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Introduction

Hyperfine interaction techniques, like Nuclear Magnetic Resonance (NMR), Mössbauer

Spectroscopy (MS) or Perturbed Angular Correlation (PAC), have been used for a long

time to study radiation effects and defects in solids [1, 2]. Microscopic details of defects

and impurities have been studied by these techniques, with most emphasis in metallic and

alloy systems [3–16], as well as in semiconductors [17–31]. Further studies have reported

radiation damage in different materials like magnets [32], oxides [33–38], superconductors

[39–42] and others [43].

Defects in solids can induce characteristic electric field gradient (EFG) in their

neighboring lattice sites. The EFG is measured via its interaction with the nuclear electric

quadrupole moment of a suitable probe atom by the mentioned hyperfine techniques.

Defect-related EFG have been successfully used as “fingerprints” of the respective defects

in the past, because they are very sensitive to an anisotropic charge distribution about the

probe nucleus, caused, for example, by a neighboring defect [1, 44, 45]. However, the EFG

by itself does not tell much about its microscopic origin, due to the lack of appropriate

theories for predicting the EFG of a distinct defect. Many defects are experimentally

well characterized via their EFG, but have remained unidentified.

Classical methods, like the point-dipole approximation, were used in the past to

estimate the EFG values [46–48], this is a simple and fast model, but not precise in most

cases [49]. On the other hand, calculations based on the Density Functional Theory

(DFT) formalism have been successfully used for determining hyperfine parameters and

other properties of solids [2, 49–58]. But, studies yielding also the EFG caused by defects

and impurities, came up only in the last 15 years [59–61].

Several open questions still remain regarding the local environments characterization

of defects and dopant’s in various materials, and its relation with the hyperfine parameters

observed in those cases. In this thesis some practical and methodological interesting

cases in semiconductor and superconductor materials are presented and analyzed.
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4 Introduction

In this context, the present thesis aims as general objective, the identification of

the structural origin of the hyperfine parameters values observed experimentally in

the analyzed semiconductor and superconductor materials; explaining the hyperfine

parameter changes due to the presence of defects in the material provoked by radiation

damage.

It starts from the hypothesis that, by the structural simulation of the defects configu-

rations in the materials and its electronic structure calculation, it is possible to achieve

a better understanding of the experimentally observed hyperfine parameters and the

influence of radiation damage at the microscopic level.

To fulfill this purpose, we address the following specific objectives:

1. Simulate the implanted ion and vacancy distribution profiles in the material in the

case of ion irradiated materials, to assess the produced concentrations of defects.

2. Propose a representative set of local defects and implantation configurations starting

from the structural data of each studied material.

3. Apply the DFT electronic structure calculation method to obtain the hyperfine

parameters for each proposed configuration.

4. Compare the obtained hyperfine parameters values with experimental measurements,

and if possible, give a structural explanation of the differences and similarities.

5. Based on the obtained results, make an interpretation of the radiation damage

effects and their evolution in a selection of well studied samples.

As studied cases, the following materials were selected: the semiconductors zinc

oxide (ZnO) and silicon (Si), and the superconductor yttrium barium copper oxide

(YBa2Cu3−xFexO7−y). In the semiconductors cases the radiation damage is mainly

produced by the implantation of an hyperfine interaction probe atom, 57Mn(57Fe) and
111In(111Cd) in ZnO, as well as 57Mn(57Fe) in Si. In the superconductor, the crystal

structure presents some intrinsic disorder changes caused by high pressure synthesis or

gamma irradiation of the material.

The semiconductor ZnO has an increasing interest in the research community in

part because of its large exciton binding energy of 60 meV, which could lead to lasing

action based on exciton recombination even above room temperature. The research

on ZnO goes back to many decades. The renewed interest in ZnO is mostly due to

the availability of high-quality substrates, and recent reports of p-type conduction and
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ferromagnetic behavior when doped with transitions metals. Several studies regarding

structural characteristics, vibrational and optical properties, samples growth and its

practical applications has been reported since 1930’s. A complete review of ZnO materials,

applications and devices was published by Özgür et al. [62].

Impurity doping of silicon by ion implantation is relevant for materials studies

and modifications, as well as for technological applications [17–21, 45, 63]. Several

experimental and theoretical studies have been performed in this field. The radiation

damage created during the ion implantation is a fundamental problem in these cases,

including its annealing, and most of the time difficult to interpret. In these cases the

experimental observations can be complemented with theoretical models.

Recently, Mössbauer spectra have been reported of YBa2Cu3−xFexO7−y superconduc-

tor samples synthesized at high pressure [39–41]. In this studies significant changes have

been observed in the spectra as a result of the increase of the oxygen and iron dopant con-

tent in the samples, which provoked the total extinction of one of the quadrupole doublet

that are commonly observed in those samples synthesized at normal pressure [42, 64, 65].

Gamma irradiation effect on YBa2Cu3−xFexO7−y samples was attributed, according to

MS measurements [42], to changes in the oxygen coordination environment around the

probe atom. These facts motivate the review of the atomic local micro-structure that can

be present in the YBa2Cu3O7−y doped with Fe, which could give origin to the observed

phenomena.

More details on the specific related problems are analyzed in the thesis.

The thesis is organized in two parts, the first part contains two chapters, chapter 1 is

related to the hyperfine interaction techniques and chapter 2 to the electronic structure

computational method used in the present study. The second part is divided in three

chapters where the calculated hyperfine parameters, the validation of experiments and

the possible interpretation in terms of radiation damage are presented. In this way,

chapter 3 shows the results for the ZnO semiconductor implanted with 57Mn(57Fe) and
111In(111Cd), chapter 4 analyzes the case of 57Mn(57Fe) implanted into Si, and chapter 5

presents the obtained results for YBa2Cu3O7−y samples doped with Fe and irradiated

with gamma rays. A summary is presented at the end, followed by the bibliography.
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Part I.

EXPERIMENTAL TECHNIQUES AND

COMPUTATIONAL METHODS
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Chapter 1.

Hyperfine interactions techniques

1.1. General aspects

The atomic nuclei form a quantum subsystem within solids which in the Born Oppen-

heimer approximation, can be described by an effective Hamiltonian, that is relatively

independent from the Hamiltonian describing the surrounding electrons. Nevertheless,

there are a number of mutual interactions between both subsystems, which are analyzed

in terms of perturbations. On the atomic nuclei subsystem, the nucleons that form

these nuclei represent a third kind of dynamic subsystem, whose internal motions are

relatively independent from the other two subsystems that make up the solid. Then, the

hyperfine interaction Hamiltonian Ĥhf (t) is defined as the result of the perturbation of a

particular nuclear subsystem Hamiltonian Ĥ0 done by its electromagnetic interaction

with the electrons. Due to the difference in motion energies and frequency of the nucleons

in relation to the electrons, the first feel an average electromagnetic action exerted by

the electrons that move faster due to their lower mass. For that reason the perturbation

to Ĥ0 can be analyzed as a static interaction 〈Ĥhf(t)〉∆t = Ĥhf , where ∆t is a time

characteristic of the electronic movement. Then, it can be expressed as:

Ĥhf = ĤE
hf + ĤM

hf (1.1)

where ĤM
hf represents the Zeeman magnetic interaction and ĤE

hf the electrostatic interac-

tion.

Thus, the hyperfine interactions are introduced as a perturbation problem where

we denote the eigenfunctions with energy E
(0)
m of the non-perturbed atomic nucleus

states of the Hamiltonian Ĥ0 with degeneration s = I(I + 1) by ψ
(0)
m (m = 1, · · · , s),

9



10 Hyperfine interactions techniques

where the quantum numbers on regard to the nuclear spin I and other ones were not

explicitly displayed for simplicity’s sake. As a result of the perturbation described by

Hamiltonian Ĥhf the degeneracy of the energy levels is broken, causing the atomic nucleus

to occupy any of the perturbed states ψ′i, which are expressed according to the first order

perturbation theory as [66]:

ψ′i =
s∑

m=1

C
(0)
imψ

(0)
m (1.2)

s∑
m=1

C
(0)
im ((Ĥhf )m,m′ −∆E

(1)
i δm,m′) = 0, (m′ = 1, · · · , s) (1.3)

and the perturbed energies E ′i = E0
m+∆E

(1)
i are calculated by the characteristic equation:

|(Ĥhf )m,m′ − δm,m′∆E(1)
i | = 0 (1.4)

where (Ĥhf )m,m′ are the matrix elements of the hyperfine interaction in the degeneration

functional base of sublevel E0
m, and ∆E

(1)
i is the first order perturbation energy correction.

1.2. Electric hyperfine interaction

The electrical hyperfine interactions are described by an electrostatic interaction that

can be derived from the classic expression:

ĤE
hf =

∫
ρn(r)ϕ(r)dr (1.5)

where, ρn(r) is the nuclear electrical charge density and ϕ(r) is the electrical potential

from the other electrical charges. The right side of Eq. 1.5 can be expressed as:

ĤE
hf =

∞∑
i=0

Ĥ i (1.6)

Ĥ i =
∑

α1,··· ,αi

1

i!
M i

α1,··· ,αi
Vα1,··· ,αi

(1.7)

being, Ĥ i the i-th order multi-pole electrical interaction energy and α1, · · · , αi = 1, 2, 3

refer to the cartesian coordinates.
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These equations result from the Taylor development of ϕ(r) at the atomic nucleus

position (taken as origin of coordinates), M i
α1,··· ,αi

are the i-th rank tensor components

of the electric charge momentum distribution of the atomic nucleus ρn(r) and Vα1,··· ,αi

are the i-th rank tensor components of the electric potential gradient:

M i
α1,··· ,αi

=

∫
ρn(r) ·Xα1 · · ·Xαi

dr (1.8)

Vα1,··· ,αi
= =

∂i

∂Xα1 · · · ∂Xαi

ϕ(r)|r=~0 (1.9)

being, Xα1 , · · · , Xαi
= x, y or z, when α1, · · · , αi = 1, 2 or 3 respectively.

The zero-order term is an additive constant that depends only on the atomic nucleus

charge Z and the potential value ϕ(0), and has no influence on the calculations that are

made here. The term Ĥ1 is canceled because it is proportional to the electric dipole

moment of the nucleus, which is zero when ρn(r) corresponds to a nuclear quantum state

with a defined parity. Then, the Ĥ2 is the first term of significance, if the second-order

nuclear electric charge momentum does not vanish:

Ĥ2 = 1
2

∑
α,βMαβVαβ

Ĥ2 = 1
6

∑
α,β Tr(M)δαβVαβ + 1

2

∑
α,β

(
Mαβ − 1

3
Tr(M)δαβ

)
Vαβ

Ĥ2 = ĤIS + ĤQS

(1.10)

where the first term on the right, ĤIS, is known as the isomer shift (IS), and the last,

ĤQS, is referred to as the nuclear electric quadrupole interaction or quadrupole splitting

(QS). In the latter case, the interaction has a second rank tensor character, while the IS

is a scalar.

1.2.1. Isomer shift

From Eqs. (1.10) the IS term can be expressed as:

ĤIS =
1

6
Tr(M)Tr(Vαβ) = − e

6ε0
|ψ(0)|2

∫
r2ρn(r)dr =

Ze2

6ε0
|ψ(0)|2〈R2〉 (1.11)

In Eq. (1.11), the magnitude |ψ(0)|2 represents the probability of an electron being in the

atomic nucleus, while 〈R2〉 denotes the mean square radius of the nuclear charge density.

This last, for a given isotope, depends on the nucleus energy state. Since variations of
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the electronic cloud between isotopes and isomers of the same nucleus are negligible,

for a given isotope nuclear sublevel, ĤIS will depend on the particular nuclear isomer

through the magnitude 〈R2〉. This is why this magnitude is denominated as isomer shift.

For a given isotope, ĤIS will simply represent an additive constant to the ∆E
(1)
i

values obtained by Eq. (1.4) of the hyperfine perturbation. If an experiment, as in the

case of Nuclear Magnetic Resonance, involved only transitions between two hyperfine

sublevels that belong to the same nuclear and electronic state, ĤIS will not affect the

experimental results.

For the case when transition between two hyperfine sublevels that belong to different

nuclear states (with the same or different electronic states) are studied, it is necessary

to add the following value to the gamma quanta energy emitted without hyperfine

perturbation:

Λ = He
IS −H

g
IS =

Z

6ε0
|ψ0|2{〈R2〉e − 〈R2〉g} (1.12)

since |ψ0|2 does not depend on the particular energetic state of the atomic nucleus. On

the other hand, |ψ0|2 is determined by the electronic bonds characteristics of the analyzed

atom in the matrix. While the term {〈R2〉e − 〈R2〉g} represents the nucleus geometrical

variation from the excited to the ground state.

Then, the magnitude given by Eq (1.12) will depend on the matrix in which that

atom is embedded. This condition is critical in the Mössbauer experiment, since this

involves the resonant emission and absorption of gamma quanta between a given nuclear

sublevels of an isotope, but located in different matrices (source (s) and absorber (a)).

Finally the isomer shift (δ) is defined as the difference in the values of Λ between the

two states and given by the expression:

δ = Λa − Λs =
Ze2

6ε0
[〈R2〉e − 〈R2〉g][|ψ(0)|2a − |ψ(0)|2s] (1.13)

As seen from Eq. (1.13), for a given type of absorbent matrix, δ depends on the

physical characteristics of the source matrix (usually δ will depend on thermodynamic

parameters as pressure P and temperature T). That’s why, δ values are given relative to

a substance taken as reference. In the case of the Mössbauer isotope 57Fe, experimental

values of δ are generally referred to metallic iron or to sodium nitroprusside (NNP).
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Usually, δ takes on values between -1.0 and 2.0 mm/s referred to metallic iron at room

temperature [66, 67].

1.2.2. Electric quadrupole splitting

Based on Eq. (1.10) for ĤQS, it is possible to construct the Hamiltonian operator for the

electric quadrupole interaction given according to the expression [66, 67]:

ĤQS =
eQ

6I(2I − 1)

∑
α,β

Vαβ

[
3

2
(ÎαÎβ + Îβ Îα)− δαβ Î2

]
(1.14)

where I is the nuclear spin, Îα and Îβ are the conventional spin operators, and

Q =
1

2e

∫
ρn(r)(3Z2 − r2)dr,

representing Q the nuclear quadrupole moment of the nucleus for the nI sub-state, been

ĤQS equals to zero when I = (0, 1
2
). And Vαβ represent the electric quadrupole tensor,

which is a second rank tensor with components:

Vαβ =
∂2

∂Xα∂Xβ

ϕ(r)

∣∣∣∣
r=~0

(1.15)

being, Xα, Xβ = x, y or z, when α, β = 1, 2 or 3 respectively.

For the specific case when the EFG tensor principal axes coincide with the Cartesian

reference system the expression (1.14) reduces to:

ĤQS =
eQ

4I(2I − 1)

[
Vzz(3Î

2
z − Î2) +

1

2
(Vxx − Vyy)(Î2

− − Î2
+)

]
(1.16)

which as noted, depends on the EFG component in the axial direction (here the z axis,

indicated by Îz, is matched with the direction of the greater absolute value of the EFG

eigenvalues, |Vzz|) and the difference of the eigenvalues in the transverse direction.

Then, the following parameters related with Vαβ components can be introduced:

eq = Vzz (1.17)
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and

η =
Vyy − Vxx

Vzz
(1.18)

with the following condition |Vxx| ≤ |Vyy| ≤ |Vzz|, according to which 0 ≤ η ≤ 1, leaving

the expression (1.16) for ĤQS as follows:

ĤQS =
e2qQ

4I(2I − 1)

[
3Î2
z − Î2 +

1

2
η(Î2
− − Î2

+)

]
(1.19)

Note that in the case where the crystalline lattice presents axial symmetry (i.e. Cubic,

Tetragonal, Hexagonal) Vxx = Vyy and then η = 0.

1.3. Magnetic hyperfine interaction

The third important hyperfine interaction is the Zeeman effect. This will occur if there

is a magnetic field at the nucleus. The magnetic field can be originated either within

the atom itself, via exchange interactions in the crystal, or as a result of placing the

compound in an external applied magnetic field. For the moment, however, it is only

necessary to consider that there is a magnetic field with a flux density B and that its

direction defines the principal z axis.

The Hamiltonian describing the magnetic dipole hyperfine interaction is:

ĤM
hf = −µ ·B = −gµNI ·B (1.20)

where µN is the nuclear Bohr magneton (e~/2Mc), µ is the nuclear magnetic moment, I

is the nuclear spin, g is the nuclear g-factor, g = µ/(IµN ), and µN = 5.04929×10−27J T−1.

The matrix elements are easy to evaluate using the spin operator form of H = −gµNIzB
and result in eigenvalues of:

Em =
−µBmI

I
= −gµNBmI , (1.21)

where mI is the magnetic quantum number representing the z component of I (i.e.

mI = I, I − 1, · · · ,−I). The magnetic field splits the nuclear levels of spin I into (2I + 1)

equi-spaced non-degenerated substates. As for the quadrupole spectra, the Mössbauer
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transition can take place between different nuclear levels if the change in the mI values

is 0,±1, or additionally in some cases ±2.

In a similar way to the chemical isomer shift and quadrupole splitting, the magnetic

hyperfine effect is the product of a nuclear term, which is a constant for a given Mössbauer

transition, and the magnetic field.

The magnetic field at the nucleus can originate in several ways. A general expression

would be:

B = B0 −DM +
4

3
πM + Bc + Borb + Bdip (1.22)

where B0 is the value of the magnetic field at the nucleus generated by an external

magnet, M is the magnetization, −DM is the demagnetizing field and 4
3
πM is the

Lorentz field (the coefficient being strictly applicable for cubic symmetry only). These

last two terms are usually small and negligible. Bc arises as a result of the interaction

of the nucleus with an imbalance in the s-electrons spin density at the nucleus. Bc is

usually referred as the Fermi contact term. Its origin may be from intrinsic impairing of

the actual s-electrons, or indirectly as a result of polarization effects on filled s-orbitals.

These can occur if the atom has unpaired electrons in d- or f -orbitals, or if it is chemically

bonded to such an atom. Intuitively, one can see that, the interaction of an unpaired

d-electron with the s-electrons of parallel spin will be different to that with the s-electrons

of opposed spin. The result is a slight imbalance of spin density at the nucleus. In the

case of metals, direct conduction-electron polarization as well as indirect core-polarization

effects may be important.

If the orbital magnetic moment of the parent atom is non-zero, there is a further term

in Eq. (1.22), Borb, that is related with the magnetic field due to any resultant orbital

angular momentum. The final term Bdip arises from the dipole interaction of the nucleus

with the spin moment of the atom.

The terms Bc,Borb, and Bdip can be of the order of 1− 10 T and their sum is usually

referred as the internal magnetic field. It is already clear that the measured internal field

can be related to the orbital state of the atom.

The sign of an internal magnetic field BInt can be readily determined. Equation

(1.22) shows that application of an external magnetic field B0 alters the effective field at

the nucleus, increasing or decreasing B according to whether the applied field is parallel

or antiparallel to BInt. The fields required for this are rather large, about 3− 5 T, and
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superconducting magnets are usually used. If there are two or more field directions

present as in antiferromagnetic materials, it may be possible to distinguish the sublattice

resonance lines by the opposite effects of the applied field. This method will fail if the

magnetic interaction is highly anisotropic so as to prevent the polarization of the ordered

spins by the external field.

From the current statements, it might be assumed that all compounds containing

unpaired valence electrons would show a hyperfine magnetic splitting effect. However,

there is another factor which has not been considered, namely that the Hamiltonian in

Eq. (1.20) contains I and B as a vector product, and the observation time-scale is of

the order of 10−8 s. The electronic spins which generate BInt are subject to changes of

direction, known as electronic spin relaxation. In paramagnetic compounds, the spin

relaxation is usually rapid and results in BInt having a time-average of zero so that

no magnetic splitting is seen. The major exceptions are found in rare earths or with

magnetically dilute solid solutions. When cooperative phenomena such as ferromagnetism

or antiferromagnetism operate, the relaxation rates are effectively slower and a splitting

will be recorded. More complex situations can be also present [66].

1.4. Hyperfine interaction measurement techniques

Hyperfine interactions can be measured by several experimental techniques like Mössbauer

Spectroscopy, Perturbed Angular Correlations (PAC), Nuclear Magnetic Resonance and

others. In the following sessions details on the first two mentioned will be given, since

they are close related with the present study.

1.4.1. Mössbauer spectroscopy

The following discussion will focus on the hyperfine interaction measurements that use

the 57Fe isotope to perform Mössbauer spectroscopy. This isotope is used most frequently

in experiments for several reasons described in [66] and is particularly analyzed in the

current thesis.

Let us suppose first that, a 57Fe nucleus is in an excited state Ee and embedded in a

solid matrix, and it makes a transition to the ground state Eg. Denoting E0
γ = Ee − Eg,

then gamma quanta energy resulting from such a transition will be Eγ = E0
γ −ER, where
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Figure 1.1.: Schematic spectrum of 57Fe gamma emission for: a) weakly bound atom, and b)
fixed atom.

ER is the nucleus recoil energy. Hence, this energy will be different from the intrinsic

energy level difference E0
γ . Momentum conservation implies that the momentum of the

recoiling nucleus has equal value and opposite direction to the momentum of the emitted

gamma ray: pR = −pγ. This in turn translates to a recoil energy of the nucleus of:

ER =
p2
R

2M
=

p2
γ

2M
=

E2
γ

2Mc2
∼=

(E0
γ)

2

2Mc2
(1.23)

as usually the recoil energy is very small. Here M is the mass of the nucleus.

However, due to the Mössbauer effect in solids, depending on the recoil energy

ER value, it may not be able to excite phonon states in the crystal lattice, because

the phonon’s energy levels are quantized. In this case the recoil energy is distributed

throughout the mass of the crystal, as a consequence of which ER has a very small value

and the gamma quanta emission is done practically at the energy E0
γ .

Figure 1.1 shows schematically the distribution of the gamma radiation emitted by

the nucleus (in this case 57Fe) embedded in a solid matrix for two cases:

a) The nucleus is weakly bound to the crystal lattice.

b) The nucleus is fixed in the crystal lattice.

This figure shows that if the 57Fe atom is strongly bound to the crystal lattice then

the nuclear transition line will be more narrow, therefore increasing the gamma radiation

proportion of the characteristic line with energy E0
γ that is emitted without recoil energy.



18 Hyperfine interactions techniques

This process constitutes the essence of the Mössbauer effect. The probability that the

E0
γ emission without recoil energy is carried out is known as the Mössbauer factor f , it

is expressed as:

f = exp[−k2〈x2〉] (1.24)

where 〈x2〉 expressed the average quadratic deviation of the nucleus from its balance

position. From this equation is clear that, for weakly bound nucleus 〈x2〉 is very high

and the Mössbauer factor, f , diminishes, in conformity with Figure 1.1 representation.

These statements for the emission, are also valid for the absorption of gamma quanta

with energy E0
γ from the ground state Eg to the excited state Ee.

In Figure 1.2 the schematic outline of the Mössbauer effect measurement in the

transmission geometry is represented. A source (S) (i.e 57Co in a given matrix Pd, Rh,

etc.) is fixed to a transducer that develops a periodic movement, giving to the source a

lineal speed ~v(t) with a dependence of the transducer characteristic time.

Figure 1.2.: Representation of the typical outline of the Mössbauer effect measurement in the
transmission geometry.

Under static conditions this resonant absorption would not take place due to the

reasons explained before, since the natural width Γ of the line is much smaller than the

value ∆E
(1)
i of those hyperfine interactions. To solve this difficulty, the source (S) needs

to be moved at certain speed v(t).

Then, due to the Doppler effect of first order, the source (S) will emit the characteristic

radiation E0
γ with a small energy variation δE given by the relative speed v(t) of the

source (S) with respect to the absorbent (A), that is supposed to be in rest.

When the gamma quanta with energy E0
γ + δE interact with the absorbent (A), they

can produce the 57Fe transition from the ground state EA
g to the excited one EA

e with

the probability f .
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In general, ES
g 6= EA

g and ES
e 6= EA

e , then EA
e − EA

g 6= ES
e − ES

g , because those 57Fe

nuclei are embedded in different matrix, reason why the isomer shift δ 6= 0, while the

magnitude of the nuclear quadrupole hyperfine interaction ĤQS is also different because

the EFG depends on each particular matrix.

The detection system (D) is synchronized in time with the transducer. In that way,

each velocity value, vi, corresponds to a specific channel i in the multichannel counter.

In 57Fe Mössbauer Spectroscopy one usually works with the gamma emission and

absorption among the excited level with Ie = 3
2

and the ground level Ig = 1
2
. The emitted

gamma quanta energy value is 14.4 keV. In Figure 1.3 the simplified disintegration scheme

of 57Mn(57Fe) is shown.

Figure 1.3.: Simplified disintegration scheme of 57Mn(57Fe) [68].

The hyperfine interactions in the case of a transition 1
2
−→ 3

2
is schematically

represented in Figure 1.4. The first interaction is the Isomer Shift, expressed by Eq.

(1.13). This Eq. (1.13) can be expressed in terms of the difference between the electron

density at the nucleus in the absorber ρA(0) and in the source ρS(0) using the following

expression [69]:

δ =
2

3
πZS(Z)[〈R2〉e − 〈R2〉g][ρA(0)− ρS(0)] (1.25)

where S(Z) is a correction for the relativistic effects.
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Figure 1.4.: Schematic representation of the hyperfine interactions in the case of a transition
1
2 −→

3
2 , like that of 57Fe.

The second perturbation of the nuclear levels is caused by the interaction between

the nuclear quadrupole moment and the EFG at the nucleus created by the surrounding

electron charge density. As a result, the Mössbauer spectrum will consist of two lines,

called a doublet. The isomer shift in this case is measured at the center of the doublet.

The separation in energy of the doublet is expressed by ∆, which can be evaluated from

Eq. (1.19) for the 1
2
−→ 3

2
transition as:

∆ =
1

2
eQVzz

(
1 +

1

3
η2

) 1
2

(1.26)

A third perturbation of the nuclear energy levels occurs in the presence of a magnetic

field and yields different energies with regard to the orientations of the nuclear magnetic

moment mI relative to the field direction. Each nuclear level of non-zero spin is shifted

into 2I + 1 sub-levels reached by shifting it by Em = −gµNBmI (see Eq. (1.21)).
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For example, in the case of iron, the ground level will undergo a symmetric splitting

(I = 1/2,mI = +1/2,mI = −1/2) and the first excited state is split into four sub-levels

(I = 3/2,mI = +3/2,mI = +1/2,mI = −1/2,mI = −3/2). Among the eight possible

transitions between the two sub-levels of the ground state and the four sub-levels of the

excited state only six are allowed by the quantum mechanical selection rule, and the

resonance spectra consist of six lines or a sextet. The isomer shift is measured at the

center of the sextet (Fig. 1.4). And B is proportional to the difference between the

positions of two lines of the spectrum; the outermost ones are generally considered in the

data analysis for better precision [69].

A typical spectrum measured in transmission, is shown in Figure 1.5. This measure-

ment was done in a constant acceleration spectrometer, with a 57Co(Pd) source, to a

normal pressure (AM) synthesized sample Fe0.5Cu0.5Ba2YCu2O7.24 [39]. The line positions

in this case are directly related with the electrical hyperfine interactions (IS and Electric

Quadrupole). These positions are commonly expressed in mm/s; in correspondence with

the energy increase of the gamma quanta that is produced by the transducer movement.

In the more simple case of the Nuclear Quadrupole Hyperfine Interaction effect, the
57Fe atoms are occupying a single crystallographic position, possessing a unique valency

state in a perfect crystal. In that way, all the 57Fe nuclei that are located in this site

experience an single type of Electrostatic Hyperfine Interaction. But in this case (see

Figure 1.5) there are at least three possible 57Fe occupation sites.

Figure 1.5.: Room-temperature transmission Mössbauer spectra of the normal pressure (AM)
sample Fe0.5Cu0.5Ba2YCu2O7.24 measured in [39]. The notation D(i)n, in the
figure, denotes that in the experiment was considered that the Fe occupies the
Cu(i) site with n-fold oxygen coordination and it is associated with double D.



22 Hyperfine interactions techniques

1.4.2. Perturbed angular correlation spectroscopy

The Perturbed Angular Correlation (PAC) spectroscopy is based on the hyperfine

interaction of the nucleus, similar to the Mössbauer effect spectroscopy, studying the

change of the angular correlation between those gamma quanta emitted successively in

the nucleus deexcitation.

If one has a nucleus that decays via a γ − γ cascade, as 111Cd (see figure 1.6), the

conservation of the angular momentum implies that the direction of emission of the

second gamma ray is strongly correlated with the direction of the first one.

Figure 1.6.: 111In(111Cd) disintegration scheme.

When an EFG exists in the nucleus, a state with half spin I can split in I + 1
2

sub-

states, as is shown in section 1.2.2. These states can be repopulated after the emission of

the first gamma γ1, which is equivalent to a nuclear spin reorientation. In the semi-classic

framework this effect is known as the Larmor precession around the EFG direction. As

a result of this precession a correlation between the direction of emission of the first

gamma quanta and the second one γ2 is established and is characterized by the angle

between both directions. This angular correlation can be expressed as the probability in

time W (θ, t) that γ2 is emitted in an angle θ with regard to γ1:

W (θ, t) =
1

τN
exp

(
− t

τN

)[
1 +

kmax∑
k=2,4,···

AkGk(t)Pk cos(θ)

]
(1.27)
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where Pk cos(θ) are the Legendre polynomials, Ak the time independent anisotropy

parameters that describe the spatial correlation, and τN is the half-time of the intermediate

nuclear state. Gk has implicit the angular correlation perturbation and it is what is

measured in the experiments. Nevertheless, this is feasible only when the intermediate

state has a relatively large life-time (> 1 ns).

In Eq. (1.27) the anisotropy terms A1 and A3 are not included in the expansion

due to the parity conservation in the gamma transitions. Also, the term A4 is small

compared to A2 and it is usually rejected in the measurements. The term A2 depends on

the properties of the nucleus and could be used as an experimental calibration variable,

so that it keeps information about the geometric effects (like the sample size and the

solid angle with the detector) and the absorption of the gamma rays in the sample. Once

it is determined for a given configuration, it could be taken as a fixed parameter in the

measurements. This way, the angular correlation expressed by Eq. (1.27) is reduced to:

W (θ, t) =
1

τN
exp

(
− t

τN

)
[1 + A2G2(t)P2cos(θ)] (1.28)

The perturbation function G2(t) is used to describe the gamma quanta angular corre-

lation changes when the nucleus interacts with the external EFG. For a polycrystalline

sample, it can be expressed as:

G2(t) = S20(η) +
3∑
i=1

S2i(η)cos(ωit)∆ (1.29)

where ωi represents the interaction frequencies corresponding to the transitions that

take place during the life-time of the intermediate state (when the new sub-states

created by the EFG action are repopulated). They are related to the differences of

the intermediate states by the expression ωi = ∆Ei/~. The S2i coefficients are the

interaction frequency amplitudes obtained from the Fourier transform of the spectrum of

both gamma coincidences, and ∆ is the line form factor that is related to the coupling

quadrupole constant νQ.

The Hamiltonian 1.19 allows, sometimes only in a numeric way, to obtain the difference

in energy among the spin sublevels I of a nuclear state when an EFG exists, as a function

of its main component Vzz. Through the PAC measurements these energy differences will

be obtained as a function of the mentioned precession frequencies ωi, so that it is possible

to find out the value of the EFG at the nucleus position. Each one of the frequencies will
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be a multiple of the quadrupole frequency ωQ value, which is proportional to Vzz [70]:

ωQ =
eQVzz

4I(2I − 1)~
(1.30)

The quadrupole frequency in other ways is also defined as [70]:

νQ =
eQVzz
h

(1.31)

where Q is the nuclear quadrupole moment, I, the spin of the intermediate level and e

the proton electric charge. The magnitude νQ is the one that is usually measured in the

PAC experiments and correlated with the EFG present at the probe nucleus.



Chapter 2.

Electronic structure calculation method

2.1. Quantum many body problem

The microscopic description of the physical and chemical properties of a material is a

complex problem. In general, it should represent the collection of atoms interacting via

forces that derive from some potential field. This ensemble of particles may be isolated

(molecules and clusters), extended (solids, surfaces, wires, and liquids), or a combination

of both (molecules in solution). However, in all cases we can unambiguously describe the

system by a number of nuclei and electrons interacting through Coulombic (electrostatic)

forces. Formally, the Hamiltonian of such a system can be separated in the following

terms:

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂ne (2.1)

where T̂n and T̂e are the kinetic energy operators of nuclei and electrons respectively,

V̂nn represent the repulsive Coulomb interaction between the nuclei and V̂ee the same for

electrons, while V̂ne is the potential energy of the electrons in the field of nuclei. These

25
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terms can be written in the following general form:

T̂n =−
P∑
I=1

~2

2MI

∇2
I

T̂e =−
N∑
i=1

~2

2me

∇2
i

V̂nn =
1

8πε0

P∑
I=1

P∑
J 6=I

ZIZJe
2

|RI −RJ |

V̂ee =
1

8πε0

N∑
i=1

N∑
j 6=i

e2

|ri − rj|

V̂ne =− 1

4πε0

P∑
I=1

N∑
i=1

ZIe
2

|RI − ri|

(2.2)

where R = {RI}, I = 1...P , is a set of P nuclear coordinates, and r = {ri}, i = 1...N ,

is a set of N electronic coordinates. ZI and MI are the P nuclear charges and masses,

respectively; and me is the electron mass.

Electrons are fermions, so that the total electronic wave function must be antisym-

metric with respect to exchange of two electrons. Nuclei can be fermions, bosons or

distinguishable particles, according to the particular problem under examination. In

principle, all the properties can be derived by solving the time independent Schrödinger

equation:

ĤΨi(r,R) = EiΨi(r,R) (2.3)

where Ei are the energy eigenvalues and Ψi(r,R) are the corresponding eigenstates, or

wave functions.

In practice, this problem is almost impossible to treat in a full quantum mechanical

framework. Only in a few cases a complete analytic solution is available, and numerical

solutions are also limited to a very small number of particles. There are several features

that contribute to this difficulty. First, this is a multicomponent many-body system,

where each component (each nuclear species and the electrons) obey a particular statistics.

Moreover, the complete wave function cannot be easily factorized because of Coulombic

correlations. In other words, the full Schrödinger equation cannot be easily decoupled

into a set of equations so that, in general, we have to deal with (3P + 3N) coupled
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degrees of freedom. The dynamics is an even more difficult problem. The usual choice is

to resort to some sensible approximations.

2.2. Born-Oppenheimer approximation

The first observation is that the time scale associated to the motion of the nuclei is

usually much slower than that associated to electrons. In fact, the small mass of the

electrons as compared to that of the protons means that their velocity is much larger.

Then, with this assumption the ions are in a stationary configuration and the electrons

will be in instantaneous equilibrium with them. This is known as the Born-Oppenheimer

approximation and can be cast in a formal mathematical framework by proposing a

solution to Eq. (2.3) of the following form [71, 72]:

Ψ(R, r) = Θn(R)Φn(R, r) (2.4)

where Φn(R, r) are the eigenstates of the electronic Hamiltonian and Θn(R) are the

nuclear wave function. The Schrödinger equation of the electrons corresponding to a

particular nuclear configuration is written as follows:

ĤeΦn(R, r) = εnΦn(R, r) (2.5)

where,

Ĥe = T̂e + V̂ee + V̂ext (2.6)

Here, V̂ext is the potential energy of the electrons moving in the potential of the nuclei,

represented as V̂ne in Eq. 2.1. In this partial differential equation on the r variables,

R enters as a parameter. This expansion, which is always mathematically possible, is

called the expansion in the adiabatic basis. Eq. (2.5) has to be solved for all nuclear

configurations where the nuclear wave function is non-zero.

The quantum many-body problem obtained after the Born-Oppenheimer approxi-

mation is much simpler than the original one, but still this is very difficult to solve.

Several methods exist to reduce Eq. (2.5) to an approximate but tractable form. One of

the most important is the Hartree-Fock method (HF) [71], which is routinely used as a
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starting point for more elaborated calculations like Møller-Plesset perturbation theory or

by configuration interaction method (CI).

Parallel to the development of this line in electronic structure theory, Thomas and

Fermi proposed, at about the same time as Hartree (1927-1928), that the full electronic

density was the fundamental variable of the many-body problem, and derived a diffe-

rential equation for the density without resorting to one-electron orbitals [73, 74]. The

Thomas-Fermi approximation was actually too crude because it did not include exchange

and correlation effects, and was also unable to sustain bound states because of the

approximation used for the kinetic energy of the electrons. However, it set up the basis

for the later development of Density Functional Theory (DFT).

2.3. Density functional theory method

The total energy of an inhomogeneous system composed by N interacting electrons is

given by the following expectation value [71, 72]:

E =
〈

Φ
∣∣∣T̂ + V̂ext + V̂ee

∣∣∣Φ〉 =
〈

Φ
∣∣∣T̂ ∣∣∣Φ〉+

〈
Φ
∣∣∣V̂ext∣∣∣Φ〉+

〈
Φ
∣∣∣V̂ee∣∣∣Φ〉 (2.7)

where |Φ〉 is the N-electron wave function. This wave function has to include correlations

amongst electrons, and its general form is basically unknown. T̂ is the kinetic energy

operator, V̂ext is the interaction with an external field, and V̂ee is the electron-electron

interaction. The analysis will focus on this latter term, which introduces the many-body

effects.

Vee =
〈

Φ
∣∣∣V̂ee∣∣∣Φ〉 =

〈
Φ

∣∣∣∣∣12
N∑
i=1

N∑
j 6=i

1

|ri − rj|

∣∣∣∣∣Φ
〉

=

∫∫
ρ2(r, r′)

|r− r′|
drdr′ (2.8)

with

ρ2(r, r′) =
1

2

〈
Φ
∣∣∣Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)

∣∣∣Φ〉 (2.9)

the two-body density matrix expressed in real space, being Ψ̂ and Ψ̂† the destruc-

tion and creation operators for electrons, which obey the anticommutation relations{
Ψ̂(r), Ψ̂†(r′)

}
= δ(r− r′). Defining the two-body direct correlation function g(r, r′) in



Electronic structure calculation method 29

the following way:

ρ2(r, r′) =
1

2
ρ1(r, r)ρ1(r′, r′)g(r, r′) (2.10)

where ρ1(r, r′) =
〈
Φ
∣∣Ψ†(r)Ψ(r′)

∣∣Φ〉 is the one-body density matrix (in real space), whose

diagonal elements ρ(r) = ρ1(r, r) represent the electron density. With this definition, the

electron-electron interaction can be written as:

Vee =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ +

1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
[g(r, r′)− 1]drdr′ (2.11)

The first term is the classical electrostatic interaction energy corresponding to a

charge distribution ρ(r). The second term includes correlation effects of both, classical

and quantum origin. Basically, g(r, r′) takes into account the fact that the presence of

an electron at r excludes the possibility that a second electron comes to a position r′

very close to r, because of the Coulomb repulsion. In other words, the probability of

finding two electrons (two particles with charges of the same sign, in the general case)

is reduced with respect to the probability of finding them at infinite distance. This is

the case at the classical level, and it is further modified at the quantum level. Purely

quantum exchange further decreases this probability in the case of electrons having the

same spin projection.

To understand the effect of exchange, let us imagine that we stand on an electron

with spin ↑, and we look at the density of the other (N−1) electrons. The Pauli principle

forbids the presence of electrons with spin ↑ at the origin, but it says nothing about

electrons with spin ↓, which can be at the origin. Therefore:

gX(r, r′)→ 1

2
for r→ r′ (2.12)

If one postulates a total wave function of the form of a Slater determinant, the

electron-electron interaction can be rewritten as:

Vee =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ − 1

2

∫∫
ρ(r)ρ(r′)

|r− r′|

[
− ρ2

1(r, r′)

2ρ(r)ρ(r′)

]
drdr′ (2.13)
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meaning that the exact expression for the exchange depletion (also called exchange hole)

in the HF limit is:

gX(r, r′) = 1− 1

2

ρ2
1(r, r′)

ρ(r)ρ(r′)
(2.14)

The calculation of the correlation hole (gC(r, r′) = g(r, r′) − gX(r, r′)) is a major

problem in many-body theory and, up to the present, it is an open problem in the general

case of an inhomogeneous electron gas. The exact solution is known numerically, and

also in some analytic derivations, for the homogeneous electron gas. There are seve-

ral approximations that go beyond the homogeneous limit by including slowly varying

densities through its spatial gradients (gradient corrections), and others [71].

Finally, the energy of a many-body electronic system can be written as:

E = T + Vext +
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + EX + EC (2.15)

where

Vext =
P∑
I=1

〈
Φ

∣∣∣∣∣
N∑
i=1

υext(ri −RI)

∣∣∣∣∣Φ
〉

=
P∑
I=1

∫
ρ(r)υext(r−RI)dr (2.16)

T =

〈
Φ

∣∣∣∣∣− ~2

2me

N∑
i=1

∇2
i

∣∣∣∣∣Φ
〉

= − ~2

2me

∫ [
∇2

rρ1(r, r′)
]
r′=r

dr (2.17)

and EX and EC are the exchange and correlation energies, respectively.

2.3.1. The Hohenberg and Kohn theorems

In 1964, P. Hohenberg and W. Kohn [75] formulated and proved a theorem supporting

the former ideas, which were first proposed by Thomas and Fermi. The theorem is

divided into two parts:

Theorem: The external potential υext(r) is unequivocally determined by the electronic

density ρ(r), except for a trivial additive constant.

Corollary: Since ρ(r) unequivocally determines υext(r), then it also determines the

ground state wave function ΨGS.
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Theorem: Let ρ̃(r) be a non-negative density normalized to N . Then: E0 < Eυ[ρ̃],

for

Eυ[ρ] = T [ρ] + U [ρ] +

∫
ρ(r)υ(r)dr (2.18)

with

U [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + EX [ρ] + EC [ρ] (2.19)

The inequality follows from Rayleigh-Ritz’s variational principle for the wave function,

but applied to the electronic density. Therefore, the variational principle says:

δ

{
Eυ[ρ]− µ

(∫
ρ(r)dr−N

)}
= 0 (2.20)

so that a general Thomas-Fermi-like equation is obtained [71]:

µ =
δEυ[ρ]

δρ
= υext(r) +

δF [ρ]

δρ
(2.21)

where F [ρ] = T [ρ] +U [ρ]. The knowledge of F [ρ] implies the solution of the ground state

density. It has to be remarked that F [ρ] is a universal functional which does not depend

explicitly on the external potential. It depends only on the electronic density. In the

Hohenberg-Kohn formulation, F [ρ] =
〈

Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉, where Ψ is the ground state wave

function. These two theorems are the basis of the density functional theory (DFT).

Following the Hohenberg-Kohn theorem, the electronic density determines the external

potential, but the density needs to corresponded to some antisymmetric wave function

derived from a potential, which is not always the case. However, DFT can be reformulated

in such a way that this is not necessary [71]. It can define

F [ρ] = min
{Ψ}→ρ

{〈
Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉} (2.22)

for non-negative ρ such that
∫
ρ(r)dr = N and

∫
|∇ρ1/2(r)|2dr < ∞, arising from an

antisymmetric wave function. In other words, the search is performed in the subspace of

all the antisymmetric Ψ that give rise to the same density ρ.
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DFT is exact for the electronic ground state provided that F [ρ] is known. However,

it does not say anything about (many-body) excited states. To solve the excited states is

a hard problem that is currently still researched [71].

2.3.2. The Kohn-Sham equations

A reasonably good description of the electron-electron interaction potential U can be

done by separating the electrostatic (classical Coulomb energy), exchange and correlation

contributions. The biggest difficulty is to deal with the correlation. This is, in fact, an

active field of research which has produced significant improvements in the 90’s. On the

contrary, there is a problem with the expression of the kinetic energy
〈

Ψ
∣∣∣T̂ ∣∣∣Ψ〉 in terms

of the electronic density.

In 1965, W. Kohn and L. Sham [76] proposed the idea of replacing the kinetic energy

of the interacting electrons with that of an equivalent non-interacting system, because

the latter can be easily calculated. Any density ρ(r) that derives from an antisymmetric

wave function can be written as:

ρ(r) =
∞∑
i=1

2∑
s=1

ni,s|ϕi,s(r)|2 (2.23)

where {ϕi,s(r)} are natural spin orbitals, and {ni,s} are the occupation numbers of these

orbitals. In that case, the kinetic energy can be written as

T =
2∑
s=1

∞∑
i=1

ni,s

〈
ϕi,s

∣∣∣∣− ~2

2me

∇2

∣∣∣∣ϕi,s〉 . (2.24)

These occupation numbers are actually an artifact arising from the fact that the

density is written in terms of a set of single-particle orbitals associated with non-

interacting fermions. The interacting many-body wave function has to be identified with

an occupation N , and not with a set of occupation numbers. However, bearing in mind

this conceptual difference, we can always think of ni,s as the occupation of orbital i and

spin s. For the moment we shall suppose that the equivalent non-interacting system, i.e.

a system of non-interacting fermions whose density coincides with that of the interacting

system, does exist. This can be called the non-interacting reference system of density
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ρ(r), which is described by the Hamiltonian

ĤR =
Ns∑
i=1

2∑
s=1

(
− ~2

2me

∇2
i + υR(ri)

)
(2.25)

with Ns = N/2. Here, the potential υR(r), or reference potential, is such that the ground

state density of ĤR equals ρ(r).

This Hamiltonian has no electron-electron interactions and, thus, its eigenstates can

be expressed in the form of Slater determinants

Ψs(r) =
1√
N !

SD[ϕ1,s(r1)ϕ2,s(r2) · · · ϕNs,s(rNs)] (2.26)

where we have choosen, at T = 0 K, the occupation numbers to be 1 for i ≤ Ns(s = 1, 2),

and 0 for i > Ns(s = 1, 2). This means that the density is written as

ρ(r) =
Ns∑
i=1

2∑
s=1

|ϕi,s(r)|2 (2.27)

while the kinetic term from Eq. 2.24 yields:

TR[ρ] =
2∑
s=1

Ns∑
i=1

〈
ϕi,s

∣∣∣∣− ~2

2me

∇2

∣∣∣∣ϕi,s〉 . (2.28)

The single-particle orbitals {ϕi,s(r)} are the Ns lowest eigenfunctions of ĥR = −∇2

2
+

υR(r), i.e. ĥRϕi,s(r) = εi,sϕi,s(r).

With this definition, the density functional is rewritten in the following form:

EKS[ρ] = TR[ρ] +

∫
ρ(r)υext(r)dr +

1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + EX [ρ] + ẼC [ρ] (2.29)

where the fact that TR[ρ] is the kinetic energy of the non-interacting reference system

implies that the correlation piece of the true kinetic energy has been ignored, and has

to be taken into account somewhere else. In practice this is done by redefining the

correlation energy functional in such a way as to include kinetic correlations. For that

reason the corresponding term is now expressed as ẼC in Eq. 2.29.

In this way the density functional is expressed in terms of N = N↑+N↓ orbitals. The

electron density is parametrized with a set of N orbitals, and the problem consist of
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minimizing the energy functional by applying the variational principle on the orbitals

instead of the density. In principle these orbitals are a mathematical object constructed

in order to render the problem more tractable, and do not have a physical meaning by

themselves, except in terms of the density. In practice, however, it is customary to think

of them as single-particle physical eigenstates. Only in the case that correlations are

weak, this intuitive idea makes sense.

Now, expression (2.29) could be minimized with respect to {ϕi,s(r)} by taking into

account that the orbitals have to be orthogonal, i.e.
∫
ϕ∗i,s(r)ϕj,u(r)dr = δijδsu, because

they are the N lowest eigenfunctions of a unique potential. This constraints enter into

the minimization problem as Lagrange multipliers:

ΩKS[{ϕi,s(r)}] = EKS[{ϕi,s(r)}]−
2∑
s=1

Ns∑
i=1

Ns∑
j=1

εij,s

∫
ϕ∗i,s(r)ϕj,s(r)dr (2.30)

Minimizing this functional with respect to each ϕi,s(r) gives the following set of

coupled differential equations:

δΩKS[{ϕi,s(r)}]
δϕ∗i,s(r)

=

{
− ~2

2me

∇2 + υext(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δEXC [ρ]

δρ

}
ϕi,s(r)

−
Ns∑
j=1

εij,sϕj,s(r) = 0

(2.31)

The effective potential (see below) is hermitian and, therefore, the matrix εij,s is

symmetric and can be diagonalized by a unitary transformation that keeps invariant the

total wave function (the Slater determinant), and thus the density. Such a procedure

brings us to the final result, which are the well-known, self-consistent Kohn-Sham

equations: {
− ~2

2me

∇2 + υeff (r)

}
ϕi,s(r) = εi,sϕj,s(r) (2.32)

where the effective potential υeff (r) is defined as:

υeff (r) = υext(r) +

∫
ρ(r′)

|r− r′|
dr′ + µXC [ρ] (2.33)
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and the electron density is constructed with the solutions of Kohn-Sham equations

ρ(r) =
Ns∑
i=1

2∑
s=1

|ϕi,s(r)|2 (2.34)

The exchange correlation potential µXC [ρ] defined above is simply the functional

derivative of the exchange-correlation energy δEXC [ρ]/δρ.

The solution of Kohn-Sham equations has to be obtained by an iterative procedure,

in the same way as for Hartree and Hartree-Fock equations [71]. As in these methods,

the total energy cannot be written simply as the sum of the eigenvalues εi,s, but double

counting terms have to be subtracted:

EKS[ρ] =
Ns∑
i=1

2∑
s=1

εi,s −
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ +

{
EXC [ρ]−

∫
ρ(r)µXC [ρ]dr

}
(2.35)

This theory is able to solve the complicated many-body electronic ground state problem

by mapping the many-body Schrödinger equation into a set of N coupled single-particle

equations. Therefore, given an external potential, we are in a position to find the electron

density, the energy, and any ground state property we want to (e.g. stress, phonon’s, etc.).

The density of the non-interacting reference system is equal to that of the true interacting

system. Up to now the theory is exact, all the ignorance about the many-fermion

problem has been displaced to the ẼC [ρ] term, while the remaining terms in the energy

are well-known. In the next section we are going to discuss the exchange and correlation

functionals.

2.3.3. The exchange-correlation functional

We have shifted the ignorance about the quantum many-body problem towards the

exchange and correlation functional EXC [ρ]. If we knew the exact expression for the

kinetic energy including correlation effects, i.e. T [ρ], then

EXC [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
[g(r, r′)− 1]drdr′ (2.36)

Since we are using the uncorrelated expression for the kinetic energy, i.e. the

one for non-interacting fermions TR[ρ], we have to use a slightly different expression:
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ẼXC [ρ] = EXC [ρ] + T [ρ]− TR[ρ]. It can be shown that the kinetic contribution to the

correlation energy (the kinetic contribution to exchange is just Paulis principle, which is

already contained in TR[ρ] and in the density when adding up the contributions of the N

lowest eigenstates) can be taken into account by averaging the pair correlation function

g(r, r′) over the strength of the electron-electron interaction, i.e.

ẼXC [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
[g̃(r, r′)− 1]drdr′ (2.37)

where

g̃(r, r′) =

∫ 1

0

gλ(r, r
′)dλ (2.38)

and gλ(r, r
′) is the pair correlation function corresponding to the Hamiltonian Ĥ =

T̂ + Û + λV̂ee [77]. If we separate the exchange and correlation contributions, then:

g̃(r, r′) = 1− 1

2

ρ2
1(r, r′)

ρ(r)ρ(r′)
+ g̃C(r, r′) (2.39)

with ρ1(r, r′) the one-body density matrix, which in general is a non-diagonal operator.

The diagonal elements of it constitute the electron density. For the homogeneous electron

gas the expression for ρ1 is well-known, so that the exchange pair correlation assumes

the analytic closed form

gX(r, r′) = gX(|r− r′|) = 1− 9

2

(
j1(kF |r− r′|)
kF |r− r′|

)2

(2.40)

where j1(x) = [sin(x)− x cos(x)]/x2 is the spherical Bessel function of order 1 and kF

is the Fermi momentum. We are now going to define the exchange-correlation hole

ρ̃XC(r, r′) in the following form:

ẼXC [ρ] =
1

2

∫∫
ρ(r)ρ̃XC(r, r′)

|r− r′|
drdr′ (2.41)

or

ρ̃XC(r, r′) = ρ(r′)[g̃(r, r′)− 1] (2.42)

This means that ẼXC [ρ] can be written as the interaction between the electronic

charge distribution and the charge distribution that has been displaced by exchange
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and correlation effects, i.e. by the fact that the presence of an electron at r reduces the

probability for a second electron to be at r′, in the vicinity of r. Actually, ρ̃XC(r, r′)

is the exchange-correlation hole averaged over the strength of the interaction, which

takes into account kinetic correlations. The properties of g̃(r, r′) and ρ̃XC(r, r′) are very

interesting and instructive:

1. g̃(r, r′) = g̃(r′, r) (symmetry)

2.
∫
g̃(r, r′)ρ(r′)dr′ =

∫
g̃(r, r′)ρ(r)dr = N − 1 (normalization)

3.
∫
ρ̃XC(r, r′)dr′ =

∫
ρ̃XC(r, r′)dr = −1

This means that the exchange-correlation hole contains exactly one displaced electron.

This sum rule is very important, and it has to be verified by any approximation used for

ρ̃XC(r, r′). If we separate the exchange and correlation contributions, it is easy to see that

the displaced electron comes exclusively from the exchange part, and it is a consequence

of the form in which the electron-electron interaction has been separated. In this way,

the interaction of the electron with itself is exactly canceled by the exchange interaction

of the full charge density with the displaced density. However, exchange is more than

that. It is a nonlocal operator whose local component is minus the self-interaction. On

the other hand, the correlation hole integrates to zero
∫
ρ̃C(r, r′)dr′ = 0 so that the

correlation energy corresponds to the interaction of the charge density with a neutral

charge distribution [71].

The Local Density Approximation (LDA)

This has been for a long time the most widely used approximation to the exchange-

correlation energy. It has been proposed in the seminal paper by Kohn and Sham, but

the philosophy was already present in Thomas-Fermi theory [71]. The main idea is to

consider the general inhomogeneous electronic systems as locally homogeneous, and then

to use the exchange-correlation hole corresponding to the homogeneous electron gas for

which there are very good approximations and also exact numerical (quantum Monte

Carlo) results. This means:

ρ̃LDAXC (r, r′) = ρ(r)
{
g̃h[|r− r′|, ρ(r)]− 1

}
(2.43)

with g̃h[|r−r′|, ρ(r)] the pair correlation function of the homogeneous gas, which depends

only on the distance between r and r′, evaluated at the density ρh which locally equals
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ρ(r). Within this approximation, the exchange-correlation energy density is defined as:

εLDAXC [ρ] =
1

2

∫
ρ̃LDAXC (r, r′)

|r− r′|
dr′ (2.44)

and the exchange-correlation energy becomes

ELDA
XC [ρ] =

∫
ρ(r)εLDAXC [ρ]dr. (2.45)

In general, the exchange-correlation energy density is not a functional of ρ. From

its very definition it is clear that it has to be a non-local object, because it reflects the

fact that the probability of finding an electron at r depends on the presence of other

electrons in the surroundings, through the exchange-correlation hole.

Looking at expression (2.43), it may seem that there is an inconsistency in the

definition. The exact expression would indicate to take ρ(r′) instead of ρ(r). However,

this would make of εLDAXC [ρ] a non-local object which would depend on the densities at r

and r′, and we want to parametrize it with the homogeneous gas, which is characterized

by only one density. This is the essence of the LDA, and it is equivalent to postulate:

g̃(r, r′) = g̃h[|r− r′|, ρ(r)]

(
ρ(r)

ρ(r′)

)
(2.46)

Therefore, there are in fact two approximations embodied in the LDA:

1. The exchange-correlation hole is centered at r, and interacts with the electronic

density at r. The true exchange-correlation hole is actually centered at r′ instead of

r.

2. The pair correlation function (g) is approximated by that of the homogeneous

electron gas of density ρ(r) corrected by the density ratio ρ(r)/ρ(r′) to compensate

the fact that the LDA exchange-correlation hole is centered at r instead of r′.

The Local Spin Density Approximation

In magnetic systems or, in general, in cases where open electronic shells are involved, better

approximations to the exchange-correlation functional can be obtained by introducing

the two spin densities, ρ↑(r) and ρ↓(r), such that ρ(r) = ρ↑(r) + ρ↓(r), and ζ(r) =

(ρ↑(r) − ρ↓(r))/ρ(r) is the magnetization density. The non-interacting kinetic energy
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(2.28) splits trivially into spin-up and a spin-down contributions, and the external and

Hartree potential depend on the full density ρ(r), but the approximate XC functional

(even if the exact functional should depend only on ρ(r)) will depend on both spin

densities independently, EXC = EXC [ρ↑(r), ρ↓(r)]. Kohn-Sham equations then read

exactly as in (2.32), but the effective potential υeff (r) now acquires a spin index:

υ↑eff (r) = υext(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δEXC [ρ↑(r), ρ↓(r)]

δρ↑(r)

υ↓eff (r) = υext(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δEXC [ρ↑(r), ρ↓(r)]

δρ↓(r)

The density given by expression (2.34) contains a double summation, over the spin

states and over the number of electrons in each spin state, Ns. These later have to

be determined according to the single-particle eigenvalues, by asking for the lowest

N = N↑ +N↓ to be occupied. This defines a Fermi energy εF , such that the occupied

eigenstates have εi,s < εF .

In the case of non-magnetic systems ρ↑(r) = ρ↓(r), and everything reduces to the

simple case of double occupancy of the single-particle orbitals, and then the calculations

spare half of the computer time.

The equivalent of the LDA in spin-polarized systems is the local spin density approx-

imation (LSDA), and it basically consists of replacing the XC energy density with a

spin-polarized expression:

ELSDA
XC [ρ↑(r), ρ↓(r)] =

∫
[ρ↑(r) + ρ↓(r)]εhXC [ρ↑(r), ρ↓(r)]dr (2.47)

obtained, for instance, by interpolating between the fully-polarized and fully-unpolarized

XC energy densities using an appropriate expression that depends on ζ(r) [78].

Generalized Gradient Approximations

Several works have been done to improve the LDA and construct better approximations.

Undoubtedly, and probably because of its computational efficiency and its similarity to the

LDA, the most popular approach has been to introduce semilocally the inhomogeneities

of the density, by expanding EXC [ρ] as a series in terms of the density and its gradients.

This approach, known as generalized gradient approximation (GGA), is easier (and
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cheaper) to implement in practice than full many-body approaches, and has been quite

successful in improving some features over the LDA.

The exchange-correlation energy has a gradient expansion

EXC [ρ] =

∫
AXC [ρ]ρ(r)4/3 dr +

∫
CXC [ρ] |∇ρ(r)|2/ρ(r)4/3 dr + · · · (2.48)

which is asymptotically valid for densities that vary slowly in space. The LDA retains

only the leading term of Eq. (2.48). It is well-known that a straightforward evaluation of

this expansion is ill-behaved, in the sense that it is not monotonically convergent, and it

exhibits singularities that cancel out only when an infinite number of terms is resumed.

In fact, the first-order correction worsens the results, and the second order correction

is plagued of divergences [79]. The largest errors of this approximation actually arise

from the gradient contribution to the correlation term. Provided that the problem of

the correlation term can be cured in some way, the biggest problem remains with the

exchange energy.

Many papers have been devoted to the improvement of the exchange term within DFT

[71]. In general, those GGAs are either based on theoretical developments that reproduce

the exact results in some known limits, or that are generated by fitting a number of

parameters to a molecular database (training set). Normally, these improve some of the

drawbacks of the LDA. The basic idea of GGAs is to express the exchange-correlation

energy in the following form:

EXC [ρ] =

∫
ρ(r)εXC [ρ(r)]dr +

∫
FXC [ρ(r),∇ρ(r)]dr (2.49)

where the function FXC is asked to satisfy a number of formal conditions for the exchange-

correlation hole, like sum rules, long-range decay, etc. Naturally, not all the formal

properties can be enforced at the same time, and this differentiates one functional from

another. A comparison of different GGAs can be found in [71].

In the present work the Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-

tional [80] is used. This GGA retains the correct features of LDA (LSDA), and combines

them with the nonlocality features which are supposed to be the most energetically

important. It sacrifices a few correct, but less important features, like the correct second-

order gradient coefficients in the slowly-varying limit, and the correct nonuniform scaling

of the exchange energy in the rapidly varying density region.
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2.4. Solving the electronic problem in practice

Solids are macroscopic objects constituted by a huge number of atoms, of the order of

the Avogadro number (6× 1023). This justifies the standard approach of describing solids

as an infinite collection of atoms. Crystalline solids are those in which a small number of

atoms (a basis) is infinitely replicated along d different directions in space, where d is

the dimensionality of space. Bulk solids are replicated in three dimensions, surfaces in

two, and wires in one. These directions are defined by d linearly independent vectors.

There are infinitely many ways of characterizing a crystalline solid, depending on the

choice of the set of atoms that are replicated. However, there is only one choice with

the minimal number of atoms that contains the whole symmetry of the system. This is

called the primitive cell, like for instance the Wigner-Seitz cell, which contains all the

information about the point group symmetry underlying the crystalline structure. The

vectors that serve to reconstruct the infinite solid from this cell are also unique, and are

called primitive vectors. The set of points in space corresponding to integer combinations

of the primitive vectors receives the name of Bravais lattice, of which there are only 14

in three dimensions with 36 associated point group symmetries. The combination of the

translational symmetry present in the Bravais lattice plus the point group symmetry of

the basis, gives rise to 230 space groups, which are sufficient to classify all the known

crystalline solids. We will call {ai}, i = 1, 2, 3, the primitive vectors, and the volume of

the cell is going to be Ω = a1 · (a2 × a3). The Wigner-Seitz cell can be constructed by

drawing a line perpendicular to each unit vector exactly at its mid point.

The properties of the infinite system are connected to those of the unit cell by means

of Blochs theorem:

Theorem(Bloch): the wave function of an electron in an external periodic potential

V (r) = V (r + ai) can be written as the product of a function with the same periodicity

of the potential, and a purely imaginary phase factor arising from the translational

symmetry, i.e.

Ψk(r) = eik·ruk(r) (2.50)

with uk(r) = uk(r + ai). This implies that:

Ψk(r + ai) = eik·aiΨk(r) (2.51)
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The reciprocal lattice vectors are defined by the relation ai · bj = 2πδij, such that

eiai·bj = 1. This implies:

b1 = 2π
a2 × a3

Ω
; b2 = 2π

a3 × a1

Ω
; b3 = 2π

a1 × a2

Ω
(2.52)

and the volume of the reciprocal cell is: b1 · (b2 × b3) = (2π)3/Ω. The cell defined by

the reciprocal vectors corresponding to the primitive vectors is called the first Brillouin

zone, or Brillouin zone for short (BZ). The idea is that any vector outside the BZ can be

written as k = k′+ G with k′ inside the BZ and G = n1b1 +n2b2 +n3b3, with ni integer

numbers. In other words, the whole reciprocal space can be covered by translating the

BZ with vectors of the reciprocal lattice. It is clear that eiG·ai = 1 ⇒ eik·ai = eik
′·ai .

Such a periodic wave function obeys the Schrödinger equation{
− ~2

2me

∇2 + V (r)

}
Ψk(r) = εkΨk(r) (2.53)

where εk is the energy of the wave. It is easy to see that there is a family of solutions

Ψk+G(r) and Ψk′+G′(r) with the same energy, provided that |k + G| = |k′ + G′|, for

instance k′ = k + (G−G′). It is then clear that for every vector k′ we can always find

another vector k in the first BZ such that εk = εk′ . Since wave functions of identical

energy mix together, then the solutions of the eigenvalue problem have to be searched in

the degenerate subspaces {Ψk+G(r)}, where G represent all the reciprocal lattice vectors.

Therefore, we can focus on the solution of the eigenvalue problem for k vectors in the

first BZ, and then obtain trivially the solution for any vector outside the first BZ that is

connected with k through a lattice vector G. A more detailed treatment of solid state

theory can be found in any specific book on the subject [81].

In conclusion, the calculation of the wave function for each of the infinite number

of electrons in the infinite solid, is mapped, via Bloch theorem, onto the calculation of

the wave function for a finite number of electrons in the unit cell, at an infinite number

of k vectors in the first BZ. Obviously, we do not want to solve the electronic problem

for an infinite number of Bloch states. Nearby k vectors carry very similar information.

Therefore, it should be possible to reproduce the required physical properties to the

desired numerical accuracy by using the wave functions at a finite number of k-points in

the first BZ.

The central problem in electronic structure at the single-particle approximation level

is, then, to self-consistently solve a set of N coupled, 3-dimensional, partial differential
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equations. In the Kohn-Sham formulation of DFT for infinite systems, this set of

equations reads [71]:

ĤKSΨk,i(r) =

{
− ~2

2me

∇2 + υext(r) +

∫
ρ(r′)

|r− r′|
dr′ + µXC [ρ]

}
Ψk,i(r) = εk,iΨk,i(r)

(2.54)

The coupling arises through the electronic density, which is now expressed as a BZ

average,

ρ(r) =
∑
k∈BZ

ωk

Nk∑
i=1

|Ψk,i(r)|2 (2.55)

where the sum runs over all k vectors in the BZ of the unit cell, Nk is the number of

electronic states that are occupied at that particular k-point and ωk are weight factors

that depend on the symmetry of the unit cell. If the system is insulating, then Nk is

independent of k and equal to the number of electrons N (if there is spin degeneracy

the number of independent eigenfunctions is N/2, so that the sum is performed up to

N/2, and the result multiplied by 2. For metallic systems the occupation numbers Nk

are determined by asking that the associated eigenvalues {εk,i}, i = 1 · · ·Nk, be smaller

than a certain value εF (the Fermi level). This latter is self-consistently adjusted to fulfill

the normalization condition:
∑

k∈BZ Nkωk = N .

The external potential υext(r) represents the interaction between the electrons and

the nuclei, and is expressed in the following way:

υext(r) = −e2

P∑
I=1

ZI
|r−RI |

(2.56)

The representation of the wave functions implies the choice of a basis set. Many

possibilities have been explored since the early times of solid state theory and quantum

chemistry, which can be divided into four main groups:

1. Extended basis sets: basis functions are delocalized, floating or centered at the

nuclear positions.

2. Localized basis sets: basis functions are localized, mainly centered at the nuclear

positions, but not uniquely.

3. Mixed basis sets: a combination of extended and localized basis functions.
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4. Augmented basis sets: an extended or localized basis set is augmented with atomic-

like wave functions in some region around the nuclei.

When dealing with extended systems (solids or liquids), it has to be ensured that

Bloch’s theorem is verified, in the sense that the combination of basis orbitals represent-

ing a solution to the Schrödinger equation must have the periodicity of the supercell.

Expanding the wave functions on some generic basis set |φkn >:

Ψk,j(r) =
M∑
n=1

Ckn,jφkn(r) , (2.57)

the Schrödinger equation becomes a matrix equation (secular equation):

M∑
m=1

(
Hk
nm − εk,jSk

nm

)
Ckm,j = 0 (2.58)

where Hk
nm =< φkn|Ĥ|φkm > and Sk

nm =< φkn|φkm >. In the above expressions, M is

the size of the basis set and j is a band index which labels the eigenvalues at fixed k

according to their energy. The number of occupied bands is N/2 (in the following we

focus on the spin unpolarized case) with N the number of electrons in the unit cell. The

overlap matrix Sk
nm appears in the secular equation because the basis functions do not

need to be mutually orthogonal. In fact, in many electronic structure methods the basis

set is non-orthogonal.

The electron-nuclear interaction is given by the bare Coulomb interaction. A first

class of methods deals with all the electrons in the system, both those participating in

the chemical bonding (valence electrons) and those tightly bound to the nuclei, which are

almost unchanged with respect to the atomic case (core electrons). These are generically

named all-electron methods. They can be constructed in a straightforward way by using

finely tuned localized basis sets, like in quantum chemistry methods, or by separating

the space in atomic spheres (as closely packed as possible) plus an interstitial region. In

this latter, the wave functions of the valence electrons are expanded in some basis set in

the interstitial region, and are augmented with atomic-like solutions inside the spheres

while the wave functions for the core electrons are obtained as solutions of the atomic

problem but taking into account the perturbation produced by the presence of the other

atoms. Such a sphere is often called a Muffin Tin sphere (MT) and are schematically

shown in Fig. 2.1, the part of space occupied by the spheres is the MT region (I); the

remaining space outside the spheres is called the interstitial region (II).
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Figure 2.1.: Partitioning of the unit cell into atomic spheres (I) and interstitial region (II)[82].

Since core electrons usually do not participate in chemical bonding, it is possible to

integrate out the corresponding degrees of freedom by considering a screened interaction

between the valence electrons and the ionic cores, i.e. nuclei plus core electrons. A

good description of the valence wave functions inside the ionic cores is, in most cases,

unnecessary, because one is usually concerned with bonding properties. In that case,

there is no lack of crucial information if the inner solution (inside the core radius) is

replaced with a smooth, nodeless pseudo-wave function, which behaves much better from

the numerical point of view. This pseudo-wave function is not the solution of the original

atomic problem, but the solution of a pseudo-atomic problem where the true potential

has been replaced by a pseudopotential. This type of approximations receive the name

of pseudopotential methods.

The pseudopotential methods is extremely useful to study physical properties of solids,

because most of them depend mainly on valence electrons. But, if you are interested in

information that is related with the region near the nucleus, like core level excitations,

hyperfine fields, etc. you need to deal with the all-electron methods. The main interest

of the present thesis is related with the hyperfine fields, then the all-electron method

programed in the WIEN2k code [82] is used. These methods and the one implemented

in WIEN2k will be discussed in detail below.
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2.5. All-electron methods

There are three main all-electron methodologies according to the basis set used in the

interstitial region [71]:

• Localized basis sets: This methodology is the most widely used in the quantum

chemistry community and is better describing molecular systems than solids.

• Muffin Tin Orbitals (MTO): The wave functions in the interstitial region are

expanded in spherical Hankel functions centered at the nuclear positions. Hankels

are solutions of the spherically symmetric Schrödinger equation in the absence of a

potential (as it is the case in the interstitial region) which are regular at the origin,

rapidly varying inside the Muffin Tin (MT), and exponentially decaying outside.

The method using nonlinear matching conditions [83] is due to Korringa, Kohn and

Rostocker (KKR) [84, 85]. The linear method, or LMTO, was originally proposed

by O. K. Andersen [86] and is one of the most popular all-electron methods because

it is very fast. The fastness arises from the fact that the basis functions can be finely

tuned so that a small number of them is enough to have a reasonable description of

the system. The treatment of the potential in the interstitial region is an expensive

part of the calculation with MTO’s. Methods that include self-consistently this

contribution receive the name of full-potential (e.g. FP-LMTO [87]). A much

faster method, although not very accurate, consists of approximating the potential

in the interstitial region with a constant value, and increasing the size of the MT

spheres until they touch each other (optimal close packing). This method is known

as the atomic sphere approximation (LMTO-ASA), and has been very widely used

in the past. Nowadays, FP methods have superseded it. MTO have a drawback

when they are used to study open structures. The interstitial vacuum is poorly

described unless empty spheres (MT spheres with zero charge) to fill the empty space

are included in the basis set. However, this renders more difficult the comparison of

different structures at the level of the energetics, and forces on the nuclei cannot be

computed. Modern developments along the LMTO line have very recently overcome

these difficulties.

• Augmented Plane Waves (APW): the wave functions in the interstitial region

are expanded in plane waves, which are the solutions of the Schrödinger equation

for free electrons in a box, and matched to atomic-like solutions inside the spheres.

Only the lowest angular momenta (l = 0, 1, 2, ..., lmax) are present inside the spheres,
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so that only these projections of the plane waves (PW) are matched [88]. The

components of the PW with angular momentum l > lmax are allowed to penetrate

inside the spheres without forcing any matching condition. This is the full-potential

version of the APW (FP-APW) method.

The version which linearizes the logarithmic derivatives is called Linearized aug-

mented plane waves (LAPW), is presently one of the most accurate electronic

structure method available and is the basis of the WIEN2k code [82]. The expansion

of the wave functions in the interstitials in PW gives a great flexibility because

there is no need of empty spheres as in LMTO methods.

2.6. The full potential augmented plane wave (APW)

methods

As mentioned before, the APW method uses a modified plane wave basis in the expansion

of Ψkn,j(r) (Eq. (2.57) ). In the interstitial region a plane wave expansion is used and

inside the atomic sphere, the wave functions are expanded by radial functions times

spherical harmonics [82, 89]:

φkn(r, El) =


1√
Ω

eikn·r r ∈ I∑
lm[Alm,knul(r, El)]Ylm(r̂) r ∈ II

(2.59)

where kn = k + Gn; Gn are the reciprocal lattice vectors, k is the wave vector inside the

first Brillouin zone, Ω is the unit cell volume and ul(r, El) is the (at the origin) regular

solution of the radial Schroedinger equation for energy El (chosen normally at the center

of the corresponding band with l-like character) and the spherical part of the potential

inside the sphere. The coefficients Alm,kn in the expansion are determined by a matching

conditions between the wave functions at the MT and the interstitial region at the MT

boundary.

In this approximation, the electron potential V (r) is expanded in the following form:

V (r) =


∑

G VGeiG·r r ∈ I∑
lm Vlm(r)Ylm(r̂) r ∈ II

(2.60)



48 Electronic structure calculation method

The APW-method itself is of no practical use any more due to its computationally

inefficiency. It can not get the eigenvalues from a single diagonalization because the un-

known parameter El in Eq. (2.59) and the exact value is needed to describe the eigenstate

Ψkn(r). The resulting eigenvalue problem is non-linear in energy, since El depends on

the function ul(r, El). Nevertheless, based on this method other approximations appear.

2.6.1. The linearized augmented plane wave (LAPW) method

To overcome this APW method non-linearity problem the LAPW method propose to

expand the radial function in Taylor series around El [82, 89]:

ul(r, El) = ul(r, E
0
l ) + (El − E0

l )u̇l(r, E
0
l ) +O((El − E0

l )
2) (2.61)

where

u̇l(r, E
0
l ) =

∂ul(r, El)

∂El

∣∣∣∣
El=E

0
l

(2.62)

In this case, if E0
l is set near El the radial function and energy errors are negligible.

Then the LAPW basis set can be defined as [82, 89]:

φkn(r, El) =


1√
Ω

eikn·r r ∈ I∑
lm[Alm,knul(r, El) +Blm,knu̇l(r, El)]Ylm(r̂) r ∈ II

(2.63)

The linear combination of ul and u̇l functions constitute the linearization of the radial

function; and they are obtained by numerical integration of the radial Schroedinger

equation on a radial mesh inside the sphere. The coefficients Alm,kn and Blm,kn are

determined by requiring that this basis function matches (in value and slope) each plane

wave (PW) the corresponding basis function of the interstitial region. Each plane wave

is augmented by an atomic-like function in every atomic sphere.

The solutions to the Kohn-Sham equations are expanded in this combined basis set

of LAPW’s according to the linear variation method (Eq. (2.57)) and the coefficients

Ckn,j are determined by the Rayleigh-Ritz variational principle. The convergence of this

basis set is controlled by a cutoff parameter RmtKmax = 6− 9, where Rmt is the smallest



Electronic structure calculation method 49

atomic sphere radius in the unit cell and Kmax is the magnitude of the largest k vector

in equation (2.57).

The linearized augmented plane wave with local orbitals (LAPW+LO) method

In order to improve the linearization, to make possible a consistent treatment of semicore

and valence states, additional basis functions can be added. This can be done by

introducing “local orbitals” (LO) [82, 89, 90]:

φLOlm = [Almul(r, E1,l) +Blmu̇l(r, E1,l) + Clmul(r, E2,l)]Ylm(r̂) (2.64)

The coefficients Alm, Blm and Clm are determined considering that φLO should be

normalized and has zero value and slope at the sphere boundary.

2.6.2. The augmented plane wave with local orbitals (APW+lo)

method

Another efficient way to linearize the APW method is achieved by introducing “local

orbitals” (lo) to the basis [91], but with ul(r, El) at a fixed energy El [82, 89]:

φlolm = [Almul(r, E1,l) +Blmu̇l(r, E1,l)]Ylm(r̂) (2.65)

This lo (which are distinct from the LO given in Eq. (2.64)) looks almost like the

LAPW-basis set, but Alm and Blm do not depend on kn and are determined considering

that the lo is zero at the sphere boundary and normalized.

2.7. Hyperfine interaction parameters calculation

through density functional theory

2.7.1. Hyperfine electric parameters calculation

Section 1.2 describes that in order to obtain the isomer shift δ of a given atom in a

sample one has to compare its electron density at the nucleus ρ0 with a reference. The
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ρ0 value is calculated by the WIEN2k code as a contact density evaluated at the first

radial mesh point [82]. In this approach, the isomer shifts can be calculated using the

following expression [92, 93]:

δ = α(ρsample0 − ρreference0 ) (2.66)

where α, is the nuclear calibration constant. Several reports of this calibration constant

exist in the literature for 57Fe and other nucleus [92–96]. In the present study, the value α

= -0.291 a.u.3 mm/s reported by Wdowik and Ruebenbauer [92] for the 57Fe Mössbauer

transition is used. The bcc Fe (with lattice constant a = 2.865 Å) was taken as reference,

as in the experimental reports for Si [20], ZnO [27, 28] and YBa2Cu3−xFexO7−y [39–42]

samples implanted or doped with 57Fe.

In order to evaluate Eq. 2.66 in a consistent way the same Rmt value and number

of radial mesh points are used for Fe, in the studied case and in the bcc Fe reference

calculation. The DFT calculation for the bcc Fe is performed with 286 k-points in the

irreducible part of the Brillouin zone; and the number of radial mesh points is fixed to

781 in all cases.

The EFG is defined as the second derivative of the electrostatic potential (Eq. (1.15)),

evaluated at the nuclear site of the probe atom (r = ~0) embedded in the material. The

EFG is a traceless symmetric tensor of rank 2, due to the Poisson equation:∑
α

Vαα = ρ(0) = 0 (2.67)

Due to the permutation of partial derivatives the tensor has to be symmetric, then

in order to determine the tensor unambiguously five independent quantities have to be

provided. In WIEN2k the potential is calculated using a spherical notation and the five

spherical components of the EFG tensor are calculated (L=2, M=-2, -1, 0, 1, 2). The

code finally evaluates the Cartesian components of the EFG tensor using the following

expressions [97]:

(Vαβ) =

√
15

16π
lim
r→0

1

r2
·


V22(r)− 1√

3
V20(r) V2,−2(r) V21(r)

V2,−2(r) −V22(r)− 1√
3
V20(r) V2,−1(r)

V21(r) V2,−1(r) 2√
3
V20(r)

 (2.68)
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The principal component Vzz can be obtained from the charge density ρ(r) as:

Vzz =

∫
ρ(r)

2P2(cos θ)

r3
dr (2.69)

where P2 is the second order Legendre polynomial.

The WIEN2k code give as an output Vzz and η. Then the quadrupole splitting (∆)

can be obtained using the following expression for the 1
2
−→ 3

2
transition of 57Fe [66]:

∆ =
1

2
eQVzz

(
1 +

1

3
η2

) 1
2

(2.70)

where e is the electron charge and Q is the 57Fe nuclear quadrupole moment, which was

determined by Dufek et al. [98] to be Q=0.16 b (1 b=10−28 m2). The ∆ values obtained

from Eq. (2.70) are expressed in eV, then to compare the results with the experimental

reports was considered that, for 57Fe MS, 48.14 neV is equivalent to 1 mm/s.

In the PAC experiments the spectra is decomposed in the frequency domain, obtaining

the characteristic quadrupole frequencies νQ values, that are proportionals to Vzz (see

section 1.4.2) [70]:

νQ =
eQVzz
h

(2.71)

where e is the electron charge, h is the Planck constant and Q is the nuclear electric

quadrupole moment; reported as Q = 0.83(13) b for the Iπ = 5/2+ intermediate level of
111Cd [99].

The contributions to Vzz from a given type of electronic states of harmonic character

l(l = 0; 1; 2 for s, p and d electrons) can also be taken into account, which can be

estimated using the following equation [54, 58]:

V ll
zz = (4π/5)1/2

∫ Rmt

0

ρll20

r3
r2dr (2.72)

where ρll20 is the non-spherical charge densities of the corresponding l electronic state.

The EFG expresses the deviation from the spherical symmetry of the electron density

around the probe atom. This asymmetry or anisotropy for p and d electrons can be
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calculated by the following expressions [51, 52, 100]:

∆np(E) =
1

2
npxy(E)− npz(E) (2.73)

∆nd(E) = ndxy(E) + ndx2−y2
(E)− 1

2

(
ndxz(E) + ndyz(E)

)
− ndz2 (E) (2.74)

where npi (i = x, y, z) and ndi (i = xy, x2 − y2, xz, yz, z2) are the number of electrons in

the pi and di orbitals respectively. This quantities can be obtained from the local DOS

of pi and di electrons as [51, 52, 100]:

npi(E1) =

∫ E1

−∞
pi(E)dE (2.75)

ndi(E1) =

∫ E1

−∞
di(E)dE (2.76)

These integrals count the number of pi and di electrons with energy less than E1.

Furthermore, it has been reported that these p and d electron anisotropies evaluated at

the Fermi energy (εF ) is proportional to the corresponding V ll
zz expressed by Eq. (2.72)

[51, 52, 100]:

V pp
zz ∝ ∆np(εF ) (2.77)

V dd
zz ∝ ∆nd(εF ) (2.78)

These proportionality relations can help to understand the origin of the EFG temper-

ature dependence in some materials, or with other factors that alter the Fermi energy

position or the DOS distribution.

2.7.2. Hyperfine magnetic parameters calculation

The internal hyperfine field on a nuclei of an atom can be written from Eq. (1.22) as:

BInt = Bc + Borb + Bdip (2.79)
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These terms are evaluated in standard spin-polarized WIEN2k calculation [82], using

the following expressions [101]:

Borb = 2µB

〈
Φl

∣∣∣∣S(r)

r3
l

∣∣∣∣Φl

〉
(2.80)

Bdip = 2µB

〈
Φl

∣∣∣∣S(r)

r3
[3(sr̂)r̂− s]

∣∣∣∣Φl

〉
(2.81)

Bc =
8π

3
µBmav (2.82)

where, µB = e~/2mc, been m is the electron mass, Φl is the large component of the

relativistic wave function, l the orbital moment of an electron localized on the atom

in question (expressed in units of ~), s is the electron spin, S(r) is reciprocal of the

relativistic mass enhancement [101], and mav is defined as:

mav =

∫
dr′δT (r′) 〈Φl |σδ(r− r′)|Φl〉 (2.83)

here σ are the Pauli matrices and,

δT (r) =
1

4πr2

rT/2

[(1 + ε/2mc2)r + rT/2]2
(2.84)

where rT = Ze2/mc2 is the Thomas radius (see Ref. [101] for more details).

2.8. Calculation Methodology

To study the electronic structure of the materials investigated in the thesis the WIEN2k

code is used [82]. This code is based on the full potential linearized augmented plane

wave (FP-LAPW) method described in section 2.6, within the DFT.

To apply this calculation method, the WIEN2k code needs as an input the crystal

structure details of the material and a set of parameters related with the FP-LAPW

method. The materials crystal structure is considered as known and reported values are

used. In the case of implanted materials the reported structure parameters are used if

they exist, otherwise the values reported for the non-implanted or doped material are used

and optimized if necessary. The presence of crystalline defects is also considered in the

cases were they are expected to occur, mainly Frenkel pair types of defects (vacancies and

interstitials) [102, 103] are taken into account. The implantation and damage creation in
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the sample is simulated using the Binary Collision Approximation (BCA) [103] within

the Monte Carlo method. Several computer simulation codes designed to calculate the

damage structure in cascades have been developed [104–107].

In the present study the ion implantation in the target materials and the radiation

damage created in it is simulated using the SRIM(TRIM) code [107–109]. This code

needs as input information on the target composition, density, thickness, threshold energy,

etc.; as well as the incident ion data: energy, angle of incidence, etc. Then, as result

the ion implantation and generated vacancies profiles, energy loss, phonon’s, etc. are

obtained. More information about the SRIM code can be found in [108, 109].

Starting from the known material crystal structure, and considering the ion implan-

tation and generated vacancy profiles for the reported experimental condition, some

probable implantation configurations are proposed and its electronic structure is evalu-

ated. In general these implantation configurations are recreated in supercells (SCs) that

are produced by the repetition of the crystallographic cell of the material. These SCs are

created to reproduce the impurity concentration in the case of concentrated alloys or

they are taken as big as possible to simulate dilute systems.

The electronic structure calculation with the WIEN2k code give information about

the hyperfine parameters. In the calculation procedure the following set of parameters

are optimized because the accuracy of the calculated hyperfine parameters depend on

them. They are the plane-wave cutoff value RmtKmax, the magnitude of the largest

vector in the charge-density Fourier expansion Gmax, the maximum l quantum number

for the wave function expansion inside the atomic spheres and the number of k points

used in the irreducible Brillouin zone (they are defined in sections 2.5 and 2.6). These

calculations are computationally expensive, because big SCs are generally needed.

The comparison between the calculated hyperfine parameters and the experimental

reports is established considering the ∆ and δ values and its distribution, characterized

by the spectral lines width. Then a proposed configuration is correlated with a certain

experimental line if the calculated ∆ and δ values stay within the experimental parameters

distribution.
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Chapter 3.

Radiation damage and calculation of

hyperfine parameters in ZnO implanted

with 57Mn(57Fe) and 111In(111Cd)

The work presented in this chapter have been published in the following papers: Y.

Abreu, C. M. Cruz, I. Piñera, A. Leyva, A. E. Cabal and P. Van Espen. DFT study of

the hyperfine parameters and magnetic properties of ZnO doped with 57Fe. Solid State

Commun. 185, 2014, pp. 25-29. And, Y. Abreu, C.M. Cruz, P. Van Espen, C. Pérez, I.

Piñera, A. Leyva and A. E. Cabal. Electric field gradient calculations in ZnO samples

implanted with 111In(111Cd). Solid State Commun. 152(5), 2012, pp. 399-402.

3.1. Introduction

Recently, the semiconductor ZnO has attracted considerable attention in the research

community in part due to the availability of high-quality substrates, and new reports of p-

type conduction and ferromagnetic behavior when doped with transitions metals. Dilute

magnetic semiconductors are of current interest as potential semiconductor-compatible

magnetic components for spintronic applications. In ZnO semiconductor, it is possible to

achieve a partial replacement of cations by magnetic transition-metal ions [62]. However,

the origin of magnetism in these cases is poorly understood and there are inconsistent

reports in the literature [26–31, 62, 110].

Through Mössbauer spectroscopy several authors studied the hyperfine parameters

and magnetization of 57Fe in ZnO [26–31]. In [27–29], the Mössbauer spectra of dilute

57
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57Mn(57Fe) impurities implanted in ZnO samples were measured at temperatures from 300

to 800 K, showing: 1) two doublets (D2 and D3) assigned, respectively, to substitutional

and interstitial configuration sites and, 2) three sextets corresponding to magnetic

ordered state configurations of the implanted ions. The authors suggested as well that the

magnetic ordered state can be related to the presence of Zn vacancies in the probe atom

neighborhood, considering that Zn vacancies are mobile above 300 K while for oxygen

they are stable up to ≈ 600 K. It was also reported in [28] that at temperatures over 700

K the doublet D2 is dominant in the spectra. In Fig 3.1 the Mössbauer spectra measured

at different temperatures in ZnO samples implanted with 57Mn(57Fe) are shown.

Figure 3.1.: Mössbauer spectra measured at different temperatures in ZnO samples implanted
with 57Mn(57Fe), reported in [28].

Other authors also reported the Mössbauer hyperfine parameters in ZnO samples

doped with 57Fe showing two main quadrupole lines and a weak sextet at low temperature

[30, 31]. Those samples were annealed at high temperatures (923 and 1473 K) and

measured from 4.2 to 295 K by Mössbauer Spectroscopy and magnetic methods. Then,
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the observation of a magnetic ordered sextet only at low temperature, in this case, also

supports the previous mentioned idea that the presence of a magnetic ordered phase at

higher temperatures [27–29] could be related to the occurrence of 57Mn(57Fe) implantation

induced defects.

Recently, in [26] the lattice locations and electronic configurations of high fluence 57Fe

and 57Co(57Fe) implanted into ZnO was reported, showing a broad Mössbauer spectrum.

The spectra acquired upon room temperature implantation show two doublets, which

were experimentally related with perturbed Zn substitutional sites and damage complexes

of interstitial character. Then, when the sample is annealed at 773 K the substitutional

fraction remains, while the damage component decreases and a new doublet appears;

whose hyperfine parameters are similar to those of D3 in [28]. In general, a dependence

of the hyperfine parameters on the temperature is also observed in most of the cases

[26, 28–31].

The semiconductor ZnO is also an interesting material for optoelectronic applications

[25, 62, 111–114]. Indium is known as one of the most efficient donor impurity used to

improve optoelectronic properties of ZnO [25, 62, 111]. Dogra et al. [25] studied the radi-

ation damage annealing of 111In probe atoms implanted in ZnO samples. They measured

the EFG, at room temperature, through PAC at the 111In site in as-implanted samples

and after subsequent furnace annealing in ambient nitrogen at various temperatures

between 200 ℃ and 1000 ℃. The as-implanted samples showed a broad distribution of

EFG at the probe atoms, characterized by two main quadrupole interaction frequencies:

νQ1 = 30.9(5) MHz and νQ2 = 113(2) MHz [25]. The sample annealing at temperatures

above of 400 ℃ reduced the EFG distribution width and produced a diminution of the

νQ2 component in favor of νQ1; indicating a majority fraction of probe atoms occupying

a unique lattice site with equal surroundings. This site was ascribed to substitutional

incorporation of probe atoms at cations-sites of ZnO [25].

In the current experimental situation, the 57Fe Mössbauer spectra measured in both,

Fe implanted and doped ZnO materials, remain with some ambiguous identification and

structural assignments regarding the impurity location sites and the influence of defects

and temperature on their hyperfine parameters and magnetic properties. In addition, the

calculation of the hyperfine parameters values emerging from 111In(111Cd) radioactive

probe implanted in the ZnO matrix could give a better understanding of the experimental

observations in this case. In the present work some possible implantation configurations

are suggested and evaluated using Monte Carlo simulation and electronic structure

calculations with DFT techniques. The main aim is to calculate and report the hyperfine
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parameters at the probe sites in both cases, and to study the magnetic properties of Fe

in ZnO, considering the presence of implantation induced defects. Previous DFT studies

have been done in ZnO [112–118], but no report was found for hyperfine parameters

calculations of 57Mn(57Fe) and 111In(111Cd) doped or implanted ZnO samples. Regarding

the magnetic properties of Fe into ZnO some reports exist using DFT [119, 120], however,

in the current study other possible implantation configurations, including the presence of

defects, are studied. For 111In(111Cd) in ZnO, two EFG calculation are available but not

through DFT calculations, one was reported by Dogra et al. [25] using the classic point

charge model (PCM) and other by Mitchell et. al. [121] within the Hartree-Fock (HF)

cluster procedure.

3.2. Calculation Details

The implantation of 57Mn and 111In ions in a ZnO target with beam energies of 60 keV

and up to 8 MeV respectively, was simulated using the SRIM Monte Carlo code [109].

The ions range and vacancies generated in the sample for each case are presented in

Figs. 3.2 and 3.3 respectively. In the experiment the 57Mn+ ion implantation fluence was

1012 ion/cm2 [28] resulting in a maximal vacancy concentration of ≈ 1.86∗1020 V ac./cm3.

This means, an average distance dV−V between vacancies of 17.5 Å, and a low radiation

damage of 4.5∗10−4 displacements per atom (DPA), regarding the atomic density of ZnO

(4.14∗1023 atom/cm3). Applying the In transport simulation with SRIM on a ZnO matrix

and considering the experimental 111In ion implantation fluence of 1011 ion/cm2 [25],

one expects a maximal vacancy concentration of ≈ 1.85× 1019 V ac./cm3, due to atom

displacements, which represent a low radiation damage of 4.5 ∗ 10−5 DPA. This means

that, in this case the average distance between two vacancies should be dV−V ≈ 37.8 Å.

Under the thermal annealing treatment, the radiation damage will be even lower and,

consequently, dV−V will be significantly higher in both cases. Then, the probability of the

presence of vacancies in a crystal unit cell due to the direct 57Mn and 111In irradiation

process is very low under the circumstances seen before. However, it is also important to

take into account that the recoiled 57Fe atoms with an average energy of 40 eV, as a result

of the 57Mn β decay, can produce also vacancies in the probe atoms neighborhood. On

the contrary, the 111Cd recoil energy is less than 1 eV during the radioactive 111In(111Cd)

decay compared to typical lattice binding energies (10-20 eV) and the 111Cd should

remain in the same lattice location of its precursor. Then, it will be considered as possible

that one vacancy can be present in the 57Mn(57Fe) and 111In(111Cd) vicinity. For the
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moment the vacancies analysis will be focused on the Zn atomic positions because they

are considered as mobile at room temperature and this increases the probability of been

trapped in the probe atom neighborhood.

(a) (b)

Figure 3.2.: Range of 60 keV Mn ions in a ZnO target (a) and vacancies generated in the
ZnO target by the implantation process (b), simulated by SRIM-2010.

(a) (b)

Figure 3.3.: Range of 8 MeV In ions in a ZnO target (a) and vacancies generated in the ZnO
target by the implantation process (b), simulated by SRIM-2010.
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ZnO normally crystallizes in a wurtzite crystal structure with hexagonal symmetry

and P63mc space group. The experimental lattice parameters for this material reported

in [122], a = 3.249 Å and c = 5.205 Å, are used in the present research to describe the
111In(111Cd) implantation configuration, as justified in [123]. These configurations are

recreated in two supercells (SCs) of 2x2x2 and 3x3x2 unit cells.

It was experimentally found that the crystalline structure of Zn0.95
57Fe0.05O has also

wurtzite hexagonal symmetry as the non-doped case, with lattice constants a = 3.255

Å and c = 5.207 Å at room temperature [31]. Then, in order to reproduce some

of the possible 57Mn(57Fe) implantation environments in the ZnO material three SCs

configurations starting from this crystal structure are considered, involving: 2x2x1, 2x2x2

and 3x3x2 unit cells. The 2x2x1 SC is included in this case to evaluate the possibility of

Fe pair formation reported in [124]. Within this approach, the ZnO lattice parameters,

including the Fe atom presence in the substitutional configurations, are optimized by

minimizing the total energy as function of volume and c/a ratio. Then, the optimized

lattice parameters are fixed to these values for each SC. Finally, for all the studied Fe

and Cd configurations recreated in the SCs the internal atomic positions are minimized

to a force limit below 1 mRy/Å.

In the Mössbauer experiment the hyperfine parameters were measured at the 57Fe

probe site produced by the 57Mn β decay and in the PAC experiment it was measured

at the 111Cd site. Then, in the electronic structure calculations a Fe or a Cd atom, in

addition, is incorporated into the considered SC configuration. Taking into account the

Fe and Cd atomic radius and the bound distances in the ZnO crystal structure three

possible implantation sites are evaluated: substitutional in a cation site (Fesub, Cdsub),

tetragonal interstitial site (Fetet, Cdtet) and octahedral interstitial site (Feoct, Cdoct).

These possible implantation sites are schematically presented in Fig. 3.4, each one is

studied for the proposed SC’s configurations. The presence of cation vacancy (VZn)

located at different distances from the probe site is also considered, with the following

classifications: Fesub-VZn, Fetet-VZn and Feoct-VZn for Fe, as well as Cdsub-VZn, Cdtet-VZn

and Cdoct-VZn for the Cd case.

The electronic structure calculations were performed using the WIEN2k code [82];

based on the full-potential (linearized)-augmented-plane-wave plus local orbitals method

(L/APW+lo) [125] within the DFT. In the study, the atomic spherical radii were set

to 1.9, 1.55, 1.8 and 2.1 a.u. for Zn, O, Fe and Cd respectively. Good convergence in

the results were obtained with the following set of parameters: the plane-wave cutoff

value RmtKmax = 7.0, the magnitude of the largest vector in the charge-density Fourier
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(a) (b) (c)

Figure 3.4.: Schematic representation of the 57Fe and 111Cd implantation sites considered in
the ZnO structure: substitutional cation site (a), tetragonal interstitial site (b),
and octahedral interstitial site (c). The green balls indicate the Zn cations sites,
the blue ones the Fe or Cd location site and the red balls the O anions sites.

expansion Gmax = 16
√
Ry and the maximum l quantum number for the wave function

expansion inside the atomic spheres was confined to lmax = 12. The number of k points

in the whole (irreducible) Brillouin zone was set to 100, 50 and 27 for 2x2x1, 2x2x2 and

3x3x2 SC’s respectively. And, the generalized gradient approximation (GGA) due to

Perdew et al. [80] was applied. The DFT study is done considering non spin polarized

configurations in both cases, and in order to study the magnetic ordered state properties

in the 57Mn(57Fe) implanted samples the spin polarized configuration was treated as well.

Finally, the following calculation results are obtained: the magnetic moment, the

magnetic hyperfine field (Bhf ), the electron density present at the probe nucleus position

(ρ0) and the EFG expressed by its main component (Vzz) and the asymmetry parameter

(η). From ρ0, Vzz and η the hyperfine electrical parameters of 57Fe (isomer shift (δ) and

quadrupole splitting (∆)) can be obtained using Eqs. (2.66) and (2.70). To express the δ

values the same reference of the experiment is used, the bcc Fe (lattice constant a = 2.865

Å), giving ρreference0 = 15310.102 a.u.−3. For Cd the corresponding quadrupole frequency

values, νQ, obtained by evaluation of Eq. (2.71), are compared to the experimental

reports.

In Table 3.1 the hyperfine parameters reported in [26–28] for 57Mn(57Fe) embedded

in ZnO are summarized. As well as, in Table 3.2 the quadrupole hyperfine parameters

measured in [25] for 111In(111Cd) into ZnO are presented. These values are taken as a

reference for the following comparison with the present calculation results.
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Table 3.1.: Hyperfine parameters experimental values (magnetic hyperfine field (Bhf ), isomer
shift (δ), quadrupole splitting (∆) and lines width (Γ)) reported in [26–28] for
57Fe implanted into ZnO.

Experimental line Bhf (T) δ(mm/s) ∆(mm/s) Γ(mm/s)

D2 0.80(1) 0.3(2) 0.2

D3 0.55(2) 0.73(3) 0.5

FeC 0.91(1) -0.82(1) –

FeD 0.77(1) -1.6(4) –

Sextet I 48.3(2) 0.20(2) 0.13(3) 0.6

Sextet II 12(3) 0.82(5) -0.11(8) –

Sextet III 37(2) 0.13(4) -0.83(5) –

Table 3.2.: Hyperfine parameters experimental values (quadrupole frequency (νQ) and width
of the frequency distribution (Γ)) reported in [25] for 111In(111Cd) implanted into
ZnO.

Experimental Line νQ (MHz) Γ (MHz)

νQ1 30.6(3) 3.8

νQ2 113(2) 74.6
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3.3. Results and Discussion

The obtained EFG values for the ZnO ideal crystalline structure parameter are shown in

Table 3.3. The individual contributions from s, p and d electrons are also summarized in

the table. In Zn and O crystal positions the EFG tensor is axially symmetric (η = 0)

and its symmetry axis is oriented along the 〈001〉 lattice direction. Then, only the

EFG principal component (Vzz) is analyzed. In this table the EFG measured by high

precision nuclear magnetic resonance (NMR) (Vzz(exp.)) in ZnO samples [126] and the

calculated values for this case using HF cluster procedure (Vzz(HF)) [121] are also shown

for comparison.

Table 3.3.: Theoretical electrical field gradient component Vzz (in 1021 V/m2) calculated for
the ZnO crystalline structure. The Vzz main electronic contributions are also
shown. The previously measured (exp.) and calculated EFG values using HF
cluster procedure [121] are also included for comparison.

Site Vzz(1021 V/m2)

V sd
zz V pp

zz V dd
zz V Total

zz Vzz(HF)[121] Vzz(exp.)[126]

Zn -0.004 0.521 -0.006 0.511 0.73 0.659(2)

O 0.011 -0.258 0.001 -0.270 – -0.233(1)

The Vzz values calculated with the WIEN2k code for the ZnO experimental structure

parameters show a good agreement with measured values [126]. From the table it is

also clear that the dominant contribution to the EFG in Zn and O atoms comes from

electrons with strong p character. The Vzz(HF) value for Zn becomes closer to Vzz(exp.)

than the here presented results; but in the present study the hyperfine electric parameters

were calculated for both Zn and O sites.
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3.3.1. Results for 57Mn(57Fe) into ZnO

The optimized ZnO lattice parameters considering the Fe located in a cation substitutional

position of the crystal are shown in Table 3.4 for the three SC’s configurations studied.

Both parameters (a and c) are less than 1 % bigger than the experimental values and

in the same range of other DFT studies [127]. The parameters shown on this table

present a close to linear behavior with the Fe concentration in the sample, as is indicated

in Fig 3.5 for the dFe−O case. Extrapolating the values presented in the table to the

infinite dilution of Fe in ZnO (Fe concentration for x → 0) shows that the x = 2.8 %

configuration is an adequate representation of this case, because it has a, c and dFe−O

values that are maximum 0.4 % different from the x→ 0 ones, furthermore the dFe−Fe

value is 5.1 % smaller. On the other hand, the concentrations cases of x = 12.5 and

6.2 % have dFe−Fe values that are respectively 49.6 and 36.9 % smaller, indicating that

these configurations are more representative of concentrated Zn1−xFexO solid solutions

than an infinite dilution of Fe into ZnO.

Table 3.4.: Optimized Zn1−xFexO lattice parameters (a and c) obtained for the different Fe
doping levels studied in the three given SC configurations. The minimum distance
obtained between Fe atoms (dFe−Fe) and between Fe and the near neighborhood
O atoms (dFe−O) for each case is also reported.

Composition Supercell a(Å) c(Å) dFe−Fe(Å) dFe−O(Å)

Zn0.875Fe0.125O 2x2x1 3.277 5.241 5.24 1.91(1)

Zn0.938Fe0.062O 2x2x2 3.282 5.250 6.56 1.89(1)

Zn0.972Fe0.028O 3x3x2 3.287 5.285 9.86 1.88(1)

Zn0.95Fe0.05O‡ 3.255 5.207

‡Experimental report [31].
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Figure 3.5.: Behavior of dFe−O with the Fe concentration in the ZnO samples. The linear
regression is indicated by the solid line.

The calculated hyperfine parameters for the 57Mn(57Fe) configurations under study

are shown in Table 3.5. The largest EFG component (Vzz) will be analyzed; because

in most of the cases the EFG tensor is axially symmetric (η = 0). Only some vacancy

configurations present η 6= 0 that were considered in the ∆ value. The EFG symmetry

axis is oriented along the 〈001〉 lattice direction in most cases, except when presence of a

vacancy is considered. In those cases the EFG axis orientation depends on the vacancy

position.

The values of Table 3.5 indicate that, in general, for all configurations the hyperfine

parameters depend strongly on the distance between nearest Fe atoms, making it difficult

to establish a unique relationship among the calculated values and the experimental

observations. Nevertheless, some comparisons can be made. As it was already mentioned,

the configurations were the Fe is less concentrated (x = 2.8 %) are generally the ones

where the results can be extended to real embedded (in the low concentration limit)

Fe in ZnO cases, because the influence of one Fe atom on other Fe ones is minimal;

but as it was reported by Gu et al. [124], the Fe atoms in ZnO can tend to form pairs.

Therefore, this possibility of configuration with shorter dFe−Fe is also considered in the
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Table 3.5.: Theoretical hyperfine parameters, magnetic hyperfine field Bhf (T), electric field
gradient Vzz(1021 V/m2), quadrupole splitting ∆(mm/s) and isomer shift δ(mm/s)
values for the Fe studied implantation sites in ZnO. According to the distance
between near Fe atoms dFe−Fe(Å) and between Fe and a cation vacancy dVZn

(Å).

Site dFe−Fe dVZn
non spin polarized spin polarized

Config. Vzz ∆ δ Bhf Vzz ∆ δ

Fesub 5.24 - 1.226 0.20 0.69 -26.9 -0.040 -0.01 0.64

6.56 - 4.966 0.83 0.64 -27.7 -0.685 -0.11 0.57

9.86 - 3.026 0.50 0.55 -29.4 0.137 0.02 0.46

Fetet 5.24 - -0.724 -0.12 0.27 -19.6 -8.189 -1.36 0.27

6.56 - 0.953 0.16 0.52 -24.0 -3.116 -0.51 0.54

9.86 - 1.830 0.30 0.48 -25.8 -3.975 -0.66 0.62

Feoct 5.24 - -4.262 -0.71 0.78 -29.6 1.771 0.29 0.79

6.56 - -5.835 -0.97 0.73 -30.5 0.897 0.15 0.73

9.86 - -0.925 -0.15 1.02 -24.3 6.888 1.15 1.08

Fesub-VZn 5.24 ≈3.3 6.311 1.19 0.10 -20.2 5.965 0.99 0.08

6.56 ≈5.2 3.528 0.59 0.21 -25.7 8.320 1.38 0.27

9.86 ≈7.8 0.239 0.04 0.15 -26.6 -0.692 -0.12 0.15

Fetet-VZn 5.24 ≈3.9 -7.860 -1.31 0.43 -16.2 -9.365 -1.56 0.57

6.56 ≈5.8 -2.476 -0.41 0.34 -21.5 -2.033 -0.34 0.67

9.86 ≈8.7 -0.850 -0.16 0.33 -18.0 9.805 1.63 0.67

Feoct-VZn 5.24 ≈3.9 -1.241 -0.21 0.71 -28.2 -6.405 -1.06 0.70

6.56 ≈5.4 -12.91 -2.15 0.61 -34.4 -1.614 -0.27 0.60

9.86 ≈7.6 -0.932 -0.18 0.92 -28.7 -6.253 -1.16 0.82

analysis. In the case of the spin polarized configurations the correlation of the spectral

lines with certain implantation configurations is done on the base of the electric hyperfine

parameters (∆ and δ); because the hyperfine magnetic field values (Bhf) are not well

reproduced in the current approach (see Table 3.5). Additional approximations and

corrections should be taken into account in future studies.

In Fig. 3.6 the dependence of δ values with the Fe–O average bond distance is shown

for the Fe located at the cation substitutional site in ZnO. It presents a near to linear
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Figure 3.6.: Dependency of δ values with the Fe–O average bonds distance for Fe located at
the cation substitutional site of ZnO.

behavior, as indicated by the linear fit in the graph. Evaluating this linear relation for the

dFe−O value that correspond with the infinite dilute system give δ = 0.53 mm/s which is

close to the value obtained for the calculated smallest Fe concentration (x = 2.8 %). This

represents another confirmation of the proper description of an infinite dilute system by

the bigger SC here considered.

In Fig. 3.7 a graphical comparison among the experimental data and the calculated

values corresponding to the different considered configurations is established. In each case,

the calculated δ and ∆ values for each configuration are represented by a symbol, and each

experimental line is represented by a square which sides correspond to the experimental

line width. This comparison shows a clear correlation between the experimental lines

and some of the calculated configurations, which will be analyzed in detail.
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(a) (b)

Figure 3.7.: Comparison between experimental and calculated hyperfine parameters ∆ and
δ for ZnO implanted or doped with 57Fe: a) non spin polarized configurations
and b) spin polarized configurations. Each experimental line is represented by a
square which sides correspond to the experimental line width.

Table 3.6.: Correlation between the experimental reports for ZnO implanted with 57Fe and
the studied configurations, comparing the hyperfine electric parameters values.

Experimental Line Theoretical Configurations

D2 Fesub
n

D3 Fesub
m,f , Feoct

n,m

FeC Feoct
n,m, Feoct-VZn

n,f

FeD Fetet-VZn
n

Sextet I Fesub-VZn
f , Fesub

f

Sextet II Feoct-VZn
n,f , Feoct

n,m, Fesub
n,m

Sextet III Fesub-VZn
n

nNearest distances: dFe−Fe = 5.24 Å and 3.3 Å ≤ dVZn
≤ 3.9 Å (if vacancy present).

mIntermediate distances: dFe−Fe = 6.56 Å and 5.2 Å ≤ dVZn
≤ 5.8 Å (if vacancy present).

fFar distances: dFe−Fe = 9.86 Å and dVZn
> 7.6 Å (if vacancy present).
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In Table 3.6 the resulting hyperfine parameters correlation between the observed

Mössbauer experimental lines and the analyzed configurations is presented. The Fesub

configuration with the shortest distance dFe−Fe presents electric hyperfine parameters in

agreement with the doublet D2, that is experimentally associated with the Fe in that

position [28]. This result also agrees with the already mentioned statement of Gu et al.

[124]; that the Fe doped ZnO has a ground state configuration of Fe atoms when they

form pairs with a separation of ≈ 5.3 Å. This is also well related with the report done by

Weyer et al. [28] that the D2 doublet is dominant at high temperatures (over 700 K), in

which case it is possible that the Fe atom diffusion and defects annealing can enhance

this pair formation mechanism.

The D3 experimental Mössbauer doublet is also in agreement with the Fesub site but

with a grater distance between Fe atoms (6.56 Å), this comparison also seems to agree

with the experimental findings done in [31] for a Zn0.95Fe0.05O sample where the average

distance between Fe atoms should be in the same range and the doublet D3 also appears.

This line is additionally in partial agreement with the Feoct site, which might mean that

this doublet could also be related with an interstitial configuration. The attribution of

this line to both sites could be linked with the fact reported in [28], that when the sample

is annealed the doublet D3 population decrease and the D2 increases. This behavior

might also be related to the previous correlation of doublet D2 to the minimal energetic

configuration of Fe in ZnO [28, 124]. Then, it could be possible that during the annealing

process the Fe atoms located in the interstitial and substitutional sites ascribed to the

D3 doublet diffuse and take the minimal energy configuration that corresponds to the

D2 line as was explained before.

The doublet FeC reported in [26] is in good agreement with the hyperfine parameters

obtained for the Feoct and Feoct-VZnconfigurations. This can be also justified by the

fact that a high irradiation fluence could produce more interstitial implantation sites,

including also vacancies, in the material. The second contribution observed in [26], FeD,

presented a wide distribution of ∆ values, nevertheless no clear correlation is found with

the studied configurations, only the Fetet-VZninterstitial configuration is in its proximity.

In conclusion, this doublet spread seems to be produced by probe atoms located in

interstitial sites with different defect complexes configurations around it. Further studies

will be necessary to clarify the possible origin of the FeD doublet.

The main sextet line reported in [28] (Sextet I) presents an acceptable agreement with

the Fesub and Fesub-VZn configurations hyperfine electric parameters in the more dilute

cases (x = 2.8 %) and with a vacancy in the third vicinity (dVZn
≈ 7.8 Å). The Sextet III
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Table 3.7.: Contributions to Vzz from a given type of electronic states of harmonic character
l for the main 57Fe implantation configurations studied in ZnO.

Site V ll
zz(1021 V/m2)

Config. V sd
zz V pp

zz V dd
zz V Total

zz

Fesub -0.013 1.333 3.702 5.007

Fetet -0.056 -23.206 22.176 -1.294

Feoct -0.051 7.634 -11.818 -4.163

Fesub-VZn -0.043 -1.963 8.323 6.264

Fetet-VZn -0.026 -20.804 12.577 -8.399

Feoct-VZn -0.031 9.502 -22.389 -12.809

also seems to agree with the Fesub-VZn configuration but when the Fe atoms are more

close to each others (≈ 5.2 Å) and the vacancy is located in the first vicinity. On the

other hand, Sextet II presents various possible contributions, the Fesub and the Feoct

sites in a solid dilution configuration, and also with the Feoct interstitial site including a

vacancy. These results are consistent with the experimental reports [27, 28], namely that

the Fe can stabilize a vacancy in the second or third neighborhood and that complex

configurations including defects can appear in these cases.

The contributions to Vzz from a given type of electronic states of harmonic character

l, estimated using Eq. (2.72), are presented in Table 3.7. It is clear that in all cases the

main contribution to Vzz comes from electrons with strong p and d character.
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(a)

(b)

Figure 3.8.: Partial density of states (PDOS) for p and d electrons present in the Fesub site
on ZnO (a), p and d electron anisotropies (∆np and ∆nd) (b). The Fermi energy
is at 0 eV.
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In all cases a step behavior is found around the Fermi level of the p and d electron

anisotropies (∆np and ∆nd), calculated by Eqs. (2.73) and (2.74). Fig 3.8 presents the

partial density of states (PDOS) and the electron anisotropies calculated for the Fesub

configuration site on ZnO. This step behavior supports the experimental dependency

found of the hyperfine parameters, especially ∆ [26, 28–31], with the measurement

temperature.

The calculated magnetic moments of transition metals and oxygen atoms for the

different studied implantation configurations in Zn0.972Fe0.028O are shown in Table 3.8.

The main contribution to the total magnetic moment comes from Fe atoms, representing

more than the 70% in all cases. The rest contribution comes from the O atoms near

the Fe. The other O and Zn atoms have no contribution to the magnetization. It is

interesting that for the interstitial sites the presence of vacancies increases up to 35 %

the Fe and total magnetic moments. For all the studied configurations the calculated

total magnetic moments are in the reported experimental range [28].

Table 3.8.: Calculated magnetic moments of atoms in Zn0.972Fe0.028O for the different studied
implantation configurations, including the presence of cation vacancies.

Config. Magnetic Moment (µB)

Zn Fe O(near Fe) O(others) Total

Fesub < 0.01 3.67 0.15 < 0.01 4.77

Fetet < 0.01 2.65 0.12 < 0.01 3.12

Feoct < 0.01 3.05 0.05 < 0.01 3.63

Fesub-VZn < 0.01 3.27 0.15 < 0.01 4.51

Fetet-VZn < 0.01 3.15 0.16 < 0.01 4.13

Feoct-VZn < 0.01 3.26 0.14 < 0.01 4.03

Exp. 3 – 5



Radiation damage and calculation of hyperfine parameters in ZnO
implanted with 57Mn(57Fe) and 111In(111Cd) 75

3.3.2. Results for 111In(111Cd) into ZnO

In the studied Cd configurations, the EFG tensor is axially symmetric (η = 0) and its

symmetry axis is oriented along the 〈001〉 lattice direction for the ideal sites; while for

some vacancy configurations η 6= 0 and the EFG is randomly oriented, as previously

discussed for Fe. The EFG components (Vzz and η) and the corresponding quadrupole

frequency (νQ) calculated values for the studied Cd implantation sites are indicated in

Table 3.9. These values shows a dependency with the distance between implanted Cd

ions and with the presence of Zn vacancies.

Table 3.9.: Theoretical EFG components (Vzz and η) and the quadrupole frequency (νQ)
values for the studied Cd implantation sites in ZnO, according to the distance
between near Cd atoms dCd−Cd and between Cd and the cation vacancy dVZn

.

Site Config. dCd−Cd (Å) dVZn
(Å) Vzz (1021V/m2) η νQ (MHz)

Cdsub 6.50 - 1.38 0 27.8

9.75 - 1.57 0 31.4

Cdtet 6.50 - -9.48 0 190.2

9.75 - -10.24 0 205.5

Cdoct 6.50 - -1.00 0 20.1

9.75 - 4.27 0 85.6

Cdsub-VZn 6.50 ≈3.2 1.68 0.07 33.7

9.75 ≈7.7 1.12 0 22.6

Cdtet-VZn 6.50 ≈5.2 -11.87 0 238.3

9.75 ≈8.6 -10.64 0.09 213.6

Cdoct-VZn 6.50 ≈4.8 8.83 0 177.3

9.75 ≈7.5 5.82 0.24 116.9
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Fig. 3.9 shows a graphical comparison between the experimental and calculated

quadrupole frequency in ZnO samples implanted with 111In(111Cd). The measured

values with error bars represent the experimental lines and their respective widths.

The comparison of the calculated and experimental values is shown separately for the

substitutional and interstitial sites.

Figure 3.9.: Comparison between experimental and calculated hyperfine parameter:
quadrupole frequency (νQ), for ZnO implanted with 111Cd. The solid line
shows the ideal match between the theoretical results and the experiment.

The observed correspondence of these calculated values with the experimental lines

(see Table 3.2) is summarized in Table 3.10. For the cation substitutional site (Cdsub) the

νQ calculated values are closer to the experimental line νQ1 in comparison to the values

calculated for the interstitial sites (Cdoct and Cdtet). The Cdsub-VZn configuration present

also νQ values close to this experimental line and a close to zero asymmetry parameter.

The difference between the νQ1 and the values for Cdsub site are around 2.6 to 9.1 %,

while it rises for both interstitial sites to over 30 %. The better agreement is found for

the 3x3x2 SC, which is more representative of a dilute Cd implantation in ZnO, as in the

experiment, and similar to the Fe previous case. On the other hand, the experimental

line νQ2 is in good agreement with the Cdoct and Cdoct-VZn implantation sites. These

correspondence could represent some of the local environments that characterize the νQ2
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line because the formation of interstitial sites and local defects complex around it is

more probable during the implantation process, when this line is observed. The observed

correspondence for νQ1 and νQ2 also agree with the annealing behavior of these lines [25].

Table 3.10.: Correlation between the experimental reports for ZnO implanted with 111Cd and
the studied configurations, comparing the EFG values.

Experimental Line Theoretical Configurations

νQ1 Cdsub, Cdsub-VZn

νQ2 Cdoct, Cdoct-VZn

From Table 3.11 is clear that the main contribution to the Vzz values of Cd atoms

comes from electrons with a strong p-character. The partial DOS for the p electrons of

Cd incorporated in ZnO and the p electrons anisotropy (∆np) as function of energy are

shown in Figure 3.10 for the studied implantation sites. The ∆np value at the Fermi

energy is positive in the Cdsub site and negative in the other two cases. This is perfectly

consistent with the V pp
zz sign observed in those cases. This implies that for the Cdsub site

the largest contribution to V pp
zz comes from pxy electrons and for the Cdoct and Cdtet sites

comes from the pz electrons. The ∆np steep behavior observed in the Cdsub and Cdoct

cases near the Fermi energy suggest that the EFG of Cd occupying these sites could be

sensitive to small Fermi level changes due to temperature variations or other effects.

Table 3.11.: Contributions to Vzz from a given type of electronic state of harmonic character
l for the studied 111Cd implantation sites.

Site V ll
zz(1021 V/m2)

Config. V sd
zz V pp

zz V dd
zz V Total

zz

Cdsub -0.009 1.630 -0.227 1.398

Cdtet 0.206 -12.546 2.892 -9.455

Cdoct -0.012 -1.691 0.667 -1.046
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Regarding the Vzz previously reported with the PCM approximation, the values

presented here increase the precision in the electronic structure description; giving a

better understanding of the EFG origin in the 111In(111Cd) implanted ZnO samples.

(a)

(b)

Figure 3.10.: Partial density of states (PDOS) for p electrons present in the Cd sites of ZnO
(a), and p electrons anisotropy (∆np) (b). The Fermi energy is at 0 eV.
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3.4. Conclusions

The Vzz values calculated with the WIEN2k code for the ZnO experimental structure

parameters show a good agreement with measured values for both Zn and O sites [126].

The hyperfine parameters and the magnetic properties of ZnO samples implanted and

doped with 57Fe, including some defect configurations were also calculated. A good

agreement of the obtained hyperfine parameters in the studied configurations with the

doublets and sextets reported in [26–28] was found.

The doublet D2 seems to be correlated with the Fe in a substitutional cation site

forming Fe pairs with dFe−Fe ≈ 5.3 Å. The doublet D3 is also in agreement with the Fe

substitutional cation site but with a larger distance between them and, also, with the

octahedral interstitial site. This correlation is also supported by the hyperfine parameters

behavior observed during the samples annealing [28]. The doublet FeC reported in [26]

appears to be related with the octahedral interstitial site and with this site including

vacancies; while the FeD doublet is not clearly explained in the present study, but could

be related with defect complex where the Fe seems to be located in the tetrahedral

interstitial site.

The main sextet (Sextet I) seems to be originated from a dilute substitutional site,

including also the presence of vacancies between the second and third neighborhoods, in

agreement with the experimental observation. The Sextet III presents a good agreement

also with the substitutional site but with vacancies in the near neighborhoods. And,

the Sextet II could be correlated with substitutional and octahedral interstitial sites in

a magnetic ordered configuration, including this last site with a vacancy. Besides, it

seems that the presence of vacancies increases the Fe and total magnetic moments in the

sample.

In general, the obtained results agree with the experimental statement that Fe could

stabilize a vacancy in the neighborhood of the implantation site in the ZnO material [28];

and that these defects could enhance the Fe magnetic ordered state in this case. It is

important to note that the present hyperfine parameters assignment represent some of

the possible or probable configurations that might occur in reality, which means that

they are not the unique possibility.

The EFG parameters and νQ values obtained for various 111In(111Cd) implantation

configurations in ZnO samples were studied in details. Three possible 111In(111Cd)
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implantation configurations were considered: one substitutional incorporation at a cation

site and two interstitials; including the presence on Zn vacancies.

Some correlations were found between the proposed configurations and the two

experimental lines observed. The obtained νQ values for the cation substitutional

configuration and this site including a cation vacancy are in good agreement with the

experimental component νQ1. The second measured line νQ2 could be represented by the
111Cd located in the octahedral interstitial site and also by this site including a cation

vacancy. Other defects configurations can also occur during the implantation process

that can be related with the νQ2 line, but they were not considered here. The obtained

results are also in agreement with the observed diminution of the νQ2 component in

favor of νQ1 during the sample annealing. Finally, the present electronic structure study

suggests a large presence of substitutional incorporation of the 111Cd probe atoms, as

well as, is expected that the implanted 111In ions also occupy the ZnO cation site after

annealing over 400 ℃ in ambient nitrogen.



Chapter 4.

Radiation damage and hyperfine

parameters calculation results in Si

samples implanted with 57Mn(57Fe)

The work presented in this chapter have been published in the following papers: Y. Abreu,

C. M. Cruz, I. Piñera, A. Leyva, A. E. Cabal, P. Van Espen and N. Van Remortel. Hy-

perfine electric parameters calculation in Si samples implanted with 57Mn(57Fe). Physica

B, 2014, doi: 10.1016/j.physb.2014.03.028. And, Y. Abreu, C. M. Cruz, P. Van Espen, I.

Piñera, A. Leyva and A. E. Cabal. Multiscale modeling of radiation damage and annealing

in Si samples implanted with 57-Mn radioactive ions. IEEE Nuclear Science Symposium

Conference Record, 2011, pp. 1754-1756. doi: 10.1109/NSSMIC.2011.6154676.

4.1. Introduction

The radiation damage produced in silicon (Si) materials by 57Mn(57Fe) ion implantation,

at temperatures between 77–500 K, was reported in [17–21]. Those samples were

characterized by Mössbauer spectroscopy during implantation observing four main

contributions that were attributed to different local configurations of the implanted ions

in the Si crystalline structure: substitutional (Fes), interstitial (Fei) and two damage

doublet configurations (FeD and FeN). The FeD doublet is present in the MS at low

temperature, while the FeN one appears at temperatures above 300 K. Nevertheless,

the origin, characteristics and annealing evolution of these two damage configurations

is not completely clear and requires, in addition, a complementary study where the

81
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characteristic defects local environments of the probe atoms must be recreated and

evaluated.

In the present work some possible implantation configurations are suggested, including

defects in the first and second neighborhoods, and its electronic structure is studied in

details. Through Monte Carlo simulations the implantation process and the displacement

cascades are studied. Then, the electronic structure of the proposed configurations is

studied by the density functional theory (DFT) establishing the connections between the

proposed implantation sites, with different 57Mn(57Fe) neighborhoods, and the measured

hyperfine electrical parameters. These results allow a better understanding of the reported

hyperfine electrical parameters and their variation during the annealing process [17–21].

4.2. Calculation Details

The implantation of 57Mn ions with 60 keV of energy in a Si target was simulated using

the SRIM Monte Carlo code [109]. In Fig. (4.1a) and (4.1b) the obtained 57Mn ion ranges

and vacancy generated in the target are shown. Considering that the 57Mn+ ions fluence

used in the experiment was 1012 ion/cm2 [20, 21], a maximal vacancies concentration

of ≈ 2.2 ∗ 1020 V ac/(cm3) can be estimated. The Si density is ≈ 5 ∗ 1022 atom/cm3,

implying an average distance dV−V between vacancies of 16.6 Å and a low radiation

damage of 4.4 ∗ 10−3 DPA are expected. Taking into account that at room-temperature

about 99% of the Si crystal damage almost instantly anneals, it can be assumed that

vacancies and interstitials induced by the 57Mn implantation and recoil process in the

sample are far from each other; and that the more probable implantation configurations

should include those where only one of these defects are present. In the present study the

analyzed implantation configurations will include the presence of a vacancy, an interstitial

atom and the combination of both defects.
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(a) (b)

Figure 4.1.: Range of 60 keV Mn ions in the Si target (a) and vacancy generated in the Si
target by implantation process (b), simulated by SRIM-2010.

Considering the Si crystal structure [128], the 57Fe ions can be located in two different

main sites: substitutional (Fe(S)) and interstitial (Fe(I)). Those sites are represented in

Fig. (4.2). From these two main sites several combinations of defect configurations can

be created. Among them, the following cases will be considered in the present study.

For the substitutional site:

1. Including a vacancy (Fe(S)-V ).

2. Including a Si interstitial (Fe(S)-Si(I)).

3. Both defects combined (Fe(S)-Si(I)-V )

For the interstitial site:

1. Including a vacancy (Fe(I)-V ).

2. Including a Si atom in other interstitial site (Fe(I)-Si(I ′)).

3. Both defects combined (Fe(I)-Si(I ′)-V )

In those configurations, different distances between the implanted ion and the vacancy

(dFe−V ) and between the implanted ion and the Si interstitial (dFe−SiI ) are studied. In

each case, the dFe−V value represents the distance from the implanted Fe cation to a

chosen representative position where the vacancy is created, among several possible non

equivalent ones in different vicinities. The dFe−SiI value is the distance to the site where
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(a) Fe(S) (b) Fe(I)

Figure 4.2.: Representation of the main Si crystalline sites where the 57Mn(57Fe) ions can
be located: (a) substitutional (Fe(S)), (b) interstitial (Fe(I)). The red balls
indicates the Fe atoms and the blue balls the Si atoms.

the interstitial atom is located after the structure optimization. The configurations

can be classified as centered or expanded, when the defects are located respectively in

the Fe first vicinity or not. Starting from the Si cubic crystal structure [128], a 2x2x2

supercell (SC) is constructed to reproduce the analyzed local implantations and defects

configurations.

The electronic structure of the proposed configurations is studied with the WIEN2k

code [129] based on the DFT approach. Good convergences of the hyperfine electrical

parameters were found in the calculations with the following set of parameters. The

non-overlapping muffin-tin spheres radii Rmt were set to 2.3 and 2.0 a.u. for Fe and

Si respectively. For the interstitial region, the plane wave expansion was carried out

with a cut-off value of RmtKmax = 7.0. The maximum multipolarity quantum number

was confined to lmax = 12, for the wave function expansion within the atomic sphere.

The electrical charge density was Fourier expanded up to Gmax = 16
√
Ry. The number

of k-points in the irreducible part of the Brillouin zone was set to 44 for the 2x2x2

SC’s. And to describe the exchange and correlation effects, the generalized gradient

approximation (GGA) due to Perdew et al. [80] was used.

The code computes the EFG tensor, expressed in its main component Vzz and the

asymmetry parameter η, and the electronic concentration present at the nucleus position
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ρ0. From these quantities the hyperfine electrical parameters (isomer shift (δ) and

quadrupole splitting (∆)) can be obtained using Eqs. (2.66) and (2.70). The bcc Fe was

taken as reference [130] in Eq.(2.66), like in the experimental measurements. Then, it

was calculated with the same Rmt of 2.3 a.u. and 286 k points in the irreducible Brillouin

zone, giving ρreference0 = 15309.887649 a.u.−3.

Within this approach, the Si lattice parameters including the Fe atom presence

were optimized by minimizing the total energy as function of volume. The optimized

lattice parameter obtained for the studied SC stoichiometry Si0.98Fe0.02 in the main

substitutional configuration is a = 5.4646 Å. This lattice parameter was used in all the

studied configurations and the internal atomic positions were also minimized to a force

limit below 1 mRy/Å.

In Table 4.1 the hyperfine electric parameters reported in [17–21] for 57Mn(57Fe)

implanted in Si are summarized; used as reference for the comparison with the present

calculation results.

Table 4.1.: Experimental values of isomer shift (δ), quadrupole splitting (∆) and line width
(Γ) reported in [17–21] for 57Mn(57Fe) implanted in Si.

Experimental Line δ(mm/s) ∆(mm/s) Γ(mm/s)

Fes -0.06(2) – 0.12(2)

Fei 0.76(2) – 0.12(2)

FeD 0.33(3) 1.02(3) –

FeN 0.48(4) 0.38(4) 0.27(4)

4.3. Results and Discussion

The calculated hyperfine electrical parameters values and the relative configuration energy

of each analyzed case are shown in Table 4.2. The EFG asymmetry parameter η is null

in all the studied configurations as expected from Fe local configuration and Si crystal

structure symmetries.
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Table 4.2.: Relative configuration energy (∆E(eV )), calculated isomer shift (δ) and quadrupole
splitting (∆) values for the studied configurations of Fe implanted in Si. According
to the distance between Fe and a vacancy dFe−V (Å) and between Fe and a
Si interstitial dFe−SiI (Å). Previous reported hyperfine values are included for
comparison (δ∗ and ∆∗). The hyperfine parameters are expressed in mm/s. The
energy of the most stable configuration is used as reference (set to 0).

Config. dFe−V dFe−SiI ∆E δ ∆ δ∗ ∆∗

Fe(S) – – – -0.06 <0.01 0.13a, -0.06b –

Fe(S)-V 2.4 – 0 0.35 0.46

7.1 – 0.1 -0.09 <0.01

Fe(S)-Si(I) – 3.1 0 -0.13 -1.81

– 4.9 2.4 -0.11 0.02

Fe(S)-Si(I)-V 2.4 3.0 0 0.50 1.00

2.4 5.4 1.9 0.31 0.67

Fe(I) – – – 0.72 <0.01 0.89a, 0.63b –

Fe(I)-V 2.4 – 0 0.44 1.10
0.43c 0.51c

7.1 – 2.5 0.71 -0.05

Fe(I)-Si(I ′) – 3.0 0 0.47 0.36

– 5.5 0.8 0.82 <0.01

Fe(I)-Si(I ′)-V 2.4 3.0 0 0.20 0.77

2.4 5.7 2.5 0.46 0.49

aReported in [63], bReported in [131], cReported in [17]

Comparing the present results with previous theoretical reports [63, 131, 132], it can

be seen that the δ calculated values stay in the same range for the Fe(S), Fe(I) and

Fe(I)-V configurations. On the contrary, the ∆ value calculated here for Fe(I)-V is

approximately two times bigger that the one reported in [17]. This could be related with

the fact that in [17] the Fe position in this configuration was displaced in the direction of

the vacancy by about 1
6

of the distance between the interstitial site and the substitutional

site; while in the present study the observed displacement in this direction is smaller,

approximately 1
12

after the structural optimization.
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In Fig. 4.3 a graphical comparison among the experimental and calculated hyperfine

parameters is established, for Si samples implanted with 57Fe. The calculated δ and ∆

values for each configuration is represented by a symbol, and each experimental line is

represented by a square with sides equal to the respective experimental line widths. The

comparison shows a clear correspondence between the experimental lines and some of

the calculated configurations, as will be analyzed in detail below.

Figure 4.3.: Comparison between experimental and calculated hyperfine parameters δ and
∆ for Si implanted with 57Fe. The experimental lines distribution region is
represented by a square within the corresponding line width interval.

From the present results one can see that the main substitutional and interstitial

configurations (Fe(S) and Fe(I)) give results close to the experiment for δ values, and a

near zero ∆, as expected. This confirms the previously shown correspondence of these

two lines to those sites [63, 131]. Furthermore, for the Fe(S)-V , Fe(S)-Si(I), Fe(I)-V

and Fe(I)-Si(I ′) configurations, the hyperfine parameters values are close to the ones for

primary sites (Fe(S) and Fe(I)) when the respective vacancy or interstitial is located far

from the implantation sites. However, those configurations are not the most energetically

stable.

The hyperfine electric parameters of FeD spectral component are in relatively good

agreement with the Fe(I)-V and Fe(S)-Si(I)-V configurations, when the point defects
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are located in the near neighborhood of the implanted Fe site. The agreement is better

for ∆, within 8 % maximum difference; but δ values are deviated 33 to 52 % from the

experimental one. These configurations are also in the more energetically stable state.

On the other hand, the FeN spectral component appears to be well described by

configurations Fe(S)-V and Fe(I)-Si(I ′), when the vacancy or the Si interstitial are

located in the first vicinity of 57Fe, being the more energetically stable state of each one.

The Fe(I)-Si(I ′)-V configuration is also in agreement with the FeN spectral component;

but it will be excluded from the analysis because it is in a less stable state, which means

that it is less probable to occur. In general these results show that the Si vacancy

and interstitial influence on the calculated parameters is more significant when they

are located close to the Fe implantation site, as expected. In Table 4.3 the observed

correspondence between the Mössbauer experimental lines and the studied configurations

is summarized.

Table 4.3.: Correlation between the experimental reports and the studied configurations,
comparing the hyperfine electric parameters values.

Experimental Line Theoretical Configurations

Fes Fe(S), Fe(S)-V f , Fe(S)-Si(I)f

Fei Fe(I), Fe(I)-V f , Fe(I)-Si(I ′)f

FeD Fe(I)-V n, Fe(S)-Si(I)n-V n

FeN Fe(S)-V n, Fe(I)-Si(I ′)n

fThe point defect is located far from the Fe site.
nThe point defect is located near to the Fe site.

In [20] an interpretation of the temperature dependence of the proposed defect

local environments around the 57Fe was introduced. It was based on behavior of the

measured Mössbauer spectra components in dependence of the target temperature. This

approach involves possible temperature activated migration movements of Si vacancies and

interstitial defects, as well as, atom probe site changes from interstitial to substitutional

ones. As expected, present results support partially the proposed migration model with a

theoretical background. However, new aspects and interpretations about the experimental

data have arisen as a contribution of present research to the discussed subject.
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According to present calculation, it seems that at low irradiation temperature (77

K) 57Fe implanted ions could occupy mainly interstitial site defect configurations. In

this case, it was found that it occupies preferably the Fe(I)-V sites, but also Fe(I) and

Fe(S)-Si(I)-V sites with a lower concentration. It follows directly from present results in

Tables 4.2 and 4.3, but it was also proposed by Gunnlaugsson et al. (see Fig 4.4).

However, as the sample temperature rises up to 200 K, Si atom thermal diffusive

motions start to play a role. On this way, it seems that Si atoms start to occupy Si

vacancies in Fe(I)-V sites. Hence, the Fei site concentration rises. On the other hand,

at higher temperature, up to 450 K, in addition to Si diffusive processes, Fe diffusive

motions might allow Fe migration from interstitial site I to substitutional position of

Si. As a result, the Fe(S), Fe(S)-V and Fe(S)-Si(I) configurations rise their populations

and Fes site concentration increases.

In addition to foregoing migration movements, at temperature above 300 K, the

present theoretical interpretations of the experimental observations also confirm the

formation of Si defects complex around Fe implantation sites, which was assigned in

[20] to the doublet FeN . These were simulated here by the calculated configurations

Fe(S)-V and Fe(I)-Si(I ′). It was here considered, that the vacancy or interstitial Si atom

is present in the first vicinity of the 57Mn(57Fe) implantation site. In these cases, it might

be mediated through to Si atom and vacancy migration processes at room and higher

temperatures. In this way, the proposed annealing behavior could explain the origin of

doublet FeN , observed at those temperatures, which have hyperfine parameters close to

the ones of Fe(S)-V and Fe(I)-Si(I ′) configurations.

Figure 4.4.: Site populations as function of the measurement temperature during 57Mn(57Fe)
implantation into n-type Si. Taken from [20].
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4.4. Conclusions

The hyperfine electric parameters of various proposed 57Mn(57Fe) local implantation

configurations in Si are calculated and their correspondence with experimental observation

is established. The obtained results for the main substitutional and interstitial sites

(Fe(S) and Fe(I)) agree with the corresponding measured values (Fes and Fei). The

presence of 57Fe ions in those Si crystallographic sites, and presumable the 57Mn also, is

confirmed, in agreement with previous theoretical reports [63, 131].

The main low temperature damage quadrupole doublet (FeD in [20]) could be charac-

terized by configurations where the 57Fe are located in an interstitial or substitutional

site with a nearby Si vacancy or a Frenkel pair of defects, respectively. This agreement is

also well supported by the observed experimental transition, first from FeD to Fei and

then to Fes sites when the sample was annealed between 77 and 450 K, as a result of Fe

diffusive motions and Si vacancy-interstitial Frenkel pair direct or indirect annihilation.

The FeN spectral line, observed at high temperature, could be related with various

defect complex configurations, including the 57Fe located in a substitutional site with a

near vacancy, as well as with the 57Fe located in the interstitial site with a Si interstitial

atom in the near neighborhood.

The obtained results show that vacancies and interstitials influence the hyperfine

parameters more significantly when these defects are located in the first vicinity of the
57Fe implantation site; and that those types of configurations are more energetically stable.

In general the proposed damage configurations give a good insight of the highly distorted

environments produced by the 57Mn(57Fe) implantation into silicon; and characterize

some of the possible local implantation environments.
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Hyperfine parameters calculations in
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The work presented in this chapter is related with the following publication: C. M. Cruz,

I. Piñera, A. Leyva and Y. Abreu. Studies on the Gamma Radiation Responses of High

Tc Superconductors. In: Superconductor, Adir Moyses Luiz (Ed.), InTech, 2010, pp.

135-160. doi:10.5772/10122.

5.1. Introduction

The Mössbauer spectra of YBa2Cu3−xFexO7−y samples synthesized by high pressure [39–

41] and under gamma irradiation [42] present some variations in the measured quadrupole

doublet parameters in comparison to the ones observed in the non-irradiated sample

synthesized at normal pressure. Namely, the doublet A (see Table 5.1 below) completely

disappears as result of the high pressure synthesis, and the population of doublet A

decreases in favor of D one due to the 60Co gamma irradiation.

In an initial study [133], we consider the structural defects influence on the quadruple

splitting observed values; through the calculation of the EFG components in this situa-

tion by the point charge model [46, 133]. Specifically the point defects were taken into

consideration through different oxygen configurations, like cluster formation around the
57Fe position and vacancies, as well as trapped electrons near this position, behaving like

negative vacancies. Although, the results obtained in [133] clarify that the local configu-

rations near the Fe occupation sites in the crystalline structure are responsible for the

observation of several contributions in the Mössbauer spectra of the YBa2Cu3−xFexO7−y;

91
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it is necessary to carry out this analysis using a better description of the crystal and

electronic structure of the material with methods based on better approximations, like

DFT.

Then, in the present study, a new theoretical description of the local environments

and electronic structure of Fe in the YBa2Cu3−xFexO7−y crystalline sites is proposed.

The calculations are done using the DFT method within the full-potential (linearized)-

augmented-plane-wave plus local orbitals (L/APW+lo) [125] approximation, including the

Hubbard correction (GGA+U) [134–137]. Several studies have been reported concerning

the YBa2Cu3O7−y high Tc superconductor using this method [138–140], even EFG

parameters calculations [100, 141], including YBaFe2O5 [142], but no report was found

for the partially doped YBa2Cu3−xFexO7−y material.

Up to now, a complete study and comparison is lacking between the type of oxygen

coordinations that preferably surrounds the 57Fe and the Mössbauer spectra. Previous

attempts have not been conclusive, in particular those that are based on relating the

experimental results with the hyperfine parameters of other well-known materials [64],

through finger print ascription method.

With this study we attempt a structural classification of the 57Fe hyperfine parameters

based on quantum mechanical calculation simulations of the atomic and the related

electronic spatial distributions taking into account different local disorder environments

around the 57Fe occupied sites in the YBa2Cu3−xFexO7−y oxygen rich tetragonal phase.

Moreover, it should be possible to identify the main Mössbauer spectra contributions

reported in the literature [39–42, 64, 65] in a consistent way. Finally, an interpretation

of the structural changes observed in the high pressure synthesized and the gamma

irradiated samples is proposed.

5.2. Calculation Details

The ideal well ordered YBa2Cu3O7−y crystal cell structure is orthorhombic (Fig. 5.1)

with the Pmmm space group when 7 − y ≥ 6.65, where oxygen site O(5) along the a

axis is almost completely unoccupied [143]. For lower oxygen content (7− y < 6.65) this

material undergoes an orthorhombic to tetragonal phase transition [144]. In this case the

O(4) and O(5) sites are equally probable to be occupied. This phase transition occurs,

for example, when the sample is heated over 950 K.
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By doping this material with Fe (YBa2Cu3−xFexO7−y), the doping element occupies

mainly the Cu(1) sites at the basal plane, but also, the Cu(2) sites with lesser probability.

In this case, the foregoing phase transition occurs at room temperature at doping levels

higher than 0.1. Nevertheless, when the sample is synthesized at 1273.15 K under high

pressure of 6 GPa for 0.5 h it presents a tetragonal crystal structure for all Fe impurity

levels [39–41], with the P4/mmm space group. The Fe doping and the high pressure

synthesis of the sample increases the oxygen content [39–41] at the O(4) and O(5) basal

plane sites.

Figure 5.1.: YBa2Cu3O7−y crystal unit cell.

Taking into account these effects and the YBa2Cu3−xFexO7−y crystal structure sym-

metry, a group of possible oxygen configurations around the Fe when it occupies the

Cu(1) site are proposed. As an approximation, this description will be based on the

YBa2Cu3−xFexO7−y tetragonal phase, which allows to simulate the electric hyperfine

interactions of the ambient pressure (AM) and high pressure (HP) synthesized samples in

a simultaneous way, as well as to consider the samples subjected to the gamma irradiation.

Then, the structural disorder present in the YBa2Cu3O7−y basal plane will be considered,

particularly among the O(4) and O(5) positions.

Under this condition, and considering that Fe doping increase the oxygen content of

the sample, certain oxygen configurations (OCs) are proposed, as shown in Fig. 5.2. The
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Figure 5.2.: Oxygen configurations (OC) formation considered around Fe in the Cu(1) site.

nomenclature OC. N indicates a OC with coordination number N. It can be observed

that different oxygen occupation values are considered, including the ideal case N = 4, as

well as oxygen rich cases in the samples through coordination values of N = 5 and 6. The

OC. 4ab is a quasi-tetrahedral configuration that has been also experimentally reported

when the YBa2Cu3O7−y sample is doped with Fe [39–42, 64, 65] and is also considered in

the current study. Higher oxygen content is taken into account by partially occupation of

the O(5) sites around Cu atoms; in this way two oxygen content values will be analyzed

for each OC. They will be named normal and high oxygen content configurations. The Fe

dopant possibility of been located in the Cu(2) site is also studied with the ideal oxygen

coordination N=5.

Each proposed 57Fe local configuration is recreated in a supercell(SC) of 2x2x1 unit

cells (see Fig. 5.1). These SCs were initially built from the experimental lattice parameters

reported for the normal pressure synthesized sample with a Fe doping concentration of

x = 0.5 [41], which has tetragonal symmetry. This is equivalent to include two Fe atoms

in the 2x2x1 SC. Then, the SCs lattice parameters were optimized by minimizing the

total energy as function of volume and c/a ratio with the ideal OC. 4 and the Fe located

in the Cu(1) site. Later, the internal atomic positions were minimized to a force limit

below 1 mRy/Å for all the OCs cases. The optimized lattice parameters obtained are

a = 3.8879 Å and c = 11.7098 Å.
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In the electronic structure calculations with the WIEN2k code [82] the non-overlapping

muffin-tin spheres radii Rmt were set to 2.39, 2.5, 1.85, 1.7 and 1.5 a.u. for Y, Ba, Cu, Fe

and O respectively. For the interstitial region, the plane wave expansion was carried out

with a cut-off value of RmtKmax = 7.5. The maximum multipolarity l quantum number

for the wave function expansion within the atomic sphere was confined to lmax = 12.

The electrical charge density was Fourier expanded up to Gmax = 16
√
Ry. The number

of k-points in the irreducible part of the Brillouin zone was set to 30. The generalized

gradient approximation (GGA) due to Perdew et al. [80] was used to describe the

exchange and correlation effects, including an effective Coulomb interaction correction

(Ueff = U − J) to describe the strong on-site correlation between the Fe d electrons. The

Ueff value is taken as 7 eV, determined as an optimal value for Fe in the YBaFe2O5

sample [142].

The hyperfine electrical parameters values (isomer shift (δ) and quadrupole splitting

(∆)) are calculated using Eqs. (2.66) and (2.70) from the WIEN2k output parameters

(Vzz, η and ρ0). The obtained reference value to evaluate Eq. (2.66) in this case is

ρreference0 = 15309.841 a.u.−3.

In Table 5.1 the range of hyperfine electric parameters for the main doublets reported

in [39–42] are summarized for a later comparison. This table includes the reported values

for YBa2Cu3−xFexO7−y (x ≥ 0.1) AM and HP samples, as well as the AM ones subjected

to 60Co gamma irradiation.

Table 5.1.: Experimental hyperfine parameters (isomer shift (δ), quadruple splitting (∆)
and line width (Γ)) of the 57Fe main lines in the Mössbauer spectra of
YBa2Cu3−xFexO7−y (x ≥ 0.1) samples synthesized at both, ambient pressure
(AM) and high pressure (HP) conditions, as well as for AM samples under 60Co
gamma irradiation [39–42]. The notation Cu(i)n denotes that in the experiment
was considered that the Fe occupies the (i) site and has n-fold oxygen coordination.

Doublet δ(mm/s) ∆(mm/s) Γ(mm/s) AM HP Cu(i)n

A 0.06 2.00 0.14 × Cu(1)4

B 0.33 0.60 0.15 × × Cu(2)5

C -0.05 0.89 0.16 × × Cu(1)5

D 0.24 0.16 0.10 × Cu(1)6
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5.3. Results and Discussion

The calculated hyperfine parameter values for the 57Fe located at the Cu sites for the

proposed OCs in the YBa2Cu3−xFexO7−y are presented in Table 5.2. As expected, it

shows that the 57Fe located at the Cu(1) with the considered OCs have different hyperfine

parameters values for each coordination number. The increase of the oxygen content in

the sample also produce a significant variation in the calculated EFG values.

Table 5.2.: Calculated hyperfine parameters (Vzz, η, δ and ∆) for 57Fe located at the Cu sites,
considering different OCs and oxygen content in the YBa2Cu3−xFexO7−y. The
average bond distance between Fe and O atoms in the ab plane is also shown.

Site Config. 7− y Vzz(1021V/m2) η δ(mm/s) ∆(mm/s) dFe−Oab
(Å)

Cu(1)

OC. 4
7.0 7.31 0.23 0.30 1.23 1.94

7.25 5.86 0.76 0.25 1.06 1.91

OC. 4ab
7.0 7.51 0.79 -0.11 1.37 1.72

7.25 -7.36 0.54 0.00 -1.28 1.80

OC. 5
7.25 -10.83 0.03 -0.01 -1.80 1.76

7.5 -6.39 0.52 0.23 -1.11 1.96

OC. 6
7.5 -2.32 0.23 0.27 -0.39 1.97

7.75 2.76 0.88 0.29 0.51 2.00

Cu(2) OC. 5
7.0 3.82 0.88 0.35 0.71 1.93

7.25 -4.03 0.96 0.13 -0.77 1.89
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In Fig. 5.3 a graphical comparison between the experimental and theoretical hyperfine

parameters is established. The calculated δ and ∆ values for each OC is represented

by a symbol, and each experimental line is represented by a square with sides equals

to the experimental line width. The comparison shows some correlation between the

experimental lines and the calculated OCs, as will be explained in detail below.

(a) (b)

Figure 5.3.: Comparison between experimental and calculated hyperfine parameters δ and
∆ for the YBa2Cu3−xFexO7−y: a) normal oxygen content and b) high oxygen
content. The experimental lines distribution region is represented by a square
within the corresponding line width interval.

For the AM samples, the correspondence between the doublet D and the OC.6 is in

agreement with the experimental statements [42]. However, from the present calculation,

it results that the OC.5 seems to be correlated with Doublet A; while the OC.4 and

OC.4ab are in partial agreement with doublet C, contrarily to previous arguments [39–

42, 133, 144]. Hence, by doping the YBa2Cu3O7−y with Fe the occurrence of different

OCs in the first Fe neighborhoods are favored and consistent with the observed increase

of the oxygen content, specially for x > 0.4, as it is shown in Fig. 5.4. The hyperfine

parameters obtained for Fe located at the Cu(2) are in good agreement with the ones

of line B (see Table. 5.1) as is considered in the experiments [39–42], but also with the

OC.6 in the Cu(1) site.

In the case of the HP samples, it seems that local configurations with higher oxygen

content dominate the first neighborhoods around Fe and Cu positions. In this case, the
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∆ value of OC.5 is 45% smaller than the doublet A and becomes closer to doublet C,

showing a clear separation. On the other hand, the OC.6 hyperfine parameters are also

in agreement with doublet B as in the AM samples case. This particular finding might be

connected to the following fact (see also Fig. 5.4): by HP treatment the oxygen content

in YBa2Cu3O7−y basal planes increases over 1 atom per formula (1 + y ≥ 1.2), favoring

the O(5) site occupation and the occurrence of the related oxygen configurations OC.5

and OC.6 around Cu and Fe sites. The different oxygen content behaviors between HP-

and AM-YBa2Cu3−xFexO7−y samples with Fe content seems to be the cause of the total

extinction of doublet A observed in the experiment for the HP samples, as was previously

stated [39–41]. Finally, the obtained correlation between the doublets experimental

hyperfine parameters and the calculated values for the Fe in YBa2Cu3−xFexO7−y is

summarized in Table 5.3.

Table 5.3.: Correlation between the calculated 57Fe hyperfine parameters for the different OCs
and the experimental doublets of the AM and HP YBa2Cu3−xFexO7−y samples.
The OCs are related to the Cu(1) site, unless the Cu(2) site is indicated.

Doublet AM HP

A OC. 5 –

B OC. 5 (Cu(2)), OC. 6 OC. 6

C OC. 4ab, OC. 4 OC. 5, OC. 5 (Cu(2)), OC. 4ab, OC. 4

D OC. 6 –

On the other hand, in the Mössbauer spectra of AM-YBa2Cu3−xFexO7−y samples

irradiated with 60Co gamma rays [42], it was observed that the doublet A area decrement

is essentially equals to the increment in doublet D, as it is shown in Fig. 5.5. In

accordance with the present analysis and the OCs correspondence with the mentioned

doublets, this effect can be justified due to possible changes in the oxygen coordinations

of the sites associated with doublet A as a result of the DPAs provoked by the gamma

radiation through secondary particles. This idea is also supported by recent studies

where oxygen atoms DPAs presented a large effect in comparison with other atoms of

this material for the 60Co gamma energies [145, 146]. In this way, the OC. 5 sites can

become in OC. 6 if an oxygen atom displaced in another crystalline site occupies the

vacancy present in the OC. 5.
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Figure 5.4.: Dependency of the oxygen content on Fe content for the HP and AM samples of
YBa2Cu3−xFexO7−y. The values are taken from [39–41].

Figure 5.5.: Temporal behavior of the Doublets A and D relative area after the irradiation.
The values are taken from [42].
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5.4. Conclusions

The 57Fe electrical hyperfine parameters in YBa2Cu3−xFexO7−y samples are calculated by

introducing different first neighborhood oxygen configurations, OCs, around the 57Fe sites;

in order to characterize the measured Mössbauer spectral components in these systems

obtained at ambient pressure (AM), high pressure (HP) and under 60Co gamma irradiation

conditions. Thus, the hyperfine parameters values calculated for the 57Fe located at those

OCs in the Cu(1) site and for the ideal Cu(2) site give a complete microscopic description

of the reported main doublets of the YBa2Cu3−xFexO7−y Mössbauer spectra, especially

their connections with the oxygen disorder in the basal plane sites of their structures.

For AM samples the doublet D agrees with N=6 oxygen coordination in the Cu(1) site

and the doublet B with the ideal Cu(2) site, both cases are in concordance with previous

experimental arguments. On the contrary, for the HP samples the doublet B agrees with

N=6 oxygen coordination in the Cu(1) site. However, a fundamental difference is found

for the main doublet A in the AM samples, which seems to be related to a N=5 oxygen

coordination environment in the Cu(1) site, and the doublet C corresponds to the one

with N=4, in opposite assignments to previous studies [39–42, 133, 144]. But for the

HP samples, the N=4 and N=5 OCs are correlated only with doublet C, in connection

to the reported extinction of doublet A in these case [39–41]. The HP sample oxygen

content increase with respect to the non doped and AM samples seems to support the

above mentioned results. This effect imply a relatively higher occurrence of the oxygen

rich configuration around Cu and Fe atoms, in agreement the present results.

Finally, for 60Co γ-irradiated AM YBa2Cu3−xFexO7−y samples, the proposed structural

assignment of hyperfine parameters allows a microscopic interpretation of, the reported

population migration from doublet A to D [42], presumably due to coordination changes

from N=5 to 6 as a result of OC.5 configuration trapping of oxygen atoms released by

atoms displacements induced by the gamma secondary particles.



Summary

Hyperfine interaction techniques have been used for a long time to study radiation effects

and defects in solids [1, 2]. Microscopic details of defects and impurities have been

studied by these techniques [3–27, 32–43]. It is known that defects in solids can induce

characteristic EFGs in the neighboring lattice sites. However, a lot of experimentally

well characterized defects via their EFG have remained unidentified. In this content,

the current study try to achieve a better understanding of the crystallographic disorder

present in some material and establish its correlation with the measured hyperfine

parameters.

As studied cases, the following materials were selected: the semiconductors zinc

oxide (ZnO) and silicon (Si), and the superconductor yttrium barium copper oxide

(YBa2Cu3−xFexO7−y). In the semiconductors cases the radiation damage is mainly

produced by the implantation of hyperfine interaction probe atom, 57Mn(57Fe) and
111In(111Cd) in ZnO, as well as 57Mn(57Fe) in Si. In the superconductor, the crystal

structure presents some intrinsic disorder changes caused by high pressure synthesis or

gamma irradiation of the material. More details on the specific related problems are

analyzed in the thesis.

Several local configurations of the probe atoms, including defects, were proposed and

its electronic structure was calculated for the studied materials. The ions implantation

process in the semiconductors was simulated by Monte Carlo method obtaining the

produced ion and vacancy profiles, used as a criteria in the selection of the possible

implantation configurations.

The electronic structure was calculated using the all electrons full-potential (linearized)-

augmented-plane-wave plus local orbitals method (L/APW+lo), within DFT, as im-

plemented in the WIEN2k code. On this way, the hyperfine parameters predicted at

the probe atoms locations. These results permit to establish a correlation between the

experimental reported values and the evaluated local structure neighborhoods, providing

a possible crystallographic origin for these observation.
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In chapter 3, the calculated EFG values for the ideal ZnO crystal structure show a

good agreement with the measured values for both Zn and O sites [126]. The obtained

electrical hyperfine parameters and the magnetic properties of ZnO samples in the studied
57Fe configurations are in good agreement with the reported doublets and sextets [26–28].

It results that, the 57Fe could be located in ideal substitutional or interstitial sites,

as well as in those sites including point defects (vacancy) in different neighborhoods.

After annealing the sample, at temperatures over 700 K, it seems that the predominant

configuration is the substitutional site correlated with doublet D2 [26–28]. In general,

the obtained results agree with the experimental statement that Fe could stabilize a

vacancy in the neighborhood of the implantation site in the ZnO material [28]; and that

these defects could enhance the Fe magnetic ordered state in this case.

The EFG and νQ values obtained for the proposed 111In(111Cd) implantation con-

figurations in ZnO samples present some clear correlations with the two experimental

lines observed. The obtained νQ values for the cation substitutional site and including a

cation vacancy are in good agreement with the experimental component νQ1. The line

νQ2 seems to be represented by the 111Cd located in the octahedral interstitial site and

including a cation vacancy also. This correspondence is in agreement with the observed

diminution of the νQ2 component in favor of νQ1 during the sample annealing [25].

The hyperfine electric parameters of various 57Mn(57Fe) local implantation config-

urations in Si are calculated and reported in chapter 4. The obtained results for the

main substitutional and interstitial sites are in correspondence with the measured values

and in agreement with previous theoretical reports [63, 131]. The main low temperature

damage quadrupole doublet (FeD in [20]) could be characterized by configurations where

the 57Fe are located in an interstitial or substitutional site with a nearby Si vacancy or

a Frenkel pair of defects, respectively. On the other hand, the FeN spectral line could

be related with various defect complex configurations, including the 57Fe located in a

substitutional site with a near vacancy, as well as with the 57Fe located in the interstitial

site with a Si interstitial atom in the near neighborhood. This results are in agreement

with the observed hyperfine parameters variations with the sample temperature.

The 57Fe electrical hyperfine parameters in YBa2Cu3−xFexO7−y samples are calculated

in chapter 5. The obtained results give a microscopic description of the reported main

Mössbauer spectral components in these systems, obtained at ambient pressure (AM),

high pressure (HP) and under 60Co gamma irradiation conditions. For doublets D and

B the correlated oxygen coordination is in concordance with previous experimental

arguments. However, a fundamental difference is found for the main doublet A in the AM
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samples, which seems to be related to a N=5 oxygen coordination environment in the

Cu(1) site, while the doublet C corresponds to the one with N=4, contrary to previous

studies [39–42, 133, 144]. But for the HP samples, the N=4 and N=5 OCs are correlated

only with doublet C, in connection to the reported extinction of doublet A in these case

[39–41]. The HP sample oxygen content increases with respect to the AM samples seems

to support the above mentioned results. For 60Co γ-irradiated AM YBa2Cu3−xFexO7−y

samples, the reported population migration from doublet A to D [42], can be due to

coordination changes from N=5 to 6 as a result of OC.5 configuration trapping of oxygen

atoms released by atoms displacements induced by the gamma secondary particles.

Recommendations for future studies

It can be interesting to study the possible isomer shift dependency with the cell volume.

For that purpose volumetric optimizations for each studied configuration, related with

different local vicinities, should be done.

The use of a different exchange-correlation functional in the DFT calculations to

evaluate the hyperfine parameters could be interesting. In that case we suggest an

preliminarily study of the selected functional to save calculation time.

From the experimental point of view, it could be interesting to study ZnO samples

doped or implanted with Fe, or with another transition metal, to a later process of

irradiation with another type of ionizing radiation that can produce crystalline defects

in a controllable way. For example neutrons, protons or slight ions irradiation can be

used. This can offer additional information on the effect of the crystalline defects in the

magnetic properties of these materials.

In the case of Si implanted with 57Mn(57Fe) a review of the hyperfine parameters

experimental measurements can be useful to get a better understanding of the material

in this case.
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Samenvatting

Technieken gebaseerd op de meting van hyperfine interacties zijn reeds lange tijd in gebruik

om stralingseffecten en defecten in de vaste stof te bestuderen [1, 2]. Microscopische

details van defecten en onzuiverheden werden met deze technieken bestudeerd [3–27, 32–

43]. Het in bekend dat defecten in de vaste stof een gradiënt in het elektrische veld

van naburige rooster sites kunnen induceren. Echter, vele, via hun elektrische veld

gradiënt (EFG) experimenteel goed gekarakteriseerde defecten, blijven ongëıdentificeerd.

In deze context probeert de huidige studie een beter inzicht te verwerven in de kristallijne

afwijkingen aanwezig in sommige materialen en een verband te zoeken met de gemeten

hyperfine parameters.

De volgende materialen werden geselecteerd als studieobjecten: de halfgeleiders zink-

oxide (ZnO) en silicium (Si), en de supergeleider yttrium-barium-koperoxide (YBa2

Cu3−xFexO7−y). In het geval van de halfgeleiders wordt de stralingsschade hoofdzakelijk

veroorzaakt door de implantatie van een probe-atoom met hyperfine interactie, 57Mn(57Fe)

and 111In(111Cd) in ZnO alsook 57Mn(57Fe) in Si. In de supergeleider vertegenwoordigt

de kristalstructuur een zekere intrinsieke wanorde verandering veroorzaakt door synthese

onder hoge druk of door bestraling met gammastralen. Details van de specifieke problemen

worden geanalyseerd in deze thesis.

Verschillende locale configuraties van de probe-atoom, inclusief detecten, werden

vooropgesteld en hun elektronische structuur in de bestudeerde materialen werd berekend.

Het ionenimplantatieproces in de halfgeleiders werd bestudeerd via Monte-Carlo simulatie

om de geproduceerde ion- en vacatureprofielen te bekomen. Deze werden gebruikt als

criteria voor de selectie van mogelijke implantatie configuraties.

De elektronische structuur werd berekend gebruikmakend van de L/APW+lo (linea-

rized augmented plane wave plus local orbitals) methode voor alle elektronen binnen DFT

(density functioneel theory) zoals gëımplementeerd in de WIEN2K code. Hierdoor is het

mogelijk de hyperfine parameters te voorspellen op de locatie van de probe-atomen. Deze

resultaten laten toe een verband vast te stellen tussen de gerapporteerde experimentele
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waarden en de geëvalueerde lokale structurele omgeving wat de basis vormt voor een

mogelijke kristallografische verklaring voor deze waarnemingen.

In hoofdstuk 3 wordt aangetoond dat de berekende elektrische veld gradiënt (EFG)

waarden voor een ideaal ZnO kristal een goede overeenkomst vertoont met de gemeten

waarden voor zowel de Zn- als de O-sites [126]. De bekommen elektrische hyperfine

parameters and de magnetische eigenschappen van ZnO monsters in de bestudeerde 57Fe

configuraties zijn in goede overeenkomst met de waargenomen doubletten en sextets

[26–28]. Met als resultaat dat 57Fe kon gelokaliseerd worden in ideale substitutionele

of interstitionele sites, alsook in die sites die een puntdefect (vacature) vertonen in

verschillende omgevingen. Na temperen van het monster bij temperaturen boven 700

K, is blijkbaar de overheersende configuratie de substitutionele site gecorreleerd met

het D2 doublet [26–28]. In het algemeen komen de bereikte resultaten overeen met de

experimentele vaststelling dat Fe een vacature in de nabijheid van een gëımplanteerde

site kan stabiliseren in ZnO en dat deze defecten de geordende magnetische toestand van

Fe kunnen versterken in dit geval.

The EFG and de νQ-waarden verkregen voor de voorgestelde 111In(111Cd) implantatie

configuraties in ZnO monsters toont een duidelijke correlatie met de twee experimenteel

waargenomen lijnen. The verkregen νQ-waarden voor de kation substitutionele site met

inbegrip van een kation vacature zijn in goede overeenstemming met de experimentele

component νQ1. De νQ2-lijn wordt vertegenwoordigd door 111Cd gelokaliseerd in de

octaëderische interstitiële sites inclusief een kation vacature. Dit is in overeenstemming

met de waargenomen vermindering van de νQ2 component ten voordele van νQ1 tijdens

tempering van het materiaal.

De elektrische hyperfine parameters van verschillende 57Mn(57Fe) lokale implantatie

configuraties in Si worden berekend en besproken in hoofdstuk 4. De verkregen resultaten

voor de belangrijkste substitutionele en interstitionele sites zijn in overeenstemming met de

gemeten waarden en sluiten aan bij eerdere theoretische studies [63, 131]. De belangrijkste

lage temperatuur schade quadrupool doublet (FeD in [20]) wordt gekarakteriseerd door

een configuratie waarbij het 57Fe gelokaliseerd is in een interstitiële of substitutionele site

met een nabije Si vacature of een Frenkel-paar defect respectievelijk. Anderzijds kon de

FeN spectrale lijn in relatie gebracht worden met verschillende configuraties van defect

complexen, met inbegrip van het 57Fe gelokaliseerd in een interstitiële site met een Si

interstitieel atoom in de directe nabijheid. Deze resultaten zijn in overeenstemming met de

waargenomen variaties van de hyperfine parameters in functie van de monstertemperatuur.
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De elektrische hyperfine parameters van 57Fe in YBa2Cu3−xFexO7−y monsters werden

berekend in hoofdstuk 5. De resultaten geven een microscopische beschrijving van de

belangrijkste componenten in de Mössbauer spectra van deze systemen verkregen onder

atmosferische (AM) en hoge druk (HP) en onder bestraling met 60Co. Voor de D en B

doubletten is de overeenstemmende zuurstof coördinatie in concordantie met vroegere

experimentele argumenten. Echter, een fundamenteel verschil werd waargenomen voor

doublet A in de AM monsters, dewelke blijkbaar gerelateerd is aan een N = 5 zuurstof

coörditatie omgeving in de Cu(1) site, terwijl het C doublet overeenstemt met N = 4,

in tegenstelling tot vorige studies [39–42, 133, 144]. Maar voor de HP monsters zijn de

N = 4 en N = 5 zuurstof coördinaties enkel gecorreleerd met het C doublet, in connectie

met de gerapporteerde uitdoving van het A doublet in dit geval [39–41]. Het toename van

het zuurstofgehalte in de HP monsters in vergelijking tot de AM monsters ondersteunt

de hierboven vermelde resultaten. Voor de YBa2Cu3−xFexO7−y AM monsters bestraald

met γ-straling afkomstig van een 60Co-bron, kan de geobserveerde populatie migratie van

doublet A naar D [42] veroorzaakt worden door de coördinatieverandering van N = 5

naar 6 tengevolge van de OC.5 configuratie trapping van zuurstof atomen vrijgesteld

door atoomverplaatsingen gëınduceerd door secundaire deeltjes.
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2407–2417, 2006.

[94] M. Filatov. On the calculation of Mössbauer isomer shift. J. Chem. Phys., 127:
084101, 2007.

[95] M. Filatov. Coordin. Chem. Rev., 253:594–605, 2009.

[96] R. Kurian and M. Filatov. J. Chem. Phys., 130:124121, 2009.

[97] K. Koch and S. Cottenier. Analysis of an Electric-Field Gradient(EFG): the
EFG-switch in LAPW2, August 2011. URL http://www.wien2k.at/reg_user/

textbooks.

[98] P. Dufek, P. Blaha, and K. Schwarz. Phys. Rev. Lett., 75(19):3545–3548, 1995.

[99] P. Herzog et al. Z. Phys. A, 294:13, 1980.

[100] K. Schwarz., C. Ambrosch-Draxl, and P. Blaha. Phys. Rev. B, 42(4):2051–2061,
1990.
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16. Y. Abreu, I. Piñera, A. Leyva, A. E. Cabal, A. Dı́az, L. M. Montaño and C. M.
Cruz, Simulation of a PET System and Study of Some Geometry Parameters,
AIP Conference Proceedings 1032, Tenth Mexican Symposium on Medical Physics,
Mexico City, Mexico, 2008, pp. 219-221. doi: 10.1063/1.2979273.

17. A. Leyva, I. Piñera, L. M. Montaño, Y. Abreu and C. M. Cruz, Monte Carlo
simulation in the optimization of a free-air ionization chamber for dosimetric control
in medical digital radiography, AIP Conference Proceedings 1032, Tenth Mexican
Symposium on Medical Physics, Mexico City, Mexico, 2008, pp. 212-214. doi:
10.1063/1.2979271.

18. A. Leyva, L. M. Montaño, C. C. Dı́az, C. M. Ortiz, F. Padilla, R. de la Mora, M.
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and Y. Abreu. The effects of 137Cs and 60Co Gamma Radiation on the magnetic
susceptibility of BSCCO textured thin rods. Nucl. Instr. Meth. B 239(3), 2005, pp.
281-285.



Curriculum Vitae

General Information

• Birth: January 25th, 1981, Pinar del Ŕıo, Cuba.
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