity . . . . . . . . . . . . . . . 140

6.6 Critical temperature . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.7 Critical magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 146



Preface

Condensed matter (solids and fluids) consist out of a large number of interacting
particles. In contrast with gases, it is usually not possible to neglect the
interactions between these particles, or to incorporate them in a way similar
to kinetic gas theory. Rather, in order to derive the properties of matter from
its microscopic building blocks, one has to turn to quantum many-body theory.
The many-body theory of condensed matter rely on Green’s function techniques
and Feynman diagrams — mathematical tools that appear in nearly all disciplines
of modern physics.
In the introductory chapter, the main concepts of the introductory course

on solid state physics are summarized. The second quantization formalism,
which most of you have seen in quantum mechanics courses, is presented in
some detail in chapter 2. This brings us in chapter 3 to the description of the
interacting electron gas and of electrons interacting with phonons, and we use
standard techniques of quantum mechanics (perturbation theory and variational
analysis) to explore the effects of these interactions. In order to go beyond a first
exploration, and to systematically investigate interacting many-body systems,
we introduce the Green’s function formalism, leading us to Feynman diagrams,
in chapter 4. The remaining two chapters focus on theoretical applications
of these techniques: the response of the many-electron system to an external
perturbation, and superconductivity.

iv



Chapter 1

Introduction

A summary of basic solid state physics
In this chapter, we summarize the key concepts from introductory solid state

physics courses. To do this, we follow more or less the historical development
of solid state physics, which will bring us to the starting point of this course,
modern field theoretical methods for solid state.

1.1 The Drude model of metals
In 1897 Thomson discovered the electron1. The existence of a negatively charged
particle as fundamental building block present in all solids made these electrons
the perfect candidates to explain the electrical conductivity of metals. It rapidly
became clear that a single electron has a small charge and a small mass, so
that any theory of conductivity needs to deal with the fact that there is a
huge number of electrons present in the metal. The only many-particle theory
available at the end of the XIXth century was Boltzmann’s kinetic gas theory.
Inspired by this theory, Paul Drude2 formulated a ‘kinetic gas theory’ for charged
particles.
Metals are naturally neutral, so in addition to negatively charged building

blocks of matter, we need also positive ones. Drude assumed that the
neutralizing positive charge was associated with much heavier particles that
are fixed and as such do not participate in the charge transport. Indeed, the
small mass of the electron is not enough to account for the mass of the material.
Later it became clear the large positive charges can be associated to the ions of
the atoms (or molecules) that make up the material. When atoms come together
to form a metal, the electrons from the outer atomic shell are delocalized - they
no longer remain in the neighborhood of the atom but spread throughout the

1http://www.aip.org/history/electron/
2Annalen der Physik 1, 566, en 3, 369 (1900).

1
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Figure 1.1: An isolated atom versus the atoms in a metal. In the metal the
atoms keep the inner (valence band) electrons. The outer (conduction band)
electrons delocalize. These conduction electrons are treated in the Drude model
as classical, free particles. Note that for some elements, such as sodium, the
isolated atom has a magnetic moment (an unpaired electron spin), but once
these outer electrons end up in the conduction band, the material becomes
diamagnetic.

metal. The ions are left behind on the lattice sites of the crystal, as illustrated
in figure (1.1).
It is only recently that this microscopic model of metals has been observed

directly. With scanning tunneling microscopy (STM) the surface of the electron
sea of metals can be imaged with atomic resolution. Impurities, lattice defects,
or steps at the surface lead to fluctuations in the sea of electrons that surround
the ions. At the surface, these fluctuations show up as waves on the electron
sea. These waves are visible in the STM image of the copper surface in figure
(1.2). In this image, the height has been stretched out to reveal the electron
waves — each step corresponds to the thickness of a single atomic layer. These
amazing images reveal the quantum nature of electrons, in particular their wave
function, modulus squared.
Back to the Drude model. Incapable of taking into account the interactions

between the electrons, Drude assumes that the positive background of ions
screens out the Coulomb repulsion between electrons completely. His basic
description is that of electrons as free particles that lose momentum through
occasional collisions (leading to damping) with atoms and gain momentum from
the electric field:

dp

dt
= (−e)E− p

τ
(1.1)

Here (−e)E is the electric force on the negatively charged electron, and τ is a
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Figure 1.2: A copper surface, seen with atomic resolution, where one direction
(the height) has been stretched out. Each step in the landscape corresponds
the the height of a single atoms. Some sharp peaks (about as high as a step)
show individual atoms. The stretching allows to visualise the small waves on
the electron sea surrounding the copper ions. Source: IBM Almaden Lab.
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typical time needed for momentum to decay through ‘friction’. In the stationary
state (dp/dt = 0), the momentum must be p = −eEτ , so that the electric
current density is

j = n(−e)p/m =
ne2τ

m
E (1.2)

Here n is the density of electrons, and m their mass. This is a wonderful
microscopic point of view on Ohm’s law j = σE that was already well-known in
Drude’s time. It relates a phenomenological parameter, the conductivity σ, to
microscopic parameters,

σDrude =
ne2τ

m
. (1.3)

Moreover, the equation (1.1) can also be used for AC fields, by substituting
E→ Ee−iωt and p→ pe−iωt one gets

−iωp = (−e)E− p
τ

⇒ p =
−eτ
1− iωτ

E

⇒ σDrude(ω) =
ne2τ

m

1

1− iωτ
(1.4)

From the known values of the conductivity, we find that the momentum decay
time scale should be τ ≈ 10−14 - 10−15 s. If we follow Boltzmann’s kinetic gas
theory, the typical velocity of an electron is given by |v| =

p
3kBT/m with T

the temperature and kB Boltzmann’s constant. With this velocity computed at
room temperature, the length that an electron can travel is indeed 0.1-1 nm, the
typical distance between the ions. This was seen as a success of Drude’s model.
Other successes were the calculation of the Hall coefficient (the ratio between
transverse resistance and applied magnetic field), and the Wiedemann-Franz
law. This law, dating from 1853, states that the ratio between heat conduction
coefficient and conductivity is a constant for metals. If you assume that the
electrons, unchained from their atoms, are responsible for both the electrical
conductivity and the heat conductivity, this ratio can easily be calculated and
is seen to provide a microscopic explanation for the Wiedemann-Franz law.
However, the Drude model from 1900 was incapable of explaining a number

of other crucial phenomena such the thermoelectric effect, and gave very wrong
results for the specific heat — the specific heat turns out to be much smaller than
the value 3NkB/2 expected for a gas of classical particles. You should already
see the main error in the Drude model: electrons in a metal cannot be treated
as a classical gas, but require quantum statistics.

1.2 Sommerfeld and the free electron gas
Around 1920-1930, Pauli’s discovery of the exclusion principle made it
clear that no two electrons can be in the same state. This leads to the
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unavoidable conclusion that a (cold, dense) gas of fermions does not satisfy
the Maxwell-Boltzmann distribution

fMB(v) = n

µ
m

2πkBT

¶
exp

µ
− mv2

2kBT

¶
, (1.5)

but needs a drastically different distribution, the Fermi-Dirac distribution:

fFD(v) =
(m/~)3

4π2
1

exp
£
−
¡
1
2mv

2 − μ
¢
/(kBT )

¤
+ 1

. (1.6)

Here the chemical potential μ is fixed by the constraint
R
fFD (v)dv = n. Around

1925 Sommerfeld proposed to change Drude’s theory of metals by replacing the
Maxwell-Boltzmann distribution in his work by the Fermi-Dirac distribution.
This simple improvement allowed to explain the specific heat of the electron
gas.
The view on conduction in metals is also strongly affected by the

improvement proposed by Sommerfeld. The Fermi energy and the Fermi sphere
now determine the properties of metals. Scattering between two electrons can
only take place when these two electrons scatter into unoccupied states. The
electrons deep in the Fermi sea (i.e. with energies much below the Fermi energy)
will therefore be less influenced by scattering and will not participate to a
number of processes. For those of you who got their bachelor’s degree at the
Universiteit Antwerpen, I can refer to the course of statistical physics for a
detailed derivation of the properties of a non-interacting Fermi gas, using the
Fermi-Dirac distribution. For the others, I can actually also refer to any decent
introductory statistical physics course.

1.3 Band structure
Up to the 1930’s, we only have a decent microscopic theory of metals, but not
of insulators and certainly not of semi-conductors. In order to understand these
types of solids, we need to look at the effect of the atoms on the crystal lattice
more carefully. In the free electron model, the state of an electron is a plane wave
ψk(r) = exp{ik.r} characterized by a wave vector k and a dispersion relation
E(k) = (~k)2/(2m). Bloch found a way to include the ions, and this turned
out at the same time to explain why the Sommerfeld model was so successful
to begin with:

“The main problem was to explain how the electrons could sneak
past all the ions in a metal. ... By a straight Fourier analysis I
found to my delight that the wave differed from the plane wave of
free electrons only by a periodic modulation” [F. Bloch].

Put differently, the wave function of the electron is not really a plane wave but
it is modulated by a set of functions uk,n(r) that have the same periodicity as
the lattice:

ψk,n(r) = uk,n(r) exp{ik.r}.
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Figure 1.3: Optical bandgap material with a bandgap of 12-14 GHz, made from
alumina sticks 3mm in diameter. These provide a periodic dielectric potential
that does for photons what the periodic atomic potential does for electrons:
it gives rise to a band structure. Source: Ames laboratory, condensed matter
physics division.

These wavefunctions are still characterized by a wave number k, and in addition
there is a ‘band number’ n that labels the different suitable functions uk,n
for each k. Whereas without the ions, arbitrarily large values of k can be
accommodated, now only values of k within the lattice’s Brillouin zone (k <
2π/a) make sense. This corresponds to a distinction between length scales larger
than the lattice distance a (so, again k < 2π/a), where the plane-wave nature
comes out, and length scales within one lattice distance, where we have a set of
solutions uk,n(r) labeled by n that tell us how the electron charge distributes
itself within a unit cell.
Substituting this wave function into the Schrödinger equation for electrons

in a periodic potential, Bloch was able to prove that there are two effects on the
dispersion relation E(k) of the electrons:

• the electrons obtain an effective mass (the band mass) and

• for wave vectors near the edge of the lattice’s Brillouin zone, band gaps
open up in the dispersion relation. So, these band gaps appear for electron
wave lengths comparable to the lattice distance, which makes sense as we
expect the effect of a periodic potential to be strongest for wave that
wiggles with the same periodicity.
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The existence of band gaps explains semiconductors and insulators: when
electrons fill up an energy band completely, they need to bridge an energy gap in
order to scatter to the next unoccupied level. If this requires much more energy
than the thermal energy, they will never be able to participate in scattering or
conduction. If this energy is comparable or smaller than the thermal energy, the
electrons can participate but they will do so in a thermally activated process.
A recent application of Bloch’s insightful idea are the so-called optical

band-gap materials. What works for electrons, works for photons too. If these
quanta of light are subjected to a periodic potential (for example a periodic
stacking of dielectric sticks), again the dispersion E(k) = ck will be modified
and band gaps will appear. In these forbidden energy regions, photons cannot
be present, so no light of a frequency in the gap can move through the optical
band-gap material. This is used to trap and control light and has led to further
developments such as metamaterials and invisibility cloaks.

1.4 Beyond the free electron gas
Even Bloch considers electrons to be (quasi) free particles: they are represented
by plane waves, albeit modulated on sub-lattice length scales. The Coulomb
interaction between the electrons, and more sophisticated dynamical effects
of the lattice (such as lattice vibrations) are completely neglected. As a
consequence, there are still many phenomena that escape Bloch’s theory, such as
a calculation of τ , a calculation of the dielectric function, and superconductivity.
Modern solid state physics was developed in interaction with and in

symbiosis with quantum field theory. This allowed to overcome the shortcomings
of the Sommerfeld/Bloch model, and led to many discoveries: the theory of
conventional superconductivity, the quantum Hall effect, the development of
modern electronics, solid-state lasers, new materials,...
Still the waxing tide of our understanding of solids has left a more than few

questions that have resisted all attempts to answer them. A prime example of
this is high-temperature superconductivity, both of cuprates and of the recently
discovered superconducting pnictides. A microscopic understanding of these
systems would result in a technological revolution. The questions that we did
answer, on the other hand, have often led to new disciplines in their own right,
such as nanophysics, that exploits our ability to tinker with materials on the
nanometer scale in order to create new functionalities.
In this course the language of modern solid state physics will be explained

and illustrated with a few key examples, such as conventional superconductivity.
The purpose is not to review all the successes of solid state physics, but to enable
you to follow the developments in the field and to contribute to them yourself.



Chapter 2

Second Quantization

In this chapter we introduce an operator formalism 1 that is generally applicable
in quantum mechanics and in quantum field theory, and that is very well suited
to describe not only harmonic oscillators but also systems with many identical
particles. To illustrate this formalism, the second quantized description of
electrons in a metal is set up explicitly (while keeping the ions as a neutralizing
homogeneous charge density).

2.1 Basis kets for a many-particle system
Solids and condensed matter in general consists out of many interacting
particles. As we have seen in the introductory chapter, we need a way to include
the interactions of the particles in order to go beyond the simple Bloch model.
In principle, the state of the many-body system can is completely described by a
many-body wave function Ψ(r1, r2, ..., rN ; t) that depends on the coordinates rj
of theN particles in the system at time t. Just like in the case of a single-particle
wave function Ψ(r, t), the modulus square has the meaning of a probability
density. However, now it is the probability density to find the N -particle system
in a configuration where particle 1 is on position r1, particle 2 is on position
r2, etc. But wait — if all the particles are identical, then we cannot say which
particle is at which position, and our description of the system should reflect
this... Not just any Ψ(r1, r2, ..., rN ; t) will be a good wave function for many
identical particles, we need to impose a symmetry constraint. But before we
get to that we first need to take a closer look at how to build many-body wave
functions without this symmetry constraint.

To discuss the many-body system, we have to construct the set of possible
states. We start from the Hilbert space H1 of kets that describe the possible

1This formalism is also discussed in depth in the course of advanced quantum mechanics
(one of the mandatory course for the master in physics degree).

8
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quantum states of a single particle, and find a suitable basis for this Hilbert
space:

— For a 3D system with translation invariance, this would be our friends the
plane waves
ψk(r) = hr|ψki = exp{ik.r}/

√
2π with k ∈ R3 are often chosen basis

functions.

— In a periodic crystal lattice, the Bloch waves ψk,n(r) are suitable basis
functions.

— A useful textbook example is a one-dimensional system of particles moving
on a line segment [0, 1]. Here the suitable orthogonal basis functions are
ψk(x) = hx|ψki = sin(kπx) with k ∈ N0 .

In general, we denote the suitable basis kets of H1 as |ψ1i , |ψ2i , ..., |ψki , ... It’s
always a good idea to choose your basis kets |ψki orthogonal — that makes life
simple and formulas (slightly more) neat — but it is not required. We index the
basis kets with “k”. This could be an arbitrary set of quantum numbers (such
as wave number, band number, spin,...).

If |ψki (with k a set of suitable quantum numbers) is an (orthonormal) basis
for single-particle states, then outer products of N such basis kets

¯̄
ψk1

®
×¯̄

ψk2
®
× ... ×

¯̄
ψkN

®
form an (orthonormal) basis for N particles in the same

system. This can be interpreted as a physical system where we have N single

particles occupying each of the single-particle states
¯̄̄
ψkj

E
(j = 1...N) appearing

in the product.

Consider as an example a three-particle system in one dimension, confined
to the line segment [0, 1]. The quantum mechanical state of this —possibly
interacting— system is completely described by a thee-particle wave function
Ψ(x1, x2, x3; t). This can be decomposed in the three-particle basis¯̄

ψk1
® ¯̄
ψk2

® ¯̄
ψk3

®
with {k1, k2, k3} ∈ N0 (2.1)

If we use hx|ψki = sin(kπx) with k ∈ N0 , then we get for the position
representation of the three-particle basis ket:

ψk1(x1)ψk2(x2)ψk3(x3) = sin(k1πx1) sin(k2πx2) sin(k3πx3) (2.2)

We also note this as Φ(3)k1,k2,k3
(x1, x2, x3). The decomposition in basis kets is

given by

⇒ Ψ(x1, x2, x3; t) =
∞X

k1=1

∞X
k2=1

∞X
k3=1

Ck1,k2,k3(t)ψk1(x1)ψk2(x2)ψk3(x3)

Ck1,k2,k3(t) =

1Z
−1

dx1

1Z
−1

dx2

1Z
−1

dx3 ψ
∗
k1(x1)ψ

∗
k2(x2)ψ

∗
k3(x3)Ψ(x1, x2, x3; t)
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Each three-particle basis function Φ(3) is characterized by 3 single-particle
quantum numbers {k1, k2, k3}. Analogously, the basis functions Φ(N) for
the N -particle problem are indexed by N single-particle quantum numbers
{k1, k2, ..., kN}. The basis functions Φ(N) form an orthonormal basis for the
Hilbert space H(N) that contains the N -particle wave functions. The product
space H(1) ⊗H(2) ⊗ ...⊗H(N) ⊗ ... is called the ‘Fock space’.

2.1.1 Bose and Fermi statistics

Now we are ready to discuss the symmetry constraint. The symmetry that
we want to incorporate is the following: upon interchanging two particles, the
physics of the system does not change. By this we mean that no expectation
value changes. This, in turn, means that at most a global phase factor can
appear in the many-body wave function when we swap two positions. When
we swap the two positions again, the same global phase factor should appear
again. But at the same time, we are back in the original configuration. The
only phase factors that multiply to 1 when they appears twice as a factor are
+1 and −1. Hence, the symmetry constraint on the many-body wave function
must state that for all j, l 6= j we have:

Ψ(r1, ..., rj , ..., rl, ..., rN ; t) = ±Ψ(r1, ..., rl, ..., rj , ..., rN ; t). (2.3)

When spin is present, we must swap the spin and the position together (since
interchange of particles not only swaps their positions but also their spin). The
two possible phase factors, +1 and −1, that multiply the wave function upon
swapping two particles, lead to two possible classes of particles. The identical
particles with a phase factor +1 are the bosons, and those with a phase factor
−1 are the fermions.
The basis functions

¯̄
ψk1

®
×
¯̄
ψk2

®
× ... ×

¯̄
ψkN

®
that we introduced in the

previous section do not necessarily satisfy the symmetry constraint! They
cannot represent physical states of many-boson or many-fermion systems.
Naturally, we prefer basis kets that satisfy the symmetry constraint.

For this purpose we construct

¯̄
ψk1ψk2 ...ψkN

®
:=

r
1

N !

X
P

ξP
¯̄̄
ψP [k1]

E ¯̄̄
ψP [k2]

E
...
¯̄̄
ψP [kN ]

E
, (2.4)

where the sum P runs over the N ! permutations of {k1, k2, ..., kj , ...} , so
that P [kj ] is the j-th element of the permuted list of quantum numbers. For
fermions ξ = −1 and for bosons ξ = +1, so that ξP = −1 for odd permutations
of fermions and +1 in all other cases. These new basis kets satisfy the Bose or
Fermi symmetry.

To have a unique phase for the fermionic basis kets, we have to adopt
a convention and order the quantum numbers k1 < k2 < ... , so that the
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permutation with the ordered list has a factor +1. This is an ugly complication
that we will get rid of by introducing the occupation number representation in
a little while. But first a few examples to clarify the new ‘physical’ basis kets.
Again we consider a system with three particles confined to the line segment
[0, 1] , and the single-particle basis functions hx|ψki = sin(kπx). In that case,
we find for the three-boson basis kets:

¯̄
ψk1ψk2ψk3

®
boson =

1√
6

⎛⎝ ¯̄
ψk1

® ¯̄
ψk2

® ¯̄
ψk3

®
+
¯̄
ψk2

® ¯̄
ψk1

® ¯̄
ψk3

®
+
¯̄
ψk2

® ¯̄
ψk3

® ¯̄
ψk1

®
+
¯̄
ψk3

® ¯̄
ψk2

® ¯̄
ψk1

®
+
¯̄
ψk3

® ¯̄
ψk1

® ¯̄
ψk2

®
+
¯̄
ψk1

® ¯̄
ψk3

® ¯̄
ψk2

®
⎞⎠ .

An example in position representation for a two-boson basis ket is:

hx1| hx2| ×
¯̄
ψk1ψk2

®
boson =

sin(k1πx1) sin(k2πx2) + sin(k2πx1) sin(k1πx2)√
2

.

For the three-fermion system the basis kets are

¯̄
ψk1ψk2ψk3

®
fermion =

1√
6

⎛⎝ ¯̄
ψk1

® ¯̄
ψk2

® ¯̄
ψk3

®
−
¯̄
ψk2

® ¯̄
ψk1

® ¯̄
ψk3

®
+
¯̄
ψk2

® ¯̄
ψk3

® ¯̄
ψk1

®
−
¯̄
ψk3

® ¯̄
ψk2

® ¯̄
ψk1

®
+
¯̄
ψk3

® ¯̄
ψk1

® ¯̄
ψk2

®
−
¯̄
ψk1

® ¯̄
ψk3

® ¯̄
ψk2

®
⎞⎠ .

Finally, an example in position representation for a two-fermion system:

hx1| hx2| ×
¯̄
ψk1ψk2

®
fermion =

sin(k1πx1) sin(k2πx2)− sin(k2πx1) sin(k1πx2)√
2

.

It is easy to check that the above examples satisfy the symmetry constraint
(2.3). It is also trivial to see that for fermions the same single-particle state
never occurs twice (otherwise (2.4) becomes zero!).

2.1.2 Product and Orthonormality

The product of two symmetrized many-body basis states can be written as a
determinant or a permanent of the corresponding single-particle states.

Consider the product of an N -particle state (2.4) with another N -particle state

¯̄
φm1

φm2
...φmN

®
:=

r
1

N !

X
P

ξP
¯̄̄
φP [m1]

E ¯̄̄
φP [m2]

E
...
¯̄̄
φP [mN ]

E
.

The result of the multiplication is
φm1

φm2
...φmN

|ψk1ψk2 ...ψkN
®

=
1

N !

X
P

X
P 0

ξP+P
0 D

φP [m1]

¯̄̄
...
D
φP [mN ]

¯̄̄
×
¯̄̄
ψP 0[k1]

E ¯̄̄
ψP 0[k2]

E
...
¯̄̄
ψP 0[kN ]

E
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This can be rewritten as
φm1

...φmN
|ψk1 ...ψkN

®
=
X
P 00

ξP
00 D

φm1
|ψP 00[k1]

E
....
D
φmN

|ψP 00[kN ]

E
. (2.5)

In its turn, this can be recast as


φm1

...φmN
|ψk1 ...ψkN

®
=

¯̄̄̄
¯̄̄̄

φm1

|ψk1
® 

φm1
|ψk2

®
...


φm1

|ψkN
®

φm2
|ψk1

® 
φm2

|ψk2
®

...

φm2

|ψkN
®

... ... ... ...
φmN

|ψk1
® 

φmN
|ψk2

®
...


φmN

|ψkN
®
¯̄̄̄
¯̄̄̄
ξ

,

(2.6)
where |...|−1 represents the determinant (for fermions), and |...|+1 represents the
‘permanent’, a sum of all the terms that also appear in the determinant without
sign changes. In the case of fermions this determinant is sometimes called the
‘Slater determinant’.

Given the product as discussed in the previous paragraph we can check
whether the basis kets (2.4) are orthonormal if we start from an orthonormal
single-particle basis |ψki,

orthonormality : ∀ k, k0: hψk|ψk0i = δ(k = k0),

completeness :
X
k

|ψki hψk| = 1̂.

The product of two basis states (2.4) is

D
ψk01 ...ψk0N |ψk1 ...ψkN

E
=

¯̄̄̄
¯̄̄̄
¯̄̄

D
ψk01 |ψk1

E D
ψk01 |ψk2

E
...

D
ψk01 |ψkN

ED
ψk02 |ψk1

E D
ψk02 |ψk2

E
...

D
ψk02 |ψkN

E
... ... ... ...D

ψk0N |ψk1
E D

ψk0N |ψk2
E

...
D
ψk0N |ψkN

E

¯̄̄̄
¯̄̄̄
¯̄̄
ξ

For fermions/bosons this determinant/permanent is zero unless

∃P : {k01, ..., k0N} = P{k1, ..., kN} (2.7)

where P is some specific permutation. Indeed, if (2.7) is not satisfied, then
there is an entire row of products that is zero, due to the orthogonality
of the single-particle basis. In general, the number of terms in the
determinant/permanent that differ from zero is equal to the number of
permutations for which (2.7) can be satisfied. Only if a single-particle state
kj is present multiple times, there can be different permutations that satisfy

(2.7), If
¯̄̄
ψkj

E
appears nkj times in the many-particle ket, then

ψk1 ...ψkN |ψk1 ...ψkN
®
= nk1 !nk2 !...nkj !... (2.8)
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Hence the normalized basis kets are defined by

¯̄
ψk1ψk2 ...ψkN

®
normd. =

¯̄
ψk1ψk2 ...ψkN

®Q
k

√
nk!

. (2.9)

Since for fermions all nk = 1 or 0, the many-body fermion basis kets¯̄
ψk1ψk2 ...ψkN

®
fermion are already normalized. Both for fermions and for bosons

the completeness relation can be written as

1

N !

X
k1

X
k2

..
X
kN

¯̄
ψk1ψk2 ...ψkN

® 
ψk1ψk2 ...ψkN

¯̄
= 1̂ (2.10)

where the factor N ! takes into account the normalization, and each kj sum runs
over all possible values of the single-particle quantum numbers.

2.1.3 Occupation number representation

We’ve already encountered the unhappy fact that we label our many-body basis
states with the list {k1, k2, ..., kN} of single-particle quantum numbers, but that
any permutation of that list actually represents the same basis state. One trick
that we introduced is to order the list, but there is a better notation possible.
The basic difficulty is that, since the particles are all identical, it doesn’t

matter which of the N particles is in a given state. The only thing that matters
to specify the many-body state is how many particles there are in each state,
i.e. the occupation number of each single-particle state. Rather than using
the list {k1, k2, ..., kN} to label a many-body basis state, we better use the list
{n1, n2, ..., nj , ...}, where nj is the number of times that the single-particle state¯̄
ψj
®
is present in the product

¯̄
ψk1 ...ψkN

®
.

As an illustration, in the table below I have listed a few examples
of occupation numbers {n1, n2, ....} that correspond to three-particle basis
functions Φ(3)k1,k2,k3

:

{k1, k2, k3} = {n1, n2, n3, n4, n5, ....} =
{1, 2, 1} → {2, 1, 0, 0, 0, ...}
{3, 1, 4} → {1, 0, 1, 1, 0, ...}
{2, 1, 1} → {2, 1, 0, 0, 0, ...}.

Note that, as we mentioned, several {k1, k2, k3} lists result in the same list of
occupation numbers. Each of these lists actually labels the same many-body
basis ket — two many-body basis kets are different if and only if their occupation
numbers are different. How many lists {k1, ..., kN} now with N single-particle
quantum numbers, have exactly the same occupation numbers {n1, n2, ....} ?
This is given by the repetition permutation number

N !

n1!× n2!× ...× nk!× ...
. (2.11)
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So, it is better to label the many-body basis functions by the occupation
numbers — doing so we introduce the occupation number representation:

|n1n2...nk...i =
¯̄
ψ
1
...ψ

1
ψ
2
...ψ

2
...
®
normd. =

¯̄
ψ
1
...ψ

1
ψ
2
...ψ

2
...
®Q

k

√
nk!

(2.12)

where ψ
j
appears nj times.

Alternatively, we can pick out one particular {k1, k2, k3} from all those that
correspond to an individual many-body basis ket — from all the possible lists for
that basis ket, we choose the one where the kj ’s are ordered. This is also what
we have used to define the occupation representation, so both ways of uniquely
labeling the many-body basis states are equivalent. Most of the time, we’ll use
the occupation representation. Only to derive the results in the next couple of
sections it will be useful to keep track of the individual product and we’ll stick
to the ordered list of single-particle quantum numbers.

2.2 Creation- and annihilation operators
Now that we have defined a useful many-body basis, we want to find operators
that transform the basis kets into one another. These are the creation and
annihilation operators. They serve two purposes: firstly, we can now start
with a vacuum state (the state with no particles, |∅i) and construct any other
state by repeatedly applying these operators, and secondly, when rewriting other
operators as a function of these creation and annihilation operators, their action
becomes clear at the level of individual single-particle states.

2.2.1 Definitions

The formal definition of the creation operator â†k is

â†k
¯̄
ψk1ψk2 ...

®
=
¯̄
ψkψk1ψk2 ...

®
, (2.13)

where â†k |∅i = |ψki . Below, we derive several properties that follow from this
definition. Firstly, â†k raises the occupation nk of the single-particle state |ψki
by 1. Secondly, the hermitean conjugate of this operator, âk, decreases the
occupation nk of the single-particle state |ψki by 1. For this reason, the operator
âk is called the annihilation operator.

You have already encountered such operators in your basic quantum
mechanics course: there are used to describe the harmonic oscillator. Here,
their action should be interpreted more carefully.
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2.2.2 Effect on the basis kets

Consider the transition matrix element

A =
D
φm1

...φmN−1 |âk|ψk1 ...ψkN
E
=
D
ψk1 ...ψkN

¯̄̄
â†k

¯̄̄
φm1

...φmN−1

E∗
.

This is equal to

A =
D
ψk1 ...ψkN |ψkφm1

...φmN−1

E∗
=

¯̄̄̄
¯̄̄̄

ψk1 |ψk

® 
ψk1 |φm1

®
...

D
ψk1 |φmN−1

E
... ... ... ...

ψkN |ψk
® 

ψkN |φm1

®
...

D
ψkN |φmN−1

E
¯̄̄̄
¯̄̄̄
∗

ξ

Developing this determinant/permanent along the first column, we find

A =

⎛⎜⎜⎝ NX
j=1

ξj−1
D
ψkj |ψk

E ¯̄̄̄¯̄̄̄

ψk1 |φm1

®
...

D
ψk1 |φmN−1

E
... (no ψkj ) ...

ψkN |φm1

®
...

D
ψkN |φmN−1

E
¯̄̄̄
¯̄̄̄
ξ

⎞⎟⎟⎠
∗

=
NX
j=1

ξj−1
D
ψk|ψkj

ED
ψk1 .(no ψkj )..ψkN |φm1

...φmN−1

E∗
.

Since this needs to hold for any
¯̄̄
φm1

...φmN−1

E
, by necessity

âk
¯̄
ψk1ψk2 ...ψkN

®
=

NX
j=1

ξj−1
D
ψk|ψkj

E ¯̄̄
ψk1 .(no ψkj )..ψkN

E
. (2.14)

If ψk does not appear in the ket
¯̄
ψk1ψk2 ...ψkN

®
, then all products

D
ψk|ψkj

E
are zero, and we find âk

¯̄
ψk1ψk2 ...ψkN

®
= 0. If ψk appears nk times, then there

will be nk terms in the sum (2.14).

A couple of examples to clarify this. Again we look at a three-boson case,
and consider the basis ket

|ψ3ψ5ψ5iboson =
1√
3
(|ψ3i |ψ5i |ψ5i+ |ψ5i |ψ3i |ψ5i+ |ψ5i |ψ5i |ψ3i) .

In position representation with hx|ψki = sin(kπx) this becomes

hx1| hx2| hx3| × |ψ3ψ5ψ5iboson =
1√
3
[sin(3πx1) sin(5πx2) sin(5πx3)

+ sin(5πx1) sin(3πx2) sin(5πx3) + sin(5πx1) sin(5πx2) sin(3πx3)] .



CHAPTER 2. SECOND QUANTIZATION 16

If the annihilation operator â3 acts on this state we find

â3 |ψ3ψ5ψ5i = hψ3|ψ3i |ψ5ψ5i+ hψ3|ψ5i |ψ3ψ5i+ hψ3|ψ5i |ψ3ψ5i
= |ψ5ψ5i ,

where the orthonormality of the single-particle states |ψki has been used. Now
let’s see what the annihilation operator â5 does to the state |ψ3ψ5ψ5i:

â5 |ψ3ψ5ψ5i = hψ5|ψ3i |ψ5ψ5i+ hψ5|ψ5i |ψ3ψ5i+ hψ5|ψ5i |ψ3ψ5i
= 2 |ψ3ψ5i .

In general, we find that when the single-particle state |ψki appears nk times in
the many-body ket, then for bosons

âk
¯̄
ψk1 ...ψkN

®
= nk

¯̄
ψk1 ...(with 1 ψk less)...ψkN

®
This can be written more neatly if we use the occupation number representation,
by replacing the unnormalized many-body basis kets

¯̄
ψk1 ...ψkN

®
by their

normalized version (2.9):

âk

⎛⎝ Y
ja(k 6=kj)

q
nkj !

⎞⎠pnk!
¯̄
ψk1 ...ψkN

®
normd.

= nk

⎛⎝ Y
ja(k 6=kj)

q
nkj !

⎞⎠p(nk − 1)! ¯̄ψk1 ...(with 1 ψk less)...ψkN ®normd.
Since we defined |n1n2...nk...i =

¯̄
ψk1 ...ψkN

®
normd. we can now write for bosons

âk |n1 , ..., nk, ...i =
√
nk |n1 , ..., nk − 1, ...i . (2.15)

If we replace in the definition (2.13) the many-body basis kets by normalized
basis kets then we find

â†k |n1 , ..., nk, ...i =
√
nk + 1 |n1 , ..., nk + 1, ...i . (2.16)

For fermions all the occupation numbers in many-body basis kets are either
nk = 1 or 0. However, there will be a phase factor since

âk
¯̄
ψk1ψk2 ...ψkN

®
=
X
j

ξj−1δ(k = kj)
¯̄̄
ψk1 .(no ψkj )..ψkN

E
. (2.17)

hence the action of the fermionic annihilation operator is

âk |n1 , ..., nk, ...i =
½
(−1)n1+..+nk−1 |n

1
, ..., nk − 1, ...i if nk = 1

0 if nk = 0
(2.18)

For fermions, also the creation operator introduces the same phase factor, that
originates from pushing the ψk from the starting position

¯̄
ψkψk1ψk2 ...

®
down

the list to its correct position in that list, so we get

â†k |n1 , ..., nk, ...i =
½
(−1)n1+..+nk−1 |n1 , ..., nk + 1, ...i if nk = 0
0 if nk = 1

(2.19)
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The results (2.15), (2.16), (2.18), (2.19) summarize how the creation and
annihilation operators link the different many-body basis kets of the occupation
representation to each other.

2.2.3 Commutation relations

From the definition (2.13) we see that for arbitrary k and k0 the following
equality holds:

â†kâ
†
k0 = ξâ†k0 â

†
k.

For bosons ξ = 1 and this can be written as

bosons: ξ = 1 →
h
â†k, â

†
k0

i
= 0, (2.20)

fermions: ξ = −1 →
n
â†k, â

†
k0

o
= 0. (2.21)

Here
h
Â, B̂

i
= ÂB̂ − B̂Â is the commutator and

n
Â, B̂

o
= ÂB̂ + B̂Â is the

anticommutator. We can write this compactly ash
Â, B̂

i
ξ
= ÂB̂ − ξB̂Â. (2.22)

This allows us to write the above rule in one expression, valid for both bosons
and fermions,

h
â†k, â

†
k0

i
ξ
= 0. Taking the hermitean conjugate gives

[âk, âk0 ]ξ = 0. (2.23)

So, swapping two bosonic creation operators, or swapping two bosonic
annihilation operators is allowed. But swapping two fermionic creation
operators or two fermionic annihilation operators leads to a sign change. How
about swapping a creation operator with an annihilation operator? Let’s

calculate
h
âk, â

†
k0

i
ξ
. The first term is

âkâ
†
k0

¯̄
ψk1 ...ψkN

®
= âk

¯̄
ψk0ψk1 ...ψkN

®
= hψk|ψk0i

¯̄
ψk1 ...ψkN

®
+

NX
j=1

ξj−1
D
ψk|ψkj

E ¯̄̄
ψk0ψk1 ...(no ψkj )...ψkN

E
.

The other term is

â†k0 âk
¯̄
ψk1 ...ψkN

®
= â†k0

NX
j=1

ξj−1
D
ψk|ψkj

E ¯̄̄
ψk1 ...(no ψkj )...ψkN

E

=
NX
j=1

ξj−1
D
ψk|ψkj

E ¯̄̄
ψk0ψk1 ...(no ψkj )...ψkN

E
.
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From this we find that³
âkâ

†
k0 − ξâ†k0 âk

´ ¯̄
ψk1 ...ψkN

®
= hψk|ψk0i

¯̄
ψk1 ...ψkN

®
.

Thus, the (anti)commutation relation between creation and annihilation
operators is h

âk, â
†
k0

i
ξ
= âkâ

†
k0 − ξâ†k0 âk = hψk|ψk0i (2.24)

This is one of the central results of the second quantization formalism. If we
have an single-particle basis |ψki for the Hilbert space H1 of the single-particle
quantum states, then we can build an orthonormal many-body basis set for the
N -body problem using a product of N creation operators â+kj (j = 1...N). If
we impose the (anti)commutation rules (2.24) then our many-body basis set,
and all states in the Hilbert space generated by this basis, will automatically
satisfy the symmetry constraint for Bose particles (ξ = 1) or Fermi particles
(ξ = −1).

Note that if the single-particle basis kets |ψki are orthonormal, then we have
for bosons

h
âk, â

†
k0

i
= δ(k = k0) and for fermions

n
âk, â

†
k0

o
= δ(k = k0).

2.3 Second Quantized Hamiltonian
In the previous sections of this chapter, we have built a suitable many-body
basis, that obeys the symmetry constraint and that is characterized by
occupation numbers. We have also introduced creation and annihilation
operators that connect the different many-body basis kets.
In this section we will start from a very general many-body Hamiltonian, and

rewrite it in creation and annihilation operators. We start from the Hamiltonian
in its usual form, with position and momentum operators:

Ĥ =
NX
j=1

p̂2j
2m

+
NX
j=1

V1(r̂j) +
1

2

NX
j=1

NX
j0(6=j)=1

V2(r̂j , r̂j0). (2.25)

This is called the ‘first quantization’: start from the classical Hamiltonian and
replace positions and momenta by operators r̂j and p̂j that satisfy particular
commutation rules [rj ,pj0 ] = i~δjj0 . In the Hamiltonian, V1(r) is a one-body
potential acting on each particle: this is usually an externally applied field, such
as an electric field or gravity, and it can also include a periodic potential of a
perfect lattice, for example. Next, V2(r, r0) is the two-body interaction potential,
such as the Coulomb interaction or the Van der Waals interaction. It depends
on the positions r, r0 of both particles that interact, and is summed over all
possible pairs of interacting particles, taking care to avoid double-counting. The
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many-body quantum state |Ψ(t)i of the system described by this Hamiltonian
must satisfy

i~
d |Ψ(t)i

dt
= Ĥ |Ψ(t)i . (2.26)

We can now multiply this many-body Schrödinger equation onto our many-body
basis bra


ψk1ψk2 ...ψkN

¯̄
, and insert the completeness relation:

i~
d

ψk1ψk2 ...ψkN |Ψ(t)

®
dt

=
1

N !

X
k01

X
k02

..
X
k0N

D
ψk1ψk2 ...ψkN

¯̄̄
Ĥ
¯̄̄
ψk01ψk02 ...ψk0N

ED
ψk01ψk02 ...ψk0N |Ψ(t)

E
,

(2.27)

2.3.1 One-body potentials

Consider first the one-body potential (or the kinetic energy) in the Hamiltonian
Ĥ. The corresponding term in the right hand side of (2.27) is

V1 =
1

N !

X
k01

...
X
k0N

*
ψk1 ...ψkN

¯̄̄̄
¯̄ NX
j=1

V1(r̂j)

¯̄̄̄
¯̄ψk01 ...ψk0N

+

×
D
ψk01 ...ψk0N |Ψ(t)

E
. (2.28)

This matrix element can be written out in position representation as*
ψk1 ...ψkN

¯̄̄̄
¯̄ NX
j=1

V1(r̂j)

¯̄̄̄
¯̄ψk01 ...ψk0N

+

=
1

N !

NX
j=1

X
P,P 0

ξP ξP
0 D

ψP [k1]

¯̄̄
...
D
ψP [kN ]

¯̄̄
V1(r̂j)

¯̄̄
ψP 0[k01]

E
...
¯̄̄
ψP 0[k0N ]

E

=
NX
j=1

X
P

ξP
D
ψP [k1]

¯̄̄
...
D
ψP [kN ]

¯̄̄
V1(r̂j)

¯̄̄
ψk01

E
...
¯̄̄
ψk0N

E

=
NX
j=1

X
P

ξP
µZ

dr ψ∗P [kj ](r)V1(r)ψk0j (r)

¶⎛⎝Y
i6=j

Z
dr ψ∗P [ki](r)ψk0i(r)

⎞⎠ .

Now we can use Y
i6=j

Z
dr ψ∗P [ki](r)ψk0i(r) = δ(k0i = P [ki]), (2.29)

and introduce the following notation:Z
dr ψ∗P [kj ](r)V1(r)ψk0j (r) =

D
ψP [kj ] |V1|ψk0j

E
. (2.30)
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If we substitute this back into (2.28) we find

V1 =
1

N !

X
P

ξP
NX
j=1

X
k01

...
X
k0N

D
ψP [kj ] |V1|ψk0j

EY
i6=j

δ(k0i = P [ki])

×
D
ψk01 ...ψk0N |Ψ(t)

E
. (2.31)

The delta functions allow us to trivially perform N − 1 summations. Only 1
summations remains, and we rename its summation index to k0. This yields:

V1 =
1

N !

X
P

ξP
X
k0

NX
j=1

D
ψP [kj ] |V1|ψk0

E
×
D
ψP [k1]...ψP [kj−1]ψk0ψP [kj+1]...ψP [kN ]|Ψ(t)

E
. (2.32)

The ket ¯̄̄
ψP [k1]...ψP [kj−1]ψk0ψP [kj+1]...ψP [kN ]

E
(2.33)

contains all single-particle basis states that also appear in
¯̄
ψk1 ...ψkN

®
except

for 1: the single-particle state that has been replaced by ψk0 . Since we will sum
over all j and all permutations, we can write

V1 =
1

(N − 1)!
X
P̄

X
k0

NX
j=1

ξP̄
D
ψkj |V1|ψk0

E
×
D
ψP̄ [k1]...ψP̄ [kj−1]ψk0ψP̄ [kj+1]...ψP̄ [kN ]|Ψ(t)

E
. (2.34)

where P̄ are the permutations over N − 1 particles. Sorting the single-particle
states in the many-body ket results in a phase factor:¯̄̄
ψP̄ [k1]...ψP̄ [kj−1]ψk0ψP̄ [kj+1]...ψP̄ [kN ]

E
= ξP̄ ξj−1

¯̄̄
ψk0ψk1 ...ψkj−1ψkj+1 ...ψkN

E
.

(2.35)
With this, we find:

V1 =
1

(N − 1)!
X
P̄

X
k0

NX
j=1

ξj−1
D
ψkj |V1|ψk0

E
×
D
ψk0ψk1 ...ψkj−1ψkj+1 ...ψkN |Ψ(t)

E
. (2.36)

Each term in the sum over the permutations P̄ is exactly the same, so we get:

V1 =
X
k0

NX
j=1

ξj−1
D
ψkj |V1|ψk0

ED
ψk0ψk1 ...ψkj−1ψkj+1 ...ψkN |Ψ(t)

E
. (2.37)
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Since

X
k

â†k0 âk
¯̄
ψk1 ...ψkN

®
=

X
k

a†k0

NX
j=1

ξj−1δ(k − kj)
¯̄̄
ψk1 ...ψkj−1ψkj+1 ...ψkN

E

=
X
k

NX
j=1

ξj−1δ(k − kj)
¯̄̄
ψk0ψk1 ...ψkj−1ψkj+1 ...ψkN

E
,

we find that

V1 =
X
k0

X
k

hψk |V1|ψk0i
D
ψk1 ...ψkN

¯̄̄
â†kâk0

¯̄̄
Ψ(t)

E
(2.38)

2.3.2 Two-body potentials

Keeping in mind the procedure for one-body potential, we turn to the more
complicated case of the two-body potentials. The expression that we need to
calculate is

V2 =
1

N !

X
k01

...
X
k0N

*
ψk1 ...ψkN

¯̄̄̄
¯̄ NX
j=1

V2(r̂j , r̂j0)

¯̄̄̄
¯̄ψk01 ...ψk0N

+

×
D
ψk01 ...ψk0N |Ψ(t)

E
. (2.39)

The matrix element is again written in position representation:*
ψk1 ...ψkN

¯̄̄̄
¯̄ NX
j=1

V2(r̂j , r̂j0)

¯̄̄̄
¯̄ψk01 ...ψk0N

+

=
NX
j=1

NX
j0=1

X
P

ξP
D
ψP [k1]

¯̄̄
...
D
ψP [kN ]

¯̄̄
V2(r̂j , r̂j0)

¯̄̄
ψk01

E
...
¯̄̄
ψk0N

E

=
NX
j=1

NX
j0 6=j=1

X
P

ξP

⎛⎝Y
i6=j

Z
dr ψ∗P [ki](r)ψk0i(r)

⎞⎠
×
µZ

dr

Z
dr0 ψ∗P [kj ](r)ψ

∗
P [kj0 ]

(r0)V2(r, r
0)ψk0j (r)ψk0j0

(r0)

¶
.

Using µZ
dr

Z
dr0 ψ∗P [kj ](r)ψ

∗
P [kj0 ]

(r0)V2(r, r
0)ψk0j (r)ψk0j0

(r0)

¶
(2.40)

=
D
ψP [kj ]ψP [kj0 ] |V2|ψk0jψk0j0

E
, (2.41)
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and introducing the delta functions that arise from the orthonormality of the
single-particle states, we obtain for (2.39) the following expression:

V2 =
1

N !

X
P

ξP
NX
j=1

NX
j0 6=j=1

X
k01

...
X
k0N

D
ψP [kj ]ψP [kj0 ] |V2|ψk0jψk0j0

E
×
D
ψk01 ...ψk0N |Ψ(t)

E Y
i6=j,j0

δ(k0i = P [ki]). (2.42)

The delta functions now allow to eliminate N − 2 summations. Two sums
remain, and we rename their summation indices to k0 and q0 :

V2 =
1

N !

X
P

ξP
X
k0,q0

NX
j=1

NX
j0 6=j=1

D
ψP [kj ]ψP [kj0 ] |V2|ψk0ψq0

E
×
D
...ψP [kj−1]ψk0ψP [kj+1]...ψP [kj0−1]ψq0ψP [kj0+1]...|Ψ(t)

E
. (2.43)

Since we sum over all j, j0 pairs and over all permutations, this is:

V2 =
1

(N − 2)!
X
P̆

X
k0,q0

NX
j=1

NX
j0 6=j=1

ξP̆
D
ψkjψkj0 |V2|ψk0ψq0

E
×
D
...ψP̆ [kj−1]ψk0ψP̆ [kj+1]....ψP̆ [kj0−1]ψq0ψP̆ [kj0+1]...|Ψ(t)

E
, (2.44)

where now P̆ are the permutations over N − 2 particles. Now we get upon
reordering of the single-particle states in the many-body ket:¯̄̄

...ψP̆ [kj−1]ψk0ψP̆ [kj+1]....ψP̆ [kj0−1]ψq0ψP̆ [kj0+1]...
E

= ξP̆ ξj−1ξj
0−2

¯̄̄
ψk0ψq0ψk1 ...ψkj−1ψkj+1 ...ψkj0−1ψkj0+1 ...ψkN

E
. (2.45)

The phase factors appear in the case of fermions because of this reordering. We
get

V2 =
X
k0,q0

NX
j=1

NX
j0 6=j=1

ξj−1ξj
0−2

D
ψkjψkj0 |V2|ψk0ψq0

E
×
D
ψk0ψq0ψk1 ...(no ψkj , ψkj0 ) ...ψkN |Ψ(t)

E
. (2.46)
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Finally, since X
k0,q0

â†k0 â
†
q0 âkâq

¯̄
ψk1 ...ψkN

®
=

X
k0,q0

X
k

NX
j=1

ξj−1δ(q − kj)â
†
k0 â

†
q0 âk

¯̄̄
ψk1 ...(no ψkj )...ψkN

E
(2.47)

=
X
k0,q0

X
k,q

NX
j=1

ξj−1δ(q − kj)
NX

j0 6=j=1
ξj

0−2δ(k − kj)

×â†k0 â
†
q0

¯̄̄
ψk1 ...(no ψkj , ψkj0 )...ψkN

E
, (2.48)

=
X
k0,q0

X
k,q

NX
j=1

ξj−1δ(q − kj)
NX

j0 6=j=1
ξj

0−2δ(k − kj)

×
¯̄̄
ψk0ψq0ψk1 ...(no ψkj , ψkj0 )...ψkN

E
(2.49)

we find that

V2 =
X
k0,q0

X
k,q


ψqψk |V2|ψk0ψq0

® D
ψk1 ...ψkN

¯̄̄
â†qâ

†
kâq0 âk0

¯̄̄
Ψ(t)

E
. (2.50)

Now we can combine the results (2.38) and (2.50) that we found for one-body
and two-body operators and construct the full Hamiltonian.

2.3.3 Full Hamiltonian

The kinetic energy follows the same derivation as the one-body potential. We
denote

hψk |T |ψk0i = − ~
2

2m

Z
dr ψ∗k(r)∆rψk0(r),

hψk |V1|ψk0i =

Z
dr ψ∗k(r)V1(r)ψk0(r), (2.51)

ψqψk |V2|ψk0ψq0
®
=

Z
dr

Z
dr0 ψ∗q(r)ψ

∗
k(r

0)V2(r, r
0)ψk0(r)ψq0(r

0).

In the double integral it is important to place the correct integration variable
in the correct single-particle wave function! If this is done wrongly, we get the
wrong phase factors. Substituting the results (2.38) en (2.50) from the previous
subsections in the Schrödinger equation (2.27) brings:

i~
d

ψk1ψk2 ...ψkN |Ψ(t)

®
dt

=
X
k0

X
k

hψk |T + V1|ψk0i
D
ψk1 ...ψkN

¯̄̄
â†kâk0

¯̄̄
Ψ(t)

E
+
1

2

X
k0,q0

X
k,q


ψqψk |V2|ψk0ψq0

® D
ψk1 ...ψkN

¯̄̄
â†qâ

†
kâq0 âk0

¯̄̄
Ψ(t)

E
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This result holds for all

ψk1ψk2 ...ψkN

¯̄
. The many body quantum state |Ψ(t)i

satisfies i~ d |Ψ(t)i /dt = Ĥ |Ψ(t)i. From this, we obtain one of the central
results of this chapter:

The Hamiltonian in second quantization :

Ĥ =
X
k0

X
k

hψk |T + V1|ψk0i â
†
kâk0 +

1

2

X
k0,q0

X
k,q


ψqψk |V2|ψk0ψq0

®
â†qâ

†
kâq0 âk0

(2.52)
The only operators still present are creation and annihilation operators: the
other factors are expectation values, complex numbers and not operators. This
recasting of an operator, such as the Hamiltonian, in a form that contains only
creation and annihilation operators is ‘second quantisation’.
Note that this mathematical form of the Hamiltonian is exactly the same for

bosons as for fermions. However, the creation and annihilation operators obey
different commutation relations, and it is those commutation rules that encore
the correct Bose or Fermi statistics.
Finally, from the previous comment it should be clear that it is very

important to write the operators in the correct order! In the last term the
order of the annihilation operators âq0 âk0 is the reverse of the order of the wave
functions ψk0(r

0)ψq0(r) in the integration for the matrix element.

In general, single particle operators can be written in second quantization
as

Â =
NX
j=1

A(r̂j) =
X
k0

X
k

hψk |A|ψk0i â
†
kâk0

( =

Z
dr ψ∗k(r)A(r)ψk0(r)â

†
kâk0). (2.53)

An important and simple example is the counting operator N̂ that... counts
how many particles are present. This becomes

N̂ =
NX
j=1

1̂ =
X
k0

X
k


ψk
¯̄
1̂
¯̄
ψk0
®
â†kâk0 =

X
k

â†kâk (2.54)

2.4 Field operators
Modern field theory is generally written in the second quantisation formalism
(the alternative is the path integral formalism). There, however, one often uses
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so-called “field operators” rather than the creation and annihilation operators
defined above. The field operators are defined by

ψ̂(r) =
X
k

ψk(r) âk, (2.55)

ψ̂
†
(r) =

X
k

ψ∗k(r) â
†
k. (2.56)

The sum runs over all possible values of the quantum numbers k , and adds
up the products of the single-particle wave functions and their corresponding
creation or annihilation operators. In this way, you create or annihilation a
particle in a superposition of all single-particle wave functions at the same time.
This comes down to creating or annihilating a particle that is fully localized in a
specific location r. The field operators satisfy the following (anti)commutation
relations h

ψ̂(r), ψ̂
†
(r0)

i
ξ
=

X
k

X
k0

ψk(r)ψ
∗
k0(r

0)
h
âk, â

†
k0

i
ξ

=
X
k

X
k0

ψk(r)ψ
∗
k0(r

0)δkk0

=
X
k

ψk(r)ψ
∗
k(r

0)

= δ(r− r0). (2.57)

Here we used that the chosen single-particle basis functions ψk(r) are
orthonormal. The last equality comes from

δ(r− r0) = hr|r0i = hr| 1̂ |r0i =
X
k

hr|ψki hψk|r0i =
X
k

ψk(r)ψ
∗
k(r

0). (2.58)

The other (anti)commutators are zero,h
ψ̂(r), ψ̂(r0)

i
ξ
= 0 =

h
ψ̂
†
(r), ψ̂

†
(r0)

i
ξ

since the corresponding (anti)commutators for the creation and annihilations
operators are zero.
The second quantization of operators can also be written in field operators

rather than the usual creation and annihilation operators. For one-body
potentials V̂1 = V1(r̂) we get

V̂1 =
X
k0

X
k

∙Z
dr ψ∗k(r)V1(r)ψk0(r)

¸
â+k âk0

=

Z
dr ψ̂

†
(r)V1(r)ψ̂(r) (2.59)
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The expression for the two-body potential is analogous to that for the one-body
potential. The Hamiltonian, written in field operators, becomes

Ĥ =

Z
dr ψ̂

†
(r) [T (r) + V1(r)] ψ̂(r) +

1

2

Z
dr

Z
dr0 ψ̂

†
(r)ψ̂

†
(r0)V2(r, r

0)ψ̂(r0)ψ̂(r)

(2.60)
This version of second quantization is in a sense reciprocal to the one we wrote
down with the usual creation and annihilation operators. The creation operator
â†k creates a particle in the single-particle state ψk(r), whereas the field operator

ψ̂
+
(r) creates a particle localized at position r (i.e. in the single-particle state

|ri).

2.5 Summary
Step 1 — Using an orthonormal single-particle basis, we can create a
many-particle basis for the space HN of N−particle states. We do this by
taking a product, and applying Bose or Fermi symmetrization to satisfy the
identical-particle symmetry constraint:

¯̄
ψk1ψk2 ...ψkN

®
:=

r
1

N !

X
P

ξP
¯̄̄
ψP [k1]

E ¯̄̄
ψP [k2]

E
...
¯̄̄
ψP [kN ]

E
, .

Here ξP = −1 for odd permutations P of fermions, and ξP = −1 is all other
cases. Since many lists {k1, k2, ..., kN , ...} correspond to the same many-body
basis ket, we prefer to work with occupation numbers to obtain a one-on-one
relation between the labels and the many-body basis kets. Thus, we define our
occupation number basis for the space of many-particle states as:

|n1n2...nk...i =
¯̄
ψ
1
...ψ

1
ψ
2
...ψ

2
...
®Q

k

√
nk!

These form an orthonormal, complete basis set for the quantum many-body
states of identical particles.

Step 2 — Now that we have a good basis, we need to write down operators
that connect the many-body basis kets. These will allow to rewrite any
operator (such as the Hamiltonian) in a way that makes the basic processes
and transitions clear, and that keep the symmetry constraint neatly satisfied.
The fundamental operators that link the many-body basis kets are the creation
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and annihilation operators, defined for bosons through:

BOSONS (2.61)

â†k |n1n2...nk...i =
√
nk + 1 |n1n2...(nk + 1)...i

âk |n1n2...nk...i =
√
nk |n1n2...(nk − 1)...i

[âk, â
†
k0 ] = â†kâk0 − â†k0 âk = δ (k = k0)

and for fermions as:

FERMIONS (2.62)

â†k |n1n2...nk...i =
½
(−1)n1+..+nk−1 |n1n2...(nk + 1)...i if nk = 0
0 if nk = 1

âk |n1n2...nk...i =
½
(−1)n1+..+nk−1 |n

1
n2...(nk − 1)...i if nk = 1

0 if nk = 0

{âk, â†k0} = âkâ
†
k0 + â†k0 âk = δ (k = k0)

The bosonic operators commute, the fermionic ones anticommute. We link these
operators back to the many-body basis kets: both for fermions and for bosons
we have

|n
1n2...nk...i =

⎛⎝ ∞Y
j=1

(â†j)
njp

nj !

⎞⎠ |∅i . (2.63)

Here the ket |∅i represents the vacuum state, i.e. the state with no particles.
When an annihilation operator acts in this state, the result is 0 by definition.
The factors (−1)n1+..+nk−1 in the case of fermions result in the proper
antisymmetry in (2.63) for fermions.

Step 3 — Second quantization is the art of rewriting operators as products of
creation and annihilation operators. The Hamiltonian of a many-body system
with one-body potential V1(r) en two-body interaction V2(r, r

0) is given by

Ĥ =
X
k0

X
k

hψk |T + V1|ψk0i â
†
kâk0

+
1

2

X
k0,q0

X
k,q


ψqψk |V2|ψk0ψq0

®
â†qâ

†
kâq0 âk0 (2.64)

where

hψk |T |ψk0i = − ~
2

2m

Z
dr ψ∗k(r)∆rψk0(r),

hψk |V1|ψk0i =

Z
dr ψ∗k(r)V1(r)ψk0(r), (2.65)

ψqψk |V2|ψk0ψq0
®
=

Z
dr

Z
dr0 ψ∗q(r)ψ

∗
k(r

0)V2(r, r
0)ψk0(r)ψq0(r

0).
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This formula is valid both for bosons and for fermions, the difference is encoded
in the behavior of the creation and annihilation operators as you swap them
around (commuting or anticommuting). Note furthermore that in the rest of
our solid state course, for electrons we will choose a single-particle basis of Bloch
waves. So our single-particle quantum numbers k include the wave vector k,
a band index n (usually omitted since we won’t look at interband transitions),
and a spin σ. But, in general, you can choose any single-particle basis that you
want to build up a specific second-quantization formalism with it.



Chapter 3

Electrons and Phonons

The many-body system that we will deal with in the context of solid state physics
and metals in particular, is the collection of free electrons in a material. Also the
quantized lattice vibrations or phonons will play a role. In this chapter, we apply
the language of second quantisation to describe the system of many electrons
and phonons. Once we have obtained the Hamiltonian, we can estimate how
ground-state properties are influenced by interactions — to do so we need to use
perturbation theory or variational analysis.

3.1 Electrons in metals
We can now start refining Bloch’s theory of electrons in metals by including
effects of the Coulomb interaction between the electrons. The starting point is
a collection of N electrons, and a screened Coulomb interaction known as the
Yukawa potential. We will also require a neutralizing background (the cores
and valence band electrons): this will first be treated completely classically and
statically.

3.1.1 The interacting electron gas

The Hamiltonian of the N conduction electrons is given in first quantization by

Ĥel =
NX
j=1

p̂2j
2m

+
1

2

NX
j=1

X
j0 6=j

e2

4πεvac

e−μ|̂rj−r̂j0 |

|̂rj − r̂j0 |
. (3.1)

The factor 1/2 avoids double counting of the electron pairs. This Hamiltonian
describes N electrons in a crystal with volume V (at the end of the calculation
we will take the thermodynamic limit, letting both N and V go to infinity in
such a way that N/V is constant). We use SI units, so that m = 9.109× 10−31
kg, εvac = 8.854 × 10−12 F/m, e = 1.602 C. Note that to be more correct in
describing the electrons, we should replace the vacuum electron mass by the
conduction band mass.

29
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We have multiplied the usual Coulomb interaction with a strange factor
e−μ|rj−rj0 |. This is essentially a convergence factor, needed to be able to
calculate in some mathematical rigor integrals that will cancel out in the end.
We need to assume that 1/μ << L with L the length of the crystal for this factor
not to have any physical influence. The real Coulomb interaction is retrieved if
we put μ = 0 , and that is precisely the limit that we will take at the end of the
calculations, when we have done the integrations and taken the thermodynamic
limit.

Which single-particle basis shall we choose to construct our N -particle basis?
If we work in a homogeneous material, we know that the wave number k is a
good quantum number. Indeed, the momentum is the generator of translations,
and claiming translation invariance is the same as claiming that momentum
commutes with the Hamiltonian so that these have a common eigenstate basis.
Also the spin of the electrons should be taken into account. Electrons are
spin-1/2 particles, so that the spin state is a two dimensional Hilbert space
generated by two basis states, spin up σ = +1 and spin down σ = −1. Suitable
single-particle states are therefore

ϕk,σ(r) =
1√
V
eik.r ησ. (3.2)

Here V is the volume of the crystal and ησ is the spinor that corresponds to
spin up or spin down,

η+ =

µ
1
0

¶
en η− =

µ
0
1

¶
. (3.3)

The allowed values of the wave numbers fitting in a cube with side V 1/3 , and
allowing for periodic boundary conditions are

k =
(2π)3

V
n with (3.4)

n = nxex + nyey + nzez where nx, ny, nz ∈ Z. (3.5)

The density of states in reciprocal space (wave number space) is V/(2π)3. This
allows to approximate the difficult-to-take sums over the allowed wave numbers
by a much simpler integral:X

k

f(k) =
X

nx,ny,nz

f

µ
(2π)3

V
n

¶
−−−−−→
V large

Z
dnx

Z
dny

Z
dnzf

µ
(2π)3

V
n

¶
=

V

(2π)3

Z
dk f (k) . (3.6)

Note that there are different ways of setting up the chosen single-particle states.
We can choose to normalize them by a factor 1/

√
2π rather than 1/

√
V , and
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we will switch to that normalization later on, after we have learnt what the role
of the thermodynamic limit is. We can also use Dirichlet boundary conditions
rather than periodic boundary conditions on the cube to obtain slightly different
values of the allowed wave numbers. In the end, as discussed in C. Kittel’s book
(listed in the bibliography) in more detail, it doesn’t matter. For example, we
get the same results for ground state energy per volume. Now that we have
chosen our single-particle basis states, we can associate with them creation and
annihilation operators â†k,σ and âk,σ , respectively. The general notation ‘k’ that
we have used in the previous chapter now becomes specific: k = {k, σ} contains
four quantum numbers: three for the wave number in x, y, z directions and one
for spin.

First, we rewrite the kinetic energy in second quantization, using the rules
derived in the previous chapter. In order to find the second quantized version,
we need to evaluate

ψk,σ |T |ψk0,σ0
®
= − ~

2

2m

Z
dr ϕ∗k,σ(r)∆rϕk0,σ0(r)

= − ~
2

2m

£
η+σ ησ0

¤
×
∙
−(k0)2 1

V

Z
dr ei(k

0−k).r
¸

=
~2(k0)2

2m
δσσ0δ (k = k

0) . (3.7)

Here we have used one of the many useful integral representations of the delta
function:

δ(q) =
1

V

Z
V

dr eiq.r. (3.8)

The second quantisation expression for the kinetic energy now becomes:

NX
j=1

p̂2j
2m

=
X
k0,σ0

X
k,σ

~2(k0)2

2m
δσσ0δ (k = k

0) â†k,σâk0,σ0

=
X
k,σ

~2k2

2m
â†k,σâk,σ. (3.9)

Note the difference in approach between first and second quantisation. To
calculate the total kinetic energy, first quantisation sums over all the j = 1, ...,N
particles the kinetic energy contribution p̂2j/(2m) of each individual particle j
separately. In contrast, second quantisation sums over all the single-particle
states k = {k, σ} the kinetic energy that a particle would have in that state,
(~k)2/(2m), multiplied by the number of particles in that state, â†k,σâk,σ.

The second quantized form of the Coulomb interaction is

V̂C =
1

2

X
k0,σ0,q0,ζ0

X
k,ζ,q,σ


ϕq,σϕk,ζ |V2|ϕq0,ζ0ϕk0,σ0

®
â†q,σâ

†
k,ζ âk0,σ0 âq0,ζ0 .
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We need to calculate the matrix element
ϕq,σϕk,ζ |V2|ϕq0,ζ0ϕk0,σ0

®
=

e2

4πεvac
η+ζ (1)η

+
σ (2)ησ0(2)ηζ0(1)

× 1

V 2

Z
dr

Z
dr0 exp{i(q0 − q).r+ i(k0 − k).r0}e

−μ|r−r0|

|r− r0| .
(3.10)

This integral can be performed by introducing new integration variables
u = r− r0 en u0 = r0 (the Jacobian of this transformation is 1). We find
ϕq,σϕk,ζ |V2|ϕq0,ζ0ϕk0,σ0

®
= δζζ0δσσ0

1

V

Z
du0 exp{i(q0 − q+ k0 − k).u0}

× e2

4πεvac

1

V

Z
du

e−μu

u
exp{i(q0 − q).u}

The first integral is again a delta function:

1

V

Z
du0 exp{i(q0 − q+ k0 − k).u0} = δ[(q0 + k0)− (q+ k)]. (3.11)

The delta function ensures that the total (incoming) momentum of the states
that are being annihilated, ~q0 + ~k0, equals the total (outgoing) momentum
of the states are are created, ~q + ~k. This obviously is nothing but the
conservation of momentum between the initial and final states of the two
scattering electrons, and is linked to our assumption of homogeneity as stated
before.
The remaining integral isZ
du

e−μu

u
exp{i(q0 − q).u} = 2π

Z ∞
0

du

Z π

0

dθ u sin θe−μu exp{i|q0 − q|u cos θ}

= 2π

Z ∞
0

du ue−μu
ei|q

0−q|u − e−i|q
0−q|u

i|q0 − q|u

=
4π

(q0 − q)2 + μ2
.

With this result, we find


ϕq,ζϕk,σ |V2|ϕq0,ζ0ϕk0,σ0

®
=

δζζ0δσσ0

V
δ[(q0 + k0)− (q+ k)] e2/εvac

(q0 − q)2 + μ2
,

so that

V̂C =
e2

2εvacV

X
σ,ζ

X
k0,q0

X
k,q,

δ[(q0 + k0)− (q+ k)]
(q0 − q)2 + μ2

â†q,σâ
†
k,ζ âk0,σâq0,ζ

Since the delta function expresses momentum conservation, we can rewrite the
new wave numbers q0,k0 as the old wave numbers after exchange of a certain
amount of momentum. Rename k1 = k0 and k2 = q0, and denote the exchange
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amount of momentum by Q, so that k = k0 +Q and q = q0 −Q. Then we also
have q− q0 = Q, and we find

V̂C =
e2

2εvacV

X
σ,ζ

X
k1,k2

X
Q

1

Q2 + μ2
â†k1−Q,σâ

†
k2+Q,ζ

âk2,ζ âk1,σ.

The process described by the annihilation and creation operators is the
following:

• Two electrons, like rugby players, are running with momenta ~k1 and ~k2.

• Then one of the electrons throws the rugby ball, with momentum ~Q to
the other electron.

• The other electron catches it, and now has a momentum ~ (k2 +Q).

• The first electron, who threw the ball, experiences a recoil and ends up
with momentum ~ (k2 −Q).

This is all described by the succession of annihilation and creation operators
in V̂C .The annihilation operators remove the electrons from states {k1, σ}
and {k2, ζ} and the creation operators put them in states {k1 −Q, σ}
and {k2 +Q, ζ} , respectively. The quantum mechanical amplitude (not
probability!) for such a process (a ball-throw of momentum ~Q between
the two electrons) is e2/(2εvacV ) × 1/(Q2 + μ2). This turns out to be the
Fourier transform of the Yukawa interaction potential! If you would use another
potential, such as a Lennard-Jones potential to study a gas of fermionic atoms,
you’d have the same expression for the second-quantized interaction, but with
the Fourier transform of the Lennard-Jones potential in stead.
Note that we know from elementary particle physics that the rugby ball

should be a force boson, here it is the photon. But an important and subtle
distinction is that in solid state physics we focus on the non-relativistic case and
look at an instantaneous Coulomb interaction linked to the longitudinal electric
field, rather than the transverse photon that is used in particle physics.

The full Hamiltonian of the interacting electron gas becomes:

Ĥel =
X
k,σ

~2k2

2m
â†k,σâk,σ

+
1

2V

X
Q

e2

εvacQ2

X
k1,σ1

X
k2,σ2

â†k1−Q,σ1 â
†
k2+Q,σ2

âk2,σ2 âk1,σ1 .
(3.12)

Here we already attempt to put μ zero, but we need to look at this in more
detail... We can take the limit μ → 0 for most terms in the sum, but not for
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the terms that have Q = 0 ! If we separate these terms from the rest, we get

V̂C =
e2

2εvacV

X
Q6=0

1

Q2

X
k1,σ

X
k2,ζ

â†k1−Q,σâ
†
k2+Q,ζ

âk2,ζ âk1,σ.

+
e2

2εvacV μ2

X
k1,σ

X
k2,ζ

â†k1,σâ
†
k2,ζ

âk2,ζ âk1,σ. (3.13)

In the second term we reorder the operators, using the fermionic
anticommutation relations:

â†k1,σâ
†
k2,ζ

âk2,ζ âk1,σ = −â†k1,σâ
†
k2,ζ

âk1,σâk2,ζ

= −â†k1,σ
³
δσζδk1,k2 − âk1,σâ

+
k2,ζ

´
âk2,ζ

= â†k1,σâk1,σâ
†
k2,ζ

âk2,ζ − δσζδk1,k2 â
†
k1,σ

âk1,σ.

We recognize the counting operator N̂k1,σ = â†k1,σâk1,σ (cf. (2.54)) that counts
the number of particles in the single-particle state

¯̄
ψk1,σ

®
(the occupation

number of that state):

V̂C =
e2

2εvacV

X
Q6=0

1

Q2

X
k1,σ

X
k2,ζ

â†k1−Q,σâ
†
k2+Q,ζ

âk2,ζ âk1,σ

+
e2

2εvacV μ2

X
k1,σ

X
k2,ζ

³
N̂k1,σN̂k2,ζ − δσζδk1,k2N̂k1,σ

´
. (3.14)

The sum over all occupation numbers equals the total number of particles, N ,
so that

V̂C =
e2

2εvacV

X
Q6=0

1

Q2

X
k1,σ

X
k2,ζ

â†k1−Q,σâ
†
k2+Q,ζ

âk2,ζ âk1,σ

+1̂
e2

2εvacV μ2
¡
N2 −N

¢
. (3.15)

In the thermodynamic limit (N → ∞ and V → ∞ such that N/V =constant)
the divergent term is

V̂ divergent
C = 1̂

e2

2εvacV μ2
¡
N2 −N

¢
≈ 1̂ e2

2εvacV μ2
N2.

This divergence comes from the fact that we have a collection of infinitely
many negatively charged particles repelling each other, with no neutralizing
background. Of course the Coulomb energy will diverge! If we want to make
a more physical model, we need to include the neutralizing positively charged
background of the ions on the lattice.
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3.1.2 The Jellium-model for the background

The Hamiltonian of the atom core and valence electrons represents the positive
background in which the conduction electrons can move. A full quantum
mechanical picture is not only unsolvably complicated, it is also unnecessarily
complicated to understand what is going on. In lowest approximation, we will
assume that the background is static (we’ll deal with the dynamics of the ions
later on). This means there is no kinetic term — it is a reasonable assumption
since the ions are much heavier than the electrons. We also neglect quantum
fluctuations of the ions this way. Then we can describe the background as a
classical charge density en(x), and we can write down its electrostatic energy
easily:

Ĥn = 1̂×
1

2

e2

4πεvac

Z
dx

Z
dx0 n(x)n(x0)

e−μ|x−x
0|

|x− x0| . (3.16)

In an additional simplification, we will smear out the positive charge
homogeneously. Its periodic modulation will in first instance lead to a band
mass, an effect that we can already take into account through m. The
assumption of homogeneously smeared out classical positive charge for the
background is called the Jellium model. We find for the Hamiltonian of the
ions Ĥn = 1̂×Hn with

Hn =
1

2

e2

4πεvac

Z
dx

Z
du

N2

V 2

e−μ|u|

|u|

=
1

2

e2

4πεvac

N2

V
4π

Z ∞
0

du u2
e−μu

u

=
e2

2εvac

N2

V μ2
. (3.17)

Of course we also need to take into account the interactions between the
background “jelly” and the nimble conduction electrons ploughing through
it. This is the Hamiltonian of a quantum particle, with position operator r̂j ,
interacting with a classical charge density:

Ĥel−n = −
e2

4πεvac

NX
j=1

Z
dx n(x)

e−μ|x−r̂j |

|x− r̂j |
. (3.18)

As we assumed that the background charge is homogenous, we can choose the
origin of the x integration as we want and place it in hr̂ji and obtain

D
Ĥel−n

E
= − e2

4πεvac

NX
j=1

1̂×
Z

dx
N

V

e−μ|x|

|x|

=
−e2
εvac

N2

V μ2
. (3.19)
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The sum of the Hamiltonian of the background interacting with itself and with
the electrons leads to another diverging energy contribution in the Jellium
model: D

Ĥn + Ĥel−n
E

=

µ
−e2
εvac

N2

V μ2
+

e2

2εvac

N2

V μ2

¶
=

−e2
2εvac

N2

V μ2
.

Compare this with the divergent term in the Coulomb interaction between
electrons, the term that collects the contributions from Q = 0 momentum
transfers, and we find that all divergencies cancel out in the thermodynamic
limit: D

V̂ divergent
C + Ĥn + Ĥel−n

E
= 0.

This illustrates the importance of taking the thermodynamic limit before μ→ 0.
We are only interested in terms of the order N2/V in comparison to terms of
order N/V .

So, in conclusion, what the jellium background does is in essence cancel out
the Q = 0 terms in our electron Hamiltonian. The final form of the electron
Hamiltonian in the Jellium model is:

Ĥ =
X
k,σ

~2k2

2m
â†k,σâk,σ

+
1

2V

X
Q6=0

e2

εvacQ2

X
k1,σ1

X
k2,σ2

â†k1−Q,σ1 â
†
k2+Q,σ2

âk2,σ2 âk1,σ1 ,

3.2 Perturbation theory for electron-electron
interactions

The electron-electron interaction term in the Hamiltonian is something that
you have not yet studied in the introductory solid state course. What is its
effect on the ground state energy? Whenever we cannot exactly diagonalize a
Hamiltonian in quantum mechanics, we resort to either perturbation theory or
variational analysis. In this section, we illustrate the use of perturbation theory
on a many-body system. The goal is to perturbatively take the interaction part
of the Hamiltonian into account. First, we need to remind ourselves of the
solutions for the unperturbed case.
Without the Coulomb interactions, we have the unperturbed, free-electron

Hamiltonian

Ĥ0 =
X
k,σ

~2k2

2m
â†k,σâk,σ. (3.20)
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The eigenstates of this Hamiltonian are precisely our many-body basis states,
built from the single-particle plane-wave states

¯̄
ϕk,σ

®
. Since we work with

fermions, the occupation Nk,σ of each single-particle state cannot be larger
than 1. The many-body ground state is the lowest energy state by definition
and so it should be built up from all the lowest energy single-particle states.
This is similar to filling up the atomic orbitals from lowest energy to higher
energies. Since the energy corresponding to a single particle state

¯̄
ϕk,σ

®
equals

(~k)2/2m, the ground state consists of single-particles states with k 6 kF :

|Ψ0i =
¯̄̄
...ϕkj ,+ϕkj ,−..

E
met all |kj | 6 kF

=

⎛⎝ Y
|k|6kF

â†k,+â
†
k,−

⎞⎠ |∅i .
Here spin up is denoted by "+" and spin down by "−". We have

Nk,σ = hΨ0| â†k,σâk,σ |Ψ0i =
½
1 for k 6 kF
0 for k > kF

. (3.21)

In k-space (reciprocal space, wave vector space) all single-particle states within a
sphere with radius kF are occupied. This sphere is called the Fermi sphere. The
single-particle energy of highest occupied single particle state, (~kF )2 /(2m), is
called the Fermi level EF . We can find it by first determining the Fermi wave
number kF , the radius of the Fermi sphere. We get

N =
X
k,σ

hΨ0| â†k,σâk,σ |Ψ0i =
X
σ

V

(2π)3

Z
k6kF

dk, (3.22)

where the sums over allowed wave numbers, (3.4), have been replaced by a
continuous integral of the density of states in k-space, (3.6). The well-known
result for the Fermi wave vector in 3D is easily retrieved:

N = 2
V

(2π)3
4π

3
k3F

⇔ kF =
3
p
3π2(N/V ). (3.23)

A commonly used quantity in the theory of metals is the Wigner-Seitz radius.
This is a dimensionless parameter rs, equal to the radius (expressed in Bohr
radii aBohr = 0.5292) of a sphere that has the same volume as the average
volume per electron. It is a measure for the distance between the electrons, and
is given by

V

N
=

4π

3
(aBohrrs)

3

⇔ rs =
[3(V/N)/(4π)]1/3

aBohr
, (3.24)
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so that its link to the Fermi wave number is

kF =
1

aBohr

3

r
9π

4

1

rs
. (3.25)

When we switch on the Coulomb interactions, the many-body state |Ψ0i is
no longer an eigenstate of the Hamiltonian, so it can no longer be the ground
state. We want to treat these Coulomb interactions in first order perturbation
theory to find the correction to the ground state energy. Of course we first need
the zeroth order (unperturbed) value of the ground state energy:

hΨ0| Ĥ0 |Ψ0i =
X
k,σ

~2k2

2me
hΨ0| â†k,σâk,σ |Ψ0i

= 2
V

(2π)3

Z
|k|<kF

dk
~2k2

2me

= 2
~2

2me

V

(2π)3
4πk5F
5

= N × 3
5

~2k2F
2me

= N
~2

2mea2Bohr
× 2.21

r2s
. (3.26)

So, the zeroth order estimate for the energy per electron is 3/5 of the
Fermi-energy (~kF )2/(2m).
The first order perturbation theory correction to this energy is

∆E1 =
1

2V

X
Q6=0

e2

εvacQ2

X
k1,σ1

X
k2,σ2

hΨ0| â†k1−Q,σ1 â
†
k2+Q,σ2

âk2,σ2 âk1,σ1 |Ψ0i

(3.27)
The expectation value is determined as follows:

• The single-particle states associated with quantum numbers k1,σ1 and
k2,σ2 have to be occupied in |Ψ0i , otherwise the annihilation operators
would give zero.

• Similarly, the states with k1−Q,σ1 and k2+Q,σ2 have to be unoccupied
in |Ψ0i, otherwise the creation operators acting to the left on hΨ0| would
give zero.

• We start from the Fermi sphere |Ψ0i, and the annihilation operators
âk2,σ2 âk1,σ1 blow two holes in the poor Fermi sphere. If we are to finish at
the end of the day with again an immaculate Fermi sphere for hΨ0|, then
the creation operators â†k1−Q,σ1 â

†
k2+Q,σ2

must patch the holes drilled by
the annihilation operators.

So, we have to pair up the damage-making annihilation operators and the
patching creation operators, otherwise the expectation value is zero. This
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pairing up can occur in two possible ways:

â†k1−Q,σ1 â
†
k2+Q,σ2

âk2,σ2 âk1,σ1 or â†k1−Q,σ1 â
†
k2+Q,σ2

âk2,σ2 âk1,σ1 ,

b___________c b_______________c

this means ½
k2 +Q, σ2 = k1,σ1
k1 −Q, σ1 = k2,σ2

or
½
k2 +Q, σ2 = k2,σ2
k1 −Q, σ1 = k1,σ1

.

The second set of conditions can only be satisfied ifQ = 0, and we have excluded
these terms from the electron interaction Hamiltonian, as they are perfectly
cancelled by the Jellium background. These terms correspond to the direct
Coulomb interaction between the electrons (cancelled by the classical Coulomb
interaction with the positive background).
But there are non-zero terms: the first condition can be satisfied if Q =

k1 −k2 and σ1 = σ2. This is a contribution that only occurs between electrons
with the same spin, and we call this term the “exchange energy”, as we have
exchanged the order of patchings for the Fermi sphere. Its origin is the Pauli
exclusion principle: due to Pauli exclusion, an electron with spin-up keeps the
other electrons with spin-up at bay, they cannot come to the same position.
This leaves an “exchange hole” in the electron gas around an electron with a
given spin. When we smear the classical positive jellium charge homogeneously
over the volume, we have a small excess of positive charge in the exchange hole,
lowering the energy. In general, exchange contributions in Fermi gases weaken
the effects of interaction: same-spin fermions undergo a weaker interaction than
opposite-spin fermions.
The expectation value becomes

hΨ0| â†k2,σ1 â
†
k1,σ1

âk2,σ1 âk1,σ1 |Ψ0i = hΨ0| â†k2,σ1
³
δk2,k1 − âk2,σ1 â

†
k1,σ1

´
âk1,σ1 |Ψ0i

= nk1,σ1δk2,k1 − nk1,σ1nk2,σ1 (3.28)

where the term with the delta function is again absent in the summation because
it corresponds to. The first order energy correction becomes

∆E1 = − 1

2V

X
σ

X
k1

X
k2

e2

εvac(k1 − k2)2
nk1,σnk2,σ

= − 1
V

X
k1<kF

X
k2<kF ,k2 6=k1

e2

εvac(k1 − k2)2
. (3.29)

where the terms with k2 = k1 are not present in the sum. This becomes

∆E1 = − V e2

(2π)6εvac

Z
k1<kF

dk1

Z
k2<kF

dk2
1

(k1 − k2)2

= − V e2

8π4εvac
k4F

Z 1

0

du1

Z 1

0

du2

Z 1

−1
dx

u21u
2
2

u21 + u22 − 2u1u2x
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Figure 3.1: The result of the energy of the electron gas in a metal, up to first
order perturbation in the electron-electron interactions.

The integral can be performed analytically, or on a computer, and we find

∆E1 = −N
e2

4πεvac

3

2π
kF = −N

e2

4πεvacaBohr

0.916

rs
(3.30)

Since for the Bohr radius we have by definition that

~2

2mea2Bohr
=

e2

4πεvacaBohr
= ERy ,

with ERy the “Rydberg energy”, we can write the total energy of the interacting
electron gas up to first order as:

E = N ×ERy ×
µ
2.21

r2s
− 0.916

rs
+O(ln rs)

¶
(3.31)

This result is plotted in figure 3.1.The next term in the series is of order ln(rs).
A few remarks need to be made about this result for the binding energy of
electrons in metals:

— This binding energy has a minimum, at rs = 4.83 (there, the energy per
electron is −0.095 Rydberg).

— At large values of rs there is no doubt that we have to go beyond first-order
perturbation theory. However, for sodium (rs = 3.86) the result is still
quite good: the experimental result of−1.13 eV agrees with the theoretical
value of −1.21 eV. In general the results for the alkali metals work out
well, for the other metals the result is less good. This is also due to the
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fact that the other metals have Fermi surface that are not really spheres,
due to their complicated band structure — it is however not too difficult
to take that into account in the theory.

— The bulk modulus B = −V (∂2E/∂V 2)N can be computed using the
relation between rs and V . It becomes zero for rs = 6.03, which points to
an instability. In the limit of low density (rs → ∞) Eugene Wigner has
shown that the Coulomb interaction dominates the kinetic energy term so
that is becomes energetically advantageous for electrons to localize in a
lattice. This is called the Wigner lattice.

— Before trying to take into account higher order corrections to the Coulomb
energy, we need to have a better description of the background in order
to get next order corrections.

3.3 Phonons

3.3.1 Phonon Hamiltonian

Phonons are quantized vibrations of the crystal lattice. In the introductory
course on solid state physics (and in any course on waves and vibrations),
the dispersion relation ωk,λ of phonons with wave vector k and mode λ1 is
calculated. Often, one uses masses connected by springs as a model system
to derive examples of dispersion relations. In practice, the phonon dispersion
can be measured by for example Raman spectroscopy. For each wave number
k and mode λ we do not only have the frequency of the oscillation, but
also its amplitude. This is quantized just as for harmonic oscillators, and
leads to bosonic creation and annihilation operators b̂†k,λ en b̂k,λ. The phonon
Hamiltonian that we take from these earlier courses is

Ĥfon =
X
k,λ

ωk,λb̂
†
k,λb̂k,λ, (3.32)

We’ve used the fact that the phonon dispersions that we study will often only
depend on the size of the wave vector but not its direction. In actual materials
this is not necessarily so. In our examples we will also only use a single phonon
branch, so we do not need the label λ. The phonons in this model do not interact
with each other, and this is yet another approximation, be it a very useful one.

1Modes can be transverse or longitudinal, and acoustic or optical.
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3.3.2 Electron-phonon interaction

The interactions between electrons and phonons is a very important topic in
solid state physics. In metals it influence the transport properties of electrons
and may lead to superconductivity. In semiconductors and polar crystals it
influences mobility and optical response. To find the generic form of the
interaction Hamiltonian, we start from the interaction potential between the
ions and the electrons, and sum this over all ions and over all electrons:

Ĥint =
NX
i=1

V (r̂i) (3.33)

=
NX
i=1

⎡⎣Nio nX
j=1

Ve-i(r̂i − R̂j)

⎤⎦ . (3.34)

Here Ve-i obviously is the potential between electrons (at positions r̂i) and lattice
ions, atoms or molecules (at positions R̂j). The position of ion or atom number
j can be written as an equilibrium lattice position R0

j plus a deviation out
of equilibrium Q̂j . These deviations are supposed to be small — indeed the
Lindemann criterion states that if the atoms wander more than roughly 10% of
a lattice distance away from their equilibrium position, the lattice melts. We
then have a small parameter with which to expand the electron-ion potential:

Ve-i(r̂i − R̂j) = Ve-i(r̂i −R0
j − Q̂j)

= Ve-i(r̂i −R0
j )− Q̂j .

£
∇Ve-i(r̂i −R0

j )
¤
+O(Q̂2

j ) (3.35)

The higher-order terms describe the anharmonic oscillations and are not taken
into account — the were already neglected in the phonon Hamiltonian (3.32)
where they would lead to phonon-phonon scattering. The term Ve-i(r̂i − R0

j)
does not depend on the deviations out of equilibrium and represents the effect
of the perfect lattice. This is the periodic potential considered by Bloch, and
we know its effect: it generates band mass and band gaps. In the jellium model
this potential is even simpler: it is just a homogeneous constant. So, in the
present approximation the quantum dynamics of the lattice is taken into account
through the gradient term only. We can Fourier transform this particular term:

V (r̂i) = −
Nio nX
j=1

Q̂j .
£
∇Ve-i(r̂i −R0

j)
¤

= −
Nio nX
j=1

X
q

³
Q̂j .q

´
Ve-i(q) exp{iq.(r̂i −R0

j )} (3.36)

In this expression we identify

1√
Nion

Ni o nX
j=1

Q̂j exp{−iq.R0
j)} = Q̂q = sq

s
~

2Mωq
(b̂q + b̂†−q). (3.37)
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This connection between the displacement operators Q̂j for the ions and the
creation and annihilation operators for the phonons is the same as the connection
between the position operator of a harmonic oscillator and its creation and
annihilation operators. The student who wants more details will find it in the
classic book of Ziman (cf. bibliography). There is one addition: the vector
sq represents the polarisation vector of the phonon, i.e. the direction of the
displacement Q̂j . We have transversal phonons if q · sq = 0, and longitudinal
phonons for q × sq = 0. We can now separate the parts of V (r̂i) that contain
the operator character from the other parts, and group all factors that do not
have operator character in a function M(q):

V (r̂i) =
X
q

M(q)(b̂q + b̂+−q)× eiq.̂ri . (3.38)

For now, we do not specify M(q), just as we did not specify the electron-ion or
electron-atom potential. It is an interaction amplitude.

Expression (3.38) is still given in first quantization as far as the electron
operators are concerned. We can transform it to second quantization using the
rules given in chapter 2:

NX
i=1

eiq.̂ri =
X
k,σ

X
k0,σ0

∙Z
dr ϕ∗k0,σ0(r)e

iq.rϕk,σ(r)

¸
â†k0 âk

=
X
k,σ

X
k0,σ0

δσσ0

"Z
dr

e−ik
0.r

√
V

eiq.r
eik.r√
V

#
â†k0 âk

=
X
k,σ

X
k0,σ0

δσσ0δ(k+ q− k0)â†k0 âk

=
X
k,σ

â†k+q,σâk,σ (3.39)

As a consequence, we find for the electron-phonon interaction Hamiltonian the
following generic form:

Ĥint =
X
q

X
k,σ

M(q)(b̂q + b̂†−q)â
†
k+q,σâk,σ (3.40)

This form inspires the introduction of a short-hand notation, the phonon
operator

B̂q = b̂q + b̂†−q = B̂†
−q (3.41)

The reasoning behind introducing this operator is that creating a phonon with
wave number −q is the same as removing a phonon with wave number q, so we
group both processes. Then B̂q is a more physical form for the phonon operator.
What story does the sequence of creation and annihilation operators in (3.40)

tell? An electron comes by with momentum ~k. It has a certain quantum
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mechanical amplitude (not probability!) M(q) to either absorb a phonon with
momentum ~q or emit a phonon with momentum −~q. The effect is the same:
the final momentum of the electron is ~(k+ q).

3.3.3 Summary

The total Hamiltonian for the system of electrons and phonons is, in second
quantization, given by:

Ĥ =
X
k,σ

~2k2

2m
â+k,σâk,σ +

X
k,λ

ωk,λb̂
+
k,λb̂k,λ

+
1

2V

X
Q6=0

e2

εvacQ2

X
k1,σ1

X
k2,σ2

â+k1−Q,σ1 â
+
k2+Q,σ2

âk2,σ2 âk1,σ1

+
X
q,λ

X
k,σ

Mλ(q)(b̂q,λ + b̂+−q,λ)â
+
k+q,σâk,σ (3.42)

The first line contains the Hamiltonian of the non-interacting electron gas
and the non-interacting gas of phonons. The second line represents the
Coulomb interaction between the electrons. The third line describes the
interaction between phonons and electrons. Now we have finally obtained
the full Hamiltonian that we want to study — we’ll search for the ground
state and the ground state energy of this Hamiltonian, and try to understand
also thermodynamical properties generated by it. This is a very complicated
problem, and we will need the full force of many-body theories for it. This will
be the object of the next chapter.
First, we’ll illustrate the use of perturbation theory and variational theory

on a simpler problem: a single electron in an polar crystal. That will allow
us not only to do some interesting solid state physics, but it will also show us
the difficulties of perturbation theory as applied in its usual form. The Green’s
function method explained in the next chapter will basically be a better way
to systematically do perturbation theory and to select out those contributions
that we think are important. But first, our starter: the polaron.

3.4 The Polaron problem
The calculation of the exact expression forM(q) is not a trivial task and depends
on the interaction potentials between the lattice of polarizable, displaceable
atoms or ions. We have many possibilities: the same generic form of the
Hamiltonian occurs for electrons interacting with longitudinal optical (LO)
phonons or longitudinal acoustic phonons, or magnons, or librons, or vibrons,...
The only thing that changes is what we plug in for the dispersion ~ωq and for
the interaction amplitude M(q).
We’ll look at a special case, polar crystals or ionic crystals where the positive

and negative ions alternate, such as in salt, NaCl. If we place an electron in these
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Figure 3.2: Illustration of a Fröhlich polaron: the electron deforms the polar
lattice and drags this deformation along as it moves.

systems, it will attract the positive ions and repel the negative ions: in general,
it will distort the lattice. The positive ions are pulled towards the electrons,
the negative ones in the direction away from the electron, so it is clear that the
crystal vibration mode with which the electron will interact most strongly is
the longitudinal optical phonon in this case. That’s nice, since optical phonons
have a flat dispersion ~ωq = ~ωLO with ~ωLO a constant of about 10-100 meV.
The electron, taken together with its lattice deformation, is called a polaron, as
illustrated in figure (3.2).
Fröhlich2 derived the interaction amplitude for electrons to emit or absorb

LO phonons. It is given by

M(q) = −i
√
~ωLO
q

2πe2√
V

µ
1

ε∞
− 1

ε0

¶
. (3.43)

Here ε∞ is the high-frequency permittivity (the square of the index of refraction)
and ε0 is the static dielectric constant (the one that changes the electrostatic
energy of a capacitor if you shove a piece of the material between the capacitor
plates). In order to be completely accurate we should replace 1/q in this
expression by

1

q
→ sLO · q

|q|2
(3.44)

where sLO is the direction of the displacements, and in the LO case these are
parallel to q.
In order to characterize the strength of the coupling between electrons and

LO phonons, Fröhlich introduced the dimensionless parameter α, given by

α =
e2

~

r
m

2~ωLO

µ
1

ε∞
− 1

ε0

¶
(3.45)

2H. Fröhlich, H. Pelzer and S. Zienau, Philos. Mag. 41, 221 (1950); J. T. Devreese, in
Encyclopedia of Applied Physics, edited by G. L. Trigg (VCH, New York, 1996), Vol. 14.
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and he re-writes the interaction amplitude as

M(q) = −i
r
4πα

V

1

q
~ωLO 4

r
~

2mωLO
(3.46)

The Hamiltonian for a single electron in a bath of LO phonons is then given by

ĤFröhlich =
p̂2

2m
+
X
q

~ωLO b̂†qb̂q +
X
q

M(q)(b̂q + b̂†−q)e
iq.̂r (3.47)

Since we look at a single electron, there’s no need for second quantization and
we keep the first quantized position r̂ and momentum p̂ for the electron.
There’s a final step to go in writing down the polaron Hamiltonian. We are

going to use units in which ~ = 2m = ωLO = 1. Thus, lengths are measured in
units

p
~/(2mωLO) and any results we get for the energy are measured in units

~ωLO. We use these “polaronic” units to simplify the Fröhlich Hamiltonian to

ĤFröhlich = p̂2 +
X
q

b̂†qb̂q − i

r
4πα

V

X
q

1

q
(b̂q + b̂†−q)e

iq.̂r (3.48)

3.4.1 Perturbation theory for electron-phonon
interactions

Just as we studied the effects of electron-electron interactions using first
perturbation theory, we can investigate (3.48) with this theory. The
unperturbed parts of the Hamiltonian,

Ĥ0 = p̂2 +
X
q

b̂†qb̂q, (3.49)

have plane wave eigenfunctions for the single electron, ψk(r) = eik·r/
√
V and

occupation number many-body basis kets |n1, ..., nq, ...iph as eigenfunctions of
the phonon part. The eigenfunctions of Ĥ0 are

|ψki |n1, ..., nq, ...iph (3.50)

The energy of this state is given by

E
(0)
k,{nq} =

(~k)2

2m
+ ~ωLO

X
q

nq

→ k2 +
X
q

nq in our units (3.51)

The ground state is given by k = 0 and the phonon vacuum |∅iph . We look
at unperturbed states with a phonon vacuum |ψki |∅iph and ask: how does the
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energy E
(0)
k = (~k)2/(2m) of the electron change due to the coupling with the

bath of phonons? This is the central question of the polaron problem.
In first order perturbation theory we do not get any correction, since

h∅| hψk| b̂q + b̂†−q |ψki |∅iph = 0. (3.52)

We need to go to second order perturbation theory, and consider

∆E
(2)
k =

X
|exci6=|ψki|∅iph

¯̄̄D
exc

¯̄̄
ĤI

¯̄̄
ψk

E
|∅iph

¯̄̄2
E
(0)
k −E

(0)
exc

. (3.53)

Here |exci represents any state of the unperturbed Hamiltonian that is different
from the original state |ψki |∅iph. If the original state is the ground state then
this is a summation over all excited states, hence then symbol |exci. The
perturbation Hamiltonian is

ĤI = −i
r
4πα

V

X
q

1

q
(b̂q + b̂†−q)e

iq.̂r. (3.54)

For this perturbation, the only excited states that give an expectation value
that is different from zero in (3.53) are those that contain a single phonon.
If this phonon has wave number q, the electron has lost momentum ~q, so
|exci =

¯̄
ψk−q

®
|nq = 1iph. Then

hnq = 1|
D
ψk−q

¯̄̄
ĤI

¯̄̄
ψk

E
|∅iph = −i

r
4πα

V

1

q


ψk−q

¯̄
eiq.̂r

¯̄
ψk
®

= −i
r
4πα

V

1

q
(3.55)

The unperturbed energy of this excited state is

E(0)exc =
~2(k − q)2

2m
+ ~ωLO

→ E(0)
exc = (k − q)2 + 1 in our units (3.56)

Puzzling all this together, we get

∆E
(2)
k =

X
q

¯̄̄
−i
q

4πα
V

1
q

¯̄̄2
k2 − (k − q)2 − 1 (3.57)

Replacing the summation over allowed wave number by an integral over
reciprocal space we get

∆E
(2)
k =

V

(2π)3

Z
d3q

¯̄̄̄
¯−i
r
4πα

V

1

q

¯̄̄̄
¯
2

1

k2 − (k − q)2 − 1 (3.58)

= − 1

2π2
α

Z
d3q

1

q2
1

q2 − 2k · q+ 1 (3.59)
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This can be developed in powers of k, and we get

∆E
(2)
k = − 2

π
α

∞Z
0

dq
1

q2 + 1

− 1
π
αk2

∞Z
0

dq

πZ
0

dθ sin θ
4q2 cos2 θ

(q2 + 1)
3 (3.60)

The integrals can be performed analytically and we get

∆E
(2)
k = −α− α

6
k2 (3.61)

Plugging our units back, we get that the electron dispersion is modified by the
electron-phonon interaction up to first order in α to

Ek = −α~ωLO +
(~k)2

2m
(1− α/6) (3.62)

The result is plotted in the inset of figure 3.3.The first term is an overall energy
shift: the energy of the electron is lowered by an amount −α~ωLO by the
potential that it digs for itself in the lattice. The second term can be interpreted
as a change in mass, we can absorb the factor 1 − α/6 in the mass and use a
mpol = m/(1 − α/6) as increased mass. This is a very logical conclusion: the
electron deforming the polar lattice is much like a person walking on the beach,
deforming the soft sand on which he or she walks. The deformed sand makes a
dimple under the person, lowering the (gravitational) energy, but it also makes
it harder to walk, increasing the mass or inertia of the person.

3.4.2 Variational analysis of electron-phonon interactions

The perturbational analysis is valid at small coupling. For large coupling, we
can turn to another paragon of quantum theory, variational analysis. When
the coupling is large, we expect that the electron digs a deep potential hole
in the polar lattice, and the electron wave function can get localized in that
self-induced potential. Note that it is not the entire polaron that gets localized,
since the total momentum commutes with the Hamiltonian. In this regime,
Pekar3 expects the wave function of the system to be a product

|ψei |φiph (3.63)

of an unknown phonon part |φiph and a normalized Gaussian electron trial wave
function

ψe(r) =
1¡

πr2p
¢3/4 e−r2/(2r2p) (3.64)

3Pekar SI (1951). "Issledovanija po Ekektronnoj Teorii Kristallov". Gostekhizdat, Moskva.
Geschreven in volle koude oorlog maar ik heb geen cyrillisch geïnstalleerd op mijn computer.
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Figure 3.3: The main figure shows the result for the ground state energy of
a polaron, from perturbation theory (blue line) and from variational analysis
(purple dash-dotted line) — at low α the perturbation result is better than the
variational value. The inset shows the dispersion relation (energy versus k) from
perturbation theory (full line; the dashed line is (~k)2 /(2m)). The dispersion
shifts downwards and bends open (larger effective mass).

where rp is the polaron radius (still using polaronic units), a variational
parameter. We calculate the variational energy

ph hφ| hψe| ĤFröhlich |ψei |φiph (3.65)

by first taking the expectation value with respect to the variational electron
wave function. Using the electron kinetic energy

Ekin(rp) =

¿
ψe

¯̄̄̄
p̂2

2m

¯̄̄̄
ψe

À
=

3

2r2p
(3.66)

and electron density

ρk =

ψe
¯̄
eik·̂r

¯̄
ψe
®
= e−k

2r2p/4 (3.67)

we get

hψe| ĤFröhlich |ψei = Ekin +
X
k

b̂†kb̂k

+
X
k

h
M(k)ρkb̂k +M∗(k)ρ∗kb̂

†
k

i
. (3.68)
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We can now complete the squares in the phonon operators, and write

hψe| ĤFröhlich |ψei = Ekin +
X
k

h
b̂†k +M(k)ρk

i h
b̂k +M∗(k)ρ∗k

i
−
X
k

|M(k)ρk|
2 (3.69)

The second term represents a displaced harmonic oscillator. This means that in
the ground state, the atoms are no longer in their original equilibrium positions,
but in displaced positions due to the presence of the electron-phonon coupling.
That is nothing but the deformed lattice! It is clear that the best variational
phonon state is the state that forms the vacuum for the displaced phonon
operator d̂k = b̂k +M∗(k)ρ∗k/(~ωLO). In this state the variational energy is

Evar = Ekin(rp)−
X
k

|M(k)ρk|
2

~ωLO
(3.70)

=
3

2r2p
−
√
2

π1/2
α
1

rp
(3.71)

Here we have performed the simple Gaussian integrals. The optimal value of rp
is

rp =
3π1/2√
2α

(3.72)

and the resulting variational energy is (in units ~ωLO)

Evar = −
α2

3π
(3.73)

Now we find that the ground state energy goes down proportionally to −α2,
rather than the perturbation result which is proportional to −α. Both ground
state energies as function of α are compared in figure 3.3. The variational result
will be lower than the perturbation result for large α, which is the region of
validity of the Pekar assumption.
What happens in between, for intermediate α? How far away are we still

from the exact result? What happens when there are multiple electrons, and
we get an interacting polaron fluid? All these questions are beyond the scope
of simple perturbational or variational analysis shown in this chapter. We need
a more systematic approach, and setting up this approach is the goal pursued
in the next chapter.



Chapter 4

Green’s functions and
Feynman diagrams

Green’s functions and calculations with Feynman diagrams form the corner
stone of modern quantum physics, in particular in elementary particle physics
and condensed matter physics. These methods allow to avoid the tangle
of creation and annihilation operators that one encounters in the usual
perturbation theory, by cleverly ordering and sorting them and making an
intuitive graphical representation of what these products of operators actually
mean. In this chapter, central to the whole course, we will explain these
methods. In the next chapters they will be applied to calculate for example
the response of electrons in metals.

4.1 Green’s function: definition
The Green’s function defined here is connected to the path integral propagator1.
The path integral propagator represents a quantum mechanical amplitude for
a transition between fully specified initial and final states of the system. The
Green’s function is more specific: it represents the amplitude that a
single particle, added to the many-body system in a single-particle
state |ψki at time t0, will remain in the same single-particle state after
a certain time t − t0. Put in quantum mechanical notation, we define the
Green’s function by

G(k; t− t0) := −i
D
T âk(t)â

†
k(t

0)
E
, (4.1)

The creation and annihilation operators are given in the Heisenberg picture,
and are time dependent. At temperature zero, the expectation value is

1 In the theory of distributions and partial differential equations one also uses a Green’s
function. That Green’s function has close links to what is defined here, but in the context of
many body theory it obtains a very specific meaning as discussed in the present chapter.
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calculated in the many-body ground state |Ψ0i. For non-zero temperatures this
becomes a quantum statistical expectation value, where in addition to the usual
quantum expectation value we also average over a suitable statistical ensemble
of many-body states. What else is in this formula? The symbol T is the time
ordering operator: it will order the operators that follow it in chronological
order. The operator with the earliest time acts first, then the next, etc. So,
in the above definition of the Green’s function ,the time ordering operator is a
short-hand way to denote

G(k; t− t0) = −i
½

âk(t)â
†
k(t

0) for t0 < t

ξâ†k(t
0)âk(t) for t < t0

(4.2)

where for the fermions we obtain a minus sign when the two operators need to
be swapped in order to get the chronological order. If the single-particle state
|ψki happens to be a single-particle eigenstate of the Hamiltonian with energy
~ωk, and the total energy of the many-body ground state |Ψ0i is noted as ~ω0,
then we have

â†k(t
0) |Ψ0i = exp{iωkt0} |Ψ0i

âk(t)â
†
k(t

0) |Ψ0i = exp{iωk(t0 − t)} |Ψ0i
⇒ G(k; t > t0) = −i exp{iωk(t0 − t)}. (4.3)

In general, the single-particle states |ψki that we choose for our second
quantization formalism will lead to eigenstates of the system — if this were
true we would have an exact solution to the problem. Bummer. But, usually,
the Hamiltonian Ĥ can be split up and written as a sum of a part Ĥ0 that does
have known exact solutions, and a part that contains the other terms (usually
the interaction contributions), Ĥ1. Then the |ψki are chosen to correspond to
the single-particle eigenstates of Ĥ0. The most useful representation to work
in is then the Dirac picture (also known as interaction representation), rather
than the Schrödinger or Heisenberg pictures. In the Dirac picture, both the
wave functions and the operators depend on time — the wave functions follow
a Schrödinger equation with Ĥ1 as Hamiltonian, and the operators follow a
Heisenberg equation with Ĥ0 as Hamiltonian. If you’ve forgotten the Dirac
picture, you’ll find a summary of its main features in the addendum to this
chapter.
Note that as |ψki is not a single-particle eigenstate of the full Hamiltonian

Ĥ, the particle created by â†k(t
0) at time t0, it’s amplitude will be spread over

the true single-particle states by scattering and interactions. When we project
the resulting state after some time t − t0 back onto the original state |ψki, we
find how much amplitude is still left in that original state — this is the physical
interpretation of Green’s function in interacting systems. Taking the modulus
squared tells us what the probability is to find the particle still in the original
state, and this probability will go down the longer we wait since there is more
chance for the particle to scatter into other states. This description closely
matches what many solid-state experimental probes do: you shoot in a particle
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beam (photons, electrons,...) and measure how much comes trough in still the
original beam, and how much is scattered. Our Green’s functions seem perfectly
suited to tell us the outcome of these experiment. If we can calculate them from
the microscopic theories, this allows us to test these microscopic theories with
experimental probes.

4.2 Non-interacting Green’s functions

4.2.1 The filled Fermi sphere

Let’s start our investigation of Green’s functions with systems that have a known
exact solutions. These will be non-interacting systems of electrons or phonons,
and we will calculate their Green’s functions first. For non-interacting electrons,
we know that the ground state consists of a filled Fermi sphere

¯̄
Ψfb0

®
. In a

homogeneous medium, the single-particle states are plane waves, indexed by
the wave vector k and the spin quantum number σ. In the previous chapters we
denoted these single-particle basis functions by ϕk,σ(r) = eik.rησ/

√
V The

ground state energy for the filled Fermi sphere is (in 3D) given by E0 =
(3/5)NEF .
Since all single-particle states with k < kF are filled, we find:

Ψfb0
¯̄
âk,σâ

†
k,σ

¯̄
Ψfb0

®
= θ(k > kF ). (4.4)

It is only possible to create a particle in state
¯̄
ϕk,σ

®
if this state is unoccupied

(k > kF ). The annihilation operator brings the state with the extra particle
back to the original ground state. Analogously we have

Ψfb0
¯̄
â†k,σâk,σ

¯̄
Ψfb0

®
= θ(k < kF ). (4.5)

Note that these are the temperature zero results. At non-zero temperatures we
need to use the Fermi-Dirac distribution rather than the filled Fermi sphere,

θ(k < kF )→ nF (k) =
1

exp{(Ek − μ)/kBT}+ 1
, (4.6)

with Ek = (~k)2/(2m) the energy corresponding to the single-particle state,
and μ the chemical potential (μ→ EF for T → 0). The Green’s function is

G(k, σ; t− t0) = −i

Ψfb0

¯̄
âk,σ(t)â

†
k,σ(t

0)
¯̄
Ψfb0

®
θ(t > t0)

+i

Ψfb0

¯̄
â†k,σ(t

0)âk,σ(t)
¯̄
Ψfb0

®
θ(t < t0). (4.7)

The expectation value evaluates to
Ψfb0

¯̄
âk,σ(t)â

†
k,σ(t

0)
¯̄
Ψfb0

®
=

Ψfb0

¯̄
eiĤt/~ âk,σe

−iĤt/~eiĤt0/~ â†k,σe
−iĤt0/~ ¯̄Ψfb0 ® .

(4.8)
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To calculate this, use

eiĤt0/~ â†k,σe
−iĤt0/~ ¯̄Ψfb0 ® = eiĤt0/~ â†k,σ

¯̄
Ψfb0

®
exp{−iE0t0/~}

= â†k,σ
¯̄
Ψfb0

®
exp{i(E0 +Ek)t

0/~} exp{−iE0t0/~}

= â†k,σ
¯̄
Ψfb0

®
exp{iEkt

0/~}, (4.9)

where the second equality holds since â+k,σ
¯̄
Ψfb0

®
is also a many-body eigenstate

of the non-interacting electron gas described by Ĥ0. Moreover, it is a many-body
eigenstate with total energy E0 + Ek , since there is one additional electron in
the single-particle state

¯̄
ϕk,σ

®
. Analogously we get

Ψfb0
¯̄
eiĤt/~ âk,σe

−iĤt/~ = exp{iE0t/~}

Ψfb0

¯̄
âk,σe

−iĤt/~

= exp{iE0t/~} exp{−i(E0 +Ek)t/~}

Ψfb0

¯̄
âk,σ

= exp{−iEkt/~}

Ψfb0

¯̄
âk,σ, (4.10)

where the operators now act on the bra rather than the ket. Putting the previous
results together we obtain

G(k, σ; t− t0) = −i exp{−iEk(t− t0)/~}

Ψfb0

¯̄
âk,σâ

†
k,σ

¯̄
Ψfb0

®
θ(t > t0)

+i exp{−iEk(t− t0)/~}

Ψfb0

¯̄
â†k,σâk,σ

¯̄
Ψfb0

®
θ(t < t0).

Now we substitute (4.4) and (4.5) in this result:

G(k, σ; t− t0) = −i exp{−iEk(t− t0)/~}
× [θ(k > kF )θ(t > t0)− θ(k < kF )θ(t < t0).] (4.11)

That result is easy to interpret! The Heaviside functions make sure that you
can create the electron (or hole) in the first place. But once it is created, it
is also an eigenstate, nothing will happen to it. That is, the modulus of the
amplitude (the probability) to remain in the same state must be 1. However, if
we have a free particle with energy Ek and we leave it hanging in free space, what
happens to the wave function is that the phase starts to rotate with frequency
Ek/~. So, the amplitude of a free particle in an energy eigenstate changes as
exp{−iEk(t − t0)/~} in time. And that is precisely the form of the Green’s
function.
The Fourier transform of the Green’s function, from times s = t − t0 to

frequencies, will be used with the following conventions for signs and 2π factors:

G(k, σ;ω) =

∞Z
−∞

G(k, σ; t)eiωtdt, (4.12)

G(k, σ; t) =

∞Z
−∞

G(k, σ;ω)e−iωt
dω

2π
. (4.13)
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Note the location of the de factor 2π. Sometimes Fourier transforms are defined
with a

√
2π in the denominator for both dt and dω. A mnemonic to remember

our convention is that reciprocal space gets it all, the full factor 2π. Frequencies
moreover get the minus sign in e−iωt and wave number not eik·r so that we get
for the space-time transform exp{i(k · r− ωt)}.
We will use a very nice integral representation of the Heaviside step function

θ(x):

θ(x > 0) = −
∞Z
−∞

du

2πi

e−iux

u+ iδ
, (4.14)

with δ an infinitesimal positive quantity. This formula can be proven by complex
integration, where we complete the contour along the real axis with a large
semi-circle. When x > 0 the contour need to be closed with a large semi-circle
in the lower half plane, and this contains the simple pole u = −iδ with residue 1.
When x < 0 then the contour has to be closed along the upper half plane, which
does not contain poles, so that the integral evaluates to zero. With this integral
representation we rewrite the heaviside functions in the Green’s function and
obtain

G(k,σ; t− t0) =

∞Z
−∞

dν

2π

"
θ(k > kF )e

−iEk(t−t0)/~ e
−iν(t−t0)

ν + iδ

−θ(k < kF )e
−iEk(t−t0)/~ e

iν(t−t0)

ν + iδ

#
. (4.15)

Since the Fourier transform of the Green’s function satisfies (4.13) and Fourier
components are unique, we conclude by comparing the above result to (4.13)
that

G(k, σ;ω) =
θ(k > kF )

ω −Ek/~+ iδ
+

θ(k < kF )

ω −Ek/~− iδ
. (4.16)

When we work in the grand canonical ensemble, setting the number of particles
by fixing a chemical potential, it becomes useful to measure the energy from the
chemical potential onwards. That is, we set ω → (E − μ)/~ and Ek → Ek − μ.

4.2.2 Green’s function with field operators

Note that we can also define Green’s functions with field operators:

G(r, t; r0, t0) := −i
D
T ψ̂(r, t)ψ̂

†
(r0, t0)

E
. (4.17)

How this connects to our main definition can be seen by rewriting the field
operators again as a function of the usual creation-and annihilation operators



CHAPTER 4. GREEN’S FUNCTIONS AND FEYNMAN DIAGRAMS 56

according to definition (2.55) from the previous chapters and collecting the
diagonal terms:

G(r, t; r0, t0) =
X
k

ψk(r)ψ
∗
k(r

0)G(k, t− t0). (4.18)

For the special case of plane waves, both definitions of the Green’s function
are each other’s Fourier transform. If the single-particle wave functions are
ϕk,σ(r) = eik.rησ/

√
V , then

G(r, t; r0, t0) = δσ,σ0

Z
dk

(2π)3
G(k, t− t0)eik.(r−r

0). (4.19)

With this, we find for the filled Fermi sphere

G(r, t; r0, t0) = δσ,σ0

Z
dk

(2π)3
eik.(r−r

0)

Z
dω

(2π)
eiω(t−t

0)

×
µ

θ(k > kF )

ω −Ek/~+ iδ
+

θ(k < kF )

ω −Ek/~− iδ

¶
, (4.20)

or

G(r, t; r0, t0) = δσ,σ0

Z
dk

(2π)3
eik.(r−r

0)

Z
dω

(2π)
eiω(t−t

0)G(k, t− t0). (4.21)

We interpret this Green’s function as the amplitude to find a particle at a
position r (and with spin σ) at a time t, given that it was created at time t0 in
at position r0 (and with spin σ0). Now the link with the Feynman propagator
is very clear! Note that if the Hamiltonian does not contain terms that allow
spin flips, then the particle created at space-time point {r0, t0} should still have
its original spin at space-time point {r, t}, so we have a factor δσ,σ0 .

4.2.3 Phonon Green’s function

Phonons are bosons, so that the creation and annihilation operators satisfy the
commutation relation [b̂k,λ, b̂

+
k0,λ0 ] = δ(k − k0)δλλ0 . Since creating a phonon

with wave number k is physically equivalent to destroying a phonon with wave
number −k, we introduce the following symmetrized operator:

B̂k,λ = b̂k,λ + b̂†−k,λ. (4.22)

For phonon Green’s functions we will use the symbol D rather than G, that we
reserve for electrons. We define the phonon Green’s function by

D(k, λ; t− t0) = −i
D
T B̂k,λ(t)B̂

†
k,λ(t

0)
E
. (4.23)

The Hamiltonian for phonons is

Ĥphonon =
X
k,λ

~ωk,λb̂k,λb̂†k,λ. (4.24)



CHAPTER 4. GREEN’S FUNCTIONS AND FEYNMAN DIAGRAMS 57

The Heisenberg equation of motion for the phonon annihilation operators is

i~
db̂k,λ
dt

=
h
b̂k,λ, Ĥ

phonon
i

=
X
k0,λ0

~ωk0,λ0
h
b̂k,λ, b̂k0,λ0 b̂

†
k0,λ0

i
=

X
k0,λ0

~ωk0,λ0
³
b̂k0,λ0

h
b̂k,λ, b̂

†
k0,λ0

i
+
h
b̂k,λ, b̂k0,λ0

i
b̂†k0,λ0

´
=

X
k0,λ0

~ωk0,λ0 b̂k0,λ0δ(k− k0)δλλ0

= ~ωk,λb̂k,λ (4.25)

This differential equation has a simple solution

b̂k,λ(t) = eiωk,λtb̂k,λ. (4.26)

With this result (and its hermitean conjungate) we can work out the phonon
Green’s function. We drop the mode index λ since it does not influence the
result anyway:

D(k; t− t0) = −i
Dh
b̂k(t) + b̂†−k(t)

i h
b̂†k(t

0) + b̂−k(t
0)
iE

θ(t > t0)

−i
Dh
b̂†k(t

0) + b̂−k(t
0)
i h

b̂k(t) + b̂†−k(t)
iE

θ(t < t0).

Note that now we do not get a minus sign upon swapping two operators due
to the time ordering: these are bosonic operators so that [b̂k(t), b̂

+
k (t

0)] = 0 for
t 6= t0 (cf. expression (4.2)). Only the terms that contain a creation operator
and an annihilation operator remain:

D(k; t− t0) = −i
D
b̂k(t)b̂

†
k(t

0) + b̂†−k(t)b̂−k(t
0)
E
θ(t > t0)

−i
D
b̂†k(t

0)b̂k(t) + b̂−k(t
0)b̂†−k(t)

E
θ(t < t0). (4.27)

Now we useD
b̂k(t)b̂

†
k(t

0)
E

= eiωk(t−t
0)
D
b̂kb̂

†
k

E
= eiωk(t−t

0)nk,D
b̂†k(t

0)b̂k(t)
E

= eiωk(t−t
0)
D
b̂†kb̂k

E
= eiωk(t−t

0)(nk + 1).

where nk is the number of phonons with wave number k given by the
Bose-Einstein distribution:

nk =
1

exp [~ωk/(kBT )]− 1
. (4.28)

We also use that b̂kb̂
†
k is the counting operator (and that b̂

†
kb̂k = b̂kb̂

†
k + 1). For

the phonon propagator we get

D(k; t− t0) = −i
n
eiωk(t−t

0)nk + e−iωk(t−t
0)(nk + 1)

o
θ(t > t0)

+i
n
eiωk(t−t

0)(nk + 1) + e−iωk(t−t
0)nk

o
θ(t < t0). (4.29)
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This can be rewritten as

D(k; t− t0) = −i
n
eiωk|t−t

0|nk + e−iωk|t−t
0|(nk + 1)

o
. (4.30)

In the temperature zero limit we have the phonon vacuum and all nk = 0. We
find:

T = 0→ D(k; t− t0) = −ie−iωk(t−t0)θ(t > t0) + ieiωk(t−t
0)θ(t < t0). (4.31)

Also for the phonon Green’s function we need the Fourier transform to the
frequencies:

D(k, ω) =

∞Z
−∞

dt eiωt−δ|t|D(k; t)

= −i
∞Z
0

dt ei(ω−ωk+iδ)t + i

0Z
−∞

dt ei(ωk+ω−iδ)t

=
1

ω − ωk + iδ
− 1

ω + ωk − iδ
(4.32)

In this expression we have introduced a convergence factor e−δ|t| with δ an
infinitesimal positive number. The derivation of this result is completely similar
to our earlier derivation for the electron Green’s function, using the integral
representation (4.14) for the Heaviside function. We obtain

D(k, ω) =
2ωk

ω2 − ω2k + iδ
(4.33)

Here we have kept only the lowest order of the infinitesimal term, and renamed
it (2iδωk → iδ).

4.2.4 Summary

In this section we have defined the Green’s functions

G(k; t− t0) : = −i
D
T âk(t)â

†
k(t

0)
E
, (4.34)

D(k, λ; t− t0) = −i
D
T B̂k,λ(t)B̂

†
k,λ(t

0)
E
, (4.35)

and their frequency dependent counterparts

G(k, ω) =

∞Z
−∞

dt G(k; t)eiωt (4.36)
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(similar for D). We calculated them it for some important non-interacting
systems. The result for the noninteracting-electron Green’s function (at
temperature zero) is

G0(k, ω) =
θ(k > kF )

ω −Ek/~+ iδ
+

θ(k < kF )

ω −Ek/~− iδ
, (4.37)

and for the noninteracting-phonon Green’s function we get

D0(k, ω) =
2ωk

ω2 − ω2k + iδ
. (4.38)

Here we’ve added subscripts 0 so indicate that these are the Green’s functions
of the non-interacting systems. In the next sections of this chapter we will use
these non-interacting solutions as the building blocks to construct the Green’s
functions of the more complicated case where interactions are present and no
simple exact solution is available. Note that the electron Green’s function G0
has poles at ~ω = Ek/~, the eigen-energies of the system. This is a very general
property of Green’s functions and we are going to investigate this in the next
section.

4.3 Interpreting Green’s functions
Before tackling the central problem of calculating the Green’s functions for
the fully interacting system, we need to emphasize some properties of Green’s
functions which are linked to the way in which we interpret them, and which
are useful for the chapter on optical response. To be very general, we again use
the notation k for an arbitrary set of quantum numbers (keeping in mind our
explicit example where it represents wave numbers and an occasional spin or
phonon mode quantum number).

4.3.1 Advanced and retarded Green’s functions

The Green’s function that we used earlier was defined as

G(k; t− t0) = −i
D
Ψ0

¯̄̄
T âk(t)â

†
k(t

0)
¯̄̄
Ψ0

E
(4.39)

=

⎧⎨⎩ G>(k; t− t0) = −i
D
Ψ0

¯̄̄
âk(t)â

†
k(t

0)
¯̄̄
Ψ0

E
for t− t0 > 0

G<(k; t− t0) = −ξi
D
Ψ0

¯̄̄
â†k(t

0)âk(t)
¯̄̄
Ψ0

E
for t− t0 < 0

.(4.40)

Here T is the time ordering operator that places the operator with the latest
time to the left (and engenders a factor ξ = −1 for each swap of fermionic
operators, but not for bosonic operators ξ = 1). We work at temperature zero
and therefore calculate the expectation value with respect to the many body
ground state |Ψ0i. If t > t0 then first a particle is created and later annihilated.
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If, on the other hand t < t0, then first a particle is annihilated (=a hole is
created) and then it is created (the hole is removed again). The retarded and
advanced Green’s function make this distinction between particles and holes
more explicit. The retarded Green’s function is defined as

GR(k; t−t0) = G−G< =

(
−i
D
Ψ0

¯̄̄
[âk(t), â

†
k(t

0)]ξ

¯̄̄
Ψ0

E
for t− t0 > 0

0 for t− t0 < 0
(4.41)

where [âk(t), â
+
k (t

0)]ξ = âk(t)â
+
k (t

0) + ξâ+k (t
0)âk(t) - for fermions this is the

commutator, for bosons the anticommutator. This Green’s function focuses on
forward times and particle propagation, and is central to the discussion of causal
phenomena, where the response (at time t) happens after the cause (at time t0).
Analogously we define the advanced Green’s function as

GA(k; t− t0) = G−G> =

(
0 for t− t0 > 0

−ξi
D
Ψ0

¯̄̄
[âk(t), â

†
k(t

0)]ξ

¯̄̄
Ψ0

E
for t− t0 < 0

(4.42)
This focuses on backward time propagation, or forward time propagation of
holes. This strange duality —holes moving forward in time are linked to particles
moving backward in time— is an important insight of quantum field theory. Of
course we could also introduce a retarded and advanced form for the phonon
Green’s function, but there the distinction is not so important since we have
already symmetrized between annihilating a k phonon and creating a −k
phonon.

4.3.2 Spectral representation

The spectral representation of Green’s function, also called “Lehmann
representation”, brings to light some interesting properties of Green’s function.
This representation writes the operators in matrix form, using a complete set of
many-particle eigenstates |Ψni of the full Hamiltonian. You’re right, we don’t
know what these many-body eigenstates are, but let’s pretend that we do know
them and see how far we get with that idea. Let’s also pretend we know the
ground state |Ψ0i, and use the completeness of the many-body basis in the
Green’s function:

G>(k; t) = −i
X
n

hΨ0 |âk(t)|Ψni
D
Ψn

¯̄̄
â†k(0)

¯̄̄
Ψ0

E
= −i

X
n

D
Ψ0

¯̄̄
eiHt/~ âke

−iHt/~
¯̄̄
Ψn

ED
Ψn

¯̄̄
â†k

¯̄̄
Ψ0

E
= −i

X
n

hΨ0 |âk|Ψni
D
Ψn

¯̄̄
â†k

¯̄̄
Ψ0

E
exp{−i(En −E0)t/~}.

Here we do some more bluffing: we note En as the eigen-energy belonging to the
many-body eigenstate |Ψni. Then E0 is the ground state energy (corresponding
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to |Ψ0i). Analogously, we find

G<(k; t) = −iξ
X
n

D
Ψ0

¯̄̄
â†k

¯̄̄
Ψn

E
hΨn |âk|Ψ0i exp{+i(En −E0)t/~}

Now let’s once more look for the Fourier transform of these Green’s functions
as we have done before, using expression (4.12),

G(k;ω) =

∞Z
−∞

G(k; t)eiωt−δ|t|dt

The spectral decomposition allows us to write this as

G(k;ω) =
X
n

hΨ0 |âk|Ψni
D
Ψn

¯̄̄
â†k

¯̄̄
Ψ0

E
ω − (En −E0)/~+ iδ

−ξ
X
n

D
Ψ0

¯̄̄
â†k

¯̄̄
Ψn

E
hΨn |âk|Ψ0i

ω + (En −E0)/~− iδ
(4.43)

Note that
hΨ0 |âk|Ψni

D
Ψn

¯̄̄
â†k

¯̄̄
Ψ0

E
=
¯̄
Ψn
¯̄
â+k
¯̄
Ψ0
®¯̄2

.

The retarded and advanced Green’s functions are

GR(k;ω) =
X
n

¯̄̄D
Ψn

¯̄̄
â†k

¯̄̄
Ψ0

E¯̄̄2
ω − (En −E0)/~+ iδ

+ ξ
X
n

|hΨn |âk|Ψ0i|2

ω + (En −E0)/~+ iδ

GA(k;ω) = −
X
n

¯̄̄D
Ψn

¯̄̄
â†k

¯̄̄
Ψ0

E¯̄̄2
ω − (En −E0)/~− iδ

− ξ
X
n

|hΨn |âk|Ψ0i|2

ω + (En −E0)/~− iδ

In many-body systems there will typically be a very large number of eigenstates
in any relevant energy interval ~∆ω. We can therefore replace the sums by
integrals, and introduce the spectral functions:

A(k, ω) =
X
n

¯̄̄D
Ψn

¯̄̄
â†k

¯̄̄
Ψ0

E¯̄̄2
δ[ω − (En −E0)/~], (4.44)

B(k, ω) =
X
n

|hΨn |âk|Ψ0i|2 δ[ω − (En −E0)/~]. (4.45)

With these, we find

G(k;ω) =

∞Z
0

dω0
∙
A(k, ω0)

ω − ω0 + iδ
− ξ

B(k, ω0)
ω + ω0 − iδ

¸
. (4.46)

This way of writing the Green’s function in terms of the spectral functions
A(k, ω) and B(k, ω) is called the Lehmann representation in quantum field
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theory. It may seem that we just keep on finding new ways of writing the same
old thing. But it is by doing this that Galitskii and Migdal2 could study the
analytic properties of Green’s functions, derive dispersion relations, and relate
the real and imaginary parts of these functions. The spectral representation also
holds for interacting systems. Of course, then we do not know the many-body
eigenfunctions |Ψni that we formally use here, and we’ll need the techniques
developed further on to find the spectral functions. Only for non-interacting
system can we readily write down the spectral functions, and generalizing the
non-interacting result teaches us a new interpretation.

4.3.3 Green’s function as quasiparticle propagator

Remember that the Green’s function G(k, t) represents a quantum mechanical
amplitude to find a particle that was originally in state k at time t = 0 still in
the same state k a time t later. In other words, G(k, t) represents the propagator
in time of a particle in state k. From (4.46) we know that this propagation (for
t > 0) is determined by the spectral function A(k, ω0). For the non-interacting
fermion system (the filled Fermi sphere) we can derive the spectral function
directly from expressions (4.46) and (4.16) :

Afermibol(k, σ, ω) = δ(ω −Ek/~)θ(k > kF ). (4.47)

So, for a free, non-interacting electron, the propagator is undamped and the
Fourier transform of G(k, σ; t) has only one frequency component, at ωk =
Ek/~ = ~k2/2m. The spectral function contains a delta function at this
frequency. In general, the spectral function will give the frequency spectrum
corresponding to the possible energies with which a particle with momentum
~k and spin σ can propagate in the many-body system. In the absence of
interaction, it can only have a momentum ~k if it has energy Ek/~. When there
are interactions between the particles, the spectral function for momentum ~k
will no longer be a delta function at ωk. The plane wave with wave number k
will overlap with many different many-body eigenstates, that may have different
energies. All these energies appear in the spectral function, each energy weighed
by how much overlap there is. The delta function will broaden, and possibly
shift. This spectral function is typically what is measured in experiments: you
shoot in a particle with a well defined momentum, and then measure how much
energy was absorbed by the system — this will be proportional to the spectral
function, and gives this function also its name.

This is an important concept. The behavior ofA, determined by the modulus
of the matrix elements

D
Ψn

¯̄̄
â†k

¯̄̄
Ψ0

E
and the smearing of energies associated

with the transitions represented by

Ψn
¯̄
â+k
¯̄
Ψ0
®
is more complicated. Injecting

a particle with momentum ~k, i.e. constructing â†k |Ψ0i, gives a new state that
is no longer a good eigenstate of the (N + 1)-particle system. The new state

2V. Galitskii en A. Migdal, Soviet Phys. JETP 7, 96 (1958).
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will therefore have a finite lifetime so that the propagation will be damped —
the modulus of the amplitude will decrease below 1.
Under which circumstances is it still possible to consider the additional state

k as a separate particle that propagates in the system? The object consisting out
of the originally injected particle and the disturbance in the many-body system
is sometimes called a “quasiparticle3”. The polaron is a nice example: it is a
quasiparticle consisting out of an electron together with the lattice deformation
that it creates. The thing moves as a whole (as long as the electron’s velocity is
small), the electron trailing its lattice deformation behind it like a little comet.
The quasiparticle has a different effective mass and dispersion relation than the
original electron (we’ve calculated those in the previous chapter), but it is still
possible to treat the many-body deformation along with the particle as a single
entity, a well-defines quasiparticle.
This is very useful: it seems possible to replace the complicated

strongly-interacting soup of electrons and phonons by a much simpler
ideal gas of quasiparticles that gives the same physics! The price we
pay is that we have to find out the properties of the quasiparticles — and
they will differ from that of the original particles. What we gain is that
we end up with a gas of (almost) non-interacting particles. And you know
from your introductory statistical mechanics course how to calculate all sorts of
thermodynamic functions (specific heat, free energy, ....) for ideal gases, given
the dispersion relation! So, if we have found the properties of quasiparticles, and
if it is possible to use the concept, then we have in fact solved the many-body
problem as far as equilibrium thermodynamics are concerned!

OK, so what is the link between Green’s functions and quasiparticles? First
of all, in order for quasiparticles to exist and to be a useful concept, the Green’s
function must behave as

G(k, t) = −iZke−iẼ(k)t/~e−Γkt (4.48)

for some time. Then, the quasiparticle concept is valid. Indeed, the form (4.48)
shows that, with overall amplitude Zk, we have a particle with energy Ẽ(k)
because what happens to its amplitude as we wait is that the phase rotates with a
frequency Ẽ(k)/~, just like for a free electron in the previous section. In contrast
to the free electron, the probability for it to remain in that state is less than
one, and decays with time as e−Γkt. The lifetime of the quasiparticles is 1/Γk.
In general, the concept of quasiparticles will be meaningful if we look at times
Ẽ(k)/~ < t < 1/Γk, where the lower boundary is determined by the Heisenberg
uncertainty. In order for the Green’s function as a function of time to have the
form (4.48), it’s Fourier transform must have a pole at ω = Ẽ(k)/~+ iΓk, and
its spectral function must have a peak at ω = Ẽ(k)/~, with a width Γk.
Fourier transforming (4.48) from time to frequency space lets us conclude

that a quasiparticle manifests itself as a pole in the frequency-dependent Green’s
function G(k, ω). In other words, if the Green’s function has a pole in

3D. Pines, The Many-Body Problem, Addison-Wesley publ., Reading MA, USA (1997).
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ω = Ek/~−iΓk, then an additional particle injected into the system can
propagate as an approximate eigenstate (a quasiparticle) with energy
Ek and lifetime 1/Γk. If there are multiple poles, then there are multiple
possible excitations, and the additional particle can propagate as different kinds
of eigenstates, where the amplitude is given by the overlap of the eigenstate with
the given initial state in which the particle was created4.

4.4 Tackling interactions adiabatically

4.4.1 Time evolution operator

In the Dirac picture (see the addendum to this chapter) the Hamiltonian is split
in an exactly solvable part, Ĥ0, and a part that is treated as a perturbation
and that usually contains the interactions, Ĥ1. Operators transform according
to Ĥ0, so that

ĤI(t) = eiĤ0t/~Ĥ1e
−iĤ0t/~ , (4.49)

and wave functions transform according to the perturbation part, according to

i~
d |Ψ(t)iI

dt
= ĤI(t) |Ψ(t)iI . (4.50)

This differential equation can be integrated, giving:

|Ψ(t)iI = |Ψ(t0)iI +
1

i~

tZ
t0

dt1 ĤI(t1) |Ψ(t1)iI . (4.51)

We can substitute this equation into itself: for |Ψ(t1)iI in the right hand side of
the equation we again use (4.51) and get

|Ψ(t)iI = |Ψ(t0)iI +
1

i~

tZ
t0

dt1 ĤI(t1) |Ψ(t0)iI

+
1

i~

tZ
t0

dt1ĤI(t1)
1

i~

t1Z
t0

dt2ĤI(t2) |Ψ(t2)iI . (4.52)

Now we can do this again for |Ψ(t2)iI , and continue to iterate the procedure.
This results in:

|Ψ(t)iI =

⎧⎨⎩1̂ +
∞X
n=1

1

(i~)n

tZ
t0

dt1

t1Z
t0

dt2....

tn−1Z
t0

dtn

×ĤI(t1)ĤI(t2)...ĤI(tn)
o
|Ψ(t0)iI . (4.53)

4Additional argumentation for the qauasiparticle interpretation of Green’s functions can
be found in A. L. Fetter & J. D. Walecka’s boek “Quantum Theory of Many-Particle Systems”
(McGraw-Hill, Inc., Boston USA, 1971), p. 72 onwards.
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From this we define a time evolution operator

Û(t, t0) |Ψ(t0)iI = |Ψ(t)iI (4.54)

Û(t, t0) =
∞X
n=0

1

(i~)n

tZ
t0

dt1

t1Z
t0

dt2....

tn−1Z
t0

dtn ĤI(t1)ĤI(t2)...ĤI(tn) (4.55)

The integration boundaries give rise to a difficult integration domain, but we
can re-order them to simplify this. To see how this works, look at the case for
n = 2. Start by swapping the two integrations,

tZ
t0

dt1

t1Z
t0

dt2 ĤI(t1)ĤI(t2) =

tZ
t0

dt2

tZ
t2

dt1 ĤI(t1)ĤI(t2)

=

tZ
t0

dt01

tZ
t2

dt02 ĤI(t
0
2)ĤI(t

0
1) (4.56)

from which it follows that

⇒
tZ

t0

dt1

t1Z
t0

dt2 ĤI(t1)ĤI(t2)

=
1

2

tZ
t0

dt1

⎡⎣ t1Z
t0

dt2 ĤI(t1)ĤI(t2) +

tZ
t1

dt2 ĤI(t2)ĤI(t1)

⎤⎦
=

1

2

tZ
t0

dt1

tZ
t0

dt2 T [ĤI(t1)ĤI(t2)] (4.57)

where T is again the time ordering operator. In general (for any n) we find

Û(t, t0) =
∞X
n=0

1

n!

1

(i~)n

tZ
t0

dt1

tZ
t0

dt2....

tZ
t0

dtn T
h
ĤI(t1)ĤI(t2)...ĤI(tn)

i
(4.58)

This series can also be seen as an expansion of an exponential function, so that
we can write the result in a more compact form:

Û(t, t0) = T

⎧⎨⎩exp
⎡⎣ 1
i~

tZ
t0

dt1ĤI(t1)

⎤⎦⎫⎬⎭ . (4.59)

This nicely agrees with the simple definition of the time evolution operator
for time-independent Hamiltonians, in basic quantum mechanics: Û(t, t0) =
exp{i(t − t0)ĤI/~}. Also for Hamiltonians that explicitly depend on time we
have Û†(t, t0) = Û(t0, t) and Û(t, t1)Û(t1, t0) = Û(t, t0).
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4.4.2 Adiabatic activation and the Gell-Mann Low
theorem

The Green’s function for the interacting system is

G(k; t− t0) = −i

D
ΨG

¯̄̄
T âk(t)â

†
k(t

0)
¯̄̄
ΨG

E
hΨG |ΨGi

, (4.60)

where |ΨGi is the unknown ground state of the interacting system described by
the full Hamiltonian Ĥ = Ĥ0 + Ĥ1. The dominator hΨG |ΨGi ensures that we
have a normalized wave function and is kept explicitly. The operators are in the
Heisenberg picture, as in our earlier definition. We want to relate this function
to the known Green’s function of the non-interacting system,

G0(k, t− t0) = −i
D
Ψ0

¯̄̄
T âk(t)â

†
k(t

0)
¯̄̄
Ψ0

E
, (4.61)

where |Ψ0i is the known ground state of the non-interacting system described by
the unperturbed Hamiltonian Ĥ0. The G0’s were already calculated for several
examples earlier in this chapter.
The make the connection between the two, we will switch on the interactions

adiabatically: this means that we construct the following Hamiltonian (in the
Dirac picture):

Ĥ(t) = Ĥ0 + e− |t|ĤI(t). (4.62)

At time t = −∞ this represents the unperturbed system, with ground state
|Ψ0i. The term with Ĥ1(t) is not present then. At time t = 0 this
represents the interacting system with ground state |ΨGi. The parameter
is taken to be infinitesimally small, so that the changes occur adiabatically
slow — without changing the entropy or, in quantum mechanical words, as a
unitary transformation. That means we can consider a time evolution operator
corresponding to the Hamiltonian (4.62), the energy levels will shift and move
continuously, but their occupation will not change. If a particle is in the
ground state energy level, it will not transition to a higher level but follow
the change of the wavefunction associated with the ground state. Moreover, as
a unitary transformation does not change the degeneracy of quantum levels, the
non-degenerate ground state cannot be crossed by any other level, so it remains
the lowest level. So, we get

|ΨGi = Û(0,−∞) |Ψ0i . (4.63)

This powerful assumption was proven to be correct also for degenerate ground
states, and is known as the theorem of Gell-Mann and Low5 . Inserting this
result in the definition of the interacting system’s Green’s function gives

G(k; t− t0) = −i

D
Ψ0

¯̄̄
Û(∞, 0)

n
T âk(t)â

†
k(t

0)
o
Û(0,−∞)

¯̄̄
Ψ0

E
D
Ψ0 |Û(∞, 0)Û(0,−∞)|Ψ0

E . (4.64)

5M. Gell-Mann en F. Low, Phys. Rev. 84, 350 (1951). For a proof of the theorem we
again refer to A. L. Fetter & J. D. Walecka’s “Quantum Theory of Many-Particle Systems”
(McGraw-Hill, Inc., Boston USA, 1971), pp. 61-64.
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Here we used the time reversal symmetry of the adiabatic activation, so that
the hermitean conjugate of the time-evolution operator that evolves a state from
t = −∞ to t = 0 is equal to the time-evolution operator that evolves the state
from time t = 0 to t =∞. The link between the operators [âk(t)]I in the Dirac
picture and their versions [âk(t)]H in the Heisenberg picture is given by

[âk(t)]H = eiĤI(t−0)/~ âke
−iĤI(t−0)/~

= Û(0, t)[âk(t)]IÛ(t, 0). (4.65)

For t > t0, the numerator can be rewritten with all operators in the Dirac picture
as follows:D

Ψ0

¯̄̄
Û(∞, 0)

n
T âk(t)â

†
k(t

0)
o
Û(0,−∞)

¯̄̄
Ψ0

E
=

D
Ψ0

¯̄̄
Û(∞, 0)Û(0, t)âk(t)Û(t, 0)Û(0, t

0)â†k(t
0)Û(t0, 0)Û(0,−∞)

¯̄̄
Ψ0

E
=

D
Ψ0

¯̄̄
Û(∞, t)âk(t)Û(t, t

0)â†k(t
0)Û(t0,−∞)

¯̄̄
Ψ0

E
=

D
Ψ0

¯̄̄
T
h
âk(t)â

†
k(t

0)Û(∞,−∞)
i¯̄̄
Ψ0

E
, (4.66)

so that

G(k; t− t0) = −i

D
Ψ0

¯̄̄
T
h
âk(t)â

†
k(t

0)Û(∞,−∞)
i¯̄̄
Ψ0

E
D
Ψ0 |Û(∞,−∞)|Ψ0

E . (4.67)

This expression now contains only expectation values with respect to the
known ground state of the non interacting system. That is what we
gain with the adiabatic activation: we no longer have expectation values with
respect to the unknown ground state. The price we pay is that the expression
now contains the time-evolution operator. If we substitute our earlier result for
the time-evolution operator into the result for the Green’s function we finally
get

G(k; t− t0) =
−iD

Ψ0 |Û(∞,−∞)|Ψ0
E ∞X

n=0

1

n!

1

(i~)n

∞Z
−∞

dt1

∞Z
−∞

dt2...

∞Z
−∞

dtn

×e− (|t1|+..+|tn|)
D
Ψ0

¯̄̄
T
h
âk(t) ĤI(t1)ĤI(t2)...ĤI(tn) â

†
k(t

0)
i¯̄̄
Ψ0

E
.

(4.68)
The exponential factor will usually be left out since we take the limit of going
to zero. In the relevant domain of the integrand this factor will then be ≈ 1.
If the interaction ĤI(t1) is weak, then the subsequent terms in the series

(4.68) represent subsequent orders of perturbation. The zeroth order term from
the numerator is

−i
D
Ψ0

¯̄̄
T
h
âk(t)â

†
k(t

0)
i¯̄̄
Ψ0

E
= G0(k; t− t0). (4.69)
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This is indeed exactly the same as our earlier G0! The next term in the
numerator is denoted by G1 :

G1(k; t− t0) =
1

i~

∞Z
−∞

dt1

³
−i
D
Ψ0

¯̄̄
T
h
âk(t)ĤI(t1)â

†
k(t

0)
i¯̄̄
Ψ0

E´
(4.70)

and in general we have for the nth order term

Gn(k; t− t0) =
−i

n! (i~)n

∞Z
−∞

dt1..

∞Z
−∞

dtn

D
Ψ0

¯̄̄
T
h
âk(t)ĤI(t1)..ĤI(tn)â

†
k(t

0)
i¯̄̄
Ψ0

E
So, the difficulty to be solved is that we need to take expectation values that
look like D

Ψ0

¯̄̄
T
h
âk(t) ĤI(t1)ĤI(t2)...ĤI(tn) â

†
k(t

0)
i¯̄̄
Ψ0

E
(4.71)

and relate them to our known building blocks G0(k; t− t0). There’s a neat trick
to do this, and that is the subject of the next section.

4.5 Wick’s theorem
Wick’s theorem6 allows to write the expectation value of a long product of
creation and annihilation operators as a product of expectation value of pairs
of creation and annihilation operators.

Let’s consider an example to see how this comes about, and go back to
the electron gas in the metal, which we already treated to lowest order in
perturbation in chapter 3. In this case, the electrons interact through a Coulomb
potential and they are embedded in a neutralizing background of homogeneous
positive charge. The second quantisation Hamiltonian that we wrote down in
chapter 3 is given by (3.12) :

Ĥel = Ĥ0 + Ĥ1

Ĥ0 =
X
k,σ

~2k2

2me
â†k,σâk,σ

Ĥ1 =
1

2V

X
Q6=0

e2

εvacQ2

X
k1,σ1

X
k2,σ2

â†k1−Q,σ1 â
†
k2+Q,σ2

âk2,σ2 âk1,σ1 .

(4.72)

Now, in order to calculate G1 to get a first order approximation, we need to
look at horribly long products such asD

Ψ0

¯̄̄
T
h
âk,σ(t)â

†
k1−Q,σ1(t1)â

†
k2+Q,σ2

(t1)âk2,σ2(t1)âk1,σ1(t1)â
†
k,σ(t

0)
i¯̄̄
Ψ0

E
(4.73)

6G. C. Wick, Phys. Rev. 80, 268 (1950).
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and then plug the result back in (4.68).

Wick noted that the effect of a creation/annihilation operator on the Fermi
sphere consists in adding/removing an electron in state

¯̄
ϕk,σ

®
, thus going the

ground state |Ψ0i to basis state in the occupation representation. States with
different occupation numbers are orthogonal to each other, as we know from
chapter 2. So, after all the creation and annihilation operators have done their
thing, the only way that the expectation value is nonzero, i.e. that the projection
on hΨ0| is nonzero, is that the creation and annihilation operators must undo
each other’s actions. We need to end up again with the original filled Fermi
sphere after all the creation and annihilation operators acted on it. As we put
it earlier: the annihilation operators drill holes in the Fermi sphere, and the
creation operators should repair those holes in some order. That way,D

Ψ0

¯̄̄
T âk,σ(t)â†k0,σ0(t0)

¯̄̄
Ψ0

E
is zero unless k, σ = k0, σ0, and —as we had in chapter 3—D

Ψ0

¯̄̄
T âk4,σ4(t)â

†
k3,σ3

(t1)âk2,σ2(t2)â
†
k1,σ1

(t0)
¯̄̄
Ψ0

E
is zero unless (k1, σ1 = k2, σ2 and k3, σ3 = k4, σ4), the direct contribution, or
unless (k1, σ1 = k4, σ4 en k2, σ2 = k3, σ3), the exchange contribution. Wick
found a clever way to catalogue the possible pairings and arrived at the following
very useful conclusion:

In making all possible pairing of creation and annihilation operators, each
pair needs to appear in a time-ordered product. The time ordering of each pair
gives the correct time ordering of the entire product.
So, the expectation value of the time ordered product of creation and

annihilation operators is equal to the sum, over all possible ways of pairing
these operators, of the product of expectation values of the time ordered pairs.
With each odd permutation of fermionic operators we need to include a factor
-1.

For example, we getD
Ψ0

¯̄̄
T âk4,σ4(t)â

†
k3,σ3

(t1)âk2,σ2(t2)â
†
k1,σ1

(t0)
¯̄̄
Ψ0

E
=

D
Ψ0

¯̄̄
T âk4,σ4(t)â

†
k3,σ3

(t1)
¯̄̄
Ψ0

ED
Ψ0

¯̄̄
T âk2,σ2(t2)â

†
k1,σ1

(t0)
¯̄̄
Ψ0

E
−
D
Ψ0

¯̄̄
T âk4,σ4(t)â

†
k1,σ1

(t0)
¯̄̄
Ψ0

ED
Ψ0

¯̄̄
T âk2,σ2(t2)â

†
k3,σ3

(t1)
¯̄̄
Ψ0

E
= [δ(k3 − k4)δ(k2 − k1)δσ3,σ4δσ2,σ1 − δ(k1 − k4)δ(k2 − k3)δσ1,σ4δσ2,σ3 ]

×
D
Ψ0

¯̄̄
T âk4,σ4(t)â

†
k4,σ4

(t1)
¯̄̄
Ψ0

ED
Ψ0

¯̄̄
T âk2,σ2(t2)â

†
k2,σ2

(t0)
¯̄̄
Ψ0

E
.

In constructing annihilation-creation pairs we need to take into account the
following set of rules:.
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1. As mentioned, we get a minus sign if there is an odd number of swaps of
fermionic operators. In our example, the second term has a minus sign
because there are three swaps needed to re-order the product

âk4,σ4(t)â
†
k3,σ3

(t1)âk2,σ2(t2)â
†
k1,σ1

(t0)

into
âk4,σ4(t)â

†
k1,σ1

(t0)âk2,σ2(t2)â
†
k3,σ3

(t1).

2. If there are different types of operators (i.e. for different types of particles),
then these can be factorized from the start. For example, if we have
also phonon operators B̂q in the product, you can collect all of them and
immediately take them out as a separate expectation value factor, keeping
the order of the phonon operators within the expectation value unchanged:D

Ψ0

¯̄̄
T âk4,σ4(t)â

†
k3,σ3

(t1)B̂q1(t1)âk2,σ2(t2)B̂q2(t2)â
†
k1,σ1

(t0)
¯̄̄
Ψ0

E
=

D
Ψ0

¯̄̄
T âk4,σ4(t)â

†
k3,σ3

(t1)âk2,σ2(t2)â
†
k1,σ1

(t0)
¯̄̄
Ψ0

E
×
D
Ψ0

¯̄̄
T B̂q1(t1)B̂q2(t2)

¯̄̄
Ψ0

E
.

This factorization is always possible when two types of operators commute
with each other.

3. Wick’s theorem also works for phonon operators:D
Ψ0

¯̄̄
T B̂k4(t)B̂k3(t1)B̂k2(t2)B̂k1(t0)

¯̄̄
Ψ0

E
=

D
Ψ0

¯̄̄
T B̂k4(t)B̂k3(t1)

¯̄̄
Ψ0

ED
Ψ0

¯̄̄
T B̂k2(t2)B̂k1(t0)

¯̄̄
Ψ0

E
+
D
Ψ0

¯̄̄
T B̂k4(t)B̂k2(t2)

¯̄̄
Ψ0

ED
Ψ0

¯̄̄
T B̂k3(t1)B̂k1(t0)

¯̄̄
Ψ0

E
+
D
Ψ0

¯̄̄
T B̂k4(t)B̂k1(t0)

¯̄̄
Ψ0

ED
Ψ0

¯̄̄
T B̂k3(t1)B̂k2(t2)

¯̄̄
Ψ0

E
.

Now we need all possible ways to make pairs of B̂ operators. With
the electron operators, we need to make ‘hetero’ couples that contain
a creation and an annihilation partner. But the phonon operators
introduced previously have a double nature. Note also that there will
be no more minus signs when we swap two bosonic operators. Now the
expectation value of a pair will be zero unless the phonon wave numbers
are equal and opposite. So we get for example:D

Ψ0

¯̄̄
T B̂k4(t)B̂k3(t1)B̂k2(t2)B̂k1(t0)

¯̄̄
Ψ0

E
= δ(k4 + k3)δ(k1 + k2)

D
T B̂k4(t)B̂k4(t1)

E
0

D
T B̂k2(t2)B̂k2(t0)

E
0

+δ(k4 + k2)δ(k1 + k3)
D
T B̂k4(t)B̂k2(t2)

E
0

D
T B̂k3(t1)B̂k1(t0)

E
0

+δ(k4 + k1)δ(k2 + k3)
D
T B̂k4(t)B̂k1(t0)

E
0

D
T B̂k3(t1)B̂k2(t2)

E
0
.
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4. What if two operators act at the same time? Again, if we need to do an
odd number of swaps of fermionic operators, this results in a minus sign:D
Ψ0

¯̄̄
T âk,σ(t)â†k0,σ0(t)

¯̄̄
Ψ0

E
= −

D
Ψ0

¯̄̄
â†k0,σ0(t)âk,σ(t)

¯̄̄
Ψ0

E
= −δ(k− k0)δσσ0

D
Ψ0

¯̄̄
â†k,σ(t)âk,σ(t)

¯̄̄
Ψ0

E
= −δ(k− k0)δσσ0nk,σ(t). (4.74)

In this result, nk,σ(t) is the number of fermions in the single-particle state¯̄
ϕk,σ

®
at time t. Note that if the operators act at different times, the

creation operator is written to the right in the product, so thatD
Ψ0

¯̄̄
T âk,σ(t)â†k0,σ0(t0)

¯̄̄
Ψ0

E
= iG0(k, σ; t− t0)δ(k− k0)δσσ0 . (4.75)

We get back our building block! Alternatively we can write for the
equal-time case:D

Ψ0

¯̄̄
T âk,σ(t)â†k0,σ0(t)

¯̄̄
Ψ0

E
=

Z
dt0 iG0(k, σ; t− t0)δ(t− t0)(4.76)

= iG0(k, σ; 0). (4.77)

Also, we have D
Ψ0

¯̄̄
T B̂k(t)B̂−k(t0)

¯̄̄
Ψ0

E
= iD0(k, t− t0)

Using Wick’s theorem in conjunction with the adiabatic activation of the
interactions we finally have a way to write down the Green’s function of
the interacting system in terms of the non-interacting Green’s functions G0
and D0. The adiabatic activation results in a perturbation series, where each
term contains a long product of creation and annihilation operators. Wick’s
theorem chops this up into neat little pieces that we can identify with G0 and
D0. Will there be any systematics and physical interpretation of the resulting
perturbation terms? Yes, and that is precisely what Feynman diagrams are
about.

4.6 Feynman diagrams
We will again explain this using a concrete example, namely the electron-phonon
interactions. The second quantized Hamiltonian describes free electrons (our
unperturbed system) interacting with a bath of phonons:

Ĥ = Ĥ0 + Ĥ1,

Ĥ0 =
X
k,σ

~2k2

2me
â†k,σâk,σ,

Ĥ1 =
X
q

X
k,σ

M(q)B̂qâ
†
k+q,σâk,σ.

(4.78)
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This is a generalization of the polaron problem where we considered only a single
electron. The Green’s function, up to second order in the interaction amplitude
M(q), is

G(k, σ; t− t0) =
G0(k, σ; t− t0) +G1(k, σ; t− t0) +G2(k, σ; t− t0)D

Ψ0 |Û(∞,−∞)|Ψ0
E
,

(4.79)

with

G1(k, σ; t− t0) =
−1
~

∞Z
−∞

dt1
X
q

X
k1,σ1

M(q)

×
D
Ψ0

¯̄̄
T
h
âk,σ(t)B̂q(t1)â

†
k1+q,σ1

(t1)âk1,σ(t1)â
†
k,σ(t

0)
i¯̄̄
Ψ0

E
= 0.

This becomes zero because we cannot pair up phonon operators, there being
only one. The first nonzero correction term is

G2(k, σ; t− t0) =
−i
2(i~)2

∞Z
−∞

dt1

∞Z
−∞

dt2
X
q,q0

X
k1,σ1

X
k2,σ2

M(q)M(q0) (4.80)

×
*
Ψ0

¯̄̄̄
¯T
"

âk,σ(t)B̂q(t1)â
†
k1+q,σ1

(t1)âk1,σ1(t1)

×B̂q0(t2)â†k2+q0,σ2(t2)âk2,σ2(t2)â
†
k,σ(t

0)

#¯̄̄̄
¯Ψ0

+
,

Here, according to the rules of Wick’s theorem, we can factorize out the phonon
operators, resulting in factorD

Ψ0

¯̄̄
T
h
B̂q(t1)B̂q0(t2)

i¯̄̄
Ψ0

E
= δ(q+ q0)iD0(q; t1 − t2) (4.81)

that contains the (unperturbed) phonon propagator (4.38), and fixes q0 = −q.
We still have an expectation value of the product of the electron operators, on
which we let loose the Wick beast, that rips this expectation value in piece like
a rabid hound:D

Ψ0

¯̄̄
T
h
âk,σ(t)â

†
k1+q,σ1

(t1)âk1,σ1(t1)â
†
k2−q,σ2(t2)âk2,σ2(t2)â

†
k,σ(t

0)
i¯̄̄
Ψ0

E
=

D
T âk,σ(t)â†k1+q,σ1(t1)

E
0

D
T âk1,σ1(t1)â

†
k2−q,σ2(t2)

E
0

D
T âk2,σ2(t2)â

†
k,σ(t

0)
E
0

−
D
T âk,σ(t)â†k1+q,σ1(t1)

E
0

D
T âk2,σ2(t2)â

†
k2−q,σ2(t2)

E
0

D
T âk1,σ1(t1)â

†
k,σ(t

0)
E
0

+
D
T âk,σ(t)â†k2−q,σ2(t2)

E
0

D
T âk2,σ2(t2)â

†
k1+q,σ1

(t1)
E
0

D
T âk1,σ1(t1)â

†
k,σ(t

0)
E
0

−
D
T âk,σ(t)â†k2−q,σ2(t2)

E
0

D
T âk1,σ1(t1)â

†
k1+q,σ1

(t1)
E
0

D
T âk2,σ2(t2)â

†
k,σ(t

0)
E
0

+
D
T âk,σ(t)â†k,σ(t0)

E
0

D
T âk1,σ1(t1)â

†
k1+q,σ1

(t1)
E
0

D
T âk2,σ2(t2)â

†
k2−q,σ2(t2)

E
0

−
D
T âk,σ(t)â†k,σ(t0)

E
0

D
T âk1,σ1(t1)â

†
k2−q,σ2(t2)

E
0

D
T âk2,σ2(t2)â

†
k1+q,σ1

(t1)
E
0
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After the bloody slaughter six terms remain, as listed in the above expression.
Let’s denote these terms by A1,...,A6, starting at the top line (A1) until the
sixth line (A6) of the right hand side. The first one can be rewritten as

A1 = δσσ1δσ1σ2δσ2σ × δ(k− (k1 + q))δ(k1 − (k2 + q0))δ(k2 − k)
×iG0(k, σ; t− t1)iG0(k− q, σ; t1 − t2)iG0(k, σ; t2 − t0)

All these delta functions allow to perform the summations in (4.80):X
q,q0

X
k1,σ1

X
k2,σ2

δ(q+ q0)iD0(q; t1 − t2)M(q)M(q
0)A1 (4.82)

=
X
q

|M(q)|2D0(q; t1 − t2)G0(k, σ; t− t1)G0(k− q, σ; t1 − t2)G0(k, σ; t2 − t0)

Let’s now decorticate this form, peeling of the factors one by one. Remember
that the Green’s function G0(k, σ; t2 − t0) describes a process whereby an
electron, created with wave number k and spin σ at time t0, propagates through
the many-body system, and is destroyed or measured at a time t2. Feynman
represents this electron-propagator by an line with an arrow, starting at time
t0 where the electron is created, and going to the time of doom t2 where it is
annihilated. If we let the time axis run from left to right his is

In the same way, D0(q; t1 − t2) is interpreted as a propagator for the phonon:
the phonon is created at time t2 with wave vector q and propagates merrily
along its way until time t1where it is annihilated. This can also be represented
by an arrow, but to make the distinction with propagating electrons we use a
dashed line (sometimes one uses a wiggly line):

The factors M(q) belong with B̂q(t1)â
†
k1+q,σ1

(t1)âk1,σ1(t1) in the Hamiltonian.
So they are connected to just one instant in time, here time t1. They lie on
the point where the electron with k1+q, σ1 is created (so where an electron
line begins), and where the phonon with wave vector q is absorbed (so
where the phonon line ends). There’s another electron line, associated with
G0(k− q, σ; t1 − t2), that begins in t2 and also ends at t1. So, the point where
M(q) acts lies on a crossroads, a connection between three lines (namely two
electron lines and one phonon line, always). Such a connecting point is called
a vertex. The factor M(q) is called the vertex factor. Momentum is conserved
in a vertex: the sum of the momenta of incoming lines (arrow pointing to the
vertex) is equal to the sum of the momenta of outgoing lines (arrow pointing
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away from the vertex). The vertex is draws as a little dot that connects the
three lines:

Having identified all the building blocks and having proposed little drawings
for each of them, we can make the drawing for the entire expression (4.82) by
putting together lines at vertices. The drawing appearing in the calculation of
a Green’s function with given momentum and k and spin σ must always start
and end with k, σ. The momenta of the lines in between start and end line can
be anything, but we need to satisfy the momentum conservation in the vertices.
Thus, we get:

Self-interaction diagram

Such a cartoon, telling us the chronology of the creation and annihilation of
particles, is called a Feynman diagram. The story told by this specific Feynman
diagram goes as follows: an electron, created at time t0 in the single-particle state¯̄
ϕk,σ

®
, propagates through the system undisturbed until the fatal moment t2,

when it emits a phonon with wave number q, and continues on its walk with
wave vector k−q, reduced by the recoil of throwing out a phonon. It’s spin σ is
unchanged. Lo and behold, at time t1 the darn phonon boomerangs right back
into its face, and gets absorbed. The smack restores the original wave number
k of the electron, and slightly dazzled, it continues its journey up till the final
time t. It’s done all this to itself, so we could call this a self-interacting diagram.
The term in (4.80) that belongs to this specific Feynman diagram is precisely

the quantum mechanical amplitude for this process to take place. If we’d take
its modulus square we would know the probability that this story unfolds. But
wait! We know from the double-slit experiment that we must first add the
amplitudes of all possible alternatives before taking modulus square. In the
double slit experiment, there are just two possible stories: the particle goes
through slit number one or the particle goes through slit number two. Here
there are zillions of alternative stories for a day in the life of an electron. It
could have thrown the boomeranging phonon at any time. It could have thrown
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a second phonon! That phonon could have interacted with another electron
before flying back! Ah, the possibilities. The higher we go in perturbation
order, the more complicated our scenario’s are allowed to become. In the lowest
nonzero order, there can be only one phonon involved. In the next nonzero
order we are allowed to make all possible stories that involve our protagonist,
the electron, and two phonons.
The total Greens function of the interacting system is the sum of the

amplitudes of all possible adventures that the electron can experience in its
journey from time t0 to time t. There are only a few constraints in the possible
scenario’s: the start and the end of the script are fixed. The electron starts alone,
at time t0 in state {k, σ} and ends alone at time t again in state {k, σ}. Also,
we cannot connect 3 electron lines or any other combination except precisely
two electron lines and one phonon line. No more, no less. Finally, there is
momentum (and spin) conservation at the vertices. The Feynman diagrams are
drawings, cartoons, that depict all the possible stories within these constraints.
Now we still need the rules to translate each drawing into an amplitude.

To find the rules, let’s continue working out our example, the second order
correction to the electron Green’s function in an interacting electron-phonon
system. We have for the second term:

A2 = −δσσ1δσ2σ2δσ1σ × δ(k− (k1+q))δ(k2 − (k2−q))δ(k1 − k)
iG0(k, σ; t− t1)iG0(k2, σ2; t2 − t2)iG0(k, σ; t1 − t0). (4.83)

This results in the following contribution to (4.68):X
q,q0

X
k1,σ1

X
k2,σ2

δ(q+ q0)iD0(q; t1 − t2)M(q)M(q
0)A2

= −
X
k2,σ2

|M(q→ 0)|2D0(q→ 0; t1 − t2)G0(k, σ; t− t1)

×G0(k2, σ2; t2 − t2)G0(k, σ; t1 − t0). (4.84)

We can again look at this expression piece by piece and reconstruct the story
behind it:

tadpole diagram

Somebody with a weird imagination once called this diagram the tadpole
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diagram, and the name has stuck. Note that the little loop represents
G0(k2, σ2; t2 − t2), which is equal to nk2,σ2 , the number of electrons that are in
the single-particle state

¯̄
ϕk2,σ2

®
in our many body system. In this result there

is still a summation over k2, σ2 left. A loop like this is called a “closed fermion
loop”. It gives all sort of divergence trouble in elementary particle physics, but
we’re safe in solid state physics since the integrations over k2 don’t go from
zero to infinity, but from the smallest value of k2, namely π/L with L the size
of the crystal, to the largest value, namely π/a with a the size of the lattice
constant. So, we have natural cutoffs to the wave number integrals. These
sometimes matter: it should come as no surprise that some material properties
indeed depend on the size of the system or the crystal lattice size. The tadpole
diagram tells the story of an electron that sends out a phonon at time t1, but the
phonon doesn’t boomerang back. Rather, it is absorbed by the other electrons
present in the many-body system. Momentum conservation tells us that this
should be a q = 0 phonon. Do such phonons exist? For the acoustic modes
the long wavelength limit q → 0 corresponds to a uniform translation of the
entire crystal, this is not really a physical quantity since it corresponds to a
Galilean transformation of reference frame. But for the optical phonons, the
q = 0 phonons do matter: they are a uniform displacement of negative ions
versus positive ions, and have a nonzero frequency. The physics of the tadpole
diagram corresponds to the lattice taking the recoil of the electron.

Next, we note that contributions A3 and A4 are identical to A1 and A2,
respectively. The next new diagram is A5, and it looks weird. We get

A5 = δ(q)iG0(k, σ, t− t0)iG0(k1, σ1, t1 − t1)iG0(k2, σ2, t2 − t2)

from which X
q,q0

X
k1,σ1

X
k2,σ2

δ(q+ q0)iD0(q; t1 − t2)M(q)M(q
0)A5

= G0(k, σ, t− t0)
X
k1,σ1

X
k2,σ2

|M(q→ 0)|D0(q→ 0; t1 − t2)

×G0(k1, σ1, t1 − t1)G0(k2, σ2, t2 − t2)

with corresponding Feynman diagram

dumbbell diagram and electron propagator

The strange thing about this diagram is that the dumbbell part is not connected
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to the electron propagator. The electron propagator tells the storyline of the
protagonist: our created electron. What happens to it? Absolutely nothing.
The most boring day. No phonons emitted or absorbed. But meanwhile,
somewhere completely different, the many-body system through which it travels
gets all riled up and does all sorts of things, it fluctuates around, emits and
reabsorbs phonon. Sure, there can be all sorts of electrons and holes popping in
and out of existence in the many-body ground state that acts as a background
to the main plotline, but as long as they don’t interact with our main character
of the story, we feel intuitively that this shouldn’t change the outcome of the
summing up of amplitudes in the end... We look more closely at this point when
we study the vacuum polarization.
This type of diagram, where not all parts of the picture are connected to

each other, is called a disconnected diagram. Those that have no loose pieces
are called connected diagrams (no kidding). Also A6 leads to a disconnected
diagram:

A6 = −δσ1σ2δ(k2 − (k1 + q))iG0(k, σ, t− t0)

×iG0(k1, σ1, t1 − t2)iG0(k2, σ2, t2 − t1).

From this we findX
q,q0

X
k1,σ1

X
k2,σ2

δ(q+ q0)iD0(q; t1 − t2)M(q)M(q0)A6

= G0(k, σ, t− t0)
X
q

X
k1,σ1

|M(q)|2D0(q; t1 − t2)

×G0(k1, σ1, t1 − t2)G0(k1 + q, σ2, t2 − t1) (4.85)

with corresponding diagram

Oyster diagram and electron propagator

This completes our survey of the diagrams (and the possible stories) that
appear in the calculation of the electron Green’s function up to second order
in the electron-phonon interaction. All these diagrams contain 1 phonon
propagator and three electron propagators and two vertices. These numbers
are fixed since the number of electron and phonon operators is fixed as soon as
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we specify that we want to look in second order. Each order contributes a ĤI

with one phonon and two electron operators. Can you see that the fourth order
will have two phonon lines, five electron lines, and four vertices? Let’s conclude
this section by putting together all contributions that make up G2:

G2(k, σ; t− t0) =
−i
2(i~)2

∞Z
−∞

dt1

∞Z
−∞

dt2
X
q

|M(q)|2D0(q; t1 − t2)

×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+2G0(k, σ; t− t1)G0(k− q, σ; t1 − t2)G0(k, σ; t2 − t0)
−2δ(q)G0(k, σ; t− t1)

P
k2,σ2

G0(k2, σ2; t2 − t2)G0(k, σ; t1 − t0)

+δ(q)G0(k, σ, t− t0)
P
k1,σ1

G0(k1, σ1, t1 − t1)
P
k2,σ2

G0(k2, σ2, t2 − t2)

−G0(k, σ, t− t0)
P
k1,σ1

G0(k1, σ1, t1 − t2)G0(k1 + q, σ2, t2 − t1)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(4.86)
The first line comes from A1 and A3. The second line corresponds to the
contributions of A2 and A4. The third lines comes from A5, and the fourth line
from A6. Note that the connected diagrams appear twice: the contributions of
A1 and A3 are the same and differ only by the order of the intermediate times
t1 and t2 over which we need to integrate — and we integrate over all times
anyway. This integrating over all times is a summation over a bunch of possible
histories of the electron: we sum up all the stories where the script only differs
by the possible times at which the phonon emission and absorption occur. In
the n-th order term Gn we’ll find that the intermediate times t1,...,tn appear in
n! different orderings. This will cancel out the factor n! in the series expansion
(4.68).

4.7 Vacuum polarisation
We worked out the numerator in the Green’s function, but not yet the

denominator S0 =
D
Ψ0 |Û(∞,−∞)|Ψ0

E
. Also here, we can expand Û(∞,−∞)

in successive orders of the interaction Hamiltonian:

S0 =
∞X
n=0

1

n!

1

(i~)n

∞Z
−∞

dt1...

∞Z
−∞

dtn

D
Ψ0

¯̄̄
T ĤI(t1)ĤI(t2)...ĤI(tn)

¯̄̄
Ψ0

E
.

The term with n = 1 again becomes zero, as was the case for the numerator, so
that the expansion can be written as S0 = 1+ S

(2)
0 + ... where the second order

contribution is given by

S
(2)
0 =

−i
(i~)2

∞Z
−∞

dt1

∞Z
−∞

dt2
X
q,q0

X
k1,σ1

X
k2,σ2

M(q)M(q0) (4.87)

×
*
Ψ0

¯̄̄̄
¯T
"

B̂q(t1)â
†
k1+q,σ1

(t1)âk1,σ1(t1)

×B̂q0(t2)â†k2+q0,σ2(t2)âk2,σ2(t2)

#¯̄̄̄
¯Ψ0

+
.
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The phonon operators factorize toD
Ψ0

¯̄̄
T
h
B̂q(t1)B̂q0(t2)

i¯̄̄
Ψ0

E
= δ(q+ q0)iD0(q, t1 − t2), (4.88)

and the remaining electron operates evaluate toD
Ψ0

¯̄̄
T
h
â†k1+q,σ1(t1)âk1,σ1(t1)â

†
k2+q0,σ2

(t2)âk2,σ2(t2)
i¯̄̄
Ψ0

E
= δ(q)

P
k1,σ1

G0(k1, σ1, t1 − t1)
P
k2,σ2

G0(k2, σ2, t2 − t2)

−
P
k1,σ1

G0(k1, σ1, t1 − t2)G0(k1 + q, σ2, t2 − t1). (4.89)

The result for S0 up to second order then becomes:

S0 = 1 +
−1
(i~)2

∞Z
−∞

dt1

∞Z
−∞

dt2
X
q

|M(q)|2D0(q, t1 − t2)

×
(
δ(q)

P
k1,σ1

G0(k1, σ1, t1 − t1)
P
k2,σ2

G0(k2, σ2, t2 − t2)

−
P
k1,σ1

G0(k1, σ1, t1 − t2)G0(k1 + q, σ2, t2 − t1).

)
+ ... (4.90)

Depicted as Feynman diagrams this becomes

Vacuum polarization up to second order

The diagrams that appear here (the dumbbell diagram and the oyster diagram)
are part of the set of vacuum polarization terms. Symbolically we can represent
a multiplication of two diagrams as a new, disconnected diagram, that contains
both pieces. The amplitude of this new disconnected diagram is just a
multiplication of the amplitudes of the two loose pieces:

Multiplication of diagrams
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This particular multiplication corresponds to

[G0(k, σ, t− t0)]×"
D0(q, t1 − t2)

P
k1,σ1

G0(k1, σ1, t1 − t1)
P
k2,σ2

G0(k2, σ2, t2 − t2)

#
,

and we’ve seen it before, namely in the expression for A5. The big collection of
all possible stories of the electron (in the numerator) can be seen as combined
stories represented by a connected diagram for the electron, together with any
loose piece(s) from the vacuum polarization that mean that something else is
going on somewhere. This means we can factorize the numerator as

Factorization of the numerator in (4.68).

In our example of the second order correction we only took terms up to second
order (so with at most two vertices and one phonon line). The first factor
in this decomposition is the sum over all connected diagrams — let’s indicate
this by Gc(k, σ; t− t0). The second factor corresponds precisely to the vacuum

polarization terms S0 =
D
Ψ0 |Û(∞,−∞)|Ψ0

E
. This factor appears both in the

numerator and in the denominator, and cancels out, so that

G(k, σ; t− t0) =
Gc(k, σ; t− t0)

D
Ψ0|Û(∞,−∞)|Ψ0

E
D
Ψ0|Û(∞,−∞)|Ψ0

E = Gc(k, σ; t− t0) (4.91)

We won’t prove this theorem, but note that it confirms our earlier intuitive
remark that whatever goes on elsewhere unconnected to the story of the
protagonist shouldn’t influence the final amplitude. Another way to come
to this result is to see that if we indeed would use the properly normalized
true ground state |ΨGi = Û(0,−∞) |Ψ0i , then the denominator should be 1.
But, since we approximate Û(0,−∞) |Ψ0i, we have to explicitly correct for a
wrong normalization — and this correction comes down to simply dropping all
disconnected diagrams from our calculation.
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4.8 Green’s function in reciprocal space
If there is no preferred moment in time (i.e. homogeneity in time), it is useful
to work the Green’s function in frequency space. We’ve already defined

G(k, σ; t) =

∞Z
−∞

G(k, σ;ω)e−iωt
dω

2π
(4.92)

The connected second order diagrams from (4.86) are:

Gv(k, σ; t− t0) =
−i
2(i~)2

∞Z
−∞

dt1

∞Z
−∞

dt2
X
q

|M(q)|2D0(q; t1 − t2)

×
(
+2G0(k, σ; t− t1)G0(k− q, σ; t1 − t2)G0(k, σ; t2 − t0)
−2δ(q)G0(k, σ; t− t1)

P
k2,σ2

G0(k2, σ2; t2 − t2)G0(k, σ; t1 − t0)

)
.

The right-hand side is

RHS =
−i
(i~)2

∞Z
−∞

dt1

∞Z
−∞

dt2
X
q

|M(q)|2
∞Z
−∞

dω1
2π

e−iω1(t1−t2)D0(q;ω1)

×

⎧⎨⎩
∞Z
−∞

dω2
2π

e−iω2(t−t1)G0(k, σ;ω2)

∞Z
−∞

dω3
2π

e−iω3(t1−t2)G0(k− q, σ;ω3)

×
∞Z
−∞

dω4
2π

e−iω4(t2−t
0)G0(k, σ;ω4)− δ(q)

∞Z
−∞

dω2
2π

e−iω2(t−t1)G0(k, σ;ω2)

×
P
k2,σ2

∞Z
−∞

dω3
2π

e−iω3(t2−t2)G0(k2, σ2;ω3)

∞Z
−∞

dω4
2π

e−iω4(t1−t
0)G0(k, σ;ω4)

⎫⎬⎭
The integrations over t1 and t2 yield two delta functions, simplifying the
expression

RHS =
−i
(i~)2

Z
dω

2π
e−iω(t−t

0)

×

⎧⎨⎩X
k1

|M(k1)|2
∞Z
−∞

dω1
2π

∙
D0(k1;ω1)G0(k, σ;ω)
×G0(k− k1, σ;ω − ω1)G0(k, σ;ω)

¸

− |M(0)|2
X
k2,σ2

∞Z
−∞

dω2
2π

∙
D0(0, 0)G0(k2, σ2;ω2)
×G0(k, σ;ω)G0(k, σ;ω)

¸⎫⎬⎭ (4.93)

The left-hand side is

LHS =
Z

dω

2π
e−iω(t−t

0) Gv(k, σ;ω)
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From this we find:

Gv(k, σ;ω)

= i
X
k0

|M(k0)|2

~2

∞Z
−∞

dω0

2π

½
D0(k

0;ω0)G0(k, σ;ω)
×G0(k− k0, σ;ω − ω0)G0(k, σ;ω)

¾

−i |M(0)|
2

~2
P

k00,σ00

∞Z
−∞

dω00

2π

½
D0(0, 0)G0(k

00, σ00;ω00)
×G0(k, σ;ω)G0(k, σ;ω)

¾
. (4.94)

The Feynman diagrams that correspond to these two contributions are

Self-energy and tadpole diagrams in reciprocal space

Here we’ve omitted the spin index in the electron propagators. We see now that
in each vertex not only the momentum is conserved but also the energy ~ω !
The sum of incoming energy (from lines pointing to the vertex) and outgoing
energy (from lines pointing away from the vertex) is conserved.

4.9 Diagrammatics

4.9.1 Feynman rules

He indeed does. But here we mean to list the set rules that translate Feynman
diagrams into amplitude, expressions that we can get some numbers out.
Working out the second order term took a lot of effort, especially since we
performed the Wick decomposition in all its splendor and then finished off with
a Fourier transform. We are now in a position to simplify the whole complicated
procedure of the previous sections by formulating a set of rules, the Feynman
rules, to draw and translate all relevant diagrams.
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We’ll also include the electron-electron interactions as instantaneous
Coulomb interactions. These are mediated by photons, that we can write as
wiggly lines that, just as the phonon lines, can be emitted or absorbed by the
electrons. We won’t derive these rules, but we could do that by going through
the same procedure as before.
The rules, for the electron-phonon system with both Coulomb interactions

(mediated by photons) and electron-phonon interactions, are:

1. To calculate a transition amplitude between an initial and final state, draw
all the connected diagrams that begin and end with these initial and final
states (for our example of the electron Green’s function the initial and
final states were one electron in the state {k, σ}). Use the correct number
of lines (determined by the order of perturbation you want) and connect
them correctly to vertices (e.g. an electron-phonon/photon vertex needs
two electron lines and one phonon/photon line)

2. PROPAGATORS:

(a) For each electron propagator (full lines), introduce the following
Green’s function:

G0(k, σ;ω) =
θ(k > kF )

ω −Ek/~+ iδ
+

θ(k < kF )

ω −Ek/~− iδ
, (4.95)

where Ek = (~k)2/(2m) is the energy corresponding the the single
particle state

¯̄
ϕk,σ

®
.

(b) For each phonon propagator (dashed line), introduce the following
Green’s function:

D0(k, ω) =
1

ω − ωk + iδ
− 1

ω + ωk − iδ
, (4.96)

where ~ωk is the energy of a free phonon with wave number k.
(c) For each photon propagator (wiggly line), introduce the following

Green’s function: 1/q2, where q is the wave number of the photon.

3. VERTICES:

(a) Conserve momentum and energy in each vertex.

(b) For an electron-phonon vertex, include a factor M(q)/~ (or
M∗(q)/~), where q is the wave vector of the absorbed (or emitted,
respectively) phonon.

(c) For an electron-photon vertex, include a factor
p
e2/(~εvac).
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4. Sum over all momenta and energy that still can be chosen freely, given
the initial and final states are fixed and the conservation rule is satisfied.
These freely chosen energy-momenta are called internal degrees of freedom
and the sums can be written as integralsZ

dω0

2π

Z
dk0

(2π)3
. (4.97)

5. Multiply the result with a phase factor

im(−1)F (2S + 1)F (4.98)

where F is the number of closed fermion loops, S is the spin (=1/2), and m
is the order of perturbation (=the number of internal phonon and photon
lines when calculating electron Green’s functions, or half the number of
vertices when calculating phonon Green’s functions).

4.9.2 Generalization

The Green’s function is an amplitude to guide an electron with given wave
number, spin and energy through the many body system. The power of the
Feynman rules is that we can apply them to more complicated questions. For
example, we could ask ourselves what the amplitude is that two electrons
with initial wave number and spin {k, σ} and {k0, σ0} scatter and exchange
momentum ~q to end up in final states with wave number and spin {k− q, σ}
and {k+ q, σ}. This is sometimes called the two-particle Green’s function.
Again, we need to add up all possible ways for this to happen, but surely the
simplest way is just by exchanging a single phonon:

Scattering of two electrons by phonon exchange

The Feynman rules allow you to calculate also this amplitude: just translate all
the separate pieces, plug in the numbers, and you get out a complex number
representing the amplitude of this process. You can then start by refining your
answer by drawing other connected Feynman diagrams for the same initial and
final states, calculating their amplitudes as well and adding up all amplitudes.
Maybe you don’t have to take into account very many diagrams and the sum
converges really quickly...



CHAPTER 4. GREEN’S FUNCTIONS AND FEYNMAN DIAGRAMS 85

There are more Feynman rules. Also in elementary particle physics
Feynman diagrams are used to calculate the amplitude of specific processes
such as scattering, decay, absorption,.... Each type of particle (quark, gluons,
photons,...) has its own propagator, its own line. Each type of interaction
(color, electromagnetic, ...) has its own vertices and vertex factors. The
Feynman rules relevant to the different branches of physics (solid state physics,
elementary particle physics, nuclear physics, quantum gravity) have been
collected in a book that is aptly titled ‘Diagrammatics’7. With this book, and
your imagination for story-drawing you can calculate the quantum mechanical
amplitudes corresponding to any process you want.

4.10 Dyson equation
We have obtained the lowest order non-zero correction to the Green’s function of
the electron-phonon system (4.78). We can then look for the Feynman diagrams
of the next order non-zero contribution. This will be of fourth order in M(q),
and consist of the connected diagrams containing two phonon and five fermion
lines. Let’s for clarity leave out the tadpole diagrams, removing the q = 0
phonons or setting M(0) = 0. You can check that the remaining connected
diagrams are:

Connected diagrams of fourth order

The only diagram without q = 0 phonons up to second order in M(q) was
the self-energy diagram. From all four diagrams shown above for fourth order,
diagram A will be easy to calculate. It is the only diagram that can fall in two
pieces by just cutting a single internal line (i.e. not the starting or final line).
Try it, if you cut an internal line in any of the others, the whole thing is still
tethered together. Cutting the middle line in diagram A just results in two
pieces that we obtained in lower order. Such diagrams that can be cut up in
lower order parts are called improper diagrams. The others are called proper
diagrams.

7M. Veltman, “Diagrammatica: the path to Feynman diagrams” (Cambridge
University Press, Cambridge, 1994). Verscheen eerst als G. ’t Hooft en M. Veltman,
Diagrammar, CERN Yellow Report, 73-9. Is ook op het CERNweb te downloaden:
http://preprints.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow_Report&id=73-09
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We define the proper self-energy Σ(k, σ;ω) as the following pieces of diagram:

(It is called “eigenlijke zelfenergie” in Dutch — improper would be “oneigenlijk”.
For the non-native speaker, don’t hurt your tongue trying to pronounce all this).
Note that these pieces all begin and end in a vertex with one ‘loose bond’, an
open connector in which to plug in an electron line. The contributions to the
Green’s function, also these of higher orders, all begin and end with G0(k, σ;ω).
For the part in between we can write all improper diagrams by stringing together
pieces of proper self-energy with electron lines! Diagram A above is found by
stringing together two copies of lowest order piece in the proper self energy. So,
the collection of all connected diagrams can be written as the collection of all
proper diagrams, and all ways to string together two or more pieces of proper
self-energy diagrams. Let’s put this conclusion into drawing. If we denote the
Green’s function of the complete interacting system with a double line (rather
than a single line, reserved for G0), then the Green’s function is given by

Graphical representation of the Dyson equation

Let’s drop the (k, σ;ω) from G(k, σ;ω) for ease of notation in the next
expression. The first equality is

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + ....

= G0 +G0Σ(G0 +G0ΣG0 + ...)| {z }
G

This is called the Dyson series. From it we get

G(k, σ;ω) = G0(k, σ;ω) +G0(k, σ;ω)Σ(k, σ;ω)G(k, σ;ω). (4.99)

This is called the Dyson equation. We can solve it with respect to G :

G(k, σ;ω) =
G0(k, σ;ω)

1−G0(k, σ;ω)Σ(k, σ;ω)
(4.100)
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If we now plug in our result for G0 for a single electron, we find

G(k, σ;ω) =
1

ω −Ek/~+ iδ −Σ(k, σ;ω) (4.101)

Great! We’ve just summed infinitely many diagrams!
But there is more. Remember from the Lehmann representation (section

4.3) that we can interpret poles of Green’s functions and relate them to
quasiparticles. The Green’s function shown here has a pole satisfying ω =
Ek/~ + Σ(k, σ;ω). As long as Σ is not too big with respect to Ek, then we
can approximate the pole’s location by ω ≈ Ek/~ + Σ(k, σ;Ek/~). This result
is interpreted as follows: if the eigen-energies of the unperturbed system were
given by Ek, then the effect of interactions consists in shifting these energies by
an amount

∆Ek = ~Re[Σ(k, σ;Ek/~)] (4.102)

related to the real part of the self-energy, and giving these states a life time

τ = ~/ Im[Σ(k, σ;ω)] (4.103)

related to the inverse of the imaginary part of the self energy. Well, no wonder we
call this Σ the “self-energy” of the interacting electrons. And now that we have
the quasiparticle dispersion relation, we have access to the thermodynamics
of the system using our good old statistical mechanics for weakly interacting
(quasi)particles.
The power of the Dyson equation lies in the fact that it performs

resummations of an infinite amount of diagrams. Suppose that we limit ourselves
to the lowest order non-zero perturbation result for our electron-phonon
problem: G(k, σ;ω) = G0(k, σ;ω) +G2(k, σ;ω). Having done this calculation,
we immediately have Σ2 since it is just a part of G2, namely

Σ2(k, σ;ω) = i
X
k0

∞Z
−∞

dω0

2π

|M(k0)|2

~2
D0(k

0;ω0)G0(k− k0, σ;ω − ω0) (4.104)

This is the lowest order non-zero diagram in Σ. If we now refuse to do any more
integrals, we can use this Σ2 in stead of Σ in the Dyson equation. Doing so, we
have in fact also included part of the higher order contributions, for example
G0Σ2G0Σ2G0 and G0Σ2G0Σ2G0Σ2G0. Thus, we calculate one diagram and
we get a sum over infinitely many at no extra cost. It’s not yet all diagram,
so it is a partial resummation, but nevertheless this is a result beyond simple
perturbation theory. It will be particularly useful in the next chapter to figure
out how photons propagate through the solid.
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Addendum: Dirac or interaction picture
The Schrödinger and Heisenberg picture should be known from your quantum
mechanics classes. The Dirac picture is not much more complicated. Consider
a Hamiltonian given by the sum of a part Ĥ0 that can be diagonalised and a
perturbation Ĥ1. The properties of the three pictures of quantum mechanics,
and their links, are summarized in the table below:

Schrödinger picture

i~
d

dt
|Ψ(t)iS = Ĥ |Ψ(t)iS ←− |Ψ(t)iI = eiĤ0t/~ |Ψ(t)iS

ÂS time independent. ÂI(t) = eiĤ0t/~ ÂSe
−iĤ0t/~

↑ ↓
|Ψ(t)iS = e−iĤt/~ |ΨiH Interaction picture

ÂH(t) = eiĤt/~ ÂSe
−iĤt/~ i~

d

dt
|Ψ(t)iI = Ĥ 0

1 |Ψ(t)iI
↓ i~

d

dt
ÂI(t) = [ÂI(t), Ĥ0]

Heisenberg picture ↑
|ΨiH time independent ←− |Ψ(t)iI = e−iĤ1t/~ |ΨiH
i~

d

dt
ÂH(t) = [ÂH(t), Ĥ] ÂI(t) = e−iĤ1t/~ ÂHe

iĤ1t/~

(4.105)

Here Ĥ 0
1 = eiĤ0t/~Ĥ1e

−iĤ0t/~ . We also assume that we can write

exp{iĤ0t/~} exp{−iĤt/~} = exp{iĤ1t/~}.

Furthermore, we have to choose (arbitrarily) an initial time t = 0 where
ÂS = ÂI(0) = ÂH(0) and |ΨiH = |Ψ(0)iS = |Ψ(0)iI holds; at that time all
three pictures coincide. From that time onwards, the dynamics is described
differently: in the Heisenberg picture the operators change, in the Schrödinger
picture the wave functions change, and in the interaction or Dirac picture both
change — the wave functions according to the perturbation part, and operators
via the unperturbed Hamiltonian.



Chapter 5

Dielectric function and
linear response

In the previous chapter we set up and investigated the diagrammatic technique
to calculate the properties of the electron gas. Here we are going to apply this
technique to find how the electron gas responds to an external perturbation.
This makes the link to experiments that probe material properties. In these
experiments, the response of the material to an external probe such as an electric
field for conductance, an electromagnetic wave for optical properties, a polarized
neutron beam for spin waves. We’re going to focus on the case of light shining on
a material, and therefore we need to begin by reviewing how Maxwell’s theory
of electromagnetism is adapted to include the presence of a medium, a material
background.

5.1 Remembering Maxwell in a medium
It is worthwhile to remind ourselves of some basic electromagnetism before we
proceed. Start from the Maxwell equations,

∇ ·E = ρ/εv, (5.1)

∇ ·B = 0, (5.2)

∇×E = −∂B
∂t

, (5.3)

∇×B = μvJ+ μvεv
∂E

∂t
, (5.4)

and the continuity equation

∂ρ

∂t
+∇ · J = 0. (5.5)

Here, I work in SI units, so the electric field E is in volt/m, the magnetic
induction B is in tesla, the charge density ρ is in coulomb/m3, the current

89
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density is in amps/m2, the vacuum permittivity is εv = 8.85 . . .×10−12 farad/m,
and the vacuum permeability μv = 4π × 10−7 henry/m.
In a material there are already a lot of charges and currents present. Most

charges and currents are compensated, so the net charge and current is zero. But
sometimes we can pull the charges in the material a bit apart, creating dipoles,
or redistribute the charges in the material, which also creates a nonzero net
charge distribution. And sometimes little current loops prefer to run clockwise
rather than anticlockwise and the two directions don’t add up to zero. These
kind of changes in charge or currents will be induced in the material when
we apply an external perturbation. Therefore we’ll call these uncompensated
charges and currents running around in the material the induced charge density
ρind and the induced current Jind.
On the other hand, we can take some external charge (such as an ion) and

shoot it in the material, or we can drive an external current through the material
by hooking it up to an electric circuit. We want distinguish these external
charges and currents from the induced ones, and denote them by ρext and Jext.
In total we have

ρ = ρind + ρext, (5.6)

J = Jind + Jext. (5.7)

With this distinction, the first and fourth Maxwell equations (those with source
terms) are now written as

∇ ·E = (ρind + ρext) /εv, (5.8)

∇×B = μv (Jind + Jext) + μvεv
∂E

∂t
. (5.9)

We’d like to be able to ignore the presence of the complicated material and
the complication of all those induced charge and current redistributions in the
material. We’d like to work with effective fields that look like obeying Maxwell’s
equations as if there were no material:

∇ ·D = ρext, (5.10)

∇×H = Jext +
∂D

∂t
(5.11)

The fields defined by these equations are the displacement field D and the
magnetic field H (what’s in a name). Note that by (stupid) definition the units
are different, D is in coulomb per meter and H is in amps per meter. Now,
together with the second and third Maxwell equations (those that didn’t contain
any source terms), we have again a set of equations as if no material is present.
Of course, all we’ve really done is swept the effects of the medium under the
rug. How do we deal with the induced charges and currents? This requires a
hard many-body calculations, but there are two easy ways to approximate this.
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5.1.1 Polarization and magnetisation

The first way is to give ρind and Jind their own field, by defining

−∇ ·P = ρind (5.12)

∇×M = Jext −
∂P

∂t
(5.13)

Again, more silliness with conventions: a changed sign for the polarization field
P (again in coulomb per meter) and this also trickles down in the equation for
the magnetizationM (in amps per meter). These new fields can be interpreted
as the induced polarization field from all the little induced charge displacements
or dipoles, and the induced magnetic field from all the uncompensated induced
current loops and the changing polarization field. Now we can relate E, D and
P through

∇ ·E =
1

εv
(ρind + ρext) =

1

εv
(∇ ·D−∇ ·P) (5.14)

⇒ εvE = D−P (5.15)

⇔ D = εvE+P. (5.16)

Note that the vacuum permittivity is just a constant to get the units right. We
can also relate B, H andM in the same way

∇×B = μv (Jind + Jext) + μvεv
∂E

∂t
(5.17)

⇔ ∇×B = μv

µ
∇×H− ∂D

∂t

¶
+ μv

µ
∇×M+

∂P

∂t

¶
+ μvεv

∂E

∂t

⇔ 1

μv
∇×B =∇×H+∇×M

from which
H = B/μv −M (5.18)

Now it is clear what we want from a microscopic theory: it should give us
the polarization P and the magnetisation M that are the material’s response
to a field B and E. In its simplest form (first order perturbation) one could
guess that the induced polarization will just be proportional to the electric
field, P = χe εvE, and that the magnetization will just be proportional to the
magnetic induction, M = χm B/μv. The theory can be made more precise by
looking at nonlinear terms, and by taking into account that polarization my be
induced in a direction different from that of the electric field,...

5.1.2 Dielectric function and permeability

The second way to include the effects of the material is not to use P and
M, but to include the influence of the medium into the permittivity and the
permeability, and change the vacuum values to new values. That is, we change

D = εvE+P→ D = εE, (5.19)
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and
H = B/μv −M→H = B/μ. (5.20)

You immediately see that this won’t always work with a scalar for ε and 1/μ.
Indeed, when the electric field for example results in an induced polarization
that is in a different direction, then ε should be a tensor. Also, if the response is
nonlinear, then ε still depends on E, and the whole concept becomes very messy
indeed. But, in the simple world of homogeneous, isotropic materials and linear
response, all still works well. Another side-remark is that we define the ε and
1/μ strictly speaking in reciprocal space, i.e. through the relations

D(k, ω) = ε(k, ω)E(k, ω) (5.21)

H(k, ω) = B(k, ω)/μ(k, ω) (5.22)

As you certainly remember, products in reciprocal space become, after inverse
Fourier transform, convolutions in real space. So if the dielectric function
depends from point to point, be aware that D(r, ω) 6= ε(r, ω)E(r, ω), where
the NOT EQUAL sign is to be emphasized. The equality is in reciprocal space,
by definition. In our simple world of homogeneous materials, ε doesn’t depend
on position and we only have a frequency dependence, ε(ω), and the above
caveat is often omitted and forgotten.
Another thing often forgotten is the distinction between longitudinal and

transversal dielectric function — a subtlety that we discuss in the next section.
But first, let’s see what becomes of the Maxwell equations when ε is just a
constant, not even depending on ω. Then we can combine (5.10) and (5.11)
with D = εE and H = B/μ and get

∇ ·E = ρext/ε, (5.23)

∇×B = μJext + με
∂E

∂t
. (5.24)

to be solved with the equations without source terms,

∇ ·B = 0, (5.25)

∇×E = −∂B
∂t

, (5.26)

and the continuity equation for the external charges

∂ρext
∂t

+∇ · Jext = 0. (5.27)

That looks again like the Maxwell equations without the presence of the
material! The changes are in the value of the permittivity, now ε rather than
εv and the permeability μ rather than μv.
What are the consequences? One of them is a different strength of the

Coulomb potential — If we have a point charge ρ(r) = qδ(r) we get

∇ · εE = qδ(r)

⇒ E =
1

4πε

q

r
er (5.28)
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The coulomb potential now has ε in stead of εv. Remember that the photon
propagator 1/k2 in the electron gas description from the previous chapter is
related to the Fourier transform of the Coulomb interaction. The photon
propagator in the medium is changed by a factor ε/εv. This also means that
another consequence will be that electromagnetic waves propagate differently.

5.1.3 Drude dielectric function

OK, let’s take a step back and calculate our first dielectric function, to see how
this second way works. Let’s take no external charges and suppose that all fields
oscillate in time with a frequency ω. That is, we can write all functions F (r, t)
as F (r)e−iωt. Then the time derivatives in the (original) Maxwell equations
simplify and we get:

∇ · εvE = ρind, (5.29)

∇ ·B = 0, (5.30)

∇×E = iωB, (5.31)

∇×B = μvJind − iμεvωvE. (5.32)

and
−iωρind + Jind = 0. (5.33)

The continuity equation can be used to replace the charge density by the
(longitudinal, see next section) current, and the first equation becomes

∇· (εvE) =
Jind
iω

. (5.34)

Now, we still need to eliminate J. Suppose that we don’t have any external
current, then we are left only with the induced currents. Let’s take our simplest
theory for the induced current, that is Ohm’s law:

Jind = σ(ω)E. (5.35)

That’s all we need to get rid of the induced current in the first and fourth
Maxwell equations:

∇· (εvE) =
σ

iω
E, (5.36)

∇×B = μvσE− iμεvωvE. (5.37)

This is

∇·
h³
εv −

σ

iω

´
E
i
= 0, (5.38)

∇×B = −iμ
³
εv −

σ

iω

´
ωvE. (5.39)
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Now you see that it is indeed possible to write the Maxwell equations as if the
material is not present, provided we use a dielectric function for the metal εm,
given by

εm(ω) = εv −
σ(ω)

iω
. (5.40)

We then get

∇ · εmE = 0, (5.41)

∇ ·B = 0, (5.42)

∇×E = iωB, (5.43)

∇×B = −iμεmωvE. (5.44)

This is the same as (5.29)—(5.32), without the induced fields and with changed
ε. We can now use the Drude conductivity (1.4) to get

εm(ω) = εv −
1

iω

ne2τ

m

1

1− iωτ
(5.45)

If we assume ωτ À 1 (valid for optical frequencies and most metals), and
introduce the short-hand notation

ωpl =
ne2

mεv
(5.46)

called the plasma frequency, we get the Drude dielectric function for metals:

εm(ω)

εv
= 1−

ω2pl
ω(ω + i/τ)

≈ 1−
ω2pl
ω2

(5.47)

Furthermore, we know that the solution of the Maxwell equations in vacuum is
a wave, F (r) = Feikr with wave length

k = ω/c = εvμvω (5.48)

All we need to do now to find the solutions is the metal with our simplest
dielectric function is to replace εv by εm, and obtain

k = εmμvω = εvμv

q
ω2 − ω2pl (5.49)

For frequencies much higher than the plasma frequency ω À ωpl the
waves propagate nearly with vacuum light speed. But, for ω < ωpl, the
situation is quite different: k becomes imaginary, in stead of waves we have
an exponentially decaying amplitude (the decay length is roughly ωpl/c).
This means electromagnetic waves with frequencies smaller than the plasma
frequency cannot penetrate the metal and will be reflected. Since ωpl usually
is in the far-UV, this means that seen in optical frequencies, metals are
shiny. Reducing n, the density of electrons, brings down the plasma frequency.
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For insulators, the plasma frequency goes to zero, so insulating crystals are
transparent (unless there are some other light-absorbing molecules embedded in
them of course).
The goal of this chapter is to show how better approximations to ε can be

calculated using our diagrammatic formalism. But first, as announced, some
words on the distinction between longitudinal and transversal fields.

5.2 Longitudinal and transversal fields
There is a subtle difference between EM fields generated by transversal currents,
such as light, and EM fields generated by charges. This is not generally
appreciated, and I add it to these course notes just for those of you who are
interested in the fine print of electromagnetism. All other may skip this chapter
with advanced material.

5.2.1 Helmholtz decomposition

First, it is useful to be reminded of the fact that any vector field V(r) for which
a Fourier transform exists can be decomposed in longitudinal en transversal
fields,V(r) = V (r) +Vtr(r). A vector field is called longitudinal or curl-free
or irrotational if and only if

∇×V (r) = 0. (5.50)

A vector field is called transversal or divergence-free if and only if

∇ ·Vtr(r) = 0. (5.51)

The decomposition is performed in reciprocal space (i.e. via the Fourier
transform). This changes the curl and div into

ik×V (k) = 0, (5.52)

ik ·Vtr(k) = 0. (5.53)

Splitting the field in longitudinal and transversal components is called the
Helmholtz decomposition, and it requires the introduction of the unit vector
along the k direction:

κ =
k

k
. (5.54)

With this unit vector, the components can are found through

V (k) = κ [κ ·V(k)] , (5.55)

Vtr(k) = V(k)−V (k). (5.56)

Note that if we go back to real space, the multiplication κ · V(k) becomes a
convolution, which means that the value of V or tr(r) in the point r depends
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non-locally on the values of V(r0) in all locations r0. Typically, the main
contribution will come from locations within a wavelength’s distance from r.
In reciprocal space however, the connection between the vector field V(k) and
its longitudinal and transverse components remains local, and we need to known
V(k) only in a single k-value to find the longitudinal and transversal field in
this same value. Note that there is no Helmholtz decomposition for V(0).
Furthermore, it is clear that the decomposition is not relativistically (Lorentz)
invariant, meaning that the Helmholtz decomposition of four-vectors depends
on the frame of reference. Finally, note that Vtr(k) ·V (k) = 0.

5.2.2 Longitudinal from charges, transverse from current

The Maxwell equations in reciprocal space are well-suited to rewrite in
longitudinal and transversal components. Via the calculation rules k×V = k×
Vtr and k ·V = k ·V it is easy to find

E (k, t) =
−ik
k2

1

εv
ρ(k, t), (5.57)

B (k, t) = 0, (5.58)

Ḃtr(k, t) = −ik×Etr(k, t), (5.59)

Ėtr(k, t) = ic2k×Btr(k, t)−
1

εv
Jtr(k, t). (5.60)

There are two independent source terms, ρ(k, t) for the longitudinal fields and
Jtr(k, t) for the transversal fields. The longitudinal current is not independent
from the charge, as it is given by the continuity equation ρ̇(k, t) = −ik · J (k, t).
We can also formulate the Maxwell equations slightly differently, using the

vector potential and scalar potential. We can use the gauge freedom to choose
the vector potential completely transversal, A(k, t) = Atr(k, t). This is the
Coulomb gauge. Then, the Maxwell equations become

k2φ(k, t) =
1

εv
ρ(k, t), (5.61)

Ätr(k, t) + c2k2Atr(k, t) =
1

εv
Jtr(k, t). (5.62)

from which we get again the longitudinal and transversal electromagnetic fields:

E (k, t) = −ikφ(k, t), (5.63)

B (k, t) = 0, (5.64)

Btr(k, t) = ik×Atr(k, t), (5.65)

Etr(k, t) = −Ȧtr(k, t). (5.66)

where again ρ̇(k, t) = −ik · J (k, t) must be satisfied. The solutions are given
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by

φ(k, t) =
1

εv
ρ(k, t)

1

k2
(5.67)

⇒ 1

4πεv

Z
dr0

ρ(r0, t)

|r− r0| . (5.68)

and

Atr(k, ω) =
Jtr(k, ω)/εv
c2k2 − ω2

⇒ Atr(r,t) =
μv
4π

Z
dr0
Jtr(r

0, t− |r− r0|/c)
|r− r0| . (5.69)

The solution for the scalar potential is not retarded, that for the vector potential
is. That is a consequence of choosing the Coulomb gauge in stead of the Lorentz
gauge.

5.2.3 A distinction to keep in mind

It is of crucial importance to note that the source terms for the transverse fields
in both formulations is given by Jtr AND NOT BY J ! This means that in
real space the time derivative of the transversal field Etr(r, t) will depend on
the values of the current J(r0) in all points r0 (but mainly those points within
a wave length from r). This is very often overlooked, and J, J and Jtr are
not distinguished in most texts, and assumed equal, which is mathematical
nonsense.
When we eliminate currents and charges from the medium by introducing

the dielectric function or conductivities as we did in the first section of this
chapter, we should be introducing two distinct conductivities: the longitudinal
and the transversal,

J ,tr(k, ω) = σ ,tr(k, ω)E ,tr(k, ω) = iω (ε ,tr − εv)E ,tr(k, ω). (5.70)

These need not be equal, εtr 6= ε . Indeed, Lindhard has extended the
long-wavelength Drude result (5.47) to

εtr(ω)

εv
= 1−

ω2pl
ω(ω + i/τ)

and
ε (ω)

εv
= 1−

ω2pl
(ω + i/τ)2

. (5.71)

As it happens, for simple materials, at optical wavelengths and frequencies where
ωτ À 1, the difference does not matter. We will therefore continue to work with
just a single σ and a single ε, but keep in mind that the better physicist will make
a distinction between longitudinal response (relating to redistributing charges)
and transversal response (related to transversal currents).
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5.3 Kubo Response formalism
A cornerstone of modern quantum many-body physics is no doubt Kubo’s
formalism for linear response. It teaches us how to compute the change in
various observables, resulting from an external pump or perturbation coupling
to the system. It only works for small changes, in the linear regime. Here ‘linear’
means that if you double the strength of the perturbation, the change in the
observable that you monitor will also double.

Let’s start from the Hamiltonian Ĥ0 of the system without the external
perturbation. Now this is the Hamiltonian of the full system with
electron-electron and electron-phonon interactions, and with the generally
unknown ground state |ΨGi, it is only the externally applied disturbance that
is not in it! This doesn’t mean that we don’t know anything about the
interacting system. For example, we can safely assume that without any external
disturbance, the density of electrons in the metal will be homogeneous, so the
charge is compensated everywhere. What we want to know, is of course the net
charge density that will be induced by an external probe field. We can describe
the system with the many-body ground state wavefunction |ΨGi as we did
before, but here we switch to the many-body density matrix. At temperature
zero, it is given by ρ̂0 = |ΨGi hΨG|, but the advantage is that we can also
compute it at nonzero temperature,

ρ̂0 =
1

Z e−Ĥ0/(kBT ) =
1

Z e−βĤ0 , (5.72)

where β = 1/(kBT ) is the inverse temperature and Z = Tr [ρ̂0] is the partition
sum. Don’t confuse this ρ̂0 with the charge density ρ = ρind+ ρext that we had
before! It’s an unlucky notation convention that uses the Greek letter rho for
both — there are only so many letters in the alphabet lest we switch to Chinese
symbols. I will write the density matrix, being an operator, with a hat. Only
in this section we will use the density matrix, afterwards we go back to using
rho just for densities, so bear with me. If you know the density matrix, you also
know all quantum statistical expectation valuesD

Â
E
= Tr

h
ρ̂0Â

i
. (5.73)

The h. . .i bracket now includes both the quantum mechanical expectation value
and the averaging over a statistical ensemble. At temperature zero this becomes

Tr
h
ρ̂0Â

i
= hΨG| ρ̂0Â |ΨGi = hΨG| (|ΨGi hΨG|) Â |ΨGi = hΨG| Â |ΨGi (5.74)

as it should.

Now we introduce the perturbation. This adds an extra term to the
Hamiltonian:

Ĥ1(t) = B̂h(t). (5.75)
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Here the function h(t) captures the time dependence of the probe (e.g. the
electromagnetic field is only switched on for a certain time, and oscillates). The
probe is treated as a macroscopic external field — so we still treat it classically.
For example: we don’t introduce operators for photons, we write the electric
field. The operator B̂ is the observable to which the probe couples. For example,
if we send in an electric field, then this will couple to the density of electrons. If
we send in polarized neutrons, this will couple to the spin field or magnetization
M̂(r).

5.3.1 Linearized quantum Liouville equation

The main question to be solved is: how does the expectation value of the
observable Â that we monitor change as a function of time, due to the
perturbation? Again, we could be monitoring all sorts of things: Â can be
the phonon density or the electron density or the spin density,... So, what we
want to calculate is D

Â(t)
E
= Tr

h
ρ̂(t)Â

i
, (5.76)

where now ρ̂(t) is the time dependent density matrix of the whole system,
including the perturbation.
The main approximation done by Kubo in 1957 is that we will linearize our

result as a function of h(t), taken as the small parameter of the expansion. So,
we write

ρ̂(t) = ρ̂0 +∆ρ̂(t), (5.77)

and assume ∆ρ̂(t) is small, of first order in h(t). We linearize the quantum
Liouville equation

i~
∂ρ̂(t)

∂t
=
h
Ĥ, ρ̂(t)

i
=
h
Ĥ0 + Ĥ1, ρ̂(t)

i
, (5.78)

by noting that ρ̂0 doesn’t depend on time and expanding:

i~
∂

∂t
[∆ρ̂(t)] =

h
Ĥ0, ρ̂0

i
| {z }

zero

+
h
Ĥ1, ρ̂0

i
+
h
Ĥ0,∆ρ̂(t)

i
+
h
Ĥ1,∆ρ̂(t)

i
| {z }
higher order

. (5.79)

The first term is zero because it is proportional to ∂ρ̂0/∂t and the last term is
of second order. Now we go to the Dirac or interaction picture1 and define

δρ̂(t) = eiĤ0t/~∆ρ̂(t)e−iĤ0t/~ ⇔ ∆ρ̂(t) = e−iĤ0t/~δρ̂(t)eiĤ0t/~ (5.80)

1The quantum Liouville equation looks like the Heisenberg equation, but it is not in the
Heisenberg picture. It is in the Schrödinger picture since it can be found by applying the
Schödinger equation to ρ̂(r, r0) = Ψ∗G(r)ΨG(r

0).
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This gives us an alternative way of finding the time derivative of ∆ρ̂(t). Indeed,

i~
∂

∂t
[∆ρ̂(t)] = i~

∂

∂t

h
e−iĤ0t/~δρ̂(t)eiĤ0t/~

i
= i~

½
− i

~
Ĥ0e

−iĤ0t/~δρ̂(t)eiĤ0t/~ + e−iĤ0t/~ ∂ [δρ̂(t)]

∂t
eiĤ0t/~

+
i

~
e−iĤ0t/~δρ̂(t)Ĥ0e

iĤ0t/~
¾
. (5.81)

The first and last terms combine into a commutator

i~
∂

∂t
(∆ρ̂(t)) =

h
Ĥ0, e

−iĤ0t/~δρ̂(t)eiĤ0t/~
i
+i~e−iĤ0t/~ ∂ (δρ̂(t))

∂t
eiĤ0t/~ . (5.82)

Also in the right hand side of (5.79) we can rewrite ∆ρ̂(t) in the Dirac picture:

i~
∂

∂t
(∆ρ̂(t)) =

h
Ĥ0, e

−iĤ0t/~δρ̂(t)eiĤ0t/~
i
+
h
Ĥ1, ρ̂0

i
. (5.83)

From comparing the previous two expressions we get

i~e−iĤ0t/~ ∂ (δρ̂(t))

∂t
eiĤ0t/~ =

h
Ĥ1, ρ̂0

i
(5.84)

⇔ i~
∂ (δρ̂(t))

∂t
= eiĤ0t/~

h
Ĥ1, ρ̂0

i
e−iĤ0t/~ . (5.85)

Since ρ̂0 commutes with Ĥ0 this becomes

i~
∂ (δρ̂(t))

∂t
=
h
eiĤ0t/~Ĥ1e

−iĤ0t/~ , ρ̂0

i
. (5.86)

We can formally integrate both sides of this equation and obtain

δρ̂(t) =
1

i~

tZ
−∞

h
eiĤ0t

0/~Ĥ1(t
0)e−iĤ0t

0/~ , ρ̂0

i
dt0. (5.87)

Going back from δρ̂ to ∆ρ̂ in the left hand side, we get

eiĤ0t/~∆ρ̂(t)e−iĤ0t/~ =
1

i~

tZ
−∞

h
eiĤ0t

0/~Ĥ1(t
0)e−iĤ0t

0/~ , ρ̂0

i
dt0 (5.88)

Again the factors e±iĤ0t/~ can be brought to the other side and into the
commutator:

∆ρ̂(t) =
1

i~

tZ
−∞

h
eiĤ0(t

0−t)/~Ĥ1(t
0)e−iĤ0(t

0−t)/~ , ρ̂0

i
dt0 (5.89)
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Since Ĥ1(t) = B̂h(t) and the Dirac picture for B̂ is given by

B̂(t0 − t) = eiĤ0(t
0−t)/~B̂e−iĤ0(t

0−t)/~ (5.90)

we get a nice convolution:

∆ρ̂(t) =
1

i~

tZ
−∞

h
B̂(t0 − t), ρ̂0

i
h(t0)dt0 (5.91)

5.3.2 Kubo formula

We can use the result (5.91) to find the change in the quantity that we monitor:D
Â(t)

E
= Tr

h
(ρ̂0 +∆ρ̂(t)) Â

i
= Tr

h
ρ̂0Â

i
| {z }
hÂi

0

+Tr
h
∆ρ̂(t)Â

i
. (5.92)

The first term is the unperturbed expectation value
D
Â
E
0
that we get without

any external field. Now we can plug in our result for ∆ρ̂(t) and find

D
Â(t)

E
−
D
Â
E
0
=
1

i~

tZ
−∞

Tr
nh

B̂(t0 − t), ρ̂0

i
Â
o
h(t0)dt0. (5.93)

We’re going to play with the factors trace, realizing that we can perform cyclic
permutations of the operators in the trance and that ρ̂0 and Ĥ0 commutes.
Start with

Tr
nh

B̂(t0 − t), ρ̂0

i
Â
o
= Tr

n
B̂(t0 − t)ρ̂0Â

o
−Tr

n
ρ̂0B̂(t

0 − t)Â
o
. (5.94)

The first term is

Tr
n
B̂(t0 − t)ρ̂0Â

o
= Tr

n
eiĤ0(t

0−t)/~B̂e−iĤ0(t
0−t)/~ ρ̂0Â

o
= Tr

n
eiĤ0t

0/~B̂e−iĤ0t
0/~ ρ̂0e

iĤ0t/~ Âe−iĤ0t/~
o

= Tr
n
B̂(t0)ρ̂0Â(t)

o
= Tr

n
ρ̂0Â(t)B̂(t

0)
o
. (5.95)

Similarly,

Tr
n
ρ̂0B̂(t

0 − t)Â
o

= Tr
n
ρ̂0e

iĤ0(t
0−t)/~B̂e−iĤ0(t

0−t)/~ Â
o

= Tr
n
ρ̂0e

iĤ0t
0/~B̂e−iĤ0t

0/~ ρ̂0e
iĤ0t/~ Âe−iĤ0t/~

o
= Tr

n
ρ̂0B̂(t

0)Â(t)
o
, (5.96)
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so that

Tr
nh

B̂(t0 − t), ρ̂0

i
Â
o
= Tr

n
ρ̂0

h
Â(t), B̂(t0)

io
=
Dh
Â(t), B̂(t0)

iE
0

(5.97)

This finally brings us to Kubo’s famous formula:

D
Â(t)

E
−
D
Â
E
0
=
1

i~

tZ
−∞

Dh
Â(t), B̂(t0)

iE
0
h(t0)dt0 (5.98)

The change in the monitored expectation value δ
D
Â(t)

E
=
D
Â(t)

E
−
D
Â
E
0

is determined by the expectation value in the unperturbed system of the
commutator of the monitored observable Â and the observable B̂ to which the
perturbation couples! Note that the operators are calculated in the Dirac picture
here. This is a very powerful formula: we can look at external fields that couple
to currents, charge densities, spins,... and find out how the currents, charge
densities, spins,... change just by taking expectation values of commutators
with respect to the many-body system without the external perturbation.
Another way to write this, emphasizing the convolution, is to write

ΦAB(t− t0) =
1

i~

Dh
Â(t), B̂(t0)

iE
0
. (5.99)

The function ΦAB(t− t0) is called the response function. Once it is calculated,
we can use to to find the influence of any arbitrary time sequence h(t) of probing
pulses by simply taking the convolution:

δ
D
Â(t)

E
=

tZ
−∞

ΦAB(t− t0)h(t0)dt0. (5.100)

The nice thing about convolutions is that they become a simple product when
Fourier or Laplace transformed. Here, since we usually have a specific starting
time t = 0 before which h(t) is zero, it is often convenient to introduce the
Laplace transform

Φ̃AB(s) =

∞Z
0

ΦAB(t)e
−stdt.

If we have the Laplace transform h̃(s) of h(t), then we only need to compute

h̃(s)Φ̃AB(s) to get the Laplace transform of δ
D
Â(t)

E
.

5.4 Induced charge densities
The previous section was very general, and now we’re going to focus back on
shooting in an ion or another charged particle as an external perturbation, for
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example a high-energy electron from an electron microscope beam. We’ll also
now use ρ (with and without hat!) exclusively for charge densities, no more
density matrices here. The main result we want from a microscopic theory, as
you’ll remember, is to find the induced charge densities and currents. Indeed,
if we compare

∇ ·D = ρext (5.101)

to
∇ ·D =ε∇ ·E = ε

εv
(ρext + ρind) (5.102)

it is not hard to see that
εv
ε
= 1 +

ρind
ρext

(5.103)

If we know the induced charge density, we obviously can also find the
permittivity. For those who read the second section, we now have the response
of the charge in mind, to an external charge that we bring in, so this will be the
longitudinal response that we study here! The response to light is in principle
the transversal response and may be different although we already have a hunch
from Lindhard that it will not be all that different at long wavelength and for
ωτ À 1.

In Kubo’s wording: the observable that we want to monitor is the density of
the electron gas,

ρ̂(r) =
NX
j=1

δ(r− rj), (5.104)

or rather, it’s Fourier components:

ρ̂(q) =

Z
dr eik·rρ̂(r) =

NX
j=1

eik·rj (5.105)

Using the prescriptions derived in chapter 1 we can write this in second
quantized form as

ρ̂(q) =
X
k,σ

â†k−q,σâk,σ, (5.106)

where we have chosen plane waves as the single-particle states. When there’s
no perturbation, this density is homogeneous, so the Fourier transform ρ̂(q)
only has a nonzero expectation value in q = 0. That homogeneous charge is
compensated by the jellium (which is the reason why we omitted the q = 0
contributions in the chapter on electrons and phonons). So, we have

ρind(q) = e hρ̂(q)i . (5.107)

and, in terms of the notation of the previous section,

Â = ρ̂(q). (5.108)
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Where does the external perturbation couple to? Well, if it is an external
charge that we send in, it will obviously interact with the electrons in the
medium through the Coulomb interaction. Remember the second quantized
form that we used for the electron-electron Coulomb interaction:

Ĥcoul =
X
Q6=0

e2

2εvV

1

Q2

X
k1,σ1

X
k2,σ2

â†k1−Q,σ1 â
†
k2+Q,σ2

âk2,σ2 âk1,σ1 (5.109)

We can reshuffle the fermionic creation and annihilation operators using the
anticommutation rules. What does it become if we have electrons interacting
with an external charge that we can distinguish from the electrons? We could
add another quantum label to say what kind of particle we have, and it would
be like adding another spin state. Or we could use ĉ as operators. Anyway, the
scattering process whereby a net momentum ~Q is transferred from an external
charge to the electrons would become

Ĥext =
X
Q6=0

e2

2εvV

1

Q2

X
k1,σ1

X
k2

â†k1−Q,σ1 ĉ
†
k2+Q

ĉk2 âk1,σ1 (5.110)

Things get a bit trickier when we use electrons that cannot be distinguished from
those of the system, then we must take care of the correct anticommutations
which would lead to an energy shift, but here we can simply reshuffle the
operators into

Ĥext =
X
Q6=0

e2

2εvV

1

Q2

X
k1,σ1

â†k1−Q,σ1 âk1,σ1
X
k2

ĉ†k2+Qĉk2

⇒ Ĥext =
X
Q6=0

e2

2εvV

1

Q2
ρ̂(Q)ρ̂ext(−Q). (5.111)

In Kubo’s formalism we always treat the external perturbation as a classical
charge density, replacing ρ̂ext(−Q) by its expectation value ρext(−Q) =
hρ̂ext(−Q)i, so we’ll get

Ĥext =
X
Q6=0

e2

2εvV

1

Q2
ρ̂(Q)ρext(−Q). (5.112)

We want to focus on an external charge that we are going to wiggle around with
fixed wave number and oscillation frequency,

ρext(r, t) = ρexte
iq·r−iωt → ρext(q, t) = ρexte

−iωt. (5.113)

We do this because in linear response, if you know the response to an arbitrary
Fourier component, then you can simply sum up all the responses to get the
response to any sum of Fourier components. With this form, our perturbation
Hamiltonian becomes

Ĥ1 = ρ̂(−q) e2

2εvV

1

q2
ρexte

−iωt. (5.114)
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In terms of the notation of the previous section,

B̂ = ρ̂(−q), (5.115)

h(t) =
e2

2εvV

ρext
q2

e−iωt. (5.116)

We see that the electron charge density is both the observable that we monitor
and the observable to which the external perturbation couples.

Now the result for the induced charge is easy to find with Kubo’s formula,
we just have to plug in (5.108),(5.115) and (5.116):

ρind(q, t) =
1

i~

tZ
−∞

h[ρ̂(q, t), ρ̂(−q, t0)]i e2

2εvV

ρext
q2

e−iωt
0
dt0

=
1

i~
e2

2εvV

ρext
q2

tZ
−∞

h[ρ̂(q, t), ρ̂(−q, t0)]i e−iωt0dt0. (5.117)

Note that we could rewrite this also with the density-density response function
(with t0 < t from the integral):

Φρρ(q, t− t0) = −i h[ρ̂(q, t), ρ̂(−q, t0)]i (5.118)

as

ρind(q, t) =
1

~
e2ρext
2εvV

1

q2

tZ
−∞

Φρρ(q, t− t0)e−iωt
0
dt0. (5.119)

The good news is that we actually want the Fourier transform, to obtain the
frequency dependent dielectric function

εv
ε(q, ω)

= 1 +
ρind(q, ω)

ρext
. (5.120)

As we’ve seen, this is good news because in the time domain our result for
the induced charge is given by a convolution, which becomes a product in the
frequency domain, so that

ρind(q, ω) =
1

~
e2ρext
2εvV

1

q2
Φρρ(q, ω). (5.121)

From this we find
εv

ε(q, ω)
= 1 +

e2

2~εvV
1

q2
Φρρ(q, ω), (5.122)

and
ε(q, ω)

εv
=

1

1 + e2

2~εvV
1
q2Φρρ(q, ω)

. (5.123)
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We have now re-expressed the (longitudinal) dielectric function as a function
of the expectation value of the density-density correlation Φρρ(q, ω), with
respect to the ground state of the unperturbed system. But, remember that
by “unperturbed” we here mean the system without the external perturbation,
but still including all many-body interactions of the constituent particles in the
material! So, we still have a hard job to do to calculate Φρρ(q, ω), but once
we did this we can figure out the response to any pump beam shape and time
dependence.

5.5 Density-density correlations
Let’s write out the density-density correlator:

Φρρ(q, t− t0) = −i hΨG |[ρ̂(q, t), ρ̂(−q, t0)]|ΨGi (5.124)

= −i
*
ΨG

¯̄̄̄
¯̄
⎡⎣X
k1,σ1

â†k1−q,σ1(t)âk1,σ1(t),
X
k2,σ2

â†k2+q,σ2(t
0)âk2,σ2(t

0)

⎤⎦¯̄̄̄¯̄ΨG
+

This is

Φρρ(q, t− t0) = −i
X
k1,σ1

X
k2,σ2

hΨG| â†k1−q,σ1(t)âk1,σ1(t)â
†
k2+q,σ2

(t0)âk2,σ2(t
0)

−â†k2+q,σ2(t
0)âk2,σ2(t

0)â†k1−q,σ1(t)âk1,σ1(t) |ΨGi (5.125)

Remember that t0 < t. So, the above expression is equal to

Φρρ(q, t− t0) (5.126)

= −2i
X
k1,σ1

X
k2,σ2

D
ΨG

¯̄̄
T
n
â†k1−q,σ1(t)âk1,σ1(t)â

†
k2+q,σ2

(t0)âk2,σ2(t
0)
o¯̄̄
ΨG

E
where we remove the constraint that t0 < t. To lowest order approximation we
set |ΨGi→ |Ψ0i and calculate the expectation value with respect to the Fermi
sphere. We can apply Wick’s theorem to chop up this time-ordered product of
four creation and annihilation operators in its component forms:

Φρρ(q, t− t0) = −2i
X
k1,σ1

X
k1,σ1³D

Ψ0

¯̄̄
T
n
âk1,σ1(t)â

†
k1−q,σ1(t)

o¯̄̄
Ψ0

ED
Ψ0

¯̄̄
T
n
âk2,σ2(t

0)â†k2+q,σ2(t
0)
o¯̄̄
Ψ0

E
−
D
Ψ0

¯̄̄
T
n
âk1,σ1(t)â

†
k2+q,σ2

(t0)
o¯̄̄
Ψ0

ED
Ψ0

¯̄̄
T
n
âk2,σ2(t

0)â†k1−q,σ1(t)
o¯̄̄
Ψ0

E´
.

The first two expectation values are equal time expectations, and are become
zero for q 6= 0. The last two are unperturbed Green’s functions, so that

Φρρ(q, t− t0) = 2i
X
k,σ

iG0(k, t− t0)iG0(k− q, t0 − t) (5.127)
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In the frequency domain this becomes

Φρρ(q, ν) = −4i
Z

d3k

(2π)3

Z
dω

(2π)
G0(k, ω)G0(k− q, ω − ν) (5.128)

The dielectric function then satisfies

εv
ε(q, ω)

= 1− e2

~εv
1

q2
2i

Z
d3k

(2π)3

Z
dω

(2π)
G0(k, ω)G0(k− q, ω − ν) (5.129)

What does this look like if we draw it as a Feynman diagram?

The polarization bubble diagram

There are two electron lines with a momentum ~k (and an energy ~ω) running
around in the loop. Note that in front of the integral we have 1/q2, the free
photon propagator from the previous chapter, and e2/(~εv), the electron-photon
vertex squared. This is no coincidence!

5.6 Feynman diagrammatic approach

5.6.1 Coulomb propagator

You could have known! It’s easy to derive the previous result from Feynman
diagrams. Where did the photon propagator in the previous chapter come from?
It was given by the Fourier transform of the Coulomb interaction

Vcoul(r) ∝
1

4πr
→ Vcoul(q) ∝

1

q2
. (5.130)

Now, in the material, the bare Coulomb propagator must be corrected, just like
the bare electron propagator G0. Let’s give the free Coulomb propagator also
a name,

F0(q, v) =
1

q2
. (5.131)

The dielectric function, as we have argued before, appears as a correction factor
screening the bare Coulomb interaction. In a medium

V medium
coul ∝ 1

4π(ε/εv)r
→ V medium

coul (q) ∝ εv
ε

1

q2
. (5.132)
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So, the ‘dressed’ or corrected Coulomb propagator corresponding to this is

F (q, v) =
εv
ε

1

q2
(5.133)

⇒ εv
ε
=

F (q, v)

F0(q, v)
. (5.134)

This shows again that ε is just a way to rewrite the corrections due to the
presence of the medium, i.e. a way to rewrite F (q, v).

5.6.2 Polarization bubbles

Hey, but you know how to use diagrammatics to correct F0 ! Let’s only look
at corrections due to the electron-electron interactions, and not include any
electron-phonon diagrams (these are higher order anyway). We’ll write the
Coulomb propagator F0 as a wavy line, and the corrected Coulomb propagator
F as a bold or double wavy line (just like we drew the corrected electron Green’s
function as a double line in the section on the Dyson equation). The only vertices
we have involving photons connect two electron lines and one photon line. So
we can draw:

Lowest order correction to the Coulomb propagator

This is easy! The bubble shows up immediately. It has an electron line going
back, so in fact it is an electron-hole bubble. It represents a story where the
photon makes an electron hole pair, the electron and the hole wander along,
and then they recombine and make again a photon. In fact, we can do a Dyson
resummation by having a sequence of bubbles:

One polarization bubble after another...

The blue (grey) part is again the original series, so this becomes
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Dyson equation for the Coulomb propagator

It doesn’t matter that we put the double wiggly line first or last, the main
point is that we can once again solve this Dyson equation easily. Let’s use the
Feynman diagrammatics to translate the drawings back into an equation:

F (q, ν) = F0(q, ν) + F (q, v)Π0(q, v)F0(q, v) (5.135)

Here the polarization bubble is written as Π0(q, v), and this takes on the role
that the self-energy Σ0(k, ω) had when we corrected the electron propagator. It
contains the two vertices (each a factor e/

√
~εv), and the two electron lines,

Π0(q, v) =
e2

~εv
(−2i)

Z
d3k

(2π)3

Z
dω

(2π)
G0(k, ω)G0(k− q, ω − ν) (5.136)

The factor −2i is the phase factor with 1 closed fermion loop, and m = 1 for
the perturbation order. The solution for F is

F (q, ν) =
F0(q, ν)

1−Π0(q, v)F0(q, v)
, (5.137)

5.6.3 RPA versus first order perturbation

From the result for F this and expression (5.134) we immediately find

εv
ε(q, ν)

=
1

1−Π0(q, v)F0(q, v)
(5.138)

⇒ ε(q, ν) = εv {1−Π0(q, v)F0(q, v)} (5.139)

This is Lindhard’s result for the (longitudinal) dielectric function. How is it
linked to the result (5.129) that we had before? It is better! That’s because
we have made a Dyson resummation and included diagrams from all orders in
calculation the Lindhard result. If we’d have stuck to the lowest order diagram,
we would have

F1perturb(q, ν) = F0(q, ν) + F0(q, v)Π0(q, v)F0(q, v)

⇒ F (q, ν)

F0(q, ν)
= 1 +Π0(q, v)F0(q, v). (5.140)

from which
εv

ε1perturb(q, ν)
= 1 +Π0(q, v)F0(q, v)

= 1− e2

~εv
1

q2
2i

Z
d3k

(2π)3

Z
dω

(2π)
G0(k, ω)G0(k− q, ω − ν). (5.141)
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And that is indeed the same result which we got in lowest order perturbation
in (5.129). That lowest order includes only one polarization bubble. The
Lindhard result has many subsequent events where a Coulomb line splits up
in an electron-hole pair, that recombines back into a Coulomb line. Each time
the phase of the photon is ‘randomized’, uncorrelated with the phase of the
previous Coulomb line, so that is why the result (5.139) is sometimes called
“Random Phase Approximation” or RPA. We now also know how to improve
on this result! We could indeed take a better polarization contribution that just
the Π0 bubble. We could include for example such a line:

or include electron-phonon corrections.

5.7 Lindhard dielectric function
What does the result look like? In this section we go through the details of the
calculation — again this can be skipped for a first reading of this course, and the
reader just read the third subsection on the results for the dielectric functions
without losing track. But I though it would be instructive to at least include one
detailed calculation of a diagrammatically obtained amplitude in these course
notes. The first step is of course to substitute G0 in Π0 in order to work out
the integrals:

Π0(q, ω) = −2i e
2

~εv

Z
dk

(2π)3

Z
dω0

2π

∙
θ(k > kF )

ω0 −Ek/~+ iδ
+

θ(k < kF )

ω0 −Ek/~− iδ

¸
×
∙

θ(|k+ q| > kF )

ω + ω0 −Ek+q/~+ iδ
+

θ(|k+ q| < kF )

ω + ω0 −Ek+q/~− iδ

¸
(5.142)

Here Ek is the single-particle energy (~k)2 /(2m). The integrand contains four
terms with first order poles for the integration variable ω0. Two of the four
terms have their poles on the same same side of the real axis. By closing the
contour in the complex plane along the half-plane that does not contain these
poles, you can check that these terms do not contribute. The two other terms
have their poles on opposite sides of the real axes and will contribute. Using
the residue lemma we find

Π0(q, ω) = −2i e
2

~εv

Z
dk

(2π)3
2πi

2π

∙
−θ(k > kF )θ(kF > |k+ q|)
ω +Ek/~−Ek+q/~− iη

+
θ(kF > k)θ(|k+ q| > kF )

ω +Ek/~−Ek+q/~+ iη

¸
. (5.143)

The different signs for these two terms appear because one is evaluated with a
contour traversed in clockwise direction. The 2δ infinitesimal has been rewritten
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as “η”. In the term with the minus sign, we change integration variables to
k0 = k+ q and then drop the prime:

Π0(q, ω) = −2 e2

~εv

Z
dk

(2π)3
θ(kF > k)θ(|k+ q| > kF ) (5.144)

×
∙

1

ω +Ek/~−Ek+q/~+ iη
− 1

ω +Ek+q/~−Ek/~− iη

¸
The heaviside step functions restrict the integration domain in k. For a value of
k to contribute firstly, k must lie in the Fermi sphere (θ(kF > k)) and secondly,
after adding q to it, k+ q must lie outside the Fermi sphere. This means that
only k states that can absorb a wave vector q according to Pauli’s exclusion
principle contribute. To find the real and imaginary parts, we use Plemelj’s
rule:

1

x± iη
= P 1

x
∓ iπδ(x), (5.145)

where δ represents the Dirac delta function and P is the Cauchy prime value.

5.7.1 Real part of the polarization bubble amplitude

We note

ωqk = Ek+q/~−Ek/~ = ~(k.q+ q2/2)/m, (5.146)

θ(|k+ q| > kF ) = 1− θ(kF > |k+ q|) (5.147)

and find

Re [Π0(q, ω)] = 2
e2

~εv
P
Z

dk

(2π)3
θ(kF > k) [1− θ(kF > |k+ q|)] 2ωqk

ω2 − ω2qk
.

Note that ωqk is odd whereas θ(kF > k)θ(kF > |k+ q|) is even under
interchanging k¿ k+ q, so that

Re [Π0(q, ω)] = 2
e2

~εv
P
Z

dk

(2π)3
θ(kF > k)

2ωqk
ω2 − ω2qk

(5.148)

In order to keep notations simple, we’ll write

v =
ω

~k2F /m
(5.149)

and express the wave numbers in units of kF , so that

Re [Π0(q, ω)] =
e2

~εv
mkF
2π2~

1Z
0

dk k2
2πZ
0

dθ sin θ

µ
2qk cos θ + q2

v2 − (qk cos θ + q2/2)2

¶
.
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Figure 5.1: Im[Π0(q, ω)] as a function of q/kF and v = mω/(~k2F ). In the white
areas, the result is zero. The curves show the boundaries of the different zones,
and the grey scale shows the value of the function from 0 (lightest grey) to 0.5
(darkest).

The remaining integrations result in:

Re [Π0(q, ω)] =
e2

~εv
mkF
2π2~

(
−1 + 1

2q

"
1−

µ
v

q
− q

2

¶2#
ln

¯̄̄̄
1 + (v/q − q/2)

1− (v/q − q/2)

¯̄̄̄

− 1
2q

"
1−

µ
v

q
+

q

2

¶2#
ln

¯̄̄̄
1 + (v/q + q/2)

1− (v/q + q/2)

¯̄̄̄)
. (5.150)

5.7.2 Imaginary part of the polarization bubble amplitude

The imaginary part is given by

Im [Π0(q, ω)] = −2π
e2

~εv

Z
dk

(2π)3
θ(kF > k)θ(|k+ q| > kF )δ(ω − ωqk) (5.151)

where we only look at the contributions with ω > 0 (and keep in mind that ωqk
is positive in the entire domain specified by the Heaviside functions). Using the
property δ(ax) = δ(x)/|a| of the Dirac delta function, we get in dimensionless
variables:

Im [Π0(q, ω)] = −mkF
2π~

e2

~εv

Z
dk k2

2πZ
0

dθ sin θ δ(v − qk− q2/2)

×θ(1 > k)θ(|k+ q| > 1) (5.152)
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The delta functions and step functions still constrain the integration domain.
The step functions (taking into account the Pauli exclusion principle) constrain
the wave vectors to those that lie in the Fermi sphere and that are taken
outside of the Fermi sphere by addition of q. The delta function (expressing
the conservation of energy) fixes a plane in k-space that lies perpendicular to
q, at a distance v/q− q/2 of the origin. Depending on the size of q and ν these
conditions give rise to different results. This is summarized in figure (5.1).
In the areas outside q2/2 + q > v > max[q2/2− q, 0] the integral is zero. In

area I of figure (5.1) the integral results in

Im [Π0(q, ω)] = −
mkF
2π~

e2

~εv
1

2q

"
1−

µ
v

q
− q

2

¶2#
, (5.153)

and in area II we get

Im [Π0(q, ω)] = −
mkF
2π~

e2

~εv
v

q
. (5.154)

5.7.3 Refinements in the dielectric function

Remember that we had our perturbation result,

ε−11st order(q, ω) = 1 +Π0(q, v)/q
2, (5.155)

where we’ve written out F0(q, v) = 1/q2, the Coulomb propagator. We get a
better result by resumming all improper sequences bubbles in a Dyson series.
This gives the RPA or Lindhard dielectric function:

ε−1Lindhard(q, ω) =
1

1−Π0(q, v)/q2
. (5.156)

Now you see why I write the result for ε−1. As we expand the fraction in ε−1Lindhard
in orders of Π0, our lowest nontrivial result is precisely ε−11st order. The real and
imaginary parts of this result are plotted as a function of ω for different values
of q in figure (5.2). The real part always tends to 1 as the frequency becomes
very large, and it can become negative (typically for small q) in some frequency
regions. The imaginary part is always positive, but is zero in large regions of
the q, ω plane. This comes from the behavior of the imaginary part of Π0(q, v).
Indeed, in Lindhard’s result

Im [εLindhard(q, ω)] = − Im [Π0(q, ω)] /q2.

There have been further improvements on the Lindhard dielectric function, and
we have barely lifted the veil on the theoretical of the dielectric function for
metals and semiconductors, an area that is still evolving both as far as theory is
concerned and as new experimental techniques becomes available. An important
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Figure 5.2: Real and imaginary parts of the Lindhard dielectric functions as a
function of ω, for some chosen values of q.
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improvement was suggested by Hubbard2. He introduced a local field factor
G(q) in the RPA dielectric function:

εLindhard(q, ω) = 1−Π0(q, v)/q2. (5.157)

→ εHubbard(q, ω) = 1−
Π0(q, v)/q

2

1 +G(q)Π0(q, v)/q2
(5.158)

This local field factor corresponds to the exchange and correlation contributions
to the Coulomb interaction, and is linked to the (Fourier transform) of the
screening hole around a charge. Singwi, Tosi, Land and Sjölander3 refined
the calculation for G(q) and obtained the next improvement on the dielectric
function. Finally, Devreese, Brosens en Lemmens4 here at the Universiteit
Antwerpen took the dynamical exchange contribution into account — the
screening hole needs some time to form — and derived the frequency dependence
of the local field factor G(q, ω). Not so long ago, this Antwerpian result for
the dielectric function was confirmed experimentally through inelastic X-ray
scattering experiments on metals5, where it is the only theory to match these
experiments. That little bit of Antwerpian chauvinism is also why I focused on
the dielectric function as an application to Feynman diagrams in this course.

5.8 Plasmons

5.8.1 Structure factor

The density-density correlation Φρρ can be interpreted itself as a kind of Green’s
function, related to

Gρρ(q, t− t0) = −i
D
ΨG

¯̄̄
T
n
ρ̂(q, t)ρ̂†(q, t0)

o¯̄̄
ΨG

E
(5.159)

where we used the property ρ̂†(q, t) = ρ̂(−q, t) of the density operator. The
spectral function of this Green’s function is called the structure factor :

S(q, ω) =
X
n

|hΨG |ρ̂(q)|Ψni|2 δ(ω − ωn0). (5.160)

Here |Ψni is a many-body excited state. Compare this expression to (4.44),
where we now use ρ̂(q) in stead of âq. The structure factor is a very useful
concept: S(q, ω) gives the probability that the external perturbation will
transfer a momentum ~q and an energy ~ω to the system. This also means
that S(q, ω) is the probability to create an excitation with given momentum ~q
and given energy ~ω in the many-body system. If it is sharply peaked, we can

2J. Hubbard, Proc. Roy. Soc. London Ser. A 243, 336 (1957).
3K. S. Singwi, M. P. Tosi, R.H. Land en A. Sjölander, Phys. Rev. 176, 589 (1968).
4 J.T. Devreese, F. Brosens en L. F. Lemmens, Phys. Rev. B 21, 1349 (1980); F. Brosens,

J.T. Devreese en L.F. Lemmens,Phys. Rev. B 21, 1363 (1980).
5B. C. Larson, et al., Phys. Rev. Lett. 77, 1346 (1996).
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Figure 5.3: RPA structure factor (proportional imaginary part of ε−1Lindhard).

interpret this excitation again as a quasiparticle with well defined momentum
and energy (the sharpness of the peak as a function of the energy is related to
the life time). It contains the same information as Φρρ(q, ω) :

Φρρ(q, ω) =

Z
dω0 S(q, ω0)

µ
1

ω − ω0 + iδ
− 1

ω + ω0 + iδ

¶
(5.161)

and hence, is also related to the dielectric function: applying Plemelj’s rule to
(5.161) and using it in (5.122) we find

Im

∙
1

ε(q, ω)

¸
=

e2

2~εvV
1

q2
Im [Φρρ(q, ω)]

⇒ S(q, ω) = − 1
π

~εv
e2

q2 Im

∙
1

ε(q, ω)

¸
. (5.162)

The structure factor is related to the imaginary part of ε. Figure (5.3) shows
how this looks like as a function of q and ω, for the Lindhard result. Since

Im

∙
1

ε(q, ω)

¸
=

Im[ε(q, ω)]

{Re [ε(q, ω)]}2 + {Im[ε(q, ω)]}2
(5.163)

we expect it to be zero in the regions where Im[ε(q, ω)] = 0, but there is an
exception. When both the real and imaginary part of ε(q, ω) become zero,
then there is a divergence. The locus of points where Re [ε(q, ω)] is drawn as
a solid curve labeled “plasmontak” (plasmon branch) in figure (5.3). In the
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region where Im[ε(q, ω)] 6= 0 this just gives rise to a bump or enhancement
in the structure factor. This is the region with grey shading in figure (5.1) or
(5.3), and this region is called the single-particle excitation region — the external
perturbation will kick an electron from the Fermi sphere to outside the Fermi
sphere, and this is the way in which energy and momentum is taken up by the
many-body system. However, in the white region, there is now a sharp branch
of excitations, delta function like when it is scanned as a function of ω. These
excitations are the plasmons.
They are collective excitations: even when q → 0, they survive at relatively

high energy, and this means that the energy of the plasma oscillation is shared by
many electrons performing a collective motion. It is known as a collective mode.
The Greens function for the electron will only have the single-particle or energies
as poles (albeit single quasiparticles). The Greens function Gρρ is a two-body
Greens function (creating and annihilating two electrons) and it poles also
contain the collective modes! When the plasmon branch hits the single-particle
excitation band it transforms into a peak with a broad width, which tells us that
the plasmons with those energies decay rapidly into single-particle excitations.

5.8.2 Collective mode

We can now use our expressions for the Lindhard dielectric function to find an
analytical result for the location of the plasmon branch. Indeed, we have

Im[εLindhard(q, ω)] = − 1
q2
Im[Π0(q, v)], (5.164)

Re[εLindhard(q, ω)] = 1− 1

q2
Re[Π0(q, v)]. (5.165)

Solving Re[εLindhard(q, ω)] = 0 in the region outside the single-particle
excitation band gives, for q ¿ kF

ω2pl(q) =
ne2

mεv

µ
1 +

3

10

(~kF )2

ne2/εv
q2
¶
,

Here n is the density of electrons (it appears due to the presence of factors kF ).
The plasmon branch starts at ωpl =

p
ne2/(mεv). This is exactly the value

(5.46) that appears also in the Drude dielectric function and plays a special
role there! For larger wavelengths, the energy grows quadratically with q. We
can write the plasmon contribution to S(q, ω) as a term proportional to δ(ω −
ωpl(q)).
It is also clear to see that this is a collective mode. What is ρind(q) for very

small q (very large wave lengths)? It must be a uniform displacement of the
electron density. If we start with a block of metal and shift all electrons over a
distance u with respect to the lattice of metal ions, then at one side of the block
of metal there will be a layer u of uncompensated electrons sticking out, and at
the other side there will be a layer of thickness u of uncovered metal ions. These
regions of uncompensated charge form a parallel-plate capacitor geometry, and
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give rise to an electric field equal to E = neu/εv pulling the electrons back.
The simplest, classical equation of motion then immediately reveals the plasma
frequency:

mn
d2u

dt2
= −neE =− (n2e2/εv)u

⇔ u ∝ eiωplt with ω2pl = ne2/(mεv) (5.166)

In general, at higher k’s, the plasmons will represent a density modulation in
the electron gas, like an electron sound wave. It will have a frequency ωpl(k).
You can see that it is not just one electron, a single (quasi)particle, that has
taken this energy, but it has been spread out over all electrons as they perform
a collective dance.

I hope this chapter has illustrated the power of the diagrammatic technique
in condensed matter physics. We have developed a microscopic theory of the
electron response, based on the Kubo response formalism and found out how
to calculate the dielectric function that appears in the Maxwell equations in
a medium, from the microscopic Hamiltonian of the system. You might now
think that the diagrammatic technique has no limits, and that anything can
be calculated with it — that is certainly the viewpoint of those that want to
solve problems in high energy physics by introducing new lines in the diagrams.
But in condensed matter physics, we have an example where the perturbational
approach, even with such a strong organizational tool as Feynman diagrams,
fails. It fails because the right solutions have essential singularities that prohibit
a series expansion. The example is superconductivity, the topic of the next
chapter.
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Addendum: Polaritons
For completeness’ sake, let’s have a look at the simplest classical estimate for the
dielectric function of an ionic or polar insulator. This time we’ll focus on the
transversal dielectric function, so we’re talking about photons mixing up with
excitations in the material. These will primarily be phonons (when there are
no conduction electrons), more precisely the transverse optical phonons. The
electric field of the electromagnetic wave pulls positive and negative ions in the
unit cell in different directions, hence it gives rise to an optical phonon, and it
is orthogonal to the direction of propagator of the light wave, hence it’s also a
transversal phonon. So, the main actors in the story are

1. Electromagnetic waves satisfying

∂2

∂t2
(εvE+P) =

1

μv
∇2E (5.167)

This is obtained from taking the curl of the third maxwell equation and
substituting the fourth in it. We’ve also included the induced charges
in the material and follow the “first way”, namely by introducing the
polarization field. For the electromagnetic wave, we assume E(r, t) =
Eeik·r−iωt. Also the polarization field will be driven at the same oscillation
frequency, so we can also write the above equation as

ω2 (E+P/εv) = ck2E (5.168)

2. The transverse optical phonon whose amplitude u of oscillation satisfies

M
∂2u

∂t2
= −Mω2TOu (5.169)

If there is an electric field present, then it will put an additional force
qE on the ions with charge q. If once again we assume that both the
electromagnetic field and the ions oscillate at the same frequency ω (to be
determined), then we can also write the above equation as

−Mω2u = −Mω2TOu+ qE (5.170)

The two actors are clearly coupled. The electromagnetic field pulls on the ions,
and the displaced ions (with density nion) give rise to a polarization density
P = nionqu. Thus, we end up with two coupled equations½

−Mω2u = −Mω2TOu+ qE
−ω2 (E+nionqu/εv) = ck2E

(5.171)

This can be nicely reshuffled to½
M
¡
ω2TO − ω2

¢
u− qE = 0

ω2nionqu/εv +
¡
ω2 − ck2

¢
E = 0

(5.172)
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Figure 5.4: Dispersion of the mixed TO phonon and photon modes.

This set of linear equations only has a nonzero solution if the determinant of
coefficients is zero, i.e. if

¡
ω2TO − ω2

¢ ¡
ω2 − ck2

¢
+ ω2

nionq
2

Mεv
= 0 (5.173)

Note the appearance of a plasma frequency related to the ions in the material,
ωpl,ion =

p
nionq2/(Mεv). It is calculated with the density of ions, their charge

and mass rather than the electron counterparts. Equation (5.173) has as its real
roots

ω2± =
1

2

"
ω2pl,ion + ω2TO + (ck)

2 ±
r³

ω2pl,ion + ω2TO + c2k2
´2
− 4ω2TO(ck)2

#
(5.174)

This result is shown in figure (5.4). The resulting solutions have both E
and u nonzero, and are mixed phonon-photon modes. Whenever photons are
hybridized with some source of polarization in a material, we call the resulting
new modes “polaritons”. These sources of polarization can be the TO phonons,
as in our case, or they can be excitons (electron-hole pairs that have an electric
dipole moment), in which case they are called exciton-polaritons. The source
can even come from surface plasmon modes, then we have surface plasmon
polaritons. Don’t confuse them with the polarons from chapter 3. Below we’ll
argue that ω2pl,ion + ω2TO = ω2LO You see that there is a gap between ωTO and
ωLO : there are no light waves with frequencies between ωTO and ωLO in the
ionic insulator. The result is a typical example of an avoided level crossing. The
original energy levels ωTO and ck cross. When we couple these two modes, we
get hybrid modes (the polaritons) in the region of the crossing, and the original
crossing is now avoided (there is level repulsion).
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Now we still need to find the dielectric function. For that, we need to find
the polarization P. We can rewrite equation (5.170) using u = P/(nq), and get

−Mω2P = −Mω2TOP+ nionq
2E

⇒ P =
1

ω2TO − ω2
nionq

2

M
E (5.175)

To go from the polarization field to the dielectric function, we use εE = D =
εvE+P from which

εE = εvE+
1

ω2TO − ω2
nionq

2

M
E

⇒ ε(ω) = εv

Ã
1 +

ω2pl,ion
ω2TO − ω2

!
(5.176)

That is our result for the dielectric function of an ionic or polar insulator.

For very high frequencies ε(ω →∞) = εv, the ions cannot follow the driving
EM field and we retrieve the vacuum permittivity. For low frequencies,

ε(0) = εv

Ã
1 +

ω2pl,ion
ω2TO

!
= εv +

nionq
2

Mω2TO
(5.177)

The static dielectric constant ε(0) is not equal to the vacuum permittivity. It
is the static dielectric constant that you determine by putting the crystal in
between two capacitor plates and seeing how much energy can be stored in
DC mode, this energy is U = ε(0)E2/2 with E the electric field. If the static
dielectric constant is large, then you can store a lot of energy in the capacitor.
Note that we can use the static and high-frequency ε(∞) dielectric constants to
rewrite ε(ω):

ε(ω) = ε(∞) + [ε(0)− ε(∞)] ω2TO
ω2TO − ω2

(5.178)

The analog of the “longitudinal plasmon mode” of the ions is a longitudinal
optical phonon with frequency ωLO, displacing all positive ions (and negative
ones in the other direction), just as we did for the longitudinal plasmon in
the electron gas by shifting the electrons from the background. It is found by
solving ε(ω) = 0, just as we did for the electron gas. This is how we can find
the longitudinal optical phonon frequency

ε(ωLO) = 0 ⇔ ε(∞) + [ε(0)− ε(∞)] ω2TO
ω2TO − ω2LO

= 0

⇔ ω2LO
ω2TO

=
ε(0)

ε(∞) (5.179)
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This is known as the Lyddane-Sachs-Teller relation. We can use it to identify
the LO phonon frequency with

ω2LO = ω2pl,ion + ω2TO (5.180)

and to rewrite the dielectric function of the ionic or polar insulator in a
particularly nice form:

ε(ω) = εv
ω2LO − ω2

ω2TO − ω2
(5.181)

So, all you need to know to write down a very estimate of the dielectric function
of an ionic or polar semiconductor are its LO and TO phonon frequencies.



Chapter 6

Superconductivity

This final chapter provides an introduction to the phenomenon of
superconductivity. We review the experimental properties and experimental
milestones that led to the development of the theory of superconductor by
Bardeen, Cooper and Schrieffer. The BCS theory of superconductivity is then
derived using the Bogoliubov transformation. This topic is covered in more
details in the course “superfluidity and superconductivity”, where however we
take a slightly different approach.

6.1 Properties of superconductors
Superconductivity was discovered in 1911 by Kamerlingh Onnes and co-workers
in Leiden1. At the laboratory of Onnes, a technique had been developed to
liquefy helium, and the liquid helium with its boiling point of 4.2 K could
be used to cool down metals and see what happens. It was very quickly
discovered that below a certain “critical” temperature Tc the resistivity of some
metals vanish and they become perfect conductors. In this “superconducting”
state, the resistivity is so low than persistent currents in a superconducting
ring have been seen to flow without any dissipation or weakening for more
than a year, when the experiment was finally halted. With nuclear magnetic
resonance, follow-up experiments have sent a lower bound to the persistence of
superconducting currents: they will keep running around for at least 100000
years without weakening. Theoretical predictions even find that it will not
appreciably weaken in 1010

10

years, far more than the age of the universe. In
other words, perfect conduction of DC currents is the first defining characteristic
of the superconducting state. For AC currents there is also perfect conduction,
but only for frequencies below the microwave region.

The second defining characteristic of the superconducting state was

1H. Kamerlingh Onnes, Akad. van Wetenschappen 14, 113, 818 (1911).
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found in 1933 by Meissner and Ochsenfeld2 and is perfect diamagnetism:
in the superconducting state, all magnetic flux is expelled from the bulk
superconductor (at least for the type I superconductors known in 1933). This,
sadly for Ochsenfeld, is called the Meissner effect. It is very remarkable,
and a first hint that quantum physics is involved at a fundamental level.
Indeed, classically one expects that perfect conduction leads to freezing in of
any magnetic field: when the resistivity ρ is zero, the electric fields E = ρJ
must also be zero according to Ohm’s law, and from Maxwell’s equation
∂B/∂t = c∇ × E = 0 the magnetic field is not allowed to change in time.
No surprise when we first cool down and then try to apply a magnetic field:
it remains zero in the superconductor. But there’s a big surprise when we
first apply the field, and then cool down to below Tc (so-called “field cooled
experiments”): rather than staying constant, the magnetic field gets expelled
from the block of superconductor. Does this mean that the Maxwell equations
won’t hold? No, they do hold, it is Ohm’s law which has to give way.

To expel a magnetic field H, an energy μH2/2 should be spent. The
superconducting state is lower in energy than the normal state, but of course
not infinitely lower in energy. So, increasing the magnetic field sooner or
later one reaches a critical magnetic field beyond which the block of material
becomes normal again and allows the magnetic field in. Empirically it was
found that this critical magnetic field depends on temperature roughly as
Hc(T ) = Hc(0)[1 − (T/Tc)2]. With the discovery of type-II materials, the
result of Meissner and Ochsenfeld has to be generalized: in these materials
there are two critical fields. Above the first critical field, the material still
remains superconducting, but flux lines can penetrate the superconductor along
thin tubes named vortices. These vortex lines dissipate energy when they
move around and they can be pinned by impurities in the material. It is
only at a much higher second critical magnetic field that the superconductivity
vanishes everywhere. In this chapter we will restrict ourselves to the type-I
superconductors.

A first phenomenological model that succeeded in describing the two main
characteristics of the superconducting state was proposed by the London
brothers3. In analogy with superfluid helium, they presume that a certain
number ns of charge carriers become superfluid and flows without friction.
Ohm’s law is replaced by stating that the it is not the electric field, but the
vector potential that is proportional to the current density:

A ∝ js. (6.1)

The essential constant of proportionality is determined by the length λ through

js = −
1

μvλ
2A (6.2)

2W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).
3F. en H. London, Proc. Roy. Soc. A149, 71 (1935).
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This parameter λ is called the London penetration depth, and it is related to the
“plasma frequency of superconducting carriers”

ω2pl,sc =
nsQ

2

Mεv
→ λ = c/ωpl,sc =

Mμv
nsQ2

(6.3)

where M and Q is the mass and charge of the superconducting charge carrier
(now known to be a Cooper pair, as we’ll see later on). Using the London
relation between current density and vector potential, we also find

E = −∂A
∂t

= μvλ
2 ∂js
∂t

(6.4)

B = ∇×A = −μvλ2∇× js (6.5)

These are the (phenomenological) London equations. From the second equation
and the fourth Maxwell equation ∇×B = μvjs we furthermore find:

∇2B = 1

λ2
B (6.6)

Taking a semi-infinite superconductor, bounded by the z = 0 plane (with the
material in the z > 0 half-space), and a magnetic induction field B0 in the z < 0
half-space, the solution of this equation is B(z) = B0e

−z/λ. This shows that
the magnetic induction field is exponentially suppressed in the superconductor.
Except for a surface layer of depth λ, it is exponentially small in the bulk of
the material. In this surface layer, the Meissner supercurrents js run and create
a magnetization that cancels the magnetic induction field inside the material.
Comparisons of this prediction with experiments that focus n this surface layer
have revealed that the picture is slightly more complex and a second length
scale is necessary: the coherence length or correlation length.

Pippard4 considers a non-local generalization of the London equation js(r) =
−A(r)/(μvλ2). Also for Ohm’s law there exists such a generalization (Chalmer’s
law), that takes into account that the current in a specific point is not
proportional to the electric field in that same point, but is a function of the
field in a small patch (of size ) surrounding that point. The reason is that
the charge carriers may have a finite size themselves, and so you need to look
at the electric field over the entire “size” of the charge carrier. Pippard called
this length scale (now for averaging the vector potential) the correlation length,
denoted by ξ. He estimate its size as follows: only electrons within an energy
band of width kBTc around the Fermi energy can participate in building the
superconducting charge carriers, so these electrons must have a momentum in
a range ∆p ≈ kBTc/vF where vF is the Fermi velocity. Then Heisenberg’s
uncertainty relation tells you that these superconducting charge carriers have to
be smeared out over at least an area ξ ≈ ∆x ≈ ~vF /kBTc. Pippard’s non-local
equation was able to describe the experimental data very well, but it remains

4A. B. Pippard, Proc. Roy. Soc. A216, 547 (1953).
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a macroscopic, phenomenological description. For a long time, a microscopic
theory was lacking — until Bardeen, Cooper and Schrieffer5 came up with their
“BCS” theory in 1957. First, we review the experimental clues that led to the
theory.

6.2 Clues for a microscopic theory
Four milestone experiments provided crucial clues for a microscopic theory:

1. The first clue comes from the discovery of a band gap between the ground
state of the system and the excited states. This band gap is manifested in
experiments on microwave absorption; below the band gap frequency no
photons can be absorbed.

2. The second clue is the analogy between superconductivity (flow without
electrical resistance) and superfluidity (flow without friction). This is
manifested for example in the specific heat: superfluid helium exhibits a
specific “lambda peak” in the specific heat at Tc. Such a peak is not
expected for fermions (electrons) since it requires Bose statistics, but
nevertheless it is present at Tc in superconductors.

3. The third clue is that the magnetic flux in a superconducting ring is
quantized with an effective flux quantum that corresponds to 2e in stead
of e. This means that the charge carriers have two electron charges.

These first three clues give rise to an interesting assumption: electrons pair
up two by two, forming a kind of “molecule” with charge 2e. That molecule
can be susceptible to Bose statistics since it is built from an even number of
electrons, and hence undergo Bose-Einstein condensation. The binding energy
of the molecule is precisely the superconducting band gap: if you provide this
amount of energy, it can be absorbed by breaking up the pair. Whereas this
nice assumption seems to fit the three clues above, there is a problem with it.
Electrons repel, and don’t form molecules. There must be something providing
the glue between the electrons.

4. This is where the fourth clue comes in. In an interesting experiment,
the superconducting critical temperature was measure of isotopes of the
same element. It turns out that Tc decreases as the massMi of the isotope
increases, following Tc ∝M

−1/2
i . Since the chemistry (bond lengths, band

structure, band mass,...) is unaffected by changing to a different isotope,
the quantity in any microscopic picture that would depend on the mass
of the isotope is the phonon frequency. Moreover, it would also depend
as M

−1/2
i . This suggests that the phonons play an important role in

superconductivity, and are a part of the glue that holds electrons together
in pairs.

5 J. Bardeen, L. N. Cooper, en J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
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6.3 Cooper’s intuition
So the experimental clues hint that the electrons bind together in pairs, even
though they repel due to the Coulomb interactions between them. These
Coulomb interactions are to lowest order represented by the exchange of a
photon via a Coulomb line:

The vertex factor is essentially the charge, and the non-relativistic propagator
is 1/q2. This agrees with the fact that we wrote the Coulomb interaction
Hamiltonian in second quantization as

Ĥcoulomb =
1

2

X
q

Vcoulomb(q)
X
k,σ

X
k0,σ0

â+k+q,σâ
+
k−q,σ0 âk0,σ0 âk,σ, (6.7)

with

Vcoulomb(q) =
e2

εq2
. (6.8)

The above diagram symbolizes this interaction. Cooper6 followed Fröhlich’s
conclusion that clue #4 means phonons are the glue. Indeed, two electrons
in lowest order scattering can not only exchange a photon (via the Coulomb
propagator line) but also a phonon. We also know the diagram for that:

We can now use the Feynman rules from Chapter 4 to see what the effective
interaction potential would be, due to exchanging either a photon or a phonon.
For the latter, the vertex factors are not the charges, butM(q). The propagator
(to lowest order) is not the free photon propagator F0, but the free phonon
propagator D0(q, ω) = 2ωq/(ω

2 − ω2q + iδ). So, summing up both possibilities
results in

Veff(q, ω) = Vcoulomb + Vphonon exch (6.9)

=
e2

εq2
+
2ωq|M(q)|2
ω2 − ω2q + iδ

. (6.10)

6L. N. Cooper, Phys. Rev. 104, 1189 (1956).
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We have to amend the pure Coulomb interaction and use the above effective
interaction. For LO phonons, with the Fröhlich interaction amplitude M(q) =
A/q and a constant dispersion ωq = ωLO we get

Veff(q, ω) =
1

q2

µ
e2

ε
+

2AωLO
ω2 − ω2LO + iδ

¶
, (6.11)

and hence the electron-electron interaction Hamiltonian is

1

2

X
q

Veff(q, ω)
X
k,σ

X
k0,σ0

â+k+q,σâ
+
k−q,σ0 âk0,σ0 âk,σ.

Starting from a ground state of non-interacting fermions with Ek = ~k2/(2m)
Fröhlich7, and Bardeen & Pines8 were able to show that ω = (~k)2/2m −
(~k0)2/(2m). The effective interaction potential between an electron with wave
number k and an electron with wave number k0 due to the combination of
exchanging a photon and an LO phonon then becomes

Veff(q,k,k
0) =

1

q2

µ
e2

ε
+

2AωLO
(Ek −Ek0)2 − ω2LO + iδ

¶
For energies |Ek−Ek0 | ¿ ~ωLO this interaction potential is negative, and hence
attractive. Indeed, we find

Veff(q, ω → 0) ≈ 1

q2

µ
e2

ε
− 2A

ωLO

¶
(6.12)

so that a strong electron-phonon coupling combined with a small LO phonon
frequency can make the term between brackets negative. The exchange of a
phonon can indeed lead to an effective attraction between electrons.
Intuitively, this can be understood by imagining that the electron deforms

the lattice around itself, as in the polaron picture. The positive polarization
cloud induced by the electron in the lattice can attract another electron. Think
of the electron as a negatively charged bowling ball on a trampoline surface.
The bowling ball makes a dimple in the trampoline, and this dimple may be
deep enough to overcome the repulsion that a second negatively charged bowling
ball feels, so that they can stay in the same dimple. Such a bound state (of two
electrons) is called a Cooper pair.

6.4 Bardeen-Cooper-Schrieffer (BCS) theory

6.4.1 BCS model

Rather than taking into account the full, complicated, effective interaction
Veff(q,k,k

0), Bardeen, Cooper and Schrieffer wanted to identify between which

7H. Fröhlich, Phys. Rev. 79, 845 (1950).
8 J. Bardeen en D. Pines, Phys. Rev. 99, 1140 (1955).
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pairs of electrons the effective interactions led to the strongest glue. Their
aim was to set up a ‘minimal’ model of superconductivity, that is, they
want to find the simplest Hamiltonian that would lead to Cooper pairing
and superconductivity. Later models can add refinements and take into
account additional terms to get better estimates of superconducting critical
parameters, but it is important to understand first what it is that is needed for
superconductivity to appear in the first place. So, let’s follow that reasoning
and look for the electrons that feel the strongest attraction.

1. Firstly, we note that a large fraction of the electrons is incapable of
exchanging a phonon because they are too deep in the Fermi sea and
have no unoccupied states to scatter to. Only the electrons within a band
of energies ~ωLO (usually around 10-100 meV) around the Fermi energy
EF (usually about 10 eV) will be able to feel electron-electron attraction.
This is called the “Debye” energy window since the Debye energy is the
typical energy of a phonon.

2. Pick an electron in that Debye band, say with wave number k and spin
σ. It can feel attraction to other electrons in the Debye window, but to
which electron will it be attracted most strongly? We’ve already seen
that Ek − Ek0 should be small. Moreover, you want the resulting total
momentum of the pair to be small as well (minimizing the kinetic energy
of the Cooper pair, putting it in the translational ground state). This
means. k + k0 ≈ 0, so the attraction is strongest with the electron with
wave number k0 = −k.

3. Finally, remember that the exchange hole weakens the interactions. We
already encountered this in the chapter on electrons and phonons, studying
the effects of electron-electron interactions. These exchange interactions
will also in the present case weaken the glue between electrons, but they
are only present between electrons with the same spin. So, the attraction
will be strongest if the electrons not only have opposite momentum, but
also opposite spin.

From these considerations, Bardeen, Cooper and Schrieffer proposed the
following model Hamiltonian:

Ĥ(BCS) =
X
k,σ

(~k)2

2mb
ĉ†k,σ ĉk,σ + Ĥ

(BCS)
int (6.13)

with the BCS interaction given by

Ĥ
(BCS)
int = −Ṽ

X
k∈D

X
k0∈D

ĉ†−k0,↓ĉ
†
k0,↑ĉk,↑ĉ−k,↓, (6.14)

where D is the set of single-particle states in the Debye energy window:

D =

½
k :

∙µ
(~kF )2

2mb
− ~ωLO

¶
<
(~k)2

2mb
<

µ
(~kF )2

2mb
+ ~ωLO

¶¸¾
(6.15)
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The interaction strength is replaced by a constant Ṽ , the only model parameter.
In other words, rather than implementing the effective interaction Veff between
any two electrons, the BCS model only keeps those interactions that couple
electrons with opposite spin, and opposite momentum in the Debye window, and
moreover takes the interaction amplitude to be constant. This will indeed turn
out to be the minimal assumptions for a model that exhibits superconductivity.

6.4.2 BCS ground state

BCS found a variational wave function for their Hamiltonian, that produces
a lower energy than that of the filled Fermi sphere. Hence, the normal state
(the filled Fermi sphere) is not the ground state that the system will attain as
temperature is lowered towards zero. The variational wave function proposed
by BCS is given by

|ΦBCSi =
Y
k

(u∗k + vkĉ
†
k,↑ĉ

†
−k,↓) |0i , (6.16)

Here|0i is the electron vacuum. The variational parameters are uk and vk , and
these have to satisfy

|uk|2 + |vk|2 = 1. (6.17)

We can recover the filled Fermi sphere with a special choice of the variational
parameters: ½

uk = θ(k > kF )
vk = θ(k < kF )

. (6.18)

However, there is another choice for these variational parameters that leads to
a lower energy, as we shall prove. The specific form of the BCS wave function
is chosen because ĉ†k,↑ĉ

†
−k,↓ creates a pair of electrons precisely in the suitable

states (k, ↑),(−k, ↓) where the attraction to form a Cooper pair is strongest. In
essence, the interaction part of the BCS Hamiltonian represents scattering of a
pair with k to a pair with k0.
For each k , the two-particle wave function

(u∗k + vkĉ
†
k,↑ĉ

†
−k,↓) |0i (6.19)

describes a quantum superposition of a state where the pair (k, ↑),(−k, ↓) is
occupied with electrons and where that pair is not occupied. Only for vk =
1,uk = 0 are we certain that the pair is occupied (2 electrons in the Cooper
pair), and for vk = 0, uk = 1 we know with certainty that the pair is unoccupied
(zero electrons in the Cooper pair). It is important to note that for all other
choices of uk, vk this superposition is not a number state! In other words, it
is a superposition of different occupation representation basis vectors, and the
number of electrons in the Cooper “pair” depends on uk and vk, it is not fixed.
That means that expectation values such as hĉk,↑ĉ−k,↓i are not necessarily zero,
as they are for the number states that we have been using all along in previous
chapters. That also means that if we want to fix the total number of electrons
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(summed over all k) while performing the variational calculus, we’ll need a
Lagrange multiplier — the chemical potential μ.
The expectation value of the BCS Hamiltonian with respect to the BCS wave

function needs to calculated in order to minimize the energy as a function of uk
and vk:

hΦBCS | Ĥ(BCS) |ΦBCSi− μN =
X
k,σ

Ã
(~k)2

2mb
− μ

!
hΦBCS | ĉ†k,σ ĉk,σ |ΦBCSi

+ hΦBCS | Ĥ(BCS)
int |ΦBCSi . (6.20)

In other words, we look for the minimum in the energy hΦBCS | Ĥ(BCS) |ΦBCSi,
while fixing the number of electrons N =

DP
k,σ ĉ

+
k,σ ĉk,σ

E
through the chemical

potential. Denote

ξk =
(~k)2

2mb
− μ (6.21)

so that we can write

E =

*
ΦBCS

¯̄̄̄
¯̄X
k,σ

ξkĉ
†
k,σ ĉk,σ

¯̄̄̄
¯̄ΦBCS

+

−Ṽ
*
ΦBCS

¯̄̄̄
¯X
k∈D

X
k0∈D

ĉ†−k0,↓ĉ
†
k0,↑ĉk,↑ĉ−k,↓

¯̄̄̄
¯ΦBCS

+
(6.22)

6.4.3 Bogoliubov transformation

The calculation of the expectation values (and the interpretation of the results)
is simplified a lot by first performing a unitary transformation, called the
Bogoliubov transformation. We’re going to follow this path since it is more
insightful than the full calculation, even though it was found not by BCS, but
afterwards by Bogoliubov and Valatin, and is based on Bogoliubov’s work for
superfluid helium. The idea is to introduce new operators α̂ that satisfy

α̂k,σ = u∗kĉk,σ − σvkĉ
†
−k,−σ (6.23)

⇔
ĉk,σ = ukα̂k,σ + σvkα̂

†
−k,−σ, (6.24)

where we impose that
u−k = uk and v−k = vk.

We can make such restriction since the u’s and the v’s are variational parameters
anyway — we’ll make more restrictions later on. The BCS Hamiltonian can then
be rewritten in terms of α̂’s rather than ĉ’s. It is easy to check that since the
variational parameters satisfy (6.17),

uku
∗
k + vkv

∗
k = 1, (6.25)
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the new operators α̂k;σ also satisfy anticommutation relations
n
α̂k0,σ0α̂

+
k,σ

o
=

δk−k0δσσ0 so that they will be fermionic second quantization operators. The
main usefulness of the Bogoliubov transformation follows from the fact that
they have the BCS ground state as their vacuum In other words, for any k, σ
the relation α̂k,σ |ΦBCSi = 0 holds. Indeed, we find:

α̂k,↑ |ΦBCSi = (u∗kĉk,↑ − vkĉ
†
−k,↓)(u

∗
k + vkĉ

†
k,↑ĉ

†
−k,↓)

Y
k0 6=k

(u∗k0 + vk0 ĉ
†
k0,↑ĉ

†
−k0,↓) |0i

=
³
u∗kvkĉ

†
−k,↓ − vku

∗
kĉ
†
−k,↓

´ Y
k0 6=k

(u∗k0 + vk0 ĉ
†
k0,↑ĉ

†
−k0,↓) |0i

= 0. (6.26)

Furthermore, we note that the creation operator α̂†k,↑ is going to break up the
Cooper pair with k,−k and transform it into a single-electron state, the “broken
Cooper pair”:

α̂†k,↑ |ΦBCSi = (ukĉ
†
k,↑ + v∗kĉ−k,↓)(u

∗
k + vkĉ

†
k,↑ĉ

†
−k,↓) |0i

= |uk|2ĉ†k,↑ |0i+ v∗ku
∗
kĉ−k,↓ |0i+ ukvkĉ

+
k,↑vkĉ

†
k,↑ĉ

†
−k,↓ |0i

+|vk|2ĉ−k,↓ĉ†k,↑ĉ
†
−k,↓ |0i

=
¡
|uk|2 + |vk|2

¢
ĉ+k,↑ |0i = ĉ†k,↑ |0i . (6.27)

The third term drops out since ĉ†k,↑ĉ
†
k,↑ |0i = 0 (you cannot create two electrons

in the same state). Summarizing:

0
α̂k,σ←−

(
Cooper pair³

u∗k + vkĉ
†
k,↑ĉ

†
−k,↓

´
|0i

)
α̂k,σ

¿
α̂†k,σ

½
Broken pair

ĉ†k,↑ |0i

¾
−→
α̂†k,σ

0

The action of the fermionic operators α̂k,↑ is the excite, i.e. break up the
Cooper pairs. The BCS state is the “vacuum” for broken Cooper pairs, and we
can excite a gas of broken-up pairs by letting the creation operator work on this
vacuum.

6.4.4 Variational calculation and gap equation

Optimal values of the variational parameters

The expectation value of the kinetic energy is

Ekin =

*
ΦBCS

¯̄̄̄
¯̄X
k,σ

ξkĉ
†
k,σ ĉk,σ

¯̄̄̄
¯̄ΦBCS

+
.

with ξk = k−EF the energy measured from the Fermi surface (setting μ = EF

at temperatures much below TF ). The Bogoliubov transformation changes this
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into

Ekin =
X
k,σ

ξk hΦBCS |
³
u∗kα̂

†
k,σ + σv∗kα̂−k,−σ

´
×
³
ukα̂k,σ + σvkα̂

†
−k,−σ

´
|ΦBCSi . (6.28)

Now we can use α̂k,σ |ΦBCSi = 0 to simplify this to

Ekin =
X
k,σ

ξk |vk|
2
D
ΦBCS

¯̄̄
α̂k,σα̂

†
k,σ

¯̄̄
ΦBCS

E
=

X
k,σ

ξk |vk|
2
D
ΦBCS

¯̄̄
1− α̂†k,σα̂k,σ

¯̄̄
ΦBCS

E
= 2

X
k,σ

ξk |vk|
2 . (6.29)

The interaction energy contribution,

I =
D
ΦBCS

¯̄̄
ĉ†−k0,↓ĉ

†
k0,↑ĉk,↑ĉ−k,↓

¯̄̄
ΦBCS

E
is calculated in the same way via the Bogoliubov transformation:

I = hΦBCS |
³
u∗−k0α̂

†
−k0,↓ − v∗−k0α̂k0,↑

´³
u∗k0α̂

†
k0,↑ + v∗k0α̂−k0,↓

´
×
³
ukα̂k,↑ + vkα̂

†
−k,↓

´³
u−kα̂−k,↓ − v−kα̂

†
k,↑

´
|ΦBCSi

= v∗k0u
∗
k0ukvk

D
ΦBCS

¯̄̄
α̂−k0,↓α̂

†
k0,↑α̂k,↑α̂

†
k,↑

¯̄̄
ΦBCS

E
+v∗k0v

∗
k0vkvk

D
ΦBCS

¯̄̄
α̂k0,↑α̂−k0,↓α̂

†
−k,↓α̂

†
k,↑

¯̄̄
ΦBCS

E
= v∗k0u

∗
k0ukvk + |vk|4δk−k0 . (6.30)

The first term in this result, (6.30), corresponds to

v∗k0u
∗
k0ukvk =

D
ΦBCS

¯̄̄
ĉ†−k0;↓ĉ

†
k0;↑

¯̄̄
ΦBCS

E
hΦBCS |ĉk;↑ĉ−k;↓|ΦBCSi ,

If we’d calculate these expectation values with the Fermi sphere in stead of the
BCS ground state, the expectation value would be zero. The reason that the
expectation value of a product of two creation operators (or two annihilation
operators) can be different from zero is because the BCS state contains
superpositions of states with 0 and 2 particles! These type of expectation values
were not present in our perturbational calculation of the energy of the interacting
electron gas in Chapter 3 because we worked with the Fermi sphere, and that
does not contain superpositions of different numbers of electrons. Therefore
this type of expectation values are called “anomalous averages”. By making
a suitable choice of the u’s and the v’s, we can make the anomalous averages
different from zero, and thus reduce the energy.
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The second term in (6.30) is more familiar:

|vk|4δk−k0 =
D
ΦBCS

¯̄̄
ĉ†k0;↑ĉk;↑

¯̄̄
ΦBCS

ED
ΦBCS

¯̄̄
ĉ†−k0,↓ĉ−k,↓

¯̄̄
ΦBCS

E
. (6.31)

This term would also appear in the normal state of the electron gas, it is the
direct interaction. In Chapter 3, where we worked with the Coulomb interaction,
the direct Coulomb interaction was cancelled by the background. Here, we work
with the BCS interaction, and the direct contribution only results in a shift of the
single-particle energies ξk. When calculating the difference in energy between
the superconducting and the normal state, it is the presence of the anomalous
average that will matter.
Where is the exchange energy that we had in the calculation of the

interaction energy of the electron gas in Chapter 3? It is not present here,
because we have chosen the BCS interaction to act only between electrons of
different spin.
The total energy now becomes

E = 2
X
k

ξk |vk|
2 − Ṽ

X
k∈D

X
k0∈D

v∗k0u
∗
k0ukvk − Ṽ

X
k∈D

|vk|4 (6.32)

The condition |uk|2 + |vk|2 = 1 is taken into account this time not with extra
Lagrange multipliers, but simply by eliminating uk, replacing it everywhere with
(1− vkv

∗
k)/u

∗
k. This means in particular that

∂uk
∂v∗k

= − vk
u∗k

, (6.33)

so that

∂E

∂v∗k
= 2ξkvk − Ṽ

X
k0∈D

v∗k0u
∗
k0

µ
− vk
u∗k

¶
vk

−Ṽ
X
k0∈D

u∗kuk0vk0 − 2Ṽ |vk|
2
vk. (6.34)

To solve the extremum condition ∂E/∂v∗k = 0 we introduce an auxiliary function

∆ = Ṽ
X
k0∈D

uk0vk0 . (6.35)

The variational condition ∂E/∂v∗k = 0 then becomes

2
³
ξk − Ṽ |vk|2

´
vku
∗
k −∆ (u∗k)

2
+∆∗(vk)

2 = 0. (6.36)

First, note that we’ve kept ∆ constant when taking the partial derivative. So
we’re going to solve the problem assuming that we already know the value of ∆,
and afterwards we’ll have to plug in our solution in ∆ to check if everything adds
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up correctly. This is a so-called “self-consistent solution scheme” and it requires
the self-consistency check at the end of the calculation. Second, we remark
that the effect of the second term in (6.30), the direct interaction contribution,
is clarified. As we mentioned before, it can be treated as a correction to the
kinetic energy due to self-interaction of the electrons and as it is not important
to the normal-superconducting transition, it can be absorbed in the definition
of ξk ,

ξ0k = ξk − Ṽ |vk|2 (6.37)

Also here, we could start from ξk without the correction, calculate the
variational vk for the “unperturbed” ξk, and make a new ξ0k with it. Then
we iterate the calculation and keep on doing this until the result converges. In
practice we just work with ξk.
In order to satisfy the condition |uk|2+|vk|2 = 1 automatically we can choose

the following form for uk and vk:

vk = sin(θk/2) exp{iφ(1)k }, (6.38)

u∗k = cos(θk/2) exp{iφ(2)k }. (6.39)

In this notation we find

ξk sin (θk)−∆ exp{−i(φ
(1)
k − φ

(2)
k )} cos2

µ
θk
2

¶
+∆∗ exp{−i(φ(2)k − φ

(1)
k )} sin

2

µ
θk
2

¶
= 0, (6.40)

Only if
∆ = |∆| exp{i(φ(1)k − φ

(2)
k )} (6.41)

all terms in the extremum condition (6.40) are real. A sufficient condition
for this is that the phases φ(1,2)k are independent of k. Since we work with
variational parameters anyway, we can restrict the domain in which we vary
these parameters if we wish so, and choose the phases zero. The variational
extremum condition now becomes

ξk sin (θk)− |∆| cos (θk) = 0,

This is solved by

sin (θk) =
|∆|q

|∆|2 + (ξk)2
, (6.42)

cos (θk) =
ξkq

|∆|2 + (ξk)2
. (6.43)



CHAPTER 6. SUPERCONDUCTIVITY 136

Now we need to impose the self-consistency condition for the gap ∆, by plugging
in the results for the u’s and v’s back into expression (6.35):

|∆| = Ṽ
X
k0∈D

cos (θk/2) sin (θk/2)

=
1

2
Ṽ
X
k0∈D

sin(θk).

With the help of (6.42) we then find

|∆| =
1

2
Ṽ
X
k0∈D

|∆|q
|∆|2 + (ξk)2

(6.44)

⇔ Ṽ
X
k0∈D

1

2

q
|∆|2 + (ξk)2

= 1. (6.45)

This is called the gap equation. It is solved by transforming the sum over wave
numbers into an integral in energy space (with the density of states). Since in
the Debye window around the Fermi energy the density of states does not vary
much, we can keep it constant and equal to the density of states at the Fermi
surface, N(0). Remember that we’ve placed the zero of energy on the Fermi
energy, so ξk = Ek − μ⇒ ξkF = EkF − μ = 0. The gap equation becomes

1 = Ṽ N(0)

~ωLOZ
−~ωLO

dE
1

2

q
|∆|2 + E2

(6.46)

The number N(0) of states with energy between EF and EF + dE depends of
course on ξk, but if we choose ξk = (~k)2/2m−μ, then N(0) = 3n/(2EF ) where
n is the electron density in the normal state. The integral can be performed
analytically:

1 =
1

2
Ṽ N(0) 2arcsinh

µ
~ωLO
|∆|

¶
(6.47)

so that we find for the gap

|∆| =
~ωLO

sinh
n
1/[N(0)Ṽ ]

o
⇒ |∆| ≈ 2~ωLO exp

∙
− 1

N(0)Ṽ

¸
, (6.48)

Where we have used that N(0)Ṽ ¿ 1, i.e. we are working in the weak-coupling
regime (since Tc is much, much smaller than TF ). Now, we can use these results
to find the optimal variational results:½

vk = sin(θk/2)
u∗k = cos(θk/2)

met

⎧⎨⎩ sin (θk) = − |∆|√
|∆|2+(ξk)2

cos (θk) =
ξk√

|∆|2+(ξk)2
(6.49)
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The variational parameters uk, vk, and ukvk are shown in the neighbourhood
of the Fermi surface as a function of the energy.

This figure shows the result that we obtained for uk and vk . When we move
away from the Fermi energy, these parameters become equal to the values for
the normal electron gas (the filled Fermi sphere):½

uk = θ(k > kF )
vk = θ(k < kF )

.

But, near the Fermi energy uk, vk deviate from these values. The change over the
Fermi surface is no longer a step function, but it is smeared out over an energy
range determined by the gap ∆, and in this range ukvk 6= 0 and anomalous
averages appear. For this illustration, we choose a ridiculously large ∆ = 0.02
EF .

BCS ground state energy

What is the result for the BCS variational energy? Is it indeed lower that the
normal state energy? Note that ∆ = 0 is also a solution to the gap equation
— in (6.45) we already divided by ∆, meaning that we still have to check that
the solution we found has lower energy than the ∆ = 0 solution. We need to
substituting the results for the u’s and v’s back into the variational energy

EBCS =
X
k

(2ξk|vk|2)−
X
k∈D

Ã
Ṽ
X
k0∈D

v∗k0u
∗
k0

!
ukvk. (6.50)

To compare this with the filled Fermi sphere, we first note that the electrons
outside the Debye window notice no difference between ∆ = 0 and ∆ 6= 0. They
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don’t participate at all to the superconducting shift in energy. So, the difference
in energy is

EBCS − EN =

"X
k∈D

(2ξk|vk|2)−
∆2

Ṽ

#
−

⎡⎣ X
k∈D,k<kF

2ξk

⎤⎦ (6.51)

= −
X

k∈D,k<kF

2ξk|uk|2 +
X

k∈D,k>kF

2ξk|vk|2 −
∆2

Ṽ
(6.52)

= −
X

k∈D,k<kF

ξk

Ã
1 +

|ξk|p
|ξk|2 +∆2

!

+
X

k∈D,k>kF

ξk

Ã
1− |ξk|p

|ξk|2 +∆2

!
− ∆

2

Ṽ
. (6.53)

Again the sums over k are rewritten as integrals over the energy multiplied by
the density of states, that we take constant in the Debye window:

EBCS −EN = −N(0)
0Z

−~ωLO

dE E

µ
1 +

−|E|√
E2 +∆2

¶

+N(0)

~ωLOZ
0

dE E

µ
1− E√

E2 +∆2

¶
− ∆

2

Ṽ
(6.54)

= 2N(0)

~ωLOZ
0

dE E

µ
1− E√

E2 +∆2

¶
− ∆

2

Ṽ
. (6.55)

The integral can be calculated usingZ
x2√
1 + x2

dx =
1

2
x
p
1 + x2 − 1

2
arcsinh(x). (6.56)

This yields:

EBCS −EN = 2N(0)∆2

⎡⎣ (~ω)2
2∆2

− ~ω
2∆

s
1 +

µ
~ω
∆

¶2
+
1

2
arcsinh

µ
~ω
∆

¶¸
− ∆

2

Ṽ
(6.57)

Since

arcsinh
µ
~ω
∆

¶
=

1

N(0)Ṽ
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the hyperbolic arcsine cancels with −∆2/Ṽ . In the limit N(0)Ṽ ¿ 1 we also
have ∆¿ ~ω and so

EBCS −EN = N(0) (~ω)2
⎧⎨⎩1−

sµ
∆

~ω

¶2
+ 1

⎫⎬⎭
≈ −1

2
N(0)∆2. (6.58)

This confirms that the energy of electrons in the superconducting state is
lowered. The filled Fermi sphere is not the true ground state of the electron
gas with BCS attraction. The variational result with ∆ 6= 0 and anomalous
averages has a lower energy. Indeed, the interaction energy now reduces the
energy since:

Ṽ

ÃX
k0∈D

v∗k0u
∗
k0

!ÃX
k∈D

ukvk

!
6= 0.

The pairs for which ukvk 6= 0 of course the Cooper pairs.
An important thing to note about this result is that the energy reduction

is not an analytic function of Ṽ . In fact, it is clear from (6.48) that the result
has an essential singularity in Ṽ = 0. This means that it is impossible to
find any converging series expansion around the unperturbed Ṽ = 0 state. So,
perturbative approaches (which set out to build such a series expansion for the
energy) are bound to fail! This is the reason why it took so long to find the
microscopic theory of superconductivity, and why it was in the end a variational
approach that provided the answer.

6.5 Interpretation of the BCS state

6.5.1 Excited states and band gap

Now we come back to the issue of broken Cooper pairs, and calculate the energy
it takes to break a Cooper pair. This will show that it is indeed correct to call
the auxiliary function ∆ a band gap. Remember, for a broken Cooper pair, we
had a state

α̂†k,↑ |ΦBCSi = ĉ+k,↑ |0i (6.59)

containing (with certainty) just 1 electron. The (unbroken) Cooper pairs
correspond to a superposition of no electrons (with amplitude u∗k) and two
electrons (amplitude vk) in the {k, ↑} , {−k, ↓} states. So, for the Cooper pairs
ukvk 6= 0, which, as we saw, lowers the total energy by

Ṽ

ÃX
k0∈D

v∗k0u
∗
k0

!Ã X
k00∈D

uk00vk00

!
. (6.60)

If we now break up the {k, ↑} , {−k, ↓} Cooper pair, this means we set ukvk = 0,
and the interaction energy that is lost by breaking up the pair is the sum of all
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the terms with the chosen ukvk that we set equal to zero, or

2Ṽ

ÃX
k0∈D

v∗k0u
∗
k0

!
ukvk = 2∆

∗ukvk. (6.61)

The factor 2 appears because we can either set k0 = 0 or k00 = 0 in the double
sum (6.60). Breaking up a pair also changes the kinetic energy: for the Cooper
pair this was 2ξk|vk|2, for the broken Cooper pair we just have the kinetic energy
of the single electron, or ξk. Hence, the energy difference between the state with
one broken Cooper pair versus the ground state (with no broken pairs) is

EBP(k)−EBCS = ξk − 2ξk|vk|2 − 2∆∗ukvk (6.62)

= ξk[1− 2 sin2(θk/2)]− 2∆∗ sin(θk/2) cos(θk/2)(6.63)
= ξk cos(θk)−∆∗ sin(θk). (6.64)

Here EBP stands for the energy of the state with one broken pair. Substituting
our results for the sine and cosine we find

EBP(k)−EBCS =

q
|∆|2 + ξ2k. (6.65)

This shows that the energy required to make an excitation with wave number

k equals
q
|∆|2 + ξ2k. This is the energy for an elementary excitation of the

superconducting system, namely the breaking up of a Cooper pair.
Summarizing: the operators α̂+k,↑ create excited states with dispersion

relation
q
|∆|2 + ξ2k. These excitations are broken Cooper pairs, and can be

treated as fermionic quasiparticles since the α̂+k,↑ satisfy fermionic commutation
relations. This means that when we raise the temperature a little to T (still
smaller than T c) we make a gas of broken Cooper pairs where the number of
broken pairs with wave number k is given by the Fermi-Dirac distribution:D

α̂+k,↑α̂k,↑
E
= fk =

1

exp

½
−
q
|∆|2 + ξ2k/(kBT )

¾
+ 1

. (6.66)

6.5.2 Density of states and resistivity

In stead of the original dispersion relation ξk we now have identified

k =
q
|∆|2 + ξ2k as the energy of the excited states. The original dispersion

relation was ξk = (~k)2/2m − μ. As we measure the energy from the Fermi
level, the bottom of the band (k = 0) has energy −μ = −EF . When |∆| → 0,

or for k values such that |∆| ¿ |ξk| the excitation energy k →
q
ξ2k = |ξk|.

This is the non-interacting case, with elementary excitations being electrons for
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k > kF and holes for k < kF . Close to the Fermi surface (k ≈ kF , ξk ≈ 0) the
effect of a non-zero |∆| is clear: it opens a gap. The smallest energy excitation
that we can make is to break up a Cooper pair precisely at the Fermi surface,
and this costs energy |∆|. In the figure below, the new dispersion relation is
shown. We used values of |∆| /EF that are unrealistically high to make the
effect of the gap visible.

Bogoliubov energy of the excitations (broken Cooper pairs) as a function of k.

These new excited states are still labeled by the wave vector and still have
the same density of states in k-space (namely 1 state per (2π)2 /V of reciprocal
space volume). However, the density of states in energy space is going to be
different due to the different link between k and the energy. We can use the
fact that the density of states in k-space is the same to link the normal density
of states (≈ N(0) near the Fermi level) to the superconducting density of states
N 0( ):

N( )d = N(0)dξ ⇒ N( ) = N(0)
dξ

d

Since (k) =
q
∆2 + ξ2k, we find

N( ) =

⎧⎨⎩ 0 for | | < ∆
N(0)√
2 −∆2

for | | > ∆ .

The dispersion has a minimum (and hence a zero derivative), leading to
Van Hove singularities at | | = |∆|. There is an energy gap: for energies
∈ [− |∆| , |∆|]. The density of states in energy is shown in the figure on the
next page, where we zoom in on the region close to EF (still keeping ∆ large so
as to make the effects clearly visible at this scale).
Figure (6.1) shows results for the normal state (left two graphs) and the

superconducting state (right two graphs). Both the energy dispersion (left
panels of both cases) and the density of states (right panels of both cases)
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Figure 6.1: Energy spectrum and density of states close to the Fermi energy, in
the normal and superconducting state.

Figure 6.2: The theoretically predicted DOS was confirmed in scanning
tunneling microscopy experiments.
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are shown. In the density of states, levels are occupied up to the Fermi level,
which is indicated by a filling. In order to make an excitation, a transition from
an occupied to an unoccupied state has to be made. In the normal state, you
only need a vanishingly small energy to make this transition, whereas you need
the spectroscopic gap 2 |∆| in the superconducting state. So, the gap measured
in the microwave experiments (the first clue) is 2 |∆|. The density of states
can be measured using a scanning tunneling microscope, since the tunneling
current is proportional to the density of states. These measurements have been
performed, and agree magnificently well with the BCS theory — one of the first
experimental results is reproduced in figure (6.2). The rounding of the Van
Hove singularity is due to limited experimental energy resolution — more recent
experiments have sharpened up these peaks.
Another consequence of the presence of the gap, is that it is not possible to

transfer an infinitesimal amount of energy to the superconductor. In a normal
metal, an electric current can decay — the conducting electrons in the current
scatter and transfer small amounts of energy to the material. However, the
only way now to transfer energy to the system by breaking up Cooper pairs.
This costs a finite amount of energy and as long as the current is below the
critical current, this will not happen. This is the origin of the flow without
dissipation, hence without resistance. Another way to formulate this is that
all the Cooper pairs are in the k + (−k) = 0 momentum state, and form a
Bose-Einstein condensate in this state. This corresponds to our second clue,
and since Bose-Einstein condensates are superfluid, a Bose-Einstein condensate
of charged Cooper pairs will be superconducting.
Furthermore, we can use the density of states to estimate the total lowering in

energy that we have between the superconducting and normal states. Indeed,
the filled states are lowered in energy! In the normal states, we have filled
states from −∆ up to 0. The number of electrons in these states are N(0)×∆.
These are now brought down to make the Van Hove peak, so they are lowered
by an average energy of ∆/2. From this we estimate the energy difference
between the superconductor and the normal state to be N(0)∆2/2 in favour of
the superconductor. This result, from a reasoning with density of states, agrees
with our previous calculation (6.58).
Finally, note the difference in scales: EF , being 10 eV, is huge with respect

to the Debye window ~ωD of 10-100 meV, which in turn is large in comparison
to the band gap ∆ of typically 0.1-1 meV.

6.6 Critical temperature
We have seen that at temperature zero, the BCS state is the ground state of
the Hamiltonian Ĥ(BCS). What happens at non-zero temperature? We can
look again at the scanning tunneling microscopy experiments and see (cf. the
inset of figure (6.2)) that the gap closes down, and becomes zero at the critical
temperature. Above the critical temperature, the material is in the normal state,
with non-zero resistivity. We have also seen that excited states are created by
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letting the operators α̂†k,σ act on the BCS state, and that these have an energyq
|∆|2 + ξ2k. To find out what happens at finite temperature, we use the fact

that the occupation of the excited states is given by the Fermi-Dirac distribution,
as in (6.66) :D

α̂†k,σα̂k,σ
E

= fk =
1

exp

½
−
q
|∆|2 + ξ2k/(kBT )

¾
+ 1

, (6.67)

D
α̂k,σα̂

†
k,σ

E
= 1− fk. (6.68)

As the temperature goes to zero, we find
D
α̂†k,σα̂k,σ

E
= 0 and

D
α̂k,σα̂

†
k,σ

E
= 1

just like before. Now we can use these finite-temperature quantum-statistical
expectation values to calculate the free energy at any temperature T 6 Tc. The
free energy is given by E − TS with E = hHBCSi and the entropy given by
Shannon’s rule

S = −kB
X
k,σ

[fk log(fk) + (1− fk) log(1− fk)] (6.69)

As an example of the calculations, we evaluate the kinetic energy (expression
(6.28)) for non-zero temperatures:

Ekin =
X
k,σ

ξk

D³
u∗kα̂

†
k,σ + σv∗kα̂−k,−σ

´
×
³
ukα̂k,σ + σvkα̂

†
−k,−σ

´E
.

=
X
k,σ

ξk

³
|uk|2

D
α̂†k,σα̂k,σ

E
+ |vk|2

D
α̂k,σα̂

†
k,σ

E´
(6.70)

=
X
k,σ

ξk

h
|uk|2 fk + |vk|2 (1− fk)

i
(6.71)

= 2
X
k

ξk

h
fk + (1− 2fk) |vk|2

i
(6.72)

Note that we use
D
α̂†k,σα̂

†
k,σ

E
= 0 = hα̂k,σα̂k,σi : there are anomalous averages

in the electron creation and annihilation operators, but not for the Bogoliubov
excitations — we do not have superpositions of different numbers of broken
Cooper pairs in our theory. For the details of the complete calculation I refer to
for example the book ‘Superfluidity and Superconductivity’ of D. R. Tilley en J.
Tilley (IOP Publishing Ltd., Bristol, UK, 1994), pp. 131-134. In order to find
the optimal values of the parameters vk in the case of non-zero temperatures, the
free energy is minimized with respect to these parameters, from which we again
obtain a gap equation. This gap equation is a generalization of our temperature
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zero result (6.45) and is now given by

Ṽ
X
k0∈D

1

2

q
|∆|2 + (ξk)2

tanh

⎛⎝
q
|∆|2 + (ξk)2

2kBT

⎞⎠ = 1. (6.73)

It can be used to compute ∆(T ), the gap as a function of temperature. The
result (matching with the experimental points) is shown in the inset of figure
(6.2). If the temperature becomes equal to the critical temperature Tc then ∆
should become zero. Hence, we can find the critical temperature by searching
for the temperature at which (6.73) is satisfied for ∆ = 0 :

Ṽ
X
k0∈D

1

2|ξk|
tanh

µ
|ξk|
2kBTc

¶
= 1. (6.74)

This is once more calculated by changing the k-sum in an energy domain
integral:

N(0)Ṽ

Z ~ωLO

0

dξ
1

2|ξ| tanh
µ

|ξ|
2kBTc

¶
= 1. (6.75)

At weak coupling this simplifies to

kBTc = 1.14 ~ωLO exp
n
−1/

h
N(0)Ṽ

io
. (6.76)

This result nicely fits the fourth clue, the isotope effect. The critical temperature
is proportional to the phonon frequency ωLO (or in general the Debye frequency
of the phonons), which in turn is proportional to 1/

√
M with M the mass

of the atoms in the crystal lattice. The expression (6.76) for Tc contains
the same exponential with the same essential singularity as the result for the
temperature-zero band gap (6.48). From this we find that the ratio of the
temperature-zero band gap to the critical temperature is a constant, and given
by

2∆

kBTc
= 3.52. (6.77)

Even though the BCS model represents a strongly distilled version of the
interaction between the electrons, and as such should be expected to be a quite
crude approximation, this ratio corresponds well to what is measured for most
BCS superconductors:

Superconductor 2∆/(kBTc)
Aluminium 3.37± 0.1
Cadmium 3.20± 0.1
Mercury 4.60± 0.1
Indium 3.63± 0.1
Niobium 3.83± 0.06
Lead 4.29± 0.04
Tin 3.46± 0.1
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We can also use expression (6.77) to rewrite the lowering of the energy achieved
at temperature zero by becoming superconducting, as a function of the critical
temperature:

EBCS −EN = −1.55N(0)× (kBTc)2. (6.78)

6.7 Critical magnetic field
The simple BCS model is a big success! It fits all the experimental data and has
only one fitting parameter. It explains the lack of resistance, has a gap linked
to the critical temperature, a Bose condensate of Cooper pairs (so that flux is
quantized using 2 electron charges and we get the correct specific heat), and fits
the isotope effect. The last thing we want it to explain is of course the Meissner
effect. Cooper pairs don’t like magnetic fields.
There is of course the fact that spins like to align with the magnetic field

and Cooper pairs contain two electrons with opposite spin. For that ‘wrongly’
spinning electron we have to subtract the Zeemann energy cost from the binding
energy of the pair. If the spin of one of the electrons were forced flip, the glue
might become too weak. But it turns out that this effect is rather weak, the
Zeeman cost is not the main reason why magnetic fields break up the Cooper
pairs. A larger effect is due to the orbital angular momentum of the pair. The
electrons have momentum ~k and −~k, and in a magnetic field they experience
oppositely directed Lorentz forces e (~k/m) ×B and −e (~k/m) ×B that pull
the two electrons of the Cooper pair apart.
This is why type-I materials have only two options available to them: either

they are superconducting but have to expel the magnetic field, or they let the
magnetic field in and become normal. The critical magnetic field occurs when
the gain in energy from becoming superconducting becomes exactly equal to
the cost in energy to expel the magnetic field.
We know what the gain in energy is, due to making Cooper pairs:

∆EN-SC =
1

2
N(0)∆2 (6.79)

We also know what the cost in electromagnetic energy is to expel a magnetic
field Hc from a volume V of material:

∆Emagn =
μH2

c

2
V (6.80)

Equating those two results in

Hc =

s
1

μ

N(0)

V
∆ (6.81)
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Here, N(0) is the density of states at the Fermi energy in the normal state. If
we assume a normal state dispersion (~k)2 / (2m) for the electrons, then this
becomes

Hc =

r
1

μ

3n

2EF
∆ (6.82)

with n the density of electrons in the normal state. We can also reformulate
this using the relation between ∆(T = 0) and Tc as

Hc(T = 0) = 1.75

r
1

μ

3n

2EF
kBTc (6.83)

Note that when the temperature is nonzero, we have to use equation (6.82)
and plug in the value of the gap ∆(T ) that we find from solving the
temperature-dependent gap equation, expression (6.73).
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Final remarks on superconductivity
The BCS theory is tremendously successful in explaining the strange
superconducting properties of many materials, as we have seen. Several
other authors, such as Eliashberg, Migdal, de Gennes, Kirchnitz, Usadel,
have refined the description by taking into account better expressions for the
effective electron-electron interaction amplitude, and for the electron band
structure. They show that the remaining differences between the predictions of
Tc,Hc, cV , ... can be corrected for. This result could never have been found using
a perturbation series start starts from the unperturbed Fermi sphere (Ṽ = 0)
and calculates successive corrections to that unperturbed result, because of the
presence of an essential singularity at Ṽ = 0. A variational calculation has
shown the way. A perturbation calculation could still work if we build a series
expansion around another point, Ṽ 6= 0, but that is much more difficult.
However, since 1987 we know that there is another class of superconducting

materials, the so-called ‘high-Tc’ materials. These turn out to be perovskite
materials (ceramics) with charge carries running on copper oxide planes. They
are technologically important because the critical temperature is much higher
(in stead of a few kelvin, it lies close to 100 K). But they are not understood,
and such a high Tc does not seem compatible with standard BCS theory. The
point of the matter seems to be that the nature of the glue between the electrons
is not yet known. More recently, high temperature superconductivity (of a few
tens of kelvin) has been discovered in related materials where now iron arsenic
planes play the role of copper oxide planes. No-one had been expecting this, as
iron is magnetic and magnetism seems to be antagonistic to superconductivity.
It is fair to say that the problem of finding the microscopic mechanism of
these high temperature superconductors, and the related goal of finding a
room-temperature superconductor, is one of the main unsolved problems in
modern solid state physics. You probably have all the basic knowledge to start
thinking about it. Have fun solving it.
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